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Abstract We prove a security theorem without collision resistance for a class of 1-
key hash function-based MAC schemes that includes HMAC and Envelope MAC.
The proof has some advantages over earlier proofs: it is in the uniform model, it
uses a weaker related-key assumption, and it covers a broad class of MACs in a
single theorem. However, we also explain why our theorem is of doubtful value
in assessing the real-world security of these MAC schemes. In addition, we prove
a theorem assuming collision resistance. From these two theorems, we conclude
that from a provable security standpoint, there is little reason to prefer HMAC to
Envelope MAC or similar schemes.

1 Introduction

The purpose of our “Another Look” series of papers [14] is to examine the way the
“provable security” paradigm is used in the cryptographic literature. In particular,
we hope to foster a less credulous attitude toward some of the claims that are
frequently made about “provable” security.

Starting in the early days of “practice-oriented provable security”—a term coined
by Bellare and Rogaway [1,4]—there has been an unfortunate tendency to exagger-
ate both the security guarantees that are proved and the efficiency advantages of the
provably secure protocols. For example, in [5] the authors used the word “optimal”
to advertise the OAEP version of RSA encryption (OAEP D “optimal asymmetric
encryption padding”). Shortly after Victor Shoup [27] discovered that the security
proof in [5] was fallacious, the claim of optimal efficiency was also reexamined. It
now seems that Boneh–Rabin encryption [9] comes closer than OAEP to being both
provably secure (in a limited sense) and optimally efficient; see Sect. 4 of [15].
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Excessive enthusiasm in marketing protocol designs can also be seen in certain
statements about hash-based key agreement and message authentication. According
to a letter to the AMS Notices from Hugo Krawczyk [20], the designer of the
HMQV key agreement protocol, “the HMQV work represents a prime example of
the success of theoretical cryptography, not only in laying rigorous mathematical
foundations for cryptography at large, but also in its ability to guide us in the design
of truly practical solutions to real-world problems.” Similarly, speaking of his hash-
based message authentication code HMAC in an invited talk at Asiacrypt 2010 on
“Cryptography: from theory to practice,” Krawczyk proclaimed that with HMAC
“balance [between engineering and theory was] regained and the rest is history.”

One of the conclusions of the present chapter is that Krawczyk’s claim of
a unique benefit provided by HMAC cannot be justified by provable security
considerations. Rather, very similar security results can be proved for a broad class
of message authentication codes, including some (such as “Envelope MAC”) that
arguably are a little more efficient than HMAC.

Another theme that recurs in several of our papers, including the present one,
is that the security definitions that are at the heart of any “proof” of security are
often open to debate and are far from definitive (see [16] for more discussion of
this). In [18] we found that even such a fundamental concept of computer science
as the distinction between a uniform and nonuniform algorithm is frequently dealt
with in a confusing and inconsistent manner in the cryptographic literature. In the
present chapter, we argue that in the MAC setting, two of the basic definitions used
by earlier authors—that of a pseudorandom function and that of security against
related-key attacks—need to be replaced by more suitable versions.

As we have written on many occasions, starting with [15], we have no objection
to formal arguments in cryptography provided that their significance is properly
interpreted and they are not misnamed “proofs of security.” Indeed, reductionist
security arguments for hash functions, message authentication codes, and other
symmetric and asymmetric cryptographic protocols can provide a type of baseline
guarantee of a certain limited security feature. We show that a broad class of 1-key
nested MACs have such a property. But the choice of which MAC in the class one
wants to use cannot be made using reductionist security arguments but rather should
be based on an ad hoc analysis of efficiency and security in the settings in which it
will be deployed.

* * *
A common method of constructing a message authentication code (MAC) is the

“nested” construction (NMAC). One first applies a keyed iterated hash function
h.K1; M / (constructed from a compression function f ) to the message M , and
then one puts this hash value into a second keyed function Qf .K2; h.K1; M // (where
Qf is also a compression function). For efficiency and ease of implementation, one

usually wants the MAC to depend on a single key K , and so one sets K1 D K2 D K

or, more generally, K1 D g1.K/, K2 D g2.K/ for some functions g1; g2. Our
main purpose is to prove a new security theorem without collision resistance that
covers arbitrary constructions of this type. The theorem says, roughly speaking,
that the MAC is a pseudorandom function (prf) provided that both Qf and f
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are pseudorandom functions and the functions f; Qf ; g1; g2 satisfy a certain rather
weak related-key assumption. This theorem is a generalized 1-key version of our
Theorem 10.1 in [17].

The two most important examples of this type of MAC are the “hash-based
message authentication code” (HMAC) [6] (standardized in [7, 21]) and Envelope
MAC (also called “Sandwich MAC”; see [29] for a recent version). In these
cases there are earlier security proofs without collision resistance in [2, 29], but
unfortunately those proofs are not valid in the uniform model of complexity.1 In
other words, they use unconstructible adversaries and so have to assume that the
cryptographic primitives withstand attack even by unconstructible adversaries. For
this reason, as we explained in [17] (see also [8]), they do not give useful concrete
bounds on the resources a prf-adversary would need in order to defeat the MAC. In
contrast, our theorem is proved in the uniform model; this means that it needs much
milder assumptions.

One of the five finalists in the NIST SHA-3 competition used Envelope MAC.
The designers of the “Grøstl” construction wrote (Sect. 6.1 of [11]):

We propose this envelope construction as a dedicated MAC mode using Grøstl. This
construction has been proved to be a secure MAC under similar assumptions as HMAC.

Here the designers were referring to the proof in [29], but they were apparently
unaware that Yasuda’s proof is not valid in the uniform model and for that reason
gives much weaker guarantees than one would expect. As we commented in [18],
one of the drawbacks of results obtained in the nonuniform model is the possibility
that they will be used by other authors who are unaware of the extremely limited
nature of such results from a practice-oriented standpoint. In any case, in the present
chapter we remove this gap in the security argument in [11] by supplying a uniform
proof.

There is a second respect in which our theorem makes a milder assumption than
earlier theorems of this type: our related-key assumption is weaker than the one
defined in [2, 3]. This not only gives us a stronger theorem but also enables us to
unify HMAC and Envelope MAC in a single theory.

Despite these advantages over earlier security theorems, the sad fact is that our
main theorem by itself provides very little assurance about the real-world security
of these MAC schemes. In Sect. 4 we recall some of the reasons for this.

In Sect. 5 we prove a second theorem, this time assuming collision resistance, that
carries over the main result of [6] to 1-key nested MACs. Our two theorems together
show that from the standpoint of security reductions, there is little difference
between HMAC, Envelope MAC, and other similar constructions. We conclude
that security theorems are not of much use in deciding which of the competing
schemes—HMAC, Envelope MAC, or some other variant—has better security in
practice.

