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Preface

A selected group of invited speakers and more than 150 students and researchers
attended a special conference on September 18–20, 2013, in “Said Halim Pasha
Palace” in Istanbul. There had never been a conference of this kind in Turkey, where
“open” or “unsolved” problems are discussed, and even in the world there have only
been a few examples.

In principle, mathematicians, scientists, and engineers attend conferences to
speak about problems they have solved and to “impress” and inform the academic
community about their methods and the final solution. It is not generally expected
that a researcher would take the stand in a conference to talk about a problem she
or he could not (yet) solve. However, all scientific processes start with hypotheses
whose ramifications we do not know or problems whose solutions are not clear yet.
Either for personal reasons or in accordance with the expectations of scientific con-
ferences and their attendees, researchers tend to push the open/unsolved problems
to the back burner and talk about what they have solved, understood, or proved.
Still, once in a while (perhaps every 5–10 years), some researchers come together to
discuss problems they have not solved yet or problems whose solutions seem rather
challenging. Since the 1970s, there have been 7 such conferences.

Therefore, I am very happy that we were able to organize this Open Problems
in Mathematical and Computational Sciences Conference with support from the
Scientific and Technological Research Council (TÜBİTAK) of Turkey.

A large number of young researchers, MSc, and PhD candidates from Turkey,
as well as several from neighboring countries, attended the conference. The invited
scientists of the conference are among the most prolific mathematical and computa-
tional scientists in the world. They come from various countries, demonstrating that
science and engineering are culturally very diverse now. The list of countries and
number of scientists from each country were a good reminder of this fact: Belgium
(2), Brazil (1), Canada (2), China (2), France (3), Germany (2), Japan (1), Norway
(1), Romania (1), Turkey (3), and the USA (2).
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vi Preface

The Open Problems Conference was held in Said Halim Pasha Palace, one of
the most beautiful seaside palaces in Istanbul, whose history goes back at least 150
years and as far as Egypt!

Said Halim Pasha was the son of Mehmet Abdülhalim Pasha who was one of
the four sons of Mehmet Ali Pasha from Kavala, the second largest city in Northern
Greece. Mehmet Ali Pasha (Muhammad Ali of Egypt) was an Ottoman commander
of Albanian origin and is regarded as the founder of modern Egypt because of the
dramatic reforms in the military, economic, and cultural spheres he instituted. Said
Halim Pasha was born in Cairo in the year 1863 and completed his education in
private lessons in Cairo, where he learned Arabic, Persian, English, and French.
He studied politics for 5 years in Switzerland. The palace had become the property
of Prince Abdülhalim Pasha in the year 1876 and was reconstructed to its current
appearance by the travelling architect, Petraki Adamandidis of the Dardanelles. The
property was inherited by the nine children of the Abdülhalim Pasha after his death
in 1890. After going through several owners, the Said Halim Pasha Palace was
restored following a fire in 1995 under the name “Prime Ministry Official Guest
House.”

Several peoples’ names need to be mentioned with gratitude, they made both the
Open Problems Conference and the Open Problems Book possible.

First of all, I sincerely thank Ronan Nugent for his valuable advice and the
Editorial Office of Springer for their help in getting the book published.

On behalf of the invited speakers, I am also sincerely grateful to TÜBİTAK
for agreeing with us about the vision of the Open Problems Conference and their
subsequent work that produced this book and for providing the financial support.
I would also like to thank to Şükran Külekci, İsa Sertkaya, Birnur Ocaklı, Mehmet
Sabır Kiraz, and Osmanbey Uzunkol for working around the clock several days
before, during, and after the conference.

Santa Barbara, CA, USA Çetin Kaya Koç
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About Open Problems

Çetin Kaya Koç

Abstract A small group of computer scientists and mathematicians from industry
and academia convened in a historical home (“Said Halim Pasha Palace”) overlook-
ing the Bosphorus Straits to discuss several difficult problems they and others in
similar fields are tackling. The motivation of the Open Problems in Mathematical
and Computational Sciences Conference was to enable and encourage the academic
community, particularly young researchers and Ph.D. candidates, to hear about
unsolved, open problems in mathematical and computation sciences, directly from
the scientists who are rigorously investigating them.

1 The Conference

In general, scientists go to conferences to present discoveries that are already made,
to explain results or to expose and excite the community about connections within
various theories or structures, and to share their insights and proofs. Conferences
are places where we get to see and hear about solutions, ask questions about them,
and hope to understand them better in this process. Rarely is there an opportunity
to talk about problems that have not been solved yet or solutions which are not yet
satisfactory, except during the lunches, coffee breaks, or at other quiet times.

In many instances, scientists working on problems whose solutions are difficult to
obtain will state that asking the right question is the real challenge. It is imperative
to stop and think once in a while in order to understand the background of the
tools and the mechanisms needed for tackling the problems we are working on.
Conferences that deal with open problems are rare, but they are useful avenues for
such objectives. Almost all conferences are for presenting the solutions to certain
classes of problems whose origins we may not have any idea about.

Ç.K. Koç (�)
University of California Santa Barbara, Santa Barbara, CA 93106, USA

Mathematical and Computational Sciences Labs, TÜBİTAK BİLGEM, Gebze, Kocaeli, Turkey
e-mail: koc@cs.ucsb.edu
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2 Ç.K. Koç

In a world replete with information, what matters most is sometimes not the
answers but rather the context, the origin and the body of questions for which
answers are sought or obtained.

This conference was planned with these ideas in mind. One purpose of the Open
Problems in Mathematical and Computational Sciences Conference is to encourage,
motivate, and excite the mathematical and computational sciences community to
discuss open problems. We would like to hear them formulate the questions and
present processes which will be helpful in the quest for answers.

Of course, we all know about certain open problems or conjectures in math-
ematics such as the Goldbach conjecture or the twin primes conjecture or the
Riemann hypothesis. Some well-known problems have been resolved during the
last 20 years, three excellent examples being Fermat’s last theorem by Andrew Weil
in 1995, the Poincaré conjecture by Grigori Perelman in 2003, and the prime gap
problem by Yitang Zhang (and later by the Polymath Project participants) in 2013.
The list of difficult problems in mathematics is pretty long, and solutions come in
decades or even centuries. And when they come, they are deservedly celebrated,
and the international media and thus the public pay attention; stories are made and
impressions are created. Furthermore, mathematics institutes around the world, for
example, the Clay Institute, publish problem lists and offer prizes which further
publicize the phenomena.

However, we are limiting our attention to computational problems in this
conference; there is also a long list of unsolved problems in computer science,
such as:

• PDNP problem
• Existence of one-way functions
• Is the graph isomorphism problem in P?
• Is factoring in P?
• Is primality testing in P?
• What is the fastest algorithm for the multiplication of integers?
• What is the fastest algorithm for matrix multiplication?

The list is not complete, and our intention is not to complete the list, but to bring
the best minds to describe, elucidate, and explain some of these open problems
in the mathematical and computational sciences, particularly the problems they
themselves are interested in or working on or for which they have formulated
partial or near-complete solutions. We want them to tell us how they approach such
problems and what are the mechanisms and tools they are using and share with us
and excite us with the creative energy they are applying to such problems.

A perfect example from the above list was the question “Is Primality Testing
in P?” This was affirmatively answered by Manindra Agrawal, Neeraj Kayal, and
Nitin Saxena of the Indian Institute of Technology Kanpur, by giving the first
deterministic polynomial time algorithm for primality testing. The implications of
this development are indeed great for cryptography, coding, and finite fields, where
primality plays a central role.



About Open Problems 3

To summarize, one of the underlying purposes of our 3-day conference was
to encourage young researchers, particularly Ph.D. candidates, to learn about
exciting, interesting, and important (yet) unsolved problems in mathematical and
computation sciences, directly from the researchers who are thinking about them.
I believe the informal atmosphere of the conference allowed them to listen to
the seminars, ask questions, interact, and discuss possible answers or pose new
questions to the invited speakers.

We believe such a close interactive environment served as a catalyzing event
and hopefully will synchronize local research communities with the best, most
challenging, and perhaps most useful problems the world’s best minds are working
on. Hopefully, in several years, perhaps even as early as the next Open Problems
Conference, a few of these challenging problems will find their partial or complete
solutions.

2 The Participants

The following people attended the conference as invited speakers:

• Paulo Barreto, Universidade de Sao Paulo
• Claude Carlet, Université Paris 8
• Guanrong Chen, City University of Hong Kong
• Ömer Eǧecioǧlu, University of California, Santa Barbara
• Gerhard Frey, Göttingen Academy of Sciences
• Tor Helleseth, University of Bergen
• Antoine Joux, Université de Versailles Saint-Quentin-en-Yvelines
• Andrew Klapper, University of Kentucky
• Alfred Menezes, University of Waterloo
• David Naccache, Université Paris II
• Koji Nakano, Hiroshima University
• Ferruh Özbudak, Middle East Technical University
• Daniel Panario, Carleton University
• Bart Preneel, KU Leuven
• Gheorghe Pãun, Romanian Academy
• Jean-Jacques Quisquater, Université catholique de Louvain
• Henning Stichtenoth, Sabancı University
• Murat Tekalp, Koç University
• Han Vinck, University of Duisburg-Essen

We thank our speakers for taking time to come to Istanbul to talk about
problems that excite them and to share them with us. There were more than 150
participants, most of whom were from Turkey, as expected; however, about 10 % of
the participants were from other European countries, including Bulgaria, Denmark,
France, and Romania.
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3 The Book

As we were planning the conference, we also developed a plan to publish a book
arising from the presentations.

This book contains selected and revised papers from the conference. We gave
a window of about 6 months to the speakers to create the chapters in this book,
revising and expanding their work by adding an introduction section and an
annotated bibliography. The introduction section of each chapter is intended to
provide the background of the topic of the chapter, assuming the reader is a first-year
graduate student who has the general knowledge of electrical engineering, computer
science, programming, and computational mathematics via his/her undergraduate
education and has just started reading books and papers in the area of the
chapter. Therefore, the chapters attempt to give all basic definitions, introduce the
context, and summarize algorithms, theorems, and proofs. On the other hand, the
bibliography aims to introduce the most important references to follow up, giving a
short description of these papers and books, and their importance to the field. I hope
you will find these chapters to your liking.



The Past, Evolving Present, and Future
of the Discrete Logarithm

Antoine Joux, Andrew Odlyzko, and Cécile Pierrot

Abstract The first practical public key cryptosystem ever published, the Diffie–
Hellman key exchange algorithm, relies for its security on the assumption that
discrete logarithms are hard to compute. This intractability hypothesis is also the
foundation for the security of a large variety of other public key systems and
protocols.

Since the introduction of the Diffie–Hellman key exchange more than three
decades ago, there have been substantial algorithmic advances in the computation
of discrete logarithms. However, in general the discrete logarithm problem is still
considered to be hard. In particular, this is the case for the multiplicative groups
of finite fields with medium to large characteristic and for the additive group of a
general elliptic curve.

This chapter presents a survey of the state of the art concerning discrete
logarithms and their computation.

1 Introduction

1.1 The Discrete Logarithm Problem

Many popular public key cryptosystems are based on discrete exponentiation. If
G is a multiplicative group, such as the group of invertible elements in a finite

A. Joux
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6 A. Joux et al.

field or the group of points on an elliptic curve, and g is an element of G, then
gx is the discrete exponentiation of base g to the power x. This operation shares
basic properties with ordinary exponentiation, for example, gxCy D gx � gy . The
inverse operation is, given h in G, to determine a value of x, if it exists, such that
h D gx . Such a number x is called a discrete logarithm of h to the base g, since it
shares many properties with the ordinary logarithm. If, in addition, we require some
normalization of x to limit the possible answers to single valid value, we can then
speak of the discrete logarithm of h. Indeed, without such a normalization, x is not
unique and is only determined modulo the order of the element g.

Assume for simplicity that G is a cyclic group generated by g and that the
notation logg.h/ denotes a value such that h D glogg.h/. Then, as with ordinary
logarithms, there is a link between multiplication of elements and addition of
logarithms. More precisely, we have:

logg.h � j / � logg.h/C logg.j / mod jGj:

We say that we solve the discrete logarithm problem (DLP) in G if given any
element gx in G, we are able to recover x. To normalize the result, we usually ask
for x to be taken in the range 0 6 x < jGj. In many applications, in particular in
cryptography, it is sufficient to be able to solve this problem in a substantial fraction
of cases. (The usual theoretical standard is that this fraction should be at least the
inverse of a polynomial in the logarithm of the size of the group.)

The main interest of discrete logarithm for cryptography is that, in general, this
problem is considered to be hard. The aim of this chapter is to provide state-of-the-
art information about the DLP in groups that are used for cryptographic purposes. It
gives pointers to the latest results and presents observations about the current status
and likely future of the DLP.

1.2 Applications of Discrete Logarithms

In some sense, the discrete logarithm has a long history in number theory. It is
just an explicit way to state that an arbitrary cyclic group containing N elements is
isomorphic to .ZN ;C/. Still, before the invention of the Diffie–Hellman protocol,
the problem of efficiently computing discrete logarithms attracted little attention.
Perhaps the most common application was in the form of Zech’s logarithm, as a way
to precompute tables allowing faster execution of arithmetic in small finite fields.

The role of the DLP in cryptography predates Diffie–Hellman. Indeed, the
security of secret-key cryptosystem involving linear feedback shift registers (LFSR)
is closely related to the computation of discrete logarithms in finite fields of
characteristic two. More precisely, locating the position where a given subsequence
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appears in the output of an LFSR is, in fact, a DLP in the finite field defined by the
feedback polynomial.1

The main impetus to intensive study of discrete logarithms came from the inven-
tion of the Diffie–Hellman method in 1976 [DH76]. Much later, the introduction of
pairing in cryptography in 2000 (journal versions [Jou04,BF03]) increased the level
of attention on some atypical finite fields, with composite extension degrees and/or
medium-sized characteristic.

1.2.1 Diffie–Hellman Key Exchange

Let us recall the first practical public key technique to be published, which is still
widely used, the Diffie–Hellman key exchange algorithm. The basic approach is as
follows. If Alice and Bob wish to create a common secret key, they first agree, on a
cyclic group G and a generator g of this group.2 Then, Alice chooses a random
integer a, computes ga, and sends it to Bob over a public channel, while Bob
chooses a random integer b and sends gb to Alice. Now Alice and Bob can both
compute a common value, which then serves as their shared secret:

.gb/a D ga�b D .ga/b:

The security of this system depends on the assumption that an eavesdropper who
overhears the exchange, and thus knows g, ga, and gb , will not be able to compute
the shared secret. In particular, this hypothesis assumes that the eavesdropper is
unable to solve the DLP in G. Indeed, if the DLP for this group is solvable, he can
compute either a or b and recover the shared secret ga�b . However, it is not known
whether the problem of computing gab given g, ga, and gb , which is known as the
computational Diffie–Hellman problem (CDH), is equivalent to the computation
of discrete logarithms. Moreover, to prove the security of many cryptographic
protocols, it is often necessary to consider the associated decision problem: given
g, ga, gb , and h, decide whether h is the correct value of gab or not. This latest
problem is called the decision Diffie–Hellman problem (DDH).

There are also many generalized computational and decision problems somehow
related to the DLP that have been introduced as possible foundations for various
cryptosystems. Since it is not easy to compare all these assumptions, in an attempt
to simplify the situation, Boneh et al. [BBG05] have proposed the uber-assumption
which subsumes all these variations and can be proven secure in the generic group
model (see Sect. 2.5).

However, the DLP itself remains fundamental. Indeed from a mathematical
viewpoint, it is a much more natural question than the other related problems, and

1Assuming that it is irreducible, which is usually the case.
2The group G and generator g can be the same for many users and can be part of a public standard.
However, that can lead to a reduction in security of the system.
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in practice, none of these other problems has ever been broken independently of the
DLP. Since the introduction of the Diffie–Hellman key exchange, this concern has
motivated a constant flow of research on the computation of discrete logarithms.

Another extremely important assumption in the above description is that the
eavesdropper is passive and only listens to the traffic between Alice and Bob. If
the attacker becomes active, then the security may be totally lost, for example,
if he can mount a man-in-the-middle attack where he impersonates Bob when
speaking to Alice and conversely. This allows him to listen to the decrypted traffic.
To avoid detection, the attacker forwards all messages to their intended recipient
after reencrypting with the key that this recipient has shared with him during the
initial phase. One essential issue when devising cryptosystems based on discrete
logarithms is to include safety measures preventing such active attacks.

1.2.2 Other Protocols

After the invention of the RSA cryptosystems, it was discovered by El
Gamal [Gam85] that the DLP can be used not only for the Diffie–Hellman key
exchange, but also for encryption and signature. Later Schnorr [Sch89] gave
an identification protocol based on a zero-knowledge proof of knowledge of a
discrete logarithm, which can be turned into Schnorr’s signature scheme using the
Fiat–Shamir transform [FS86].

There are many more cryptosystems based on the DLP which will not be covered
here. However, let us mention the Paillier encryption [Pai99]. This system works in
the group Z

�
N2 , where N D pq is an RSA number of unknown factorization. In

particular, this is an example of a discrete logarithm-based cryptosystem that works
within a group of unknown order. This system possesses an interesting property,
in that it is additively homomorphic; the product of the Paillier encryption of two
messages is an encryption of their sum.

Another very interesting feature of discrete logarithms is the ability to construct
key exchange protocols with additional properties, such as authenticated key
exchange, which embed the verification of the other party identity within the key
exchange protocol. Perfect forward secrecy, in which disclosure of long-term secrets
does not allow for decryption of earlier exchanges, is also easy to provide with
schemes based on discrete logarithms. For example, in the Diffie–Hellman key
exchange, Alice’s secret a and Bob’s secret b are ephemeral, and so is the shared
secret they used to create, and (if proper key management is used) are discarded
after the interaction is completed. Thus, an intruder who manages to penetrate
either Alice’s or Bob’s computer would still be unable to obtain those keys and
decrypt their earlier communications. It is also possible to mix long-term secrets,
i.e., private keys, and ephemeral secrets in order to simultaneously provide perfect
forward secrecy and identity verification.
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1.2.3 A Powerful Extension: Pairing-Based Cryptography

Besides the Diffie–Hellman key exchange, a natural question to ask is whether
there exists a three-party one-round key agreement protocol that is secure against
eavesdroppers. This question remained open until 2000 when Joux [Jou04] devised a
simple protocol that settles this question using bilinear pairings. Until then, building
a common key between more than two users required two rounds of interaction.
A typical solution for an arbitrary number of users is the Burmester–Desmedt
protocol [BD94].

The one-round protocol based on pairing works as follows. If Alice, Bob, and
Charlie wish to create a common secret key, they first agree onG1 D hP i an additive
group with identity O, a multiplicative group G2 of the same order with identity 1,
and a bilinear pairing from G1 to G2. Let us recall the definition

Definition 1.1 A symmetric bilinear pairing3 on .G1;G2/ is a map

e W G1 �G1 ! G2

satisfying the following conditions:

1. e is bilinear: 8R;S; T 2 G1; e.RC S; T / D e.R; T / � e.S; T /;
and e.R; S C T / D e.R; S/ � e.R; T /:

2. e is non-degenerate: If 8R 2 G1; e.R; S/ D 1; then S D O:

Alice randomly selects a secret integer a modulo the order of G1 and broadcasts
the value aP to the other parties. Similarly and simultaneously, Bob and Charlie
select their one secret integer b and c and broadcast bP and cP. Alice (and Bob and
Charlie, respectively) can now compute the shared secret key

K D e.bP; cP/a D e.P; P /abc

We know that the security of DH-based protocols often relies on the hardness of the
CDH and DDH problems. Likewise, the security of pairing-based protocols depends
on the problem of computing e.P; P /abc givenP , aP, bP, and cP, which is known as
the computational bilinear Diffie–Hellman problem (CBDH or simply BDH). This
problem also exists in its decision form (DBDH). However, little is known about the
exact intractability of the BDH, and the problem is generally assumed to be as hard
as the DLP in the easier of the groups G1 and G2. Indeed, if the DLP in G1 can be
efficiently solved, then an eavesdropper who wishes to compute K can recover a
from aP and then compute e.bP; cP/a. Similarly, if the DLP inG2 can be efficiently

3In general, asymmetric pairings are also considered. For simplicity of presentation, we only
describe the symmetric case.
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solved, he could recover bc from e.bP; cP/ D e.P; P /bc, then compute bcP, and
finally obtainK as e.aP; bcP/.

One consequence of the bilinearity property is that the DLP in G1 can be
efficiently reduced to the DLP in G2. More precisely, assume that Q is an element
of G1 such that Q D xP , then we see that e.P;Q/ D e.P; xP/ D e.P; P /x .
Thus, computing the logarithm of e.P;Q/ inG2 (to the base e.P; P /) yields x. This
reduction was first described by Menezes et al. [MOV93] to show that supersingular
elliptic curves are much weaker than random elliptic curves, since the DLP can be
transferred from a supersingular curve to a relatively small finite field using pairings.

After the publication of the Menezes, Okamoto, and Vanstone result, cryp-
tographers started investigating further applications of pairings. The next two
important applications were the identity-based encryption scheme of Boneh and
Franklin [BF03] and the short signature scheme of Boneh et al. [BLS04]. Since then,
there has been a tremendous activity in the design, implementation, and analysis of
cryptographic protocols using bilinear pairings on elliptic curves and also on more
general abelian varieties, for example, on hyperelliptic curves.

1.3 Advantages of Discrete Logarithms

A large fraction of the protocols that public key cryptography provides, such
as digital signatures and key exchange, can be accomplished with RSA and its
variants. Pairing-based cryptosystems are a notable exception to this general rule.
However, even for classical protocols, using discrete logarithms instead of RSA as
the underlying primitive offers some notable benefits.

1.3.1 Technical Advantages

Smaller Key Sizes The main advantage of discrete logarithms comes from the
fact that the complexity of solving the elliptic curve discrete logarithm problem
(ECDLP) on a general elliptic curve is, as far as we know, much higher than
factoring an integer of comparable size. As a direct consequence, elliptic curve
cryptosystems currently offer the option of using much smaller key sizes than would
be required by RSA or discrete logarithms on finite fields to obtain a comparable
security level.

In truth, the key size reduction is so important that it more than offsets the
additional complexity level of elliptic curve arithmetic. Thus, for the same overall
security level, elliptic curve systems currently outperform more classical systems.

Perfect Forward Secrecy When using RSA to set up a key exchange, the usual
approach is for one side to generate a random secret key and send it to the other
encrypted with his RSA public key. This grants, to an adversary that records all the
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traffic, the ability to decrypt every past communications, if he ever gets hold of the
corresponding private key.

By contrast, as we have already mentioned in the introduction, a correctly
designed key exchange protocol based on the DLP can avoid this pitfall and
achieve perfect forward secrecy, thus preventing an adversary to decrypt past
communications [DOW92].

1.3.2 Algorithmic Diversity

Cryptographers have learned from history that it is unwise to base security on
a single assumption, as its violation can lead to simultaneous breakdown of all
systems. For this reason it is important to have a diversity of cryptosystems and have
candidate replacement systems. Schemes based on discrete logarithms provide an
alternative to those derived from RSA and other algorithms whose security depends
on difficulty of integer factorization.

However, we should note that both integer factorizations and discrete logarithms
would be easy to obtain from quantum computers. Hence it is important to
investigate even more exotic cryptosystems, such as those based on error-correcting
codes and lattices.

The chapter is organized as follows. Section 2 deals with generic algorithms,
i.e., those that assume no special knowledge about the underlying group and
consider group operations as black boxes. By contrast, Sect. 3 presents the index
calculus method, a very useful framework to obtain a family of algorithms that
make extensive use of specific knowledge of the group. Section 4 presents concrete
algorithms to solve the DLP in finite fields, and Sect. 5 describes the state of the art
about the DLP on algebraic curves.

2 Generic Results

This section discusses some general results for discrete logarithm that assume little
knowledge of the group. In the most general case, we only ask for a group whose
elements can be represented in a compact way and whose law is explicitly given by
an efficient algorithm. We also consider the case where the order of the group and
possibly its factorization are also given. This case is interesting because for many
groups that are considered in practice, this information is easily obtained. Typically,
for an elliptic curve, the group order is efficiently found using point counting
algorithms. Moreover, system designers usually choose curves whose order is a
small multiple of a prime, in which case, factoring the order becomes easy.

Throughout the section, we use the same notations as in Sect. 1.1. First, we
describe some general complexity results that relate the hardness of the DLP to
classical complexity theoretical classes. Second, assuming that the factorization of
the order of G is given, we show that computing discrete logarithms in G is no
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harder than computing discrete logarithms in all subgroups ofG of prime order. This
is the outcome of the Pohlig–Hellman algorithm [PH78], which is a constructive
method to compute discrete logarithms in the whole group from a small number
of computations of discrete logarithms in the subgroups of prime order. We also
describe Pollard’s rho algorithm [Pol78] that allows the computation of discrete
logarithms in a group G in O.

pjGj/ operations. Combining Pohlig–Hellman with
Pollard’s rho essentially4 permits the computation of discrete logarithms in time
O.
p
p/, where p is the largest prime factor of the order of a generic group.

Finally, we discuss the issue of computing many independent discrete logarithms
in the same generic group, amortizing part of the computation cost; we also briefly
present the generic group model as proposed by Shoup in [Sho97b] and the lower
bound on the complexity that is related to it.

2.1 Complexity Classes

In order to describe the exact level of hardness of a computational problem, the
main approach is to describe the complexity classes the problem belongs to. To this
end, the traditional approach is to work with decision problems, i.e., problems with
a yes/no answer. Since the DLP itself is not a decision problem, the first step is
to introduce a related decision problem whose hardness is essentially equivalent to
computing discrete logarithms. This can be done in many ways, for example, let us
consider the following problem.

Problem 2.1 (Log Range Decision) Given a cyclic group G and a triple
.g; h; B/:

• Output YES if there exists x 2 Œ0 � � �B� such that h D gx .
• Otherwise output NO.

An algorithm or oracle that solves this problem can be used to compute discrete
logarithms using a binary search. This requires a logarithmic number5 of calls to
Log Range Decision. As a consequence, the hardness of Log Range Decision is
essentially the same as the hardness of the DLP itself.

4If jGj is a product of many small primes, possibly with multiplicity, this claim does not hold.
However, this is not an interesting case for cryptographic purposes.
5In other words, the number of oracle calls is a polynomial in the bitsize of the answer.
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2.1.1 Log Range Decision is in NP \ co-NP

To show that the problem is in NP, assume that there exists x 2 Œ0 � � �B� such that
h D gx , then x itself is a witness to this fact which is easily tested in polynomial
time.

When g is a generator ofG and jGj is known, giving a possible discrete logarithm
of h to the base g is also a satisfying witness to prove that the answer is NO. Thus, in
this simple case, the problem belongs to co-NP. However, in general, the situation is
more complex: we need a generator6 g0 of G together with jGj and its factorization
to prove this fact. With g0 in hand, the discrete logarithms of both g and h to the
base g0 suffice to determine whether h belongs to the subgroup generated by g and,
if needed, to prove that none of the discrete logarithms of h to the base g belong
to Œ0 � � �B�. As a consequence, even in the general case, Log Range Decision is in
co-NP.

2.1.2 Log Range Decision is in BQP

Another very important complexity theoretic result about the computation of
discrete logarithms is that there exists an efficient quantum algorithm invented by
Shor [Sho97a]. This algorithm works for arbitrary groups, assuming that the group
operation can be computed efficiently. It is based on the quantum Fourier transform
and belongs to the complexity class BQP (bounded-error quantum polynomial time)
that corresponds to polynomial time computation on a quantum computer with a
bounded-error probability.7

2.1.3 Computing jG j Using a Discrete Logarithm Computation

When considering the DLP, we often assume that the group order jGj is known. One
justification is that it is often the case with the groups that are used in cryptography.
Here, we point out another reason. When the DLP becomes easy in a group, it is
possible to compute jGj using a discrete logarithm computation. Assume that we
are only given the bitsize of jGj, i.e., that we know that jGj 2 Œ2n�1; 2n � 1�. In this
context, given g a generator of G, we see that

jGj D 2n � logg.g
2n/:

6Since there are many distinct generators of G, in fact '.G/, g0 is easy to find by testing random
candidates.
7Typically, an error probability of 1=3 can be used in the formal definition of BQP.
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2.1.4 Average Case Hardness and Random Self-reducibility

When using hard problems to build cryptosystems, one important issue is to be sure
that randomly generated instances of the problem are practically hard. This deviates
from the standard definition of hardness in complexity. In cryptography, a problem
that admits hard instances is not enough; we need the problem to be hard not only
in its worst case, but also in its average case and also usually in most cases.

Concerning the DLP, we have a very nice property, random self-reducibility
introduced in [AFK89]. This property shows that any instance of the DLP can be
rerandomized into a purely random instance. As a consequence, if the DLP is easy
in the average case, it is also easy in the worst case. Conversely, if there exists hard
instances of the DLP in some group G, then the DLP is hard for random instances
in G.

The reduction works as follows: assume that we are given an oracle that solves
the DLP inG for random instances and some fixed instance of the problem, h D gx .
Choose an integer r modulo jGj uniformly at random and define z D hgr , then z
follows a uniform random distribution inG. If the given oracle can compute logg.z/,
we recover x from the relation x � logg.z/� r .mod jGj/:

2.2 Pohlig–Hellman

Let G be a group of order n, g a generator, and h the element for which we want to
compute the discrete logarithm x. We suppose further that we know the factorization
of n:

n D
Y

pi jn
pi
ei :

The Pohlig–Hellman algorithm permits us to reduce the DLP inG to DLPs in cyclic
groups of prime order pi . We proceed in two phases:

1. First we reduce the DLP in G to DLPs in groups with orders a power of the
primes pi involved in the factorization of n. For each pi , we set

ni D n

pi ei
; gi D gni and hi D hni :

So gipi
ei D gn D 1 and the order of gi is exactly pi ei . Moreover gxi D gnix D

hni D hi . Thus, hi belongs to the subgroup of order peii generated by gi . More
precisely, hi can be considered as the projection of the element we want the
discrete logarithm on the subgroup generated by gi . Let us call xi the discrete
logarithm of hi to the base gi . We then have

x � xi mod peii :
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Since the peii are pairwise coprime, if we know all the xi , a simple application of
the Chinese remainder theorem permits us to recover x.

2. A further simple reduction shows that solving the DLP in a group of prime order
allows to solve the DLP in groups with orders that are powers of that prime.

To conclude, what has to be kept in mind is that computing discrete logarithms in G
is no harder than computing discrete logarithms in all subgroups of prime order
in G.

2.3 Discrete Logarithms in G in O
�pjG j

�

There are several methods for computing discrete logarithms in a group G in aboutpjGj operations. The first and best known of these is the Shanks baby step/giant
step technique.

2.3.1 Baby Step/Giant Step

Let n be the order of G, or even an upper bound of jhgij, and h be the element for
which we want to compute the discrete logarithm x. Let m be equal to dpne. If we
let q and r be such that x D qmC r with 0 6 r; q < m, which is possible, thanks
to the size of m compared to n, then it is clear that finding x is exactly the same as
recovering q and r . First we remark that we have

.gm/q D .gmqgr /g�r D gmqCrg�r D hg�r : (1)

We create the first list:

Baby D f.hg�r ; r/j0 6 r < mg:

We call it the baby list, because we multiply each step by the inverse of g (which is
considered to be small). If, by good luck, there exists a couple .1; r 0/ in this set, we
have obtained hg�r 0 D 1 and thus x D r 0. If not, we create another list:

Giant D f..gm/q; q/j0 6 q < mg:

We call it the giant list because we multiply in this case each step by gm. We sort the
two lists to find a collision on the two first elements of each pair. When we obtain
.hg�r ; r/ 2 Baby such that .gm/q D hg�r , thanks to (1), we have found q and r and
thus x.

Checking for equality in two sorted lists of m entries each can be done in linear
time (assuming that the representations of elements are compact enough). Hence the
running time of the algorithm is dominated by the arithmetic required to compute
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the two lists and the time to sort them. This algorithm is deterministic and solves
the DLP in QO �pn� operations.8

2.3.2 Pollard’s Rho Algorithm

This algorithm runs in time comparable to the Shanks method, O
�p
n
�

opera-
tions, but has the advantage that it is practically memoryless. Unlike the Shanks
algorithm, though, it is probabilistic, not deterministic. It was proposed by Pollard
in 1978 [Pol78] and works as follows.

Let us imagine that we have a partition of G into three subsets of roughly equal
size A1;A2, and A3. We define the map f by:

f .b/ D
8
<

:

gb if b 2 A1
b2 if b 2 A2
hb if b 2 A3:

We take now a random integer x0 in f1; � � � ; ng and we compute b0 D gx0 . We
consider the sequence biC1 D f .bi /. The algorithm relies on two facts. First, for
each i we can rewrite bi as

bi D gxi hyi (2)

where .xi /i and .yi /i are given by the initial choice of x0, y0 D 0 and:

xiC1 D
8
<

:

xi C 1 mod n if bi 2 A1
2xi mod n if bi 2 A2

xi if bi 2 A3:
and yiC1 D

8
<

:

yi if bi 2 A1
2yi mod n if bi 2 A2
yi C 1 mod n if bi 2 A3

Second, since we are computing a sequence in a finite group, there exist two integers
i > 0 et k > 1 such that we have a collision bi D biCk (in practice we search
collision of the form bi D b2i ). Thanks to Eq. (2) we have

gxi hyi D gxiCk hyiCk

which yields a linear equation for logg.h/:

xi � xiCk � logg.h/.yiCk � yi / mod n:

If we can invert yiCk � yi modulo n, then we can recover the discrete logarithm
of h. If yiCk � yi is not invertible, we need to remember that Pollard rho is usually

8As usual, the QO notation QO.n/ is a shorthand for O.n log˛ n/ for an arbitrary value of ˛.
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used as a subroutine of Pollig–Hellman, which means that n is usually prime. As
a consequence, the only option is to restart a different instance of computation, for
example, using another choice for x0.

The Pollard rho algorithm can be implemented so that it requires only O.1/
elements in memory and O

�p
n
�

operations. Some practical improvements of this
algorithm are presented in [Tes00, BLS11, CHK12].

In practice, computations of discrete logarithms using generic algorithms use a
combination of the Pohlig–Hellman and Pollard rho algorithms. Depending on the
computer architecture used for the computations, there exist alternatives to Pollard’s
rho that are sometimes more appropriate (see the next section). However, the overall
complexity using these algorithms remains O

�p
p
�

where p is the largest prime
dividing the order of the group. In fact, Sect. 2.5 shows that generic group algorithms
cannot outperform this complexity.

2.4 Scalability of Generic Discrete Logarithm Algorithms

From a purely theoretical viewpoint, aO.
pjGj/ algorithm that only uses a constant

amount of memory is a very fine solution. However, for practical purposes, it is very
useful to know whether such a computation can be distributed on a parallel computer
or a network of independent computers. Indeed, this scalability issue often decides
whether a computation is feasible or not.

In this setting, it is very useful to replace cycle finding algorithms by algorithms
based on the distinguished point technique. According to [Den82, p. 100] the
idea of the distinguished point technique was proposed by Rivest. Quisquater and
Delescaille [QD89] used the technique to find collisions in the DES algorithm.
The in-depth study made by van Oorschot and Wiener [vOW99] shows how the
technique can be used in order to efficiently take advantage of parallelism for
collision search.

Basically, the main idea of the distinguished point technique is to build chains
of computations, starting from a random value and iterating a fixed function f
to compute a chain of successors. Denoting the starting point x0, we iteratively
compute xiC1 D f .xi /. We abort the computation when encountering a point xN
that satisfies some distinguished point property. Typically, this property is taken to
be that the representation of xN starts with a specified number of ‘0’ bits. We then
store the triple .x0; xN ;N /. Recall that as in Pollard rho, we wish to find a collision
of f in order to compute the desired discrete logarithm. With the distinguished point
technique, any collision between two distinct chains ensures that the two chains
terminate at the same distinguished point. Conversely, given two chains ending
at the same distinguished point, recomputing the two chains from their respective
starting points, accounting for the length difference, usually leads to an explicit
collision. Since the initial computations of chains are independent from each other,
it is extremely easy to distribute them over a large number of distinct computers.
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Recently, using a slight variation of this distinguished point technique, it was
shown in [FJM13] that given L independent discrete logarithms to compute in
the same group jGj, the computation can be achieved in time O.

p
LjGj/ rather

than O.L
pjGj/. Similar results were already known under the condition L �

O.jGj1=4/ [KS01].

2.5 The Generic Group Model

In 1997, Shoup [Sho97b] introduces a theoretical framework to study the complexity
of generic algorithms: the generic group model. In this model, he shows that any
generic algorithm must perform ˝.

p
p/ group operations, where p is the largest

prime dividing the order of the group. Since this lower bound essentially9 matches
the known upper bound, the generic group model emphasizes the fact that currently
known generic algorithms for computing discrete logarithms are optimal.

In a nutshell, in the generic group model, group elements are identified by unique
but arbitrary encodings. As a consequence, it is not possible to exploit any special
properties of the encodings, and group elements can only be operated on using an
oracle that provides access to the group operations.

One frequently encountered criticism of the generic group model is that it suffers
from the same weaknesses as the random oracle model, which is considered with
suspicion by many cryptographers. Namely, in these models, there exists secure
protocols that cannot be securely instantiated [Den02, CGH00].

3 Index Calculus Method

The results from the generic group model no longer apply when extra information
about the group structure is known. Indeed, this extra information can then be used
to obtain faster algorithm. The most important example is the index calculus method
which uses this additional knowledge to provide subexponential algorithms.

Though the index calculus method works both for factoring and for discrete
logarithm, here we only consider its application to discrete logarithm computations.

3.1 General Description

The basic idea of index calculus algorithms relies on three main steps: the sieving
phase (also called the relation collection phase), the linear algebra phase, and

9Up to logarithmic factors.



The Past, Evolving Present, and Future of the Discrete Logarithm 19

the individual logarithm phase. Basically, the first phase creates relations between
the logarithms of elements belonging to a small subset of the considered group,
the second one recovers those logarithms, and the last one permits to obtain the
logarithm of any arbitrary element by relating it to the logarithms obtained during
the first two phases. Those three steps work as follows:

1. Sieving Phase or Relation Collection Phase. For simplicity, assume that G is a
cyclic group generated by g. We want to create a large number of multiplicative
relations between elements belonging to a subset of the group G. This subset is
usually constructed by selecting elements which can be considered to be small,
in some sense that depends on the context. This subset of G is usually called the
smoothness basis or the factor basis. Let fgi , i 2 I g denote this smoothness basis
and consider a relation of the form

Y

i2I
gi
mi D

Y

i2I
gi
ni : (3)

Then, taking the discrete logarithms of the two sides, we deduce

X

i2I
mi logg gi �

X

i2I
ni logg gi mod jGj:

This becomes a linear equation between the logarithms of the gi viewed as formal
unknowns. We stop the sieving phase once we have collected enough such linear
equations to obtain a system of codimension 1.

2. Linear Algebra Phase. The aim of the linear algebra step is to solve the previous
system of linear equations. Thus, we get at the end of this phase all the discrete
logarithms of the smoothness basis.10

A very important observation that naturally applies in most index calculus
algorithms is that the equations produced during the relation collection phase
are very sparse. This is extremely important, because sparse system can be
solved using special algorithms which are much faster than general linear system
algorithms. This is detailed in Sect. 3.4.

3. Individual Logarithm Phase. To really solve the DLP in G, we should be able
to compute the logarithm of any arbitrary element z of G. Roughly, the goal of
this last phase is to decompose z into products of other elements, which can in
some sense be considered smaller than z and iterate until z is finally expressed
as a product of elements belonging to the smoothness basis. Plugging the values
of the discrete logarithms obtained during the first two phases in this expression
yields the logarithm of z.

10Or at least, a large fraction of these logarithms. Indeed, depending on the exact properties of the
relation collection phase, a few elements of the smoothness basis might possibly be missing.
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3.2 Collection of Relations

In order to design index calculus algorithms, we thus need to construct multiplica-
tive relations as in (3).

The simplest approach for discrete logarithms modulo a prime p is to take a
random integer a, compute u � ga mod p for u an integer such that 1 6 u 6 p�1,
and check whether

u D
Y

qi

where the qi are primes satisfying qi < B for some bound B . When the above
congruence holds, we say that u is B-smooth and we call B the smoothness bound.
For most values of a, u will not be smooth, and so will be discarded. However, even
with this primitive approach, one can obtain running time bounds of the form11

Lp.1=2; c/. Moreover, this approach provides a provable although probabilistic
algorithm for solving the DLP in many finite fields.

Though this remains an interesting algorithm because it is at once simple and
rigorous, it is possible to devise better algorithms with other strategies. One key
idea is to represent the group G in which we want to compute discrete logarithms
in two different but compatible ways. In other words, we want to be able to draw
a commutative diagram like the one presented in Fig. 1. With this representation in
hand, for all x in E , we can get two elements in G related in an algebraic way.
Thanks to commutativity, we have an equality in the groupG:

'1. 1.x// D '2. 2.x//:

However, for this to be useful, we need to have a way to select some special relations
among those created. To this end, we choose a small set in each intermediate set
E1 and E2 of the diagram. Once these are chosen, in the sieving phase we keep
only relations that involve elements of these two small sets and no other. We call
the smoothness base (or factor base) the subset of G consisting of elements that

Fig. 1 Commutative
diagram for the sieving phase

11See Sect. 3.3 to understand the origin of this L notation. For the moment, just read Lq.˛; c/ as a
shorthand for exp

�
.c C o.1//.log q/˛.log log q/1�˛

�
:
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can be obtained through these two small subsets12 of E1 and E2. The number field
sieve [Sch00, Gor93, JLSV06] and the function field sieve (FFS) [AH99, JL06] that
have complexity of the form Lpn.1=3; c/ both follow this general strategy. They
are heuristic algorithms in that their analyses depend on plausible assumptions,
but, ones that have not been proved rigorously. Despite the fact that they share a
common algorithmic structure, there is a major difference between the NFS and the
FFS. The former algorithm is based on multiplicative relations between algebraic
integers in number fields while the latter works in function fields. At the bottom
level, this means that one algorithm needs to factor integers while the other factors
polynomials. This is a major difference since polynomials are much easier to factor
than integers and also have more systematic properties which have been used in the
recent algorithms reported in the next paragraph.

A small change in just the sieving phase can lead to a substantial improvement
in the complexity of an algorithm. In fact, recent progress in the index calculus
method for the DLP has come from better collections of relations. However, the
notion of sieving tends to disappear since the new algorithms proposed to solve the
DLP in finite fields with small characteristic rely on a new trick that directly creates
those relations. Those new methods, developed in Sect. 4.2.2, have recently yielded
complexities in Lpn.1=4; c/ [Jou13b] for finite fields with a small characteristic.
With an additional improvement made this time in the individual logarithm phase,
this has led to a heuristic quasi-polynomial algorithm [BGJT13], again for large
fields of small characteristic.

3.3 Smoothness

Index calculus algorithms depend on a multiplicative splitting of elements (integers,
ideals, or polynomials) into elements drawn from a smaller set, typically consisting
of elements that are in some sense considered to be small. Elements that do split this
way are called smooth, and a fundamental problem in the analysis of index calculus
algorithms is to estimate how the relation generation process produces those smooth
elements. In most cases, the heuristic assumption is made that the elements that
arise during the process essentially behave like random elements of the same size.
This assumption was introduced to simplify the analysis of the algorithm, and it
successfully led to many algorithmic improvements and to a large number of integer
factorization and discrete logarithm records.

However, depending on such a heuristic is uncomfortable, and many researchers
would like to come up with rigorous algorithms. Unfortunately, at the present time,
the existing rigorous algorithms are much less efficient than their heuristic siblings.
Quite surprisingly, the most recent advances are based on the fact that, in cases

12Note that those subsets are sometimes called the smoothness bases by some authors too.
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where the classical heuristic assumption become, false, it is possible to use this
failure to our advantage and produce more efficient algorithms.

To be more precise, let us give classic definitions and major theorems used in
order to estimate this probability:

Definition 3.1 An integer is y-smooth if all its prime factors are lower than y.

Definition 3.2 A polynomial over a finite field is m-smooth if all its irreducible
factors have degree lower thanm.

Canfield et al. [CEP83] gave in 1983 the probability of smoothness of integers.
More than a decade later, Panario et al. [PGF98] generalized this estimation to
the probability of smoothness of polynomials in finite fields. A less general result
in this direction was obtained earlier in [Odl85]. These two main results that are
surprisingly close can be summarized in the following estimate:

Estimate 3.1 The probability for an arbitrary integer lower than x to be y-smooth
(respectively for a random polynomial of degree less than n to be m-smooth) is

u�uCo.1/

where u D logx

logy
(respectively u D n

m
).

The very first analyses of the asymptotic running time of index calculus
algorithms appeared in the 1970s and were of the form exp

�
.c C o.1//.logp/1=2

.log logp/1=2
�
. In fact, index calculus algorithms not only have in common their

structure in three phases but also the expressions of their asymptotic complexities.
To simplify these expressions, we usually write them with the help of the following
notation:

Lq.˛; c/ D exp
�
.c C o.1//.logq/˛.log log q/1�˛

�

where ˛ and c are constants such that 0 < ˛ < 1 and c > 0. This is linked to the
smoothness probability of elements since it directly comes from Estimate 3.1. The
simple notation Lq.˛/ is often used when c is not specified, and the expression
Lq.˛; c C o.1// is abbreviated in Lq.˛; c/ where o.1/ is for q ! 1. The
most important parameter is the first one, since it governs the transition from an
exponential time algorithm to a polynomial time one. In fact, if ˛ tends to 1, Lq.˛/
becomes exponential13 in log q, and on the other hand, if ˛ tends to 0, Lq.˛/
becomes polynomial in log q.

This notation permits not only to write the complexities in a simple and compact
form but also to give an indication concerning the different ranges of application of
algorithms for finite fields.

13Note that since log q is the number of bits necessary to encode elements of the group we are
considering, it is the natural parameter to consider when expressing the complexity of algorithms.
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3.4 Sparse Linear Systems over Finite Fields

Index calculus algorithms use linear algebra to recover the logarithms of the
elements of the smoothness basis. Since these logarithms are determined modulo the
order of the considered group, we need to solve a large system of linear equations
over a residue ring Z=mZ. For a long time in the 1970s and early 1980s, this step
was regarded as a major bottleneck, affecting the asymptotic running time estimates
of algorithms. This was due to the cubic complexity of solving linear systems with
classical methods such as Gaussian elimination.

Even today, the linear algebra step remains difficult and it is a more serious
problem for discrete logarithm than for factoring. The main difference is that for
factoring, we need solutions modulo 2, while for discrete logarithm we require
solutions modulo large numbers. This is one of the reasons of the persistent
gap between factorization and discrete logarithm records in Fp, with p, a prime.
Fortunately, the linear systems of equations produced by index calculus algorithms
are sparse, often to a very large extent.

A sparse matrix is a matrix that contains a relatively small number of non-zero
entries. Very frequently, it takes the form of a matrix in which each line (or
each column) only contains a small number of non-zero entries, compared to the
dimension of the matrix. With sparse matrices, it is possible to represent in computer
memory matrices with much larger dimension, describing each line (resp. column)
as the list of positions containing a non-zero coefficient, together with the value
of the corresponding coefficient. When dealing with a sparse linear system of
equations, using plain Gaussian elimination is a bad idea. Indeed, each pivoting step
increases the number of entries in the matrix and after a relatively small number
of steps, the matrix can no longer be considered as sparse. As a consequence, if
the dimension of the initial matrix is large, Gaussian elimination quickly overflows
the available memory. In order to deal with sparse systems, a different approach is
required.

Three main families of algorithms have been devised to deal with linear algebra
in the case of sparse matrices. These methods behave better than general purpose
linear algebra algorithms.

The first family, structured Gaussian elimination, initially proposed in [Odl85]
and implemented in [LO90] contains variants of the Gaussian elimination algorithm
that perform pivot selection in a way that minimizes the fill-in of the matrix
throughout the algorithm. These methods are used to reduce the dimension of
the original system and produce a reduced-size system which remains reasonably
sparse. This reduced system is then solved using an algorithm from one of the other
two families.

A common property of the two other families is that they use a matrix involved
in the linear algebra in a very restrictive way. In fact, it only appears in matrix–
vector products, where some variable vectors are multiplied either by the considered
matrix or its transpose. The first of these two families contains Krylov subspace
methods which have been adapted from numerical analysis and construct sequences
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of mutually orthogonal vectors. In particular, this family contains the Lanczos and
conjugate gradient algorithms, already described for the discrete logarithm context
in [COS86]. The second family contains the Wiedemann algorithm [Wie86] and its
generalization for parallel processing, Block Wiedemann. To put it in a nutshell,
the algorithms in this family find a solution of a linear system by computing the
minimal polynomial14 of the considered matrix.

Both the Krylov subspace and Wiedemann families of algorithms cost a number
of matrix–vector multiplications equal to a small multiple of the matrix dimension.
Thus, for an N �N matrix containing � entries per line on average, the global cost
is O.�N2/.

4 Discrete Logarithm in Finite Fields

4.1 A Short History

The earliest methods introduced to compute discrete logarithms are generic. Of
course, the fact that discrete logarithms can be computed using exhaustive search
is self-evident. However, the algorithmic techniques to outperform this simple
approach are more recent. The first method to achieve this is the baby step/giant
step, initially introduced in 1971 by Shanks [Sha71] for the computation of class
numbers in quadratic fields. The next technique, proposed in 1978, is the Pollard rho
method [Pol78], a variation on Pollard rho factoring algorithm [Pol75] from 1975.

Interestingly, the link that Pollard’s Rho algorithm shows between factorization
of integers and the computation of discrete logarithms modulo prime is much more
general, and most of the algorithms known to solve one of the problems admit
variants that apply to the other. There are some exceptions. For example, it is not
known how to obtain a variation of the elliptic curve factoring method (ECM)
of Lenstra to compute discrete logarithms. However, a variation of ECM can be
used [MW96, JN03] to provide a relationship between the hardness of CDH and
DLP. Until recently, it was believed that this relationship between the hardness
of integer factorization and discrete logarithm computations could be extended to
arbitrary finite fields. However, due to the recent results on the computation of
discrete logarithms in small characteristic, this is no longer clear.

In 1976, the invention of Diffie–Hellman key exchange kindled renewed interest
on the DLP in finite fields. In 1977, the discovery of RSA also renewed the interest in
the integer factoring problem. At that time, the state of the art in factoring was not far
in advance of what was described in a book published in 1922 by Kraitchik [Kra22],
which shows how the use of quadratic forms can speed up factorization. The same
book also provides methods for the computation of discrete logarithms; however, the

14More precisely, this is the goal of Wiedemann algorithm. The block version computes something
somewhat different but quite similar.
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terminology of Kraitchik used the French word indice instead of discrete logarithm.
This terminology spawned the name index calculus for these algorithms. The early
index calculus algorithms where proposed first for prime fields Fp [Adl79]. They
achieve complexity in Lp.1=2; c/ for a certain constant c. The main advantage of
these initial algorithms is that they can be turned into provable version as shown
in [Pom87]. Moreover, they were generalized to finite fields of the form Fpk with
fixed p by Hellman and Reyneri in [HR82].

