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Abstract Plateaued functions were introduced in 1999 by Zheng and Zhang
as good candidates for designing cryptographic functions since they possess
desirable various cryptographic characteristics. They are defined in terms of the
Walsh–Hadamard spectrum. Plateaued functions bring together various nonlinear
characteristics and include two important classes of Boolean functions defined in
even dimension: the well-known bent functions and the semi-bent functions. Bent
functions (including their constructions) have been extensively investigated for more
than 35 years. Very recently, the study of semi-bent functions has attracted the
attention of several researchers. Much progress in the design of such functions
has been made. The chapter is devoted to certain plateaued functions. The focus
is particularly on semi-bent functions defined over the Galois field F2n (n even). We
review what is known in this framework and investigate constructions.

1 Introduction

The so-called plateaued functions in n variables (or r-plateaued functions) were
introduced in 1999 by Zheng and Zhang in [54] for 0 < r < n. They were first
studied by these authors in [55, 56] and further by Carlet and Prouff in [7] as good
candidates for designing cryptographic functions. The Walsh–Hadamard spectrum
is a very important tool to define and design plateaued functions. An n-variable
Boolean function is said to be r-plateaued if the values of its Walsh transform

belong to the set f0;˙2 nCr
2 g for some fixed r , 0 � r � n. Consequently, plateaued

functions have low Hadamard transform, which provides protection against fast
correlation attacks [33] and linear cryptanalysis [31]. It has been shown in [54]
that plateaued functions are significant in cryptography as they possess desirable
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various cryptographic characteristics such as high nonlinearity, resiliency, low
additive autocorrelation, and high algebraic degree and satisfy propagation criteria.
Plateaued functions bring together various nonlinear characteristics. They include
three significant classes of Boolean functions: the well-known bent functions, the
near-bent functions and the semi-bent functions. More precisely, the bent functions
are exactly 0-plateaued functions, the near-bent (also called semi-bent in odd
dimension) are 1-plateaued functions, and the semi-bent functions are 2-plateaued
functions. 0-plateaued functions and 2-plateaued functions on F2n exist when n is
even, while the 1-plateaued functions on F2n exist when n is odd.

For r 2 f0; 1; 2g, r-plateaued functions have been actively studied and have
attractive much attention due to their cryptographic, algebraic, and combinatorial
properties.

In the mathematical field of combinatorics, bent functions (or 0-plateaued
functions) are a special type of Boolean functions. Introduced and named in 1974 by
Rothaus [46] in research not published until 1976, firstly studied by Dillon [14], bent
functions are so called because they are as different as possible from all linear and
affine functions (more precisely, they are at maximum Hamming distance from the
set of all affine functions). They are extremal objects in combinatorics and Boolean
function theory and have been studied for about 35 years (even more, under the name
of difference sets in elementary Abelian 2-groups). The motivation for the study
of these particular difference sets is mainly cryptographic, but bent functions play
also a role in sequence theory, as difference sets, and especially in coding theory,
as elements of Reed-Muller codes. Bent functions exist only with even number of
inputs n and have 2-valued spectrum ˙2 n2 . The definition of bent function has been
extended in several ways, leading to different classes of generalized bent functions
that share many of the useful properties of the original. A lot of research has been
devoted to designing constructions of bent functions. The reader can refer to the
book’s chapter of Carlet [4] for general constructions of bent functions and to the
following references [37, 41, 44] for a complete state of the art on bent functions
defined over the Galois field F2n , including the main constructions obtained until
2012.

Another special family of plateaued functions defined in even dimension is the
set of semi-bent functions. The notion of semi-bent function has been introduced in
1994 by Chee et al. [11]. Nevertheless, these functions had been previously investi-
gated in [2] under the name of three-valued almost optimal Boolean functions. Very
recently, the development of the theory of semi-bent functions has increased. For
very recent results on the treatment of semi-bent functions, we refer to [6,38–40,43].
The motivation for their study is firstly related to their use in cryptography (we
recall that in the design of cryptographic functions, various characteristics need be
considered simultaneously). Indeed, unlike bent functions, semi-bent functions can
also be balanced and resilient. They also possess various desirable characteristics
such as low autocorrelation, and a maximal nonlinearity among balanced plateaued
functions, satisfy the propagation criteria, and have high algebraic degree. Secondly,
besides their practical use in cryptography, they are also widely used in code
division multiple access (CDMA) communication systems for sequence design



On Semi-bent Functions and Related Plateaued Functions Over the Galois Field F2n 245

(see, e.g., [17, 19–21, 23, 24, 45]). In this context, families of maximum-length
sequences (maximum-length linear feedback shift-register sequences) having three-
valued cross-correlation are used. Such sequences have received a lot of attention
since the late 1960s and can be generated by a semi-bent function [10]. Up to 2011,
the main constructions of semi-bent functions in even dimension are either quadratic
functions [48] or derived from power polynomials Trn1.x

d / for a suitably chosen d
(see [10]). Since then, several constructions of semi-bent have been proposed in the
literature. The principal engine of this progress is the result of several important
observations in connection with the construction of bent functions [5, 36, 42]. We
shall describe this more precisely in Sect. 4.2.

The chapter is devoted to certain plateaued functions. Special attention is directed
to semi-bent functions. We review what is known in this context and investigate
new constructions. The chapter is organized as follows. In Sect. 2, we fix our main
notation and recall the necessary background. Section 3 is devoted to r-plateaued
functions. We recall some basic concepts concerning these functions. In Sects. 3.1–
3.3, we treat special classes of r-plateaued functions and present an overview related
to the notion of bent, near-bent, and semi-bent functions, respectively. Next, in
Sect. 4, we focus on the class of semi-bent functions. We survey the constructions
discovered recently. We first point out the relationship between the semi-bentness
property of some type of functions and some exponential sums (involving Dickson
polynomials). Secondly, we emphasize the link between semi-bent functions and
some bent functions. Finally, we study the new connections between semi-bent
functions and oval polynomials from projective finite geometry and investigate
several constructions. Open problems related to semi-bent functions are given in
Sect. 4.

2 Background

For any set E , E? D E n f0g and #E will denote the cardinality of E . For any
positive integer k, F2k denotes the finite field of order 2k.

Let n be a positive integer. A Boolean function f is a map from the vector space
F
n
2 of all binary vectors of length n to the finite field with two elements F2, i.e.,
f W Fn2 ! F2. The Hamming weight of a Boolean function f on F

n
2 , denoted by

wt.f /, is the size of the support of the function,i.e., the set fx 2 F
n
2= f .x/ ¤ 0g.

The Hamming distance dH.f; g/ between two functions f and g is the size of the
set fx 2 F

n
2= f .x/ ¤ g.x/g. Thus it equals wH .f ˚ g/.

In cryptography, the most usual representation of these functions is the algebraic
normal form (ANF) :

f .x1; : : : ; xn/ D
X

I�f1;:::;ng
aI

 
Y

i2I
xi

!
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where the aI ’s are in F2. The terms
Q
i2I xi are called monomials. The algebraic

degree of a Boolean function f equals the global degree of its (unique) ANF, that
is, the maximum degree of those monomials whose coefficients are nonzero.

There exist several kinds of possible trace (univariate) representations of Boolean
functions (see, e.g., [4, p. 266]) which are not necessary unique and use the identi-
fication between the vector space F

n
2 and the field F2n . A possible representation of

Boolean functions using such an identification is to consider any Boolean function
as a polynomial in one variable x 2 F2n of the form f .x/ D P2n�1

jD0 aj xj where
the aj ’s are elements of the field. This representation exists for every function from
F2n to F2n , and such a function f is Boolean if and only if a0 and a2n�1 belong to
F2 and a2j D a2j for every j 6D 0, 2n � 1, where 2j is taken modulo 2n � 1. This
allows representing f .x/ in a (unique) trace expansion. Recall that for any positive
integer k, and r dividing k, the trace function from F2k to F2r , denoted by Trkr , is
the mapping defined as

Trkr .x/ WD
k
r �1X

iD0
x2

ir D x C x2
r C x2

2r C � � � C x2
k�r

:

In particular, we denote the absolute trace over F2 of an element x 2 F2n by
Trn1.x/ D Pn�1

iD0 x2
i
.

A unique representation of a Boolean function over F2n by means of trace
functions is of the form

f .x/ D
X

j2�n
Tro.j /1 .aj x

j /C �.1C x2
n�1/ (1)

called its polynomial form, where:

– �n is the set of integers obtained by choosing one element in each cyclotomic
class of 2 modulo 2n � 1 (the most usual choice for j is the smallest element in
its cyclotomic class, called the coset leader of the class).

– o.j / is the size of the cyclotomic coset of 2 modulo 2n � 1 containing j (recall
that, the cyclotomic class of 2 modulo 2n � 1 denoted by C.j / is defined as
C.j / WD fj; j 2; j 22; j 23; : : : ; j 2o.j /�1g where o.j / is the smallest positive
integer such that j2o.j / � j .mod 2n � 1/).

– aj 2 F2o.j / .
– � D wt.f / modulo 2 where wt.f / is the Hamming weight of the image vector

of f , that is, the cardinality of its support supp.f / WD fx 2 F2n j f .x/ D 1g.