1Fischlin [10] has a uniform proof of a security theorem for HMAC without collision resistance,
but its usefulness is questionable because of the extremely large tightness gap in his result.
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2 Statement of the Main Theorem

Let f W f0; 1gc � f0; 1gb �! f0; 1gc and Qf W f0; 1gc � f0; 1gc �! f0; 1gc be two
compression functions. Here b � 2c (typically b D 512 and c D 128 or 160), so
that f compresses by a factor of at least 3, whereas Qf compresses by a factor of 2.
Let gi W f0; 1gc �! f0; 1gc, i D 1; 2. We suppose that all of these functions are
publicly and efficiently computable.

By a .t; q/-adversary, we mean an adversary that makes � q queries and has
running time � t . Recall that f is said to be an .�; t; q/-secure pseudorandom
function (prf) if no .t; q/-adversary can distinguish between f with a hidden key
and a random function with advantage � �. We say that f is strongly .�; t; q/ secure
(see [17]) if such an adversary before any query is permitted to “reset” the oracle,
by which we mean that in response to the adversary’s request the oracle chooses
either a new random key (if it is f .K; :/) or a new random function (if it is a random
function r 0.:/).

We now define the “related-key assumption” that we shall use in our main
theorem.

Definition 1 In the above setting, we say that .f; Qf / is .�; t; q/-secure against
.g1; g2/-related-key attacks if no .t; q/-adversary has an advantage greater than or
equal to � in the following interaction with the oracle Orka. First, the oracle chooses a
random bit; if it is 0, the oracle chooses two random keys K1; K2 2 f0; 1gc; if it is 1,
the oracle chooses one random key K 2 f0; 1gc and sets K1 D g1.K/, K2 D g2.K/.
Each query of the adversary is a message M in either f0; 1gb or f0; 1gc, to which the
oracle responds with either f .K1; M / or Qf .K2; M /, respectively. At the end, the
adversary guesses the oracle’s random bit.

We recall that in this situation the advantage of the adversary is defined as

Prob.adversary guesses 1
ˇ
ˇ oracle chose 1/ � Prob.adversary guesses 1

ˇ
ˇ oracle chose 0/;

where Prob(A
ˇ
ˇB) denotes the conditional probability of event A given event B.

This setting is general enough to include two of the best-known MAC construc-
tions (see Fig. 1):

1. For HMAC, let IV be a fixed (and publicly known) initialization vector, and let
ipad and opad be two fixed elements of f0; 1gb (also publicly known). We let
a superscript 0 on a bitstring in f0; 1gc indicate that we are appending b � c

zero bits to it. We set Qf .K; M / D f .K; M 0/, g1.K/ D f .IV; K0 ˚ ipad/,
g2.K/ D f .IV; K0 ˚ opad/.

2. For Envelope MAC, let IV be a fixed (and publicly known) initialization vector;
let Qf .K; M / D f .M; K0/, g1.K/ D f .IV; K0/, and g2.K/ D K .

Remark 1 The above related-key assumption is weaker than the related-key
assumption in [2, 3]. In that assumption, the oracle is required to simply give the
adversary the two keys: K1; K2. In that case the adversary can of course compute
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Fig. 1 HMAC and Envelope MAC

any number of desired values f .K1; M / or Qf .K2; M /, limited only by the running
time bound; in other words, the rka-adversary in our assumption is less powerful
(because it has less information) than the rka-adversary in [2, 3]. Moreover, with
the rka-assumption in [2, 3], we wouldn’t have been able to include Envelope MAC
in our theorem, because when g2.K/ D K , the adversary, if given K1 and K2, can
trivially determine whether or not K1 D g1.K2/.

In the above setting let h W f0; 1gc � .f0; 1gb/� �! f0; 1gc denote the iterated
hash function that, given a key K 2 f0; 1gc and a message M D .M1; M2; : : : ; Mm/,
Mi 2 f0; 1gb, successively computes h1 D f .K; M1/, hiC1 D f .hi ; MiC1/, i D
1; 2; : : : ; m�1 and sets h.K; M / D hm. We define the message authentication code
MACf; Qf ;g1;g2

as follows:

MAC
f; Qf ;g1;g2

.K; M / D Qf .g2.K/; h.g1.K/; M //:

Notice that when g1.K/ D f .IV; K0 ˚ ipad/, and g2.K/ D f .IV; K0 ˚ opad/

this definition agrees with that of HMAC, and when g1.K/ D f .IV; K0/ and
g2.K/ D K , it agrees with that of Envelope MAC (see Fig. 1).

By a .t; q; n/-adversary, we mean an adversary that makes � q queries of
block length � n and has running time � t . We say that MAC

f; Qf ;g1;g2
is an
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.�; t; q; n/-secure pseudorandom function if no .t; q; n/-adversary can distinguish
between MAC

f; Qf ;g1;g2
with hidden key and a random function with advantage � �.

Theorem 1 Suppose that f is a strongly .�1; t; q/-secure pseudorandom function,
Qf is an .�2; t; q/-secure pseudorandom function, and .f; Qf / is .�3; t; 2q/-secure

against .g1; g2/-related-key attacks. Then MACf; Qf ;g1;g2
is a .2n.�1 C �

q
2

�

2�c/ C
�2 C 2�3; t � .qnT C Cq log q/; q; n/-secure pseudorandom function. Here C is an
absolute constant, and T denotes the time for one evaluation of f or Qf .

Remark 2 In the statement of the theorem, the expression 2n.�1C�
q

2

�

2�c/C�2C2�3

can be replaced by 2n�1 C �2 C2�3. The reason is that, as explained in Remark 10.2
of [17], the generic key-guessing attack on the strong pseudorandomness property
has advantage roughly .qt=T /2�c ; since we need t > qnT for the theorem to have
content, it follows that �1 � �

q

2

�

2�c .

Before proving Theorem 1, we give an informal summary of the argument.
The first step is to show that a prf-adversary AMAC of MACf; Qf ;g1;g2

is also a prf-
adversary—with almost the same advantage—of the MAC obtained by replacing
the .g1; g2/-related keys by independent random keys. Here “almost” means that we
can construct a related-key attack Arka on .f; Qf / whose advantage is equal to half the
difference between the advantage of AMAC when the keys are .g1.K/; g2.K// and
its advantage when the keys are independent. This step reduces the problem to the
case when there are two independent keys, at which point we can essentially follow
the proof for NMAC in [17]. Namely, we show that a prf-adversary for the MAC
succeeds only when either the prf property of the outer shell Qf .K2; :/ is attacked (we
call its adversary A Qf ) or else a collision is produced in the iterated hash function
that’s inside this shell. In the latter case we use the collision to construct a prf-
adversary of f . Since there are two possible types of collisions that can occur and
up to n iterations of the hash function, this leads to roughly 2n f adversaries. This
intuitively explains why 2n�1 C �2 C 2�3 appears in the conclusion of the theorem.
The term 2n

�
q
2

�

2�c arises because of the possibility of random collisions between
c-bit strings.