Nonetheless, the original value of c was too high for practical application. The
situation was largely improved by the Gaussian integer method introduced in 1986
by Coppersmith et al. [COS86] which lowered the value of c to 1. At that time, it
was also discovered that a variation of this algorithm obtained by replacing numbers
by polynomials could be used to compute discrete logarithms in small characteristic
finite fields.

A drastic change occurred in 1984 when Coppersmith proposed, in the case
of characteristic 2, a heuristic algorithm with complexity L2n.1=3/ [Cop84]. This
initial progress quickly led to the introduction of several other heuristic algorithms
with L.1=3/ complexity both for factoring and discrete logarithms computations.
A survey on the early effective implementations of these algorithms for discrete
logarithms appeared in 1996 [SWD96]. For a long time, L.1=3/ algorithms focused
on field with small characteristic, prime fields, and occasionally fields of the
form Fpk for small values of k [Sch00]. The view changed in 2006, with two
articles that showed that taken together, the number field sieve [JLSV06] and
the FFS [AH99, JL06] are enough to cover the whole range of finite fields with
heuristic L.1=3/ algorithms. Essentially, the result was to split the finite field
in three groups, small characteristic with complexity L.1=3; .32=9/1=3/, medium
characteristic with complexity L.1=3; .128=9/1=3/ and large characteristic with
complexity L.1=3; .64=9/1=3/.

In 2013 and 2014, several algorithmic improvements on the complexity of
discrete logarithm algorithms have appeared: two variants of the number field sieve
have been designed for finite fields with medium to high characteristic [JP13,BP14],
and a breathtaking step forward [Jou13a, GGMZ13, Jou13b, BGJT13, GKZ14] has
been made for finite fields with small characteristic. We discuss this in Sect. 4.2. This
history of discrete logarithms is summarized in Fig. 2 and the history of records by
Table 1.

4.2 Current Discrete Logarithms

Current discrete logarithms algorithms for finite fields vary with the relative sizes of
the characteristic and the extension degree. In order to choose the one that is well
suited for a given field Fpn , we write p D Lpn.lp; cp/, with 0 6 lp 6 1 and cp as
a value or reasonable size (i.e., close to 1). As for complexity, the first parameter is
the most important one in this notation. In fact, for a fixed size of finite field, when
the characteristic is very small, lp is close to 0. Conversely, when the finite field is
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Fig. 2 Bird’s-eye view of algorithms for discrete logarithm in finite fields and their complexities
from 1970 to 2014. We warn the lector that his drawing is not to scale since a difference in the first
or in the second parameter in the LQ notation does not have the same effect on the complexity at
all. Yet, the main color of each algorithm illustrates the variation of the first parameter: we depict
LQ.1=2/ algorithms in red, LQ.1=3/ in blue, and LQ.1=4/ and quasi-polynomial in green. For a
fixed color, the darker an algorithm is drawn, the more recent it is. Furthermore, we introduce in
this drawing the notation C.x/ D LQ.1=3; .x/

1=3/
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Table 1 History of discrete logarithm records

Cost

Date Field Bitsize (CPU.hours) Algorithm Authors

1992 2401 401 114,000 [COS86] Gordon,
McCurley

1996 p 281 ? [COS86] Weber, Denny,
Zayer

1998/02 Special p 427 12,500 [Gor93] Weber

1998/05 p 298 2,900 [COS86] Joux, Lercier

2001/01 p 364 290 [JL03] Joux, Lercier

2001/04 p 397 960 [JL03] Joux, Lercier

2001/09 2521 521 2,000 [JL02] Joux, Lercier

2002 2607 607 >200,000 [Cop84] Thomé

2005/06 p 431 350 [JL03] Joux, Lercier

2005/09 2613 613 26,000 [JL02] Joux, Lercier

2005/10 6553725 400 50 [JL06] Joux, Lercier

2005/11 37080130 556 ? 200 [JL06] Joux, Lercier

2007 p 530 29,000 [JL03] Kleinjung

2012/06 36�97 923 895,000 [JL06] Hayashi,
Shimoyama,
Shinohara,
Takagi

2012/12 p47 1,175 ? 32,000 [Jou13a] Joux

2013/01 p57 1,425 ? 32,000 [Jou13a] Joux

2013/02 21778 1,778 ? 220 [Jou13b] Joux

2013/02 21991 1,991 ? 2,200 [GGMZ13] Gologlu,
Granger,
McGuire,
Zumbragel

2013/03 24080 4,080 ? 14,100 [Jou13b] Joux

2013/04 2809 809 19,300 [AH99, JL06] The Caramel
Group

2013/04 26120 6,120 ? 750 [GGMZ13,
Jou13b]

Gologlu,
Granger,
McGuire,
Zumbragel

2013/05 26168 6,168 ? 550 [Jou13b] Joux

2014/01 36�137 1,303 920 [Jou13b] Adj, Menezes,
Oliveira,
Rodriguez-
Henriquez

2014/01 29234 9,234 ? 398,000 [Jou13b] Granger,
Kleinjung,
Zumbragel

2014/01 24404 698-bit subgroup 52,000 [Jou13b] Granger,
Kleinjung,
Zumbragel

The ? in the bitsize column indicates (possibly twisted) Kummer extensions



28 A. Joux et al.

Fig. 3 Current algorithms for discrete logarithms in finite fields and their complexities. For a
finite field of fixed size Q D pn, this figure shows how asymptotic final complexities vary with
the relative sizes of the characteristic p and n. We recall that we write p D Lpn.lp/

a prime field (the extension degree is thus equals to 1), the natural choice is to set
lp D 1. More precisely, finite fields split in three groups:

• Finite fields with high characteristic, when lp > 2=3.
• Finite fields with medium characteristic, when 1=3 6 lp 6 2=3.
• Finite fields with small characteristic, when 1=3 6 lp.

Each case is related to one algorithm which is examined in details in the sequel. The
two boundary cases when lp equals 1=3 or 2=3 are a little bit more intricate since
several algorithms are available in those cases. They will not be treated here, but
let us simply recall that the FFS is still the best option for some fields in the first
boundary case.

We give in Figs. 3 and 4 two different viewpoints of the current situation. The
first figure summarizes which algorithm has to be chosen for a given finite field,
whereas the second one shows which sizes of field are weak compared with a
given complexity. The axes of Fig. 4 may seem surprising to some innocent reader.
However, since logQ D n logp, it is natural to compare the size of n with the size
of logp (and not with the size of p).

4.2.1 Medium and High Characteristic

For a finite field with medium or high characteristic, Joux, Lercier, Smart, and
Vercauteren presented in 2006 an adaptation of the number field sieve (NFS) that has
a complexity in Lpn.1=3/. For finite fields with high characteristic, it extended the
variant of Shirokauer that had the same complexity, namely, Lpn.1=3; .64=9/1=3/,
but was available only for finite fields with fixed extension degree. The NFS as
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Fig. 4 Current domains for
discrete logarithm algorithms
in Fpn . For each fixed size
Q D pn correspond several
relative sizes of p and n (see
the red line) that lead to
choose one algorithm or
another. The blue line is an
iso-complexity line: for a
given complexity c, the DLP
in each finite field that is
represented in the blue part of
the drawing (resp. exactly on
the blue line) can be solved
with an algorithm that has a
complexity lower than c
(resp. that equals exactly c)

proposed in [JLSV06] is an index calculus algorithm that takes advantage of two
representations of the finite field that rely on number fields. In a nutshell, the sieving
process deals with linear polynomials and the smoothness basis consists in elements
in the number fields that have norms lower than a certain predefined smoothness
bound. A tricky post-process permits to associate each element of the smoothness
basis to an element of the finite field.

For finite fields with medium characteristic, [JLSV06] proposed a variant of the
classical number field sieve that leads to a final complexity in Lpn.1=3; .128=9/1=3/.
The polynomial selection used to represent the finite field is easier, however, the
sieving can no longer be done on linear polynomials. Since high degree polynomials
are used in the sieving phase, this variant of the number field sieve is often called
the NFS-HD. This is also the reason why the complexity of the algorithm is higher
in this case than in the high characteristic case.



30 A. Joux et al.

The currently best known algorithm for discrete logarithms in medium and high
characteristic is the multiple number field sieve, a variant of NFS proposed in 2014
by Barbulescu and Pierrot [BP14]. In both cases, the main idea of MNFS is to
consider not only two number fields but a lot of possible paths in the diagram. A
specific benefit is obtained in the medium characteristic case since each number
field plays the same role. This notion of symmetry no longer exists in the high case
where one of the number fields has a particular part.

Note that a special number field sieve [JP13] has been designed for both medium
and high characteristic. It concerns all finite fields that have a sparse representation
of their characteristic, and can be applied, so, to some finite fields coming from
pairing-based constructions.

4.2.2 Small Characteristic

For a finite field with small characteristic, namely, a field Fpn where the character-
istic can be written as p D Lpn.l; c/ with l 6 1=3, Joux and Lercier presented
the same year an adaptation of the FFS that also had a complexity in Lpn.1=3/.
It was an adaptation of the FFS as introduced by Adleman in 1993. Since the
beginning of 2013 a lot of things have changed for those fields with small (or
extremely small) characteristics. From Lpn.1=3/ the complexity of the DLP has
dropped to Lpn.1=4C o.1// [Jou13b], and finally to a heuristic quasi-polynomial
algorithm [BGJT13].

Surprisingly, several of these improvements work by falsifying the standard
heuristic assumptions used in older algorithms. The first of these improvements
published in [Jou13a] showed that the 2006 version of the FFS from [JL06] can
be modified in a surprising way to improve its complexity. The basic idea is to
slightly change how finite fields are defined and ends in a situation where the search
for one smooth polynomial on the left-hand side of a relation can be amortized by
constructing many possible right-hand sides from a single initial polynomial on the
left. In the specific case of Kummer extensions, this can be improved further. For
the first time, this new method takes advantage of the fact that the independence
assumption between polynomials for the smoothness property does not hold in this
context. This improvement especially focused on fields with characteristic close to
L.1=3/ or, more generally, fields containing a subfield of size L.1=3/.

The next step concerns small characteristic fields, where it is possible to go well
beyond the initial improvements. The basic idea can be viewed in two different
ways: one can either consider a family of polynomials whose splitting probability
is much higher than for random polynomials of the same degree as proposed
in [GGMZ13] or start from a polynomial that splits and use a generalized version
of the change of variable from [Jou13a] to construct many polynomials from this
starting point. This latter approach is described in [Jou13b] and combined with
a new method for computing individual logarithms; it yields a heuristic L.1=4/
algorithm. From an asymptotic point of view, this can be improved to a heuristic
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quasi-polynomial algorithm using another strategy for computing individual loga-
rithms [BGJT13].

Note that these recent algorithms remain heuristic. However, it requires a new
form of heuristic which is similar to but differs from the old one. Namely, whenever
a polynomial occurs, we consider its probability of smoothness to be close to that
of a random polynomial of the same degree unless there is an explicit reason that
falsifies this assumption. Of course, whenever an explicit reason appears, by design,
it largely increases the splitting probability. One of the main lines of research in
small characteristic is now to try to build a heuristic-free algorithm. A first step has
been done in this direction in [GKZ14], removing the smoothness heuristic of the
descent phase.

5 Elliptic Curve Discrete Logarithm

Subexponential index calculus algorithms have been developed for a variety of
DLPs. The one notable exception, where in general we still do not have algorithms
better than those for the generic problem, is for elliptic curve discrete logarithms.

Most of the recent progress in discrete logarithm algorithms has come from
developments in the index calculus method through exploitation of algebraic
properties of finite fields. Unfortunately, this approach is in general not applicable to
elliptic curve discrete logarithms. For elliptic curves, there exist some direct discrete
logarithms algorithms that work for specific classes of curves and some indirect
approaches that transfer the problem to finite fields [MOV93, FR94] or to higher
genus curves [GHS02].

In general, the best known discrete logarithm algorithms for elliptic curves have
exponential time complexities. However, this is not the case for higher genus curves,
for which there exists index calculus algorithm. Moreover, some specific families of
elliptic curves are also vulnerable to index calculus.

5.1 High Genus Curves

A very important result concerning curves of genus at least 3 introduced
in [GTTD07] is that there exists an index calculus algorithm that applies to
hyperelliptic curves of genus g � 3 defined over Fq and computes discrete
logarithms in time QO.q2�2=g/. This outperforms generic algorithms whose
complexity in this case is QO.qg=2/.

Note that there are similar results concerning non-hyperelliptic curves; for
example, see [EGT11, DK13].
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5.2 Elliptic Curves over Extension Fields

Where elliptic curves over extension fields are concerned, there are two main
approaches: cover (or Weil descent) attacks and decomposition attacks. In addition,
for some good configurations, it is possible to combine the two approaches into an
even more efficient algorithm [JV12].

5.2.1 Weil Descent

This approach introduced in [GHS02] aims at transporting the DLP from an elliptic
curve defined over an extension field to a higher genus curve defined over a smaller
field. If the genus of the target curve is not too large, this can lead to an efficient
discrete logarithm algorithm.

5.2.2 Decomposition

The basic idea of the decomposition method [Sem04] is to find relations between
the smoothness basis elements by using the nth Semaev’s summation polynomial to
model the fact that n points on the curve sum to zero. Due to the symmetry of this
polynomial, it is possible to reduce its degree by expressing everything in terms of
the elementary symmetric polynomials in the abscissa of the solution points. Over
an extension field of degree close to n above the base field, choosing the smoothness
basis to be made of points with abscissa in the base field, it is possible to rewrite
Semaev’s polynomial as a polynomial system over the base field.

When the extension degree is much larger and cannot be decomposed into a
favorable tower of extension, the situation is less clear. The typical case considered
in [FPPR12, PQ12] is to take an elliptic curve over F2p , where p is prime. The
main difficulty is that contrary to the previous setting, none of the natural choices of
smoothness basis are preserved when considering the symmetric polynomials in the
abscissa. As a direct consequence, it is no longer possible to easily reduce the degree
of Semaev’s polynomial, which makes the asymptotic behavior of the method much
harder to predict.

6 The Future

To date, the status of the DLP is quickly evolving. As a consequence, trying to
predict future changes is extremely difficult. For this reason, we only sketch out the
main open problems and give a small list of possible progress.

The most dangerous and notable risk for the DLP in general, which also applies
to integer factorization, is the possibility of large-scale general purpose quantum
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computers. If such machines were to become available, the Shor algorithm would
completely break these two hard problems. However, at the present time, it is unclear
whether such machines will become available in the foreseeable future.

Concerning discrete logarithms in finite fields, several avenues for progress
are open. First, in small characteristic, the present quasi-polynomial algorithm
could be improved in many directions, with the removal of heuristic hypotheses,
the improvement of the exponent in the polynomial part of the complexity, and
the search for a polynomial time algorithm. In larger characteristic, the methods
that have been recently discovered cannot be applied directly. Moreover, these
methods deeply rely on specific properties of polynomials which do not seem readily
adaptable to numbers. Yet, the L.1=3/ complexity no longer seems to be a natural
bound, and one could possibly expect progress for the NFS in this range, stemming
from totally new ideas. There is also a possibility for such eventual progress to
improve the complexity of factoring.

The most difficult challenge for discrete logarithms is probably the search for a
subexponential algorithm that would apply to general elliptic curves defined over
large characteristic fields. However, even finding new index calculus algorithms to
cover additional special cases of curves is already a very challenging and fascinating
problem in this field of research.
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Isogenies in Theory and Praxis

Gerhard Frey

Abstract We want to give an overview on arithmetical aspects of abelian varieties
and their torsion structures, isogenies, and resulting Galois representations. This is a
wide and deep territory with a huge amount of research activity and exciting results
ranging from the highlights of pure mathematics like the proof of Fermat’s last
theorem to stunning applications to public-key cryptography. Necessarily we have
to be rather superficial, and thus specialists in the different aspects of the topics may
be disappointed. But I hope that for many, and in particular for young researchers,
the chapter may serve as an appetizer and will raise interest for a fascinating area
of mathematics with many open problems (some are very hard and worth a Fields
Medal but others are rather accessible).

The first section of the chapter gives basic notions, definitions, and properties of
abelian varieties. Disguised as examples one will find their theory over the complex
numbers C and the special case of elliptic curves. The second section discusses the
situation over finite fields, in particular the role of the Frobenius endomorphism, and
over number fields where the most interesting results and challenging conjectures
occur. Finally we discuss algorithmic aspects of isogenies, mostly of elliptic curves,
and relations to cryptography.

1 General Theory

We begin by explaining the background of the subjects we shall discuss in the
chapter. Instead of citing a large number of original papers, we mostly refer to
the handbook [ACF] where the reader can find all relevant items mentioned below
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discussed on different levels of abstraction and with an extensive bibliography
helping to go deeper to details in his/her favorite subjects. The second standard
reference will be [M1] where the background for abelian varieties is explained.

1.1 Abelian Varieties

1.1.1 Notations and Definitions

In the whole chapter K denotes a field with char.K/ D p � 0, and overfields
containingK are denoted by L.
Ks is a fixed separable closure of K .
The absolute Galois groupGK D AutK.Ks/ is the group of field automorphisms

of Ks that leave elements of K fixed.
GK has a natural topology as profinite group in which subgroups of finite index

form a system of neighborhoods of the unit element. It is important that GK is
compact with respect to this topology.

Affine Varieties Affine varieties Va � A
n are zero sets of ideals IVa with

coordinate ring KŒX1; : : :; Xn�=IVa and, if IVa is a prime ideal, with function field
FVa D Quot.KŒX1; : : :; Xn�=IVa /. In this case V is irreducible in the Zariski
topology and the dimension dim.Va/ of Va is the transcendental degree of FVa
overK .

Example 1 1. A
n is the affine space defined by the zero ideal in KŒX1; : : :; Xn�.

2. Take n D 2 and Ia D< f .X1;X2/ >¤ f0g. Then Va is the plane affine curve
defined by the equation

f .X1;X2/ D 0:

Its coordinate ring is KŒX1;X2�= < f .X1;X2/ >.
It is irreducible iff f .X1;X2/ is an irreducible polynomial.
In this case F.Va/ is an algebraic extension of K.Xi/ iff f .X1;X2/ is not

constant as function of Xi .

For overfieldsL of K define

Va.L/ D fx D .x1; : : :; xn/ 2 LnI f .x/ D 08f 2 IVag:

So A
n.L/ D Ln.

A morphism � is a polynomial map from Va to an affine varietyWa.
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It induces a map �� of the coordinate ring of Wa to the coordinate ring of Va,
which extends to an inclusion

FWa ,! FVa

if the ideals definingWa and Va are prime ideals.

Example 2 Let Va be an irreducible plane affine curve. Take Wa D A
1, �.X1/ D

X1, �.X2/ D 0.
Then � is the projection of Va to the line X2 D 0.
Assume that � is not the constant map. Then �� induces the natural injection

K.X1/ � K.X1;X2/:
Projective Varieties The next important step is to define projective varieties.
Recall that a polynomial F.Y0; : : :; Yn/ is homogenous of degree d iff every
monomial occurring in F with coefficient¤ 0 has degree d .

An ideal I ¤ KŒY0; : : :; Yn� is homogenous iff it is generated by homogenous
polynomials.

For elements y; y0 in LnC1 n f.0; 0; : : :0/g, define

y 	 y0 iff there is � 2 L� with y D � � y0:

A projective variety V defined over K is the zero set mod 	 of a homogenous
ideal IV � KŒY0; : : :; Yn� for appropriate n. The L-rational points of V are

fy D .y0; : : :; yn/ 2 LnC1If .y/ D 08f 2 IV g= 	 :

Example 3 1. The projective space P
n=K is the projective variety defined by the

zero ideal in KŒY0; : : :; Yn�. Its L-rational points are Pn.L/ D LnC1= 	 :
2. Take n D 2 and I D< F.X; Y;Z/ > where F is a homogenous polynomial of

degree d . Then V is the plane projective curve defined by the equation

F.X; Y;Z/ D 0

It is irreducible iff F is an irreducible polynomial.

Affine Covers of Projective Varieties We recall the easy observation that every
homogenous polynomial F.Y0; : : :; Yn/ can be transformed into nC 1 polynomials
fj .X/ (j D 0; : : :; n) in n variables by the transformation

tj W Yi 7! Xi WD Yi=Yj :

We remark that tj can be interpreted as rational map from P
n to A

n which is defined
and bijective when restricted to Uj consisting of points with Yj coordinates ¤ 0.
By the inverse transform, we embed A

n into P
n and so Uj is isomorphic to A

n as
affine variety. Inside of Pn it is an open subset in the Zariski topology.
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As result we get a finite open covering of Pn by nC 1 affine subspaces.

Remark 1 There are many possibilities to find such covers. But having chosen
homogenous coordinates .Y0; : : :; Yn/, the above cover is rather usual, and one
occasionally calls the projective variety U0 W Y0 D 0 “infinite hyperplane.”

Having an affine cover Uj of Pn, one can intersect it with projective varieties V
and get

V D
[

j

Vj;a with Vj;a WD V \ Uj

as union of affine varieties.
Converse process: Given a polynomial f .X1; : : :; Xn/ of degree d , we get a

homogenous polynomial f h.Y0; : : :; Yn/ of degree d by the transformation

Xi 7! Yi=Y0 for i D 1; : : :; n

and then clearing denominators.
Assume that Va is an affine variety with ideal Ia � KŒX1; : : :; Xn�. By applying

the homogenization explained above to all polynomials in Ia, we get a homogenous
ideal I ha � KŒY0; : : :; Yn� and a projective variety V with ideal I ha containing Va in
a natural way.
V is called a projective closure of Va.
A bit misleading one calls V \ U0 D V n Va “infinite points” of Va.

Example 4 Take

f .X1;X2/ D X2
2 C a1X1X2 C a3X2 � X3

1 � a2X2
1 � a4X1 � a6 with ai 2 K

and denote by Ea the corresponding affine plane curve.
Introducing the variable Y0, we define the homogenized polynomial

F.Y0; Y1; Y2/ D Y0Y 22 C a1Y0Y1Y2 C a3Y 20 Y2 � Y 31 � a2Y0Y 21 � a4Y 20 Y1 � a6Y 30 :

The corresponding plane projective curve is denoted by E .
Then EnEa consists of exactly one point P1 that is the projective class of

.0; 0; 1/.

Remark 2 Example 4 introduces an important object. If Ea has no singular points,1

then Ea is an elliptic curve given by a Weierstrass equation (see Definition 3).

1That is the tangent space of every point of Ea has dimension 1; see [ACF], Sect. 4.4.1.
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A morphism between projective varieties V and W is a map from V to W that is,
restricted to any affine piece of V , an affine morphism (i.e., a polynomial map) to
an affine piece of W .

If V is a projective variety whose ideal IV is a prime ideal, then the function field
FV of V is the function field of a non-empty affine Zariski-open part Va of V . (This
is independent of the choice of Va.)

In this case the dimension of V is the transcendental degree of FV overK .

Group Schemes For more details and proofs concerning the following notions and
results, we refer to [ACF] or [M1], Chap. III, 11.

Definition 1 A group scheme is an affine or projective variety G with a morphism

˚ W G �G ! G;

the addition law, a morphism

� W G ! G;

the inversion morphism and a unit element

e 2 G.K/;

in a more highbrow language, the zero section, satisfying the axioms of composition
in groups interpreted in the language of morphisms.

1. Associativity expressed as identity between maps from G �G �G to G:

˚ ı .˚� idG/ D ˚ ı .idG �˚/:

2. Existence of a neutral element:

˚jfeg�G D pr2.feg �G/

where pr2 is the projection to the second factor of the Cartesian product.
3. Existence of inverse elements:

˚ ı .idG � �/

is the constant map with image point e.

If the addition law is commutative, i.e., it is compatible with interchanging the
components in G �G, then G is a commutative group scheme.

We remark that for all overfieldsL ofK , we get thatG.L/ is a group; the addition
law inG.L/ is given by rational functions with coefficients inK , and so for all fields
K � L � Ks , the Galois group GL acts on G.Ks/ with G.L/ D G.Ks/

GL .
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Example 5 Define �n as affine variety with ideal generated by

Xn
1 � 1

or homogeneously by

Y n1 � Y n0 :

Define

˚ W �n � �n ! �n

by

.X1;X2/ 7! Z1 D X1 �X2:

e is the point X1 D 1 and �.X1/ WD Xn�1
1 .

The resulting group scheme is the scheme of the nth roots of unity.
For overfields L of K , one gets that G.L/ is the group of elements � in L with

�n D 1.

Here comes the key subject for the chapter:

Definition 2 An abelian variety A is an absolutely2 irreducible projective group
scheme.

Because of the importance for theory and practice, the case d D 1 deserves an extra
definition.

Definition 3 An abelian variety of dimension 1 is called elliptic curve E .

Theorem 1 Let A be an abelian variety. Then A is a commutative group scheme,
and hence, A.L/ is an abelian group.

A proof of this result can be found in [M1], Chap. 2.4.

Example 6 (Abelian varieties over C) We shall sketch the “classical” case:K D C.
For details we refer to [ACF], Section 5.1 or [M1], Chapter I.

Projective varieties are compact analytic varieties.
Let A be an abelian variety over C and denote by AC the associated analytic

variety. From the classification of compact commutative Lie groups it follows that

AC Š C
d =� with d D dim.A/

2That is, irreducible as variety over Ks.
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and

� D Z
d ˚˝Z

d

with symmetric period matrix ˝ whose imaginary part Im.˝/ is positive definite.
Hence, ˝ is an element in the Siegel upper half plane Hd . ˝ is determined up to
transformations with elements in Sp.d;Z/, the group of symplectic matrices with
determinant 1 and integral entries.

The equivalence classes of elements of Hd modulo Sp.d;Z/ form a moduli
space for abelian varieties of dimension d defined over C .

It is worthwhile to look at the special case d D 1, i.e., A is an elliptic curve E .
˝ is a 1 � 1 matrix with entry

	 2 H WD fz 2 CI Im.z/ > 0g:

	 is unique up to Möbius transformations

z 7! azC b
czC d

with elements

�
a b

c d

�
2 Sl.2;Z/. To emphasize this connection we sometimes

denote E by E	 .
To find an equation for the curve E , one uses the j -function and so defines a

one-to-one cover map from H=Sl.2=Z/ to the affine line.

This very explicit theory provokes the question:
Can one find algebraic versions of period matrixes to define explicit moduli

spaces for abelian varieties?
For d D 1 we have the very satisfying algebraic theory of elliptic curves that

will be discussed below.
Much more difficult is the situation for d > 1.
The first groundbreaking step was done in a series of three celebrated papers of

Mumford [M2] where he “translated” the classical theory of theta functions into
an algebraic frame and introduced theta groups and used theta null points to define
points corresponding to abelian varieties (with level structure) on the moduli space.

From the computational point of view, this representation is not optimal since the
degree of the defining equations and the number of variables is large. An enormous
step forward is done by recent work of Lubicz, Robert, Faugère, Gaudry and others
and can be found in the beautiful paper [LR].

It opens a wide area for computational research, and so we encourage to go
deeper to the (partly solved)
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Open Problem 1 Find fast algorithms to compute moduli points for given3 abelian
varieties over finite or p-adic fields, and conversely, attach to moduli points the
corresponding abelian varieties with addition law as explicit and efficient as
possible.

1.2 Homomorphisms of Group Schemes

Let G1;G2 be group schemes defined overK .

Definition 4 1. A morphism

� W G1 ! G2

is a homomorphism iff it is compatible with the addition laws in Gi , i.e.,

˚G2 ı .� � �/ D � ı ˚G1 :

In particular, � induces a group homomorphism from G1.L/ to G2.L/ that is
given by rational functions defined overK and hence compatible with the action
of GK on points overKs .

The set of homomorphism from G1 to G2 defined over K is denoted by
HomK.G1;G2/.

2. The kernel ker� is the scheme-theoretical inverse image of the zero section of
G2 under �.

It is a subgroup scheme of G1.
ItsKs-rational points are theKs-rational points ofG1 mapped under � to eG2 .

3. � 2 HomK.G1;G2/ is an isogeny iff:

(a) ker.�/ is a finite group scheme.
(b) The image under � of the connected component of the unit element of G0

1

of G1 in the Zariski topology has the same dimension as the connected
component of the unit element of G2. For instance, if G1 and G2 are
irreducible, then dim.G1/ D dim.G2/.

1.2.1 Isogenies of Abelian Varieties

Let A;B be abelian varieties.
First we note a remarkable “rigidity property” of abelian varieties.

3For example, by homogenous equations.
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Theorem 2 A morphism

� W A! B

is a homomorphism iff �.0A/ D 0B .

The proof can be found in [M1], Chapter II, Corollary 1.
Now assume that � 2 HomK.A;B/ is an isogeny.
By definition ker.�/ is a finite group scheme and dimA D dimB . So � induces

an embedding �� of finite index of the function field FB into FA.
The degree of � is ŒFA W ��.FB/�, its separable degree is ŒFA W ��.FB/�sep.
� is separable if its degree is equal to its separable degree, and this is so iff ker.�/

is an étale group scheme.
In this case

j ker.�/.Ks/j D deg.�/

and ker.�/.Ks/ is a GK -module that determines � uniquely.

Example 7 Take n 2 N and A D B . Define the map Œn� as n � 1-fold composition
of˚A.

Then Œn� is an isogeny that maps A to A and hence is an isogeny in EndK.A/ WD
HomK.A;A/:

The kernel of [n] is denoted by AŒn� and its points are called n-torsion points.
Œn� is separable iff n is prime to char.K/ D p.
The separable degree of Œp� is pk with 0 � k � dimK.A/. k is the p-rank of A

and A is ordinary iff k D dimK.A/.

Scalar Multiplication We assume that A is an abelian variety of positive dimen-
sion.

For negative integers z, define Œz� D �AŒ�z� and denote by Œ0� the constant map
with image eA. One checks very easily that these definitions yield an injection of
Z into EndK.A/. We mention without proof that one knows more: For “generic”
abelian varieties we get that EndK.A/ D Z, and abelian varieties for which this
equality does not hold have usually interesting properties (see Example 8 below for
elliptic curves).

The induced operation of Z on A is called scalar multiplication and is very
important both for theoretical and practical applications. Hence, there is much work
invested in order to develop fast algorithms to evaluate Œn�.

A prominent example is to expand n dyadically and then use addition and
doubling (i.e., evaluation of Œ2�) to get an algorithm of complexity polynomially
in log.n/. But there are many more refined ways applicable in generic or specific
situations (e.g., using fast inversion, “dividing” by 2, using Œ3�, and using the
Montgomery ladder). Though a lot of work is done and there is a vast literature (see,
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for instance [ACF], Chapter 9), there is still room for faster algorithms in special
situations. This is an interesting research area and motivates to formulate an

Open Problem 2 Try to find optimal algorithms for scalar multiplication in inter-
esting instances.

Remark 3 Isogenies of abelian varieties are “quasi-isomorphisms”:
to � W A ! B there exists an isogeny 
 W B ! A such that 
 ı � D Œdeg.�/�.
Hence, to be isogenous defines an equivalence relation defining isogeny classes of
abelian varieties.

Example 8 We continue the discussion given in Example 6 and assume that A;B
are abelian varieties over C of dimension dA and dB with lattices �A and �B .

Homomorphisms from A to B correspond to homomorphisms of the attached
compact Lie algebras and hence are given by linear maps:

˛ W CdA ! C
dB

with the additional property that

˛.�A/ � �B:

As a consequence we get that, up to isomorphisms, the isogenies from an abelian
variety A correspond to sublattices �B of rank dA of �A, and the degrees of the
isogenies are equal to the indices of the sublattices in �A.

In particular, the degree of Œn� is n2 dim.A/.
As application we determine the endomorphisms of elliptic curves E	 given by

the lattice Z˚ 	Z with 	 2 H. We look for isogenies � attached to ˛ 2 C such that
˛ D �1 C �2	 and ˛ � 	 D �1 C �2	 with �i ; �i 2 Z. Hence,

�2	
2 C .�1 � �2/	 � �1 D 0

and so we get that either �2 D 0 and so � D Œ�1� or 	 satisfies a quadratic
polynomial over Q and all isogenies ofE	 are given by elements ˛ in the imaginary
quadratic field Q.	/.

A closer look (see [De]) using more properties of elliptic curves shows that 	 is
an algebraic integer and that the isogenies of E	 form an order4 O	 in Q.	/.

It follows

Theorem 3 The ring of endomorphism of elliptic curves E over fields of charac-
teristic 0 is either equal to Z (generic case) or equal to an order in an imaginary
quadratic field. In the second case, the period 	 of E (interpreted in an obvious
way over C) is an integer in an imaginary quadratic field, and E has complex
multiplication (or is a CM curve).

4See Definition 2.81 in [ACF] or any textbook on algebraic number theory.
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In particular, the ring of endomorphisms of an elliptic curves defined over a field
of characteristic 0 is commutative.

Isogenies of Elliptic Curves and Modular Curves Let E be an elliptic curve
defined overK .

A separable isogeny ofE can be composed by a cyclic isogeny � ofE of degree n
(i.e., ker.�/.Ks/ is aGK - invariant cyclic subgroup of order n inEŒn�.Ks/) followed
by a scalar multiplication.

Turning things round we look, for n prime to p, for the functor that associates to
overfields L of K all pairs

f.E;Cn/=LI Cn E elliptic curve over L; Cn � E.Ks/ cyclic of order n; GL-invariantg= 	

where	 denotes equivalence modulo isomorphisms of pairs.
This functor defines a moduli problem (over K) that has for K D C a

geometric presentation. That means that there is a curve over C such that its points
parameterize the above-described pairs for K D C. The necessary ingredients for
the construction of this curve are contained in Examples 6 and 8.

To be explicit, define

Y0.N /C D H=�0.n/

with

�0.n/ D
��

a b

c d

�
2 Sl.2;Z/ c � 0 mod n

�
:

This is an affine curve with a natural cover map to the affine line H=Sl.2;Z/
parameterizing isomorphy classes of elliptic curves over C . Since isogenies of
degree n of elliptic curves correspond to inclusions of lattices with index n, it
follows that the points onX0.N /.C/ parameterize isomorphy classes of pairs .E; �/
of elliptic curves E with cyclic isogenies � of degree N over C.

By general principles this yields the existence of the modular curve

Y0.n/ defined over ZŒ1=n�

with Y0.N / isomorphic to Y0.N /C over C with the property that elements in
Y0.n/.K/ correspond to elliptic curves with cyclic isogenies of degree n.5

Y0.n/ and its projective completion X0.n/ (obtained by adding “cusps”) is
explicitly known and very well understood. It has a rich structure (keywords: Hecke
operators and modular forms) that is responsible for deep connections with number
theory, and we shall see below how the determination of rational points on modular

5Caution for specialists: because of the existence of twists, Y0 is only a coarse moduli space.
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curves leads to very interesting diophantine results and conjectures and hence to
(deep and difficult) open problems.

We go back to the general situation and assume that A;B are abelian varieties
over K . In the context of isogenies, natural questions arise, which we formulate as
Tasks:

1. Decide whether A and B are isogenous,
2. If A is isogenous to B , find an isogeny (of low degree).
3. Compute explicitly the imageB of a given isogeny ofAwhen its kernel is known.
4. Compute explicitly the isogeny map from A to B if the kernel of the isogeny is

known.

For elliptic curves a lot is known to solve these tasks (see [Le]). Nevertheless
algorithmic problems are still open and challenging. We shall come back to this
below.

The situation is much more difficult and unclear for higher dimensional abelian
varieties. Here a big step forward (in particular for task 3) is made in [LR] and
[FLR]. But many questions remain widely open if one asks the questions in this
generality. For special cases the situation may be much better. As example see [S]
or [FK2]. So it is a challenging

Open Problem 3 Find interesting instances for which the tasks formulated above
can be solved at least partly.

1.2.2 `-Adic and Galois Representations

The main reference for this subsection is [M1], Chapter IV. The facts with examples
but mostly without proof can be found in [ACF].

Let as usualA be an abelian variety of dimension d and take n 2 N. In the whole
subsection, we assume that n is prime to char.K/.

We shall study AŒn� and derived objects.
For K D C, it follows from Example 6 that as abelian groups

AŒn� Š .Z=n/2d :

By general arguments like Lefschetz principle and Hensel’s lemma, we get that this
is true in general:

AŒn�.Ks/ Š .Z=n/2d :

GK acts on AŒn� and so yields a representation

A;n W GK ! Aut..Z=n/2d /

or, after a choice of a base in AŒn�,
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A;n W GK ! Gl.2d;Z=n/:

Take a prime ` ¤ p and n D `k and use the natural maps

Œ`� W AŒlkC1�! AŒ`k�

to define the projective limit

T`.A/ WD lim �kAŒ`
k�;

the `-adic Tate module of A.
It follows that T`.A/ Š .Z`/

2d and that V`.A/ WD T`.A/ ˝ Q` is a Q`-vector
space of dimension 2d .6

GK operates on T`.A/. This action induces a Z`-adic representation attached to
A given by the projective limit

lim �kA;`k :

By tensorizing with Q`, we get the `-adic representation

QA;`;

a representation of dimension 2d of GK over the `-adic numbers Q` with represen-
tation space V`.A/.

A quite similar construction can be made with homomorphisms

� W A! B W

By restricting � to AŒlk�, we get homomorphisms

�`k W AŒ`k�! BŒ`k�

and so as projective limit an T`- homomorphism

e�` W T`.A/! T`.B/;

which has a finite co-kernel if � is an isogeny, and by tensorizing with Q`, we get an
homomorphism between V`.A/ and V`.B/, also denoted by e�`. It is easily seen that
for isogenies �, the map e�` restricted to T`.A/ is injective, and it is an isomorphism
between V`.A/ and V`.B/.

6
Z` is the ring of l-adic integers and Q` the field of `-adic numbers (see [ACF]).
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We have a natural homomorphism from HomK.A;B/ into HomGK .T`.A/;

T`.B//.
Taking A D B , we get an injective representation from EndK.A/ into

EndGK .T`.A//, the group of endomorphisms of the Z`-module T`.A/ that commute
with the action of GK . This representation is called the `-adic representation of
endomorphisms of A.

Remark 4 The Tate modules (and their p-adic counterpart, the Dieudonné mod-
ule, which we do not discuss here) and the embedding of HomK.A;B/ into
HomGK .T`.A/; T`.B// play a key role for the study of abelian varieties, and they
give a lot of information about the absolute Galois group of K (see [T] and [Fa]).
They are the counterparts in the étale cohomology of the lattices in the complex
theory.

Application: Endomorphisms of Elliptic Curves Every endomorphism � ¤ 0 of
E is an isogeny, and so EndK.E/

N
Q is a skewfield.

The action of EndK.E/ on the `-adic Tate module of E induces an injection of
EndK.E/ into Gl.2;Z`/:

From algebra it follows that EndK.E/
N

Q is equal to Q, a quadratic field or
a quaternion field. This information and some more ingredients from the theory of
elliptic curves allow us to characterize EndK.E/.

Case in which E cannot be defined over an absolute algebraic field (i.e., its
absolute invariant jE (see Example 4) is transcendental over its prime field): we get
that EndK.E/ D Z.

Case of number fields: We have seen already that over fields K of characteristic
0, the ring EndK.E/ is commutative, and so quaternion fields are excluded.

Generically it is equal to Z; in special cases we have complex multiplication
(CM) and EndK.E/ is an order in an imaginary quadratic field (see Example 8).

Case of finite fields: Over finite fields the generic case is the CM-case. In this
case the elliptic curve E is ordinary, i.e., EŒp�.Ks/ Š Z=p (see 1.2.1).

If Œp� is purely inseparable, then EndK.E/ is an order in a well-determined
quaternion algebra and E is called supersingular. Supersingular elliptic curves are
(up to twists) defined over Fp2 and isogenous to each other.

1.3 Jacobian Varieties

Till now abelian varieties occurred in a rather abstract way, and in spite of the work
of Mumford and Lubicz–Robert, it is difficult and often too complicated to find
explicit equations and addition laws.

The situation is much better for an important subclass of abelian varieties, which
historically came first (already in the nineteenth century) and which motivated A.
Weil to define abelian varieties: Jacobian varieties attached to curves.
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Let C be a projective non-singular curve 7 of genus g over K (see [ACF],
Definition 4.107) with divisor group

D.Ks/ WD fD D
X

P2C.Ks/
zP � P I zP 2 Z and almost all zP D 0g:

The subgroup of divisors of degree 0 is

D.Ks/
0 WD fDI

X
zP D 0g:

The Galois groupGK acts by linear extension in a natural way on D.Ks/. For K �
L � Ks , define

D.L/0 D .D.Ks/
0/GL :

Examples for divisors of degree 0 are principal divisors: 0 ¤ f 2 FC � Ks has the
principal divisor

.f / D
X

zPP where zP is the order of vanishing of f in P:8

Obviously the set of principal divisors form a subgroup P of D.Ks/
0. Define

P.L/ WDP \D.L/0

and

Pic0C .L/ WD D.L/0=P.L/;

the L-rational divisor class group of degree 0 of C .

Theorem 4 (Abel–Jacobi) The functor

L 7! Pic0C .L/

is representable by an abelian variety of dimension g, the Jacobian variety JC , i.e.,
in a functorial way we have

JC .L/ D Pic0C .L/:

7The tangent space of every point of C has dimension 1, see [ACF], Sect. 4.4.1
8Poles give rise to negative “order of vanishing”.
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The theorem of Riemann–Roch ([ACF], Theorem 4.106) yields the following:

JC is birationally equivalent to Cg=Sg

where Sg is the symmetric group of g letters acting on the g-fold Cartesian product
of C by permuting the factors.

Hence, the addition on Jacobian varieties is reduced to the addition of divisor classes
of curves, and the theorem of Riemann–Roch tells that there are distinguished
representatives, namely, positive divisors of degree � g. It follows that addition
of classes is possible if one can find for divisors of degree� gC 1 positive divisors
in the same class but of degree � g.

Example 9 (Elliptic Curves as Jacobians) Assume that C is a projective regular
curve of genus 1 with a K-rational point P1.

By the theorem of Riemann–Roch one gets the following: everyL-rational divisor
class c of degree 0 of E contains exactly one point P 2 C.L/ with

P � P1 2 c:

The map

JC .L/! C

c 7! P

is an explicit isomorphism from JC .L/ to C.L/.
Hence, C is an elliptic curve and C.L/ is an abelian group.

Weierstrass Equation The theorem of Riemann–Roch yields the following: we
find a Weierstrass equation for E in the projective plane (see Example 4), and if
p ¤ 2; 3,9 we can normalize to get

E W Y 2Z D X3 C aXZ2 C bZ3

with

�E D �16.4a3 C 27b2/ ¤ 0:
We refind the j -invariant that was classically defined as meromorphic function on
H: For a D 0, set jE D 0; for b D 0 set jE D 123; and for ab ¤ 0, define

jE D 123�4a
3

�E

:

9For pj6, see [ACF] 13.1.1 and 13.3.
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We remark that jE determines E up to twists and that to every j 2 K we find E
with jE D j (see [ACF], 18.1.1). E has exactly one point with Z D 0. Choosing
this point as P1 D .0; 1; 0/, we can describe the addition in coordinates and get the
well-known addition formulas.

There is a vast literature in this area (see, for instance, [ACF] and many publications,
e.g., by D. Bernstein and T. Lange), but nevertheless it is till nowadays not
impossible to do even better, and so we formulate a (minor)

Open Problem 4 Find optimal equations and algorithms for scalar multiplication
for elliptic curves over given fields Fq (depending on the structure of Fq and the
architecture of the used computer maybe).

2 Abelian Varieties over Special Fields

2.1 K D Fq

In this subsection we take K D Fq , the field with q D pd elements, and denote by
Fp;1 its algebraic closure.

The Frobenius automorphism �p of Fp;1 is defined by

x 7! �p.x/ WD xp:

�q D �dp is a topological generator of the absolute Galois group GFq of Fq .

2.1.1 The Frobenius Isogenie

We attach to the Galois element �q a geometric object by extending its operation
to points in P

n.Fp;1/.
This yields a homogenous polynomial map

.X0; : : : ; Xn/ 7! .X
q
0 ; : : : X

q
n /

and so the Galois element induces morphisms of varieties V over Fq which, by
abuse of notation, we also denote by �q .

We assume that V is irreducible. Going to affine pieces and choosing affine
coordinatesX1; : : :; Xn, one easily see that

��q .V /

is the subfield of FV generated by X
q
1 ; : : :; X

q
n and so FV =�

�
q .V / is purely

inseparable of degree qdim.V /:
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The Frobenius morphism �q is compatible with polynomials with coefficients in
K and so with the addition on abelian varieties A over Fq . Hence, �q is a purely
inseparable isogeny of degree qdim.A/ called Frobenius endomorphism.

Since

�q 2 EndFq .A/ n Z � idA ¤ ;;

we get that EndFq .A/ has elements different from scalar multiplications.

The Characteristic Polynomial of the Frobenius Endomorphism Since GFq is
topologically generated by �q , it follows that the representations A;n, respectively
QA;` of abelian varieties A, are determined by A;n.�q/ respectively QA;`.�q/.

A fundamental result of Tate [T] is that QA;` is a semi-simple representation, i.e.,
it is determined by its characteristic polynomial

�.T /. QA;`.�q//:

We vary the primes ` (always¤ p) and get a globalization that is due to A. Weil:

Theorem 5 �.T /. QA;`.�q// 2 ZŒT � is a monic polynomial �A;q.T / of degree
2 dim.A/ independent of `, and for all n 2 N

�A;q.T / � �.T /.A;n.�q// mod n:

It follows that �A;q.�q/.A/ D f0Ag.
This theorem justifies the statement that �A;q.T / is the characteristic polynomial on
A of �q .

Point Counting Here comes one of the most important applications of the
Frobenius endomorphism.

Since A.Fp;1/GFq D A.Fq/ and since �q � idA is a separable isogeny, it follows
from

A.Fq/ D ker.�q � idA/

Theorem 6

j A.Fq/j D �A;q.1/:

Hence a strategy to determine j A.Fq/j is to compute �A;q.T /.
The deep basic result for these computations is due to Hasse (d D 1) and Weil

(“Riemann hypothesis for curves”):

Theorem 7 The eigenvalues of �q are complex integers with absolute value equal
to q1=2.
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Hence, j A.Fq/j D qdim.A/ C O.qdim.A/�1=2/:

An immediate consequence is that the i th coefficient of �A;q.T / is an integer with

absolute value bounded by

�
2 dim.A/

i

�
q.2 dim.A/�i /=2 ([ACF], Corollary 5.8.2).

Hence, to determine �A;q.T / is enough to compute an approximation of sufficient
precision.

Example 10 For elliptic curves E defined over Fq , we have

j j .E.Fq/ j C1 � q j� 2 � q1=2:

2.1.2 The Isogeny Theorem over Finite Fields

Finally we stress the importance of the Frobenius isogenies by the following result
of Tate [T]:

Theorem 8 Let A;B be abelian varieties defined over Fq with Tate modules T`.A/
and T`.B/.

(i) A is isogenous to B iff for one ` ¤ p, the Galois module T`.A/
N

Q is
isomorphic to T`.B/

N
Q.

(ii) A is isogenous to B iff the characteristic polynomials of the Frobenius
endomorphisms on A and B are equal.

We remark that this result “reduces” Task 1 in Sect. 1.2.1 to the computation of the
characteristic polynomial of abelian varieties. We shall see in Sect. 3.2 how one can
attack this task. Because of its importance, we formulate it already here as one major

Open Problem 5 Find fast algorithms to compute for abelian varieties A defined
over Fq the characteristic polynomial of the Frobenius endomorphism.

2.2 Abelian Varieties over Number Fields

We look at the mathematically most interesting case: the field K is a number field,
i.e., a finite algebraic overfield of Q. The exciting task is to relate arithmetical
properties of these fields with diophantine properties of geometric objects, and it
turned out that abelian varieties are a very useful tool for this.

We begin with a by now classical result of Serre [Se1].

Theorem 9 Assume that the elliptic curveE overK has no complex multiplication.
There is a number nE such that for all primes ` > nE , we have

E;`.GK/ D Gl.2;Z=`/:
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In particular E has only finitely many K-rational cyclic isogenies.

How can one determine nE for given E?
What are the exceptions?

Open Problem 6 (Conjecture Due to J.P. Serre) Can one find n0 depending only
on K such that for all E (outside a finite exceptional set) nE D n0?
Remark For K D Q and elliptic curves one knows more: Mazur has determined
a list of all isogenies of all elliptic curve and exceptional small images of E;n are
understood (up to the non-split Cartan case).

For general number fieldsK , the order of rational torsion points of elliptic curves
over E can be bounded by an estimate depending on the degree of K over Q only
(theorem of Merel and Parent).

Open Problem 7 Can one generalize Theorem 9 to abelian varieties of dimension
� 2?, For example, is it true for abelian varieties with EndK.A/ D Z that for almost
all rational primes `, the image of A;` contains GSp.2 dim.A/;Z=`/, the symplectic
group of dimension 2 dim.A/ over Z=`?

All results obtained in this direction rely on work of Serre [Se2]. Interesting progress
is made by Hall in [Ha].

2.2.1 Local-Global Methods

How can one prove results like Theorem 9? Besides the specific properties of the
investigated objects, one looks at the arithmetical structure of number fields given
by a system of valuations with well-known completions.

To be concrete take K D Q.
First, we have the absolute value j j (an archimedean valuation) with completion

R and algebraic closure C.
Next we have the ring of integers Z with prime ideals p � Z which give rise to

non-archimedean p-adic valuations wp with

wp.x/ D maximal power of p dividing x;

completion Qp, its algebraic closure Qp;s with absolute Galois groups Gp , and
residue field Fp . It is crucial that Gp can be identified (uniquely up to conjugation)
with a subgroup of GQ, the decomposition group of an extension of wp to Qs .

For general K , replace j j by metrics induced by embeddings of K in C, Z by
its integral closure OK in K and wp by valuations attached to prime ideals p of OK
containing p.

Diophantine objects over K can be interpreted over the completions (localiza-
tion) or modulo p (reduction).

This relates diophantine problems over finite fields, C, p-adic fields, and number
fields.
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The aim is to get local-global information (going in both direction).
Here is a first prominent example.

2.2.2 CM Theory

We use an embedding of K in C and look at elliptic curves E overK as

E D C=.ZC 	Z/:

We recall that E has complex multiplication if 	 is an algebraic integer generating
an imaginary quadratic fieldKE WD Q.	/ and then EndC .E/ is an orderOE 2 OKE .

Class field theory tells more:
The C-isomorphy classes of elliptic curvesE 0 isogenous toE correspond one-to-

one to the ideal classes of ordersOE in OKE , the absolute invariant of E 0 generates
the ring class fields HE of OE , and E;n.GHE / is an abelian group and so not
containing Sl.2;Z=n/:

From number theory we know that for given n, there are only finitely many orders
in imaginary quadratic fields with class number � n, and so there are, up to twists,
only finitely many elliptic curves with CM defined over K( hence, only finitely
many twist classes of elliptic curves are excluded in Theorem 9).

The relation of elliptic curves with CM over number fields to elliptic curves over
finite fields is given by a central result, Deuring’s lifting theorem.

Theorem 10 Let E be an ordinary elliptic curve over Fq . There is an elliptic curve
QE defined over a number field K and a prime ideal p of OK such that QE mod p D
E and End. QE/ D End.E/.