Note that the expression of f given by (1) can also be written under a non-unique
form Trn1.P.x// where P.x/ is a polynomial over F2n .

The algebraic degree of f is then equal to the maximum 2-weight of an exponent
j for which aj 6D 0 if � D 0 and to n if � D 1. Recall that the 2-weight w2.j / of an
integer j equals by definition the number of 1’s in its binary expansion. In particular,
affine functions are those of algebraic degree at most 1.
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Quadratic functions are those of algebraic degree 2. They can be represented as
follows: when n is even,

f .x/ D
n
2 �1X

iD1
Trn1.aix

2iC1/C Tr
n
2

1 .a n2 x
1C2 n2 /

where ai 2 F2n ;8i; 0 � i � n=2 and an
2

2 F2n=2 .
When n is odd,

f .x/ D
n�1
2X

iD1
Trn1.aix

2iC1/; ai 2 F2n :

The rank of a quadratic function f is defined as follows:

rank.f / D n � dimF2
rad.Bf /

where rad.Bf / WD fx 2 F2n j Bf .x; y/ D 0;8y 2 F2ng with Bf the bilinear form
defined as

Bf .x; y/ WD f .x C y/C f .x/C f .y/:

Set kf WD dimF2 rad.Bf /. Then 2 divides .n�kf /. Any quadratic Boolean function
on F2n has a rank 2t with 0 � t � b n

2
c [29] and can be obtained as follows: set

QBf .x; y/ WD f .0/Cf .x/Cf .y/Cf .xCy/. Then the rank of f equals 2t if and
only if the equation QBf .x; y/ D 0 for any y 2 F2n in x has exactly 2n�2t solutions.
The set Ef WD fx 2 F2n ; j 8y 2 F2n ; QBf .x; y/ D 0g is called the linear kernel
of f .

Note that a significant result dealing with quadratic Boolean functions of rank 2t
has been obtained by Helleseth and Kumar [21] (see Theorem 1).

The bivariate representation of Boolean functions is defined only when n D 2m

is even as follows: we identify F
n
2 with F2m � F2m , and we consider then the input

to f as an ordered pair .x; y/ of elements of F2m . There exists a unique bivariate
polynomial

X

0�i;j�2m�1
ai;j x

i yj

over F2m such that f is the bivariate polynomial function over F2m associated to it.
Then the algebraic degree of f equals

max
.i;j / j ai;j¤0

.w2.i/C w2.j //;
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and f being Boolean, its bivariate representation can be written in the form

f .x; y/ D Trm1 .P.x; y//

where P.x; y/ is some polynomial in two variables over F2m .
Now, let f be a Boolean function over F2n and a 2 F2n . The derivative of f with

respect to a is defined as

Daf .x/ D f .x/C f .x C a/;8x 2 F2n :

For .a; b/ 2 F2n � F2n , the second-order derivative of f with respect to .a; b/ is
defined as

DbDaf .x/ D f .x/C f .x C b/C f .x C a/C f .x C a C b/;8x 2 F2n :

The notion of Walsh transform refers to a scalar product. When F
n
2 is identified

with the field F2n by an isomorphism between these two n-dimensional vector spaces
over F2 , it is convenient to choose the isomorphism such that the canonical scalar
product “�” in F

n
2 coincides with the canonical scalar product in F2n , which is the

trace of the product : x � y D Trn1.xy/ for x; y 2 F2n .
If f is a Boolean function defined on F2n , then the Walsh–Hadamard transform

of f is the discrete Fourier transform of the sign function �f WD .�1/f of f , whose
value at ! 2 F2n is defined as follows:

8! 2 F2n ; c�f .!/ D
X

x2F2n
.�1/f .x/CTrn1.!x/:

The Walsh transform satisfies the well-known Parseval’s relation

X

!2F2n
c�f 2.!/ D 22n:

Note that not all values of the Walsh–Hadamard transform can have the same sign,
except when the function is affine. This comes from the fact that we then have�P

!2F2n c�f .!/
�2 D P

!2F2n c�f
2.!/ which implies that all these values are null

except one (see, for instance, [42]).
The Walsh–Hadamard transform is an important tool for research in cryp-

tography. It plays an important role to characterize many cryptographic criteria
for Boolean functions but also to define some significant cryptographic Boolean
functions used in various type of symmetric cryptosystems.

Finally, the rank of quadratic Boolean functions is connected with the distribution
of its Walsh–Hadamard transform values. The following result concerning the
distribution of the Walsh transform of quadratic Boolean functions is due to
Helleseth and Kumar.
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Table 1 Walsh spectrum of
quadratic function with
rank 2t

Value of b�f .!/, ! 2 F2n Number of occurrences

0 2n�2t

2n�t 22t�1 C 2t�1

�2n�t 22t�1 � 2t�1

Theorem 1 ([21]) Let f be a quadratic Boolean function on F2n with rank 2t ,
0 � t � b n

2
c. Then the distribution of its Walsh transform is given in Table 1.

3 Plateaued Functions

Plateaued Boolean functions can be defined as follows.

Definition 1 A Boolean function f defined over F2n is said to be r-plateaued if

the values of its Walsh transform c�f are in f0;˙2 nCr
2 g, for some fixed r , r D

0; 1; : : : ; n.

The r-plateaued functions exist only when n� r is even; equivalently, if n and r

have the same parity (which implies that 2 divides n C r). The value � WD 2
nCr
2 is

usually called the amplitude.

Remark 1 Note that if f is an r-plateaued function on F2n , then its Walsh transform

c�f can be expressed by c�f D ..�1/g C .�1/h/2 nCr�2
2 for some Boolean g and h

defined over F2n .

Plateaued functions can be characterized by their second-order derivatives. More
precisely:

Proposition 1 ([7]) A Boolean function f on F2n is plateaued if and only if there
exists � (necessarily the amplitude of f ) such that for every x 2 F2n

X

a;b2F2n
.�1/DaDbf .x/ D �2

where DaDbf is the second-order derivative of f with respect to .a; b/ 2 F
2
2n .

A direct consequence of the previous proposition is that all the quadratic
functions are plateaued. Several properties of plateaued functions have been studied.
Concerning the degree of r-plateaued functions, it has been shown in [56] that for
a given fixed n and r with r > 0, the maximum possible degree of r-plateaued on
F2n is n�rC2

2
(while the maximum possible degree of 0-plateaued on F2n is n

2
) and

that this upper bound is sharp. Other properties of plateaued functions can be found
in [2].

The existence of r-plateaued functions on F2n (0 < r < n) has been shown
in [56]. However, there exist some results concerning the nonexistence of certain
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types of plateaued functions. More precisely, Xia et al. have proved in [52] that
there are no homogeneous1 0-plateaued of degree n

2
when n � 4. This result on the

nonexistence of homogeneous 0-plateaued functions has been extended on one hand
by Meng et al. [34] for functions of degree n

2
�k (0 � k � n

2
) and on the other hand

by Hyun et al. [22] for 0-plateaued functions f (not necessarily homogeneous) of
minimum degree (i.e., the lowest degree among the degrees of nonconstant terms
in f n

2
� k (0 � k � n

2
). Moreover, very recently, it has been proved in [22] the

nonexistence of r-plateaued functions on F2n (0 < r < n) with certain degree for a
given n � N and r (where N is some integer depending on r). More precisely:

Proposition 2 ([22]) For any nonnegative integer k, there exists an integerN such
that for an integer n � N , there is no r-plateaued function (0 < r < n) over F2n of

minimum degree n�rC2
2

� k, where N is the smallest integer satisfying
� NCr

2 Ck
rCk

�
<

2
NCr�2

2 � 1:

As a consequence, it has been shown in [22] that there is no homogeneous
1-plateaued function over F2n of degree nC1

2
when n � 7, and there is no

homogeneous 2-plateaued function over F2n of degree n
2

when n � 6.

3.1 Plateaued Functions: The Special Class of 0-Plateaued
Functions (Bent Functions)

Bent functions introduced in 1974 [14,46] are extremal objects in combinatorics and
Boolean function theory. They are maximally nonlinear Boolean functions. Recall
that the nonlinearity of a Boolean function f , denoted by nl.f /, is defined as the
minimum Hamming distance between f and all affine functions (i.e., of degree at
most 1). It can be expressed by means of the Walsh transform as follows:

nl.f / D 2n�1 � 1

2
max
b2F2n

ˇ̌
c�f .b/

ˇ̌
:

Because of the well-known Parseval’s relation
P

b2F2n c�f .b/
2 D 22n, nl.f / is upper

bounded by 2n�1 � 2n=2�1. This bound is tight for n even.

Definition 2 Let n be an even integer. A Boolean function on F2n is said to be bent
if the upper bound 2n�1 � 2n=2�1 on its nonlinearity nl.f / is achieved with equality.