We shall give the actual proof in the next section. The above plausibility argument
shows that the basic ideas in the proof are simple. However, the organization is a
little intricate because of the need to proceed carefully with the reduction using all
of the adversaries. We see no way to come up with a more concise self-contained
proof, and we apologize to the reader for that.

3 Proof of the Main Theorem

Proof We will prove the following equivalent statement: if f is a strongly
.. ���2�2�3

2n
� �

q
2

�

2�c/; t C .qnT C Cq log q/; q/-secure pseudorandom function,
Qf is an .�2; t C .qnT C Cq log q/; q/-secure pseudorandom function, and .f; Qf /

is .�3; t C .qnT C Cq log q/; 2q/-secure against .g1; g2/-related-key attacks, then
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MAC
f; Qf ;g1;g2

is an .�; t; q; n/-secure pseudorandom function. The proof starts by
supposing that we have a .t; q; n/-adversary AMAC that has advantage � � in
the pseudorandomness test for MAC

f; Qf ;g1;g2
, and then it proceeds to construct

a .t C .qnT C Cq log q/; 2q/-adversary Arka of the related-key property, a
.t C .qnT C Cq log q/; q/-adversary A Qf of the pseudorandom property of Qf ,
and a .t C .qnT C Cq log q/; q/-adversary Af of the pseudorandom property of f

such that at least one of the following holds:

(i) Arka has advantage � �3 against the .g1; g2/-related key property of .f; Qf /.
(ii) A Qf has advantage � �2 in the pseudorandomness test for Qf .

(iii) Af has advantage � .� � �2 � 2�3/=.2n/ � �
q
2

�

2�c in the strong pseudoran-
domness test for f .

Note that if any of these three conditions holds, we have a contradiction that proves
the theorem.

For the i th message query M i , we use the notation M i
` to denote its `th block,

we let M i;Œm� D .M i
1 ; : : : ; M i

m/ be the truncation after the mth block, and we set
M i;.m/ D .M i

m; M i
mC1; : : :/, that is, M i;.m/ is the message with the first m�1 blocks

deleted. We say that a message is “non empty” if its block-length is at least 1.
Let h be the corresponding iterated function, and let Qf h be the MAC that

for a key .K1; K2/ 2 f0; 1gc � f0; 1gc is defined as follows: Qf h.K1; K2; M / D
Qf .K2; h.K1; M //, where M D .M1; : : : ; Mm/ is an m-block message, m � n.

Note that MACf; Qf ;g1;g2
.K; M / D Qf h.g1.K/; g2.K/; M /. Let r.M / denote a

random function of messages, and let r 0.M1/ denote a random function of 1-block
messages. In response to an input of suitable length, r 0 or r outputs a random c-
bit string, subject only to the condition that if the same input is given a second
time (in the same run of the algorithm), the output will be the same. In the test
for pseudorandomness, the oracle is either a random function or the function being
tested, as determined by a random bit (coin toss).

Now suppose that we have a .t; q; n/-adversary AMAC that, interacting with its
oracle OMAC, has advantage � � against the prf test for MACf; Qf ;g1;g2

. We use
AMAC to construct four adversaries A Qf h, Arka, A Qf , and Af . The last three are the
adversaries in the above conditions (i)–(iii); the .t; q; n/-adversary A Qf h attacks the

pseudorandomness property of Qf h. Each adversary makes at most the same number
of queries as AMAC (except that the related-key adversary can make up to 2q queries)
and has a comparable running time. More precisely, the bound t C .qnT CCq log q/

on the running time of the adversaries Arka, A Qf , and Af comes from the time
required to run AMAC, makes at most q computations of h values, and stores at most
q values (coming from oracle responses and h computations) in lexicographical
order and sorts them looking for collisions. (An adversary does not in all cases
perform all of these steps; rather, this is an upper bound.)

The related-key adversary Arka runs AMAC and interacts with the related-key
oracle Orka, which chooses a random bit u. Recall that Arka, after querying the oracle
Orka with at most 2q b-bit or c-bit messages, must guess whether the keys K1 and
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K2 that Orka is using are independent (i.e., u D 0) or are related by Ki D gi .K/,
i D 1; 2, for some K (i.e., u D 1).

The adversary Arka randomly chooses a bit `, and as AMAC runs, Arka responds
to each query M i as follows. If ` D 0, its response to each query is a random c-
bit string (except in the case when a query is repeated, in which case the response
is also repeated). If ` D 1, then it first queries Orka with M i

1 and computes H D
h.Orka.M

i
1 /; M i;.2//, where Orka.M

i
1 / denotes the oracle’s response. (If M i is just

a 1-block message, then H is set equal to Orka.M
i
1 /.) Now Arka makes a second

query to Orka—this time the c-bit query H—and responds to AMAC’s query with
Orka.H/.2 At the end Arka guesses that the random bit u chosen by Orka is 1 if AMAC

guesses that the random bit ` chosen by Arka (which is simulating an oracle) is 1;
otherwise, it guesses that u D 0. (Note that Arka guesses 0 if AMAC stops or reaches
time t without producing a guess; this could happen if Arka is not properly simulating
OMAC, which would imply that u D 0.) Let ı denote the advantage of Arka.

We also construct an adversary A Qf h
that interacts with its oracle O Qf h

and runs

AMAC. When AMAC makes a query M i , the adversary A Qf h queries O Qf h and sends

AMAC the response O Qf h.M i/. If AMAC guesses that the oracle simulated by A Qf h

is a random function, then A Qf h guesses that its oracle O Qf h is a random function;

otherwise, A Qf h
guesses that its oracle is Qf h with hidden keys. In particular, note

that if AMAC stops or fails to produce a guess in time t—as may happen when A Qf h
is

not property simulating OMAC—then A Qf h guesses that its oracle is Qf h with hidden
keys. (This makes sense, since if O Qf h were a random function, then the simulation
of OMAC would be correct.) Let � denote the advantage of A Qf h.