Hence End.E/ is an order in an imaginary quadratic field K QE and the Frobenius
endomorphism �q corresponds to an imaginary quadratic algebraic integer with
norm q. The discriminant of its characteristic polynomial �E;q.T / D .T �
�1/.T � �2/ is negative and so �1�2 D q and trace.�q/2 � 4q < 0. But then
.jE.Fq/j � q � 1//2 � 4q D trace.�q/2 � 4q < 0.

So we get a proof (due to Deuring–Hasse) of the “Riemann hypothesis for elliptic
curves” (Theorem 7):

jjE.Fq/j � q � 1/j < 2pq:

Due to Shimura–Taniyama there is a beautiful generalization of CM theory to
abelian varieties of higher dimension replacing imaginary quadratic fields by CM-
fields of larger degree. For abelian varieties of dimension 2 and 3 this is explained
in [ACF], Chapter 18.

Open Problem 8 Generalize the algorithmic aspects of CM from elliptic curves to
Jacobians of curves of small genus.
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Remark 5 For curves of genus 2 and 3, part of the work is done in the theses of A.
Spallek and A. Weng.

2.2.3 Local-Global Principles for Galois Representations

We go deeper into the arithmetic of number fieldsK .
Let p be a prime of K , L a Galois extension of K and Qp a prime in OL that

contains p with residue field Fq . Assume that p is unramified in L=K .10

A Frobenius automorphism �p is an element in G.L=K/ that is continuous
with respect to the Qp-adic metric and which acts modulo Qp like �q .

We remark that �p is determined by p (only) up to conjugation.
Let V be a finite dimensional vector space over C or over a finite field Fq or over

an `-adic field. We endow V with either the discrete topology (K D C or K D Fq)
or the `-adic topology. Let

 W GK ! Aut.V /

be a continuous representation, which is semi-simple, i.e.,  is determined by the
characteristic polynomials of the images under . We assume in addition that
K

ker./
s =K is unramified outside of a finite set S of primes.

Theorem 11 (Density Theorem of Čebotarev)  is uniquely determined by

.�..�p//.T //p…S prime of OK :

This theorem is the reason for the deep relations between Galois theory and
arithmetic.

Remark 6 There is a constructive version of Theorem 11: given two representations

i W GK ! Aut.V /I i D 1; 2

with Kker.1/
s D Kker.2/

s there is a number n depending on arithmetical invariants of
i like the discriminant of Kker.i /

s such that

1 Š 2;

iff

�.1.�p//.T / D �.2.�p//.T / for all p with Norm.p/ � n:

10That is, the normalized valuation attached to Qp is a continuation of the one attached to p:
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This result makes identification of Galois representation effective. Unfortunately,
the bound n tends to be very large (even under the assumption of the generalized
Riemann hypothesis GHR [Oe]), and so the result can only very rarely be used for
computational investigations. But there are situations where one can do better, for
instance, if one knows that the representations are related to modular forms [R].

Open Problem 9 Find (or conjecture) effective versions of Theorem 11 in special
but interesting instances.

2.2.4 The Theorem of Faltings

Let A be an abelian variety defined over a number field.

Theorem 12 QA;` is semi-simple.

This is an extremely deep theorem obtained by Faltings in the celebrated paper [Fa].
Among others, it implies Mordell conjecture:

Curves of genus > 1 have only finitely many K -rational points
On the way to his result Faltings proved

Theorem 13 (Isogeny Theorem) Abelian varieties A and B are isogenous iff for
one prime `

QA;` Š QB;`:

In fact Faltings proved that for givenA;B there is a number n.A;B/ such that A
is isogenous to B iff for one n > n.A;B/

A;n Š B;n:

Warning: The following problem is difficult and is closely related to Open Prob-
lem 9.

Open Problem 10 Give reasonable estimates for n.A;B/ in terms of the conduc-
tors of A;B . Hint:Look at the work of Masser–Wüstholz.

2.2.5 Conjectures for Elliptic Curves

To show how deeply Galois representations and diophantine problem are related,
we go to elliptic curves over number fields and formulate really challenging OPEN
PROBLEMS, which, because of their importance and difficulty, are called

CONJECTURES:
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They can be found in [FK1]. They express that, up to some exceptions, only
isogenous elliptic curves should have groups of torsion points that are isomorphic
as Galois modules.

Conjecture 1 (Darmon) There is a number n0.K/ such that for all elliptic curves
E , E 0 overK and all n � n0.K/ we get

If E;n Š E0 ;n then E is isogenous to E 0:

A variant of this conjecture is

Conjecture 2 (Kani) There is a number n0 (independent of K) such that for n �
n0 there are, up to twist pairs, only finitely many pairs .E;E 0/ of elliptic curves
defined over K which are not isogenous and with E;n Š E0 ;n.

For prime numbers n, we can choose n0 D 23.

Much easier but also not proved is

Conjecture 3 (Frey) We fix an elliptic curve E0=K .
There is a number n0.E0;K/ such that for all elliptic curves E over K and all

n � n0.E0;K/ we get

If E;n Š E0;n then E is isogenous to E0:

We remark that this conjecture can be formulated in a much more general way
([Fr1], Conjecture 5), which is proved if we replace number fields by function fields
in one variable.

We mention amazing consequences of this conjecture:
It implies the (in-)famous

ABC-conjecture

and the

asymptotic Fermat conjecture

and has implications to the theory of modular forms. These conjectures can also be
found in [Fr1] (Conjecture 1 and Conjecture 2).

To give the flavor of these conjectures, we formulate a version of the ABC-
conjecture over Q that is due to Masser and Oesterlé:

Conjecture 4 For all � 2 R>0 there is a number c� 2 R such that for integers A;B
with A � B ¤ 0 and gcd.A;B/ D 1, we get

jAj � c� �
0

@
Y

pjA�B �.A�B/
p

1

A

1C�

:
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3 Algorithmic Aspects and Applications

In this section the focus lies on computational aspects of abelian varieties over finite
fields Fq . Many of the results are motivated and initiated by problems from public-
key cryptography. A more detailed discussion of this fruitful interaction between
algorithmic algebraic geometry and data security can be found in [Fr2] and [Fr3].

3.1 Addition on Jacobian Varieties over Finite Fields

Jacobian varieties are accessible to computations via curve arithmetic and enjoy
the rich structure of abelian varieties. As first example we look at the addition on
Jacobian varieties. We use the general theory of Jacobian varieties (Sect. 1.3) and
recall that for the addition on them, one needs a reduction algorithm among divisors
in the same class. This problem was solved by Heß [He] and by Diem and leads to an
outstanding result inside of the rapidly progressing algorithmic algebraic geometry.

Theorem 14 (Diem, Heß) Let C be a curve of genus g over Fq .
The arithmetic in the degree 0 class group of C can be performed in an expected

time which is polynomially bounded in g and log.q/.

In practice it is still challenging to find algorithms that are fast enough for
applications. A lot of work is done (even for curves of genus 1) to find equations for
C for which the addition is optimal, and till now there are many publications that
give special fast addition algorithms for special instances of curves and fields. So
we find an

Open Problem 11 Implement the addition algorithm efficiently for Jacobian vari-
eties of curves of low genus (e.g., g � 4) and find optimal equations (maybe
depending on the field Fq).

3.2 Point Counting

A major task is the computation of the Frobenius endomorphism �q .
This is motivated by the outstanding role this endomorphism plays in theory

(Theorem 8) and practice (point counting).
Special (but nevertheless sufficiently “random”) instances are found by using

the CM -theory and hence to begin with the ring of endomorphisms of Jacobians
over C.

To compute the characteristic polynomial of �q for large q and for “random”
abelian varieties, one uses its action on an accessible vector space (usually a coho-
mology group) and an approximation algorithm. This becomes effective because of
the Hasse-Weil estimates of the coefficients (Theorem 7).
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To proceed one uses the whole arsenal of arithmetic geometry, namely:

• étale cohomology that leads to algorithms first introduced for elliptic curves by
R. Schoof, which become practical for elliptic curves because of using isogenies
instead of points (Atkin–Elkies), and so usually one calls them SEA-algorithms

• p-adic cohomology (work of Kedlaya, Vercauteren, Gerkmann, and many others)
• p-adic lifting by effective p-adic versions of Deuring’s lifting theorem (Theo-

rem 10) for elliptic curves and versions for higher dimension (keyword canonical
lifts) given by p-adic theta functions, cf. Open Problem 1 (work of Satoh, Lubicz,
Carls, Mestre, and many others)

• deformation theory (geometric-algebraic or differential-geometric) (Lauder, M.
Li)

An extensive discussion of these methods can be found in [ACF], Chapter 17.
Result: In cryptographic relevant ranges we get:

• We can count points on random elliptic curves.
• We can count points on Jacobians of random curves over fields of small (and

even medium) characteristic.
• We have still problems with random curves of genus 2 (but see work of Gaudry

and Schost [GS] and [CL]), and we have many special families of curves
whose members are accessible for point counting (e.g., by CM-methods) ([ACF],
Chapter 18).

Open Problem 12 1. Count points on Jacobians of genus 2 (without CM) and of
genus 3 (with or without CM).

2. There is a lifting theorem for ordinary abelian varieties analogous to Deuring’s
lifting theorem for elliptic curves.
Study algorithmic aspects of the lifting theorems.

3.3 Computation of Isogenies

We come back to the tasks formulated in Sect. 1.2.1 but now restricted to the case
that K D Fq . One of the question was: Can one, for given A, compute explicitly
isogenies � as concrete functions?

An optimistic answer would be: yes, with complexity polynomial in
log.q/; dim.A/; deg.�/.

In fact, this is true for elliptic curves and relies on the computation of equations
for the modular curve Y0.n/. The basic work was done (after Deuring) by Vélu [V],
and accelerations that make the algorithm efficient are due to Couveignes, Lercier,
Elkies, and many others. These algorithms are responsible for the efficiency of point
counting on elliptic curves by SEA-algorithms. It turns out that the cost for the
computation of an isogeny of degree ` is

O.`2 C ` log.`/ log.q//:
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There are hopeful beginnings of a similar theory for genus 2 curves [CL,FLR,GS]
that promise to become a fascinating area of mathematical research.

So we state it as an

Open Problem 13 Find effective formulas for isogenies between abelian varieties
or Jacobian varieties of genus 2 and 3.

The big disadvantage of the formulas for isogenies is that they are polynomial in
the degree of the isogenies.

So they are only usable for isogenies of small degree. To repair this one uses
more number theory and assumes in addition that the abelian variety is of CM-type
with endomorphism ring O that is an order in a CM-field K . (For elliptic curves E
this is equivalent with the condition that E is ordinary.)

We sketch the strategy.11

An isogenous variety A0 has also CM with a ring of endomorphism O 0 � K .
First, assume that O � O 0. By definition O and O 0 are lattices of dimension
d D dim.A/ and so correspond to abelian varieties QA D C

d=O and QB D C
d=O 0

(Example 6). The inclusion of O 0 in O induces an isogeny from QA to QB . If ŒO 0 W O�
is small, one can hope to describe the corresponding isogeny. (One has a good
chance that in practical cases this will be so.)

The next step is to assume thatO D O 0 (or that at least the degree of the isogeny
� one wants to compute is a prime not dividing ŒO 0 W O�).

For simplicity assume that B Š QB . Isogenies of degree ` to B correspond to
ideals L in O with norm `. But one has more freedom. Changing by isomorphisms
means to change L by a principal ideal, and one of the main results of CM theory
is that the isomorphism classes of abelian varieties with endomorphism ring O
correspond to ideal classes of O . This gives an idea how to treat isogenies of
large prime degree between abelian varieties with endomorphism ring O : one has
to find prime ideals p1; : : :; pk in O with small norm and k “not large” such thatQ
i pi is in the same ideal class as L, and then compute the chain of isogenies with

kernel pi . There are theorems in algebraic number theory (Minkowski’s theorem
and smoothness results known from algorithms to factor numbers) and heuristics
(like GRH) that predict that with a high probability, this search will be successful.

In the next paragraph we shall write down the results for isogenies of elliptic
curves relying on these principles. We formulate already here the

Open Problem 14 Assume that C1; C2 are curves of genus 2 over Fq with
Jacobian varieties of CM-type that are isogenous.

Use CM theory to compute isogenies.

11In the following we simplify by looking at abelian varieties with principal polarization (e.g.,
Jacobian varieties) and then neglect some more subtle points concerning these polarizations.
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Finding Isogenies of Elliptic Curves over Fq A good part of the following results
rely on the groundbreaking paper [K] of Kohel. We apply the considerations from
above to ordinary elliptic curves E;E 0 defined over Fq with endomorphism ring
OE . It is evident that the class number hE of OE and so the discriminant �OE of
OE will play an important role. For random E we have to expect that hE is of size
O.q1=2/ and so that the algorithms to find isogenies are exponential in log.q/. The
beautiful result of Galbraith and Stolbunov in [GSt] is

Theorem 15 The cost for finding an isogeny between elliptic curves whose endo-
morphism ring is OKE is

O.q1=4Co.1/ log2.q/ log log.q//:

This result hints that for large q and randomly chosen E , it is hard to find isogenies,
and in fact there are cryptographic schemes that propose to use this problem as
crypto primitive (for one version of such schemes, see cf. 3.3.1 below).

In the discussion above, we have remarked that there are similarities with
algorithms factoring numbers. In fact, an approach due to Jao and Soukharev shows
(under “reasonable” heuristics like GRH) the following.

Theorem 16 ([JS], Theorem 4.1) Assume that E is an ordinary elliptic curve
given in Weierstrass form with given Frobenius endomorphism �q (i.e., jE.Fq/j is
known) and endomorphism ring OE .

Take n 2 N and assume that ŒOE W ZŒ�q�� is prime to jE.Fqn/j and let L be an
ideal of OE whose norm is a prime number `.

Take P 2 E.Fqn/.
Then there is an algorithm that computes an elliptic curve E 0 and an isogeny

� W E ! E 0

with kernel L and the X-coordinate of �.P / in running time that is polynomial in
log.`/; log.q/; n and subexponential in log.�OE/ (for the explicit estimate, see
[JS]).

3.3.1 Two Applications

Equivalence of Discrete Logarithms in Isogeny Classes A very important crypto
primitive for public-key cryptography is the discrete logarithm (DL) in the group
of rational points E.Fq/ of elliptic curves E over finite fields. The (till now
justified) hope is that the complexity of DL is exponential in the order of the
largest prime dividing jE.Fq/j. But it is well known that one has to be careful
since some elliptic curves (e.g., supersingular curves) can be attacked by algorithms
with subexponential complexity. Very often, this is done by a transfer, i.e., by a
subexponentially computable map into another group in which the DL is vulnerable
(see [ACF], Chapter 22).
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An obvious question is whether one can use isogenies as transfer maps.
The answer is no because of a very nice result that uses, besides the above

discussed methods to compute isogenies, the equivalence of the isogeny graph of
elliptic curves with the same ring of endomorphism over Fq with a graph of ideals in
this endomorphism ring (again Deuring’s lifting theorem is crucial). With properties
of this graph induced by classical analytic number theory of imaginary quadratic
number fields, one gets

Theorem 17 (Jao et al. [JMV]) Discrete logarithms in isogenous elliptic curves
over Fq are subexponentially equivalent.

Open Problem 15 Prove the same result for Jacobian varieties of CM-type
attached to curves C of genus 2.

The Couveignes–Stolbunov Crypto System This system is a cryptosystem based
on a principally homogeneous space.

We continue to assume thatE is ordinary. We denote by SE the set of isomorphy
classes (over Fp;1) of elliptic curves E 0=Fq with

EndFp;1.E
0/ D EndFp;1.E/ D O � Q.

p
�d/:

Again we use the one-to-one correspondence between SE and the ideal class
group Cl.O/ of O .

In fact, SE is a principal homogenous space with translation group Cl.O/ with
the following action:

Lift E to QE (Deuring’s lifting theorem). Without loss of generality assume that
the lattice defining QE over C is O . Take an ideal a � O with divisor class c.

Then c � ŒE� is the isomorphy class of the elliptic curvesE 0 whose Deuring lift is
over C defined by the lattice a.

This can be used for a crypto system going back to Couveignes and implemented
by Stolnikov.

As private key, take c, and as public key, the j -invariant of E 0.
To make this computable, one has to find in each ideal class of O an ideal that

is the product of prime ideals with small norm. Hence, one has to use the same
techniques as in Sect. 3.3.

Remark 7 • The system is slow for one cannot use a square and multiply algo-
rithm.

• It can be shown that the crypto primitive is NOT the DL in Cl.O/, and so a direct
application of Shor’s algorithm for quantum computers does not work.

• Nevertheless there is an algorithm using quantum computer that breaks the
system in subexponential time.
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3.4 Constructions of Isogenies by Correspondences

We end by describing a general construction of isogenies between abelian subva-
rieties of Jacobian varieties. This construction can be done over arbitrary ground
fields K . It is important in our context because of its immediate applications to DL
systems attached to divisor classes of curves over finite fields.

Correspondences of curves C , D are induced by morphisms

f1 W H ! C and f2 W H ! D

(hence H is a common cover of C and D) and application of conorm, respectively
norm maps, on divisor class groups:

Pic0.C /
f2;�ıf �

1�! Pic0.D/:

Under mild conditions one can assure that

� W JC ! JD

has finite kernel.
If the degrees of fi are not too large, one can compute the maps on divisor classes

explicitly.
Very often one uses curves C with a cover

f W C ! P
1;

and takes for H the Galois closure of this cover and for D the fixed curve under a
subgroup of the Galois group (“monodromy group”) of f . By this, one has natural
connections with Hurwitz spaces and their very rich theory ([FK1] and [FK2]).

One example for this method is Weil descent if Fq ¤ Fp that may transfer a
seemingly hard DL problem to an easier one.

Another example was worked out in [FK2] explaining B. Smith’s isogeny of
degree 8 mapping hyperelliptic curves of genus 3 to non-hyperelliptic curves of
genus 3 (and so weakening the DL [Di]). The result of Smith is

Theorem 18 (Smith) There are O.q5/ isomorphism classes of hyperelliptic curves
of genus 3 defined over Fq for which the discrete logarithm in the divisor class group
of degree 0 has complexity O.q/, up to log-factors.

Since jPic0.C /j D O.q3/, the DL system of these hyperelliptic curves of genus 3
is weak.

To get this result Smith has to use certain heuristics.
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The advantage of the approach by Hurwitz spaces is, besides delivering a
structural background, that these spaces are often accessible for explicit description.
For instance, in the case discussed here, one can determine the four-dimensional
subspace in the moduli space of hyperelliptic curves of genus 3 consisting of curves
that are in the image of Smith’s isogeny, and so justify his heuristics [FK3].

Open Problem 16 Find interesting correspondences of low degree between Jaco-
bian varieties induced by correspondences between curves and (possibly) attached
to Hurwitz spaces.
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Another Look at Security Theorems for 1-Key
Nested MACs

Neal Koblitz and Alfred Menezes

Abstract We prove a security theorem without collision resistance for a class of 1-
key hash function-based MAC schemes that includes HMAC and Envelope MAC.
The proof has some advantages over earlier proofs: it is in the uniform model, it
uses a weaker related-key assumption, and it covers a broad class of MACs in a
single theorem. However, we also explain why our theorem is of doubtful value
in assessing the real-world security of these MAC schemes. In addition, we prove
a theorem assuming collision resistance. From these two theorems, we conclude
that from a provable security standpoint, there is little reason to prefer HMAC to
Envelope MAC or similar schemes.

1 Introduction

The purpose of our “Another Look” series of papers [14] is to examine the way the
“provable security” paradigm is used in the cryptographic literature. In particular,
we hope to foster a less credulous attitude toward some of the claims that are
frequently made about “provable” security.

Starting in the early days of “practice-oriented provable security”—a term coined
by Bellare and Rogaway [1,4]—there has been an unfortunate tendency to exagger-
ate both the security guarantees that are proved and the efficiency advantages of the
provably secure protocols. For example, in [5] the authors used the word “optimal”
to advertise the OAEP version of RSA encryption (OAEP D “optimal asymmetric
encryption padding”). Shortly after Victor Shoup [27] discovered that the security
proof in [5] was fallacious, the claim of optimal efficiency was also reexamined. It
now seems that Boneh–Rabin encryption [9] comes closer than OAEP to being both
provably secure (in a limited sense) and optimally efficient; see Sect. 4 of [15].
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Excessive enthusiasm in marketing protocol designs can also be seen in certain
statements about hash-based key agreement and message authentication. According
to a letter to the AMS Notices from Hugo Krawczyk [20], the designer of the
HMQV key agreement protocol, “the HMQV work represents a prime example of
the success of theoretical cryptography, not only in laying rigorous mathematical
foundations for cryptography at large, but also in its ability to guide us in the design
of truly practical solutions to real-world problems.” Similarly, speaking of his hash-
based message authentication code HMAC in an invited talk at Asiacrypt 2010 on
“Cryptography: from theory to practice,” Krawczyk proclaimed that with HMAC
“balance [between engineering and theory was] regained and the rest is history.”

One of the conclusions of the present chapter is that Krawczyk’s claim of
a unique benefit provided by HMAC cannot be justified by provable security
considerations. Rather, very similar security results can be proved for a broad class
of message authentication codes, including some (such as “Envelope MAC”) that
arguably are a little more efficient than HMAC.

Another theme that recurs in several of our papers, including the present one,
is that the security definitions that are at the heart of any “proof” of security are
often open to debate and are far from definitive (see [16] for more discussion of
this). In [18] we found that even such a fundamental concept of computer science
as the distinction between a uniform and nonuniform algorithm is frequently dealt
with in a confusing and inconsistent manner in the cryptographic literature. In the
present chapter, we argue that in the MAC setting, two of the basic definitions used
by earlier authors—that of a pseudorandom function and that of security against
related-key attacks—need to be replaced by more suitable versions.

As we have written on many occasions, starting with [15], we have no objection
to formal arguments in cryptography provided that their significance is properly
interpreted and they are not misnamed “proofs of security.” Indeed, reductionist
security arguments for hash functions, message authentication codes, and other
symmetric and asymmetric cryptographic protocols can provide a type of baseline
guarantee of a certain limited security feature. We show that a broad class of 1-key
nested MACs have such a property. But the choice of which MAC in the class one
wants to use cannot be made using reductionist security arguments but rather should
be based on an ad hoc analysis of efficiency and security in the settings in which it
will be deployed.

* * *
A common method of constructing a message authentication code (MAC) is the

“nested” construction (NMAC). One first applies a keyed iterated hash function
h.K1;M/ (constructed from a compression function f ) to the message M , and
then one puts this hash value into a second keyed function Qf .K2; h.K1;M// (where
Qf is also a compression function). For efficiency and ease of implementation, one

usually wants the MAC to depend on a single keyK , and so one setsK1 D K2 D K
or, more generally, K1 D g1.K/, K2 D g2.K/ for some functions g1; g2. Our
main purpose is to prove a new security theorem without collision resistance that
covers arbitrary constructions of this type. The theorem says, roughly speaking,
that the MAC is a pseudorandom function (prf) provided that both Qf and f
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are pseudorandom functions and the functions f; Qf ; g1; g2 satisfy a certain rather
weak related-key assumption. This theorem is a generalized 1-key version of our
Theorem 10.1 in [17].

The two most important examples of this type of MAC are the “hash-based
message authentication code” (HMAC) [6] (standardized in [7, 21]) and Envelope
MAC (also called “Sandwich MAC”; see [29] for a recent version). In these
cases there are earlier security proofs without collision resistance in [2, 29], but
unfortunately those proofs are not valid in the uniform model of complexity.1 In
other words, they use unconstructible adversaries and so have to assume that the
cryptographic primitives withstand attack even by unconstructible adversaries. For
this reason, as we explained in [17] (see also [8]), they do not give useful concrete
bounds on the resources a prf-adversary would need in order to defeat the MAC. In
contrast, our theorem is proved in the uniform model; this means that it needs much
milder assumptions.

One of the five finalists in the NIST SHA-3 competition used Envelope MAC.
The designers of the “Grøstl” construction wrote (Sect. 6.1 of [11]):

We propose this envelope construction as a dedicated MAC mode using Grøstl. This
construction has been proved to be a secure MAC under similar assumptions as HMAC.

Here the designers were referring to the proof in [29], but they were apparently
unaware that Yasuda’s proof is not valid in the uniform model and for that reason
gives much weaker guarantees than one would expect. As we commented in [18],
one of the drawbacks of results obtained in the nonuniform model is the possibility
that they will be used by other authors who are unaware of the extremely limited
nature of such results from a practice-oriented standpoint. In any case, in the present
chapter we remove this gap in the security argument in [11] by supplying a uniform
proof.

There is a second respect in which our theorem makes a milder assumption than
earlier theorems of this type: our related-key assumption is weaker than the one
defined in [2, 3]. This not only gives us a stronger theorem but also enables us to
unify HMAC and Envelope MAC in a single theory.

Despite these advantages over earlier security theorems, the sad fact is that our
main theorem by itself provides very little assurance about the real-world security
of these MAC schemes. In Sect. 4 we recall some of the reasons for this.

In Sect. 5 we prove a second theorem, this time assuming collision resistance, that
carries over the main result of [6] to 1-key nested MACs. Our two theorems together
show that from the standpoint of security reductions, there is little difference
between HMAC, Envelope MAC, and other similar constructions. We conclude
that security theorems are not of much use in deciding which of the competing
schemes—HMAC, Envelope MAC, or some other variant—has better security in
practice.

1Fischlin [10] has a uniform proof of a security theorem for HMAC without collision resistance,
but its usefulness is questionable because of the extremely large tightness gap in his result.
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2 Statement of the Main Theorem

Let f W f0; 1gc � f0; 1gb �! f0; 1gc and Qf W f0; 1gc � f0; 1gc �! f0; 1gc be two
compression functions. Here b � 2c (typically b D 512 and c D 128 or 160), so
that f compresses by a factor of at least 3, whereas Qf compresses by a factor of 2.
Let gi W f0; 1gc �! f0; 1gc, i D 1; 2. We suppose that all of these functions are
publicly and efficiently computable.

By a .t; q/-adversary, we mean an adversary that makes � q queries and has
running time � t . Recall that f is said to be an .�; t; q/-secure pseudorandom
function (prf) if no .t; q/-adversary can distinguish between f with a hidden key
and a random function with advantage� �. We say that f is strongly .�; t; q/ secure
(see [17]) if such an adversary before any query is permitted to “reset” the oracle,
by which we mean that in response to the adversary’s request the oracle chooses
either a new random key (if it is f .K; :/) or a new random function (if it is a random
function r 0.:/).

We now define the “related-key assumption” that we shall use in our main
theorem.

Definition 1 In the above setting, we say that .f; Qf / is .�; t; q/-secure against
.g1; g2/-related-key attacks if no .t; q/-adversary has an advantage greater than or
equal to � in the following interaction with the oracleOrka. First, the oracle chooses a
random bit; if it is 0, the oracle chooses two random keysK1;K2 2 f0; 1gc; if it is 1,
the oracle chooses one random keyK 2 f0; 1gc and setsK1 D g1.K/,K2 D g2.K/.
Each query of the adversary is a messageM in either f0; 1gb or f0; 1gc, to which the
oracle responds with either f .K1;M/ or Qf .K2;M/, respectively. At the end, the
adversary guesses the oracle’s random bit.

We recall that in this situation the advantage of the adversary is defined as

Prob.adversary guesses 1
ˇ̌

oracle chose 1/ � Prob.adversary guesses 1
ˇ̌

oracle chose 0/;

where Prob(A
ˇ
ˇB) denotes the conditional probability of event A given event B.

This setting is general enough to include two of the best-known MAC construc-
tions (see Fig. 1):

1. For HMAC, let IV be a fixed (and publicly known) initialization vector, and let
ipad and opad be two fixed elements of f0; 1gb (also publicly known). We let
a superscript 0 on a bitstring in f0; 1gc indicate that we are appending b � c
zero bits to it. We set Qf .K;M/ D f .K;M0/, g1.K/ D f .IV; K0 ˚ ipad/,
g2.K/ D f .IV; K0 ˚ opad/.

2. For Envelope MAC, let IV be a fixed (and publicly known) initialization vector;
let Qf .K;M/ D f .M;K0/, g1.K/ D f .IV; K0/, and g2.K/ D K .

Remark 1 The above related-key assumption is weaker than the related-key
assumption in [2, 3]. In that assumption, the oracle is required to simply give the
adversary the two keys: K1;K2. In that case the adversary can of course compute
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Fig. 1 HMAC and Envelope MAC

any number of desired values f .K1;M/ or Qf .K2;M/, limited only by the running
time bound; in other words, the rka-adversary in our assumption is less powerful
(because it has less information) than the rka-adversary in [2, 3]. Moreover, with
the rka-assumption in [2, 3], we wouldn’t have been able to include Envelope MAC
in our theorem, because when g2.K/ D K , the adversary, if given K1 and K2, can
trivially determine whether or not K1 D g1.K2/.

In the above setting let h W f0; 1gc � .f0; 1gb/� �! f0; 1gc denote the iterated
hash function that, given a keyK 2 f0; 1gc and a messageM D .M1;M2; : : : ;Mm/,
Mi 2 f0; 1gb, successively computes h1 D f .K;M1/, hiC1 D f .hi ;MiC1/, i D
1; 2; : : : ; m�1 and sets h.K;M/ D hm. We define the message authentication code
MACf; Qf ;g1;g2 as follows:

MAC
f; Qf ;g1;g2.K;M/ D Qf .g2.K/; h.g1.K/;M//:

Notice that when g1.K/ D f .IV; K0 ˚ ipad/, and g2.K/ D f .IV; K0 ˚ opad/
this definition agrees with that of HMAC, and when g1.K/ D f .IV; K0/ and
g2.K/ D K , it agrees with that of Envelope MAC (see Fig. 1).

By a .t; q; n/-adversary, we mean an adversary that makes � q queries of
block length � n and has running time � t . We say that MAC

f; Qf ;g1;g2 is an
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.�; t; q; n/-secure pseudorandom function if no .t; q; n/-adversary can distinguish
between MAC

f; Qf ;g1;g2 with hidden key and a random function with advantage� �.
Theorem 1 Suppose that f is a strongly .�1; t; q/-secure pseudorandom function,
Qf is an .�2; t; q/-secure pseudorandom function, and .f; Qf / is .�3; t; 2q/-secure

against .g1; g2/-related-key attacks. Then MACf; Qf ;g1;g2 is a .2n.�1 C
�
q
2

�
2�c/ C

�2 C 2�3; t � .qnT C Cq log q/; q; n/-secure pseudorandom function. Here C is an
absolute constant, and T denotes the time for one evaluation of f or Qf .

Remark 2 In the statement of the theorem, the expression 2n.�1C
�
q

2

�
2�c/C�2C2�3

can be replaced by 2n�1C �2C2�3. The reason is that, as explained in Remark 10.2
of [17], the generic key-guessing attack on the strong pseudorandomness property
has advantage roughly .qt=T /2�c ; since we need t > qnT for the theorem to have
content, it follows that �1 


�
q

2

�
2�c .

Before proving Theorem 1, we give an informal summary of the argument.
The first step is to show that a prf-adversary AMAC of MACf; Qf ;g1;g2 is also a prf-
adversary—with almost the same advantage—of the MAC obtained by replacing
the .g1; g2/-related keys by independent random keys. Here “almost” means that we
can construct a related-key attackArka on .f; Qf /whose advantage is equal to half the
difference between the advantage of AMAC when the keys are .g1.K/; g2.K// and
its advantage when the keys are independent. This step reduces the problem to the
case when there are two independent keys, at which point we can essentially follow
the proof for NMAC in [17]. Namely, we show that a prf-adversary for the MAC
succeeds only when either the prf property of the outer shell Qf .K2; :/ is attacked (we
call its adversary A Qf ) or else a collision is produced in the iterated hash function
that’s inside this shell. In the latter case we use the collision to construct a prf-
adversary of f . Since there are two possible types of collisions that can occur and
up to n iterations of the hash function, this leads to roughly 2n f adversaries. This
intuitively explains why 2n�1 C �2 C 2�3 appears in the conclusion of the theorem.
The term 2n

�
q
2

�
2�c arises because of the possibility of random collisions between

c-bit strings.
We shall give the actual proof in the next section. The above plausibility argument

shows that the basic ideas in the proof are simple. However, the organization is a
little intricate because of the need to proceed carefully with the reduction using all
of the adversaries. We see no way to come up with a more concise self-contained
proof, and we apologize to the reader for that.

3 Proof of the Main Theorem

Proof We will prove the following equivalent statement: if f is a strongly
.. ���2�2�3

2n
� �

q
2

�
2�c/; t C .qnT C Cq log q/; q/-secure pseudorandom function,

Qf is an .�2; t C .qnT C Cq log q/; q/-secure pseudorandom function, and .f; Qf /
is .�3; t C .qnT C Cq log q/; 2q/-secure against .g1; g2/-related-key attacks, then
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MAC
f; Qf ;g1;g2 is an .�; t; q; n/-secure pseudorandom function. The proof starts by

supposing that we have a .t; q; n/-adversary AMAC that has advantage � � in
the pseudorandomness test for MAC

f; Qf ;g1;g2 , and then it proceeds to construct
a .t C .qnT C Cq log q/; 2q/-adversary Arka of the related-key property, a
.t C .qnT C Cq log q/; q/-adversary A Qf of the pseudorandom property of Qf ,
and a .t C .qnT C Cq log q/; q/-adversary Af of the pseudorandom property of f
such that at least one of the following holds:

(i) Arka has advantage� �3 against the .g1; g2/-related key property of .f; Qf /.
(ii) A Qf has advantage� �2 in the pseudorandomness test for Qf .

(iii) Af has advantage � .� � �2 � 2�3/=.2n/ �
�
q
2

�
2�c in the strong pseudoran-

domness test for f .

Note that if any of these three conditions holds, we have a contradiction that proves
the theorem.

For the i th message query Mi , we use the notation Mi
` to denote its `th block,

we let Mi;Œm� D .M i
1 ; : : : ;M

i
m/ be the truncation after the mth block, and we set

Mi;.m/ D .M i
m;M

i
mC1; : : :/, that is,Mi;.m/ is the message with the firstm�1 blocks

deleted. We say that a message is “non empty” if its block-length is at least 1.
Let h be the corresponding iterated function, and let Qf h be the MAC that

for a key .K1;K2/ 2 f0; 1gc � f0; 1gc is defined as follows: Qf h.K1;K2;M/ D
Qf .K2; h.K1;M//, where M D .M1; : : : ;Mm/ is an m-block message, m � n.

Note that MACf; Qf ;g1;g2.K;M/ D Qf h.g1.K/; g2.K/;M/. Let r.M/ denote a
random function of messages, and let r 0.M1/ denote a random function of 1-block
messages. In response to an input of suitable length, r 0 or r outputs a random c-
bit string, subject only to the condition that if the same input is given a second
time (in the same run of the algorithm), the output will be the same. In the test
for pseudorandomness, the oracle is either a random function or the function being
tested, as determined by a random bit (coin toss).

Now suppose that we have a .t; q; n/-adversary AMAC that, interacting with its
oracle OMAC, has advantage � � against the prf test for MACf; Qf ;g1;g2 . We use
AMAC to construct four adversaries A Qf h, Arka, A Qf , and Af . The last three are the
adversaries in the above conditions (i)–(iii); the .t; q; n/-adversary A Qf h attacks the

pseudorandomness property of Qf h. Each adversary makes at most the same number
of queries asAMAC (except that the related-key adversary can make up to 2q queries)
and has a comparable running time. More precisely, the bound tC .qnTCCq log q/
on the running time of the adversaries Arka, A Qf , and Af comes from the time
required to run AMAC, makes at most q computations of h values, and stores at most
q values (coming from oracle responses and h computations) in lexicographical
order and sorts them looking for collisions. (An adversary does not in all cases
perform all of these steps; rather, this is an upper bound.)

The related-key adversary Arka runs AMAC and interacts with the related-key
oracleOrka, which chooses a random bit u. Recall thatArka, after querying the oracle
Orka with at most 2q b-bit or c-bit messages, must guess whether the keys K1 and
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K2 that Orka is using are independent (i.e., u D 0) or are related by Ki D gi .K/,
i D 1; 2, for some K (i.e., u D 1).

The adversary Arka randomly chooses a bit `, and as AMAC runs, Arka responds
to each query Mi as follows. If ` D 0, its response to each query is a random c-
bit string (except in the case when a query is repeated, in which case the response
is also repeated). If ` D 1, then it first queries Orka with Mi

1 and computes H D
h.Orka.M

i
1 /;M

i;.2//, where Orka.M
i
1 / denotes the oracle’s response. (If Mi is just

a 1-block message, then H is set equal to Orka.M
i
1 /.) Now Arka makes a second

query to Orka—this time the c-bit query H—and responds to AMAC’s query with
Orka.H/.2 At the end Arka guesses that the random bit u chosen byOrka is 1 if AMAC

guesses that the random bit ` chosen by Arka (which is simulating an oracle) is 1;
otherwise, it guesses that u D 0. (Note that Arka guesses 0 if AMAC stops or reaches
time t without producing a guess; this could happen ifArka is not properly simulating
OMAC, which would imply that u D 0.) Let ı denote the advantage of Arka.

We also construct an adversary A Qf h that interacts with its oracle O Qf h and runs

AMAC. When AMAC makes a query Mi , the adversary A Qf h queries O Qf h and sends

AMAC the response O Qf h.M i/. If AMAC guesses that the oracle simulated by A Qf h
is a random function, then A Qf h guesses that its oracle O Qf h is a random function;

otherwise, A Qf h guesses that its oracle is Qf h with hidden keys. In particular, note
that if AMAC stops or fails to produce a guess in time t—as may happen whenA Qf h is

not property simulating OMAC—then A Qf h guesses that its oracle is Qf h with hidden
keys. (This makes sense, since if O Qf h were a random function, then the simulation
of OMAC would be correct.) Let � denote the advantage of A Qf h.

Returning to the description of Arka, we see that there are two cases, depending
on whether the random bit u of the oracle Orka was (a) 1 (i.e., its keys are related)
or (b) 0 (i.e., its keys are independent). In case (a) the interaction of Arka with AMAC

precisely simulates OMAC, and in case (b) it precisely simulatesO Qf h. (As we noted,
in case (b) our original adversaryAMAC may stop or run for time t without producing
a guess; in this case Arka makes the guess 0.) Let

p1 D Prob.AMAC guesses 1
ˇ
ˇ ` D 1 and u D 1/:

p2 D Prob.AMAC guesses 1
ˇ
ˇ ` D 1 and u D 0/:

p3 D Prob.AMAC guesses 1
ˇ̌
` D 0/:

Note that when ` D 0, there is no interaction with Orka, and so the guess that AMAC

makes is independent of whether u D 0 or u D 1.

2The theorem’s query bound for the related-key property is 2q because Arka makes two queries for
each query of AMAC.
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By assumption, AMAC has advantage � � in a prf test for MACf; Qf ;g1;g2 ; in other
words, p1�p3 � �. We also have p2�p3 D � . Subtracting gives p1�p2 � �� � .
Next, the advantage ı of the related-key adversary Arka is given by

Prob.Arka guesses 1
ˇ
ˇ u D 1/� Prob.Arka guesses 1

ˇ
ˇ u D 0/

D Prob.AMAC guesses 1
ˇ
ˇ u D 1/� Prob.AMAC guesses 1

ˇ
ˇ u D 0/

D Prob.AMAC guesses 1
ˇ̌

u D 1 and ` D 0/ � Prob.` D 0/
CProb.AMAC guesses 1

ˇ
ˇ u D 1 and ` D 1/ � Prob.` D 1/

�Prob.AMAC guesses 1
ˇ
ˇ u D 0 and ` D 0/ � Prob.` D 0/

�Prob.AMAC guesses 1
ˇ
ˇ u D 0 and ` D 1/ � Prob.` D 1/

D 1

2
.p3 C p1 � p3 � p2/ D 1

2
.p1 � p2/ � .� � �/=2:

If condition (i) in the first paragraph of the proof does not hold, then ı < �3, in which
case � > � � 2�3. For the remainder of the proof, we assume that the advantage of
A Qf h satisfies this inequality, since otherwise (i) holds and we’re done.

The rest of the proof closely follows the proof of Theorem 10.1 of [17]. We shall
give the details rather than simply citing [17] because the present setting is slightly
more general (with two pseudorandom compression functions f and Qf rather than
just one) and because there is some benefit in having a self-contained proof in one
place.

We now construct an Qf -adversary A Qf and consider its advantage. As before, for
any oracleO , we letO.M/ denote the response ofO to the queryM . The adversary
A Qf is given an oracleO Qf and, using A Qf h as a subroutine, has to decide whetherO Qf
is Qf .K2; :/ or a random function r 0.:/ of 1-block messages. She chooses a random
K1 and presents the adversary A Qf h with an oracle that is either Qf .K2; h.K1; :// or
else a random function r.:/; that is, she simulatesO Qf h (see below). In time� t with

� q queriesA Qf h is able with advantage � > ��2�3 to guess whetherO Qf h is Qf hwith
hidden keys or a random function r . Here is how A Qf simulates O Qf h: in response to

a queryMi fromA Qf h, she computes h.K1;M
i/, which she queries to O Qf , and then

givesA Qf h the valueO Qf .h.K1;M
i//. Eventually (unless the simulation is imperfect,

see below) A Qf h states whether it believes that its oracle O Qf h is Qf h or r , at which

point A Qf states the same thing for the oracle O Qf —that is, if A Qf h said Qf h, then she

says that O Qf must have been Qf , whereas if A Qf h said that O Qf h is r , then she says

that O Qf is r 0. Notice that if the oracle O Qf is Qf .K2; :/, then the oracle O Qf h that A Qf
simulates for A Qf h is Qf h (with random keyK D .K1;K2/); if the oracleO Qf is r 0.:/,
then the oracle thatA Qf simulates forA Qf h acts as r with the important difference that

if h.K1;M
i/ coincides with an earlier h.K1;M

j / the oracle outputs the same value
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(even though Mi ¤ Mj ) rather than a second random value.3 If the latter happens
with negligible probability, then this algorithmA Qf is as successful in distinguishing
Qf from a random function as A Qf h is in distinguishing Qf h from a random function.

Otherwise, two sequences of f -adversariesA.m/f and B.m/

f come into the picture, as
described below.

The general idea of these adversaries is that they each use the oracle Of in the
pseudorandomness test for f to look for collisions between h values of two different
messagesMi;Mj queried byA Qf h. More precisely, themth adversary in a sequence
works not with all of a queried message but rather with the message with its first
m � 1 blocks deleted. If a collision is produced, then with a certain probability,Of
must be f .K2; :/; however, one must also account for the possibility thatOf is r 0.:/,
and in the case of A.m/f , this brings in the next adversary in the sequence A.mC1/f .

First we make a remark about probabilities, which are taken over all possible
coin tosses of the adversary, all possible keys, the oracle’s “choice bit” (which
determines whether it is the function being tested or a random function), and the
coin tosses of the oracle in the case when it outputs a random function.4 If the
adversary’s oracle is f or Qf h with hidden keys, then the adversary’s queries in
general depend on the keys (upon which the oracle’s responses depend) as well
as the adversary’s coin tosses. However, if the adversary’s oracle is a random
function—which is the situation when A Qf fails and the sequences of adversaries

A
.m/

f and B
.m/

f are needed—then the oracle responses can be regarded simply
as additional coin tosses, and the adversary’s queries then depend only on the
coin tosses and are independent of the keys. This is an important observation for
understanding the success probabilities of the adversaries.

We define ˛0 to be the probability, taken over all coin tosses of A Qf h (including
those coming from random oracle responses) and all keys K1, that the sequence of
A Qf h queries Mi satisfies the following property:

There exist i and j , j < i , such that h.K1;M
i/ D h.K1;M

j /.

For m � 1, we define ˛m to be the probability, taken over all coin tosses of A Qf h
and all q-tuples of keys .K1;K2; : : : ; Kq/, that the sequence of A Qf h queries Mi

satisfies the following property:

(1m) there exist i and j , j < i , such that Mi;.mC1/ ¤ ;, Mj;.mC1/ ¤ ;,

h.K`i ;M
i;.mC1// D h.K`j ;M

j;.mC1//;

3If A Qf h fails to produce a guess about the oracle O Qf h in time t , as can happen if the simulation is
imperfect, then A Qf guesses thatO Qf is a random function. Note that the simulation is perfect ifO Qf

is Qf with hidden key.
4The term “over all possible coin tosses” means over all possible runs of the algorithm with each
weighted by 2�s , where s is the number of random bits in a given run.
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where for any index i for which Mi;.mC1/ ¤ ;, we let `i denote the smallest
index for which M`i ;.mC1/ ¤ ; andMi;Œm� D M`i ;Œm�.

Finally, for m � 1, we define ˇm to be the probability, taken over all coin tosses
of A Qf h and all q-tuples of keys .K1;K2; : : : ; Kq/, that the sequence of A Qf h queries

Mi satisfies the following property:

(2m) there exist i and j such that Mi;.mC1/ D ;, Mj;.mC1/ ¤ ;,

Mi;Œm� D Mj;Œm�; and h.Ki ;M
j;.mC1// D Ki:

We now return to the situation where with non-negligible probability ˛0 the
queries made by A Qf h lead to at least one collision h.K1;M

i/ D h.K1;M
j /. Note

that the advantage of the adversaryA Qf is at least �� 2�3�˛0. If condition (ii) fails,
i.e., if this advantage is < �2, it follows that ˛0 > � � �2 � 2�3. In the remainder of
the proof, we shall assume that this is the case, since otherwise (ii) holds and we’re
done.

The first adversary in the sequenceA.m/f is A0f , which is given the oracleOf that
is either f .K1; :/ with a hidden random keyK1 or else r 0.:/. AsA0f runsA Qf h, giving

random responses to its queries, she queriesOf with the first blockMi
1 of eachA Qf h

query Mi . If Mi;.2/ is nonempty, she then computes yi D h.Of .M
i
1 /;M

i;.2//; if
Mi;.2/ is empty, she just takes yi D Of .M

i
1 /. If Of is f .K1; :/, then yi will be

h.K1;M
i/, whereas if Of is r 0.:/, then yi will be h.Li ;M i;.2// for a random key

Li D Of .M
i
1 / if Mi;.2/ is nonempty and will be a random value Li if Mi;.2/ is

empty. As the adversary A0f gets these values, she looks for a collision with the yj
values obtained from earlier queries Mj . If a collision occurs, she guesses that Of
is f with hidden key; if not, she guesses that Of is r 0.:/.

It is, of course, conceivable that even when Of is r 0.:/, there is a collision
h.Li ;M

i;.2// D h.Lj ;M j;.2//withMi;.2/ andMj;.2/ nonempty. Note thatLi D Lj
if Mi

1 D Mj
1 , but Li and Lj are independent random values if Mi

1 ¤Mj
1 . In other

words, we have (11). Recall that the probability that this occurs is ˛1.
It is also possible that even when Of is r 0.:/ there is a collision involving one

or both of the random values Li or Lj that is produced when Mi;.2/ or Mj;.2/ is
empty. If both are empty, then the probability that Li D Lj is 2�c . If, say, Mj;.2/

is nonempty, then in the case Mi
1 ¤ M

j
1 , we again have probability 2�c that Li D

h.Lj ;M
j;.2//, whereas in the case Mi

1 DMj
1 , we have (21) with Ki D Li .

Bringing these considerations together, we see that the advantage of A0f is �
˛0 � ˛1 � ˇ1 �

�
q
2

�
2�c .

We next describe the sequence of adversaries A.m/f , m � 2. Let Of again

denote the prf-test oracle for f that A.m/f can query. Like A0f , he runs A Qf h once
and gives random responses to its queries. As A Qf h makes queries, he sorts their
prefixes (where we are using the word “prefix” to denote the first m � 1 blocks
of a query that has block length at least m). If the i th query has block length at
least m and if its prefix coincides with that of an earlier query, he records the
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index `i of the first query that has the same prefix; if it has a different prefix
from earlier queries, he sets `i D i . After running A Qf h, he goes back to the

first query Mj1 that has block-length at least m, and for all i for which `i D j1
(i.e., for all queries that have the same prefix as Mj1), he queries Mi

m to Of and
computes yi D h.Of .M i

m/;M
i;.mC1// ifMi;.mC1/ is nonempty and otherwise takes

yi D Of .M
i
m/. Then he resets Of and goes to the first j2 such that Mj2 has block

length at least m and a different prefix from Mj1 . For all i for which `i D j2,
he queries Mi

m to Of and computes yi D h.Of .M
i
m/;M

i;.mC1// if Mi;.mC1/ is
nonempty and otherwise takes yi D Of .M

i
m/. He continues in this way until he’s

gone through all the queries. He then looks for two indices j < i such that yj D yi .
If he finds a collision, he guesses that Of is f with hidden key; otherwise, he
guesses that it is a random function.

The adversary A.m/f takes advantage of the ˛m�1 probability of a collision of the
form (1m�1), and if such a collision occurs, he guesses thatOf is f with hidden key.
The possibility that Of is really r 0.:/ is due to two conceivable circumstances—a
collision of the form (1m) or a collision among random values (either a collision
between two random values Li and Lj or between Li and h.Lj ;M j;.mC1// or else
a collision of the form (2m) with Ki D Li—here the probability of such a collision
is bounded by

�
q
2

�
2�c and by ˇm, respectively).

Finally, the sequence of adversariesB.m/

f ,m � 1, is defined as follows. As usual,

Of denotes the prf-test oracle for f that B.m/

f can query. She runs A Qf h once and
gives random responses to its queries. AsA Qf h makes queries, she sorts their prefixes
(where this time, we are using the word “prefix” to denote the first m blocks of a
query that has block length at least m). She makes up a list of pairs .i; S.i//, where
the i th query has block length exactlym and coincides with the prefix of at least one
other query; in that case S.i/ denotes the set of indices j ¤ i such that Mj;Œm� D
Mi . After runningA Qf h, she chooses a message block Y that is different from all the

blocksMj
mC1 of all queriesMj . She goes through all indices i with nonempty S.i/.

For each such i , she queries Y toOf , and for each j 2 S.i/, she also queriesMj
mC1

to Of and computes yj D h.Of .M
j
mC1/;M j;.mC2/; Y /. She looks for a collision

between Of .Y / and yj for j 2 S.i/. Before going to the next i , she resets Of .
If she finds a collision for any of the i , she guesses that Of is f with hidden key;
otherwise, she guesses that it is a random function. The advantage of this adversary
is at least ˇm � q2�c , because if Of is f .Ki ; :/ and h.Ki ;M

j;.mC1// D Ki , then
h.Of .M

j
mC1/;M j;.mC2/; Y / D f .Ki ; Y / D Of .Y /, whereas if Of is a random

function, then Of .Y / has probability only 2�c of coinciding with this h-value.
We thus have the following lower bounds for the advantages of the adversaries:

A0f : ˛0 � ˛1 � ˇ1 �
�
q
2

�
2�c .

A
.m/

f , m � 2: ˛m�1 � ˛m � ˇm �
�
q
2

�
2�c .

B
.m/

f , m � 1: ˇm � q2�c .
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Trivially we have ˛n D ˇn D 0, and so the adversaries go no farther than A.n/f
and B.n�1/

f . The sum of all the advantages of the 2n � 1 adversaries telescopes and

is at least ˛0 � .2n � 1/
�
q
2

�
2�c .