Bent functions on F2n exist then only when n is even. We have the following
main characterization of the bentness for Boolean functions in terms of the Walsh
transform:

1A Boolean function f is said to be homogeneous of degree r if f .x/ D P2n�1
iD0 ai x

i where
ai D 0 for wt .i / 6D r , where wt .i / is the Hamming weight of i .
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Table 2 Walsh spectrum of
bent functions (0-plateaued)
f with f .0/ D 0

Value of b�f .!/, ! 2 F2n Number of occurrences

2
n
2 2n�1 C 2

n�2
2

�2 n2 2n�1 � 2
n�2
2

Proposition 3 Let n be an even integer. A Boolean function f is then bent if and
only if its Walsh transform satisfies c�f .a/ D ˙2 n2 for all a 2 F2n .

Hence, the Walsh transform provides a basic characterization of bentness.
However, for a given Boolean function f , the Walsh transform can definitely not
be used in practice to test in an efficient way the bentness of f , especially if all its
values are computed naively one at a time as exponential sums. Thanks to Parseval’s
identity, one can determine the number of occurrences of each value of the Walsh
transform of a bent function (see Table 2).

Bent functions are not classified. A complete classification of these functions is
elusive and looks hopeless. So it is important to design constructions in order to find
as many of bent functions as possible. A good reference for general properties and
general constructions of bent functions is the book’s chapter of Carlet [4]. We refer
to [37] and [41] for a survey and a general overview of the constructions discovered
recently including the relationship between the bentness property of some type of
bent functions and some exponential sums, namely, Kloosterman sums (involving
Dickson polynomials). Finally, note that a nice construction of bent functions have
been derived from plateaued functions in [8].

3.2 Plateaued Functions: The Special Class of 1-Plateaued
Functions (Near-Bent Functions)

Near-bent functions (or 1-plateaued functions) on F2n exist only when n is odd.
They are defined as follows.

Definition 3 Let n be an odd integer. A Boolean function on F2n is said to be

near-bent if its Walsh transform satisfies c�f .a/ 2 f0;˙2 nC1
2 g for all a 2 F2n .

Note that a function from F2n ! F2n is said to be almost bent if it has
Walsh-Fourier spectrum f0;˙2 nC1

2 g, that is, the same as a near-bent function. The
difference between an almost bent function and a near-bent function is that almost
bent functions map F2n ! F2n , whereas near-bent functions map F2n ! F2 . In this
context, f W F2n ! F2n is almost bent if and only if each of the Boolean functions
x 7! Trn1.vf .x// is near-bent, for all v 2 F

?
2n .

Thanks to Parseval’s identity, one can determine the number of occurrences of
each value of the Walsh transform of a near-bent function (see Table 3).
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Table 3 Walsh spectrum of
near-bent functions
(1-plateaued) f with
f .0/ D 0

Value of b�f .!/, ! 2 F2n Number of occurrences

0 2n�1

2
nC1
2 2n�2 C 2

n�3
2

�2 nC1
2 2n�1 � 2

n�3
2

Again from Parseval’s identity, it is straightforward to see that the support of the
Walsh transform c�f of a near-bent function f on F2n is of cardinality 2n�1 (i.e.,
#supp.c�f / D 2n�1).

In the particular case of quadratic functions, there exists a criterion on the
near-bentness involving the dimension of the linear kernel (see, e.g., [10]). More
precisely, it is well known (see Sect. 8.5.2 in [4]) that a quadratic Boolean function f
over F2n has for Walsh support the set of elements ˛ 2 F2n such that Trn1.˛x/Cf .x/
is constant onEf , whereEf WD fx 2 F2n ; j 8y 2 F2n ; f .xCy/Cf .x/Cf .y/C
f .0/ D 0g is the linear kernel of f . It has been proved that f is near-bent over F2n ,
if and only if Ef has dimension 1 (i.e., has size 2). Note that from Theorem 1, it is
easy to see that quadratic Boolean function f is near-bent if and only if the rank of
f is n � 1, that is, kf D 1.

Several constructions of quadratic near-bent functions have been obtained in the
literature. We give a list of the known families of quadratic near-bent functions on
F2n , n odd:

• f .x/ D Trn1.x
2iC1/, gcd.i; n/ D 1 [17].

• f .x/ D P n�1
2

iD1 Trn1.x
1C2i / [1].

• f .x/ D Pb n�1
2 c

iD1 ciTrn1.x
1C2i /; ci 2 F2 [10].

• f .x/ D Trn1.x
2iC1 C x2

jC1 C x2
tC1/, 1 � i < j � t � n�1

2
, i C j D

t ,gcd.n; i/ D gcd.n; j / D gcd.n; i C j / D 1 [10].

• f .x/ D P n�1
2

iD1 ciTrn1.x
1C2i /, ci 2 F2 , gcd.xn C 1; c.x// D x C 1 where c.x/ D

P n�1
2

iD1 ci .xi C xn�i / [24].
• f .x/ D Trn1.x

2iC1/C Trn1.x
2iC1/, gcd.n; i C j / D gcd.n; i � j / [24].

• f .x/ D Pr
iD0 Trn1.x

1C2kCid
/, gcd.2k C rd; n/ D 1 [24].

• f .x/ D P q�1
2

iD1 Trn1.x
1C2pi / C Trn1.x

1C2q /, n D pq, 3 6 jp, p odd, q odd,
gcd.p; q/ D 1 [16].

Because bent functions exist in even dimensions and near-bent functions exist
in odd dimensions, the possibility exists of moving up and down between bent
and near-bent functions. The four possibilities are discussed in [26]; see also some
results in [2]. In [27], Leander and McGuire have considered the problem on going
up from a near-bent function to a bent function and proposed constructions. In
particular, it has been shown that two n-variable functions g and h (n odd) are
near-bent with complementary Walsh supports (i.e., supp.b�g/ \ supp.b�h/ D ;) if
and only if the .n C 1/-variable function x 7! f .x; xnC1/ D g.x/ C xnC1h.x/;
x 2 F

n
2 , xnC1 2 F2 is bent. The restrictions to a .2n/-bent function to any hyperplan
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and to the complement of this hyperplan (view as .2n� 1/-Booleans functions) are
near-bent. The problem of the construction of .2n/-bent functions from two .2n�1/-
near-bent functions has also been considered by Wolfmann with a different point of
view in [49]. Some progress on this question has been made very recently in [51]
and [50]. In particular, Wolfmann [50] has introduced a way to construct new bent
functions starting from a near-bent functions having a specific derivative or from
a bent function such that the sum of the two components is a Boolean function
of degree 1. Some open problems have been presented by Wolfmann [50] in the
continuation of his interesting approach.

In 2005, Charpin et al. [10] have proved that some classes of near-bent functions
can been derived via the composition with nonpermutation linear polynomials. In
fact, the composition of any linear permutation polynomialP with a quadratic near-
bent function gives rise again to a near-bent function x 7! f .P.x//. However,
it is not necessary for P to be a permutation polynomial in order for f ı P
to be near-bent. In fact, one may choose a linear mapping P from F2n to F2n

which is still near-bent. Charpin et al. [10] have exhibited some nonpermutation
linear polynomials that preserve the near-bentness property when composed with
a quadratic near-bent function. For more details on the treatment of near-bent
functions, we send the reader to [10].

Finally, very few secondary constructions of near-bent functions (i.e., construc-
tions of new near-bent functions from two or several already known ones) have
been proposed in the literature. The following statement shows that secondary
constructions of near-bent functions can be derived under a condition involving the
derivative functions.

Theorem 2 Let n be an odd integer. Let f and g be two near-bent functions over
F2n . Assume that there exists an element a of F2n such that Daf D Dag. Then the
function h D f CDaf .f C g/ is a near-bent function on F2n .

Proof Let us compute the Walsh transform of h for every ! 2 F2n . We have

b�h.!/ D
X

x2F2n

�.h.x/C Trn1.!x// D
X

x2F2n

�.f .x/CDaf .x/.f Cg/.x/C Trn1.!x//:

Now, one can split the sum depending whether Daf is equal to 1 or not (recall
that Daf .x/ D f .x/C f .x C a/):

b�h.!/ D
X

x2F2n jDaf D0
�.f .x/C Trn1.!x//C

X

x2F2n jDaf D1
�.g.x/C Trn1.!x//

D 1

2

� X

x2F2n
�.f .x/C Trn1.!x//C

X

x2F2n
�.f .x C a/C Trn1.!x//

�

C1

2

� X

x2F2n
�.g.x/C Trn1.!x//�

X

x2F2n
�.g.x C a/C Trn1.!x//

�
:
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Hence,

b�h.!/ D 1

2

� X

x2F2n
�.f .x/C Trn1.!x//C

X

x2F2n
�.f .x/C Trn1.!.x C a///

�

C1

2

� X

x2F2n
�.g.x/C Trn1.!x//�

X

x2F2n
�.g.x/C Trn1.!.x C a///

�

D 1

2

�
c�f .!/.1C �.Trn1.!a///

�
C 1

2

�
b�g.!/.1 � �.Trn1.!a///

�
:

Now, f and g being near bent, therefore if Trn1.!a/ D 0, then b�h.!/ D c�f .!/ 2
f0;˙2 nC1

2 g. And if Trn1.!a/ D 1, then b�h.!/ D b�g.!/ 2 f0;˙2 nC1
2 g, which

completes the proof. ut

3.3 Plateaued Functions: The Special Class of 2-Plateaued
Functions (Semi-Bent Functions)

Semi-bent functions (or 2-plateaued functions) on F2n exist only when n is even. So,
in this section n denotes an even integer, and we set m D n

2
. Semi-bent functions

are defined as follows.