Returning to the description of Arka, we see that there are two cases, depending
on whether the random bit u of the oracle Orka was (a) 1 (i.e., its keys are related)
or (b) 0 (i.e., its keys are independent). In case (a) the interaction of Arka with AMAC

precisely simulates OMAC, and in case (b) it precisely simulates O Qf h. (As we noted,
in case (b) our original adversary AMAC may stop or run for time t without producing
a guess; in this case Arka makes the guess 0.) Let

p1 D Prob.AMAC guesses 1
ˇ
ˇ ` D 1 and u D 1/:

p2 D Prob.AMAC guesses 1
ˇ
ˇ ` D 1 and u D 0/:

p3 D Prob.AMAC guesses 1
ˇ
ˇ ` D 0/:

Note that when ` D 0, there is no interaction with Orka, and so the guess that AMAC

makes is independent of whether u D 0 or u D 1.

2The theorem’s query bound for the related-key property is 2q because Arka makes two queries for
each query of AMAC.
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By assumption, AMAC has advantage � � in a prf test for MACf; Qf ;g1;g2
; in other

words, p1 � p3 � �. We also have p2 � p3 D � . Subtracting gives p1 � p2 � � � � .
Next, the advantage ı of the related-key adversary Arka is given by

Prob.Arka guesses 1
ˇ
ˇ u D 1/ � Prob.Arka guesses 1

ˇ
ˇ u D 0/

D Prob.AMAC guesses 1
ˇ
ˇ u D 1/ � Prob.AMAC guesses 1

ˇ
ˇ u D 0/

D Prob.AMAC guesses 1
ˇ
ˇ u D 1 and ` D 0/ � Prob.` D 0/

CProb.AMAC guesses 1
ˇ
ˇ u D 1 and ` D 1/ � Prob.` D 1/

�Prob.AMAC guesses 1
ˇ
ˇ u D 0 and ` D 0/ � Prob.` D 0/

�Prob.AMAC guesses 1
ˇ
ˇ u D 0 and ` D 1/ � Prob.` D 1/

D 1

2
.p3 C p1 � p3 � p2/ D 1

2
.p1 � p2/ � .� � �/=2:

If condition (i) in the first paragraph of the proof does not hold, then ı < �3, in which
case � > � � 2�3. For the remainder of the proof, we assume that the advantage of
A Qf h

satisfies this inequality, since otherwise (i) holds and we’re done.
The rest of the proof closely follows the proof of Theorem 10.1 of [17]. We shall

give the details rather than simply citing [17] because the present setting is slightly
more general (with two pseudorandom compression functions f and Qf rather than
just one) and because there is some benefit in having a self-contained proof in one
place.

We now construct an Qf -adversary A Qf and consider its advantage. As before, for
any oracle O , we let O.M / denote the response of O to the query M . The adversary
A Qf is given an oracle O Qf and, using A Qf h

as a subroutine, has to decide whether O Qf
is Qf .K2; :/ or a random function r 0.:/ of 1-block messages. She chooses a random
K1 and presents the adversary A Qf h with an oracle that is either Qf .K2; h.K1; :// or
else a random function r.:/; that is, she simulates O Qf h (see below). In time � t with

� q queries A Qf h is able with advantage � > ��2�3 to guess whether O Qf h is Qf h with
hidden keys or a random function r . Here is how A Qf simulates O Qf h: in response to

a query M i from A Qf h
, she computes h.K1; M i/, which she queries to O Qf , and then

gives A Qf h the value O Qf .h.K1; M i //. Eventually (unless the simulation is imperfect,

see below) A Qf h states whether it believes that its oracle O Qf h is Qf h or r , at which

point A Qf states the same thing for the oracle O Qf —that is, if A Qf h said Qf h, then she

says that O Qf must have been Qf , whereas if A Qf h said that O Qf h is r , then she says

that O Qf is r 0. Notice that if the oracle O Qf is Qf .K2; :/, then the oracle O Qf h that A Qf
simulates for A Qf h is Qf h (with random key K D .K1; K2/); if the oracle O Qf is r 0.:/,
then the oracle that A Qf simulates for A Qf h acts as r with the important difference that

if h.K1; M i/ coincides with an earlier h.K1; M j / the oracle outputs the same value
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(even though M i ¤ M j ) rather than a second random value.3 If the latter happens
with negligible probability, then this algorithm A Qf is as successful in distinguishing
Qf from a random function as A Qf h is in distinguishing Qf h from a random function.

Otherwise, two sequences of f -adversaries A
.m/

f and B
.m/

f come into the picture, as
described below.

The general idea of these adversaries is that they each use the oracle Of in the
pseudorandomness test for f to look for collisions between h values of two different
messages M i; M j queried by A Qf h

. More precisely, the mth adversary in a sequence
works not with all of a queried message but rather with the message with its first
m � 1 blocks deleted. If a collision is produced, then with a certain probability, Of

must be f .K2; :/; however, one must also account for the possibility that Of is r 0.:/,
and in the case of A

.m/

f , this brings in the next adversary in the sequence A
.mC1/

f .
First we make a remark about probabilities, which are taken over all possible

coin tosses of the adversary, all possible keys, the oracle’s “choice bit” (which
determines whether it is the function being tested or a random function), and the
coin tosses of the oracle in the case when it outputs a random function.4 If the
adversary’s oracle is f or Qf h with hidden keys, then the adversary’s queries in
general depend on the keys (upon which the oracle’s responses depend) as well
as the adversary’s coin tosses. However, if the adversary’s oracle is a random
function—which is the situation when A Qf fails and the sequences of adversaries

A
.m/

f and B
.m/

f are needed—then the oracle responses can be regarded simply
as additional coin tosses, and the adversary’s queries then depend only on the
coin tosses and are independent of the keys. This is an important observation for
understanding the success probabilities of the adversaries.

We define ˛0 to be the probability, taken over all coin tosses of A Qf h
(including

those coming from random oracle responses) and all keys K1, that the sequence of
A Qf h

queries M i satisfies the following property:

There exist i and j , j < i , such that h.K1; M i/ D h.K1; M j /.

For m � 1, we define ˛m to be the probability, taken over all coin tosses of A Qf h

and all q-tuples of keys .K1; K2; : : : ; Kq/, that the sequence of A Qf h
queries M i

satisfies the following property:

(1m) there exist i and j , j < i , such that M i;.mC1/ ¤ ;, M j;.mC1/ ¤ ;,

h.K`i ; M i;.mC1// D h.K`j ; M j;.mC1//;

3If A
Qf h fails to produce a guess about the oracle O

Qf h in time t , as can happen if the simulation is
imperfect, then A

Qf guesses that O
Qf is a random function. Note that the simulation is perfect if O

Qf

is Qf with hidden key.
4The term “over all possible coin tosses” means over all possible runs of the algorithm with each
weighted by 2�s , where s is the number of random bits in a given run.