Since we have no way of knowing which of these adversaries has the greatest
advantage, we make a random selection. That is, the adversary Af we use to attack
the pseudorandomness of f consists of randomly choosing one of the 2n � 1
adversaries A0f , A.m/f (2 � m � n), B.m/

f (1 � m � n � 1) and running it.
The advantage of the adversary Af is the expectation obtained by summing the
advantages of the 2n � 1 adversaries with each one weighted by the probability
1=.2n � 1/ that we choose the corresponding adversary. This advantage is at least
1

2n�1 .˛0 � .2n � 1/
�
q
2

�
2�c// > . ���2�2�3

2n
� �q

2

�
2�c/. Thus, returning to the first

paragraph of the proof, we have shown that if conditions (i) and (ii) do not hold,
then condition (iii) holds. ut

4 Interpretation

How useful is our theorem as a guarantee of real-world security? As in the case
of Theorem 10.1 of [17], there are several reasons for skepticism concerning the
practical assurance provided by Theorem 1:

1. In order to conclude that our MAC is an .�; t; q; n/-secure pseudorandom func-
tion, we need the inner compression function f to be a strongly .�=.2n/; t; q/-
secure pseudorandom function. In other words, we have a tightness gap of about
2n, which is large if, for example, we allow a block-length bound of 220 or 230.5

2. Theorem 1 is in the single-user setting, and its security assurances could fail in
the more realistic multiuser setting.

3. The three hypotheses in Theorem 1—pseudorandomness of the outer compres-
sion function, strong pseudorandomness of the inner compression function,6 and
the related-key property—are in general extremely difficult to evaluate. When
the assumptions in a theorem cannot be evaluated in any convincing manner, we
should not be surprised if practitioners view the theorem as having little value.

5The tightness gap in our theorem, bad as it is, is not nearly as extreme as the one in Fischlin’s
theorem [10], which establishes the secure-MAC property for NMAC and HMAC based on
assumptions that are slightly weaker than the prf property. The gap in success probabilities in that
theorem is roughly qn2. In [10] this gap is compared to the q2n gap in Bellare’s Theorem 3.3 in
[2]. However, any comparison based solely on success probabilities is misleading, since the factor
q2n in Bellare’s theorem is multiplied by the advantage of a very low-resource adversary A2 with
running time� nT , much less than that of Fischlin’s adversary. One must always include running
time comparisons when evaluating tightness gaps, and this is not done in [10].
6Note that the inner compression function needs to be strongly .�1; t; q/-secure for a quite small
value of �1, since the theorem loses content if �1 > 1=.2n/.
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5 Security Theorem with Collision Resistance

There are two types of security theorems that have been proved about nested MACs.
Starting with Bellare’s paper [2] (see also [10, 17, 24]), some authors have proved
theorems without assuming collision resistance of the iterated hash function. The
idea is that confidence in security of a MAC scheme should not depend upon
the rather strong assumption that an adversary cannot find hash collisions. Our
Theorem 1 continues this line of work.

On the other hand, if one is using a hash function that one strongly believes to
be collision resistant and one wants to know that an adversary cannot forge message
tags, then one can go back to the much earlier and more easily proved security
theorem in [6]. The purpose of this section is to carry over the main result of [6] to
our class of 1-key nested MACs.

An iterated hash function h is said to be .�; t; q; n/ weakly collision resistant if
no .t; q; n/-adversary that queries h.K; :/ has success probability � � of producing
a collision h.K;M 0/ D h.K;M/, whereM andM 0 are distinct messages of block-
length � n. (Here h.K; :/ is regarded as an oracle, i.e., a black box, and K is a
hidden key.) A MAC is said to be .�; t; q; n/-secure against forgery if no .t; q; n/-
adversary has success probability � � of producing a tag for an unqueried message
of block length � n.

Theorem 2 Suppose that the iterated hash function h coming from the compression
function f is .�1; t; q; n/ weakly collision resistant, the compression function Qf is
an .�2; t; q; 1/-secure MAC, and .f; Qf / is .�3; t; 2q C 2/-secure against .g1; g2/-
related-key attacks. Then MAC Qf ;f;g1;g2 is an .�1C�2C�3; t�.qC1/nT; q; n/-secure

MAC, where T is the time required for one evaluation of f or Qf .

Proof The proof is quite simple. Suppose that we are given a .t � .qC 1/nT; q; n/-
adversary AMAC that has probability � �1 C �2 C �3 of forging a MAC Qf ;f;g1;g2-tag.
Then we construct three adversaries—a .t; q/-adversary A Qf , a .t; q; n/-adversary
Awcr, and a .t; 2q C 2/-adversary Arka—such that at least one of the following is
true:

(i) A Qf has probability� �2 of forging a Qf -tag.
(ii) Awcr has probability � �1 of producing an h collision.

(iii) Arka has advantage� �3 against the .g1; g2/-related-key property of .f; Qf /.
(It does not matter which of (i)–(iii) is true, since any one of the three would
contradict the assumptions of the theorem.)

We first use AMAC to construct both an adversaryArka of the related-key property
and an adversary A Qf h that can forge an Qf h tag. (Recall that Qf h denotes the

MAC Qf .K2; h.K1;M// with independent keys.) The adversary Arka runs AMAC

and interacts with the oracleOrka, which chooses a random bit u. After querying the
oracle Orka with at most 2q C 2 b-bit or c-bit messages, Arka must guess whether
Orka is using random keys (i.e., u D 0) or related keys (i.e., u D 1). As AMAC runs,
for each of its queries Mi the adversary Arka queries the first block Mi

1 to Orka,
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then computesH D h.Orka.M
i
1 /;M

i;.2//, and finally queriesH toOrka; it gives the
valueOrka.H/ to AMAC as the tag of the queried message. If in time� t�.qC1/nT
the adversary AMAC forges a tag of an unqueried message,7 then Arka guesses that
u D 1; otherwise, it guesses that u D 0. Let ˛ denote the advantage of Arka, where,
by definition

˛ D Prob
�
Arka guesses 1

ˇ̌
u D 1� � Prob

�
Arka guesses 1

ˇ̌
u D 0�: (1)

The time Arka needs to perform these steps—that is, computing the values H ,
waiting for AMAC, and verifying the forgery produced by AMAC—that are bounded
by qnT C .t � .q C 1/nT/C nT D t .

We construct A Qf h as follows. It has an Qf h-oracle O Qf h that has hidden keys

K1;K2. The adversary A Qf h runs AMAC, responding to each of its queries Mi by

querying O Qf h and giving AMAC the response O Qf h.M
i/. If AMAC forges the Qf h

tag of an unqueried message QM (which A Qf h can verify with one further query to

its oracle), then A Qf h has succeeded in forging the Qf h tag of QM . Let ˇ denote the
success probability of this adversary A Qf h.

Note that the interaction of A Qf h with AMAC is exactly the same as that of Arka

withAMAC in the case u D 0. Thus, the second term on the right in the expression (1)
for ˛ is equal to ˇ, whereas the first term is the success probability of AMAC, which
by assumption is at least �1C�2C�3. We hence have ˛Cˇ � �1C�2C�3, and this
means that either ˛ � �3 (which is the alternative (iii) above) or else ˇ � �1 C �2.

We now use A Qf h to construct an Qf tag-forging adversaryA Qf and an h collision-
finding adversary Awcr. The former is constructed as follows. After choosing a
random key K1, A Qf runs A Qf h. In response to each query, Mi from A Qf h, A Qf
computes H D h.K1;M

i/, queries this H value to its oracle O Qf D Qf .K2; :/,

and gives the value Qf .K2;H/ to A Qf h. With probability ˇ in time � t � .q C 1/nT,

the adversary A Qf h finds a tag QT D Qf h. QM/, where QM is different from all of the
queried messages. The bound on the time A Qf needs to perform these steps—that is,

computing the values h.K1;M
i/ and waiting for A Qf h—is qnTC .t � .qC1/nT/ D

t � nT. Then A Qf takes time � nT to compute QH D h.K1; QM/, hoping that
it is different from all H values that were queried to O Qf , in which case it has

succeeded in forging an Qf tag. Meanwhile, the adversary Awcr, which has an
oracle Owcr that responds to queries with h.K1; :/ where K1 is a hidden key, is
constructed as follows. It chooses a random key K2 and runs A Qf h, responding to

its queries Mi with Qf .K2;Owcr.M
i//. Awcr looks for a collision between some

7Note that Arka can verify that AMAC has a valid forgery using the same procedure that was used to
respond to its queries. This means that Arka needs to be allowed two more queries of Orka, and for
this reason, the query bound for Arka is 2q C 2 rather than 2q, and the time bounds have the term
.q C 1/nT rather than qnT .
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Owcr.M
i/ D h.K1;M

i/ and Owcr. QM/ D h.K1; QM/, where . QM; QT / is the forgery
produced by A Qf h in the event that the latter adversary succeeds in its task. Note that
the success probability ˇ of A Qf h is the sum of the success probability of A Qf and
that of Awcr. Since ˇ � �1 C �2 if alternative (iii) does not hold, it follows that at
least one of the above alternatives (i)–(iii) must hold.

This concludes the proof. ut
This theorem, like Theorem 1, provides only a very limited type of security

assurance. Two of the three “reasons for skepticism” listed in Sect. 4 also apply
to Theorem 2: it assumes the (unrealistic) single-user setting, and one of its
hypotheses—the secure-MAC property for the compression function—is very
difficult to evaluate in practice. On the positive side, at least Theorem 2 is tight,
unlike Theorem 1. It’s reasonable to regard Theorem 2 as providing a type of
assurance that the “domain extender” feature of the MAC scheme is not likely to
be a source of security breaches, provided that h is weakly collision resistant.

The proof of Theorem 2 is short, straightforward, and in some sense tautological.
Some people would even say that it is “trivial,” although we would prefer not to use
such a pejorative word in connection with the proof of Theorem 2. But in any case,
it seems to us that proofs of this sort merely confirm what is more or less intuitively
obvious from the beginning. Such proofs cannot serve as a meaningful source of
confidence in a protocol, and they certainly cannot be a substitute for extensive
testing and concrete cryptanalysis.

6 HMAC vs. Envelope MAC Comparison

As discussed in [19], it often happens that a type of cryptography enjoys nearly
universal acceptance more for reasons of historical happenstance than because of
its intrinsic advantages over the alternatives. At present HMAC is widely deployed,
whereas Envelope MAC languishes in relative obscurity. But the reasons for this
seem to lie in the peculiarities of the history of Envelope MAC, and one can argue
that, despite this history, it deserves serious consideration as a secure and practical
MAC scheme.

An Envelope MAC scheme was first presented by Tsudik in [28]. His scheme
used two independent c-bit keys, and he argued informally that this would give it
2c bits of security. However, Preneel and van Oorschot [25] showed that the keys
can be recovered in 2cC1 steps if one knows approximately 2c=2 message-tag pairs.
That is, Tsudik was wrong, and two independent keys do not give significantly more
security than one key.

Soon after, Kaliski and Robshaw [12] and Piermont and Simpson [23] presented a
1-key variant of Envelope MAC, but it had a flaw. To explain this, for concreteness,
we’ll use MD5 as the underlying hash function with c D 128, b D 512. Let p
denote a 384-bit padding, used to extend a key to fill a 512-bit block. Given a 128-
bit key K and a message M of arbitrary length, the tag is h.KkpkM kK0/ (where
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the 0 superscript indicates that 0s are appended to fill out the last message block).
Note that the second K may spill over into two blocks since the bitlength of M
is not required to be a multiple of b. Preneel and van Oorschot [26] exploited this
overlap to design a key-recovery attack that needs approximately 264 message-tag
pairs and has running time 264. Because a MAC based on MD5 would be expected to
require exhaustive search—that is, roughly 2128 steps—for key recovery, this attack
exposed a serious defect in the variant of Envelope MAC in [12,23]. The Preneel-van
Oorschot attack gave Envelope MAC a bad name. However, the attack was possible
only because of poor formatting of the second key block.

This flaw can be removed simply by ensuring that each key lies in its own
block. This was done by Yasuda [29]. Yasuda also gave a security proof, along
the lines of Bellare’s HMAC security proof in [2]; in fact, he made crucial use
of Bellare’s Lemma 3.1. Like Bellare’s proof, Yasuda’s security theorem requires
unconstructible adversaries and so is not valid in the uniform model of complexity.
Our Theorem 1 gives a uniform proof for the version of 1-key Envelope MAC
described by Yasuda.

As pointed out in [29], Envelope MAC has a minor efficiency advantage over
HMAC because the iterated hash function needs to be applied just once. Generally,
the accepted procedure when applying an iterated hash function is to append a block
at the end of the message that gives the block length of the message. (With this
modification, one can give a simple proof that collision resistance of f implies
collision resistance of h.) In Envelope MAC, this is done just once, whereas in
HMAC it needs to be done twice. Envelope MAC also has the advantage of
simplicity—no need for ipad and opad.

In order to argue that HMAC is preferable, one thus has to make a persuasive
case that it has better security. Our two theorems give the same security results in
both cases, and the same building block (a compression function f ) can be used in
both. From this standpoint the only grounds for preferring HMAC would be if one
of the following holds:

1. The prf assumption on Qf in Theorem 1 is more credible for HMAC than for
Envelope MAC. In the former case, the assumption is weaker than the prf
assumption on f and in fact follows from it. In the latter case the assumption
also seems to be weaker than the prf assumption on f in practice, but not in
the formal sense; in Envelope MAC the prf assumption on Qf is an additional
condition that is not a consequence of the prf assumption on f .8 One could claim
that the need for a separate Qf condition in Envelope MAC means that it is less
secure than HMAC.

8In the prf test for f , the adversary gets the values f .K;M/ (with K a c-bit hidden key and M
a b-bit queried message); in the test for Qf in HMAC, he gets the values f .K;Mkp/ (with M a
c-bit message and p a fixed .b � c/-bit padding); and in the test for Qf in Envelope MAC, he gets
the values f .M;Kkp/. Thus, the only difference is whether the key occurs in the first c bits or in
the next c bits.
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2. The secure-MAC assumption on Qf in Theorem 2 is more credible for HMAC
than for Envelope MAC. One would be claiming that it’s harder to forge a tag if
the key occurs in the first c bits than if it occurs in the next c bits.

3. The different choices of the pair of functions g1, g2 lead to a real difference in
strength of the related-key assumptions. There would be a strong reason to prefer
HMAC if one could argue that the choice g2.K/ D K in Envelope MAC makes
the related-key assumption less plausible.

However, we know of no evidence for any of the above three claims. To the best
of our knowledge, no provable security theorem justifies preferring one of these two
MACs over the other. Nor does any such theorem preclude the possibility that one
would want to choose some other MAC with entirely different functions Qf , g1, g2.

Remark 3 Both HMAC and Envelope MAC offer the convenience of using only an
off-the-shelf hash function with built-in IV. However, one can argue that for the outer
compression function—which maps only from f0; 1gc �f0; 1gc rather than from the
much larger set f0; 1gc�f0; 1gb—it might be more efficient to use a specially chosen
Qf . One can even argue that the inner compression function f needs to have better

security than Qf because it is iterated. That is why Theorem 1 has a 2n tightness gap
with respect to the advantage bound �1 of an f adversary, but not with respect to the
advantage bound �2 of an Qf adversary. If one believes that security proofs should
guide protocol design and that efficiency should not be sacrificed for security unless
a provable security theorem gives grounds for doing so (in [13] Katz and Lindell
argue forcefully for this viewpoint), then it is natural to conclude that Qf should be
less secure than f . Elsewhere (see [16]) we have raised doubts about this way of
thinking, so our personal preference would be not to use a weaker Qf . But to someone
who needs only short-term security, this might be an acceptable risk in order to gain
a slight edge in efficiency.

Conclusion

The Importance of the “Right” Definitions

In their highly regarded textbook [13] on the foundations of cryptography,
Katz and Lindell write that the “formulation of exact definitions” is Principle
1 in their list of “basic principles of modern cryptography” and that getting
the definitions right is the “essential prerequisite for the. . . study of any
cryptographic primitive or protocol.” We agree with this statement, and in
[16] we analyzed some of the difficulties and challenges that researchers in
both symmetric and asymmetric cryptography have faced in trying to search
for a consensus on what the “right” definitions are.

(continued)
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In our study of 1-key nested MACs, we have encountered two instances
where the standard accepted definitions are not, in our opinion, the natural
and useful ones. First, as we explained in Sect. 9 of [17], in the context of
iterated hash functions the usual definition of pseudorandomness needs to be
replaced by a stronger definition in which the adversary is given the power to
“reset” the oracle. In the second place, when analyzing the step from NMAC
to 1-key versions such as HMAC and Envelope MAC, we believe that our
definition of resistance to related-key attack is preferable to the one used by
earlier authors.

We have given arguments justifying our use of these new definitions.
Nevertheless, it would be arrogant in the extreme for us to claim that we have
resolved the question or that our viewpoint is definitive. Cryptography is as
much an art as a science, and to some extent decisions about which are the
“right” definitions are matters of personal taste.

The Role of Mathematical Proofs

The NIST documents concerning the SHA-3 competition illustrate the limited
role that provable security plays in evaluating real-world cryptosystems. The
report [22] that explains the rationale for the selection of the winner devotes
about 5 % of the section on security to security proofs. The report highlights
the role of proofs in showing a hash function’s “security against generic
attacks—attacks that only exploit the domain extender and not the internals
of the underlying building blocks” (p. 11). It notes that all five finalists have
this sort of security proof. In other words, the security proofs are useful as
a minimal type of assurance that basically says that concrete cryptanalysis
should focus on the underlying building blocks rather than on the extension
procedure. But the final decision about what to use must be based on extensive
testing and concrete cryptanalysis. NIST makes it clear that provable security,
although a necessary component in the security analysis, played no part in
ranking the five finalists.9

In choosing a MAC scheme, provable security (which, as we argued in
[15], is a misnomer) should play no greater role than it did in choosing
SHA-3. All methods of the form in Theorem 1 for constructing MACs
from compression functions are good domain extenders if they satisfy the

(continued)

9How can something be a necessary component, but play no role in the selection? By analogy, when
one looks for an apartment, a functioning toilet is a requirement; however, one doesn’t normally
choose which apartment to rent based on which has the nicest toilet.
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hypothesis of that theorem—of course, “good” only in the limited sense
guaranteed by the conclusion of the theorem. As in the case of the SHA-3
competition, the final choice has to be made through ad hoc testing rather
than mathematical theorems. In particular, the relative merits of HMAC and
Envelope MAC cannot be determined from provable security considerations.
The choice between the two (or a decision to go with a totally different
Qf ; g1; g2) is a judgment call.
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Non-extendable Fq-Quadratic Perfect
Nonlinear Maps

Ferruh Özbudak and Alexander Pott

Abstract Let q be a power of an odd prime. We give examples of non-extendable
Fq-quadratic perfect nonlinear maps. We also show that many classes of Fq-
quadratic perfect nonlinear maps are extendable. We give a short survey of some
related results and provide some open problems.

1 Introduction

Let q be a power of an odd prime. Let n;m be positive integers with m dividing
n. We use TrFqn=Fqm and NormFqn =Fqm to denote the relative trace and relative norm
functions from Fqn to Fqm given by

TrFqn =Fqm D x C xq
m C x2qm C � � � C xq.n=m�1/m

and

NormFqn =Fqm D x � xq
m � x2qm � � �xq.n=m�1/m

:

When m D 1, we denote TrFqn =Fq and NormFqn =Fq as Tr and Norm in short.
An arbitrary Fq-quadratic form f on Fqn is a map from Fqn to Fq given by

f .x/ D Tr.a0x2 C a1xqC1 C � � � C ad n2 exd
n
2 eC1/

where a0; a1; : : : ; ad n2 e 2 Fqn . We call such f an Fq-quadratic map from Fqn to Fq

as well.
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An Fq-quadratic mapF on Fqn is a map in Dembowski–Ostrom polynomial form
given by

F.x/ D
n�1X

i;jD0
ai;j x

qiCqj

where ai;j 2 Fqn .
Let fe1; e2; : : : ; eng be an Fq-basis of Fqn . Equivalently, an Fq-quadratic map on

Fqn is a map given by

F.x/ D
nX

iD1
fi .x/ei : (1)

where fi .x/ is an Fq-quadratic form on Fqn . Indeed if fe�1 ; e�2 ; : : : ; e�n g is the trace-
orthogonal basis (see [18]), then

fi .x/ D Tr

0

@e�i
n�1X

i1;i2D0
ai1;i2x

qi1Cqi2
1

A

is an Fq-quadratic form given in (1) for 1 � i � n.
We find it more convenient to represent the Fq-quadratic map F from Fqn to Fqn

(or Fnq) as

F.x/ D

2

6
4

f1.x/
:::

fn.x/

3

7
5 :

In general, for 1 � r � n, we say that F is an Fq-quadratic map from Fqn to F
r
q if

F.x/ D

2

6
4

f1.x/
:::

fr .x/

3

7
5 :

where f1.x/; : : : ; fr .x/ are Fq-quadratic forms on Fqn . Choosing a basis
fe1; : : : ; eng of Fqn over Fq , F can equivalently be considered as an Fq-quadratic
map from Fqn to Fqr given by

F.x/ D f1.x/e1 C � � � C fr.x/er :

We give an important definition.
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Definition 1.1 For 1 � r � n, let F be an Fq-quadratic map from Fqn to F
r
q . For

a 2 F
�
qn , let DF;a be the difference map from Fqn to F

r
q given by

DF;a.x/ D F.x C a/� F.x/ � F.a/

We call F is perfect nonlinear or .qn; qr /-bent if the cardinality of the set

fx 2 Fqn W DF;a.x/ D bg

is equal to qn�r for all a 2 F
�
qn and b 2 F

r
q . We also call F is .n; r/-bent if q is clear

from the context. Moreover we say that F is planar if n D r and F is bent if r D 1.

Definition 1.2 For 1 � r � n, let

2

6
4

f1
:::

fr

3

7
5 and

2

6
4

g1
:::

gr

3

7
5 be Fq-quadratic maps from

Fqn to F
r
q . We call that

2

6
4

f1
:::

fr

3

7
5 and

2

6
4

g1
:::

gr

3

7
5 are equivalent if there exists an Fq-

linearized permutation polynomial L.x/ 2 Fqn Œx� and an invertible r � r matrix
Œaij� with entries from Fq such that

Œaij�

2

6
4

f1.L.x//
:::

fr .L.x//

3

7
5 D

2

6
4

g1.x/
:::

gr .x/

3

7
5

for all x 2 Fqn .

Remark 1.3 There are more general notions of equivalence for arbitrary finite fields
and more general maps between them: extended affine equivalence and Carlet–
Charpin–Zinoviev equivalence [6]. However the equivalence in Definition 1.2 gives
the same results if we use these two other equivalence notions for the Fq-quadratic
maps from Fqn to F

r
q in this paper (see [21]).

Definition 1.4 For 1 � r � n � 1, let F be an Fq-quadratic .qn; qr /-bent map.
We call that F is extendable if there exists an Fq-quadratic form f on Fqn such

that the map

�
F.x/

f .x/

	
is an .qn; qrC1/-bent map. Otherwise we call that F is non-

extendable.

Note that F is non-extendable if and only if G is non-extendable for any G
equivalent to F . Moreover non-extendableFq-quadratic perfect nonlinear maps can
be considered as a kind of “atomic” structures.
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It is a difficult problem to characterize all Fq-quadratic perfect nonlinear maps
up to equivalence. In Sect. 2 we give a short survey on some of the results in this
problem.

It seems also a difficult problem to characterize all Fq-quadratic non-extendable
Fq-quadratic perfect nonlinear maps up to equivalence. In Sect. 3 we prove that
many classes of Fq-quadratic perfect nonlinear maps are extendable. In Sect. 4 we
give some examples of non-extendable Fq-quadratic perfect nonlinear maps.

There is a natural connection to finite semifields. We explain such a connection
in Sects. 5 and 6. Throughout the chapter, we explain many open problems.

2 Fq-Quadratic Perfect Nonlinear Maps

In this section we mainly consider Fq-quadratic perfect nonlinear maps from Fqn to
Fqn . They are also called planar maps. The equivalence in Definition 1.2 of Sect. 1
becomes the following. Let f; g W Fqn ! Fqn be Fq-quadratic maps on Fqn . We say
that f and g are equivalent if there exist Fq-linearized permutation polynomials
L1;L2 2 Fqn Œx� such that

f .x/ D L1 ı g ı L2 for all x 2 Fqn :

It is a difficult problem to decide whether a given map is planar or not in general.
All Fq-quadratic monic monomial maps on Fq3 are

x2; xqC1; x2q; xq2C1; xq2Cq; x2q2 :

It is easy to prove that all these Fq-quadratic monomial maps are planar. Recently
the authors characterized all Fq-quadratic planar binomial maps on Fq3 explicitly
in [16]. Up to multiplication with a nonzero constant in Fq3 , there are 15 distinct
Fq-quadratic binomial maps on Fq3 :

(1) x2 C ux q
2Cq

(2) xqC1 C ux 2q
2

(3) x2q C ux q
2C1

(4) x2 C ux qC1
(5) x2 C ux 2q

(6) x2 C ux q
2C1

(7) x2 C ux 2q
2

(8) xqC1 C ux 2q

(9) xqC1 C ux q
2C1

(10) xqC1 C ux q
2Cq

(11) x2q C ux q
2Cq

(12) x2q C ux 2q
2

(13) xq
2C1 C ux q

2Cq
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(14) xq
2C1 C ux 2q

2

(15) xq
2Cq C ux 2q

2

Here u is an arbitrary nonzero element in Fq3 . It is easier to decide whether the
maps in the sublist 4; 5; : : : ; 15 are planar or not. First we recall that for u 2 F

�
q3

, the
polynomial maps

xqC1 C ux2 2 Fq3 Œx� and xq
2C1 C ux2 2 Fq3 Œx� (2)

are not planar (see Lemma 5.1 and page 643 in [12]). It is clear that the items
4; 6; 8; 11; 14, and 15 are all equivalent to one of the maps in (2). For example,
regarding the map in item 8, we have

xqC1 C ux2q D .xq2C1 C ux2/ ı xq mod .xq
3 � x/:

Therefore, the maps in items 4; 6; 8; 11; 14, and 15 are not planar for any u 2 F
�
q3

.
Next we consider the remaining maps in the sublist. The maps in items 5; 7, and 12
are compositions of x2 with a linearized polynomial map. For example, regarding
the map in item 5, we have

x2 C ux2q D .x C uxq/ ı x2

Therefore the map in item 5 is planar if and only if the map x 7! x C uxq
2

is a
permutation map. Similarly it is easy to decide whether the maps in items 7 and 12
are planar or not depending on the corresponding linearized polynomials in terms
of u 2 Fq3 . Moreover they are equivalent to x2 if they are planar.

The maps in items 9; 10, and 13 are compositions of xqC1 with a linearized
polynomial map. For example, regarding the map in item 9, we have

xqC1 C uxq
2C1 � .x C uxq

2

/ ı xqC1 mod .xq
3 � x/

Therefore the map in item 9 is planar if and only if the map x 7! x C uxq
2

is a
permutation map. Similarly the maps in items 10 and 13 are planar if and only if
the corresponding linearized polynomials give permutation maps, which depend on
u 2 F

�
q3

. Moreover they are equivalent to xqC1 if they are planar.
It remains to consider the maps in items 1; 2, and 3. These maps are quite

different from the rest of the maps in the list. First the maps in items 2 and 3 are
equivalent to the map in item 1 as

xqC1 C ux2q
2 � .xq2Cq C ux2/ ı xq2 mod .xq

3 � x/

and

x2q C uxq
2C1 � .x2 C uxq

2Cq/ ı xq mod .xq
3 � x/:
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Hence for u 2 F
�
q3

let Fu be the binomial map given by

Fu.x/ D xq2Cq C ux2 2 Fq3 Œx�:

In [16] the authors prove that Fu.x/ is planar for some u 2 Fq3 and equivalent to
x2. They also prove that Fu.x/ is planar for some u 2 Fq3 and equivalent to xqC1.
Therefore the binomial form of Fu.x/ is different from the sublist of the binomial
forms in 4; 5; : : : ; 15 as they cannot be equivalent to both x2 and xqC1 for some
different choices of u 2 F

�
q3

. Moreover, it seems that proving planarity of Fu.x/ is
quite difficult, and it has direct connections with arithmetic of some function fields
[16]. Their main results is (see Theorem 4.5 in [16]):

Theorem 2.1 Let q be a power of an odd prime and u 2 Fq3 . Let Fu.x/ be the

polynomial xq
2Cq C ux2 in Fq3 Œx�. If q � 1 mod 3, then let G and H be the

subgroups of F�
q3

with jGj D q2 C q C 1 and jH j D .q2 C q C 1/=3. Then the
polynomial Fu.x/ is planar if and only if q � 1 mod 3 and

u 2
�
�.G nH/ [ 1

2
.G nH/

�
:

Moreover we have the followings. Assume that q � 1 mod 3.

• The polynomial Fu.x/ is equivalent to x2 if and only if u 2 1
2
.G nH/.

• The polynomial Fu.x/ is equivalent to xqC1 if and only if u 2 �.G nH/.
We note that one of the important ingredients in the proof of Theorem 4.5 in

[16] comes from the theory of (commutative) finite semifields. We will give more
information about it in Sects. 5 and 6 below.

We also note that there are many related problems stated either explicitly or
implicitly in [16]. We would like to refer to Remark 3.9 in [16] and Corollary 4.6 in
[16].

A special type of Dembowski–Ostrom is of the form

F.x/ D L1.x/L2.x/;

where both L1.x/ and L2.x/ are Fq-linearized polynomials in Fqn Œx�. In [15] the
planarity of such products of linearized polynomials is investigated. An important
tool they use is the link between the set

M.L/ W f˛ 2 Fq W L.x/C ˛x is bijective on Fqng;

which is studied in finite geometry [1, 4, 23].
Another important tool they use is Hasse–Weil–Serre Theorem (see, Theorem 4

in [15] and Theorem 5.3.7 in [24]). Using Hasse–Weil–Serre Theorem, they prove
the following result.
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Theorem 2.2 Let q be a power of an odd prime and n � 2 be an integer. Let
Trn.x/ W Fqn ! Fq be the linearized polynomial x 7! x C xq C � � � C xqn�1

. For
a 2 Fqn , if n � 5, then the mapping

F.x/ D x.Trn.x/C ax/

is not planar.

There are planar maps of the form x.Trn.x/ C ax/ with a 2 Fqn for n D 2 and
n D 3. The case of n D 2 was completely characterized in Theorem 2 of [15].

For the case n D 3, it was proved in [15] that

F.x/ D x.Tr3.x/C ax/ (3)

is planar for a 2 f�1;�2g. Moreover for certain values of a 2 Fq , it was proved
that F.x/ in (3) is not planar on Fq3 . Moreover they conjectured in Conjecture 1 and
Conjecture 2 that there is no planar map of the form (3) for the remaining values
of a 2 Fq3 . These conjectures were proved in [8] again using some facts from the
theory of finite semifields.

The authors in [15] also conjectured that there is no planar map on a 2 Fq4 of
the form

F.x/ D x.Tr4.x/C ax/ with a 2 Fq4 :

In [8] it is commented that their method for resolving the conjecture for the case
n D 3 would not work for the case n D 4. Indeed the conjecture for the case n D 4
was proved in [25] using a different approach. They also proved the subcase for
n D 3 where a 2 f�1;�2g using an elementary approach. It is still a problem
whether an approach using exponential sums would work to prove the conjecture of
the remaining situation of the subcase n D 3 that a 2 Fq3 n Fq . We also refer to
Sect. 2 in [15] for another open problem.

Recall that we define the equivalence of Fq-quadratic perfect nonlinear maps
from Fqn to F

r
q in Definition 1.2 of Sect. 1. Up to recently, such maps were classified

completely only in the following cases:

• n � 1; r D 1 (nondegenerate Fq-quadratic form),
• n D 2; r D 2 ([10], finite fields),
• n D 3; r D 3 ([20], finite fields or twisted finite field).

Namely, for .n; r/ D .2; 2/ all Fq-quadratic perfect nonlinear maps are
equivalent to the map x 7! x2. Moreover for .n; r/ D .3; 3/ all Fq-quadratic perfect
nonlinear maps are equivalent to one of the following maps:

• x 7! x2 (finite field),
• x 7! xqC1 (twisted finite field).
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Recently we proved in [21] that all Fq-quadratic perfect nonlinear maps for
.n; r/ D .3; 2/ are equivalent. We used some results from algebraic geometry, in
particular Bezout’s Theorem in our proof. We also presented an explicit algorithm
for finding the corresponding equivalence using a geometric method.

First we note that, up to equivalence, an Fq-quadratic perfect nonlinear map from
Fq3 to F

2
q has to be of the form

F.x/ D
�

Tr.x2/
Tr.�x2 C wxqC1/

	

for some �;w 2 Fq3 (see Sect. 3 in [21]). However it is perfect nonlinear only
for some �;w 2 Fq3 . We also provided a characterization result as follows (see
Proposition 3.1 in [21]).

Proposition 2.3 Let q be a power of an odd prime. For �;w 2 Fq3 consider the
Fq-quadratic map F W Fq3 ! F

2
q given by

F.x/ D
�

Tr.x2/
Tr.�x2 C wxqC1/

	
:

Then F is perfect nonlinear if and only if the polynomial

T 3 C A2T 2 C A1T C A0 2 FqŒT �;

where

A2 D Tr.2�/;
A1 D Tr..2�/qC1 � w2/;
A0 D Norm.2�/ � Tr.2�w2q/C 2Norm.w/

is irreducible over Fq .

For some special Fq-quadratic maps, it is easy to decide whether they are
perfect nonlinear or not (also equivalence among them is much easier to find). The
following was proved in Sect. 2 of [21].

Theorem 2.4 Let fw1;w2g; fw3;w4g � Fq3 be Fq-linearly independent sets. Let F1
and F2 be the Fq-quadratic maps given by

F1.x/ D
�

Tr.w1x2/
Tr.w2x2/

	
and F2.x/ D

�
Tr.w3xqC1/
Tr.w4xqC1/

	

For w 2 Fq3 n Fq let G andH be the Fq-quadratic maps

G.x/ D
�

Tr.x2/
Tr.wx2/

	
andH.x/ D

�
Tr.xqC1/
Tr.wxqC1/

	
:
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Then all of the maps F1; F2;G, andH are perfect nonlinear and equivalent to each
other.

The main result of the [21] is the following theorem.

Theorem 2.5 Let F W Fq3 ! F
2
q be an Fq-quadratic perfect nonlinear map. We

can assume that there exist �;w 2 Fq3 such that

F.x/ D
�

Tr.x2/
Tr.�x2 C wxqC1/

	

without loss of generality (up to equivalence). Let PG.2;Fq3/ denote the projective
plane over Fq3 . Let T1 be the set of consisting .x0 W x1 W x2/ 2 PG.2;Fq3/ such that

T1 W x20 C x21 C x22 D 0:

Let T2 be the set of consisting of .x0 W x1 W x2/ 2 PG.2;Fq3/ such that

T2 W .x20� C x21�q
2 C x22�q/C .x0x1wq

2 C x0x1wC x1x2wq/ D 0:

Let E W PG.2;Fq3/! PG.2;Fq3 / be the action defined as

.x0 W x1 W x2/ 7! .x
q
0 W xq1 W xq2 /:

Then we have the following:

(1) There exist Q;P1 2 PG.2;Fq3/ such that

T1 \ T2 D fQ;P1;E.P1/; .E ıE/.P1/g;

E.Q/ D Q and jT1 \ T2j D 4.
(2) Put P1 D .a0 W a1 W a2/ 2 PG.2;Fq3/ with a0; a1; a2 2 Fq3 . Let L.x/ be the

Fq-linearized polynomial in Fq3 Œx� given by

L.x/ D a0x C aq1xq C aq
2

2 x
q2 :

Then there exist ı1; ı2 2 Fq3 such that

�
Tr.ı1xqC1/
Tr.ı2xqC1/

	
is perfect nonlinear

and

�
Tr.ı1xqC1/
Tr.ı2xqC1/

	
D F.L.x// for all x 2 Fq3 :
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Note that Theorem 2.5 gives an explicit geometric method for finding an
equivalence from F.x/ to an Fq-quadratic perfect nonlinear map in the form

�
Tr.ı1xqC1/
Tr.ı2xqC1/

	
:

As it is easy to find equivalence for the Fq-quadratic perfect nonlinear maps in
between the maps F1; F2;G, and H in Theorem 2.4, we easily obtain a geometric
algorithm for finding an equivalence from F.x/ to, for example, G.x/. We refer to
Sect. 3 in [21] for such an explicit algorithm.

There is a consequence of Theorems 2.4 and 2.5 given in Sect. 3 below.

3 Extendable Fq-Quadratic Perfect Nonlinear Maps

In this section we show that many classes of Fq-quadratic perfect nonlinear maps
are extendable.

Proposition 3.1 Let n � 2 andF W Fqn ! Fq be an Fq-quadratic perfect nonlinear
(or bent) map. Then F is extendable.

Proof Let f1.x/ D F.x/. Note that f1.x/ is a nondegenerate Fq-quadratic form on
Fqn . We will show that there exist Fq-quadratic forms f2.x/; : : : ; fn.x/ on Fqn such
that

2

6
6
6
4

f1.x/

f2.x/
:::

fn.x/

3

7
7
7
5

is an Fq-quadratic perfect nonlinear map (or planar map) from Fqn to F
n
q . This shows

that F is extendable.
Assume first that n is odd. Let � 2 F

�
q be a nonsquare. Let g1.x/ D Tr.x2/ and

h1.x/ D �Tr.x2/. Note that both g1.x/ and h1.x/ are nondegenerate Fq-quadratic
forms on Fqn . Moreover the discriminants of g1.x/ and h1.x/ are not both square
or both nonsquare in F

�
q . Here we use the fact that n is odd and �n is a nonsquare

in F
�
q . It is well known that there are exactly two nondegenerateFq-quadratic forms

on Fqn (also for n is even) up to a choice of Fq-basis of Fnq; they are determined
by whether the discriminant is square or not in F

�
q (see, e.g., Theorem 4.9 in [11]).

Hence, there exists an Fq-linearized polynomialL.x/ 2 Fqn Œx� such that

f1.L.x// D g1.x/ or h1.x/ for all x 2 Fqn :
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As x 7! x2 and x 7! �x2 are Fq-quadratic perfect nonlinear maps from Fqn to Fqn ,
there exist Fq-quadratic forms g2.x/; h2.x/; : : : ; gn.x/; hn.x/ on Fqn such that

2

6
6
6
4

g1.x/

g2.x/
:::

gn.x/

3

7
7
7
5

and

2

6
6
6
4

h1.x/

h2.x/
:::

hn.x/

3

7
7
7
5

are Fq-quadratic nonlinear maps from Fqn to F
n
q . Therefore

2

6
6
6
4

f1.x/

g2.L
�1.x//
:::

gn.L
�1.x//

3

7
7
7
5

or

2

6
6
6
4

f1.x/

h2.L
�1.x//
:::

hn.L
�1.x//

3

7
7
7
5

is an Fq-quadratic perfect nonlinear map from Fqn to F
n
q if f1.L.x// D g1.x/ or

f1.L.x// D h1.x/, respectively. This completes the proof if n is odd.
Assume next then n is even. Let � 2 F

�
qn be a nonsquare. Let g1.x/ D Tr.x2/ and

h1.x/ D Tr.�x2/. Note that g1.x/ and h1.x/ are again nondegenerate Fq-quadratic
forms on Fqn . Comparing with the proof of the case n is odd above, it is enough to
show that the discriminants�.g1/ and�.h1/ are distinct modulo squares in F

�
q . Let

� W F�q ! f1;�1g be the quadratic character

�.u/ D
(
1 if u is a square in F

�
q ;

�1 if u is not a square in F
�
q :

Let Q W Fqn ! Fq be an arbitrary nondegenerate Fq-quadratic form on Fqn with
discriminant� 2 F

�
q . Let b 2 Fq� be an arbitrary nonzero element. It is well known

that (see, e.g., Theorem 6.26 in [18])

jfx 2 Fqn W Q.x/ D bgj D qn�1 � q n�2
2 �.�1/n=2�: (4)

Note that we also have

2qn�1 D 2jfy 2 Fqn W Tr.y/ D bgj
D jfx 2 Fqn W Tr.x2/ D bgj C jfx 2 Fqn W Tr.�x2/ D bgj (5)

Here we use the fact that if y 2 F
�
qn is a square, then

jfx 2 Fqn W y D x2gj D 2 and jfx 2 Fqn W y D �x2gj D 0I
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otherwise if y 2 F
�
qn is not a square, then

jfx 2 Fqn W y D x2gj D 0 and jfx 2 Fqn W y D �x2gj D 2:

Assume the contrary that �.�.g1// D �.�.h1//. Using (4) and (5), we obtain that

2qn�1 D 2.qn�1 ˙ q n�2
2 /

which is a contradiction. Therefore �.�.g1// ¤ �.�.h1//, which completes the
proof. ut

The following is a corollary of Theorems 2.4 and 2.5 of Sect. 2.

Corollary 3.2 Let F W Fq3 ! Fq2 be an Fq-quadratic perfect nonlinear map. Then
F is extendable.

Proof By Theorems 2.4 and 2.5 of Sect. 2, we know that F is equivalent to

�
Tr.x2/
Tr.wx2/

	
and

�
Tr.xqC1/
Tr.wxqC1/

	

for w 2 Fq3 nFq . Hence F is extendable to both of the maps x 7! x2 and x 7! xqC1
on Fq3 . ut
Example 3.3 Let q D 3 and n D 4. There are exactly 2 distinct Fq-quadratic planar
maps from F W F34 to F34 up to equivalence. They are the maps

x 7! x4 C x10 � x36 and x 7! x2:

Using computer, we have verified that all F3-quadratic .q4; q2/-bent maps are
extendable.

Example 3.4 Let q D 3 and n D 5. There are exactly 7 distinct Fq-quadratic planar
maps from F W F35 to F35 up to equivalence. They are the maps

• x 7! x2:

• x 7! xqC1:
• x 7! xq

2C1:
• x 7! x10 C x6 � x2:
• x 7! x10 � x6 � x2:
• x 7! x90 C x2:
• x 7! �.x3 � x/CD.x3 � x/C 1

2
x2 with D.x/ D �x36 C x28 C x12 C x4.

Using computer, we have also verified that all F3-quadratic .q5; q2/-bent maps are
extendable.

In the next section we give the first examples of non-extendable Fq-quadratic
perfect nonlinear maps in the literature as far as we know.
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4 Non-extendable Fq-Quadratic Perfect Nonlinear Maps

In this section we give some non-extendable Fq-quadratic perfect nonlinear maps.
We note that finding non-extendable Fq-quadratic perfect nonlinear maps seems to
be more difficult than finding Fq-quadratic perfect nonlinear maps. The reason is
that non-extendable maps require that they are impossible to extend, which is an
extra condition.

Example 4.1 Let q D 3 and n D 4. Recall that, up to equivalence, there are exactly
two Fq-quadratic perfect nonlinear maps from Fq4 to Fq4 , which are the maps given
by the polynomials x2 and x4 C x10 � x36. We also recall that all Fq-quadratic
perfect nonlinear maps F W Fq4 ! Fq2 are extendable (see Sect. 3). In fact, up to
equivalence, there are exactly 7 Fq-quadratic perfect nonlinear maps from Fq4 to
Fq2 .

However there are non-extendableFq-quadratic perfect nonlinear maps from Fq4

to Fq3 . There are exactly 18 Fq-quadratic perfect nonlinear maps from Fq4 to Fq3 up
to equivalence. Only 5 of them are extendable. We define them as E1;E2;E3;E4,
and E5 below. Only E5 extends to both x2 and x4 C x10 � x36. The others extend
only to x4 C x10 � x36. The remaining 13 are Fq-quadratic perfect nonlinear maps
from Fq4 to Fq3 are non-extendable. We define them as NE1;NE2; : : : ;NE13 below.

Now we give these maps explicitly. Let w be a primitive element of Fq4 such that
w4 C 2w3 C 2 D 0. Let E1;E2;E3;E4;E5 W Fq4 ! F

3
q be the maps given by

E1.x/ D
2

4
Tr.x2/
Tr.wx10/
Tr.w2x10 C w5x4/

3

5 ; E2.x/ D
2

4
Tr.x2/
Tr.wx10/
Tr.w2x2/

3

5 ; E3.x/ D
2

4
Tr.x2/
Tr.wx10/
Tr.w8x2/

3

5 ;

E4.x/ D
2

4
Tr.x2/
Tr.w13x10/
Tr.w5x4/

3

5 ; E5.x/ D
2

4
Tr.x2/
Tr.wx4/
Tr.w2x4/

3

5 :

These are the extendable maps.
Let NE1;NE2; : : : ;NE13 W Fq4 ! Fq3 be the maps given by

NE1.x/ D

2

6
4

Tr.x2/
Tr.wx10/
Tr.wx4/

3

7
5 ; NE2.x/ D

2

6
4

Tr.x2/
Tr.wx10/
Tr.w5x4/

3

7
5 ; NE3.x/ D

2

6
4

Tr.x2/
Tr.wx10/
Tr.w7x4/

3

7
5 ;

NE4.x/ D

2

6
4

Tr.x2/
Tr.wx10/
Tr.w3x10 C w8x4 C wx2/

3

7
5 ; NE5.x/ D

2

6
4

Tr.x2/
Tr.wx10/
Tr.w3x10 C w25x4 C wx2/

3

7
5 ;
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x4 + x10 − x36 x2

E1 E2 E3 E4 E5

Fig. 1 Lattice for extendable and non-extendable F3-quadratic perfect nonlinear maps on F34

NE6.x/ D

2

6
4

Tr.x2/
Tr.wx10/
Tr.w3x10 C wx4 C w2x2/

3

7
5 ; NE7.x/ D

2

6
4

Tr.x2/
Tr.wx10/
Tr.w30x4 C w6x2/

3

7
5 ;

NE8.x/ D

2

6
4

Tr.x2/
Tr.wx10/
Tr.w15x2/

3

7
5 ; NE9.x/ D

2

6
4

Tr.x2/
Tr.wx10/
Tr.w4x4 C w15x2/

3

7
5 ;

NE10.x/ D

2

6
4

Tr.x2/
Tr.w13x10/
Tr.wx4/

3

7
5 ; NE11.x/ D

2

6
4

Tr.x2/
Tr.wx4/
Tr.w2x10 C wx2/

3

7
5 ;

NE12.x/ D

2

6
4

Tr.x2/
Tr.wx4/
Tr.w14x10 C w8x4 C wx2/

3

7
5 ; NE13.x/ D

2

6
4

Tr.x2/
Tr.wx4/
Tr.w4x10 C w8x4 C w2x2/

3

7
5 :

These are the non-extendable maps.

We summarize these results in Fig. 1 in the form of a lattice.

5 Semifields

In this section we give a short introduction to finite semifields. We refer to [3, 5, 7,
9, 13, 14, 17, 19, 20, 22, 26] for further information.

Recall that a field is a nonempty set F with two binary operations C and �
satisfying the following axioms:

• .F;C/ is an abelian group with 0.
• .F n f0g;�/ is an abelian group with 1.
• If a; b; c 2 F, then

a � .b C c/ D a � b C a � c and .aC b/ � c D a � c C b � c:

If F is infinite, it is possible to weaken the commutativeness condition above.
F is called a skew field (or a division ring) if .F n f0g;�/ is a group with 1 (not
necessarily abelian), and all the other conditions are satisfied.
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Example 5.1 Let R be the field of real numbers. Let Oi ; Oj ; Ok be the symbols
satisfying

Oi 2 D Oj 2 D Ok2 D �1; Oi Oj D � Oj Oi D Ok; Oj Ok D � Ok Oj D Oi ; OkOi D �Oi Ok D Oj : (6)

Let H be the set consisting of

aC bOiC cOjC d Ok with a; b; c; d 2 R:

We define C on H componentwise. We define � on H using (6), distributive law
and multiplication on R. Then H is called the Hamilton quaternions, and it is a skew
field, which is not a field.

Note that H in Example 5.1 is an infinite set. The following important results of
Wedderburn (see, e.g., [18]) says that we have no such an example for finite sets.

Theorem 5.2 If F is a finite set and F is a skew field, then F must be a finite field.

However, if F is finite, then it is possible to weaken associativity condition of
.F n f0g;�/ instead of the commutativity condition.

Definition 5.3 A finite presemifield S is a finite set with two binary operations C
and � satisfying the following axioms:

• .S;C/ is an abelian group with 0.
• If a; b; c 2 S, then

a � .b C c/ D a � b C a � c and .aC b/ � c D a � c C b � c:

• If a; b 2 S and a � b D 0, then a D 0 or b D 0.

If S is a presemifield and there exists e 2 S n f0g such that

e � a D a � e D a for all a 2 S;

then S is called semifield.
If S is presemifield (or semifield) and

a � b D b � a for all a; b 2 S;

then S is called commutative presemifield (or commutative semifield).

The additive group of a finite semifield is elementary abelian. Therefore the order
of S is pn for a prime p and integer n � 1. Here p is called the characteristic of
S. In fact there is no finite semifield S, which is not a field, with jSj D p2 or
jSj D 8, where p is a prime. However, for each prime p and integer n � 3 with
.p; n/ ¤ .2; 3/, there exists a semifield S which is not a finite field with jSj D pn.
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Any finite presemifield can be represented by .S;C;�/, where S is the underlying
set of a finite field Fpn and the addition of S coincides with the addition of Fpn . The
notion to classify finite presemifield is isotopism:

Definition 5.4 Two finite presemifields .S;C;�/ and .S;C; ?/ of order pn are
isotopic if there exist linearized permutation polynomials L;M;N over Fpn such
that

M.x/ ? N.y/ D L.x � y/ for all x; y 2 S:

Note that two presemifields can be isotopic only if their orders are the same.
Finite fields are classified up to isomorphism by their orders. However there are
many non-isotopic semifields of the same order. It is a big open problem to classify
all finite semifields up to isotopism.

There is not much restriction in considering semifields instead of presemifields.
Indeed any presemifield is isotopic to a semifield. Let .S;C;�/ be a presemifield.
Choose any nonzero element a 2 S. Let .S;C; ?/ be the semifield with the binary
operation ? W S � S! S defined using

x � y D .x � a/ ? .a � y/:

Namely, if ˛; ˇ 2 S, then there exists uniquely determined x; y 2 S such that
x � a D ˛ and a � y D ˇ. Then ˛ ? ˇ is defined as

˛ ? ˇ D x � y:

It is now clear that e D a�a is the identity of Snf0g under ?, and hence .S;C; ?/ is
a semifield. This is known as Kaplansky’s trick. Here if .S;C;�/ is a commutative
presemifield, then .S;C; ?/ is a commutative semifield. In general isotopism does
not preserve commutativity.