Definition 4 Let n be an even integer. A Boolean function on F2n is said to be

semi-bent if its Walsh transform satisfies c�f .a/ 2 f0;˙2 nC2
2 g for all a 2 F2n .

Thanks to Parseval’s identity, one can determine the number of occurrences of
each value of the Walsh transform of a semi-bent function (see Table 4).

Using the relationship between the nonlinearity and the Walsh spectrum, it is
immediate to see that the nonlinearity of a semi-bent function on F2n equals 2n�1 �
2
n
2 . In addition, the possible values of the Hamming weight of a semi-bent function

are 2n�1, 2n�1 � 2m and 2n�1 C 2m.
Many recent progresses have been made on the treatment of semi-bent functions.

In the next section, we focus on the constructions of such functions.

Table 4 Walsh spectrum of
semi-bent functions
(2-plateaued) f with
f .0/ D 0

Value of b�f .!/, ! 2 F2n Number of occurrences

0 2n�1 C 2n�2

2
nC2
2 2n�3 C 2

n�4
2

�2 nC2
2 2n�3 � 2

n�4
2
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4 Semi-Bent Functions (in Even Dimension): Constructions
and Characterizations

In the following, we present a general overview of the main known constructions of
semi-bent functions and investigate new constructions.

4.1 On Constructions of Quadratic Semi-Bent Functions

The first papers dealing with constructions of semi-bent functions have been
dedicated to quadratic functions. In this particular case of functions, there exists
a criterion on the semi-bentness involving the dimension of the linear kernel defined
above (see, e.g., [10]). More precisely, it has been proved that f is semi-bent over
F2n , if and only if its linear kernel Ef (defined previously) has dimension 2. Note
that from Theorem 1, it is easy to see that quadratic Boolean function is semi-bent
if and only if the rank of f is n � 2, that is, kf D 2.

Several constructions of quadratic semi-bent functions have been obtained in the
literature. We give a list of the known quadratic semi-bent functions on F2n , n D
2m:

• f .x/ D Pb n�1
2 c

iD1 ciTrn1.x
1C2i /, ci 2 F2, gcd.

P n
2�1
iD1 ci .xi C xn�i /; xn C 1/ D

x2 C 1 [10].
• f .x/ D Trn1.˛x

2iC1/, ˛ 2 F
?
2n , i even,m odd [48].

• f .x/ D Trn1.˛x
2iC1/, m even, i odd, ˛ 2 fx3; x 2 F

?
2ng where ˛ 2 F

?
2n [48].

• f .x/ D Trn1.˛x
2iC1/, m odd, i odd, gcd.m; i/ D 1, ˛ 2 fx3; x 2 F

?
2ng where

˛ 2 F
?
2n [48].

• f .x/ D Trn1.x
2iC1Cx2jC1/,m odd, 1 � i < j < m, gcd.n; iCj / D gcd.n; j�

i/ D 1/, gcd.n; i C j / D gcd.n; j � i/ D 2 [48].

• f .x/ D Pm�1
2

iD1 Trn1.ˇx
1C4i /, m odd, ˇ 2 F

?
4 [16].

• f .x/ D Pm�1
2

iD1 ciTrn1.ˇx
1C4i /, ci 2 F2 , ˇ 2 F

?
4 , m odd, gcd.

Pm�1
2

iD1 ci .xi C
xm�i /; xm C 1/ D x C 1 [16].

• f .x/ D Pk
iD1 Trn1.ˇx

1C4di / ˇ 2 F
?
4 , m odd, d � 1, 1 � k � m�1

2
, gcd.k C

1;m/ D gcd.k;m/ D gcd.d;m/ D 1 [16].
• f .x/ D Trn1.ˇx

1C4i C ˇx1C4j / ˇ 2 F
?
4 , m odd, 1 � i < j � b n

4
c, gcd.i C

j;m/ D gcd.j � i; m/ D 1 [16].
• f .x/ D Trn1.ˇx

1C4i C x1C4j C x1C4t /, ˇ 2 F
?
4 , m odd, 1 � i < j < t � b n

4
c,

i C j D t , gcd.i;m/ D gcd.j;m/ D gcd.j; t/ D 1 [16].
• f .x/ D Trn1.ˇx

1C4i C ˇx1C4j C ˇx1C4t /, ˇ 2 F
?
4 , 1 � i < j < t � b n

4
c,

i C j D 2t , j � i D 3hp, 3 6 jp, n D 3kq, 3 6 jq, gcd.2t;m/ D 1, h � k [16].

• f .x/ D Trn1.ˇx
1C4i C ˇx1C4j C ˇx1C4t /, ˇ 2 F

?
4 , m odd, 1 � i; j; t � b n

4
c,

j � i D 2t , t 6D i , j C i D 3up, 3 6 jp, n D 3vq, 3 6 jq, gcd.2t;m/ D 1, u � v
[16].
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• f .x/ D Trn1.ˇx
1C4i Cˇx1C4j Cˇx1C4t /, ˇ 2 F

?
4 , 1 � i; j; t � b n

4
c, j � i D 2t ,

t 6D i , j C i D 3up, 3 6 jp, n D 3vq, 3 6 jq, gcd.2t;m/ D 1, u � v [16].
• f .x/ D Trn1.ˇx

1C4i Cˇx1C4j Cˇx1C4t Cˇx1C4s /, ˇ 2 F
?
4 , 1 � i; j; t; s � b n

4
c,

i < j , t < s, i C j D t C s D r , t 6D i , gcd.r;m/ D gcd.m; s � i/ D
gcd.m; s � j / D 1 [16].

4.2 On Constructions of Semi-Bent Functions From Bent
Functions

In the following subsections, we are dealing with the construction of semi-bent
functions from bent functions. We shall present several such kinds of constructions.
A natural problem arises is:

Problem 1 Find new primary constructions of bent functions from semi-bent
functions.

4.2.1 Primary Constructions in Univariate Representation from Niho and
Dillon Bent Functions

In 2011, many concrete constructions of semi-bent functions of maximum algebraic
degree have been discovered. Indeed, in [38], the semi-bentness of several infinite
families functions in polynomial form constructed via Dillon and Niho exponents
has been studied in detail. From this study, explicit criteria in terms of Kloosterman
sums for deciding whether a function expressed as a sum of trace functions is
semi-bent or not have been derived. Kloosterman sums have been used as a very
suitable tool to study the semi-bentness property of several functions in univariate
representation. In particular, we have showed in [38] that the values 0 and 4 of
Kloosterman sums defined on F2m give rise to semi-bent functions on F2n . Below is
the list of the known semi-bent functions constructed via the zero of Kloosterman
sums:

• f .x/ D Trn1.axr.2
m�1//C Trn1.cx.2

m�1/ 12C1/, Km.a/ D 0 [38].
• f .x/ D Trn1.axr.2

m�1// C Trn1.cx.2
m�1/ 12C1/ C Trn1.x

.2m�1/ 14C1/, Trnm.c/ D 1, m
odd,Km.a/ D 0 [38].

• f .x/ D Trn1.axr.2
m�1// C Trn1.cx.2

m�1/ 12C1/ C Trn1.x
.2m�1/3C1/, Km.a/ D 0

Trnm.c/ D 1 [38].
• f .x/ D Trn1.axr.2

m�1// C Trn1.cx.2
m�1/ 12C1/ C Trn1.x

.2m�1/ 16C1/; Trnm.c/ D 1,
Km.a/ D 0, m even [38].

• f .x/ D Trn1.axr.2
m�1//CTrn1.˛x

2mC1/CTrn1.
P2��1�1

iD1 x.2
m�1/ i2� C1/; gcd.�;m/ D

1, ˛ 2 F2n , Trnm.˛/ D 1, Km.a/ D 0 [38].
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Below is the list of the known semi-bent functions constructed via the value four
of Kloosterman sums:

• f .x/ D Trn1.axr.2
m�1// C Tr21.bx

2n�1
3 / C Trn1.cx.2

m�1/ 12C1/; m odd, Km.a/ D 4

[38].
• f .x/ D Trn1.ax3.2

m�1// C Trn1.cx.2
m�1/ 12C1/ C Tr21.bx

2n�1
3 /; m odd and m 6� 3

.mod 6/ Km.a/ D 4 [38].

• f .x/ D Trn1.axr.2
m�1//C Tr21.bx

2n�1
3 /C Trn1.cx.2

m�1/ 12C1/C Trn1.x
.2m�1/ 14C1/,m

odd,Km.a/ D 4 [38].

• f .x/ D Trn1.axr.2
m�1// C Tr21.bx

2n�1
3 / C Trn1.cx.2

m�1/ 12C1/ C Trn1.x
3.2m�1/C1/;

Trnm.c/ D 1, m odd,Km.a/ D 4 [38].

• f .x/ D Trn1.axr.2
m�1// C Trn1.˛x

2mC1/ C Trn1.
P2��1�1

iD1 x.2
m�1/ i2� C1/ C

Tr21.bx
2n�1
3 /; gcd.�;m/ D 1, ˛ 2 F2n , Trnm.˛/ D 1, m odd, Km.a/ D 4

( [38]).