Security Theorems for MACs 79

where for any index i for which M i;.mC1/ ¤ ;, we let `i denote the smallest
index for which M `i ;.mC1/ ¤ ; and M i;Œm� D M `i ;Œm�.

Finally, for m � 1, we define ˇm to be the probability, taken over all coin tosses
of A Qf h and all q-tuples of keys .K1; K2; : : : ; Kq/, that the sequence of A Qf h queries

M i satisfies the following property:

(2m) there exist i and j such that M i;.mC1/ D ;, M j;.mC1/ ¤ ;,

M i;Œm� D M j;Œm�; and h.Ki ; M j;.mC1// D Ki:

We now return to the situation where with non-negligible probability ˛0 the
queries made by A Qf h lead to at least one collision h.K1; M i/ D h.K1; M j /. Note
that the advantage of the adversary A Qf is at least � � 2�3 � ˛0. If condition (ii) fails,
i.e., if this advantage is < �2, it follows that ˛0 > � � �2 � 2�3. In the remainder of
the proof, we shall assume that this is the case, since otherwise (ii) holds and we’re
done.

The first adversary in the sequence A
.m/

f is A0
f , which is given the oracle Of that

is either f .K1; :/ with a hidden random key K1 or else r 0.:/. As A0
f runs A Qf h, giving

random responses to its queries, she queries Of with the first block M i
1 of each A Qf h

query M i . If M i;.2/ is nonempty, she then computes yi D h.Of .M i
1 /; M i;.2//; if

M i;.2/ is empty, she just takes yi D Of .M i
1 /. If Of is f .K1; :/, then yi will be

h.K1; M i/, whereas if Of is r 0.:/, then yi will be h.Li ; M i;.2// for a random key
Li D Of .M i

1 / if M i;.2/ is nonempty and will be a random value Li if M i;.2/ is
empty. As the adversary A0

f gets these values, she looks for a collision with the yj

values obtained from earlier queries M j . If a collision occurs, she guesses that Of

is f with hidden key; if not, she guesses that Of is r 0.:/.
It is, of course, conceivable that even when Of is r 0.:/, there is a collision

h.Li ; M i;.2// D h.Lj ; M j;.2// with M i;.2/ and M j;.2/ nonempty. Note that Li D Lj

if M i
1 D M

j
1 , but Li and Lj are independent random values if M i

1 ¤ M
j
1 . In other

words, we have (11). Recall that the probability that this occurs is ˛1.
It is also possible that even when Of is r 0.:/ there is a collision involving one

or both of the random values Li or Lj that is produced when M i;.2/ or M j;.2/ is
empty. If both are empty, then the probability that Li D Lj is 2�c . If, say, M j;.2/

is nonempty, then in the case M i
1 ¤ M

j
1 , we again have probability 2�c that Li D

h.Lj ; M j;.2//, whereas in the case M i
1 D M

j
1 , we have (21) with Ki D Li .

Bringing these considerations together, we see that the advantage of A0
f is �

˛0 � ˛1 � ˇ1 � �
q
2

�

2�c .

We next describe the sequence of adversaries A
.m/

f , m � 2. Let Of again

denote the prf-test oracle for f that A
.m/

f can query. Like A0
f , he runs A Qf h

once
and gives random responses to its queries. As A Qf h

makes queries, he sorts their
prefixes (where we are using the word “prefix” to denote the first m � 1 blocks
of a query that has block length at least m). If the i th query has block length at
least m and if its prefix coincides with that of an earlier query, he records the
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index `i of the first query that has the same prefix; if it has a different prefix
from earlier queries, he sets `i D i . After running A Qf h

, he goes back to the

first query M j1 that has block-length at least m, and for all i for which `i D j1

(i.e., for all queries that have the same prefix as M j1), he queries M i
m to Of and

computes yi D h.Of .M i
m/; M i;.mC1// if M i;.mC1/ is nonempty and otherwise takes

yi D Of .M i
m/. Then he resets Of and goes to the first j2 such that M j2 has block

length at least m and a different prefix from M j1 . For all i for which `i D j2,
he queries M i

m to Of and computes yi D h.Of .M i
m/; M i;.mC1// if M i;.mC1/ is

nonempty and otherwise takes yi D Of .M i
m/. He continues in this way until he’s

gone through all the queries. He then looks for two indices j < i such that yj D yi .
If he finds a collision, he guesses that Of is f with hidden key; otherwise, he
guesses that it is a random function.

The adversary A
.m/

f takes advantage of the ˛m�1 probability of a collision of the
form (1m�1), and if such a collision occurs, he guesses that Of is f with hidden key.
The possibility that Of is really r 0.:/ is due to two conceivable circumstances—a
collision of the form (1m) or a collision among random values (either a collision
between two random values Li and Lj or between Li and h.Lj ; M j;.mC1// or else
a collision of the form (2m) with Ki D Li —here the probability of such a collision
is bounded by

�
q
2

�

2�c and by ˇm, respectively).

Finally, the sequence of adversaries B
.m/

f , m � 1, is defined as follows. As usual,

Of denotes the prf-test oracle for f that B
.m/

f can query. She runs A Qf h once and
gives random responses to its queries. As A Qf h makes queries, she sorts their prefixes
(where this time, we are using the word “prefix” to denote the first m blocks of a
query that has block length at least m). She makes up a list of pairs .i; S.i//, where
the i th query has block length exactly m and coincides with the prefix of at least one
other query; in that case S.i/ denotes the set of indices j ¤ i such that M j;Œm� D
M i . After running A Qf h, she chooses a message block Y that is different from all the

blocks M
j
mC1 of all queries M j . She goes through all indices i with nonempty S.i/.

For each such i , she queries Y to Of , and for each j 2 S.i/, she also queries M
j
mC1

to Of and computes yj D h.Of .M
j
mC1/; M j;.mC2/; Y /. She looks for a collision

between Of .Y / and yj for j 2 S.i/. Before going to the next i , she resets Of .
If she finds a collision for any of the i , she guesses that Of is f with hidden key;
otherwise, she guesses that it is a random function. The advantage of this adversary
is at least ˇm � q2�c , because if Of is f .Ki ; :/ and h.Ki ; M j;.mC1// D Ki , then
h.Of .M

j
mC1/; M j;.mC2/; Y / D f .Ki ; Y / D Of .Y /, whereas if Of is a random

function, then Of .Y / has probability only 2�c of coinciding with this h-value.
We thus have the following lower bounds for the advantages of the adversaries:

A0
f : ˛0 � ˛1 � ˇ1 � �

q
2

�

2�c .