Let .S;C;�/ be a semifield. The subsets

Nl .S/ D fa 2 S W .a � x/ � y D a � .x � y/ for all x; y 2 Sg
Nm.S/ D fa 2 S W .x � a/ � y D x � .a � y/ for all x; y 2 Sg
Nr .S/ D fa 2 S W .x � y/ � a D x � .y � a/ for all x; y 2 Sg

are called the left, middle, and right nucleus of S, respectively. They are in fact finite
fields. The subset

N .S/ D Nl .S/ \Nm.S/ \Nr .S/

is called the nucleus (or associative center) of S. The center C.S/ of S is defined by

C.S/ D N .S/ \ fc 2 S W c � a D a � c for any a 2 Sg:
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It is known that S is a division algebra over its center. Moreover the nuclei are
invariant under isotopism.

Let f W Fpn ! Fpn be an Fp-quadratic polynomial map. If f is planar, then we
get a commutative presemifield .Sf ;C;�/ defined as

x � y D 1

2
.f .x C y/ � f .x/ � f .y//:

Conversely if .S;C; ?/ is a finite commutative semifield of odd characteristic with
order pn, then there exists an Fp-quadratic polynomial f 2 Fpn Œx� such that
.Sf ;C;�/ is isotopic to .S;C; ?/. Therefore the classification of finite commutative
semifields and classification of Fpn -quadratic planar maps on Fpn are the same
problem.

In the sections above, we mainly considered nondegenerate symmetric quadratic
forms over Fq . They are directly linked to symmetric bilinear forms (or symmetric
matrices) over Fq as the characteristic is odd. Moreover planarity is related to
commutative semifields as explained in this section. However, symmetric matrices
are known to be connected symplectic semifields. In the next section, we explain a
geometric connection among these concepts.

6 Knuth’s Cubical Array

In this section we explain Knuth’s cubical array. This also gives an important
and well-known method to construct up to six non-isotopic semifields of order pn

starting from a given finite semifield of order pn.
Let F W Fqn ! Fqn be a perfect nonlinear and Fq-quadratic map. For a 2 Fqn ,

the corresponding difference map is

Da W Fqn ! Fqn

x 7! F.x C a/ � F.x/ � F.a/:

Note that D0 is the zero map and Da is an Fqn-linear map for all a 2 Fqn . The
corresponding presemifield .S;C; ı/ has the operation

x ı y D Dy.x/:

Let e1; e2; : : : ; en be a basis of Fqn over Fqn : The presemifield is determined by the
operations

Dej .ei / D ei ı ej D
nX

kD1
aijkek for 1 � i; j � n:
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Here .aijk/ D .aijk/
1�i;j;k�n

is Knuth’s cubical array with entries from Fq: Namely, up to

a choice of basis, .S;C; ı/ is determined by Knuth’s cubical array .aijk/.
Note that .aijk/ D .ajik/ as S is commutative in this chapter. In general S can be

noncommutative.
For 1 � i; j; k � n, the sliceM.S; j / of the cubical array .aijk/ is an n�n matrix

with entries from Fq defined as

M.S; j / D .aijk/
1�i;k�n

:

The matrixM.S; j / is the matrix of the linear transformation

Dej .x/ D y

via left multiplication

x 2 F
n
q 7! y D x �M.S; j /:

Here we have x D .x1; x2; : : : ; xn/; y D .y1; y2; : : : ; yn/; x D
nX

kD1
xi ei ; y D

nX

kD1
yi ei , andDej .x/ D y: The matricesM.S; 1/;M.S; 2/; : : : ;M.S; n/ are linearly

independent over Fq: In fact their linear span is a spread set, which is defined, for
example, in [2]. A spread set also determines S:

The matrices M.S; 1/;M.S; 2/; : : : ;M.S; n/ are not necessarily symmetric.
Recall that M.S; j / is obtained from the cubical array .aijk/ by fixing j . Let us
fix k instead. For 1 � k � n; the slice OM.S; k/ of the cubical array .aijk/ is an
n � n matrix with entries from Fq defined as

OM.S; k/ D .aijk/
1�i;j�n

: (7)

As S is commutative, OM.S; k/ is symmetric for all k: In fact f OM.S; k/ W 1 � k � ng
corresponds to a basis of the spread set spanf OM.Sd�; k/ W 1 � k � ng of another
semifield S

d� obtained via Knuth operations S 7! S
d and S

d 7! S
d� that we explain

below.
It is well known that any permutation of the indices of the cubical array .aijk/

gives a cubical array corresponding to a (pre)semifield. These permutations also
respect semifield isotopism. Since a presemifield is isotopic to a semifield, we
assume that S is a semifield without loss of generality here.
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Fig. 2 Knuth’s cubical array S : (aijk)

S
∗ : (ajik)

S
∗d : (ajki)

S
∗d∗ = S

d∗d : (aikj)

S
d : (akji)

S
d∗ : (ajki)

Fig. 3 Knuth’s cubical array
for commutative semifields

S : (aijk)

S
d : (akji)

S
d∗ = S

d∗d : (ajki)

The permuted cubical array .ajik/ corresponds to the permutation .12/ and gives
the opposite semifield S

�. The permuted cubical array .akji/ corresponds to the
permutation .13/ and gives the dual semifield S

d . In fact we have the lattices in
Fig. 2 in general.

Moreover if S is commutative, then we only have the lattice in Figure 3.
As S is commutative, it is well known that S

d� is symplectic (see [2]).
This means that the matrices (cf [13, 17] )M.Sd�; 1/;M.Sd�; 2/; : : : ;M.Sd�; n/
are all symmetric (see [13]). It is not difficult to observe that for the matrices
OM.S; 1/; OM.S; 2/; : : : ; OM.S; n/ obtained in (7), we have

OM.S; 1/ D M.Sd�; 1/; OM.S; 2/ DM.Sd�; 2/; : : : ; OM.S; n/ DM.Sd�; n/:

In other words slicing Knuth’s cubical array .aijk/ by fixing k and forming the
symmetric matrices OM.S; 1/; OM.S; 2/; : : : ; OM.S; n/ of the commutative semifield
S corresponds to forming a basis M.Sd�; 1/;M.Sd�; 2/; : : : ;M.Sd�; n/ of a spread
set for the symplectic semifield S

d�:
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Open Problems for Polynomials over Finite
Fields and Applications

Daniel Panario

Abstract We survey open problems for univariate polynomials over finite fields.
We first comment in some detail on the existence and number of several classes of
polynomials. The open problems in that part of the survey are of a more theoretical
nature. Then, we center on classes of low-weight (irreducible) polynomials. The
conjectures here are more practically oriented. Finally, we give brief descriptions
of a selection of open problems from several areas including factorization of
polynomials, special polynomials (APN functions, permutations), and relations
between rational integers and polynomials.

1 Background and Goals of This Chapter

1.1 Introduction

We introduce a series of open problems for univariate polynomials over finite fields.
The list is incomplete but still provides several topics of current research on this
type of polynomials.

This chapter is an extended transcription of the author’s invited talk at the Open
Problems in Mathematics and Computer Science Conference, Istanbul 2013. The
topics presented in this chapter have been selected mainly from the Handbook of
Finite Fields by Mullen and Panario [50]. Further problems on polynomials over
finite fields are presented in that reference.
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1.2 Background on Finite Fields

In order to make this survey self-contained, we briefly review fundamental notions
and results in finite fields. Research on finite fields bridges the gap between several
branches of mathematics like:

• algebra (field extensions and Galois theory);
• discrete mathematics and combinatorics (representing finite field elements as

combinatorial objects; algorithms in finite fields; finite field constructions of
combinatorial arrays);

• number theory (counting special finite field elements; analogies between polyno-
mials over finite fields and rational integers).

Many projects undertaken in finite fields can be applied almost immediately to
“real-world” problems. Finite fields are used extensively in:

• coding theory;
• public key cryptography;
• communications and electrical engineering;
• computer science.

The interested reader is referred to the handbooks of cryptography, coding theory,
and combinatorial designs for further results and connections of finite fields to those
areas [8, 11, 48, 53].

Next we recall the definition of finite fields as well as several basic results that
we need in this chapter.

Definition 1 A field .F;C; �/ is a set F together with binary operations “C” and
“�” such that:

1. .F;C/ is an abelian group;
2. .F n f0g; �/ is an abelian group;
3. distributive laws hold, that is, for a; b; c 2 F , we have

a � .b C c/ D a � b C a � c;
.b C c/ � a D b � aC c � a:

If #F is finite, then we say that F is a finite field.

It is well known that

Z=.p/ is a field if and only if p is a prime:

Up to isomorphisms, there exists exactly one finite field with q D pn elements,
denoted by Fq , for all primes p and positive integers n. The characteristic of the
finite field Fq is p.
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We also need the well-known fact that the multiplicative group of Fq is cyclic.
The generators of this multiplicative group are primitive elements and play a
fundamental role in many applications.

Polynomials As usual, a monic polynomial over Fq of degree n is of the form
xn C an�1xn�1 C � � � C a1x C a0 with ai 2 Fq for 0 � i < n.

Irreducible polynomials are the most fundamental polynomials. A polynomial
f 2 FqŒx� is irreducible over Fq if f D gh with g; h 2 FqŒx� implies that g
or h is in Fq . Through unique factorization, irreducible polynomials play the rôle
to polynomials that prime numbers play to rational integers; we comment on this
relation in more detail in Sect. 4.4. Moreover, we can construct Fqn by taking the
quotient of FqŒx� by an irreducible polynomial f of degree n over Fq , that is,
Fqn Š FqŒx�=.f /. The finite field elements are represented as polynomials of degree
less than n with coefficients in Fq . In this extension field, addition is performed
term-wise; multiplication is taken .mod f /. There are other ways of representing
elements over a finite field, but in this chapter we focus only on polynomials. One
of the most prominent and practical of those other representations is normal bases;
see Chap. 5 of [50] for an account on normal bases results.

1.3 Outline of the Chapter

We focus on open problems for univariate polynomials over finite fields.

• In Sect. 2, we comment in some detail on the existence and number of several
classes of polynomials. The open problems here are more of a theoretical nature.

• Then, in Sect. 3, we center in classes of low-weight (irreducible) polynomials.
The conjectures here are more practically oriented.

• Finally, in Sect. 4, we give brief descriptions of a selection of open problems from
several areas including factorization of polynomials, special polynomials (APN
functions, permutation), iterations of polynomials, and relations between integer
numbers and polynomials.

To know more about basics of finite fields, the reader is referred to the textbook
Finite Fields by Lidl and Niederreiter [44].

Remark Given the amount of work already done on the topics presented in this
chapter, we are intentionally vague on the statement of the open problems. Including
precise statements would make for a quite long presentation. However, the reader
should check the references cited before each open problem to find exact results
known so far. We note that for each open problem given in this chapter, there is still
considerably work to be done to completely solve the problem.



114 D. Panario

2 Prescribed Coefficients

2.1 Irreducible Polynomials

The number Iq.n/ of monic irreducible polynomials of degree n over Fq is

Iq.n/ D 1

n

X

d jn
�.d/qn=d D qn

n
CO.qn=2/;

where � W N! N is the Möbius function, given by

�.n/ D
8
<

:

1 if n D 1,
.�1/k if n is a product of k distint primes,
0 otherwise.

This is known for almost 150 years, but if we prescribed some coefficient to
some value, can we characterize and count those type of irreducible polynomials?
We briefly introduce in the following some results on this direction; a wealth of
references to these and related problems on irreducible polynomials over finite fields
can be found on Chap. 3 of [50].

2.2 Irreducibles with Prescribed Coefficients: Existence

The Hansen–Mullen conjecture [32] states the existence of irreducibles over Fq with
any one coefficient prescribed to a fixed value. Wan [61] proved the Hansen–Mullen
conjecture using Dirichlet characters and Weil bounds. Generalizations have been
given for the existence of irreducibles with the trace and norm coefficients (i.e.,
the coefficients of xn�1 and x0, respectively) prescribed as well as with few more
coefficients prescribed; see Sect. 3.5 of [50].

On the other hand, there are also results for up to half coefficients prescribed [35]
and variants, for example, prescribing precisely upper and lower coefficients of the
polynomial:

n 0n
2

= coefficients prescribed to any value with total size of roughly n
2 − logq n

However, experiments show that we could prescribe almost all coefficients and
still obtain irreducible polynomials!
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Open Problem 1 Prefix some coefficients of a polynomial over a finite field to
some values; prove that there exist irreducible polynomials with those coefficients
prescribed to those values.

We remark that the techniques used so far for existence results are from number
theory (characters, bounds on character sums).

2.3 Irreducibles with Prescribed Coefficients: Number

There are far less results proved about the number of irreducible polynomials with
coefficients prescribed than about existence. Results so far include exact estimates
for the number of irreducibles with up to 2 coefficients (xn�1 and x0, or xn�1 and
xn�2) prescribed over any finite field.

Over F2, in addition to the previous results, there are formulas for the number of
irreducible polynomials

• with up to the three most significant coefficients (xn�1; xn�2; xn�3) prescribed to
any value,

• conjectures for the four most significant coefficients prescribed.

Open Problem 2 Give exact (or asymptotic) counting for irreducible polynomials
with prescribed coefficients.

The techniques used for these estimates are more elementary than the ones for
existence results, and they come from several areas of discrete mathematics.

The long-term goal here is to provide existence and counting results for
irreducibles with any number of prescribed coefficients to any given values. This
goal is completely out of reach at this time. Incremental steps seem doable, but
it would be most interesting if new techniques were introduced to attack these
problems.

2.4 Primitive Polynomials with Prescribed Coefficients

A polynomial f 2 FqŒx� of degree n � 1 is primitive if it is the minimal
polynomial of a primitive element of Fqn . These polynomials are fundamental in
many applications in engineering involving sequences and LFSRs (linear feedback
shift registers).

Primitive polynomials exist for any degree n � 1 and any finite field Fq . As
it is easy to check, the number of primitive polynomials of degree n over Fq is
�.qn � 1/=n, where � denotes Euler’s function. However, if we prescribe some
coefficients, only some partial results are known. We comment on some results for
this type of polynomials; more references can be found on Chap. 4 of [50].
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The Hansen–Mullen conjecture for primitive polynomials asks whether primitive
polynomials exist with any coefficient prescribed to a given value. This conjecture
was proved for n � 9 by Cohen [7] and without restrictions by Cohen and Prešern
[9]. There are generalizations to few prescribed coefficients but no exact results for
the number of primitive polynomials with prescribed coefficients.

Open Problem 3 Prefix some coefficients of a primitive polynomial over a finite
field to some values; prove that there exist (or give the number of) primitive
polynomials with those coefficients prescribed to those values.

One can require for a polynomial to be primitive and also hold other algebraic
conditions. Primitive normal polynomials are an important class of this type of
polynomials. A polynomial is primitive normal if its roots form a normal basis
and are primitive elements. We recall that an element ˛ in Fqn is normal if
f˛; ˛q; : : : ; ˛qn�1g is a basis of Fqn over Fq .

The existence of primitive normal polynomials was established by Carlitz [5], for
sufficiently large q and n, Davenport [13] for prime fields, and finally for all .q; n/
by Lenstra and Schoof [41]. A proof without the use of a computer was later given
Cohen and Huczynska [10]. Gauss sums, hybrids of additive and multiplicative
characters sums, are employed in primitive normal results.

Hansen–Mullen also conjectured that primitive normal polynomials with one
prescribed coefficient exist for all q and n. Fan and Wang [18] proved the conjecture
for n � 15. There are generalizations for two coefficients (norm and trace) and for
three coefficients but not much is known beyond those cases; see Sect. 4.2 of [50].

An element ˛ in Fqn is completely normal if ˛ is a normal element of Fqn over
Fqd , for every subfield Fqd (hence d jn). The minimal polynomial of ˛ over Fq is a
completely normal polynomial. Not much is known about these polynomials even in
the case when no prescribed condition on the coefficients is included. Morgan and
Mullen [49] conjectured that for any n � 2 and any prime power q there exists a
completely normal primitive basis of Fqn over Fq .

Open Problem 4 Prove the Morgan and Mullen conjecture for completely normal
primitive bases.

This conjecture is still wide open though major advances on this problem have
been done by Hachenberger [30, 31]. The methods here are algebraic and allow
the derivation of lower bounds.

3 Low-Weight Polynomials

3.1 Introduction

A particular important case of prescribed coefficients occurs when most coefficients
are set to zero. The weight of a polynomial is the number of nonzero coefficients
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of the polynomial. Loosely speaking, a polynomial has low weight when “most”
coefficients are zero.

This case is relevant in practice where we prefer sparse irreducible polynomials,
like trinomials (polynomials with 3 monomials) or pentanomials (polynomials with
5 monomials) over F2, to construct the extension fields. These are, for example,
the recommendations of IEEE [36]. Among same degree irreducible trinomials or
pentanomials, for reasons of confidence, we choose polynomials following a lowest
lexicographical order selection. However, Scott [56] shows that the irreducible with
the optimal performance for a given implementation does not necessarily follow the
lowest lexicographical order!

3.2 Conjectures and Open Problems

The state of affairs for low-weight polynomials is very poor. Indeed the following
open problem presents several old questions that are still not mathematically
answered.

Open Problem 5 • What is the density of n’s such that there is an irreducible
trinomial of degree n over F2?

• Are there irreducible pentanomials over F2 for all n?
• Are there irreducible tetranomials over Fq , q � 3, for all n � 3?

Experimentally, there are only about 50 % of n with irreducible trinomials of
degree n over F2. However, there seems to be a pentanomial for every n. There are
tables of trinomials and pentanomials, using Magma, for the following values of q
and n:

q n � q n � q n � q n �
2 120; 000 3 50; 000 4; 5; 7 2; 000 9 � q � 127 1; 000

Those experiments suggest that the existential questions raised in Open Problem 5
should have a positive answer, but there are no proofs in sight for any of those
problems.

A sedimentary polynomial is a polynomial over Fq of the form f .x/ D xnCg.x/
with g of degree close to logq n.

Open Problem 6 Prove that for every positive integer n, there exists a polynomial
g of degree at most logq nC 3 such that f .x/ D xn C g.x/ is irreducible over Fq .

These polynomials have been used, for example, by Coppersmith [12] to represent
elements in F2n in a subexponential algorithm for discrete logarithm computations
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in finite fields. Again, experiments [27] seem to imply the existence of sedimentary
polynomials as stated in Open Problem 6, but no proof of this fact is available at this
time.

3.3 Reducibility of Low-Weight Polynomials

Swan [58] characterizes the parity of the number of irreducible factors of a
trinomial over F2 relating it to the discriminant of the trinomial (due to Pellet and
Stickelberger). Obviously, if the number of irreducible factors of a polynomial is
even, the trinomial is then reducible.

In principle one could use this to provide reducibility conditions. However there
is a main problem with this approach: the calculation of the discriminant of the
polynomial is hard even when the polynomial has a moderate number of terms.

We exemplify in the following a typical result in this area.

Theorem 1 ([58]) Let n > k > 0. Assume precisely one of n; k is odd. Then if r is
the number of irreducible factors of f .x/ D xnC xk C 1 2 F2Œx�, then r is even in
the following cases:

• n even, k odd, n ¤ 2k and nk=2 � 0; 1 .mod 4/;
• n odd, k even, k − 2n and n � 3; 5 .mod 8/;
• n odd, k even, k j 2n and n � 1; 7 .mod 8/.

In other cases f has an odd number of factors.

The case where n and k are both odd can be covered using that the reverse of f has
the same number of irreducible factors. If both n and k are even the trinomial is a
square and has an even number of irreducible factors.

The next is an important practical consequence that asserts that there are no
irreducible trinomials over F2 for the usual computer word sizes.

Corollary 1 There are no irreducible trinomials over F2 with degree a multiple
of 8.

By now, overF2, we know the reducibility of few pentanomials, but not if irreducible
pentanomials exist for all degrees. Over Fq; q > 2, we know when binomials are
reducible; we also have partial results for trinomials and tetranomials, as well as for
some very special type of polynomials; see Sects. 3.4 and 3.5 in [50].

Open Problem 7 Give new reducibility results for low-weight polynomials over
finite fields.

It would also be interesting to study the distribution of the discriminant for
random polynomials over finite fields.

Open Problem 8 Give expected value and distributional studies for the discrimi-
nant of a random polynomial over a finite field.
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Low-weight polynomials have several applications; see Sect. 14.9 of [50]. We
only comment here on two of those. Consider a maximum-length shift-register
sequence generated by a primitive polynomial f over a finite field. The set of its
subintervals is a linear code whose dual code is formed by all polynomials divisible
by f [51]. Since the minimum weight of a dual code is directly related to the
strength of the corresponding orthogonal array [3], one can produce orthogonal
arrays by studying divisibility of polynomials with low weight. (For information
on orthogonal arrays, we refer to the book [33].)

To obtain orthogonal arrays of larger strength t (equivalently dual codes of min-
imum weight t C 1), we need conditions on when a low-weight polynomial divides
another (low) t-weight polynomial. At this moment, we only know conditions for
divisibility of trinomials and pentanomials over F2, and some similar cases over F3.

In addition, low-weight multiples of a public polynomial compromise the private
key for the T CHo cryptosystem, and its security therefore rests on the difficulty of
finding low-weight multiples [2, 34].

Open Problem 9 Study the divisibility of a low-weight polynomial over a finite
field by another low-weight polynomial over the same finite field.

4 Potpourri of Polynomial Topics and Problems

4.1 Factorization of Polynomials

Given a monic univariate polynomial f 2 FqŒx�, the factorization problem asks to
find monic distinct irreducible fi and positive integers ei , 1 � i � r , such that
f D f e1

1 � � �f er
r . Much work has been done in this area; see [23, 24].

A standard method for this task uses three steps:

1. Elimination of repeated factors (ERF) replaces a polynomial by a square-free
one which contains all the irreducible factors of the original polynomial with
exponents reduced to 1.

2. Distinct-degree factorization (DDF) splits a square-free polynomial into a
product of polynomials whose irreducible factors have all the same degree.

3. Equal-degree factorization (EDF) completely factors a polynomial whose irre-
ducible factors have the same degree.

All efficient practical versions use a probabilistic algorithm for EDF. The next is a
long-standing problem of a main theoretical interest.

Open Problem 10 Find a polynomial time deterministic algorithm for factoring
polynomials over finite fields.

We remark that this problem is open even assuming the generalized Riemann
hypothesis (GRH) [37]. So far, the techniques used to answer this question are
mostly algebraic.
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In terms of fast practical versions of the general methodology commented above
based on three steps, it has been well known that the bottleneck is on the second step,
the distinct-degree factorization stage. A key role on the algorithmic improvements
for this problem has been played by the use of fast modular compositions and
interval partitions [26, 39].

By now the algorithms are very efficient, at least to factor very large degree
polynomials taken uniformly at random. Advances in the next problem may improve
the current best algorithm versions when the polynomials to be factored are taken at
random.

Open Problem 11 Find the best interval partition for factoring a random polyno-
mial over a finite field.

The techniques used so far for this type of probabilistic analysis come from analytic
combinatorics [20]. They proceed in two steps; first generating functions for the
quantities of interest are derived, and then asymptotic analyses for the extraction of
coefficient asymptotics are used. This general methodology was used in [21] for the
complete analysis of the algorithms above for the factorization of polynomials over
finite fields; for the latest results, see [25, 52].

4.2 Special Polynomials Over Finite Fields

4.2.1 PN and APN Functions

Definition 2 Let G1 and G2 be finite abelian groups of the same cardinality and
f W G1 ! G2. We say that f is a perfect nonlinear (PN) function if

�f;a.x/ D f .x C a/ � f .x/ D b

has exactly one solution for all a ¤ 0 2 G1 and all b 2 G2.
PN functions provide optimal resistance to linear and differential cryptographic
attacks. However, PN functions cannot exist in finite fields of characteristic 2 (the
most important for implementations). They were introduced as planar functions by
Dembowski–Ostrom [14]; they are also known as bent functions; see Chap. 9 of
[50].

We obtain an alternate definition for almost best-possible differential structure
by slightly relaxing the condition on the definition of PN function.

Definition 3 Let G1 and G2 be finite abelian groups of the same cardinality and
f W G1 ! G2. We say that f is an almost perfect nonlinear function if

�f;a.x/ D f .x C a/ � f .x/ D b (1)

has at most two solutions for all a ¤ 0 2 G1 and all b 2 G2.
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As an example, the inverse function f Wx 7! x2
n�2 in F2n is APN if and only if

n is odd. We remark that this function is used in the Advanced Encryption Standard
(AES) but in that case n D 8. If n is even, then �f;a is close to APN; indeed, it is
differential 4 uniform, that is, Eq. (1) has at most four solutions for each a and all b.

In most applications, candidate functions for use in symmetric key cryptosystems
must be permutations. Furthermore, for implementation purposes, functions over
F2e with e even are preferred. There are no PN permutations in these fields. Hence,
combining these criteria, the most desirable candidate functions for cryptographical
applications are APN permutations over F2e where e is even. Currently, there is only
one known APN permutation over F2e , when e is even. This function for F26 was
given by Dillon and collaborators [4].

Open Problem 12 Find APN permutations over F2e , when e is even.

4.2.2 Permutation Polynomials Over Finite Fields

Definition 4 A polynomial f 2 FqŒx� is a permutation polynomial (PP) of Fq if
the function f W c ! f .c/ from Fq into itself induces a permutation.

There have been massive amount of work on PPs since the nineteenth century.
Many results have appeared on the last 30 years, some of them due to the many
cryptographic applications of PPs; see Chap. 8 of [50]. However, many questions
are still not fully answered [42,43] even though substantial work have been done on
these problems.

Some well-known classes of PPs include monomials xn when gcd.n; q�1/ D 1,
Dickson polynomials Dn.x; a/ D Pbn=2c

jD0
n

n�j
�
n�j
j

�
.�a/j xn�2j when gcd.n; q2 �

1/ D 1, and linearized polynomials L.x/ D Pn�1
sD0 asxq

s 2 Fqn Œx� when

det.aq
j

i�j / 6D 0, 0 � i; j � n � 1.

Open Problem 13 1. Find new classes of PPs.
2. Find PPs with some prescribed coefficients to some values.

Let Nn.q/ denote the number of PPs of Fq of degree n. It is easy to show that
N1.q/ D q.q�1/,Nn.q/ D 0 if n is a divisor of q�1 larger than 1, and

P
Nn.q/ D

qŠ where the sum is taken over all 1 � n < q � 1 such that n is either 1 or is not a
divisor of q � 1. However, in general, Nn.q/ is still not known.

Open Problem 14 Find the numberNn.q/ of PPs of degree n.

If the polynomial is not a permutation, it is interesting to find its value set, that
is, the distinct values that the function takes. The value sets of some functions have
been studied, but, in general, similar questions as above have only been partially
studied; see Sect. 8.3 of [50].
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4.3 Iteration of Polynomials Over Finite Fields

Given a polynomial f 2 FqŒx�, one can define the functional graph of f as a
directed graph on q nodes labelled by elements of Fq where there is an edge from
a to b if and only if f .a/ D b. This graph has one or more connected components,
and each connected component contains one cycle with trees attached to some of the
cycle nodes. The cycle may be of length 1, a fixed point. The graph of a polynomial
f encodes characteristics of the map like the distribution and length of periodic
points (points in the cycle of a connected component) and pre-periodic points (points
in the trees, not in the cycle).

A key motivation on this area is to better understand Pollard’s -algorithm [55]
for integer factorization. In the analysis of that algorithm, a composite integer m
is given, and we are interested in the properties of the polynomial mappings x 7!
x2 � 1.mod p/, where pjm. If p is prime, this mapping has the property that every
image has at most 2 preimages. This type of property can also be desirable for
mappings used in cryptographic hash functions. The quadratic mappings x2 and
x2 � 2 has been studied in [60], but the shape of more generic quadratic maps has
not been fully understood.

Some nonquadratic maps have also been studied. The dynamics of the maps xn

over finite fields has been analyzed [6, 57]. Iterations of Chebyshev polynomials of
the first kind has also been studied [28], as well as rational maps of the form xCx�1
over small finite fields [59].

Open Problem 15 Describe the graphs of iterations of polynomials over finite
fields.

It is not clear what is the proper heuristic model to describe Pollard’s -algorithm.
A study of general random maps was executed by Flajolet and Odlyzko [19]. A
model with restrictions on the number of preimages, that would in principle adapt
better to Pollard’s -algorithm, is in [1,45]. However, a model that can fully explain
Pollard’s -algorithm is still not available.

Open Problem 16 Develop a heuristic model to completely describe Pollard’s -
algorithm.

4.4 Relations Between Integers and Polynomials

The unique factorization of polynomials into irreducibles allow the derivation of
analogous results to the ones for the decomposition of integers into prime numbers.
For example, one can study properties such as:

• expected number of irreducible factors of a polynomial (number of primes of an
integer);

• probability of a factorization pattern;
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• expected largest and smallest degree irreducible factor (largest and smallest
prime);

• irreducibles (primes) in arithmetic progression.

A basic technique from analytic combinatorics allows the derivation of such results
(see [21] and Sect. 11.1 of [50]). This technique also allows the study of the
distribution of the factors in the gcd of several univariate polynomials over a finite
field.

Some classical number theoretic problems have been successfully translated to
polynomials. This is the case of the twin prime conjecture. As in the integer case,
we consider two irreducible polynomials to be twins if they differ by as little as
possible. We measure the size of a monic polynomial f 2 FqŒx� of degree n with
the absolute value jf j D qn. Two polynomials f and g, both of degree n over Fq ,
are twin irreducible polynomials if jg�f j D 4 for q D 2, or jg�f j D 1 otherwise.

The twin irreducible polynomials conjecture states that if q is fixed and the degree
n tends to infinity, then there are infinitely many twin irreducible polynomials. This
conjecture has been proved for all finite fields of order bigger than two [15, 54].

Open Problem 17 Prove the twin irreducible polynomial conjecture in F2.

Classical generalizations of the twin prime conjecture in the integer setting (if we
consider more than two primes, or if the primes are not as close as possible) have
not been given yet for polynomials over finite fields.

There have been some results about additive properties for polynomials related to
the Goldbach conjecture and their generalizations (e.g., sum of three irreducibles);
see [16, 17].

Many other classical problems from number theory have been treated for
polynomials over finite fields. The most famous result is the polynomial version
of the Generalized Riemann Hypothesis of Weil [62]; there is as well a polynomial
analogue of Artin’s conjecture on primitive roots [38]

On the other hand, several recent results in number theory have not been
completely translated into polynomials over finite fields yet including, for example,
the ones in the following.

Open Problem 18 Give polynomial over a finite field versions for the following
problems already studied for prime numbers:

1. divisors and shifted divisors in intervals [22, 40];
2. primes in small gaps [29, 47, 63];
3. sum of digits function [46].

Some of these problems may be amenable to the techniques from analytic combina-
torics commented above.
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Conclusions
Polynomials over finite fields are fundamental in several theoretical areas
of mathematics and in many practical applications in communications. We
comment on some open problems for univariate polynomials over finite fields.
The selection of topics is by no means complete, but we hope is representative
of the intense current research in polynomials over finite fields.
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Generating Good Span n Sequences Using
Orthogonal Functions in Nonlinear Feedback
Shift Registers

Kalikinkar Mandal and Guang Gong

Abstract A binary span n sequence generated by an n-stage nonlinear feedback
shift register (NLFSR) is in a one-to-one correspondence with a de Bruijn sequence
and has the following randomness properties: period 2n � 1, balance, and ideal
n-tuple distribution. A span n sequence may have a high linear span. However, how
to find a nonlinear feedback function that generates such a sequence constitutes a
long-standing challenging problem for about 5 decades since Golomb’s pioneering
book, Shift Register Sequences, published in the middle of the 1960s. In hopes
of finding good span n sequences with large linear span, in this chapter we study
the generation of span n sequences using orthogonal functions in polynomial
representation as nonlinear feedback in a nonlinear feedback shift register. Our
empirical study shows that the success probability of obtaining a span n sequence
in this technique is better than that of obtaining a span n sequence in a random span
n sequence generation method. Moreover, we analyze the linear span of new span
n sequences, and the linear span of a new sequence lies between 2n � 2 � 3n (near
optimal) and 2n� 2 (optimal). Two conjectures on the linear span of new sequences
are presented and are valid for n � 20.

1 Introduction

Nonlinear feedback shift registers (NLFSRs) are used to design many cryptographic
primitives such as pseudorandom sequence generators (PRSGs), stream ciphers
[11], and lightweight block ciphers [7] for providing security and privacy in com-
munication systems. Ciphers based on NLFSRs are of great practical importance in
many constrained environments, for instance, RFID tags and sensor networks due
to their need for efficient hardware implementation and high throughput. In general,
an arbitrary NLFSR cannot be used for generating keystreams in stream ciphers
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because the randomness properties including the period of a sequence generated by
that NLFSR are unknown and hard to determine.

A binary de Bruijn sequence is a binary sequence with period 2n which satisfies
the property that all n-tuples occur exactly once in one period. De Bruijn sequences
have known randomness properties, namely, maximum period, balance property,
ideal n-tuple distribution, and large linear span [3, 21, 34]. A modified de Bruijn
sequence or span n sequence with period 2n � 1 is a pseudorandom sequence
where each nonzero n-tuple occurs exactly once in one period of the sequence. This
property is referred to as the span n property [21]. Often, de Bruijn sequences as
well as span n sequences are generated recursively by an n-stage nonlinear feedback
shift register. Only,m-sequences are a class of span n sequences generated by linear
feedback shift registers.

A span n sequence can be constructed from a de Bruijn sequence by removing
any one zero from the run of zeros of length n, and similarly, a de Bruijn sequence
can be formed from a span n sequence by adding one zero to the run of zeros of
length n� 1. The linear span or linear complexity of a sequence is the length of the
shortest LFSR that produces the given sequence. We remember that “linear span”
and “span n” are two different properties of a span n sequence. Note that by adding
an extra zero to the run of zeros of length n � 1 to an m-sequence, the linear span
of the resultant de Bruijn sequence varies between 2n�1 C n and 2n � 1 [3], but
by removing any one zero from the run of zeros of length n from the resultant
de Bruijn sequence, it becomes an m-sequence or a span n sequence with linear
complexity n. So the lower bound of the linear span of the span n sequence drops to
n [23]. This phenomenon suggests to study the randomness properties, particularly,
the linear span property of span n sequences instead of de Bruijn sequences for
cryptographic usages. Until recently, there is no known general construction of a
nonlinear feedback function which generates a span n sequence, and this is open
since the last 5 decades. Therefore, the generation of span n sequences by NLFSRs
is a challenging problem.

Our objective is to produce span n/de Bruijn sequences using orthogonal
functions as feedback functions in nonlinear feedback shift registers. An orthogonal
feedback function has a trace representation and is composed of three parameters,
namely, a decimation number, a primitive polynomial, and a t-tap position (5 � t �
n � 1). In an NLFSR, a class of feedback functions is constituted by varying the
decimation numbers and the polynomial bases of the finite fields. Finding span n
sequences by using this class of feedback functions and all possible tap positions of
the feedback functions is called a structured search. We show that a number of new
span n sequences with a moderate n can be produced through the structured search.
For n � 10, all the feedback functions of degree greater than or equal to two cannot
be employed to search span n sequences. Using the structure search, on the other
hand, one can employ a number of feedback functions with different degrees and a
variable number of terms.

In this chapter, we present some new theoretical results on generating span n
sequences and experimental results on finding the number of new span n sequences.
The chapter is organized as follows. In Sect. 2, we provide some basic definitions
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of shift register sequences and their properties. Section 2.2 recalls the definitions of
known orthogonal functions, and Sect. 3 introduces some known constructions of de
Bruijn sequences. In Sect. 4, we describe the span n sequence generation technique
using orthogonal functions and develop some properties of this technique, including
an estimation of the number of orthogonal feedback functions used in this technique.
Sections 5 and 6 present the experimental results on the number of span n sequences
produced using orthogonal functions, and Sect. 7 presents an empirical success
probability comparison of obtaining span n sequences using orthogonal functions.
In Sect. 8, we analyze the linear span of newly produced span n sequences by the
aforementioned orthogonal functions and present two conjectures on the linear span
of the span n sequences produced by the orthogonal functions. Our empirical results
show that the success probability of obtaining a span n sequence in the structured
search is larger than that of generating a span n sequence in a random search. Our
results show that the linear span of a new span n sequence lies in the range of
2n � 2 � 3n (near optimal) and 2n � 2 (optimal). In Sect. 9, some applications of
new span n sequences are shown, and in the section “Conclusions”, we conclude
the chapter.

2 Preliminaries

In this section, we define and explain the terms and mathematical functions that will
be used in this chapter to produce span n sequences.

– F2 D f0; 1g : the Galois field with two elements.
– F2t D f.x0; x1; : : : ; xt�1/ j xi 2 F2g—an extension field that is defined by a

primitive element ˛ with p.˛/ D 0, where p.x/ D c0Cc1xC� � �Cct�1xt�1Cxt
is a primitive polynomial of degree t .� 2/ over F2.

– Tr.x/ D x C x2 C � � � C x2t�1 : the trace function mapping from F2t to F2.
– Dt D fd W d is a coset leader with gcd.d; 2t � 1/ D 1g. The cardinality of Dt ,

denoted as jDt j, is given by �.2t�1/
t

, where �.�/ is the Euler phi function.

2.1 Basic Definitions and Properties of Feedback Shift
Registers

Usually, an n-stage linear or nonlinear feedback shift register is used to generate a
periodic binary sequence a D faig, and the recurrence relation for the (N)LFSR is
defined as [20]

anCk D ak ˚ g.akC1; : : : ; akCn�1/; ai 2 F2; k � 0
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where .a0; a1; : : : ; an�1/ is the initial state of the shift register, g is a Boolean
function in .n�1/ variables, and˚ is the addition operation over F2. If the function
g is an affine function, then the sequence a is called an LFSR sequence; otherwise,
it is called an NLFSR sequence. The above recurrence relation is also known as a
nonsingular recurrence relation.

The complementary binary sequence of binary sequence b D fbigi�0, denoted
as Nb, is defined by f Nbigi�0, where Nbi D bi ˚ 1: The linear span or linear complexity
of a sequence is the length of the shortest LFSR that produces the sequence.

Definition 1 ([22]) The autocorrelation of a binary sequence fai g with periodN is
defined as

C.	/ D
N�1X

iD0
.�1/aiC	Cai :

Moreover, if N D 2n � 1, the sequence fai g has 2-level autocorrelation if

C.	/ D
�
2n � 1 if 	 � 0 (mod 2n � 1)
�1 if 	 6� 0 (mod 2n � 1).

Property 1 The linear span of a de Bruijn sequence, denoted as LSdb, is bounded
by [3]

2n�1 C n � LSdb � 2n � 1: (1)

On the other hand, the linear span of a span n sequence that is generated by an
NLFSR, denoted as LSs , is bounded by

2n < LSs � 2n � 2: (2)

From this property, we say that a span n sequence has the optimal linear span if
its linear span is equal to 2n � 2.

2.2 Review of the Trace Representation of 2-level
Autocorrelation Sequences

An orthogonal function from F2t to F2 is in one-to-one correspondence with a
binary sequence with (ideal) 2-level autocorrelation function, 2-level autocorrela-
tion sequence in short. There are only very few known constructions on 2-level
autocorrelation sequences, which constitutes another challenge problem for years.
Interestingly, those functions possess good cryptographic properties. The reader is
referred to Golomb and Gong’s book [22] for the details about the constructions
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of 2-level autocorrelation sequences and their related cryptographic properties. In
the following, for easy reference, we formally provide the definition of orthogonal
functions and their known constructions from corresponding trace representation of
2-level autocorrelation sequences.

Definition 2 A function, say, f .x/, from F2t to F2 is called an orthogonal function
if
P

x2F2t .�1/f .�x/Cf .x/ D 0 for all (1 ¤/� 2 F2t .

Let ˛ be a primitive element of F2t and let ai D f .˛i /where the binary sequence
fai g is called an evaluation of f .x/ and f .x/, the trace representation of fai g.
Property 2 With the above notation:

1. f .x/ is orthogonal if and only if its evaluation has 2-level autocorrelation.
2. If f .x/ is orthogonal, then f .xr / is orthogonal for all r with .r; 2t � 1/ D 1.

Let C D fr; 2r; : : : ; 2nr�1rg where nr is the smallest number such that r2nr �
r mod 2t � 1. Then C is called a (cyclotomic) coset consisting r modulo 2t �1, and
the smallest number in C is called the coset leaders of C . Let I consist of all coset
leaders modulo 2t � 1.

2.2.1 Number Theory-Based Constructions

This type of the constructions includes Legendre sequences and Hall sextic residue
sequences. Let p D 2t � 1 be a prime number, u be a primitive element in Fp , and
c D 2t�2

t
.

Orthogonal Functions from Legendre Sequences (A1) Let

f .x/ D
c=2�1X

iD0;i2I
Tr.xu2i /; x 2 F2t :

Or equivalently,

f .x/ D
X

i2I0
Tr.xi /; x 2 F2t

where I0 � I consist of all quadratic coset leaders modulo 2t � 1. Then f .x/ is
an orthogonal function from F2t to F2 whose evaluation gives a Legendre sequence
with 2-level autocorrelation.

Hall’s “Sextic Residue Sequence” (A2) Additional to the Legendre sequences,
p D 4t � 1 D 4a2 C 27. Let

f .x/ D
c=6�1X

iD0;i2I
Tr.xu6i /; x 2 F2t :
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Then f .x/ is an orthogonal function from F2t to F2 whose evaluation gives a Hall’s
“sextic residue sequence” with 2-level autocorrelation function.

2.2.2 Finite Fields-Based Constructions

There are four types of constructions for 2-level autocorrelation sequences: m-
sequences, hyperoval constructions, Welch–Gong transformation construction, and
Kasami power function construction including three-term and five-term sequences.

Orthogonal Functions from m-Sequences Let

f .x/ D Tr.x/; x 2 F2t ;

then f .x/ is an orthogonal function whose evaluation gives an m-sequence with
period 2t � 1, and the other m-sequences are given by Tr.xd / where gcd.d; 2t �
1/ D 1.

Orthogonal Functions from Hyperoval Sequences There are three monomial
hyperoval sequences with 2-level autocorrelation, namely, Segre type and Glynn
type 1 and type 2. Except for Segre hyperoval sequences, the trace representation is
not represented in a formula. Instead, it is described in terms of some relation which
needs to be computed for different t .

Let .1/l denote a string of l consecutive 1s. Let A denote the set consisting of all
strings of the form .1/4aC10 or a � 0 and .1/4b , b � 0. Let A� denote the set of
all strings obtained by concatenating zero, one or more strings from A. Let t be a
prime and

01(string in A�)0.1/2s; s � 0 or
011(string in A�)11 : (3)

The trace representation of a Segre hyperoval sequence of period 2t � 1, t odd, is
given by

f .x/ D
X

i2TSegre

Tr.xi /; x 2 F2t

where TSegre � I which are the collections of coset leaders of the all binary numbers
given by (3) [5].

Let TGlynn � I be the collections of the coset leaders of solutions to

w.j /C w..k � 1/j � w.kj/ D 1; j D 1; : : : ; 2t � 1
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where w.x/ is the Hamming weight of binary number x. Then the trace representa-
tion of a Glynn hyperoval sequence of period 2t � 1, t odd, is given by

f .x/ D
X

i2TGlynn

Tr.xi /; x 2 F2t

where k D � C � for Glynn type 1 and k D 3� C 4 for Glynn type 2 where
� D 2.tC1/=2 and � D 2.3tC1/=4 [13].

Orthogonal Functions from Three-Term, Five-Term, and Welch–Gong Trans-
formation Constructions In [38], it was conjectured that three-term and five-term
sequences have 2-level autocorrelation as well as Welch–Gong transformation
sequences discovered by Golomb, Gong, and Gaal. The validity of those conjectures
is established later on by Dillon and Dobbertin in [8, 9].

Let t D 2k � 1 for some positive integer k and t � 5. Let

f .x/ D Tr.x C x2kC1 C x2k�1/; x 2 F2t :

Then its evaluation gives three-term 2-level autocorrelation sequences.
Let t be a positive integer with t mod 3 6� 0 and 3k � 1 mod t for some integer

k. We define the function h from F2t to F2t by

h.x/ D x C xq1 C xq2 C xq3 C xq4

where

q1 D 2k C 1; q2 D 22k C 2k C 1; q3 D 22k � 2k C 1; q4 D 22k C 2k � 1:

(Note that h.x/ is a permutation over F2t [8].) Let

g.x/ D Tr.h.x// andf .x/ D Tr.h.x C 1/C 1/

where f .x/ is known as the WG transformation. The evaluations of g.x/ and f .x/
yield five-term sequences and WG transformation sequences.

Orthogonal Functions from Kasami Power Function Construction Let
gcd.k; t/ D 1, k < t , kk0 � 1, and

f .x/ D Tr.R.x//; x 2 F2t
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where R.x/ is given by

R.x/ D
k0X

iD1
Ai.x/C Vk0.x/

where Ai and Vi are iteratively defined by

A1.x/ D x
A2.x/ D x2kC1

AiC2.x/ D x2.iC1/k

AiC1.x/C x2.iC1/k�2ikAi .x/; i � 1

and

V1.x/ D 0

V2.x/ D x2
k�1

ViC2.x/ D x2
.iC1/k

ViC1.x/C x2.iC1/k�2ikVi .x/; i � 1:

Orthogonal Functions from Subfield Constructions Let 1 < m j t , m ¤ t , and
g.x/ be any orthogonal function from F2m to F2, listed in the above subsections,
and let

f .x/ D Trtm.g.x//; x 2 F2t

where Trtm.x/ is the trace function from F2t to F2m , i.e.,

Trtm.x/ D x C x2
m C � � � C x2.l�1/m ; x 2 F2t ; l D t=m:

Then f .x/ is an orthogonal function from F2t to F2, and its evaluation is called
a subfield 2-level autocorrelation sequences which includes GMW sequence for
g.x/ D Trm1 .x

d / where Tr.x/ is the trace function from F2m to F2 and gcd.d; 2m �
1/ D 1 and generalized GMW sequences for the rest of g.x/. Here we shorten them
as GMW sequences.

2.2.3 Orthogonal Functions for Small Fields

In the following, we give the exponents explicitly for all known orthogonal functions
of the form f .x/ D P

i2I Tr.xi / from F2t to F2 for 5 � t � 11 in Tables 1, 2 and
3 where the monomial function Tr.x/ is not listed.
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Table 1 Exponents in the orthogonal functions over F2t ; 5 � t � 9
Orthogonal functions Trace spectra # of terms

t D 5

T3 1, 3, 5 3

t D 7

T3 1, 9, 13 3

T5 1, 5, 21, 13, 29 5

WG 1, 3, 7, 19, 29 5

QR 3, 5, 7, 23, 27, 29, 43, 55, 63 9

Hall 5, 27, 63 3

t D 8

GMW 7, 13, 37, 11 4

T5 1, 9, 37, 29, 39 5

WG 13, 19, 21, 29, 39 5

t D 9

T3 1, 17, 25 3

GMW 3, 17, 129 3

Segre 1,5,7, 9, 19, 25, 37, 77, 117 9

Glynn 1 1, 5, 9, 13, 19, 37, 43 7

Glynn 2 17, 23, 37, 43, 45, 75, 87 7

Table 2 Exponents in the orthogonal functions over F2t ; t D 10

Orthogonal functions Trace spectra # of terms

T5 1, 9, 57, 73, 121 5

WG 1, 3, 5, 7, 11, 13, 15, 35, 69, 71, 89, 105, 121 13

GMW1 3, 17 2

GMW2 5, 9 2

GMW3 7, 19, 25, 69 4

GMW4 11, 13, 21, 73 4

GMW5 1, 5, 7, 9, 19, 25, 69 7

GMW6 15, 23, 27, 29, 77, 85, 89, 147 8

GMW7 3, 7, 11, 13, 15, 21, 23, 27, 29, 73, 77, 85, 89, 147 14

We define the following set:

D�t D fd W d 2 Dt and fd .�/; is nonlinear and fd .x/ ¤ fd1.x/; d ¤ d1.2 D�t /g:

For all decimation numbers in D�t , we take into account all distinct orthogonal
functions obtained from an orthogonal function using decimations.
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Table 3 Exponents in the orthogonal functions over F2t ; t D 11

Orthogonal functions Trace spectra # of terms

T3 1, 33, 49 3

T5 1, 17, 121, 137, 143 5

WG 21, 23, 29, 35, 37, 41, 71, 89, 139, 165, 213, 307, 415 13

SegreD B2 1,5, 13, 21, 53, 77, 85, 205, 213, 309, 333, 341, 413, 15

423, 469

Glynn 1 1, 5, 9, 13, 19, 37, 43, 67, 69, 137, 163, 211, 293 13

Glynn 2 1, 5, 13, 17, 29, 37, 49, 61, 69, 81, 93, 101, 113, 21

125, 139, 147, 151, 157, 171, 173, 183

B3 1, 5, 7, 9, 19, 25, 81, 169, 295 9

3 Review of Known Constructions of (Modified) de Bruijn
Sequences

There is a one-to-one correspondence between a de Bruijn sequence and a modified
de Bruijn/span n sequence. When the construction of a feedback function that
generates a span n sequence is known, the construction of a de Bruijn sequence
can be known and vice versa. In this section, we provide some known de Bruijn and
span n sequence generation techniques.

3.1 Known Constructions for de Bruijn Sequences

Problem of generating a de Bruijn sequence is easy to understand, but providing a
solution for generating a de Bruijn sequence efficiently is a challenging problem.
This problem is studied from algorithmic, graph theoretic, and algebraic technique
points of view in the literature. In particular, generating a de Bruijn sequence using
a feedback shift register is an algebraic technique, which exploits properties of a
feedback function. In the following, we present some well-known approaches of
constructing de Bruijn sequences.

3.1.1 Lempel’s D-Morphism-Based Techniques for de Bruijn Sequences

Lempel in [26] proposed the concept of generating a de Bruijn sequence of period
2nC1 by first computing two D-morphic preimages of a de Bruijn sequence of
period 2n and then concatenating these two preimages at a conjugate pair. In this
construction, it is assumed that the construction of the de Bruijn sequence of
period 2n is known. Later on, Annexstein in [1] and Chang et al. in [6] proposed
two algorithms based on Lempel’s D-homomorphism for producing de Bruijn
sequences of long period. Games [18] proposed a generalized construction of
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Lempel’s construction in which a de Bruijn sequence of period 2nC1 is constructed
from two different de Bruijn sequences of period 2n using Lempel’s conjugate.

In [36], Mykkeltveit et al. presented Lempel’s construction in the form of a
composited recurrence relation. Following Mykkeltveit et al.’s construction, Mandal
and Gong in [28] refined and studied the composited construction, for producing
strong composited de Bruijn sequences of arbitrarily long period from a span n
sequence. For the properties and cycle structures of composited recurrence relations,
see [27, 36]. Note that, in the composited construction, the feedback function of
a de Bruijn sequence is a bit complicated, which contains a number of sum-of-
product terms. Recently, Mandal and Gong in [29] analyzed composited de Bruijn
sequences from D-morphic point of view and presented an iterative technique for
computing the nonlinear feedback function of a composited de Bruijn sequence.
In the composited construction one needs to know the construction of a feedback
function of a span n sequence in order to generate a de Bruijn sequence of long
period.