All the families of semi-bent functions presented above are of maximum
algebraic degreem and then are suitable for use in symmetric cryptosystems.

The previous constructions can be generalized leading to general constructions
of semi-bent functions via Dillon-like exponents and Niho exponents. First, recall
that Dillon-like exponents are of the form s.2m � 1/.

A positive integer s (always understood modulo 2n � 1) is said to be a Niho
exponent and xs a Niho power function, if the restriction of xs to F2m is linear. One
can show that the restriction of the power function x 7! xs to F2m is linear then
s D 2j for some j < n. As we consider Trn1.x

d /, without loss of generality, we can
assume that s is in the normalized (unique) representation s D .2m � 1/d C 1 with
1 � d � 2m.

The following statement is due to Carlet and the author [6]. An alternative direct
proof has been proposed in [12].

Theorem 3 ([6, 12]) Denote by ˝n the set of Boolean functions f defined on F2n

by f .x/ D P
i2�n;m Tro.i/1 .ai x

i / where �n;m is the set of cyclotomic cosets Œi � such
that i � 0 .mod 2m � 1/. Denote by �n the set of Boolean functions f defined on
F2n by f .x/ D P

i2	0
n;m

Tro.i/1 .ai x
i / where 	0

n;m is the set of cyclotomic cosets Œi �

such that i � 2j .mod 2m � 1/ for some j (j < n). Set

Dn WD ff 2 ˝n such that f is bent with f .0/ D 0g

and set

Nn WD ff 2 �n such that f is bent with f .0/ D 0g:

Let g 2 Dn and h 2 Nn. Then g C h is semi-bent on F2n .

Let us specify some infinite families of semi-bent functions in univariate form.
Firstly, we give a list of infinite families containing bent functions defined on F2n
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belonging to the class PS ap; here, Km.a/ WD P
x2F2m �

�
Trm1 .ax C 1

x
/
�

denotes
the binary Kloosterman sums on F2m and Cm.a; a/ WD P

x2F2m �
�
Trm1 .ax3 C ax

�
/

denotes the cubic sums on F2m :

• g1.x/ D Trn1.axr.2
m�1//; gcd.r; 2m C 1/ D 1, a 2 F

?
2m such that Km.a/ D 0 [9].

• g2.x/ D Trn1.axr.2
m�1//C Tr21.bx

2n�1
3 /; gcd.r; 2m C 1/ D 1, m > 3 odd, b 2 F

?
4 ,

a 2 F
?
2m such that Km.a/ D 4 [36].

• g3.x/ D Trn1.a

ix3.2

m�1// C Tr21.ˇ
j x

2n�1
3 /; m odd and m 6� 3 .mod 6/, ˇ is a

primitive element of F4 , 
 is a generator of the cyclic group U of .2m C 1/-th of
unity, .i; j / 2 f0; 1; 2g2, a 2 F

?
2m such that Km.a/ D 4 and Trm1 .a

1=3/ D 0 [35].

• g4.x/ D Trn1.a

ix3.2

m�1// C Tr21.ˇ
j x

2n�1
3 /; m odd and m 6� 3 .mod 6/, ˇ is a

primitive element of F4 , 
 is a generator of the cyclic group U of .2m C 1/-th of
unity, i 2 f1; 2g, j 2 f0; 1; 2g, a 2 F

?
2m such that Km.a/ C Cm.a; a/ D 4 and

Trm1 .a
1=3/ D 1 [35].

• g5.x/ D P2m�1�1
iD1 Trn1

�
ˇxi.2

m�1/�; ˇ 2 F2m n F2 [18].

• g6.x/ D P2m�2�1
iD1 Trn1

�
ˇxi.2

m�1/�; m odd and ˇ.2
m�4/�1 2 fx 2 F

?
2m I Trm1 .x/ D

0g [18].

Secondly, we give a list of known Niho bent functions in Nn:

• h1.x/ D Trm1
�
a1x

2mC1�; a1 2 F
?
2m .

• h2.x/ D Trn1
�
a1x

.2m�1/ 12C1 C a2x
.2m�1/3C1

�
.

a1 2 F
?
2n , a2

mC1
2 D a1 C a2

m

1 D ˇ5 for some ˇ 2 F
?
2n [15];

• h3.x/ D Trn1
�
a1x

.2m�1/ 12C1 C a2x
.2m�1/ 14C1

�
.

a1 2 F
?
2na

2mC1
2 D a1 C a2

m

1 , m odd [15].

• h4.x/ D Trn1
�
a1x

.2m�1/ 12C1 C a2x
.2m�1/ 16C1

�
; a1 2 F

?
2n a

2mC1
2 D a1 C a2

m

1 , m

even [15].
• h5.x/ D Trn1

�
˛x2

mC1 C P2r�1�1
iD1 xsi

�
, r > 1 such that gcd.r;m/ D 1, ˛ 2 F2n

such that ˛C˛2
m D 1, si D .2m�1/ i

2r
.mod 2mC1/C1, i 2 f1; : : : ; 2r�1�1g

[25].

By Theorem 3, we recover the families in univariate form containing semi-bent
functions derived previously by the author in [38].

A complete list of the known functions in Dn can be found in [44] with additional
functions in [28] Now, note that Dn coincides with the set of Boolean functions
f W F2n ! F2 such that the restriction to uF?2m is constant for every u 2 U with
f .0/ D 0 while Ln coincides with the set of Boolean functions on F2n such that the
restriction to uF?2m is linear for every u 2 U with f .0/ D 0:

A stronger version of the previous statement has been proved in [6].

Theorem 4 ([6]) Let n D 2m with m > 2. Keeping the same notation as in
Theorem 3. Set

An WD ff W F2n ! F2 s.t the restriction to uF?2m is affine for every u 2 U g:
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Then a function f in An is semi-bent if and only if f can be written as the sum of a
function in Dn and a function in Ln.

Example 1 Identify the semi-bent Boolean function f over F64 of the form f .x/ D
Tr61.ax36/C Tr61.bx32/C Tr61.cx56/: Set f D g C h where g W x 2 F64 7! Tr61.cx56/
and h W x 2 F64 7! Tr61.ax36/ C Tr61.bx32/. We have 36 � 1 .mod 7/, 36 � 22

.mod 7/ and 56 � 0 .mod 7/. So 36 and 32 are Niho exponents, while 56 is a
Dillon exponent. According to the above result, f is semi-bent if and only if its
Niho part (that is, the function h) is bent and its Dillon part (i.e., the function g) is
bent. On one hand, the bentness of h depends only on the bentness of x 7! Tr61.ax36/
(since x 7! Tr61.bx32/ is linear). But 36 D 7� 1

2
C1 where 1

2
is understood modulo 9.

Thus, the function x 7! Tr61.ax36/ is bent if and only if Tr63.a/ D aCa8 6D 0. Hence,
h is bent if and only if a C a8 6D 0 (a 2 F64 ). On the other hand, g.x/ is of the
form Trn1.cx2m�1/ with m D n

2
D 3 (the size of the cyclotomic class of 56 modulo

26 � 1 D 63 is 6). Therefore, g is bent, if and only if Km.c
2mC1/ D K3.c

9/ D 0

whereKm denotes the Kloosterman sums over F2m . Let ˛ be a primitive element of
F8 such that ˛3 C ˛2 C 1 D 0. Then, it is easy to check that g is bent, if and only
if c9 2 f˛; ˛2; ˛4g, that is, c9 D ˛2

j
for some j (since the Kloosterman sums is

invariant under the Frobenius mapping). Finally, one can conclude that f is semi-
bent on F64 , if and only if aC a8 6D 0 and c9 D ˛2

j
for some j where ˛ 2 F8 such

that ˛3 C ˛2 C 1 D 0.

Recall [14] that a spread is a collection fEi; i D 1; : : : ; 2mC1g of vector spaces
of dimensionm D n=2 such thatEi \Ej D f0g for every i and j and

S2mC1
iD1 Ei D

F2n . The classical example of spread is fuF2m I u 2 U g whereU is the multiplicative
group fu 2 F2n I u2

mC1 D 1g. Theorem 4 can be stated in more general setting as
follows.

Theorem 5 ([6]) Letm � 2 and n D 2m. Let fEi; i D 1; : : : ; 2mC1g be a spread
in F2n and h a Boolean function whose restriction to every Ei is linear (possibly
null). Let S be any subset of f1; : : : ; 2m C 1g and g D P

i2S 1Ei .mod 2/ where
1Ei is the indicator of Ei . Then g C h is semi-bent if and only if g and h are bent.

Given a spread .Ei /iD1;:::;2mC1, the previous theorem provides a characterization
of the semi-bentness for a function whose restriction to everyE�

i is affine (i.e., equal
to the sum of a function whose restriction to every Ei is linear and of a function
whose restriction to every E�

i is constant).