A
.m/

f , m � 2: ˛m�1 � ˛m � ˇm � �
q
2

�

2�c .

B
.m/

f , m � 1: ˇm � q2�c .
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Trivially we have ˛n D ˇn D 0, and so the adversaries go no farther than A
.n/

f

and B
.n�1/

f . The sum of all the advantages of the 2n � 1 adversaries telescopes and

is at least ˛0 � .2n � 1/
�

q
2

�

2�c .
Since we have no way of knowing which of these adversaries has the greatest

advantage, we make a random selection. That is, the adversary Af we use to attack
the pseudorandomness of f consists of randomly choosing one of the 2n � 1

adversaries A0
f , A

.m/

f (2 � m � n), B
.m/

f (1 � m � n � 1) and running it.
The advantage of the adversary Af is the expectation obtained by summing the
advantages of the 2n � 1 adversaries with each one weighted by the probability
1=.2n � 1/ that we choose the corresponding adversary. This advantage is at least

1
2n�1

.˛0 � .2n � 1/
�
q
2

�

2�c// > . ���2�2�3

2n
� �

q
2

�

2�c/. Thus, returning to the first
paragraph of the proof, we have shown that if conditions (i) and (ii) do not hold,
then condition (iii) holds. ut

4 Interpretation

How useful is our theorem as a guarantee of real-world security? As in the case
of Theorem 10.1 of [17], there are several reasons for skepticism concerning the
practical assurance provided by Theorem 1:

1. In order to conclude that our MAC is an .�; t; q; n/-secure pseudorandom func-
tion, we need the inner compression function f to be a strongly .�=.2n/; t; q/-
secure pseudorandom function. In other words, we have a tightness gap of about
2n, which is large if, for example, we allow a block-length bound of 220 or 230.5

2. Theorem 1 is in the single-user setting, and its security assurances could fail in
the more realistic multiuser setting.

3. The three hypotheses in Theorem 1—pseudorandomness of the outer compres-
sion function, strong pseudorandomness of the inner compression function,6 and
the related-key property—are in general extremely difficult to evaluate. When
the assumptions in a theorem cannot be evaluated in any convincing manner, we
should not be surprised if practitioners view the theorem as having little value.

5The tightness gap in our theorem, bad as it is, is not nearly as extreme as the one in Fischlin’s
theorem [10], which establishes the secure-MAC property for NMAC and HMAC based on
assumptions that are slightly weaker than the prf property. The gap in success probabilities in that
theorem is roughly qn2. In [10] this gap is compared to the q2n gap in Bellare’s Theorem 3.3 in
[2]. However, any comparison based solely on success probabilities is misleading, since the factor
q2n in Bellare’s theorem is multiplied by the advantage of a very low-resource adversary A2 with
running time � nT , much less than that of Fischlin’s adversary. One must always include running
time comparisons when evaluating tightness gaps, and this is not done in [10].
6Note that the inner compression function needs to be strongly .�1; t; q/-secure for a quite small
value of �1, since the theorem loses content if �1 > 1=.2n/.
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5 Security Theorem with Collision Resistance

There are two types of security theorems that have been proved about nested MACs.
Starting with Bellare’s paper [2] (see also [10, 17, 24]), some authors have proved
theorems without assuming collision resistance of the iterated hash function. The
idea is that confidence in security of a MAC scheme should not depend upon
the rather strong assumption that an adversary cannot find hash collisions. Our
Theorem 1 continues this line of work.

On the other hand, if one is using a hash function that one strongly believes to
be collision resistant and one wants to know that an adversary cannot forge message
tags, then one can go back to the much earlier and more easily proved security
theorem in [6]. The purpose of this section is to carry over the main result of [6] to
our class of 1-key nested MACs.

An iterated hash function h is said to be .�; t; q; n/ weakly collision resistant if
no .t; q; n/-adversary that queries h.K; :/ has success probability � � of producing
a collision h.K; M 0/ D h.K; M /, where M and M 0 are distinct messages of block-
length � n. (Here h.K; :/ is regarded as an oracle, i.e., a black box, and K is a
hidden key.) A MAC is said to be .�; t; q; n/-secure against forgery if no .t; q; n/-
adversary has success probability � � of producing a tag for an unqueried message
of block length � n.

Theorem 2 Suppose that the iterated hash function h coming from the compression
function f is .�1; t; q; n/ weakly collision resistant, the compression function Qf is
an .�2; t; q; 1/-secure MAC, and .f; Qf / is .�3; t; 2q C 2/-secure against .g1; g2/-
related-key attacks. Then MAC Qf ;f;g1;g2

is an .�1 C�2 C�3; t �.qC1/nT; q; n/-secure

MAC, where T is the time required for one evaluation of f or Qf .

Proof The proof is quite simple. Suppose that we are given a .t � .q C 1/nT; q; n/-
adversary AMAC that has probability � �1 C �2 C �3 of forging a MAC Qf ;f;g1;g2

-tag.
Then we construct three adversaries—a .t; q/-adversary A Qf , a .t; q; n/-adversary
Awcr, and a .t; 2q C 2/-adversary Arka—such that at least one of the following is
true:

(i) A Qf has probability � �2 of forging a Qf -tag.
(ii) Awcr has probability � �1 of producing an h collision.

(iii) Arka has advantage � �3 against the .g1; g2/-related-key property of .f; Qf /.

(It does not matter which of (i)–(iii) is true, since any one of the three would
contradict the assumptions of the theorem.)

We first use AMAC to construct both an adversary Arka of the related-key property
and an adversary A Qf h that can forge an Qf h tag. (Recall that Qf h denotes the

MAC Qf .K2; h.K1; M // with independent keys.) The adversary Arka runs AMAC

and interacts with the oracle Orka, which chooses a random bit u. After querying the
oracle Orka with at most 2q C 2 b-bit or c-bit messages, Arka must guess whether
Orka is using random keys (i.e., u D 0) or related keys (i.e., u D 1). As AMAC runs,
for each of its queries M i the adversary Arka queries the first block M i

1 to Orka,
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then computes H D h.Orka.M
i
1 /; M i;.2//, and finally queries H to Orka; it gives the

value Orka.H/ to AMAC as the tag of the queried message. If in time � t �.q C1/nT
the adversary AMAC forges a tag of an unqueried message,7 then Arka guesses that
u D 1; otherwise, it guesses that u D 0. Let ˛ denote the advantage of Arka, where,
by definition

˛ D Prob
�

Arka guesses 1
ˇ
ˇ u D 1

� � Prob
�

Arka guesses 1
ˇ
ˇ u D 0

�

: (1)

The time Arka needs to perform these steps—that is, computing the values H ,
waiting for AMAC, and verifying the forgery produced by AMAC—that are bounded
by qnT C .t � .q C 1/nT/ C nT D t .