3.1.2 Algorithms for de Bruijn Sequence Generation

Fredricksen and Kessler in [16] proposed an algorithm based on lexicographic
compositions for constructing de Bruijn sequences of period 2n, and the amount
of storage required in implementing the algorithm is linear in n. Fredricksen and
Maiorana in [17] presented an algorithm for generating necklaces of length n in k
colors, and a k-ary de Bruijn sequence of period kn is produced by juxtaposing in
order the periodic reductions of the necklaces.

Fredricksen [14] developed an algorithm to generate nonlinear de Bruijn
sequences, and the algorithm requires 3n units of storage and outputs one bit
in around n units of time. Fredricksen also exhibited that new de Bruijn sequences
can be obtained from a de Bruijn sequence by cross-joining, and the number of such
new de Bruijn sequences is 22n�5. The storage requirement for implementing the
method is about 6n units. When this method is compared with Mandal and Gong’s
iterative technique (MG iterative technique) for composited de Bruijn sequences,
MG iterative technique for the composited feedback function requires less amount
of time as well as memory.

Etzion and Lempel [12] developed a construction of de Bruijn sequences with
linear complexity .2n�1 C n/ for all n � 3. A detailed survey by Fredricksen of
many other de Bruijn sequence generation techniques can be found in [15].

3.1.3 Cycle Joining Techniques for de Bruijn Sequence Generation

Cycle joining technique is one of the well-known methods of generating a de Bruijn
sequence in which a de Bruijn sequence is constructed by joining a finite number
of cycles produced by a feedback shift register. In this technique, first a feedback



138 K. Mandal and G. Gong

function of a nonsingular feedback shift register is chosen, and then a different
feedback function for a de Bruijn sequence is constructed from the first feedback
function based on its cycle decomposition.

Jansen et al. [25] presented a cycle joining algorithm for generating de Bruijn
sequences where the feedback function of a de Bruijn sequence is the sum of
two functions; one function is the feedback function itself, and another function
is constructed from the feedback function for joining cycles. In [25], it is shown

that O.2
2n

log.2n/ / de Bruijn sequences of period 2n can be produced when all
irreducible polynomials of degree n is taken in a feedback shift register. The storage
requirement for this method is 3n bits, and 4n-unit of time is required to generate
each bit of a de Bruijn sequence. A storage-time comparison between this algorithm
and the MG iterative technique can be found in [6].

Yang and Dai in [40] proposed a construction of an m-ary de Bruijn sequence
based on joining the cycles using modification sets of a feedback function f . In the
construction, a nonlinear feedback functionF of a de Bruijn sequence is constructed
from the feedback function f using the modification sets of f . The authors showed

that, when a circulating register is chosen, at least 2.
mn

n �mn/ feedback functions
that generate de Bruijn sequences can be constructed. However, this method is not
efficient for large values of n, since the method requires the cycles decomposition
of f to construct the function F , and for a large n, it is very hard to obtain the cycle
decomposition of f . Moreover, the feedback function would contain many product
terms for joining of the cycles.

Hauge and Helleseth [24] proposed a technique based on an irreducible polyno-
mial and its adjacency graph to generate de Bruijn sequences. In this technique, a de
Bruijn sequence is obtained as maximum spanning trees from the adjacency graph of
a feedback function corresponding to an irreducible polynomial. The lower bound
for the number of de Bruijn sequences is determined in terms of the cyclotomic
numbers.

3.2 Known Techniques for Generating Modified de Bruijn
Sequences

Most of the research efforts devoted on span n sequences have been concerned
about the number of span n sequences and the characteristics of nonlinear feedback
functions [21, 33, 34] including the number of terms in the feedback functions
[33, 35] and the weight of truth tables of the feedback functions [32, 33]. Mayhew
and Golomb reported the number of span n sequences for different values of the
linear span of span n sequences and for different values of the number of terms in
the feedback functions (4 � n � 6) [34, 35]. Mayhew reported the number of span
n sequences for different weight classes of the truth tables of the feedback functions
for n D 6 [33]. However, the task of finding the number of span n sequences for
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different weight classes and for different values of the linear span is an unsolved
problem for n � 7.

In [4], Chan et al. have considered the generation of quadratic m-sequence that
uses very simple quadratic functions as the feedback function, which is the sum
of a linear function in n variables and a quadratic term for any two variables and
reported the number of span n sequences for 5 � n � 12. Dubrova in [10] and
Rachwalik et al. in [39] found a few quadratic m-sequences, i.e., span n sequence
generated using quadratic feedback functions for 4 � n � 24 and 25 � n � 27,
respectively. Gammel et al. have searched span n sequences while designing stream
cipher Achterban:128/80 based on nonlinear feedback shift registers [19].

Note that the feedback functions of an NLFSR in [10, 19, 39] contain only a few
terms and are of low algebraic degree. All the methods for finding the number of
span n sequences and verifying the span n property of a sequence use an exhaustive
search method which is an exponential time algorithm in n.

4 A New Construction

In this section we first describe the recurrence relation of nonlinear feedback shift
registers whose feedback functions are orthogonal functions. In an n-stage NLFSR,
the feedback function can also be regarded as a Boolean function in t variables
where 5 < t � n � 1: Our considered orthogonal feedback functions in t variables
are balanced as the evaluation of the feedback function has 2-level autocorrelation
and have even Hamming weight 2t�1. Thus, the new span n sequences generated by
a class of feedback functions belong to the weight class 2n�2. Then we calculate the
approximate number of feedback functions used in the structured search.

4.1 Description of Span n Sequence Generation Using
Orthogonal Function

Let a D fai g be a binary sequence generated by an n-stage NLFSR whose nonlinear
recurrence relation is defined as

anCk D ak ˚ fd .xk/; xk D .ar1Ck; ar2Ck; : : : ; artCk/ 2 F2t ; d 2 D�t ;
0 < t < n; k � 0 (4)

where .r1; r2; : : : ; rt / with 0 < r1 < r2 < � � � < rt � n � 1 is called a t-tap
position of the NLFSR, fd .x/ D f .xd /, f .x/ is an orthogonal function, and ˚
is the addition over F2. For a proper selection of a t-tap position and a feedback
function fd .x/, the binary sequence a can be a span n sequence. We note that for
any choice of a t-tap position and a feedback function fd .x/, the binary sequence
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may not be a span n sequence. The reason for choosing t � .n � 1/ is to involve a
small number of state variables in the feedback functions, which is benefited to the
implementation of the NLFSR as well as the production of more feedback functions.

Let b D fbig be a binary sequence generated by the following recurrence relation

bnCk D 1˚ bk ˚ fd .xk/; xk D .br1Ck; : : : ; brtCk/ 2 F2t ; d 2 D�t ;
0 < t < n; k � 0: (5)

Similarly, for a proper selection of a t-tap position and a feedback function fd .x/,
the complementary binary sequence Nb of b can be a span n sequence, but the
sequence b is not a span n sequence since it contains the all-zero state.

If the number of terms in the algebraic normal form representation of the function
fd is even, then the recurrence relations (4) and (5) cannot generate a span n
sequence for any choice of a t-tap position, since for the all-one state, recurrence
relation (4) generates the all-one sequence, and recurrence relation (5) contains the
all-one n-tuple.

Proposition 1 If fd .x/ D 0 for x D .1; 1; : : : ; 1/ 2 F2t , then recurrence
relations (4) and (5) cannot generate span n sequences.

In the recurrence relations (4) and (5), by varying three parameters, namely,
the primitive polynomial p.x/, the decimation number d , and the t-tap position
.r1; r2; : : : ; rt /, a number of new span n sequences can be produced, and that number
mainly depends on the length n of the NLFSR and the number t of inputs to the
function fd . We call this searching technique a structured search, where an NLFSR
has a compact representation in terms of feedback functions and tap positions. Note
that we may not always obtain a span n sequence for a fixed value of t and for any
length n of the NLFSR. A special case of the recurrence relation (4) with the trace
function in .n � 1/ variables as the feedback function is defined in [37].

A periodic reverse binary sequence is defined as follows [32, 35]: for a binary
sequence fa0; a1; : : : ; a2n�2g with period 2n � 1, the reverse sequence of the binary
sequence is defined by fa2n�2; a2n�3; : : : ; a1; a0g. A reverse sequence of a span n
sequence is also a span n sequence, which is not shift equivalent to the original one,
and the reverse span n sequence can be generated by the same function but with a
different t-tap position.

Proposition 2 ([32]) Let g.x0; x1; : : : ; xn�1/ D x0 ˚ f .x1; : : : ; xn�1/ generates
a span n sequence with period 2n � 1. Then the function h.x0; xn�1; : : : ; x1/ D
x0 ˚ f .xn�1; : : : ; x1/ generates a reverse span n sequence.

Our span n sequences generated by recurrence relations (4) and (5) with a fixed
P.x/ are uniquely determined by the following three parameters:

1. the decimation number d ,
2. the primitive polynomial p.x/,
3. the t-tap position .r1; r2; : : : ; rt /.
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Similarly, the reverse span n sequence of a span n sequence with parameters
d; p.x/; and .r1; r2; : : : ; rt / is represented by the same decimation number d and
the same primitive polynomial p.x/, but with a different t-tap position .n� r1; n�
r2; : : : ; n � rt /. For a fixed function fd .x/, a span n sequence generated by fd .x/
is different if the t-tap position is different. We now describe the span n sequence
generation by the above structured search in the following example.

Example 1 The following example describes our span n sequence generation
procedure for t D 5.

The WG transformation over F25 is given by

f .x/ D Tr.x C .x C 1/5 C .x C 1/13 C .x C 1/19 C .x C 1/21/:

After simplification, f .x/ can be written as

f .x/ D Tr.x19/; x 2 F25 ;

which is degenerated into anm-sequence. For t D 5, the set of coset leaders is given
by Dt D f1; 3; 5; 7; 11; 15g; and the coset leaders for which fd .x/ is nonlinear is
given by D�t D f1; 3; 7; 11; 15g, since for d D 5, the function fd .x/ is linear. The
d -th decimation of f .x/ is given by

fd .x/ D f .xd / D Tr.xd
0

/; d 0 D .19 � d/ mod 2t � 1; d 2 D�t :

The n-stage nonlinear recurrence relation with a t-tap position is given by

anCk D ak ˚ fd .xk/; xk D .ar1Ck; : : : ; ar5Ck/ 2 F25 ; k � 0:

The Boolean representation of f .x/ D Tr.x19/ with defining polynomial p.x/ D
1C x C x2 C x4 C x5 of F25 is as follows:

f .x0; : : : ; x4/ D x0 C x3 C x0x1 C x0x2 C x0x3 C x0x4 C x1x2 C x1x3 C x1x4
C x2x4 C x0x1x3 C x0x1x4 C x0x2x3 C x0x3x4 C x1x2x4:

For the span n sequence with parameters d D 1, p.x/ D 1C x C x2 C x4 C x5,
.r1; r2; r3; r4; r5/ D .1; 2; 3; 4; 5/ in Table 4, the above recurrence relation can be
written as

a7Ck D ak C a1Ck C a4Ck C a1Cka2Ck C a1Cka3Ck C a1Cka4Ck C a1Cka5Ck
C a2Cka3Ck C a2Cka4Ca C a2Ca5Ck C a3Cka5Ck C a1Cka2Cka4Ck
C a1Cka2Cka5Ck C a1Cka3Cka4Ck C a1Cka4Cka5Ck C a2Cka3Cka5Ck;
ak 2 F2; k � 0:
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Table 4 Span n sequences
generated using WG5 for
n D 7

Decimation Polynomial t -tap position

By recurrence relation (4)

d .c0; c1; c2; c3; c4/ .r1; r2; r3; r4; r5/

1 1 1 1 0 1 1 2 3 4 5

1 1 1 0 1 1 1 3 4 5 6

7 1 0 0 1 0 1 2 3 4 6

7 1 0 1 0 0 1 2 4 5 6

7 1 0 1 1 1 2 3 4 5 6

11 1 0 0 1 0 1 2 4 5 6

11 1 1 1 1 0 1 2 4 5 6

11 1 1 1 0 1 1 2 4 5 6

15 1 1 1 1 0 1 2 4 5 6

By recurrence relation (5)

1 1 1 1 1 0 1 2 3 4 5

1 1 1 1 0 1 1 3 4 5 6

1 1 0 1 0 0 1 3 4 5 6

7 1 0 1 1 1 1 2 3 4 5

7 1 0 1 0 0 1 2 3 4 5

7 1 1 0 1 1 1 2 3 5 6

15 1 1 1 1 0 1 2 3 4 5

The above generates the following span n sequence of period 27 � 1

111111100011100100010000011011000000100101101110101110000101111

0110101011001010000111100110001010100100111110100110100011001110:

For n D 7, all the span n sequences produced by recurrence relations (4) and (5) are
presented in Table 4.

4.2 Approximate Number of Functions in the Search Space

Note that three parameters, namely, a decimation number d , a primitive polynomial
p.x/, and a t-tap position, determine a nonlinear recurrence relation or a feedback
function that may generate a span n sequence. In other words, each feedback
function can be considered as a candidate span n sequence. For a fixed value of n
and t , a search space is formed by including all possible combinations of these three
parameters. In order to find span n sequences, an exhaustive search is performed
over this search space. We determine the size of the search space or the number of
candidate span n sequences in terms of n and t in the following proposition.
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Proposition 3 For any n > t � 6, the number of feedback functions in the search

space of recurrence relations (4) and (5) is given byC D


�.2t�1/

t

�2 �
n�1
t

�
if jD�t j D

�.2t�1/
t

.

Proof As in the recurrence relations, the first position is fixed for the sequence to
be periodic, and any t-tap position is chosen from n� 1 positions .n � 6/ to form a
t-tap position; the number of distinct t-tap positions is given by T D �

n�1
t

�
. Again,

the total number of nonlinear feedback functions is given by np � jD�t j, where np D
�.2t�1/

t
is the number of t degree primitive polynomials over F2 and jD�t j is the

number of decimation numbers for which the feedback function is nonlinear. Hence,
for fixed n and t , the number of feedback functions in the search space is

C D np � jD�t j � T D
�
�.2t � 1/

t

�2  
n � 1
t

!

if jD�t j D
�.2t � 1/

t
:

�

Proposition 4 A feedback shift register defined by recurrence relations (4) and (5)
produces the maximum number of span n sequences when about half the length of
the shift register tap positions participate in the feedback functions.

Proof Without loss generality, we assume that the number of terms in a feedback
function is even. In a feedback shift register, the feedback functions are different for
different t-tap positions. Thus, for a particular value of n and t and for a feedback
function in t variables, the number of different feedback functions in n variables
is equal to Nn;t D

�
n�1
t

�
and Nn;t is maximum when t D ˙

n
2

�
(for linear feedback

functions, t is always odd and t  ˙ n
2

�
). If the feedback functions in n variables that

are candidate span n sequences are uniformly distributed over the set of all Boolean
functions, then the FSR generates the maximum number of span n sequences when
t  ˙ n

2

�
. Hence, the assertion is established. �

We note that an LFSR also produces the maximum number of span n sequences
when t  ˙

n
2

�
(see Table 20). This property is also satisfied by the nonlinearly

generated span n sequences using recurrence relations (4) and (5) (see Tables 6,
7, 8, 9, 10, 11, and 12). We now estimate the number of feedback functions in the
search space for finding the maximum number of span n sequences. Assume that we
use NLFSRs defined by recurrence relations (4) and (5) for t D ˙ n

2

�
. Let N denote

the number of span n sequences (including reverse span n sequences) obtained by
recurrence relations (4) and (5). Then we have the following theorem.

Theorem 1 An approximate number of candidate span n sequences or feedback
functions in recurrence relations (4) and (5) is given by C0, where C0 �
�.2d n2 e�1/
d n2 e

�2
� 2n�1p

� � n�1
2

and C0  22n�1�2 3n2 C1p
� �.d n2 e/5=2 ; if 2t � 1 is a Mersenne prime, and

the success probability of obtaining such a span n sequence is given by N
C0

.
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Proof We recall that the size of the search space is

C D
�
�.2t � 1/

t

�2  
n � 1
t

!

; for jD�t j D
�.2t � 1/

t
:

Putting t D ˙ n
2

�
in the above formula, then we get

C0 D
 
�.2d n2 e � 1/

˙
n
2

�

!2
�
 
n � 1
˙
n
2

�

!

D
 
�.2d n2 e � 1/

˙
n
2

�

!2
�
 

n � 1

n�1
2

˘C 1

!

; for positive n

D
 
�.2d n2 e � 1/

˙
n
2

�

!2
�
.n �  n�1

2

˘ � 1/ � � n�1b n�1
2 c
�

.

n�1
2

˘C 1/ :

By Stirling’s formula

 
m

m
2

˘

!

	 2m
p
�m=2

;

the above equation can be written as

C0 	
 
�.2d n2 e � 1/

˙
n
2

�

!2
�


n�1
2

˘ � 2n�1

.

n�1
2

˘C 1/ �
q
� � n�1

2

	
 
�.2d n2 e � 1/

˙
n
2

�

!2
� 2n�1
q
� � n�1

2

:

 22n�1 � 2 3n2 C1p
� � .d n

2
e/5=2 ; if 2t � 1 is a Mersenne prime:

Thus, the success probability of obtaining a span n sequence is equal to N
C0
: Hence,

the result is proved. �
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5 Experimental Results on Span n Sequence Generation
Using WG Transformations

In this section, we report the number of new span n sequences generated using
WG transformations. We also present a heuristic method for searching WG span
n sequences of long length. Table 5 provides a summary of the list of orthogonal
functions used to produce span n sequences.

5.1 WG Span n Sequences

WG span n sequences are obtained by putting the WG transformation in recurrence
relations (4) and (5) for different t and n. The span n sequences are generated
by computer simulations. We consider the WG transformations over the field F2t

for t D 5; 7; 8; 10; and 11. We denote by WG-t the WG transformations over
the field F2t . Table 6 presents the number of new span n sequences (new reverse
span n sequences are not taken into account) produced by recurrence relations (4)
and (5) for 6 � n � 20. However, this method can be applied to generate span
n sequences of long length. In Table 6, “�” denotes the recurrence relations that
are not defined for such values of n and t , and 	 represents those cases wherein
the number of span n sequences is not yet determined. We present some instances
of new span n sequences in the Appendix and all span n sequences in http://www.
comsec.uwaterloo.ca/~kmandal/WG-Span-n/index.html.

A graphical representation of the number of new span n sequences is provided in
Fig. 1, which shows that for different t the distribution of the number of new span
n sequences has the following property: the number of span n sequences increases
as n increases, and it reaches the maximum for some value of n, and thereafter the
number of span n sequences decreases as n increases. At a quick glance, we can
observe that the number of span n sequences is maximal close to n D 2t , which
follows from the fact that the size of the search space is a multiple of a binomial
coefficient (see Proposition 4). This fact reveals that there exists a trade off between
n and t for obtaining the maximum number of span n sequences.

Table 5 Orthogonal
functions used in the
structured search

Parameter t Orthogonal functions

t D 5 T1, T3

t D 7 T1, T3, T5, WG, Hall, QR

t D 8 T5, WG, GMW

t D 9 T1, T3, GMW, Segre, Glynn 1

t D 10 T1, T5, WG, GMWi , i D 1 : : : 7

t D 11 T1, T3, T5, WG, Segre, Glynn 1, Glynn 2, B3

http://www.comsec.uwaterloo.ca/~kmandal/WG-Span-n/index.html
http://www.comsec.uwaterloo.ca/~kmandal/WG-Span-n/index.html
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Table 6 Number of WG span n sequences

By recurrence relation (4)

n

t 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 0 9 7 14 8 11 17 11 13 10 3 7 7 0 1

7 � � 3 25 42 63 108 138 138 125 126 111 83 86 63

8 � � � 3 9 18 34 76 96 104 106 108 110 90 79

10 � � � � � 5 40 107 246 373 627 819 999 � �
11 � � � � � � 31 204 574 1313 2539 4079 � � �
Total 0 9 10 42 59 97 230 536 1067 1925 3401 5124 – – –

By recurrence relation (5)

t 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 1 7 7 10 16 18 10 8 4 10 2 1 3 1 0

7 � � 4 25 47 59 121 122 137 125 123 98 74 84 54

8 � � � 1 6 35 33 75 73 91 123 115 106 99 77

10 � � � � � 4 47 118 270 401 680 863 � � �
11 � � � � � � 33 186 576 1350 2522 4010 � � �
Total 1 7 11 36 69 116 244 509 1060 1977 3450 5087 – – –
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Fig. 1 Distribution of the number of span n sequences

Remark 1 There exist many span n sequences whose t-tap positions and the bases
of the finite fields are the same, but their decimation numbers are different.
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5.2 The Search Complexity Reduction for WG Span
n Sequences

It is worth noticing that as t increases, the number of feedback functions in the
search space increases exponentially. For large t , it is hard to find span n sequences
by considering all functions in the search space. Thus, for large n and t , a search
in a restricted search space can be performed to find span n sequences by imposing
restrictions over decimation numbers and t-tap positions. Below we list a type of
decimation numbers and t-tap positions that are observed for WG span n sequences.
In some cases, we may not find any span n sequence. However, according to our
observations, it is possible to obtain many span n sequences.

5.2.1 Observations on Decimation Numbers

We have performed a search on the following type of decimation numbers for
different n

Ddec D fd W d 2 D�t and d D 2i � 1; i D 1; 2; : : : ; t � 1g

for t D 7, 8, and 10, and the result shows that there exist many span n sequences
whose decimation numbers in the recurrence relations (4) and (5) are of the above
type. For this type of decimation numbers in the recurrence relations, the size of the
search space is given by

Cdec D �.2t � 1/
t

.t � 1/
 
n � 1
t

!

 �.2t � 1/
 
n � 1
t

!

:

Obviously, the reduced complexity Cdec is less than the original complexity C .

5.2.2 Observations on t-Tap Positions

Likewise, a search in the search space can be performed according to some pattern of
t-tap positions for finding long period span n sequences. Assume that it is possible
to fix, say, k tap positions (1 � k � t). Then, the total number of fixed tap positions
in the recurrence relations is .k C 1/, and we only need to choose .t � k/ positions
out of .n � 1 � k/ positions. So, for k fixed choices of tap positions, the search
complexity is

Ctap D
�
�.2t � 1/

t

�2  
n � 1 � k
t � k

!

:
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Based on our observations on the t-tap positions for t D 7; 8; and 10, the
following types of t-tap positions are effective when the slope of the curves in
Fig. 1 increases gradually. For example, when t D 7, n D 11; 12; 13; and 14

and t D 8, n D 13; 14; 15; 16; 17; and 18, the t-tap positions are given by:
f1; 2; 3; 4; : : :g; f1; 2; 3; : : :; n � 1g; f1; 2; : : :; n � 2; n � 1g; f1; : : :; n � 3; n �
2; n � 1g; where the numbers in the tap positions represent fixed positions in the
t-tap positions (i.e., k D 4 fixed positions) and “: : :” represents a combination of
.n � k � 1/ tap positions. We performed a search according to the first pattern of
t-tap position; the following span n sequence generated by a WG transformation
has been found for t D 13 and n D 24.

Decimation Polynomial t -tap position

d .c0; c1; c2; : : : ; c11; c12/ .r1; r2; : : : ; r12; r13/

1207 .1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 1; 0; 0/ .1; 2; 3; 4; 5; 6; 7; 10; 11; 12; 13; 15; 22/

6 Experimental Results on Span n Sequences Generated
by Other Orthogonal Functions

This section reports the number of span n sequences produced using three-term,
five-term, monomial, Hall, quadratic residue, Glynn, Segre, GMW, and Kasami
power functions. Explicit representations of these function are provided in Tables 1,
2, and 3.

6.1 Three-Term and Five-Term and Monomial Span
n Sequences

Considering three-term and five-term functions in recurrence relations (4) and (5),
a number of span n sequences can be obtained by the structured search. Tables 7
and 8 present the number of span n sequences for three-term functions and five-term
functions, respectively. When t D 5, three-term functions and five-term functions
degenerate to the same functions, as a result, the number of span n sequences
obtained by three-term functions and five-term function are the same.

Table 9 presents the number of span n sequences produced using monomial
functions for 6 � n � 20. In tables, � denotes that the recurrence relation is not
defined by the parameters t and n, and 	 denotes that the cases are incomplete
due to a huge number of functions in the search space. When t D 5, the WG
transformations and monomial functions degenerate to the same functions.
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Table 7 Number of three-term span n sequences

By recurrence relation (4)

n

t 6 7 8 9 10 11 12 13 14 15 16 17

5 1 3 9 8 9 8 4 3 5 2 3 1

7 � � 6 25 51 89 103 150 131 128 127 123

9 � � � � 8 52 104 223 391 549 710 770

11 � � � � � � 35 190 624 1323 2580 4056

Total 1 3 15 33 68 149 246 566 1151 2002 3420 4950

By recurrence relation (5)

t 6 7 8 9 10 11 12 13 14 15 16 17

5 1 2 2 5 10 5 6 5 3 1 3 5

7 � � 4 24 44 84 98 122 133 146 128 111

9 � � � � 12 47 109 237 361 553 694 823

11 � � � � � � 34 186 578 1416 2554 4007

Total 1 3 6 29 66 136 247 550 1075 2116 3379 4946

Table 8 Number of five-term span n sequences

By recurrence relation (4)

n

t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 1 3 9 8 9 8 4 4 5 2 3 1 0 1

7 � � 5 22 44 66 118 131 115 135 124 118 99 90

8 � � � 1 9 18 37 56 88 101 104 86 92 90

10 � � � � � 9 37 116 246 411 621 797 943 �
11 � � � � � � 25 171 590 1443 2618 4194 � �
Total 1 3 14 31 62 101 221 478 1044 2092 3470 5196 – –

By recurrence relation (5)

t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 1 2 2 5 10 5 6 5 3 1 3 5 0 1

7 � � 8 19 43 74 108 138 138 127 117 102 84 91

8 � � � 0 6 22 38 54 66 116 89 106 83 93

10 � � � � � 7 47 119 223 443 627 861 � �
11 � � � � � � 20 172 609 1397 2558 4062 � �
Total 1 2 10 24 59 108 219 488 1039 2084 3394 5136 – –

6.2 Hall, QR, Segre, Glynn, and GMW Span n Sequences

In this section, we present the number of span n sequences produced by Hall, QR,
Segre, Glynn, and GMW functions for 7 � n � 20. We use the functions defined in
Tables 1, 2, and 3 for Hall, quadratic residue, Glynn, Segre, and GMW functions in
recurrence relations (4) and (5).
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Table 9 Number of span n sequences generated by monomial functions

By recurrence relation (4)

n

t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 0 9 7 14 8 11 17 11 13 10 3 7 7 0

7 � � 6 17 41 76 79 118 108 99 125 78 88 72

9 � � � � 10 43 120 258 410 519 662 788 � �
11 � � � � � � 26 188 604 1423 2491 4056 � �
Total 0 9 13 31 59 130 242 575 1135 2051 3281 4929 – –

By recurrence relation (5)

t 6 7 8 9 10 11 12 13 14 15 16 17 18 19

5 1 7 7 10 16 18 10 8 4 10 2 1 3 1

7 � � 4 25 45 60 98 117 114 104 116 96 86 77

9 � � � � 6 37 131 239 367 558 740 860 � �
11 � � � � � � 32 184 596 1403 2547 4074 � �
Total 1 7 11 35 67 115 271 548 1081 2075 3405 5031 – –

Table 10 Number of span n sequences generated by Hall functions and QR functions

By recurrence relation (4)

n

t OF 8 9 10 11 12 13 14 15 16 17 18 19 20

7 Hall 2 9 19 21 41 38 35 45 28 34 30 30 –

7 QR 0 4 4 5 14 27 16 9 18 14 12 6 6

By recurrence relation (5)

t OF 8 9 10 11 12 13 14 15 16 17 18 19 20

7 Hall 1 6 20 25 37 48 36 44 46 24 39 – –

7 QR 0 3 6 7 13 12 13 18 16 13 14 10 8

For the range 7 � t � 11, the Hall and QR functions with trace representations
exist only for t D 7. Table 10 presents the number of span n sequences produced
using recurrence relations (4) and (5) with Hall and QR functions for 8 � n � 20.
When all the decimated QR functions are considered, the class of 18 QR functions
degenerates to two distinct QR orthogonal functions, and similarly, the class of 18
Hall functions degenerates to six distinct Hall orthogonal functions. Due to this
reason, the number of span n sequences in Table 10 is smaller compared to other
cases for n D 7.

When all the decimations are considered, Glynn 1 functions and Glynn 2
functions over F29 degenerate to the same class of orthogonal functions. Therefore,
the number of span n sequences for Glynn 1 and Glynn 2 functions are the same
in the structured search. However, for t D 11, the Glynn 1 class of functions and
Glynn 2 class of functions are different. We provide the number of span n sequences
produced by Glynn functions in Table 11, which also contains the number of span n
sequences generated by Segre functions for t D 9 and 11. In Tables 10, 11, and 12,
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Table 11 Number of span n sequences generated by Segre and Glynn functions

By recurrence relation (4)

n

t OF 10 11 12 13 14 15 16 17 18

9 Segre 15 51 131 245 418 528 706 783 –

11 Segre � � 34 172 586 1413 2564 – –

9 Glynn 1 11 52 129 253 415 584 673 790 –

11 Glynn 1 � � 28 177 587 1418 2553 – –

11 Glynn 2 � � 30 185 595 1320 2646 – –

By recurrence relation (5)

t OF-t 10 11 12 13 14 15 16 17 18

9 Segre 7 48 108 264 371 521 692 – –

11 Segre � � 37 153 627 1372 – – –

9 Glynn 1 6 49 126 248 397 529 709 – –

11 Glynn 1 � � 26 185 562 1351 – – –

11 Glynn 2 � � 28 183 598 1340 – – –

Table 12 Number of span n sequences generated by GMW functions

By recurrence relation (4)

n

t OF 9 10 11 12 13 14 15 16 17 18 # of terms

8 GMW 1 11 13 50 75 71 99 97 117 78 4

9 GMW � 15 45 128 223 382 – – – – 3

10 GMW1 � � 7 37 114 236 424 606 810 – 2

10 GMW2 � � 6 51 97 247 405 – – – 2

10 GMW3 � � 5 33 119 255 415 672 865 – 4

10 GMW4 � � 7 36 110 248 405 – – – 4

10 GMW5 � � 10 39 147 261 411 645 853 – 7

10 GMW6 � � 5 39 113 234 440 654 816 – 8

10 GMW7 � � 10 39 118 236 422 664 888 – 14

By recurrence relation (5)

t OF 9 10 11 12 13 14 15 16 17 18 # of terms

8 GMW 1 5 21 45 77 80 90 107 116 111 4

9 GMW � 11 44 140 247 414 559 716 – – 3

10 GMW1 � � 7 34 117 257 414 609 – – 2

10 GMW2 � � 8 41 126 243 409 – – – 2

10 GMW3 � � 7 44 122 257 411 641 – – 4

10 GMW4 � � 4 35 130 257 424 – – – 4

10 GMW5 � � 6 43 113 239 407 638 – – 7

10 GMW6 � � 2 42 113 247 455 630 – – 8

10 GMW7 � � 5 51 133 258 429 643 – – 14
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“�” denotes the computation for the number of span n sequences is in progress and
will be finished soon.

Table 12 presents the number of span n sequences produced by GMW functions
in the structured search for t D 8; 9; and 10 and 9 � n � 19. For the GMW
functions over F28 and F29 , there exists only one class of GMW functions. On
the other hand, for the GMW functions over F210 , there exist total seven distinct
classes of orthogonal GMW functions with different number of terms in the trace
representation. GMW span n sequences with 9 � n � 18 are generated using
recurrence relations (4) and (5) with GMWi functions, 1 � i � 7. In Table 12, the
term “# of terms” denotes the number of terms in the trace representation of a GMW
function.

Remark 2 For a class of orthogonal functions in recurrence relations (4) and (5),
each span n sequence is uniquely determined by a decimation number, a primitive
polynomial, and a t-tap position. Unfortunately, we could not find any relation
among these three parameters.

7 The Success Probability Comparison

In this section, an empirical success probability of obtaining a span n sequence
using a orthogonal feedback function is presented. Note that the success probability
of obtaining a randomly generated span n sequence is 1

2n�3 [33], where a random
span n sequence is generated by randomly choosing a feedback function from the
set of all Boolean functions in n variables and checking the condition for a span n
sequence.

We compared the success probability of obtaining a span n sequence using
WG transformations (including reverse sequences) in the structured search with
a random span n sequence generation method for t D 5; 7; 8 ( for t  ˙

n
2

�
),

10; and 11 .for 13 � n � 17/, and the comparison shows that in the structured
search, one can produce a span n sequence with a better success probability than
that of a random span n sequence generation method. A comparison of success
probability for t D 5; 7; and 8 is provided in Table 13. Furthermore, we compared
the success probability of obtaining a span n sequences using three-term, five-
term, and monomial functions in Table 13 for t D 5; 7; 8; 9. Table 13 illustrates
that a span n sequence can be produced using any of three-term, five-term, and
monomial functions with a better success probability. Our empirical comparisons
also show that the success probability of obtaining a span n sequence using Hall,
QR, Segre, Glynn, and GMW functions is greater than that of a random span n
sequence generation method. We don’t provide the success probability values due
to the large number of cases.
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Table 13 The success
probability comparison for
WG, three-term, five-term,
and monomial span n
sequences

WG span n sequences

n D 2t Our approach Randomly chosen

WG-5 10 1
26:56

1
27

WG-7 14 1
29:98

1
211

WG-8 16 1
211:81

1
213

Three-term span n sequences

n 	 2t Our approach Randomly chosen

T3-5 10 1
26:89

1
27

T3-7 14 1
210:04

1
211

T3-9 17 1
213:04

1
214

Five-term span n sequences

n D 2t Our approach Randomly chosen

T5-5 10 1
26:89

1
27

T5-7 14 1
210:10

1
211

T5-8 16 1
212:02

1
213

Monomial span n sequences

n 	 2t Our approach Randomly chosen

T1-5 10 1
26:88

1
27

T1-7 14 1
210:29

1
211

T1-9 17 1
212:96

1
214

8 Linear Span of New Span n Sequences

In this section, we analyze the linear span of new span n sequences produced by
orthogonal functions and present two conjectures on linear span of span n sequences
produced by orthogonal functions.

We study the linear span of new span n sequences generated using orthogonal
functions. The linear span of a sequence is an important randomness property that
is considered as an upper bound on sequence unpredictability because using only
twice-linear span consecutive bits one can certainly predict the remaining bits of
the sequence by the Berlekamp–Massey algorithm [2, 31]. Sequences with optimal
linear complexity are of practical interests, since an attacker requires the whole
sequence to decrypt the message in a stream cipher. There is no theoretical result on
the linear span of span n sequences generated by a nonlinear feedback shift register.
What we know is the bounds presented in Property 1 in Sect. 2.

We compute the linear span of new span n sequences by the Berlekamp–Massey
algorithm, and our computational results show that the linear span of a new sequence
lies in the range of .2n � 2 � 3n/ (near optimal) and .2n � 2/ (optimal). Table 14
presents a summary of the linear spans of WG span n sequences generated by
the recurrence relations (4) and (5), respectively. Moreover, Tables 15, 16, and 17
exhibit a summary of the linear spans of the span n sequences generated by
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Table 14 The bounds of the
linear span of WG span n
sequences

Range on n t Upper bound of LS Lower bound of LS

By recurrence relation (4)

7 � n � 20 5 2n � 2 2n � 2� 2n
8 � n � 20 7 2n � 2 2n � 2� 2n
9 � n � 20 8 2n � 2 2n � 2� 3n
11 � n � 17 10 2n � 2 2n � 2� 3n
12 � n � 17 11 2n � 2 2n � 2� 2n
By recurrence relation (5)

7 � n � 20 5 2n � 2 2n � 2� 2n
8 � n � 20 7 2n � 2 2n � 2� 3n
9 � n � 20 8 2n � 2 2n � 2� 3n
11 � n � 17 10 2n � 2 2n � 2� 3n
12 � n � 16 11 2n � 2 2n � 2� 3n

Table 15 The bounds of the
linear span of monomial span
n sequences

Range on n t Upper bound of LS Lower bound of LS

By recurrence relation (4)

7 � n � 19 5 2n � 2 2n � 2� 2n
8 � n � 19 7 2n � 2 2n � 2� 3n
8 � n � 17 9 2n � 2 2n � 2� 3n
12 � n � 16 11 2n � 2 2n � 2� 3n
By recurrence relation (5)

7 � n � 19 5 2n � 2 2n � 2� 2n
8 � n � 19 7 2n � 2 2n � 2� 3n
8 � n � 17 9 2n � 2 2n � 2� 3n
12 � n � 16 11 2n � 2 2n � 2� 3n

Table 16 The bounds of the
linear span of three-term span
n sequences

Range on n t Upper bound of LS Lower bound of LS

By recurrence relation (4)

7 � n � 17 5 2n � 2 2n � 2� 2n
8 � n � 17 7 2n � 2 2n � 2� 3n
8 � n � 17 9 2n � 2 2n � 2� 3n
12 � n � 17 11 2n � 2 2n � 2� 3n
By recurrence relation (5)

7 � n � 17 5 2n � 2 2n � 2� 2n
8 � n � 17 7 2n � 2 2n � 2� 2n
8 � n � 17 9 2n � 2 2n � 2� 3n
12 � n � 17 11 2n � 2 2n � 2� 2n

monomial functions, three-term functions, and five-term functions, respectively, for
different values of t , and Table 18 presents a summary of the linear span of span n
sequences produced by other orthogonal functions. Our computational results also
show that most of new sequences obtain the optimal linear span .2n � 2/, only very
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Table 17 The bounds of the
linear span of five-term span
n sequences

Range on n t Upper bound of LS Lower bound of LS

By recurrence relation (4)

7 � n � 19 5 2n � 2 2n � 2� 2n
8 � n � 19 7 2n � 2 2n � 2� 2n
9 � n � 19 8 2n � 2 2n � 2� 3n
11 � n � 17 10 2n � 2 2n � 2� 3n
12 � n � 16 11 2n � 2 2n � 2� 2n
By recurrence relation (5)

7 � n � 20 5 2n � 2 2n � 2� 2n
8 � n � 20 7 2n � 2 2n � 2� 3n
9 � n � 20 8 2n � 2 2n � 2� 3n
11 � n � 17 10 2n � 2 2n � 2� 2n
12 � n � 16 11 2n � 2 2n � 2� 3n

Table 18 The upper and
lower bounds of the linear
span of Hall, QR, GMW,
Segre, and Glynn span n
sequences

By recurrence relations (4) and (5)

t Function Range on n Upper bound Lower bound

7 Hall 8 � n � 19 2n � 2 2n � 2� 2n
QR 8 � n � 20 2n � 2 2n � 2� 3n

8 GMW 9 � n � 18 2n � 2 2n � 2� 2n
9 Segre 10 � n � 16 2n � 2 2n � 2� 3n

Glynn 10 � n � 16 2n � 2 2n � 2� 3n
GMW 10 � n � 16 2n � 2 2n � 2� 3n

10 GMW 11 � n � 17 2n � 2 2n � 2� 3n
11 Segre 12 � n � 16 2n � 2 2n � 2� 3n

Glynn 12 � n � 16 2n � 2 > 2n � 2� 3n

few span n sequences obtain the linear span .2n� 2� 3n/, and in some cases all the
linear spans are greater than .2n � 2 � 3n/.

Based on our observation on the linear span of new span n sequences produced by
orthogonal functions, we have the following two conjectures. These two conjectures
are valid and verified by our computational results for n � 20.

Conjecture 1 Let the function g be an orthogonal function and s D fsi g be a binary
sequence generated by an n-stage NLFSR with n > m whose feedback function is
given by

f .x0; x1; : : : ; xn�1/ D c ˚ x0 ˚ g.y/

where c D 0=1 and y D .xr1 ; xr2 ; : : : ; xrm/; y 2 F2m ; and 0 < r1 < r2 < � � � <
rm < n: If s or Ns is a span n sequence, then the linear span of s, denoted as LSs , is
bounded by

.2n � 2 � 3n/ � LSs � .2n � 2/:
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Conjecture 2 For a prime length of an NLFSR, the linear span of a span n sequence
produced by the above feedback function with an orthogonal function takes one of
the following three values f2n � 2 � 2n; 2n � 2 � n; 2n � 2g.

9 Applications

Our span n sequences and span n sequences produced by the structured search in this
chapter can be used in the following scenarios. In [28], Mandal and Gong analyzed
the composited construction based on a span n sequence for generating long and
strong de Bruijn sequences. Based on their analysis, the span n sequence to be used
in the construction must have high linear span in order to produce strong de Bruijn
sequences. Since our span sequences have optimal or near-optimal linear span, these
span n sequences can be used in the composited construction for producing long and
strong de Bruijn sequences. Mandal et al. [30] designed Warbler, a pseudorandom
number generator for EPC C1 Gen2 RFID tags using NLFSRs where two span n
sequences with optimal linear span are used to promise the randomness properties
such as period and linear span of an output sequence. Our span n sequences or span
n sequences produced by the structured search can be used to design lightweight
pseudorandom number generators and stream ciphers. Thus, our span n sequences
have an immediate application in cryptography, which can be found in [28, 30].

Conclusion
In this chapter, we have studied the span n sequence generation using
orthogonal functions and presented some theoretical results on generating
span n sequences and experimental results about the number of span n

sequences produced by orthogonal functions. We used all known and well-
studied orthogonal functions as nonlinear feedback functions in an NLFSR
for 5 � t � 11 and presented the number of span n sequences produced using
orthogonal functions for 6 � n � 20. Finally, we analyzed the linear span
of new span n sequences produced by the orthogonal functions and gave a
summary of the bounds of the linear span for each class of span n sequences.
Interestingly, the linear span of a new span n sequence lies between the near
optimal .2n � 2 � 3n/ and optimal .2n � 2/. We observed that the majority
of span n sequences have an optimal linear span. According to our study,
it is possible to obtain span n sequences of high linear span with a better
probability of success using orthogonal feedback functions.
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Appendix: A Upper and Lower Bounds of Linear Span
of Span n Sequences

We present the upper and lower bounds of the linear span of new span n sequences
generated using orthogonal functions for different n and t and give all new span
n sequences generated using WG transformations for t D 5 (Tables 14, 15, 16,
17, 18, 19, 20, 21, and 22). All new span n sequences generated using WG
transformations with t D 7; 8; 10; and 11 can be found in http://www.comsec.
uwaterloo.ca/~kmandal/WG-Span-n/index.html.

Table 19 Span n sequences
generated using WG7

Length Decimation Polynomial t -tap position

n d .c0; c1; : : : ; c5; c6/ .r1; r2; : : : ; r6; r7/

8 5 1 1 0 0 0 0 0 1 2 3 4 5 6 7

9 1 1 0 1 1 1 1 1 1 2 3 4 5 6 7

10 27 1 1 1 1 0 1 1 1 2 3 4 5 6 7

11 1 1 1 1 1 0 1 1 1 2 3 5 8 9 10

12 1 1 0 1 1 1 0 0 1 2 4 5 8 10 11

13 9 1 1 0 0 1 0 1 1 2 3 4 5 6 8

14 43 1 1 1 0 1 1 1 1 2 3 4 5 6 7

15 31 1 1 0 0 0 0 0 1 2 3 4 7 12 14

16 27 1 1 1 1 0 1 1 1 2 3 5 6 8 14

17 1 1 0 1 1 1 0 0 1 2 3 4 7 9 13

18 1 1 0 1 1 1 0 0 1 2 3 4 6 9 16

19 3 1 1 1 1 1 1 0 1 2 3 5 7 15 17

20 31 1 1 1 1 1 1 0 1 2 3 7 8 12 15

Table 20 Tap-position distribution for an LFSR of length � 20
# of taps 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 2 2 4 – 2 2 2 – – – 6 – 6 2 – 2

4 4 4 10 12 16 20 44 18 66 42 82 52 152 72 158 100

6 – – 4 4 28 28 80 86 236 226 470 368 1050 718 1774 1104

8 – – – – 2 10 50 36 264 338 720 812 2674 2296 6696 4522

10 – – – – – – – 4 60 140 450 648 2696 2910 10238 8436

12 – – – – – – – – 4 12 66 156 1006 1470 6766 7000

14 – – – – – – – – – – 6 12 122 284 1772 2460

16 – – – – – – – – – – – – – 24 190 354

18 – – – – – – – – – – – – – – – 22

http://www.comsec.uwaterloo.ca/~kmandal/WG-Span-n/index.html
http://www.comsec.uwaterloo.ca/~kmandal/WG-Span-n/index.html
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Table 21 WG span n
sequences generated using
rec. rel. (4)

Decimation Polynomial Tap position

n d .c0; c1; c2; c3; c4/ .r1; r2; r3; r4; r5/

8 1 1 0 1 0 0 1 2 4 5 7

1 1 1 1 1 0 1 3 4 5 6

1 1 1 1 1 0 2 4 5 6 7

3 1 1 0 1 1 1 2 3 5 6

7 1 0 1 1 1 1 2 3 5 7

7 1 0 1 0 0 2 3 4 6 7

15 1 1 1 1 0 2 3 4 6 7

9 1 1 1 1 0 1 1 2 5 6 8

1 1 1 1 0 1 1 3 6 7 8

1 1 1 1 1 0 2 3 5 7 8

1 1 1 1 0 1 4 5 6 7 8

3 1 1 0 1 1 1 2 4 5 6

3 1 0 1 0 0 1 2 4 5 8

3 1 0 1 0 0 2 4 6 7 8

7 1 0 1 0 0 1 2 3 4 6

11 1 1 1 0 1 1 4 6 7 8

11 1 1 1 1 0 2 4 5 6 7

11 1 1 1 1 0 2 4 5 6 8

11 1 1 1 0 1 2 4 6 7 8

15 1 1 1 1 0 1 2 3 4 6

15 1 1 1 0 1 1 2 5 7 8

10 1 1 1 0 1 1 1 2 4 5 8

1 1 1 1 0 1 1 3 4 6 7

1 1 1 1 0 1 1 3 4 6 9

3 1 1 0 1 1 1 2 3 4 8

7 1 0 0 1 0 1 2 4 7 8

11 1 0 1 1 1 1 2 3 4 5

11 1 0 0 1 0 1 2 3 7 8

11 1 1 1 1 0 1 4 5 8 9

11 1 1 1 1 0 1 1 2 7 8 10

1 1 1 1 1 0 3 4 5 8 10

1 1 1 1 0 1 6 7 8 9 10

7 1 0 1 1 1 1 2 3 6 7

7 1 0 0 1 0 1 3 7 8 10

7 1 0 1 1 1 2 3 4 7 10

7 1 1 0 1 1 2 3 7 9 10

7 1 0 0 1 0 2 4 5 6 10

7 1 1 0 1 1 3 4 5 8 9

11 1 1 1 1 0 1 2 4 5 8

11 1 1 1 0 1 1 3 4 6 10

(continued)
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Table 21 (continued) Decimation Polynomial Tap position

n d .c0; c1; c2; c3; c4/ .r1; r2; r3; r4; r5/

12 1 1 1 1 1 0 2 3 4 5 6

1 1 0 1 0 0 2 3 4 5 8

1 1 1 1 0 1 2 3 5 7 9

1 1 0 1 0 0 2 3 6 9 10

1 1 1 1 0 1 4 6 9 10 11

3 1 1 0 1 1 1 2 3 4 5

3 1 1 0 1 1 2 5 7 8 10

3 1 0 1 0 0 4 5 6 9 11

7 1 0 1 0 0 1 2 4 7 8

7 1 1 0 1 1 1 2 5 6 8

11 1 0 0 1 0 1 3 4 6 10

11 1 1 1 0 1 1 3 4 9 11

11 1 1 1 1 0 1 4 5 8 9

11 1 1 1 0 1 2 3 6 7 10

11 1 1 1 1 0 3 5 7 8 9

11 1 1 1 1 0 4 6 7 9 10

15 1 1 1 1 0 1 2 4 7 8

Table 22 WG span n
sequences generated using
rec. rel. (4)

Decimation Polynomial Tap position

n d .c0; c1; c2; c3; c4/ .r1; r2; r3; r4; r5/

13 1 1 0 1 0 0 1 3 4 5 9

1 1 0 1 0 0 5 8 9 11 12

3 1 1 0 1 1 5 6 10 11 12

7 1 0 1 0 0 1 2 3 6 8

7 1 1 0 1 1 3 5 7 10 12

7 1 1 0 1 1 6 7 9 10 12

11 1 0 0 1 0 1 2 3 5 10

11 1 1 1 0 1 1 2 5 10 12

11 1 1 1 0 1 1 5 6 10 12

11 1 1 1 0 1 4 5 7 8 9

15 1 1 1 1 0 1 2 3 6 8

14 1 1 0 1 0 0 1 3 5 7 9

1 1 1 1 1 0 2 6 8 9 13

1 1 1 1 0 1 3 4 6 8 10

1 1 1 1 0 1 3 5 8 10 13

3 1 1 0 1 1 1 8 10 11 13

(continued)
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Table 22 (continued) Decimation Polynomial Tap position

n d .c0; c1; c2; c3; c4/ .r1; r2; r3; r4; r5/

7 1 0 0 1 0 1 2 6 9 12

7 1 0 0 1 0 1 3 10 12 13

7 1 0 0 1 0 1 6 9 12 13

7 1 0 1 0 0 3 5 7 8 9

11 1 1 1 1 0 1 2 4 11 12

11 1 1 1 1 0 1 2 9 10 11

15 1 1 1 0 1 3 5 6 8 13

15 1 1 1 1 0 3 5 7 8 9

15 1 1 1 1 0 1 4 5 12 13 14

3 1 0 1 0 0 2 6 8 9 10

3 1 0 1 0 0 4 5 6 7 14

7 1 0 1 1 1 2 5 7 10 13

7 1 0 1 1 1 2 5 8 11 14

7 1 0 0 1 0 3 4 5 7 12

11 1 0 0 1 0 2 3 6 7 13

11 1 1 1 0 1 2 4 9 11 13

11 1 0 1 1 1 2 9 10 11 12

15 1 1 1 0 1 1 2 3 5 6

16 1 1 1 0 1 1 1 10 11 12 14

1 1 1 1 0 1 1 10 11 12 14

15 1 1 1 0 1 3 6 9 12 14

17 3 1 0 1 0 0 1 6 7 8 9

3 1 1 0 1 1 4 7 8 9 12

7 1 0 1 0 0 1 3 12 13 14

7 1 1 0 1 1 1 4 10 11 13

7 1 0 0 1 0 1 5 11 12 13

11 1 1 1 0 1 1 3 6 12 13

15 1 1 1 1 0 1 3 12 13 14

18 1 1 1 1 0 1 1 2 12 13 14

3 1 1 0 1 1 4 7 8 10 15

3 1 1 0 1 1 5 10 11 14 17

7 1 0 0 1 0 1 2 5 7 11

7 1 1 0 1 1 5 7 8 11 17

11 1 0 0 1 0 1 8 9 11 15

15 1 1 1 0 1 2 9 12 15 17

20 1 1 1 1 0 1 5 10 12 18 19
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efficient hardware-oriented block ciphers. in Proceedings of the 11th International Workshop
on Cryptographic Hardware and Embedded Systems, LNCS, vol. 5747 (Springer, Heidelberg,
2009). pp. 272–288

8. J. Dillon, H. Dobbertin, New cyclic difference sets with singer parameters. Finite Fields Appl.
10(3), 342–389 (2004)

9. H. Dobbertin, Kasami power functions, permutation polynomials and cyclic difference sets, in
Proceedings of the NATO-A.S.I. Workshop Difference Sets, Sequences and their Correlation
Properties, (Kluwer, Bad Windsheim/Dordrecht, 1999), pp. 133–158

10. E. Dubrova, A list of maximum period NLFSRs. Report 2012/166, Cryptology ePrint Archive
(2012), http://eprint.iacr.org/2012/166.pdf

11. eSTREAM: The ECRYPT stream cipher project. http://www.ecrypt.eu.org/stream/
12. T. Etzion, A. Lempel, Construction of de Bruijn sequences of minimal complexity. IEEE Trans.