Remark 2 One can modify the hypothesis of Theorem 5 by assuming that we have
only a partial spread. There exists an example due for m even to Dillon [14] of
a partial spread in F2n � F2m � F2m which is not included in a spread: E1 D
f0g�f0g�F2m�1�F2 andEa D f.x; �; a2xCaTrm�1

1 .ax/Ca�;Trm�1
1 .ax//I .x; �/ 2

F2m�1 � F2g for a 2 F2m�1 (the corresponding function g is quadratic bent). By
modifying the hypothesis, we need then to add a condition on the Ei ’s, and we have
only a sufficient condition for g C h being semi-bent:

Let g be a bent function in the PS class, equal to the sum modulo 2 of the
indicators of l WD 2m�1 or 2m�1 C 1 pairwise “disjoint” vector spaces Ei having
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dimensionm, and h a bent function which is linear on eachEi . Assume additionally
that for every c 2 F2n there exist at most 2 indices i such that 8e 2 Ei; h.e/ D
Trn1.ce/. Then g C h is semi-bent.

Problem 2 Find semi-bent functions obtained by applying the result of Remark 2.

Problem 3 Show that some semi-bent functions obtained above in [6] are not
extendable to .n C 2/-variable bent functions (or deduce new bent functions from
them).

4.2.2 Primary Constructions in Bivariate Representation from the Class
H of Bent Functions

Semi-bent functions in bivariate representation have been derived from the class
H of bent functions introduced by Carlet and the author in [5] and from the
partial spread class PS ap of bent functions introduced by Dillon [14]. Recall that
functions of the class PS ap are a subclass of the partial spread class PS defined
as the set of all the sums (modulo 2) of the indicators of 2m�1 or 2m�1 C 1 pairwise
supplementary m-dimensional subspaces of F2n . The elements of PS ap can be
defined in an explicit form as follows.

Definition 5 Let n D 2m and let F2n be identified, as a vector space, with F2m�F2m .
The partial spread class PS ap consists of all the functions f defined as follows: let
g be a balanced Boolean function over F2m (i.e., wt.g/ D 2m�1) such that g.0/ D 0

(but, in fact, this last condition is not necessary for f to be bent). Then f is defined
from F2m � F2m to F2 as f .x; y/ D g. x

y
/ (i.e., g.xy2

m�2/) with x
y

D 0 if y D 0.

The functions from class PS ap are those whose supports can be uniquely written
as
S

u2S uF?2m where U is the set fu 2 F2n I u2
mC1 D 1g and S is a subset of U of

size 2m�1. We shall also include in PS ap the complements of these functions.
Now, functions of the class H are defined in bivariate form as follows.

Definition 6 ([5]) Functions h of the class H defined on F2m �F2m are of the form

h.x; y/ D
�

Trm1
�
x 

�
y

x

��
if x ¤ 0

Trm1 .�y/ if x D 0
(2)

where  W F2m ! F2m and � 2 F2m and satisfying the following condition:

8ˇ 2 F
?
2m; the function z 7! G.z/C ˇz is 2-to-1 on F2m ; (3)

where G is defined as: G.z/ WD  .z/C �z.

The current list of examples of functions h from the class H is the following:

• h.x; y/ D Trm1 .x
�5y6/, m odd.

• h.x; y/ D Trm1 .x
5
6 y

1
6 /, m odd.
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• h.x; y/ D Trm1 .x
�3�.2kC1/y3�2kC4/, m D 2k � 1.

• h.x; y/ D Trm1 .x
�3�.2k�1�1/y3�2k�1�2/, m D 2k � 1.

• h.x; y/ D Trm1 .x
1�2k�22k y2kC22k /, m D 4k � 1.

• h.x; y/ D Trm1 .x
23k�1�22kC2ky1�23k�1C22k�2k /, m D 4k � 1.

• h.x; y/ D Trm1 .x
1�22kC1�23kC1

y2
2kC1C23kC1

/, m D 4k C 1.

• h.x; y/ D Trm1 .x
23kC1�22kC1C2ky1�23kC1C22kC1�2k /, m D 4k C 1.

• h.x; y/ D Trm1 .x
1�2k y2k C x�.2kC1/y2kC2 C x�3�.2kC1/y3�2kC4/, m D 2k � 1.

• h.x; y/ D Trm1 .y.y
2kC1x�.2kC1/ C y3x�3 C yx�1/2k�1�1/, m D 2k � 1;

• h.x; y/ D Trm1 .x
5
6 y

1
6 C x

1
2 y

1
2 C x

1
6 y

5
6 /, m odd.

• h.x; y/ D Trm1 .xŒD1
5

�
y

x

�
�6/, m odd, where D1

5
is the Dickson polynomial of

index 1
5
.

The following result provides constructions of semi-bent functions from the
classes H and PS ap.

Theorem 6 ([6]) The sum of a function defined on F2m �F2m from the class PS ap

and a function defined on F2m � F2m from the class H is semi-bent on F2m � F2m .

4.2.3 A Construction from Bent Functions via the Indirect Sum

In [3], Carlet has introduced a secondary construction (which means a construction
of new functions from ones having the same properties) of bent functions. Later,
such a construction was called as the “indirect sum” because it generalizes the well-
known direct sum introduced by Dillon and Rothaus [14, 46]. The indirect sum is
defined as follows.

Definition 7 ([3]) Let n D r C s where r and s are positive integers. Let f1, f2 be
Boolean functions defined on F2r and g2, g2 be two Boolean functions defined on
F2s . Define h as follows (i.e., h is the concatenation of the four functions f1, f1˚1,
f2, and f2 ˚ 1, in an order controlled by g1.y/ and g2.y/):

8.x; y/ 2 F2r �F2s ; h.x; y/ D f1.x/Cg1.y/C.f1.x/Cf2.x//.g1.y/Cg2.y//:

Using the indirect sum, we derive a general constructions of semi-bent functions
from both bent and semi-bent functions.

Theorem 7 Let n D rCs with r and s two even integers. Let h be as in Definition 7.
Assume that f1 and f2 are semi-bent on F2r and that g1 and g2 are bent on F2s . Then
h is semi-bent on F2n .



262 S. Mesnager

Proof Set r D 2� and s D 2 . Let’s compute the Walsh transform of h for every
.a; b/ 2 F2r � F2s . We have

b�h.a; b/ D
X

x2F2r

X

y2F2s
�.f1.x/C g1.y/C .f1.x/C f2.x//.g1.y/C g2.y//

CTrr1.ax/C Trs1.by//:

Now, one can split the sum depending whether g1.y/C g2.y/ is equal to 1 or not :

b�h.a; b/ D
X

x2F2r

X

y2F2s jg1.y/Cg2.y/D1
�.f2.x/C g1.y/C Trr1.ax/C Trs1.by//

C
X

y2F2s jg1.y/Cg2.y/D0
�.f1.x/C g1.y/C Trr1.ax/C Trs1.by//:

Now, note that the indicator of the set fy 2 F2s j g1.y/ C g2.y/ D 1g can be
written as 1��.g1.y/Cg2.y//

2
. Similarly, one can write the indicator of the set fy 2

F2s j g1.y/C g2.y/ D 0g as 1C�.g1.y/Cg2.y//
2

. Hence,

b�h.a; b/ D c�f1.a/
� c�g1.b/C c�g2.b/

2

�
C c�f2.a/

� c�g1.b/� c�g2.b/
2

�
:

Now, if g1 and g2 are bent, then

� c�g1.b/� c�g2.b/
2

�� c�g1.b/C c�g2.b/
2

�
D 1

4

��
c�g1.b/

�2 � �
c�g2.b/

�2� D 0:

and thus only the two following situations can occur

c�g1.b/ � c�g2.b/
2

D 0 and
c�g1.b/C c�g2.b/

2
D ˙2

or

c�g1.b/ � c�g2.b/
2

D ˙2 and
c�g1.b/C c�g2.b/

2
D 0:

Now f1 and f2 being semi-bent : c�f1.a/ 2 f0;˙2�C1g and c�f2.a/ 2 f0;˙2�C1g.
Therefore b�h.a; b/ 2 f0;˙2�CC1g proving that h is semi-bent. ut
Remark 3 Obviously, the roles of f1 and f2 can be exchanged with those of g1 and
g2. This means that one can exchange the property of bentness and semi-bentness
in Theorem 7.
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4.2.4 A Simple Construction of Semi-Bent Functions from Bent Functions
by Field Extension

Another kind of construction of semi-bent functions from bent functions is given by
the simple following statement. When we identify F2n with the vector space F

n
2 , it

corresponds to a simple construction of an .nC2/-variable semi-bent function from
an n-variable bent function.

Proposition 4 ([12]) Let n be an even positive integer. Let f be a Boolean function
over F2nC2 ' F2n �F4 . For ı 2 F4 , we define a Boolean function fı over F2n �F4 by

fı.y; z/ D f .y/C Tr21.ız/;8y 2 F2n ; z 2 F4 :

If f is bent over F2n then fı is semi-bent over F2nC2 .

4.2.5 Construction of Semi-Bent Functions from Bent Functions
by Considering the Derivative Functions

Recall that the derivative of a Boolean function f on F2n with respect a 2 F2n is
defined by Daf .x/ D f .x/ C f .x C a/. The following construction of semi-bent
functions from bent functions under a strong condition on the derivatives functions
has been shown in [48].