We construct A Qf h as follows. It has an Qf h-oracle O Qf h that has hidden keys

K1; K2. The adversary A Qf h runs AMAC, responding to each of its queries M i by

querying O Qf h
and giving AMAC the response O Qf h

.M i/. If AMAC forges the Qf h

tag of an unqueried message QM (which A Qf h can verify with one further query to

its oracle), then A Qf h
has succeeded in forging the Qf h tag of QM . Let ˇ denote the

success probability of this adversary A Qf h
.

Note that the interaction of A Qf h
with AMAC is exactly the same as that of Arka

with AMAC in the case u D 0. Thus, the second term on the right in the expression (1)
for ˛ is equal to ˇ, whereas the first term is the success probability of AMAC, which
by assumption is at least �1 C�2 C�3. We hence have ˛ Cˇ � �1 C�2 C�3, and this
means that either ˛ � �3 (which is the alternative (iii) above) or else ˇ � �1 C �2.

We now use A Qf h
to construct an Qf tag-forging adversary A Qf and an h collision-

finding adversary Awcr. The former is constructed as follows. After choosing a
random key K1, A Qf runs A Qf h

. In response to each query, M i from A Qf h
, A Qf

computes H D h.K1; M i /, queries this H value to its oracle O Qf D Qf .K2; :/,

and gives the value Qf .K2; H/ to A Qf h. With probability ˇ in time � t � .q C 1/nT,

the adversary A Qf h
finds a tag QT D Qf h. QM/, where QM is different from all of the

queried messages. The bound on the time A Qf needs to perform these steps—that is,

computing the values h.K1; M i/ and waiting for A Qf h—is qnT C .t � .q C1/nT/ D
t � nT. Then A Qf takes time � nT to compute QH D h.K1; QM/, hoping that
it is different from all H values that were queried to O Qf , in which case it has

succeeded in forging an Qf tag. Meanwhile, the adversary Awcr, which has an
oracle Owcr that responds to queries with h.K1; :/ where K1 is a hidden key, is
constructed as follows. It chooses a random key K2 and runs A Qf h, responding to

its queries M i with Qf .K2; Owcr.M
i//. Awcr looks for a collision between some

7Note that Arka can verify that AMAC has a valid forgery using the same procedure that was used to
respond to its queries. This means that Arka needs to be allowed two more queries of Orka, and for
this reason, the query bound for Arka is 2q C 2 rather than 2q, and the time bounds have the term
.q C 1/nT rather than qnT .
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Owcr.M
i/ D h.K1; M i/ and Owcr. QM/ D h.K1; QM/, where . QM; QT / is the forgery

produced by A Qf h in the event that the latter adversary succeeds in its task. Note that
the success probability ˇ of A Qf h is the sum of the success probability of A Qf and
that of Awcr. Since ˇ � �1 C �2 if alternative (iii) does not hold, it follows that at
least one of the above alternatives (i)–(iii) must hold.

This concludes the proof. ut
This theorem, like Theorem 1, provides only a very limited type of security

assurance. Two of the three “reasons for skepticism” listed in Sect. 4 also apply
to Theorem 2: it assumes the (unrealistic) single-user setting, and one of its
hypotheses—the secure-MAC property for the compression function—is very
difficult to evaluate in practice. On the positive side, at least Theorem 2 is tight,
unlike Theorem 1. It’s reasonable to regard Theorem 2 as providing a type of
assurance that the “domain extender” feature of the MAC scheme is not likely to
be a source of security breaches, provided that h is weakly collision resistant.

The proof of Theorem 2 is short, straightforward, and in some sense tautological.
Some people would even say that it is “trivial,” although we would prefer not to use
such a pejorative word in connection with the proof of Theorem 2. But in any case,
it seems to us that proofs of this sort merely confirm what is more or less intuitively
obvious from the beginning. Such proofs cannot serve as a meaningful source of
confidence in a protocol, and they certainly cannot be a substitute for extensive
testing and concrete cryptanalysis.

6 HMAC vs. Envelope MAC Comparison

As discussed in [19], it often happens that a type of cryptography enjoys nearly
universal acceptance more for reasons of historical happenstance than because of
its intrinsic advantages over the alternatives. At present HMAC is widely deployed,
whereas Envelope MAC languishes in relative obscurity. But the reasons for this
seem to lie in the peculiarities of the history of Envelope MAC, and one can argue
that, despite this history, it deserves serious consideration as a secure and practical
MAC scheme.

An Envelope MAC scheme was first presented by Tsudik in [28]. His scheme
used two independent c-bit keys, and he argued informally that this would give it
2c bits of security. However, Preneel and van Oorschot [25] showed that the keys
can be recovered in 2cC1 steps if one knows approximately 2c=2 message-tag pairs.
That is, Tsudik was wrong, and two independent keys do not give significantly more
security than one key.

Soon after, Kaliski and Robshaw [12] and Piermont and Simpson [23] presented a
1-key variant of Envelope MAC, but it had a flaw. To explain this, for concreteness,
we’ll use MD5 as the underlying hash function with c D 128, b D 512. Let p

denote a 384-bit padding, used to extend a key to fill a 512-bit block. Given a 128-
bit key K and a message M of arbitrary length, the tag is h.KkpkM kK0/ (where
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the 0 superscript indicates that 0s are appended to fill out the last message block).
Note that the second K may spill over into two blocks since the bitlength of M

is not required to be a multiple of b. Preneel and van Oorschot [26] exploited this
overlap to design a key-recovery attack that needs approximately 264 message-tag
pairs and has running time 264. Because a MAC based on MD5 would be expected to
require exhaustive search—that is, roughly 2128 steps—for key recovery, this attack
exposed a serious defect in the variant of Envelope MAC in [12,23]. The Preneel-van
Oorschot attack gave Envelope MAC a bad name. However, the attack was possible
only because of poor formatting of the second key block.

This flaw can be removed simply by ensuring that each key lies in its own
block. This was done by Yasuda [29]. Yasuda also gave a security proof, along
the lines of Bellare’s HMAC security proof in [2]; in fact, he made crucial use
of Bellare’s Lemma 3.1. Like Bellare’s proof, Yasuda’s security theorem requires
unconstructible adversaries and so is not valid in the uniform model of complexity.
Our Theorem 1 gives a uniform proof for the version of 1-key Envelope MAC
described by Yasuda.