Inf. Theory 30(5), 705–709 (1984)
13. R. Evan, H.D.L. Hollman, C. Krattenthaler, Q. Xiang, Gauss sums, Jacobi sums and p-ranks

of cyclic difference sets. J. Combin. Theory Ser. A, 87(1), 74–119 (1999)
14. H. Fredricksen, A class of nonlinear de Bruijn cycles. J. Combin. Theory Ser. A 19(2), 192–199

(1975)
15. H. Fredricksen, A survey of full length nonlinear shift register cycle algorithms. SIAM Rev.

24(2), 195–221 (1982)
16. H. Fredricksen, I. Kessler, Lexicographic compositions and de Bruijn sequences. J. Combin.

Theory Ser. A 22, 17–30 (1977)
17. H. Fredricksen, J. Maiorana, Necklaces of beads in k colors and k-ary de Bruijn sequences.

Discrete Math. 23(3), 207–210 (1978)
18. R.A. Games, A generalized recursive construction for de Bruijn sequences. IEEE Trans. Inf.

Theory 29(6), 843–850 (1983)
19. B.M. Gammel, R. Göttfert, O. Kniffler, Achterbahn-128/80 (2006), http://www.ecrypt.eu.org/

stream/p2ciphers/achterbahn/achterbahn_p2.pdf
20. S.W. Golomb, Shift Register Sequences (Aegean Park Press, Laguna Hills, 1981)
21. S.W. Golomb, On the classification of balanced binary sequences of period 2n�1. IEEE Trans.

Inf. Theory, 26(6), 730–732 (1980)
22. S.W. Golomb, G. Gong, Signal Design for Good Correlation: for Wireless Communication,

Cryptography, and Radar (Cambridge University Press, New York, 2004)
23. G. Gong, Randomness and representation of span n sequences, in Proceedings of the 2007

International Conference on Sequences, Subsequences, and Consequences, SSC’07 (Springer,
Heidelberg, 2007), pp. 192–203

24. E.R. Hauge, T. Helleseth, De Bruijn sequences, irreducible codes and cyclotomy. Discrete
Math. 159(1–3), 143–154 (1996)

http://eprint.iacr.org/2012/166.pdf
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf


162 K. Mandal and G. Gong

25. C.J.A. Jansen, W.G. Franx, D.E. Boekee, An efficient algorithm for the generation of de Bruijn
cycles. IEEE Trans. Inf. Theory 37(5), 1475–1478 (1991)

26. A. Lempel, On a homomorphism of the de Bruijn graph and its applications to the design of
feedback shift registers. IEEE Trans. Comput. C-19(12), 1204–1209 (1970)

27. K. Mandal, Design and analysis of cryptographic pseudorandom number/sequence generators
with applications in RFID. Ph.D. Thesis, University of Waterloo, 2013

28. K. Mandal, G. Gong, in Cryptographically Strong de Bruijn Sequences with Large Periods, ed.
by L.R. Knudsen, H. Wu SAC 2012. LNCS, vol. 7707 (Springer, Heidelberg, 2012), pp. 104–
118

29. K. Mandal, G. Gong, Cryptographic D-morphic analysis and fast implementations of compos-
ited De Bruijn sequences. Technical Report CACR 2012–27, University of Waterloo (2012)

30. K. Mandal, X. Fan, G. Gong, in Warbler: A Lightweight Pseudorandom Number Generator for
EPC Class 1 Gen 2 RFID Tags, ed. by N.W. Lo, Y. Li. Cryptology and Information Security
Series—The 2012 Workshop on RFID and IoT Security (RFIDsec’12 Asia), vol. 8 (IOS Press,
Amsterdam, 2012), pp. 73–84

31. J.L. Massey, Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory 15(1), 122–
127 (1969)

32. G.L. Mayhew, Weight class distributions of de Bruijn sequences. Discrete Math. 126, 425–429
(1994)

33. G.L. Mayhew, Clues to the hidden nature of de Bruijn sequences. Comput. Math. Appl., 39(11),
57–65 (2000)

34. G.L. Mayhew, S.W. Golomb, Linear Spans of modified de Bruijn sequences. IEEE Trans. Inf.
Theory 36(5), 1166–1167 (1990)

35. G.L. Mayhew, S.W. Golomb, Characterizations of generators for modified de Bruijn sequences.
Adv. Appl. Math. 13, 454–461 (1992)

36. J. Mykkeltveit, M.-K. Siu, P. Tong, On the cycle structure of some nonlinear shift register
sequences. Inf. Control 43(2), 202–215 (1979)

37. J.L.-F. Ng, Binary nonlinear feedback shift register sequence generator using the trace function,
Master’s Thesis, University of Waterloo, 2005

38. J.S. No, S.W. Golomb, G. Gong, H.K. Lee, P. Gaal, New binary pseudorandom sequences of
period 2n � 1 with ideal autocorrelation. IEEE Trans. Inf. Theory 44(2), 814–817 (1998)

39. T. Rachwalik, J. Szmidt, R. Wicik, J. Zablocki, Generation of nonlinear feedback shift registers
with special-purpose hardware. Cryptology ePrint Archive, Report 2012/314 (2012), http://
eprint.iacr.org/

40. J.-H. Yang, Z.-D. Dai, Construction of m-ary de Bruijn sequences (extended abstract), in
Advances in Cryptology—AUSCRYPT’92, LNCS (Springer, Heidelberg, 1993), pp. 357–363

http://eprint.iacr.org/
http://eprint.iacr.org/


Open Problems on the Cross-correlation
of m-Sequences

Tor Helleseth

Abstract Pseudorandom sequences are important for many applications in commu-
nication systems, in coding theory, and in the design of stream ciphers. Maximum-
length linear sequences (or m-sequences) are popular in sequence designs due
to their long period and excellent pseudorandom properties. In code-division
multiple-access (CDMA) applications, there is a demand for large families of
sequences having good correlation properties. The best families of sequences in
these applications frequently usem-sequences in their constructions. Therefore, the
problem of determining the correlation properties of m-sequences has received a
lot of attention since the 1960s, and many interesting theoretical results of practical
interest have been obtained. The cross-correlation of m-sequences is also related
to other important problems, such as almost perfect nonlinear functions (APN)
and almost bent functions (AB), and to the nonlinearity of S-boxes in many block
ciphers including AES. This chapter gives an updated survey of the cross-correlation
of m-sequences and describes some of the most important open problems that still
remain in this area.

1 Introduction

Let futg and futg be sequences of period " with symbols from the finite field
GF.p/ with p elements. Let ! be a primitive complex pth root of unity. The cross-
correlation between the two sequences at shift 	 is defined to be

Cu;v.	/ D
"�1X

tD0
!utC	�vt :

If the two sequences are cyclically equivalent (i.e., only differ by a cyclic shift), the
correlation is denoted autocorrelation instead of cross-correlation.
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In a code-division multiple-access (CDMA) system, each user is assigned a
sequence from a family of sequences. The quality of the communication depends
on the selection of a family of sequences with good parameters.

Let F be a family of M cyclically distinct sequences of the same period ":

F D ffs.i/t g j 1 � i �M g:

The most important parameters for evaluating the quality of the family are
.M; "; �max/ where �max is the maximum value of the absolute magnitude of
the (nontrivial) auto- and cross-correlation between any two sequences in the
family, i.e.,

�max D maxfjCs.i/;s.j / .	/j j i ¤ j or 	 ¤ 0g:

Many of the best sequence families can be constructed from linear recursions. To
generate a sequence fst g with symbols from GF.p/, one can use a linear recursion
of degree n and generate each symbol from the previous n symbols such that

stCn C cn�1stCn�1 C � � � C c0st D 0; ci 2 GF.p/; c0 ¤ 0:

The initial state .s0; s1; : : : ; sn�1/ and the linear recursion uniquely determine
the sequence fst g. Thus, the linear recursion generates pn distinct sequences
corresponding to the pn initial states .s0; s1; : : : ; sn�1/. Clearly, some of these
generated sequences may be cyclically equivalent.

The characteristic polynomial of the linear recursion is defined to be

f .x/ D
nX

iD0
cix

i :

The period of the sequences generated by the recursion with characteristic
polynomial f .x/ is completely determined by the polynomial. It is a well-known
fact that all these sequences will have period e where e is the smallest positive
integer such that f .x/ j xe � 1. Furthermore, at least one of these sequences will
have e as its smallest period.

Let f .x/ be a primitive polynomial, i.e., an irreducible polynomial with a zero ˛
being a generator for the multiplicative group of GF.pn/. Then the factorization of
the primitive polynomial f .x/ is given by

f .x/ D
n�1Y

iD0
.x � ˛pi /:
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Since the generator ˛ has order pn � 1, then f .x/ j xpn�1 � 1 and any nonzero
sequence generated by the recursion with characteristic polynomial f .x/ has period
pn � 1. This is maximum possible for a linear recursion of degree n, and any such
sequence is therefore called a maximum-length sequence (orm-sequence).

During a period of the m-sequence, each nonzero consecutive n-tuple occurs
exactly once during its period. In particular this implies that the m-sequence is as
balanced as it can be for a sequence of period pn � 1 since all nonzero symbols
occur pn�1 times, while the 0 element occurs pn�1 � 1 time.

The trace function Trn from GF.pn/ to GF.p/ is defined by

Trn.x/ D
n�1X

iD0
xp

i

:

The m-sequence can be written as

st D Trn.c˛
t /;

where thepn�1 different nonzero values of c 2 GF.pn/� D GF.pn/nf0g correspond
to all possible shifts of the m-sequence.

Starting with one m-sequence of period pn � 1, all other m-sequences of the
same period can be obtained by decimating the sequence. The decimated sequence
of fst g is the sequence fsdtg which is anm-sequence if and only if gcd.d; pn� 1/ D
1. The sequence and its decimated sequence are cyclically distinct if and only if
d 6� pi .mod pn � 1/ for i D 0; 1; : : : ; n � 1. The number of cyclically distinct
m-sequences is �.pn � 1/=n, where � is Euler’s � function, and equals the number
of primitive polynomials of degree n. For further results on linear recursions, the
reader is referred to the classical book by Golomb [10].

Example 1 Let p D 3 and consider the linear recursion

stC3 C 2stC2 C st D 0:

The characteristic polynomial of the recursion is f .x/ D x3 C 2x2 C 1. This is a
primitive polynomial, and using the initial state (011), the recursion generates the
m-sequence (01110211210100222012212020: : :) of period " D 26. The recursion
clearly generates all cyclic shifts of this sequence since all nonzero initial states are
present in them-sequence. In addition the recursion generates the all-zero sequence
using the initial state (000). It is easily verified that decimating the sequence above
by d � 3i .mod 26/ gives the same sequence, while decimation by any d 6� 3i

.mod 26/ with gcd.d; 26/ D 1 gives a cyclically distinct m-sequence of period 26.
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2 Correlation of m-Sequences

The cross-correlation at shift 	 between twom-sequences that differ by a decimation
d will be denoted by Cd.	/. The problem to determine the values and the number of
occurrences of each value of the cross-correlation Cd.	/ between two m-sequences
when 	 runs through all pn � 1 shifts has been studied for almost 50 years.

The simplest case to consider is the autocorrelation function of an m-sequence.
One reason for the popularity of m-sequences is due to their two-valued autocorre-
lation and their importance in synchronization applications.

Theorem 1 The autocorrelation function C1.	/ of an m-sequence having period
" D pn � 1 takes the value �1 for any shift 	 6� 0 .mod pn � 1/ and the value
pn � 1 for any shift 	 � 0 .mod pn � 1/.
Proof Let 	 6� 0 .mod pn � 1/, then since the characteristic polynomial of the m-
sequence fst g also generates the sequence fstC	 � st g, it follows that this is some
shift of the m-sequence. Hence,

C1.	/ D
pn�2X

tD0
!stC	�st D

pn�2X

tD0
!stCı D �1

since st � stC	 D stCı for some ı depending on 	 and the m-sequence is balanced
(except for a “missing” 0) having pn�1 of each nonzero element and pn�1� 1 zeros
during a period of the sequence.

Some basic results useful for the analysis of Cd.	/ can be found in Helle-
seth [12].

Lemma 1 The following properties hold for the cross-correlation Cd.	/:

1. If dd0 � 1 .mod pn � 1/ or d 0 � dpi for some integer i , then Cd.	/ and Cd 0.	/

have the same correlation values with the same number of occurrences.
2. The value of Cd.	/ is a real number.
3. The sum of the cross-correlation values is determined by

pn�2X

	D0
.Cd.	/C 1/ D pn:

4. The square sum of the cross-correlation values is determined by

pn�2X

	D0
.Cd .	/C 1/2 D p2n:
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5. The higher-order power sums of the cross-correlation are given by

pn�2X

	D0
.Cd.	//

r D �.pn � 1/r�1 C 2.�1/r�1 C arp2n

where ar is the number of solutions of the equations

x1 C x2 C � � � C xr�1 C 1 D 0
xd1 C xd2 C � � � C xdr�1 C 1 D 0

and xi 2 GF.pn/� for i D 1; 2; : : : ; r � 1.

The lemma above is useful to determine the number of occurrences of each value
in Cd.	/ when there are rather few, say r , values that have already been determined.
Then one can determine the complete distribution of the cross-correlation if one can
find ai for 2 < i < r .

In Helleseth [12], the previous lemma was applied to prove a result first
mentioned without proof in Golomb [11].

Theorem 2 If d 62 f1; p; : : : ; pn�1g then Cd.	/ takes on at least three different
values when 	 D 0; 1; : : : ; pn � 2.

Proof Suppose that Cd.	/ takes on only the two values x and y that occur r
and pn � 1 � r times, respectively, in Cd.	/ when 	 runs through all shifts
	 D 0; 1; : : : ; pn � 2. Then using (3) and (4) in Lemma 1 leads to two equations in
three unknowns x; y, and r . Eliminating r leads to the equation

.pnx � .x C 1//.pny � .y C 1// D p2n.2 � pn/:

For p D 2 this is a Diophantine equation that can be shown to have no valid integer
solutions (i.e., except x D �1 and y D pn � 1 or x D pn � 1 and y D �1
corresponding to the autocorrelation). For the nonbinary case when p > 2, similar
divisibility properties in the ring QŒ!�, where Q denotes the rational number field,
imply that two-valued cross-correlation is impossible except in the autocorrelation
case, i.e., when d � pi .mod pn � 1/.

The cross-correlation between any two m-sequences fst g and fsdtg with symbols
from GF.p/ of the same period " D pn � 1 can be written as an exponential sum.
After a suitable shift, we can assume without loss of generality that st D Trn.˛t /,
and we therefore obtain

Cd.	/ D
"�1X

tD0
!stC	�sdt D

"�1X

tD0
!Trn.˛tC	�˛dt/ D

X

x2GF.pn/�

!Trn.cx�xd /
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where c D ˛	 . Finding the values and the number of occurrences of each value
in the cross-correlation function Cd.	/ for 	 in f0; 1; : : : ; pn � 2g is equivalent to
determine the distribution of this exponential sum for any c ¤ 0.

Since a two-valued cross-correlation is only possible when d � pi .mod pn �
1/, it was natural that the early research on the cross-correlation had a strong focus
on finding decimations leading to three-valued cross-correlation. The following
sections will survey known cases where the cross-correlation takes on three or four
values.

The mathematical techniques used to prove these results are rather different
for different decimations and give interesting connections between the cross-
correlation, exponential sums, and the solutions of special equations over finite
fields.

Note that when we in the following find a decimation d with a correlation
distribution, then, due to (1) in Lemma 1, the correlation distribution is the same
for the decimations dpi .mod pn � 1/ for any i and for the inverse decimation by
d�1 .mod pn � 1/.

3 Three-Valued Cross-Correlation

3.1 Binary Sequences

There are more decimations leading to three-valued cross-correlation when p D 2

than in the case p > 2. First we consider three-valued cross-correlation in the case
of binary sequences.

The pioneering result on three-valued cross-correlation was due to Gold [9] in
1968. Gold considered binary sequences and showed that d D 2kC 1 for n odd and
gcd.n; k/ D 1 gave a three-valued cross-correlation. Note that the condition n odd
was later relaxed to n= gcd.n; k/ odd which still implies that gcd.d; 2n � 1/ D 1.

In 1968 Golomb [11] was the first to conjecture that d D 22k � 2k C 1 leads
to a three-valued cross-correlation when n= gcd.n; k/ is odd, and he mentioned in
this paper that this result was first proved by Welch, who never published his proof.
Later in 1971 Kasami [19] published a proof in his famous paper on the weight
distribution of several subcodes of the second-order Reed–Muller code.

Theorem 3 Let e D gcd.n; k/ and let n=e be odd. Let d D 2k C 1 or d D 22k �
2k C 1. Then Cd.	/ has the following distribution:

�1C 2 nCe
2 occurs 2n�e�1 C 2 n�e�2

2 times.
�1 occurs 2n � 2n�e � 1 times.

�1 � 2 nCe
2 occurs 2n�e�1 � 2 n�e�2

2 times.

The proof of these decimations use, a simple squaring technique combined with
arguments to determine the number of solutions of some linearized polynomial. In
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the case d D 2kC1, one can compute rather directly, using simple properties of the
trace function, that

.Cd .	/C 1/2 D 2n.1C .�1/Trn.cC1//:

It follows that Cd.	/ can only take the values �1;�1˙ 2 nC1
2 , and the distribution

can be determined from (3) and (4) in Lemma 1.
In the case d D 22k�2kC1 when n is odd and gcd.n; k/ D 1, a similar squaring

argument gives

.Cd .	/C 1/2 D 2nN

where N is either 0 or equal to the number of zeros in GF.2n/ of the linearized
polynomial

L.z/ D z2
6k C c23k z2

4k C c22k z2
2k C z:

In this case a more detailed argument shows that there is only 1 or 2 solutions in

GF.2n/ of L.z/ D 0 and that Cd.	/ can only take on the values �1;�1˙ 2 nC1
2 .

The generalization to the general case when gcd.n; k/ D e > 1 and n=e is odd
is rather straightforward but more cumbersome. An elegant method for counting the
solutions of the equation above is given by Bracken [1].

The following theorem provides a list of all decimations known to give three-
valued cross-correlation in the binary case.

Theorem 4 The cross-correlation Cd.	/ is three-valued and the correlation distri-
bution is known for the following values of d :

1. d D 2k C 1, where n= gcd.n; k/ is odd.
2 d D 22k � 2k C 1, where n= gcd.n; k/ is odd.

3. d D 2 n2 C 2 nC2
4 C 1, where n � 2 .mod 4/.

4. d D 2 nC2
2 C 3, where n � 2 .mod 4/.

5. d D 2 n�1
2 C 3, where n is odd.

6.

d D
(
2
n�1
2 C 2 n�1

4 � 1; when n � 1 .mod 4/
2
n�1
2 C 2 3n�1

4 � 1; when n � 3 .mod 4/:

Comments Case (1) is the celebrated result proved by Gold [9]. Case (2) is the
result first proved by Welch (see Golomb [11] and Kasami [19]). Cases (3) and (4)
were proved by Cusick and Dobbertin [4] in 1996. Case (5) was a long-standing
conjecture by Welch (see Golomb [11]) that was proved 30 years later by Canteaut
et al. [2]. Case (6) is a consequence of the results by Dobbertin [6] and Hollmann
and Xiang [16]. Cases (3), (4), and (6) were all conjectured in 1972 by Niho [23].
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Since the conjectures (3), (4), and (6) by Niho [23] in 1972, which all have been
proved, no new decimations ofm-sequences have been found to give a three-valued
cross-correlation, and it is widely believed that the list of decimations of binary
m-sequences in the theorem above is complete.

Open Problem 1 Show that Theorem 4 contains all decimations with three-valued
correlation between binarym-sequences.

This appears to be a very hard open problem. All decimations known to have
only three values have their three values of the form �1;�1˙ 2r for some r . Even
to show that any three-valued decimation must have three such values is not known.

3.2 Nonbinary Sequences

For nonbinary sequences there are three-valued decimations that are analogous
to the Gold as well as to the Kasami and Welch decimations. These are given
in the following result due to Trachtenberg [25], for n odd, in his Ph.D. thesis
from 1970. The result is generalized by Helleseth [12] (or actually in his master
thesis from 1971) to the case when n= gcd.n; k/ is odd. The generalization is rather
straightforward using the properties of the subfield GF.pk/ of GF.pn/.

Theorem 5 Let p be an odd prime. Then the following decimations have three-
valued cross-correlation.

1. d D p2kC1
2

where n=gcd.n; k/ is odd.
2. d D p2k � pk C 1 where n=gcd.n; k/ is odd.

These are the only decimations for p > 3 that are known to give three-valued
cross-correlation.

Open Problem 2 Show that Theorem 5 contains all decimations with three-valued
cross-correlation between p-arym-sequences when p > 3 is an odd prime.

For the ternary case there is an additional decimation with three-valued cross-
correlation given in the following result by Dobbertin et al. [8].

Theorem 6 Let p D 3 and d D 2 � 3 n�1
2 C 1 where n is an odd positive integer.

Then the cross-correlation Cd.	/ is three-valued and has the following distribution:

�1C 3 nC1
2 occurs 1

2
.3n�1 C 3 n�1

2 / times.
�1 occurs 3n � 3n�1 � 1 times.

�1 � 3 nC1
2 occurs 1

2
.3n�1 � 3 n�1

2 / times.

There are numerical observations of the cross-correlation between ternary
sequences that give decimations with three-valued cross-correlation and that have
not yet been proved. If the following open problem, conjectured by Dobbertin
et al. [8], is settled, this would explain all the known decimations of ternary
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m-sequences with three-valued cross-correlation. Actually, a solution of the prob-
lem would complete the explanation of all currently known three-valued cross-
correlation decimations for any p.

Open Problem 3 Let p D 3 and d D 2 � 3r C 1 where n is odd and

r D
�
n�1
4

if n � 1 .mod 4/;
n�1
4

if n � 3 .mod 4/:

Show that Cd.	/ has three-valued cross-correlation.
If n= gcd.n; k/ is odd, Theorems 4 and 5 imply the existence of decimations with

three-valued cross-correlation.
In the remaining cases when n D 2i for some positive integer i � 2, there

are no known decimations having three-valued cross-correlation. It was conjectured
by Helleseth [12] that in these cases, any decimation gives at least four cross-
correlation values. This conjecture has recently been proved in the binary case by
Katz [20]. The general case to settle the conjecture for all other values of p is still
open.

Open Problem 4 Show that Cd.	/ is at least four-valued when n D 2i for all values
of the prime p.

4 Four-Valued Cross-Correlation

One of the main contributions leading to new decimations with four-valued cross-
correlation is due to Niho [23]. For his method to be applicable, then n D 2k has to
be even and d must be of the special form d D s.2k � 1/C 1.

The main idea is to reduce the problem to compute the number of solutions of
some special equations that depend on s.

The next theorem provides a list, in historical order, of all the decimations that
have been proved to give four-valued cross-correlation. An important observation is
that all the results in (1)–(4) are covered by the last case (5).

Theorem 7 Let v2.i/ be the highest power of 2 dividing the integer i . The cross-
correlation Cd.	/ is four-valued and the correlation distribution is known for the
following values of d :

1. d D 2 n2C1 � 1, where n � 0 .mod 4/.
2. d D .2 n2 C 1/.2 n4 � 1/C 2, where n � 0 .mod 4/.
3. d D 2.n=2C1/r�1

2r�1 .0 < r < n=2; gcd.n; r/ D 1/ for n � 0 .mod 4/.

4. d D 22kC2sC1�2kC1�1
2s�1 , where n D 2k and 2sjk.

5. d D .2k � 1/s C 1, s � 2r.2r ˙ 1/�1 .mod 2k C 1/, where v2.r/ < v2.k/.
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Comments The first two cases in Theorem 7 are due to Niho [23] in his Ph.D.
thesis. Case (3) is due to Dobbertin [5]. Case (4) was proved by Helleseth and
Rosendahl [15]. The final case (5) is proved by Dobbertin et al. [7] and contains
all the four previous cases.

Sketch of proof Since the Niho decimations have played a significant role in the
cross-correlation of m-sequences, we will provide a short outline of the proof.

The main idea behind the proof of Theorem 7 is very simple and uses that any
nonzero element x 2 GF.2n/ can be written uniquely as x D yz where y 2 GF.2k/

and z 2 U where

U D fz 2 GF.2n/ j z2kC1 D 1g:

In particular, since d D s.2k � 1/ C 1, it follows that d � 1 .mod 2k � 1/ and
therefore d � �2s C 1 .mod 2k C 1/. Hence, yd D y and zd D z�2sC1 and the
cross-correlation can be written as

Cd.	/ D
X

x2GF.2n/�

.�1/Trm.cxCxd /

D
X

y2GF.2n/�;z2U
.�1/Trn.cyzCyz�2sC1/

D
X

y2GF.2n/�;z2U
.�1/Trk.yh.z//

D .2k � 1/N C .2k C 1 �N/.�1/
D �1C .N � 1/2k:

Here N is the number of solutions z 2 U of the equation h.z/ D 0 where

h.z/ D czC z�2sC1 C c2k z�1 C z2s�1

which is equivalent to N being the number of solutions z 2 U to

p.z/ D z2s�1 C c1=2zs C c2k�1

zs�1 C 1 D 0:

Case (1) is one of the two decimations in Niho’s thesis shown to be four-valued. In
this case s D 2, i.e., d D 2.2k � 1/C 1 and

p.z/ D z3 C c1=2z2 C c2k�1

zC 1 D 0
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which has at most three solutions for z. Hence, N D 0; 1; 2; 3 are the only
possibilities leading to at most a four-valued cross-correlation with values in the
set

f�1 � 2k;�1;�1C 2k;�1C 2kC1g:

The correlation distribution follows from Lemma 1 using (3)–(5) and finding a3.
In the other cases (2)–(5) in Theorem 7, we have

p.z/ D z2
rC1 C az2

r C bzC 1 D 0

which is known to have 0; 1; 2 or 2gcd.r;n/ C 1 solutions in GF.2n/. A more detailed
analysis shows that the number of solutions in U has these four possibilities and the
four-valued cross-correlation distribution can be found as above.

There are numerical results that give decimations with four values that are not
explained by this list. However, one believes that case (5) in Theorem 7 contains all
four-valued cases when d is of the Niho form d D s.2k � 1/ C 1. The following
conjecture was stated in Dobbertin et al. [7].

Open Problem 5 Any binary decimation of Niho type d D s.2k � 1/C 1, n D 2k
with four-valued cross-correlation is of the form d D .2k�1/sC1, s � 2r.2r˙1/�1
.mod 2k C 1/, where v2.r/ < v2.k/.

In the nonbinary case there are a few families known with four-valued cross-
correlation. The following decimation in Helleseth [12] is the only known four-
valued decimation that works for any prime p.

Theorem 8 Let p be an odd prime and d D 2 � p n
2C1 � 1, where n � 0 .mod 4/.

Then the cross-correlation Cd.	/ is four-valued and the distribution is known.

Recently new ternary decimations with four-valued cross-correlation have been
found by Zhang et al. [26].

Theorem 9 Let p D 3, n D 3k, and gcd.k; 3/ D 1. If d D 3k C 1 or d D 32kC 2.
Then if r is odd, the cross-correlation Cd.	/ is four-valued (and six-valued for r
even) and the distribution is known. (The distribution is conjectured to be the same
if gcd.k; 3/ D 3).

5 The �1 Conjecture

For binary sequences the cross-correlation values are obviously always integers. For
p > 2, this may not always be the case even though the values of Cd.	/ are always
real numbers. This follows from the definition of the cross-correlation function and
the fact that the second half of an m-sequence is the negative of the first half. It
was shown in Helleseth [12] that Cd.	/ is an integer for all 	 if and only if d � 1

.mod p � 1/.
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Numerical results reveal that for p D 2, the cross-correlation always has �1
as one of its values. For p > 2 this happens for all decimations d where d �
1 .mod p � 1/. This was conjectured by Helleseth [12] and this is still an open
problem.

Open Problem 6 Show that if d � 1 .mod p � 1/, then �1 always occurs as a
value in Cd.	/.

It is trivial to reformulate the conjecture as a result of the number of common
solutions of a special equation system.

Lemma 2 Let q D pn and ˛ be a primitive element in GF.q/. LetN be the number
of solutions xi 2 GF.q/ of the equation system:

x0 C ˛x1 C ˛2x2 C � � � C ˛q�2xq�2 D 0

xd0 C xd1 C xd2 C � � � C xdq�2 D 0:

The�1 conjecture holds if and only ifN D qq�3 for all d where gcd.d; pn�1/ D 1
and d � 1 .mod p � 1/.
Proof Let N denote the number of common solutions of the two equations above.
Then N can be expressed by the following exponential sum.

q2N D
X

x0;x1;:::;xq�22GF.q/

X

z1;z22GF.q/

!Trn.z1.x0C˛x1C���C˛q�2xq�2/Cz2.x
d
0Cxd1C���Cxdq�2//

D
X

z1;z22GF.q/

q�2Y

iD0

X

x2GF.q/

!Trn.z1˛i xCz2xd /

D qq�1 C .q � 1/
Y

c2GF.q/

X

x2GF.q/

!Trn.cxCxd /

D qq�1 C
q�2Y

	D0
.Cd .	/C 1/

since the contribution from z1 D z2 D 0 is qq�2, and z1 D 0 or z2 D 0 contributes
0 if not both are zero. Furthermore, z1=zd

�1

2 runs through all nonzero elements in
GF.q/ q � 1 times when z1 and z2 run through all nonzero elements in the field.
Hence, Cd.	/ D �1 for some 	 if and only of N D qq�3.

Another old problem on the cross-correlation between m-sequences that is more
than 30-year-old is the following conjecture due to Sarwate and Pursley [24].

Open Problem 7 Let n be even. Show that jCd.	/C 1j � 2 n2C1.
For related surveys on m-sequences the reader is referred to [13, 14]. Other

interesting results and open problems on this topic can be found in [18, 22].
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6 Relations to APN and AB Functions

The cross-correlation of m-sequences has some interesting relations to almost
perfect nonlinear mappings (APN) and almost bent functions (AB).

An almost perfect nonlinear function f is a mapping f W GF.2n/ 7! GF.2n/

such that

f .x C a/C f .x/ D b

has at most two solutions for any a ¤ 0, b 2 GF.2n/. The function is said to be
�-uniform if the maximum number of solutions is �, such that an APN function is
the same as being 2-uniform.

The Walsh transform of f is defined by

�f .a; b/ D
X

x2GF.2n/

.�1/Tr.af .x/Cbx/;

where a; b 2 GF.2n/.
A function f is almost bent (AB) if

f�f .a; b/ W a; b 2 GF.2n/g D f0;˙2.nC1/=2g:

It has been shown by Chaubaud and Vaudenay [3] that AB implies APN. APN
functions and AB functions are of significant importance in the design of S-boxes
in block ciphers.

Monomial AB functions where f .x/ D xd can be obtained from Gold sequences
and several of the decimations with three-valued cross-correlation.

Theorem 10 The known monomial AB functions f .x/ D xd are

1. Gold: d D 2k C 1, where gcd.n; k/ D 1.
2. Kasami: d D 22k � 2k C 1, where gcd.n; k/ D 1.
3. Welch: d D 2 n�1

2 C 3, where n is odd.
4. Niho:

d D
(
2
n�1
2 C 2 n�1

4 � 1; if n � 1 .mod 4/
2
n�1
2 C 2 3n�1

4 � 1; if n � 3 .mod 4/:

Note that each of these cases corresponds to decimations with three-valued cross-
correlation where the values are restricted to the set f0;˙2.nC1/=2g. Thus, each
corresponding monomial function f .x/ D xd is AB. Dobbertin [6] conjectured
that these are the only monomial AB functions.

Open Problem 8 Show that Theorem 10 contains all monomial f .x/ D xd AB
functions.
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Since a monomial AB function is an APN function, the monomial functions
f .x/ D xd with d in Theorem 10 are also APN functions. In addition there are
two more decimations leading to APN functions and which are not AB. The known
monomial APN functions are given in the following theorem.

Theorem 11 The known monomial APN functions f .x/ D xd are

1. Gold: d D 2k C 1, where gcd.n; k/ D 1.
2. Kasami: d D 22k � 2k C 1, where gcd.n; k/ D 1.
3. Welch: d D 2 n�1

2 C 3, where n is odd.
4. Niho:

d D
(
2
n�1
2 C 2 n�1

4 � 1; if n � 1 .mod 4/
2
n�1
2 C 2 3n�1

4 � 1; if n � 3 .mod 4/:

5. Inverse: d D 2n � 2 � �1 .mod 2n � 1/, where n is odd.
6. Dobbertin: d D 24k C 23k C 22k C 2k � 1, where n D 5k.

Dobbertin [6] conjectured that these are the only monomial APN functions.

Open Problem 9 Show that Theorem 11 contains all monomial f .x/ D xd APN
functions.

It is easy to show that the cross-correlation values between two m-sequence
obey Cd.	/ � �1 .mod 4/. The cross-correlation between fs.t/g and its reverse
sequence fs.�t/g corresponds to the famous Kloosterman sum defined by

C�1.	/ D
X

x2GF.pn/�

!Tr.axCx�1/:

A well-known bound for the Kloosterman sum is

jC�1.	//C 1j � 2pn=2 :

For p D 2 it was shown by Lachuad and Wolfmann [21] that C�1.	/ takes on all
possible values� �1 .mod 4/ that obey this bound.

The S-box used in the Advanced Encryption Standard (AES) is a permutation
based on f .x/ D x�1 for n D 8. The correlation between x�1 and all affine
functions take on the same values as jC�1.	/j when 	 D 0; 1; : : : ; pn � 2. The
S-box is 4-uniform (not APN) which is the best known uniformity for n D 8. The
S-box is not AB but the correlation (and nonlinearity) is the best known for n D 8.



Open Problems on the Cross-correlation of m-Sequences 177

Conclusion
The cross-correlation of m-sequences is a challenging mathematical problem
that has many important applications in communication systems. This chapter
presents an updated overview of this problem and presented some of the
remaining open problems that still exist in this area. Finally, a few connections
have been given to AB and APN functions that are important in the design and
analysis of S-boxes in block ciphers.
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Open Problems on With-Carry Sequence
Generators

Andrew Klapper

Abstract Pseudorandom sequences are used in a wide range of applications in
computing and communications, including cryptography. It is common to use linear
feedback shift registers (LFSRs) to generate such sequences, either directly or as
components in more complex structures. Much of the analysis of such sequences
is done using the algebra of polynomials and power series over finite fields. The
subjects of this chapter are feedback with carry shift registers (FCSRs) and algebraic
feedback shift registers (AFSRs, generalizations of both LFSRs and FCSRs),
sequence generators that are analogous to LFSRs, but whose state update involves
arithmetic with a carry. Their analysis is based on algebraic structures with carry,
such as the integers and the N -adic numbers. After a brief review of the basics on
LFSRs, FCSRs, and AFSRs, we describe several open problems. These include:
given part of a sequence, how to find an optimal generator of the sequence; how to
construct sequences that cannot be generated by short LFSRs, FCSRs, or AFSRs;
and the analysis of various statistical properties related to these generators.

1 Introduction

The subject of this chapter is the generation of “pseudorandom” sequences using
very high-speed devices. Here pseudorandom means that various statistical prop-
erties hold such as (in the binary case) a balance in the numbers of zeroes and
ones. Such sequences play critical roles in many applications in communications
and computing. Following are some important examples.

1. Cryptography: stream ciphers scramble messages by combining them with
sequences that are unpredictable from short prefixes.

2. CDMA: large families of uncorrelated sequences minimize interference and
allow a collection of channels to be shared by users (see Sect. 5.2).
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3. Radar ranging and GPS: peaks in autocorrelations of a sequence allow delay to
be measured.

4. Quasi-Monte Carlo: integrals are approximated by sampling integrands at points
determined by pseudorandom sequences.

5. Built in self-test: test patterns are determined by pseudorandom sequences.
6. Wear leveling of storage media: pseudorandom sequences are used to remap the

memory locations in a way that distributes the wear evenly across the whole disk.

For some 60 years linear feedback shift registers (LFSRs) (described in Sect. 3)
have been used as generators (or components of generators) of pseudorandom
sequences for these and other applications. In the form of linear equations modulo
N , they have been studied by mathematicians since at least the 1920s [4]. The
primary mathematical tools for analyzing these sequences are finite fields and
particularly polynomials and power series over finite fields. A great deal is known
about these sequences, but there is still much that is unknown.

More recently (since 1993 [6, 20]), researchers have been studying feedback
with carry shift registers (FCSRs), a “with-carry” analog of LFSRs (described in
Sect. 3). So far they have found a smaller number of applications—cryptanalysis of
the summation combiner, quasi-Monte Carlo integration, and the F-FCSR stream
cipher. One advantage they have is that the state change is nonlinear, which makes
stream ciphers based on them resistant to algebraic attacks.

Much less is known about sequences generated by FCSRs (and algebraic
feedback shift registers (AFSRs), a generalization). The purpose of this chapter is
to describe some of the open problems in this area. The main focus is on properties
of sequences that are of interest cryptographically.

Throughout this chapter, the book by Goresky and the author [10] serves as a
reference.

2 Stream Ciphers

In this section we discuss one important application of pseudorandom sequences.
The main problem of practical cryptography is how to send a message securely in
real time. The common techniques of public key cryptography are too slow for large
transmissions (such as video on demand). For example, RSA encrypts by computing
E.m/ D me mod pq, where p and q are perhaps 500 bit primes. This is much too
slow to encrypt large data sets in real time.

The alternative is to use symmetric key cryptography—block or stream ciphers.
The trade-off between these two approaches is that the fastest stream ciphers are
somewhat faster than the fastest block ciphers, but stream ciphers seem to be more
vulnerable to attack. In this section we are interested in stream ciphers. In their
simplest form, a sender and receiver agree on a pseudorandom sequence generator
(PSG) G (publicly) and a small shared seed s (privately, perhaps by a slow key
agreement protocol). G, initialized with s, generates a pseudorandom sequence



Open Problems on With-Carry Sequence Generators 183

Fig. 1 Structure of a stream
cipher

Message
Cipher

Message

a a

� ��
� �

G G� �seedseed

G.s/ D a D a0; a1; : : : 2 f0; 1g1. A message m D m0;m2; : : : 2 f0; 1g1 is
encrypted by computing ci D mi ˚ ai . See Fig. 1.

Sequence generators used in stream ciphers or other applications mentioned in
the introduction must have various properties, depending on the applications. They
must operate in (nearly) real time. They must resist known cryptanalytic attacks.
They must have good statistical properties, such as the following:

Large period: A sequence a D a0; a1; : : : is periodic if 8i W ai D aiCp . It is
eventually periodic if 8i > t W ai D aiCp for some t . The period, p, must be
large for use in a stream cipher.

Balance: In one period the numbers of occurrences of different symbols must be
nearly equal.

Uniform distribution of small subsequences: For any r , in one period the numbers
of occurrences of different blocks of length r must be nearly equal.

Uncorrelated with shifts: Let a be a binary sequence with period p. The autocor-
relation of a with shift t is

Aa.t/ D
p�1X

iD0
.�1/aiCaiCt :

If t is not a multiple of p, this integer should be close to zero.
Unpredictable from a short prefix: It should not be possible to determine a know-

ing only a0; : : : ; ak�1 for small k using any known methods (e.g., using the
Berlekamp–Massey algorithm). This is a critical requirement for stream ciphers.

Since we do not know what requirements will arise in the future, it is useful to
have a large pool of high-quality pseudorandom sequences available.

Note that the approach to security described here is different from the com-
plexity theory approach. In that approach one defines a cryptographically strong
pseudorandom bit generator (CSPRBG) to be a sequence generator whose output is
indistinguishable from a truly random sequence generator by any polynomial time
probabilistic distinguisher. Unfortunately this is a strong constraint, and all known
CSPRBGs are unable to approach real-time operation (and in fact the security of
known CSPRBGs depends on the assumed intractability of certain computational
problems such as quadratic residuosity).
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3 Sequence Generators

In this section we describe simple, fast devices that satisfy many of the requirements
for sequence generators (but not the unpredictability). They are commonly used as
building blocks for stream ciphers.

LFSRs, FCSRs, and AFSRs (described in the next three subsections) are special
cases of a general model for sequence generators. A PSG is a (not necessarily finite)
state machine with output in an alphabet ˙ , G D .S; �; ı/, where the set S is the
state space, � W S ! S is the state change function, and ı W S ! ˙ is the output
function. Such a PSG generates a pseudorandom sequence from a given initial state
� 2 S by iterating the state change forever. That is

a D G.�/ D .ı.�/; ı.� .�//; ı.� 2.�//; � � � /

It is often desirable that for any given initial state � , the set of states f� i .�/ W i D
0; 1; 2; : : :g be finite. This implies that G.�/ is eventually periodic.

In what follows, we are concerned with families of PSGs. We may be interested,
for example, in finding the most efficient PSG G that generates a given sequence a,
where G is in a given family G of PSGs. In the next few subsections, we describe
some interesting families of PSGs.

3.1 LFSRs

A LFSR of length r over a field F is a finite state PSG whose state set is F r and
whose state change function is determined by a set of coefficients g1; : : : ; gr 2
F [10, p. 23]. If the current state is .a0; a1; : : : ; ar�1/, then the next state is
.a1; : : : ; ar�1; ar /, where ar D gra0 C � � � C g1ar�1. The output function is
ı.a0; a1; : : : ; ar�1/ D a0. See Fig. 2.

There is a large literature on LFSRs. Some of their salient properties are the
following. We assume that the field F D Fq is finite, so the set of states is finite,
and the output is eventually periodic:

ar−1 ar−2 · · · a0

g1 g2 gr· · ·

� �

Fig. 2 A length r LFSR
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1. The connection polynomial is g.x/ D �1C g1x C � � � C grxr . The generating
function of the output sequence a is a.x/ D a0 C a1x C a2x2 C � � � . There is a
polynomial u.x/, uniquely determined by the initial state .a0; : : : ; ar�1/, so that
a.x/ D u.x/=q.x/.

2. The sequence a is eventually periodic. It’s periodic if and only if deg.u/ <
deg.g/. The maximum possible period is jF jr � 1. This is achieved when g.x/
is a primitive polynomial, meaning that a root of g is a primitive element in Fqr .
In this case a is called an m-sequence [10, p. 208]. These sequences are the most
commonly used LFSR sequences.

3. M-sequences have many good statistical properties. Their shifted autocorrela-
tions are all �1. They are as balanced as possible for their period, and the
distribution of subblocks of fixed size is as uniform as possible. They have the
run property [10, p. 172] and the shift and add property [10, p. 191].

4. Let E be the unique degree r extension field of F . Let T r be the trace function
from E to F . If the connection polynomial g.x/ is irreducible, and the sequence
a is periodic, then it can be expressed as ai D T r.A˛i / where ˛ is a root of g.x/
and A 2 E corresponds to the initial state. More generally, if a is periodic, then
it can be expressed as

ai D .Ax�i mod g/ mod x;

meaning (1) compute the element v � Ax�i mod g with deg.v/ < r ; and (2) ai
is the constant term of v [10, p. 48].

We can form a family of PSGs by fixing F and considering all LFSRs with
entries in F .

3.2 FCSRs

Let N � 2 be an integer and S D f0; 1; : : : ; N � 1g. A FCSR of length r based
on N is a PSG whose state set is Sr � Z and whose state change function is
determined by a set of coefficients g1; : : : ; gr 2 Z [10, p. 70]. If the current state is
.a0; a1; : : : ; ar�1I z/, then the next state is .a1; : : : ; ar�1; ar I z0/, where ar CN z0 D
gra0 C � � � C g1ar�1 C z. Here the addition and multiplication are in Z. The output
function is ı.a0; a1; : : : ; ar�1I z/ D a0. See Fig. 3.

FCSRs have many properties that parallel properties of LFSRs. Now, however,
the algebra of polynomials and power series is replaced by the algebra of integers
and N -adic numbers, which we briefly review [10, p. 72].

An N -adic number is an infinite expression

a D
1X

iD0
aiN

i ;
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Fig. 3 A length r FCSR

where ai 2 S . Addition of N -adic numbers is addition with carry. That is,

1X

iD0
aiN

i C
1X

iD0
biN

i D
1X

iD0
ciN

i

if there are integers d0 D 0; d1; d2; : : : so that for all i � 0 we have ai C bi C di D
ci C NdiC1. Similarly, we have

1X

iD0
aiN

i

1X

iD0
biN

i D
1X

iD0
ciN

i

if there are integers d0 D 0; d1; d2; : : : so that for all i � 0 we have

iX

jD0
aj bi�j C di D ci C NdiC1:

The set of N -adic numbers is thus an algebraic ring, denoted by ZN . Note that

�1 D .N � 1/C .N � 1/N C .N � 1/N 2 C � � �

(because adding 1 to the right-hand side gives 0). It can be seen that a sequence
a D a0; a1; : : : 2 S1 is eventually periodic if and only if its associated N -adic
number

a D
1X

iD0
aiN

i

is a rational number u=g with gcd.g;N / D 1.
The following are some properties of FCSRs and their output sequences:

1. The connection integer of an FCSR is g D �1 C g1N C � � � C grN
r . The

associated N -adic number of the output sequence a is a D a0 C a1N C
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a2N
2 C � � � . There is an integer u (uniquely determined by the initial state

.a0; : : : ; ar�1I z/) so that a D u=g [10, p. 80].
2. The sequence a is eventually periodic [10, p. 88]. This is equivalent to saying that

the carry z is bounded in any infinite execution of the FCSR. The sequence a is
periodic iff�g � u � 0. The period is at most g�1. The period equals g�1when
g is prime and N is a primitive root modulo g, meaning that the multiplicative
order of N modulo g is g � 1. In this case a is called an `-sequence [10, p. 264].
These sequences are the most interesting FCSR sequences. It is unknown whether
for a fixedN , there are infinitely many primes g such thatN is primitive modulo
g (Artin’s conjecture). However, Hooley showed that if a certain generalized
Riemann hypothesis holds, then for every N there are infinitely many primes g
so thatN is primitive modulo g [14]. Moreover, it is known that there are at most
two values of N for which Artin’s conjecture fails, although it is unknown what
these values are [13].

3. `-sequences have many good statistical properties. If N D 2, then their shifted
arithmetic autocorrelations (defined in Sect. 5.2) are all 0 [10, p. 172]. They are
as balanced as possible for their period and the distribution of subblocks of fixed
size is as uniform as possible. They have the arithmetic shift and add property
[10, p. 204].

4. If a is periodic, then it can be expressed as

ai D .AN�i mod g/ mod N;

for some A 2 Z, meaning (1) compute the element v � AN�i mod g with
0 � v < g; and (2) ai D v mod N 2 S [10, p. 87].

We can form a family of PSGs by fixing N and considering all N -ary FCSRs.

3.3 AFSRs

In this section we recall some details on AFSR, a generalization of both LFSRs
FCSRs [10, p. 96]. Let R be an algebraic ring. Let � 2 R be neither a unit and
nor a zero divisor, and assume that R=.�/ is finite. Let S � R be a complete set
of representatives for R=.�/. An AFSR of length r based on � is a PSG whose
state set is Sr � R and whose state change function is determined by a set of
coefficients g0; : : : ; gr 2 R with g0 invertible modulo � . If the current state is
.a0; a1; : : : ; ar�1I z/, then the next state is .a1; : : : ; ar�1; ar I z0/, where g0arCN z0 D
gra0 C � � � C g1ar�1 C z. Here the addition and multiplication are in R. The output
function is ı.a0; a1; : : : ; ar�1I z/ D a0. See Fig. 4.
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Fig. 4 A length r AFSR

Much of the analysis of AFSRs is based on the algebra of �-adic numbers, which
we briefly recall [10, p. 98]. A �-adic number is an infinite expression

a D
1X

iD0
ai�

i ;

where ai 2 S . Addition of �-adic numbers is again addition with carry. That is,

1X

iD0
ai�

i C
1X

iD0
bi�

i D
1X

iD0
ci�

i

if there are elements d0 D 0; d1; d2; : : : 2 R so that for all i � 0 we have ai C bi C
di D ci C �iC1. Multiplication is defined similarly. The set of �-adic numbers is
di D ci C �diC1 thus an algebraic ring, denoted by R� .

In the case when R D F Œx�, F a finite field, � D x, S D F , g0 D 1, and
z D 0, we obtain LFSRs (the carries are all 0 in this case). In the case when R D Z,
� D N > 1, S D f0; 1; : : : ; N � 1g, and g0 D 1, we obtain FCSRs. Other special
cases that have been studied include the case when R D F Œx� and deg.�/ > 1 [10,
p. 250], and d -FCSRs, where R D ZŒ�� and � D N1=d with N square free [10,
p. 133]. In the latter case, addition in R is addition with carry where the carry jumps
d places ahead.

It is not in general the case that the output from an AFSR is eventually periodic.
However, it is known that if R is a ring of integers in a number field, then the output
is always eventually periodic iff for every embedding of the fraction field of R in C

the complex norm of � is greater than 1. This is the case, for example, for d -FCSRs.
Following are some properties of AFSRs and their output sequences.

1. The connection element of an AFSR is g D �g0 C g1� C � � � C gr�
r . The

associated �-adic number of the output sequence a is a D a0Ca1�Ca2�2C� � � .
There is an integer u (uniquely determined by the initial state .a0; : : : ; ar�1I z/)
so that a D u=q.
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2. The sequence a is eventually periodic if R is a ring of integers in a number
field and the complex norm of � is greater than 1 under every embedding of
the fraction field of R in C. Otherwise there are AFSRs that do not produce
eventually periodic output. There is in general no known condition on the
numerator u characterizing the periodic output sequences, even in the case when
all output sequences are eventually periodic. However, for d -FCSRs, we have the
following.

Let �d D 2. We denote by P the parallelepiped in R D ZŒ�� which is
spanned by the d linearly independent vectors �g;�g�; : : : ;�g�d�1,

P D
(
d�1X

iD0
vi g�

i j vi 2 Q and � 1 � vi � 0
)

� QŒ��:

Let � D P \ ZŒ�� be the set of points of the integer lattice ZŒ�� in P .

Theorem 3.1 ([9]) Suppose g 2 ZŒ�� is a unit modulo � . Let a be an output
sequence from a d -FCSR with connection element g and let a be the �-adic
number associated with a. Suppose that a D u=g. Then a is periodic if and only
if u 2 �.

The maximum possible period is jR=.q/j � 1. This is achieved when � is a
primitive element modulo g, meaning that the multiplicative order of � modulo
g is jR=.q/j � 1. In this case a is called a �-adic `-sequence.