Theorem 8 ([48]) Let n be an even positive integer. Let f and g be two bent
functions over F2n . Assume that there exists a 2 F2n such thatDaf .x/ D Dag.x/C1
for all x 2 F2n . Then the function h D f CgCDaf CDa.fg/ is semi-bent over F2n .

A possible construction of semi-bent functions by applying Theorem 8 is
provided by the following statement.

Proposition 5 Let f be a bent function defined over F2n (with n even). Define a
Boolean function g by g.x/ D f .x C a/ C Trn1.bx/;8x 2 F2n where a and b are
elements of F2n such that Trn1.ab/ D 1. Then the function h D f CgCDaf CDa.fg/
is semi-bent over F2n .

Proof The bentness is invariant under the addition of linear functions. Thus g is
also bent. Moreover, one hasDag.x/ D g.x/Cg.xCa/ D f .xCa/C Trn1.bx/C
f .x/ C Trn1.bx/ C Trn1.ab/ D Daf .x/ C Trn1.ab/ D Daf .x/ C 1. The proposition
follows from Theorem 8. ut
Notice that quadratics semi-bent functions can be easily derived from Proposition 5.

Problem 4 Find other examples of constructions of non-quadratic semi-bent func-
tions h starting from two bent functions f and g satisfying Daf .x/ D Dag.x/ C 1

for some a 2 F2n .
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4.3 A General Construction of Semi-Bent Functions Based
on Maiorana–McFarland’s Construction

Recall that the Maiorana–McFarland’s constructions are the best known primary
constructions of bent functions [14,32]. The Maiorana–McFarland class is the set of
all the Boolean functions on F2m�F2m of the form f .x; y/ D x��.y/Cg.y/I x; y 2
F2m where “�” denotes an inner product in F2m , � is any permutation on F2m , and
g is any Boolean function on F2m . Any such function is bent (the bijectivity of �
is a necessary and sufficient condition for f being bent). By computing the Walsh
transform, it is easy to see that if � is a 2-to-1 mapping from F2m to on F2m , then f is
semi-bent on F2m � F2m . Consequently, the reader notices that using the Maiorana–
McFarland method, any permutation leads to the construction of bent functions and
any mapping 2-to-1 leads to the construction of semi-bent functions.

The following statement provides an example of construction of semi-bent
functions via the Maiorana–McFarland method.

Proposition 6 Let r be a positive integer. Set m D 2r � 1. Let g be any Boolean
function over F2m . Define over F2m � F2m a Boolean function by f .x; y/ D
Trm1 .xy2

rC2 C xy/C g.y/, 8.x; y/ 2 F2m � F2m . Then f is semi-bent.

Proof We have to prove that f is semi-bent, that is, its Walsh transform takes
only the values 0, 2mC1 and �2mC1. Compute the Walsh transform of f . For every
.a; b/ 2 F2m � F2m , we have:

c�f .a; b/ D
X

x2F2m

X

y2F2m
.�1/Trm1 .xy2

rC2Cxy/Cg.y/CTrm1 .ax/CTrm1 .by/

D
X

y2F2m
.�1/g.y/CTrm1 .by/

X

x2F2m
.�1/Trm1 .xy2

rC2Cxy//CTrm1 .ax/

D
X

y2F2m
.�1/g.y/CTrm1 .by/

X

x2F2m
.�1/Trm1 ..y

2rC2Cy/x/

D 2m
X

y2F2m jy2rC2CyDa
.�1/g.y/CTrm1 .by/:

Now, according to Cusick and Dobbertin [13], the equation y2
rC2 C y D a has 0

or 2 solutions in F2m . The mapping y 2 F2m 7! y2
rC2 C y C a is 2-to-1 for every

a 2 F2m . Therefore,

c�f .a; b/ 2 f0;˙2mC1g

which completes the proof. ut
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4.4 A Construction from APN Functions

Let us recall the definition of almost perfect nonlinear (APN) functions.

Definition 8 Let F be a mapping from F2m to itself (m a positive integer). The
functionf is said to be APN if,maxa2F?

2m
maxb2F2m#fx 2 F2m j F.xCa/CF.x/ D

bg D 2.

APN functions are important research objects in cryptography and coding theory.
Given an APN function, one can derive a construction of semi-bent function in the
sprit of Maiorana–McFarland’s method.

Proposition 7 Letm be a positive integer. Let F W F2m ! F2m be an APN function,
g a Boolean function over F2m and ˛ 2 F

?
2m . Denote byD˛F the derivative function

of F with respect to ˛ defined by D˛F.x/ D F.x C ˛/C F.x/;8x 2 F2m . Define
over F2m �F2m a Boolean function by f .x; y/ D Trm1 .xD˛F.y//Cg.y/;8.x; y/ 2
F2m � F2m . Then f is semi-bent.

Proof Let us compute the Walsh transform of f . For every .a; b/ 2 F2m � F2m , we
have

c�f .a; b/ D
X

x2F2m

X

y2F2m
.�1/Trm1 .xD˛F.y//Cg.y/CTrm1 .ax/CTrm1 .by/

D
X

y2F2m
.�1/g.y/CTrm1 .by/

X

x2F2m
.�1/Trm1 .x.D˛F.y/Ca//

D 2m
X

y2F2m jD˛F.y/Da
.�1/g.y/CTrm1 .by/:

Now, sinceF is APN, the mapping y 2 F2m 7! D˛F.y/ is 2-to-1 for every ˛ 2 F
?
2m .

Hence, c�f .a; b/ 2 f0;˙2mC1g which completes the proof. ut

4.5 Several Constructions from Hyperovals and Oval
Polynomials

Let PG2.2
n/ be the two-dimensional projective space over F2n . The one-

dimensional subspaces of F
3
2n are then the points, and the two-dimensional

subspaces of F
3
2n are called the lines. A hyperoval in PG2.2

n/ can be defined
as follows.

Definition 9 (Hyperoval) A hyperoval in PG2.2
n/ is a set of 2nC2 points; no three

of them are collinear (i.e., lie in a line2).

2We say a point p D .x0; : : : ; xn/ is on a line LŒy0; : : : ; yn� if and only if x0y0 C x1y1 C � � �
xnyn D 0.
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A particular type of polynomials on F2n give rise to hyperovals in PG2.2
n/. More

precisely:

Definition 10 An oval polynomial on F2n is a polynomial G on F2n such that the
set of points f.1; t; G.t//; t 2 F

n
2g [ f.0; 0; 1/; .0; 1; 0/g (denoted byD.G/) forms a

hyperoval of PG2.2
n/ (for short, an o-polynomial).

There is a close connection between the hyperovals and the o-polynomials since
a hyperoval of PG2.2

n/ can be represented by D.G/ where G is an o-polynomial
on F2n . In fact, there exists a necessary and sufficient condition for a mapping over
F2n to give a hyperoval of PG2.2

n/. This leads to a reformulation of the definition
of an o-polynomial given as follows.

Definition 11 A permutation polynomial G over F2n is an o-polynomial if, for
every � 2 F2n , the function

z 2 F2n 7!
(
G.zC�/CG.�/

z if z ¤ 0

0 if z D 0

is a permutation of F2n .

Note that if G is an o-polynomial over F2n then, z 2 F2n 7! G.z/C ˛z is 2-to-1
for every ˛ 2 F

?
2n .

The current list, up to equivalence, of the known o-polynomials on F2m is given
in [5].

A simple construction of semi-bent functions from hyperovals of PG2.2
m/ with

m > 2 is given by the following statement.

Theorem 9 Let k be a positive integer such that 2 � k � 2m � 2. Let D.k/ WD
f.1; t; tk/; t 2 F2mg [f.0; 0; 1/; .0; 1; 0/g (m > 2) be a hyperoval of PG2.2

m/ and
g be a Boolean function on F2m . Then the function f defined over F2m � F2m by
f .x; y/ D Trm1 .xyk C xy/C g.y/ is semi-bent.

Proof We have to prove that f is semi-bent, that is, its Walsh transform takes
only the values 0, 2mC1 and �2mC1. Compute the Walsh transform of f . For every
.a; b/ 2 F2m � F2m , we have:

c�f .a; b/ D
X

x2F2m

X

y2F2m
�
�

Trm1 .xyk C xy/C g.y/C Trm1 .ax/C Trm1 .by/
�

D
X

y2F2m
�
�
g.y/C Trm1 .by/

�X

x2F2m
�
�

Trm1 .xyk C xy/C Trm1 .ax/
�

D
X

y2F2m
�
�
g.y/C Trm1 .by/

� X

x2F2m
�
�

Trm1 ..y
k C y C a/x/

�

D 2m
X

y2F2m jykCyDa
�
�
g.y/C Trm1 .by/

�
:
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Now, since D.k/ is a hyperoval of PG2.2
m/ then according to Maschietti [30], the

equation yk C y C a D 0 has either zero or two distinct solutions in F2m for every
a 2 F2m (m > 2). Therefore, c�f .a; b/ 2 f0;˙2mC1g which completes the proof.

ut
An application of Theorem 9 is given by the next proposition.

Proposition 8 Let m be a positive odd integer with m > 2. Let g be a Boolean
function on F2m . Then the function f defined overF2m�F2m by f .x; y/ D Trm1 .xy6C
xy/C g.y/ is semi-bent.