As pointed out in [29], Envelope MAC has a minor efficiency advantage over
HMAC because the iterated hash function needs to be applied just once. Generally,
the accepted procedure when applying an iterated hash function is to append a block
at the end of the message that gives the block length of the message. (With this
modification, one can give a simple proof that collision resistance of f implies
collision resistance of h.) In Envelope MAC, this is done just once, whereas in
HMAC it needs to be done twice. Envelope MAC also has the advantage of
simplicity—no need for ipad and opad.

In order to argue that HMAC is preferable, one thus has to make a persuasive
case that it has better security. Our two theorems give the same security results in
both cases, and the same building block (a compression function f ) can be used in
both. From this standpoint the only grounds for preferring HMAC would be if one
of the following holds:

1. The prf assumption on Qf in Theorem 1 is more credible for HMAC than for
Envelope MAC. In the former case, the assumption is weaker than the prf
assumption on f and in fact follows from it. In the latter case the assumption
also seems to be weaker than the prf assumption on f in practice, but not in
the formal sense; in Envelope MAC the prf assumption on Qf is an additional
condition that is not a consequence of the prf assumption on f .8 One could claim
that the need for a separate Qf condition in Envelope MAC means that it is less
secure than HMAC.

8In the prf test for f , the adversary gets the values f .K; M / (with K a c-bit hidden key and M

a b-bit queried message); in the test for Qf in HMAC, he gets the values f .K; M kp/ (with M a
c-bit message and p a fixed .b � c/-bit padding); and in the test for Qf in Envelope MAC, he gets
the values f .M; Kkp/. Thus, the only difference is whether the key occurs in the first c bits or in
the next c bits.
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2. The secure-MAC assumption on Qf in Theorem 2 is more credible for HMAC
than for Envelope MAC. One would be claiming that it’s harder to forge a tag if
the key occurs in the first c bits than if it occurs in the next c bits.

3. The different choices of the pair of functions g1, g2 lead to a real difference in
strength of the related-key assumptions. There would be a strong reason to prefer
HMAC if one could argue that the choice g2.K/ D K in Envelope MAC makes
the related-key assumption less plausible.

However, we know of no evidence for any of the above three claims. To the best
of our knowledge, no provable security theorem justifies preferring one of these two
MACs over the other. Nor does any such theorem preclude the possibility that one
would want to choose some other MAC with entirely different functions Qf , g1, g2.

Remark 3 Both HMAC and Envelope MAC offer the convenience of using only an
off-the-shelf hash function with built-in IV. However, one can argue that for the outer
compression function—which maps only from f0; 1gc � f0; 1gc rather than from the
much larger set f0; 1gc �f0; 1gb—it might be more efficient to use a specially chosen
Qf . One can even argue that the inner compression function f needs to have better

security than Qf because it is iterated. That is why Theorem 1 has a 2n tightness gap
with respect to the advantage bound �1 of an f adversary, but not with respect to the
advantage bound �2 of an Qf adversary. If one believes that security proofs should
guide protocol design and that efficiency should not be sacrificed for security unless
a provable security theorem gives grounds for doing so (in [13] Katz and Lindell
argue forcefully for this viewpoint), then it is natural to conclude that Qf should be
less secure than f . Elsewhere (see [16]) we have raised doubts about this way of
thinking, so our personal preference would be not to use a weaker Qf . But to someone
who needs only short-term security, this might be an acceptable risk in order to gain
a slight edge in efficiency.

Conclusion

The Importance of the “Right” Definitions

In their highly regarded textbook [13] on the foundations of cryptography,
Katz and Lindell write that the “formulation of exact definitions” is Principle
1 in their list of “basic principles of modern cryptography” and that getting
the definitions right is the “essential prerequisite for the. . . study of any
cryptographic primitive or protocol.” We agree with this statement, and in
[16] we analyzed some of the difficulties and challenges that researchers in
both symmetric and asymmetric cryptography have faced in trying to search
for a consensus on what the “right” definitions are.

(continued)
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In our study of 1-key nested MACs, we have encountered two instances
where the standard accepted definitions are not, in our opinion, the natural
and useful ones. First, as we explained in Sect. 9 of [17], in the context of
iterated hash functions the usual definition of pseudorandomness needs to be
replaced by a stronger definition in which the adversary is given the power to
“reset” the oracle. In the second place, when analyzing the step from NMAC
to 1-key versions such as HMAC and Envelope MAC, we believe that our
definition of resistance to related-key attack is preferable to the one used by
earlier authors.

We have given arguments justifying our use of these new definitions.
Nevertheless, it would be arrogant in the extreme for us to claim that we have
resolved the question or that our viewpoint is definitive. Cryptography is as
much an art as a science, and to some extent decisions about which are the
“right” definitions are matters of personal taste.

The Role of Mathematical Proofs

The NIST documents concerning the SHA-3 competition illustrate the limited
role that provable security plays in evaluating real-world cryptosystems. The
report [22] that explains the rationale for the selection of the winner devotes
about 5 % of the section on security to security proofs. The report highlights
the role of proofs in showing a hash function’s “security against generic
attacks—attacks that only exploit the domain extender and not the internals
of the underlying building blocks” (p. 11). It notes that all five finalists have
this sort of security proof. In other words, the security proofs are useful as
a minimal type of assurance that basically says that concrete cryptanalysis
should focus on the underlying building blocks rather than on the extension
procedure. But the final decision about what to use must be based on extensive
testing and concrete cryptanalysis. NIST makes it clear that provable security,
although a necessary component in the security analysis, played no part in
ranking the five finalists.9

In choosing a MAC scheme, provable security (which, as we argued in
[15], is a misnomer) should play no greater role than it did in choosing
SHA-3. All methods of the form in Theorem 1 for constructing MACs
from compression functions are good domain extenders if they satisfy the

(continued)

9How can something be a necessary component, but play no role in the selection? By analogy, when
one looks for an apartment, a functioning toilet is a requirement; however, one doesn’t normally
choose which apartment to rent based on which has the nicest toilet.
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hypothesis of that theorem—of course, “good” only in the limited sense
guaranteed by the conclusion of the theorem. As in the case of the SHA-3
competition, the final choice has to be made through ad hoc testing rather
than mathematical theorems. In particular, the relative merits of HMAC and
Envelope MAC cannot be determined from provable security considerations.
The choice between the two (or a decision to go with a totally different
Qf ; g1; g2) is a judgment call.
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