Proof According to Theorem 9, f is semi-bent if D.6/ WD f.1; t; t6/; t 2 F2mg [
f.0; 0; 1/; .0; 1; 0/g (m > 2) is a hyperoval of PG2.2

m/. According to Segre and
Bartocci [47], for m odd with m > 3, D.6/ is a hyperoval of PG2.2

m/. It remains
to check the case m D 3. According to Maschietti [30], it suffices to prove that the
equation y6 C y D a has either zero solution or two distinct solutions in F2m , for
every a 2 F2m . The result is trivial for a D 0. Now, let a 2 F

?
2m . Using the fact

that y7 D 1 for y 6D 0, it is easy to see that the number of solutions of the equation
y6 C y D a in F2m is equal to the number of solutions of y2 C ay C 1 D 0 in F

?
2m ,

which equals 2 (since if y2 C ay C 1 D 0 has two identical solutions implies that
a D 0, which contradicts the hypothesis). ut

In the following, we show how one can construct several infinite classes of semi-
bent functions from o-polynomials. The first result in this direction was given in
[6] which is closely related to the construction of semi-bent functions in bivariate
representation from the class H of bent functions and the class of partial spreads
PS ap given by Theorem 6.

Theorem 10 ([6]) Let G be an o-polynomial on F2m , and g be Boolean function
on F2m such that g.0/ D 0 and wt.g/ D 2m�1 (i.e., g is balanced on F2m ). Let
� 2 F2m . Define over F2m � F2m the Boolean function f by

f .x; y/ D Trm1 .�y C xG.yx2
m�2//C g.yx2

m�2/; .x; y/ 2 F2m � F2m:

Then f is semi-bent.

Very recently, several more constructions of semi-bent functions have been derived
from o-polynomials [40]. An important point is that the notion of oval polynomial
over F2m appears to be suitable to build 2-to-1 mappings on F2m . Such a property
has been used to built infinite classes of semi-bent functions.

Theorem 11 ([40]) Let ˛ be a primitive element of F2m and j a positive integer in
the range Œ0; 2m � 2�. Let G be an o-polynomial on F2m and g a Boolean function
on F2m . Define over F2m � F2m a Boolean function f by

f .x; y/ D Trm1 .xG.y/C ˛j xy/C g.y/; .x; y/ 2 F2m � F2m :

Then f is semi-bent.
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Problem 5 Find other permutations G than oval polynomials having the property
that y 7! G.y/C ˛j y is 2-to-1 (which is the key in the proof of Theorem 11).

In the following, we emphasize the following observation.

Proposition 9 ([40]) Any semi-bent function of Theorem 11 is the sum of two bent
functions in the class of Maiorana–McFarland.

Remark 4 Note that if we take at random two bent functions, even in the class of
Maiorana–McFarland, their sum would not be probably semi-bent in most cases
(the reader should notice that semi-bent functions of Theorem 10 can also be
decomposed in the sum of two bent functions).

Problem 6 Find new constructions of semi-bent functions using permutations other
than oval polynomials.

Another construction of semi-bent function in bivariate representation has been
derived by the author in [40].

Theorem 12 ([40]) Let m be a positive integer. Assume m D 2m1 C 1 odd. Let G
be an o-polynomial on F2m and g be a Boolean function on F2m . Define a Boolean
function f in bivariate representation as

f .x; y/ D Trm1

�
xG2m1C1C1.y/C xyG2m1C1

.y/C xG3.y/C xyG2.y/
�

CTrm1
�
.xy2

m1C1 C xy2 C x/G.y/C xy2
m1C1C1 C xy C xy3

�

Cg.y/; .x; y/ 2 F2m � F2m :

Then f is semi-bent on F2m � F2m .

Now, Theorems 11 and 12 can be generalized since other semi-bent functions of
a more general form can be obtained from o-polynomials.

Theorem 13 ([40]) Let �1 and �2 be two permutations of F2m whose composition
�1 ı ��1

2 is an o-polynomial on F2m . Let g be a Boolean function over F2m . Let f
be the Boolean function defined on F2m � F2m by

.x; y/ 2 F2m � F2m ; f .x; y/ D Trm1 .x.�1.y/C �2.y///C g.y/:

Then f is semi-bent.

A first consequence of the previous theorem is the following statement which
provides another primary construction of semi-bent functions.

Theorem 14 ([40]) Let m be an odd positive integer. Define the Boolean function
f on F2m � F2m as

.x; y/ 2 F2m � F2m ; f .x; y/ D Trm1
�
y6x C y5x C y3x C yx

�C g.y/
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where g is any Boolean function over F2m . Then f is semi-bent.

A generalization of Theorem 12 is given by the following statement.

Theorem 15 ([40]) Let � be a permutation of F2m . Let ˛ be a primitive element
of F2m and j a nonnegative integer. Let G be an o-polynomial and g a Boolean
function over F2m . Define

8.x; y/ 2 F2m � F2m; f .x; y/ D Trm1 .�.G.y/C ˛jy/x/C g.y/:

Then f is semi-bent.

Let L.x/ D Pm�1
sD0 ˛sx2

s
and l.x/ D Pm�1

sD0 ˛sxs be two polynomial over
F2m . L.x/ and l.x/ are the 2-associate of each other. More specifically, l.x/ is the
conventional 2-associate of L.x/ and L.x/ is the linearized 2-associate of l.x/. It is
well known thatL is a linear permutation polynomial, if and only if, the determinant
of the matrix .˛2

i

i�j /0�i;j�m�1 is not zero.
A possible construction of semi-bent functions involving linearized polynomials

and oval polynomials is given by the following statement.

Proposition 10 Let L.x/ and l.x/ two polynomials on F2m defined as above.
Assume that l.x/ is co-prime with xm � 1. Let a 2 F2m such that Trm1 .a/ D 0

and ı be a non zero elements of F2m . Let G be an o-polynomial on F2m and g any
Boolean function on F2m . Then the function f defined on F2m � F2m as

f .x; y/ D Trm1

�
axTrm1 .G.y/C ıy/C xL.G.y/C ıy/

�
C g.y/

is semi-bent.

Proof The proposition follows from Theorem 15 and Corollary 3.6 in [53]. ut
In [5], we have introduced the notion of o-equivalence between two oval

polynomials.

Definition 12 ([5]) Two functionsG andG0 are o-equivalent if one can be obtained
from the other by a sequence of the following list of transformations:

1. G 7! G0 whereG0 W z 2 F2m 7! G0.z/ WD G.�zC�/ with � 2 F
?
2m and � 2 F2m ,

2. G 7! G0 whereG0 W z 2 F2m 7! G0.z/ WD �G.z/C� with � 2 F
?
2m and � 2 F2m ,

3. G 7! G0 where G0 W z 2 F2m 7! G0.z/ WD zG.z2
m�2/ (with G.0/ D 0),

4. G 7! G0 where G0 W z 2 F2m 7! G0.z/ WD G.z2
j
/2
m�j

where j 2 N,
5. G 7! G0 where G0 W z 2 F2m 7! G0.z/ WD G�1.z/.

Recall the notion of extended affine equivalence between two Boolean functions.

Definition 13 Two Boolean functions f and f 0 defined on F2n are called extended
affine equivalent (EA-equivalent) if f 0 D f ı � C ` where the mapping � is an
affine automorphism on F2n and ` is an affine Boolean function (affine functions are
those whose algebraic degree is at most 1).
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A discussion about the EA-equivalence between two semi-bent Boolean func-
tions constructed from o-equivalent ovals polynomials can be found in [40].

4.6 Secondary Constructions of Semi-Bent Functions

In general, “secondary constructions” means constructions of new functions from
ones having the same properties. Only few secondary constructions of semi-bent
functions have been considered in the literature. An example of a secondary
construction of semi-bent functions based on a strong condition on the derivative
functions has been given in [48].

Theorem 16 ([48]) Let f and g be two semi-bent functions over F2n (with n even).
Assume that there exists an element a in F2n such thatDaf D Dag. Then the function
h D f CDaf .f C g/ is semi-bent on F2n .

The reader notices that Theorem 7 shows that the indirect sum could be used
to construct semi-bent functions from both bent and semi-bent functions. The
construction derived from Theorem 7 can be therefore viewed as a secondary-like
construction of semi-bent functions.

Problem 7 Find new secondary constructions of semi-bent functions, that is,
constructions of new semi-bent functions from two or several already known ones.

Conclusion
The research activity on bent functions has lasted over 35 years and remains
intensive. However, very recently, many advances have been made subse-
quently on super classes of bent functions (plateaued functions, etc.) and
related classes of bent functions (semi-bent functions, etc.). In particular
many new connections in the framework of semi-bent functions with other
domains of mathematics and computer science (Dickson polynomial, Kloost-
erman sums, spreads, oval polynomial, finite geometry, coding, cryptography,
sequences, etc.) have been exhibited. The research in this framework is
relatively new (comparatively to the context of bent functions) and is becom-
ing very active. Despite recent progress, much remains to do. In particular,
although many concrete constructions of semi-bent functions have been
discovered, the general structure of semi-bent functions is still unclear.

Acknowledgements The author wishes to thank Claude Carlet for his careful reading and
interesting comments.
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