3. The statistical properties of �-adic `-sequences are not well understood, except
in some special cases. For example, for d -FCSRs with d D 2, we have the
following. Let N F

Q
denote the rational norm function on F .

Theorem 3.2 ([16]) Let �2 D N � 2 2 Z with N square free. Let F be the
fraction field of R D ZŒ��. Suppose that g D y C z� 2 R, with y; z 2 Z, is
invertible modulo � , that h D N F

Q
.g/ is a prime integer, and that � is primitive

modulo g. Let a be an `-sequence defined over ZŒ�� with connection element g.
If s 2 Z

C is even, then the numberK of occurrences of any s-tuple in one period
of a satisfies

ˇ
ˇ
ˇ
ˇK �

h

N s

ˇ
ˇ
ˇ
ˇ �

h

N s=2jzj C
jyj C jzj
Ns=2

C 2:

If .h=N /1=2 � jzj � h1=2, then

ˇ
ˇ̌
ˇK �

h

N s

ˇ
ˇ̌
ˇ �

.N 1=2 C .N � 1/1=2 C 1/h1=2
N s=2

C 2:

If N D 2, then

ˇ
ˇ
ˇ̌K � h

2s

ˇ
ˇ
ˇ̌ � 3

�
h

2s

�1=2
C 2:
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4. It has only been shown that there is an exponential representation of periodic
AFSR sequences under special conditions.

We can form a family of PSGs by fixing R, � , and S and considering all AFSRs
based on these ingredients. We also may want to impose constraints on the gi s, such
as requiring that they be in S . Note that if we let the gi s be arbitrary elements of R,
then we can take r D 1 and g D g1� C g0 with g0 2 S . Thus any �-adic number
u=g can be generated by an AFSR of length one.

4 Register Synthesis Problem

Let G be a family of PSGs. Suppose that given part of a sequence a we can find the
most efficient (in some sense) G D .S; �; ı/ 2 G and � 2 S so that G.�/ D a. If
G is efficient enough, then we have cryptanalyzed a [10, p. 295]. Let us make this
more precise.

A register synthesis algorithm for the family G is an algorithm T that on input
a0; a1; : : : ; an�1, a prefix of a, outputsG D .S; �; ı/ 2 G and initial state � 2 S so
that

1. G.�/ D a0; a1; : : : ; an�1; ‹; ‹; � � � .
2. If n is large enough,G.�/ D a (convergence).
3. T runs in polynomial time in n.

To measure the effectiveness of such an algorithm, we first need a notion of
size of a sequence generator G in a family G . This should at least approximate the
amount of space needed to store the states that occur in an infinite execution of G.
Then we define the G -complexity �G .a/ of a sequence a to be the minimum size
of a generator in G that outputs a. We typically measure the effectiveness of a G -
synthesizing algorithm in terms of �G .a/: for some slowly growing function �, if
the prefix length n is at least �.�G .a//, then T outputs G; � with G.�/ D a. In all
cases we know, �.�/ is linear in �.

As a consequence, if �G .a/ is small and G has an effective register synthesis
algorithm, then a is cryptographically insecure.

We later use the notion of the G -complexity of a finite sequence, the minimum
size of a generator in G that outputs a0; a1; : : : ; an�1 as its first n output symbols.
We denote the G -complexity by �G .a0; a1; : : : ; an�1/.

4.1 LFSR Synthesis

LFSR synthesis amounts to solving a system of linear equations in the coefficients
gi . There is an efficient algorithm due to Berlekamp and Massey in 1969 [10,
p. 296], [22]. This algorithm exploits the special structure of the equations and
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runs in time O.n2/. Given a0; a1; : : : ; an�1, the goal is to find relatively prime
polynomials u.x/ and g.x/ so that

a.x/ D
1X

iD0
aix

i D u.x/

g.x/
:

Then g.x/ is the connection polynomial of a minimal size LFSR that generates a,
and u.x/ determines the initial state. The algorithm proceeds iteratively—at the i th
iteration it finds the minimal degree polynomials ui .x/; gi .x/ so that

a.x/ � ui .x/

gi .x/
mod xi :

The approximation ui .x/=gi .x/ is found by computing a linear combination of two
earlier approximations: if a.x/ 6� ui .x/=gi .x/ mod xi , then

.uiC1.x/; giC1.x// D .ui .x/; gi .x//C bxi�m.um.x/; gm.x//

for a certain indexm and a certain b.
To measure the effectiveness, we define the linear complexity of a. If a.x/ D

u.x/=g.x/ and gcd.u.x/; g.x// D 1, then

�lin.a/ D max.deg.u/C 1; deg.g//

D the length of the smallest LFSR that generates a:

It can be seen that for the Berlekamp–Massey algorithm, �.�/ D 2�. That is, if
the sequence a has linear complexity � and the input to the Berlekamp–Massey
algorithm is a0; : : : ; a2��1, then the output is the precise rational representation of
the generating function of a.

4.2 FCSR and AFSR Synthesis

A first attempt at solving the FCSR synthesis problem is to use the Berlekamp–
Massey algorithm but using integer linear combinations instead of Fq linear
combinations when finding a new approximation. This doesn’t work—the propa-
gation of carries interferes with convergence.

Instead, for N D 2, Goresky and Klapper developed an FCSR synthesis
algorithm based on work of Mahler and De Weger. This Rational Approximation
Algorithm iteratively finds a minimal basis for the kth approximation lattice,

Lk D f.u; g/ W g˛ � u mod 2kg;

by taking linear combinations of earlier bases [10, p. 334].
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Subsequently Xu and Klapper solved the problem for any N [10, p. 348], [21,
28]. They modified the Berlekamp–Massey algorithm so that when a new rational
approximation is needed, one is found that works for the next three symbols of a.
This means that the effect of the carry is overwhelmed by the growth in the number
of terms accounted for. This algorithm also works for some classes of AFSRs: if the
base ring R is the ring of integers of a number field F D QŒN 1=d � (d -FCSRs) or R
is the ring of integers of certain quadratic extensions of Q.

A third approach is due to Arnault et al. [1], [10, p. 338]. For any N , a modified
Euclidean algorithm is used. The idea is, given a0; : : : ; an�1, to run the extended
Euclidean algorithm on input

 

Nn;

n�1X

iD0
aiN

i

!

until the terms are less thanNn=2. If n is large enough, this is guaranteed to succeed.
To measure the effectiveness of these algorithms, we must have a clear notion

of the size of an FCSR (or more generally of an AFSR). For LFSRs, it is clear
that the number of cells is the size, and it can be seen that this is the same
as max.deg.u.x// C 1; deg.g.x/// if u.x/=g.x/ is the corresponding rational
representation of the generating function of a. For FCSRs, the “engineering”
definition of size would be the number of cells plus the maximum number of N -
ary digits needed to store the carry in an infinite execution of the FCSR. We call this
the N -adic span. Unfortunately we know of no reasonable algebraic definition of
N -adic span. Instead, we define the N -adic complexity of a to be

�N .a/ D logN .max.juj; jgj//;

where the N -adic number associated with a has rational representation u=g and
gcd.u; g/ D 1. It can be seen that N -adic span and N -adic complexity differ only
by a small amount.

The situation is more complicated for AFSRs based on a ring R and an element
� 2 R. There may be multiple competing choices for a size function. For example,
represent z 2 R as

Pk
iD0 zi�k , and let the size of z be k. Or let the size of z be

the log (to an appropriate base) of the rational norm of z. The former definition is
inadequate in general since not all elements can be represented this way. The latter
fails to distinguish the sizes of z and uz where u is a nontrivial unit.

All three algorithms have time complexity O.n2/. For Goresky and Klapper’s
rational approximation algorithm, we have �.�/ D d2�eC2. For Xu and Klapper’s
modified Berlekamp–Massey algorithm applied to R D Z, we have�.�/ D d6�eC
27. For the Euclidean approximation algorithm, we have �.�/ D d2�e C 3.

This leaves the following open questions:

1. How can we build efficient generators of sequences that have large �G for all
“reasonable” G ?



Open Problems on With-Carry Sequence Generators 193

2. Are there other “interesting” families G of PSGs with good register synthesis
algorithms?

3. Are there families G of PSGs that provably have no register synthesis algorithm?
Or even just no algorithm with �.�/ linear?

4. Can we find effective register synthesis algorithms for other classes of AFSRs?

4.3 Combined and Filtered Generators

In this section we consider two approaches to reducing vulnerability of stream
ciphers to synthesis attacks. The general idea is to introduce some nonlinearity to
the PSG while maintaining the good statistical properties.

The first approach is to use a set of n simple PSGs, such as LFSRs and FCSRs
and to combine their outputs with a nonlinear combiner function H.x1; : : : ; xn/.
How can we choose H to maximize security? In particular, how can we choose
H to make the linear or N -adic complexity large? In the binary case, suppose the
underlying PSGs generate sequences a1; : : : ; an. Let the overall output sequence
be b D b0; b1; : : :, with bi D H.a1i ; : : : ; a

n
i /. Then Key showed that the linear

complexity of b satisfies

�lin.b/ � H.�lin.a
1/; : : : ; �lin.a

n//; (1)

where we treat H as a polynomial with integer coefficients that happen to be 0s and
1s [15]. Moreover, Key showed that if the aj are m-sequences and their periods are
pairwise relatively prime, then we have equality in equation (1).

This leaves several related questions:

1. Can we express or bound the 2-adic complexity of b in terms of the 2-adic
complexities of the ai? Similarly for various �-adic complexities.

2. Are there conditions under which both the linear and 2-adic complexities of b
are large? All �-adic complexities?

3. What if we add a small amount of memory to the combiner? Rueppell investi-
gated the summation combiner, where H is binary addition with carry [26]. He
gave a heuristic argument that the linear complexity should be large, but gave no
actual proof. To our knowledge, no proof has yet been found. On the other hand,
it is known that the 2-adic complexity of b is the sum of the 2-adic complexities
of the ai , so the summation combiner is vulnerable to an FCSR synthesis attack.
In fact it was this that motivated the invention of FCSRs.

We must point out that even if we achieve large linear and 2-adic complexities (or
even large �-adic complexity for all �), this does not make these sequences secure.
There are other attacks. For example, combiners tend to be vulnerable to correlation
attacks [23].

A second approach to reducing vulnerability of stream ciphers to synthesis
attacks is to use a single LFSR or FCSR for the state and state change function, but
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use a nonlinear function F.a0; : : : ; ar�1/ as the output function. Regarding LFSRs,
Key [15] showed that, in the binary case, if d D deg.F /, then

�lin.b/ �
dX

iD0

 
n

i

!

: (2)

The following questions are open:

1. How can F be chosen to achieve equality in inequality (2)?
2. What is the N -adic complexity of a filtered FCSR?
3. What is the linear complexity of an `-sequence or a filtered FCSR?
4. What is the N -adic complexity of an m-sequence or a filtered LFSR?

Similar questions can be asked about �-adic complexity, where � is an element
of a ring R. More generally, it is an open problem how to efficiently generate
sequences that have both large linear complexity and large 2-adic complexity (or
�-adic complexity for any �).

We mention here some additional motivation for studying FCSRs. There is a type
of attack on filtered LFSR generators known as algebraic cryptanalysis [5]. The
basic idea is to treat each monomial in the filter function F as a variable. Knowing
some ciphertext and plaintext gives the attacker some keystream and thus gives an
equation in these metavariables. More known keystream gives more equations using
the composition of F with iterations of the state change. If the degree of F is small
(or if there is a low degree multiple of F ), then the number of metavariables is small,
and if there are enough equations, we can solve for the metavariables.

Critical to this attack is the fact that F composed with the state change has the
same degree as F . However, if we replace the LFSR with an FCSR, this is no longer
the case and algebraic cryptanalysis no longer works.

5 Statistics of Sequences

In this section we consider various open questions on statistical properties of shift
register sequences.

5.1 Average Behavior

We would like to understand the average behavior of the G -complexity of
sequences. Deviation from the average can be used as a measure of nonrandomness
(the NIST test suite does this with linear complexity [25]). Moreover, if the average
is large, then we know that randomly chosen sequences are likely to have large
G -complexity. This is important because many stream ciphers are designed to be
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hard to analyze. For such ciphers, it is likely to be impossible to determine the
G -complexity.

But averaged over what? We can use Haar measure on infinite sequences.
However, the eventually periodic sequences are countable, so have measure zero.
For most G of interest only eventually periodic sequences have finite G -complexity,
so the average G -complexity is infinite. This tells us nothing.

Instead, we can consider two ways of averaging:

1. Efin;G
n D average G -complexity over all finite, length n sequences.

2. Eper;G
n D average G -complexity over all infinite period n sequences.

Note that these are different. In the first case, the G -complexity of a
finite sequence is the minimum G -complexity over all infinite extensions of
.a0; : : : ; an�1/, not just the period n extensions. Thus

Efin;G
n � E per;G

n :

The following averages are known:

1. Efin,lin
n D n=2CO.1=q/ for sequences over Fq .

2. Eper,lin
n � n � m=.q � 1/: for sequences over Fq , q a power of p, n D pvm,

gcd.m; p/ D 1 (the exact value can be expressed in terms of cyclotomic
numbers).

3. E per,N -adic
n 2 n�O.log.n// (the exact value can be expressed in terms of the prime

factorization of Nn � 1).

This leaves open the determination of Efin,N -adic
n .

For AFSRs over R D ZŒ��, we know that if R is a UFD with �2 D �N < 0

or �d D N > 0 and n is a multiple of 4 in the former case and is arbitrary in the
latter case, then Eper,G

n 2 n � O.log.n// [19]. The average finite �-complexity is
unknown, as are both averages for any other R. Note that in these cases, there are
reasonable definitions of the size of an AFSR. For example, if �2 D �N and F
is the field of fractions of R, then we define the size of an element u C v� 2 R,
u; v 2 Z, to be

�.uC v�/ D logN .N
F
Q
.uC v�// D logN .u

2 CN v2/:

Then the size of an AFSR with a given initial state is max.�.f /; �.g// if the AFSR
has connection element g and outputs a sequence whose associated �-adic number
has rational representation f=g. If �d D N > 0, then we let the size of an element
be

�

 
d�1X

iD0
ui�

i

!

D max.d logN jui j C i/;
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and we extend this to sequences similarly. In both cases it can be seen that this
notion of size approximates the number of N -ary digits needed to represent the
state. It seems that the first step in extending these results to more general R is to
find a suitable notion of size.

5.2 Correlations

Let a and b be binary sequences of period T . The classical notion of the
cross-correlation of a and b is

Ca;b.t/ D
T�1X

iD0
.�1/aiCbiCt

D #zeros� #ones in one period of aC shiftt .b/:

If a D b, then the cross-correlation is called the autocorrelation of a, denotedAa.t/.
The cross-correlation is used in code division multiple access (CDMA) com-

munications. Each user has a sequence a that determines how the user’s signal is
distributed across a set of T channels. Typically it is necessary that the sequences
used by two users have low cross-correlation to prevent interference. Thus the
capacity of the system is limited by the size of a family of sequences with low
pairwise cross-correlations.

Unfortunately, there are various known constraints on this size. One such
constraint is the Welch bound [27]. Let S be a set of n binary sequences of period
T . Let Cmax be the maximum cross-correlation between distinct sequences in S
(including shifts of sequences and including shifted autocorrelations). Then

C 2
max �

T 2.n � 1/
nT � 1 :

Thus, for example, if n D T 1=2, then

C 2
max � T

�
1 � T � 1

T 3=2 � 1
�
	 T:

There is an analogous notion for with-carry algebra. Let �2 denote subtraction
with borrow of binary sequences. That is, to compute a �2 b, find the associated 2-
adic numbers a and b, subtract them in Z2, and extract the sequence of coefficients
of the result. Note that if a and b have period T , then a �2 b is only eventually
periodic (in fact it is periodic from the T th term on). We define the arithmetic cross-
correlation to be

C A
a;b.t/ D #zeros� #ones in one period of a �2 shiftt .b/:
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We next define a set of sequences whose pairwise arithmetic cross-correlations
are identically zero. The d -fold decimation of a sequence a D a0; a1; a2; : : : is the
sequence ad D a0; ad ; a2d : : :.
Theorem 5.1 Suppose 2 is a primitive root modulo the prime number g. Let a be
an `-sequence with connection integer g. Suppose that gcd.g; d/ D gcd.g; e/ D 1

and that ad is not a shift of ae. Then for all t , C A
ad ;ae

.t/ D 0.

It follows that the set Sg D fad W gcd.g; d/ D 1g is a set of sequences with
identically zero arithmetic cross-correlations. This is in stark contrast to the classical
setting. Two questions remain. First, is there an application of this remarkable fact?
Second, how large is S? That is, how many shift distinct decimations of an `-
sequence are there.

Conjecture 5.2 If d 6� e mod q and q > 13, then ad is not a shift of ae.

If true, this would give us sets Sg of period g � 1 sequences with zero arithmetic
cross-correlations and jSgj D �.g � 1/. Note that �.g � 1/ can be as large as
.g � 3/=2.

It is known that the conjecture is true:

1. For 13 < q < 8 � 109 (by brute force search)
2. For some special cases (d D 1, e D q � 2 [8]; d D 1, g � 1 mod 4, and
e D .q C 1/=2 [11, 12])

3. For q > 4:92 � 1034 [2, 3, 12]

Bourgain’s et al. result is based on recent deep results on bounds for certain
exponential sums.

5.3 Asymptotic Complexity

Let G be a family of PSGs. Typically a sequence a is eventually periodic if and only
if it can be generated by some G 2 G . Let us call such a G periodic. The “if” part
certainly holds if for anyG D .S; �; ı/ and � 2 S , the set of states f� i .�/ W i 2 Ng
is finite. The “if and only if” holds for LFSRs, FCSRs, and AFSRs based on ring
R D ZŒ�� and � if j�j > 1 for every embedding of the fraction field of R in C.

Suppose a is not eventually periodic. How can we understand the G -complexity
of a? One way is to consider finite prefixes of a and study the growth in their G
complexities as the length increases.

Let �G ;n.a/ D �G .a0; a1; : : : ; an�1/. The G -complexity profile of a is the
sequence �G .a/ D .�G ;1.a/; �G ;2.a/; : : :/. Assume for the remainder of this
subsection that G is a family of periodic PSGs. Then

lim
n!1�G ;n.a/ D1;
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so the limit tells us nothing. We assume further that for all a, we have �G ;n.a/ �
nCo.n/. This is the case for LFSRs, FCSRs, and AFSRs since these families contain
pure cycling registers (g1 D � � � D gr�1 D 0; gr D 1). In this case we can normalize
by defining

ıG ;n.a/ D �G ;n.a/=n 2 Œ0; 1C o.1/�:

Then we can ask about the limiting behavior of ıG ;n.a/ as n tends to infinity.
However, it is not in general the case that this sequence has a single limit point.

Rather, it has a set of accumulation points T .a/ � Œ0; 1�. It is this set we want to
study. When does there exist a single limit point of the ıG ;n.a/? In general what is
the structure of T .a/?

The first question was answered by Niederreiter for linear complexity [24]. The
answer is that generically a single limit exists and that limit is 1=2. More precisely,
recall that there is a natural measure on the set L D f0; 1g1 of infinite binary
sequences, called Haar measure. This is simply the infinite product of the uniform
measure on f0; 1g. This is very nearly the uniform measure on the real unit interval
Œ0; 1�. Niederreiter showed that there is a set U � L with measure one such that if
a 2 U then T .a/ D Œ1=2; 1=2�.

It is an open problem to prove this for any other family of PSGs.
Next we mention a theorem that partially answers the second question.

Theorem 5.3 ([17]) If �G ;n � �G ;nC1, then T .a/ D ŒB; C � � Œ0; 1�.
But what are the possible values of B and C ?

Conjecture 5.4 For all a, we have T .a/ D ŒB; 1 � B�. For every B 2 Œ0; 1=2� there
are uncountably many sequences a for which T .a/ D ŒB; 1 � B�.

The following are the cases when the conjecture is known to be true:

1. LFSRs [7].
2. 2k-ary and 3k-ary FCSRs [17].
3. N -ary FCSRs if B < logN .2/ [17].
4. �-adic AFSRs with �2 D �2 if B < log2.4=3/ [18].

All other cases are open.
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Open Problems on Binary Bent Functions

Claude Carlet

Abstract This chapter gives a survey of the recent results on Boolean bent func-
tions and lists some open problems in this domain. It includes also new results. We
recall the definitions and basic results, including known and new characterizations
of bent functions; we describe the constructions (primary and secondary; known
and new) and give the known infinite classes, in multivariate representation and
in trace representation (univariate and bivariate). We also focus on the particular
class of rotation symmetric (RS) bent functions and on the related notion of bent
idempotent: we give the known infinite classes and secondary constructions of such
functions, and we describe the properties of a recently introduced transformation of
RS functions into idempotents.

1 Introduction

Boolean functions are functions from F
n
2 to F2, where n is some positive integer

called the number of variables. They play a role in almost all the domains of
computer science. We are more interested here in their relationship with error-
correcting codes and private-key cryptography. Multi-output Boolean functions are
functions from F

n
2 to F

m
2 for somem (to specify thatm D 1, we can speak of single-

output Boolean function, but even without such precision, “Boolean function”
without writing “vectorial” will imply single output).

A binary error-correcting code of a given length N is a subset C of FN2 . Each
information to be sent over a noisy channel is encoded before transmission by the
sender into an element of C (a codeword); if d is the minimum Hamming distance
between two distinct codewords (called the minimum distance of the code), such
encoding allows theoretically the receiver to correct up to e D �

d�1
2

�
binary errors

in the transmission of a codeword (e is called the error correction capability of the
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code). When the code has length N D 2n, the codewords can be interpreted as
Boolean functions (some order on the elements of F

n
2 being chosen beforehand).

Reed-Muller codes [49] are examples of such codes defined as sets of Boolean
functions. Any code of lengthN can be viewed itself as the support of anN -variable
function, and some notions on codes (e.g., the dual distance) correspond to notions
on Boolean functions (e.g., correlation immunity), but we shall not address this here.

Private-key cryptosystems (stream ciphers, which encrypt at a bit level, and
block ciphers, which encrypt block by block) allow exchanging confidentially large-
size data over a public channel. With such conventional symmetric ciphers, it is
necessary to possess the secret encryption key (resp. the secret decryption key,
which is in general equal to the encryption key, and is supposed to have been safely
shared in advance between the sender and the receiver) for being able to encrypt
(resp. decrypt) messages.1 For reasons of speed, these cryptosystems involve linear
operations, and for reasons of resistance to attacks, they need also to involve some
amount of nonlinearity, often brought by single-output or multi-output Boolean
functions. There are several ways of quantifying how nonlinear (i.e., different
from linear functions) a given Boolean function can be. The main parameter for
such quantification is the so-called nonlinearity, equal to the minimum Hamming
distance between the function and all affine functions (i.e., sums of a linear function
and a binary constant). The nonlinearity of any n-variable Boolean function is
bounded above by 2n�1 � 2n=2�1. The functions achieving this bound with equality
exist only for n even since the nonlinearity is an integer (in fact, they exist if and only
if n is even). They are called bent. Such bent functions are not directly used in stream
ciphers because bentness makes impossible the function to be balanced (i.e., to
have output uniformly distributed over F2), and this induces a statistical correlation
between the plaintext and the ciphertext; bentness also implies other cryptographic
weaknesses. But bent functions can be involved in the substitution boxes (S-boxes)
of block ciphers, whose role is also to bring some amount of nonlinearity (allowing
to resist the differential and linear attacks), and the study of bent functions and those
of Boolean functions for stream ciphers and of S-boxes for block ciphers are closely
related.

Bent functions are involved in codes such as the Kerdock codes (see Sect. 3.4).
They are also related to combinatorics (e.g., difference sets; see Sect. 2.2.1), design
theory (any difference set can be used to construct a symmetric design), and
sequence theory (see [16]).

Bent functions have been studied in numerous papers. A survey on Boolean bent
functions is given in [11, Sect. 8.6] (and complements on non-binary bent functions,
that we do not address here, can be found in [56]). The purpose of this chapter
is to complete this survey on Boolean bent functions with results which appeared
after the publication of [11] (and with a few original results) and to focus on open
problems.

1In public-key cryptography, the only key which must be kept secret is the decryption key, but as
far as we know, bent functions play no big role in such ciphers.
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2 Boolean Bent Functions: Definitions and Basic Results

2.1 Representations of Affine Boolean Functions

Affine Boolean functions (i.e., sums of linear functions and constants) over Fn2 can
be written in multivariate representation, that is, writing the input x as a vector
.x1; : : : ; xn/ of Fn2 , in the form

a1 x1 C � � � C an xn C � D a � x C � (sums mod 2)

for some a D .a1; : : : ; an/ 2 F
n
2; � 2 F2.

Other representations exist. The vector space F
n
2 can be endowed with the

structure of the field F2n (since we know that this field is an n-dimensional vector
space over F2). This allows to use the trace function Trn1.x/ D xCx2Cx22 C� � �C
x2

n�1
as a basic linear form over F2n , and any affine function of x 2 F2n can then be

written in the so-called univariate trace representation:

Trn1.ax/C � I a 2 F2n ; � 2 F2 (sum mod 2):

The multivariate and univariate trace representations are at two opposite extremes. A
representation which is intermediate and happens to be important in the framework
of bent functions is the bivariate trace representation. For n even, we identify F

n
2

with F2n=2 � F2n=2 , and every affine Boolean function of .x; y/ 2 F2n=2 � F2n=2 can
then be expressed as

Trn=21 .axC ay/C � I a; b 2 F2n=2 ; � 2 F2 (sum mod 2):

2.2 Corresponding Expressions for the Walsh Transform
of Boolean Functions, Nonlinearity, and Bentness

The Walsh transform of a Boolean function calculates the correlations between the
function and linear Boolean functions.

In multivariate representation, that is, over Fn2 , it can be expressed as

c�f .a/ D
X

x2Fn2
.�1/f .x/Ca�xI a 2 F

n
2.sum in Z/;

where “�” is an inner product in F
n
2 (for instance, we can take the usual inner product,

introduced in Sect. 2.1).
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In univariate trace representation (over F2n), we take

c�f .a/ D
X

x2F2n
.�1/f .x/CTrn1 .ax/I a 2 F2n :

In bivariate trace representation (over F2m � F2m ; m D n=2), we take:

c�f .a; b/ D
X

x;y2F2m
.�1/f .x;y/CTrm1 .axCby/:

The Hamming distance between two functions equals by definition the Hamming
weight of their difference (i.e., their sum):

dH .f; g/ D wH .f C g/ D jfx 2 F
n
2 = f .x/ ¤ g.x/g:

The nonlinearity nl.f / of a Boolean function f equals by definition the
minimum Hamming distance between f and affine functions. It is a simple matter
to show that

nl.f / D 2n�1 � 1
2

max
a2Fn2
jc�f .a/j

(note that this equality is valid whatever is the choice of the inner product “�”).
Because of the easily proved Parseval relation

X

a2Fn2
c�f 2.a/ D 22n;

the mean of c�f 2.a/, equals 2n and this implies the so-called covering radius bound:

nl.f / � 2n�1 � 2n=2�1:

The bound is tight for every even n; the functions achieving it with equality are
called bent; the Walsh transforms of bent functions take values ˙2n=2, only. The
dual Qf of a bent function f is the function defined on F

n
2 by

c�f .u/ D 2m.�1/ Qf .u/; u 2 F
n
2; m D n=2:

It is also a bent function, and the mapping f 7! Qf is an isometry [11]. Bounds
involving the algebraic degrees of bent functions (see definition below) and their
duals and relations between the degree n=2 terms in the algebraic normal form
(ANF, see also below) of bent functions and their duals are recalled in [11]. Self-dual
bent functions are studied in [21].
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2.2.1 Characterizations of Bent Functions

• Any Boolean function f is bent if and only if for any nonzero vector a, the
so-called derivative Daf .x/ D f .x/ C f .x C a/ (sum mod 2) is balanced
(i.e., has Hamming weight 2n�1 or equivalently satisfies

P
x2Fn2 .�1/Daf .x/ D

0) [59], since we have
P

a2Fn2


.�1/a�bPx2Fn2 .�1/Daf .x/

�
D c�f 2.b/ and

P
b2Fn2 c�f

2.b/.�1/a�b D 2n
P

x2Fn2 .�1/Daf .x/. The fact that
P

b2Fn2 .�1/a�b
equals 2n if a D 0 and is null otherwise completes the proof of the equivalence.

Bent functions are also called perfect nonlinear and are equivalently the
indicators of difference sets in elementary Abelian 2-groups [28].

• An n-variable Boolean function f is bent if and only if
P

a2Fn2 c�f
4.a/ equals

23n (which, by the Cauchy–Schwarz inequality and the Parseval relation, is the
minimum possible value).

• It is shown in [11] that:

Theorem 1 A pair of n-variable Boolean functions f and f 0 satisfies, for every
a; b 2 F

n
2 , the relation

P
x2Fn2 .�1/Daf

0.x/Cb�x D P
x2Fn2 .�1/Dbf .x/Ca�x if and

only if f and f 0 are bent and are the duals of each other, up to the addition of
constant 1. Moreover, for any bent function f , we have

P
x2Fn2 .�1/Da

Qf .x/Cb�x D
P

x2Fn2 .�1/Dbf .x/Ca�x D 0 when a � b D 1.

• For n-variable Boolean functions f and f 0, we haveP
x;y2Fn2 .�1/f .x/Cf

0.y/Cx�y D 2�n
P

x;y;z2Fn2 .�1/f .x/C.xCz/�y
b�f 0.z/ D

P
x2Fn2 .�1/f .x/b�f 0.x/ � P

x2Fn2 jb�f 0.x/j �
q
2n
P

x2Fn2b�f 0
2.x/ D 23n=2,

and this bound
P

x;y2Fn2 .�1/f .x/Cf
0.y/Cx�y � 23n=2 is achieved with equality if

and only if both inequalities above are equalities, that is, if and only if jb�f 0.x/j
is constant and .�1/f .x/ is the sign ofb�f 0.x/ for every x, that is, if and only if
f 0 is bent and ef 0 D f . This gives one more characterization of bent functions:

Theorem 2 For every pair of n-variable Boolean functions f and f 0, we have

X

x;y2Fn2
.�1/f .x/Cf 0.y/Cx�y � 23n=2;

with equality if and only if f and f 0 are bent and are the duals of each other.

In particular, a Boolean function f is bent and self-dual if and only if the so-called
Rayleigh quotient

P
x;y2Fn2 .�1/f .x/Cf .y/Cx�y equals 23n=2; this particular result was

given in [21], but as far as we know, the general characterization of Theorem 2 is
new. It has the interest of characterizing bent functions with a single character sum.

More characterizations are given in [11].
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2.2.2 Number of Bent Functions

The number of bent functions is known only for n � 8 [43]. For larger values of
n, only bounds are known. In particular, an upper bound exists [11, 17]. Comparing
the bound and the actual value for n D 8 shows that the bound is weak (but it could
not be improved during the last 10 years).

Open Problem 1: Bound more efficiently the number of n-variable bent functions
(i.e., improve upon the bound of [17]).

2.2.3 Other Properties

We shall not list here all the properties of bent functions. We refer to the survey
[11], in particular for the relationship with the sum-of-square indicator, with
nonhomomorphicity, with codes, for the description of super-classes of Boolean
functions and of bent sequences and for normal extensions of bent functions.

2.3 Equivalence of Boolean Functions

It seems elusive to determine all bent functions. This has been done for n � 8

only, and doing it for n D 8 was a difficult work [43]. An important subject of
research is then to find constructions of bent functions leading to infinite classes of
bent functions, or to find directly such infinite classes, after computer investigation.
When a class is obtained, it remains to see if at least some of its elements are
really new. Indeed, given a bent function, some simple transformations allow to
obtain other bent functions; we say then that the known function and the functions
we can obtain from it are equivalent (when the correspondence results in an
equivalence relation); an infinite class is new if some of its elements are inequivalent
to all previously known bent functions. We describe now the relevant notions of
equivalence for bent functions.

The automorphism group of the set of bent functions

f� permutation of Fn2 s.t.f ı � bent, 8f bent g

is the general affine group: �.x/ D x�ACa (A invertible matrix over F2) [11]. Two
functions f and f ı � are then called affinely equivalent (and f .x/ and f .x � A/
are called linearly equivalent).

If f is bent and ` is affine, then f C` is bent (sum mod 2). Two functions f and
f ı � C ` are called EA-equivalent, and a class of bent functions is called complete
if it is globally invariant under EA-equivalence. The completed version of a class is
the set of all functions EA-equivalent to the functions in the class.
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Another notion of equivalence called CCZ-equivalence [3,20] exists and is more
general than EA-equivalence for vectorial functions, but it is known from [1, 2]
that for Boolean functions and for bent (Boolean or vectorial) functions, CCZ-
equivalence coincides with EA-equivalence.

Note that X.-D. Hou and P. Langevin have made an observation reported in [11]
showing that under some condition on a permutation � , composing a bent function
with � may give another bent function. But this cannot be viewed as an equivalence
since the condition on � is hard to achieve.

2.4 Representations of Boolean Functions

Each representation of affine functions generalizes to a representation of general
Boolean functions, useful for studying bent functions.

2.4.1 Multivariate Representation

Any Boolean function f W Fn2 7! F2 has a unique ANF:

f .x1; : : : ; xn/ D
X

I�f1;:::;ng
aI

 
Y

i2I
xi

!

; aI 2 F2 (sum mod 2):

The algebraic degree of a Boolean function f is the global degree of its ANF. The
r th-order Reed-Muller code of length 2n equals by definition the set of n-variable
Boolean functions (identified with binary vectors of length 2n) of algebraic degrees
at most r .

An important property of bent functions is that their algebraic degrees are
bounded above by n=2 [59].

A function f is called quadratic if it has algebraic degree 2, cubic if it has
algebraic degree 3. We are able to characterize the ANF of bent functions only for
quadratic functions: a quadratic Boolean function is bent if and only if it is affinely
equivalent to x1x2Cx3x4C� � �Cxn�1xn or x1x2Cx3x4C� � �Cxn�1xnC1. Another
characterization exists: according to the first result recalled in Sect. 2.2.1 and since
all derivatives of a quadratic function are affine and are then balanced if and only if
they are nonconstant, any quadratic function f is bent if and only if the so-called
linear kernel of f , equal to the set of elements a such that Daf is constant, equals
f0g. See more in [11].

Another representation of Boolean functions called the numerical normal form
(NNF) and a related notion of degree called numerical degree exist (see the details
in [11]), allowing characterizing bent functions. As far as we know, no recent result
has been found on this relationship.
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Open Problem 2 : The following question is posed by Tokareva in [63]: do the
sums of two bent functions cover all Boolean functions of algebraic degrees at
most n=2? Intuitively, the reply to this question would seem negative, for general
n. However, the reply is shown by Tokareva to be yes for n D 4; 6 and for
several classes of bent functions; it seems difficult to prove that the reply is no,
in general: the usual parameters and properties of Boolean functions (ANF, NNF
and numerical degree, generalized degree, divisibility of the Fourier transform or
of the coefficients of the NNF, other properties of the Fourier or Walsh transform
values) do not seem to allow discriminating sums of two bent functions from
other Boolean functions of degrees at most n=2. Note that a positive reply to
Tokareva’s question would automatically imply a lower bound on the number of
bent functions.

2.4.2 Univariate and Bivariate Representations: Trace Representations

Every function from F2n to F2n has a unique univariate representation

f .x/ D
2n�1X

jD0
aj x

j I aj ; x 2 F2n (1)

since the mapping
P2n�1

jD0 aj Xj 7!P2n�1
jD0 aj xj from polynomials to functions is

linear injective and therefore bijective.
Function f is Boolean if and only if:

a0; a2n�1 2 F2 and a2j D .aj /2;8j 2 Z=.2n � 1/Z n f0g:

The univariate representation can then be written as a trace representation:

f .x/ D
X

j2�n
Tro.j /1 .aj x

j /C a2n�1x2n�1; (2)

where:

– a2n�1 2 F2 equals the Hamming weight of f modulo 2,
– �n is the set of integers obtained by choosing one element in each cyclotomic

coset of 2 mod 2n � 1,
– o.j / is the size of the cyclotomic coset containing j ,
– and aj 2 F2o.j / .

In both univariate and trace representations (1), resp. (2), the algebraic degree
equals: maxfw2.j /I j j aj ¤ 0g; where w2.j / is the Hamming weight of the
binary expansion of j [11] (in particular, the univariate trace representation of a
bent function does not involve the term x2

n�1).



Open Problems on Binary Bent Functions 211

We have also f .x/ D Trn1.P.x// for some polynomialP.x/, but this representa-
tion is not unique and does not allow a general (simple) expression for the algebraic
degree.

The bivariate representation is based on the identification F
n
2  F2m � F2m and

has the form:

f .x; y/ D
X

0�i;j�2m�1
ai;j x

iyj I ai;j 2 F2n : (3)

The existence of such representation for every function from F2m � F2m to F2n

and the values of the coefficients ai;j in (3) can be derived from the univariate
representation: choosing a basis .˛; ˇ/ of F2n over F2m allows to express the input
of f in the form ˛xCˇy, and expanding .˛xCˇy/i in (1) gives (3) after reduction
modulo x2

m C x and y2
m C y. The uniqueness comes from the fact that the number

of polynomials (3) equals the number .2n/2
m�2m of functions from F2m �F2m to F2n

and that a surjective mapping from a finite set to a set of the same size is a bijection.
The function is Boolean if and only if the expression .

P
0�i;j�2m�1 ai;j xi yj /2

equals
P

0�i;j�2m�1 ai;j xi yj in the quotient algebra F2n Œx; y�=.x2
m C x; y2m C y/,

that is, if a2i;j D a2i;2j for every .i; j /, where 2i (resp. 2j ) is replaced by 2i �
.2m � 1/ if 2i � m (resp. if 2j � m).

This condition implies in particular that a2
m

i;j D ai;j , that is, ai;j 2 F2m (which
can be directly deduced from .

P
0�i;j�2m�1 ai;j xi yj /2 �

P
0�i;j�2m�1 ai;j xi yj

[mod .x2
m C x; y2m C y/]).

It also implies that the bivariate representation of any Boolean function over
F2m � F2m can be written in bivariate trace representation:

f .x; y/ D
X

.i;j /2�0

m

Tro.i;j /1 .ai;j x
i yj /C x2m�1

X

j2�m
Tro.j /1 .a2m�1;j yj /

Cy2m�1
X

i2�m
Tro.i/1 .ai;2m�1xi /C a2m�1;2m�1x2m�1y2m�1; (4)

where:

– a2m�1;2m�1 2 F2 equals the Hamming weight of f modulo 2,
– � 0m is a set obtained by choosing one ordered pair in each cyclotomic class of 2

modulo 2m � 1 in f0; : : : ; 2m � 2g � f0; : : : ; 2m � 2g,
– �m is a set obtained by choosing one element in each cyclotomic coset of 2

modulo 2m � 1 (in f0; : : : ; 2m � 2g),
– o.i; j / is the size of the equivalence class containing .i; j /, and o.i/ is the size

of the cyclotomic coset containing i ,
– and ai;j 2 F2o.i;j / , aj 2 F2o.j / .

The algebraic degree of f .x; y/ equals max.i;j / j ai;j¤0.w2.i/ C w2.j // in (3)
and (4). In particular, the bivariate trace representation of a bent function does
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not involve any of the terms x2
m�1y2m�1, y2m�1Tro.i/1 .ai;2m�1xi /, i ¤ 0 and

x2
m�1Tro.j /1 .a2m�1;j yj /, j ¤ 0).
As in the case of univariate representation, the simpler representation f .x; y/ D

Trm1 .P.x; y// (where P.x; y/ is a polynomial over F2m ) exists but is not unique.

3 Known Infinite Classes of Boolean Bent Functions

In all the rest of this chapter, n is even and we denote n=2 by m.

3.1 Basic Constructions in Multivariate Representation

In the Maiorana–McFarland (MM) construction, the input is represented in the form
.x; y/ where x; y 2 F

m
2 . Given � W Fm2 7! F

m
2 and g W Fm2 7! F2, the function:

f .x; y/ D x � �.y/C g.y/I x; y 2 F
m
2

is bent if and only if � is a permutation on F
m
2 .

The dual function equals : Qf .x; y/ D y � ��1.x/C g.��1.x//.
The truth table of an MM function is the concatenation of the truth tables of the

affine functions x 7! x � �.y/C g.y/ (in m variables). Completed MM class is the
widest known class of bent functions. It covers all bent functions for n � 6 and all
quadratic bent functions; but, for n D 8, it has size negligible with respect to all
bent functions.

Generalizations of MM construction (see [11]):

• MM class has been modified by the addition of indicators of flats
• it has been generalized in diverse ways:

– concatenations of quadratic functions,
– concatenations of indicators of flats,
– more complex concatenations (these constructions are more efficient for

designing resilient functions than bent functions, though),

• it has also been generalized into a secondary construction (see Sect. 4).
• A construction including MM and PSap (see below) was given by Dobbertin.
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3.2 Known Infinite Classes of Bent Functions in Univariate
Trace Form

We list these known classes:

• f .x/ D Trn1



ax2
jC1

�
, where a 2 F2n n fx2jC1I x 2 F2ng, n

gcd.j;n/ even (the

bentness of such function is directly deduced from the characterization recalled
above of bent quadratic functions). This class has been generalized by Yu and
Gong in [65] to functions of the form Trn1.

Pm�1
iD1 ai x2

iC1/C cmT rm1 .amx2mC1/.
Being quadratic, these functions belong to the completed MM class.

• f .x/ D Trn1



ax2
2j�2jC1

�
, where a 2 F2n n fx3I x 2 F2ng, gcd.j; n/ D 1 [29].

• f .x/ D Trn1



ax.2
n=4C1/2

�
; where n � 4 [mod 8], a D a0b.2n=4C1/2 , a0 2 wF2n=4 ,

w 2 F4 n F2, b 2 F2n (Leander [44], see also [24]); the functions in this class
belong to the completed MM class.

• f .x/ D Trn1



ax2
n=3C2n=6C1

�
, where 6 j n, a D a0b2n=3C2n=6C1, a0 2 F2m ,

Trmm=3.a
0/ D 0, b 2 F2n [6]; the functions in this class belong to the completed

MM class.
• f .x/ D Trn1



aŒx2

iC1 C .x2i C x C 1/Trn1.x
2iC1/�

�
, where n � 6, m does not

divide i , n
gcd.i;n/ even, a 2 F2n n F2i , fa; a C 1g \ fx2iC1I x 2 F2ng D ; [2].

These functions belong to the completed MM class when a 2 F2m .
• f .x/ D Trn1

�
a
��
x C Trn3

�
x2.2

iC1/ C x4.2iC1/�

CTrn1.x/Trn3
�
x2

iC1 C x2
2i .2iC1/��2iC1��,

where 6 j n, m does not divide i , n
gcd.i;n/ even, b C d C d2 62 fx2iC1I x 2 F2ng

for every d 2 F23 [2]. These functions are EA-inequivalent to functions in MM.
• Niho bent functions [31] whose restrictions to the cosets uF2m are linear. These

functions can be written:

f .x/ D Trm1 .ax2
mC1/C Trn1.bx

d /I b D 0 or a D b2mC1 2 F
?
2m:

The values of d are such that:

1. d D .2m � 1/ 3 C 1 (the original condition 9u 2 F2n s:t: b D u5 if m � 2

[mod 4] has been shown not useful by Helleseth–Kholosha–Mesnager [40]),
2. d D .2m � 1/ 1

4
C 1 (m odd),

3. d D .2m � 1/ 1
6
C 1 (m even).

Classes 1 and 3 are not EA-equivalent to MM functions [5]. Class 2 is in
completed MM class. In classes 1 (for m 6� 2 [mod 4]), 2, and 3, we can up
to EA-equivalence fix b D 1.

Extension of the second class [45]:

Trm1 .x
2mC1/C Trn1

� 2
r�1�1X

iD1
t si
�
;
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where

– r > 1 and gcd.r;m/ D 1,
– si D .2m � 1/

�
i
2r
Œ mod 2m C 1��C 1, i 2 f1; : : : ; 2r�1 � 1g.

• Dillon’s and generalized Dillon’s functions [23, 28, 46]: let gcd.r; 2m C 1/ D 1

and a 2 F
�
2n , then

f .x/ D Trn1.axr.2
m�1//

is bent if and only if

K.a2
mC1/ D 0;

where K.u/ DPx2F2m Trm1
�
ux C 1

x

�
, u 2 F2m , is a Kloosterman sum.

This class has been generalized to functions:

Trn1

 
X

r2R
arx

r.2m�1/
!

;

Trn1

�
axr.2

m�1/ C bx


qC1
e �l

�
.2m�1/ C cx



qC1
e Cl

�
.2m�1/

�
C Tr`1



�x

2n�1
e

�
;

Trn1

 
X

i2D
ax.riCs/.2m�1/

!

C Tr`1


�x

2n�1
e

�
;

where `jn and ej2` � 1.

Two explicit classes are given in [37]:
P2m�1�1

iD1 Trn1
�
ˇxi.2

m�1/�, where

ˇ 2 F2m n F2 and
P2m�2�1

iD1 Trn1
�
ˇxi.2

m�1/�, where m is odd, ˇ 2 F
�
2m ,

Trm1


ˇ.2

m�4/�1
�
D 0.

• Mesnager’s functions [52,53]: let gcd.r; 2mC1/ D 1I m odd > 3I a 2 F
�
2n ; b 2

F
�
22

, then

f .x/ D Trn1.axr.2
m�1//C Tr21.bx

2n�1
3 /

is bent if and only if

K.a2
mC1/ D 4:

This class can be extended to the casem even, but no necessary and sufficient
condition is known in this case.

Generalizations exist by Mesnager [51] and Mesnager–Flori [55] to functions
using trace functions in other subfields, including the class of functions f .x/ D
Trn1.axr.2

m�1//C Tr41.bx
2n�1
5 /.
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Open Problem 3: Characterize the cases of bentness for Mesnager’s functions
when m is even.

• Mesnager’s functions, second class [50]: let m odd , a 2 F
�
2n; b 2 F

�
22

, then

f .x/ D Trn1.ax3.2
m�1//C Tr21.bx

2n�1
3 /

is bent if and only if m 6� 3 [mod 6] and



Trm1 .a
2mC1
3 / D 0 and K



a2

mC1
�
D

4
�

or



Trm1 .a
2mC1
3 / D 1 and a 62 F2m and K



a2

mC1
�
C C



a2

mC1
�
D 4

�
; where

C.u/ DPx2F2m Trm1
�
u.x3 C x/�.

• Finally, bent functions have been also obtained by Dillon and McGuire [30] as
the restrictions of functions on F2nC1 , with nC1 odd, to a hyperplane of this field:

these functions are the Kasami functions trn


x2

2k�2kC1
�

, and the hyperplane has

equation trn.x/ D 0. The restriction is bent under the condition that n C 1 D
3k ˙ 1.

Remark 1 These classes are small for each n. Moreover, many of them belong to
completed MM class, when viewed in multivariate representation, and their bentness
may then seem easily explained. However, finding bent functions in univariate trace
form is in general difficult and presents theoretical interest, since it gives more
insight on bent functions. Note also that the output to such functions is often faster
to compute thanks to their particular form.

Open Problem 4 : find more univariate classes. It has been checked that all
monomial bent functions Trn1.axi / are covered by the four first classes of bent
functions described above and by Dillon’s class for n � 20.

3.3 Known Infinite Classes of Bent Functions in Bivariate
Trace Form

• MM class can be viewed in bivariate form. Its elements are the functions
f .x; y/ D Trm1 .x �.y// C g.y/I x; y 2 F2m , where � is a permutation on
F2m .

• Dillon’s PSap class: f .x; y/ D g.xy2
m�2/ D g



x
y

�
, where g is any balanced

Boolean function on F2m . The dual equals g
�
y

x

�
.

This class is much larger than the classes above but much smaller than the MM
class. It contains, up to EA-equivalence, the generalized Dillon’s functions and
the Mesnager functions. The functions in this class are, when viewed in univariate
form, those bent functions whose restrictions to the cosets uF�2m are constant.
They are hyperbent: f .xs/ is bent for every s co-prime with 2n � 1 (see more in
[14, 64] on hyperbent functions).
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Open Problem 5 : Find hyperbent functions EA-inequivalent to PSap functions in
more than 4 variables (a sporadic example exists in 4 variables [14]).

PSap class is included in the more general Dillon’s PS class (see [28]), which has
itself been generalized to the GPS class (see [11]), which covers all bent functions
up to EA-equivalence [38].

• An isolated class [11]: f .x; y/ D Trm1 .x
2iC1 C y2iC1 C xy/, x; y 2 F2m , where

n is co-prime with 3 and i is co-prime with m.
• Functions related to Dillon’s H class and o-polynomials: In his thesis [28],

J. Dillon had introduced several classes of functions. Some of these classes
were merely constructions since the functions in them needed to satisfy some
conditions difficult to achieve. One of such classes was classH , whose elements
had linear restrictions to the lines through the origin of the F2m -vector space
F2m � F2m . J. Dillon had not found inside it functions which were not already in
previously defined classes. More than 35 years later, the condition for a function
to be in class H was connected with a classical notion in finite geometry.

Definition 1 Let m be any positive integer. A permutation polynomial G over
F2m is called an o-polynomial if, for every � 2 F2m , the function z 2 F2m 7!(

G.zC�/CG.�/
z if z ¤ 0

0 if z D 0 is a permutation.

Theorem 3 ([18]) Any Boolean function of the form

g.x; y/ D
�

Trm1
�
xH

�
y

x

��
if x ¤ 0

Trm1 .�y/ if x D 0 ;

that is, having linear restrictions to the lines through the origin of the two-
dimensional vector space F2m � F2m , is bent if and only if G.z/ WD H.z/ C �z
is an o-polynomial.

The class of such functions is denoted by H; its elements are EA-equivalent to
functions in class H .

The known o-polynomials provide then the following bent functions:

1. m odd:

– f .x; y/ D Trm1 .x
�5y6/;

– f .x; y/ D Trm1 .x
5
6 y

1
6 /;

2. m D 2k � 1:

– f .x; y/ D Trm1 .x
�3�.2kC1/y3�2kC4/;

– f .x; y/ D Trm1 .x
2m�3�2k�1C2y3�2k�1�2/;
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3. m D 4k � 1:

– f .x; y/ D Trm1 .x
2m�2k�22k y2kC22k /;

– f .x; y/ D Trm1 .x
23k�1�22kC2ky2m�23k�1C22k�2k /;

4. m D 4k C 1 :

– f .x; y/ D Trm1 .x
2m�22kC1�23kC1

y2
2kC1C23kC1

/;

– f .x; y/ D Trm1 .x
23kC1�22kC1C2ky2m�23kC1C22kC1�2k /;

5. m D 2k � 1 :

– f .x; y/ D Trm1 .x
1�2k y2k C x�.2kC1/y2kC2 C x�3�.2kC1/y3�2kC4/;

– f .x; y/ D Trm1

0

B
@
x

 
y
xC1C y2

k

x2
k

!
y2
k�1

x2
k�1

y2
k

x2
k C y2

x2
C1

1

C
A;

6. m odd :

– f .x; y/ D Trm1 .x
5
6 y

1
6 C x 3

6 y
3
6 C x 1

6 y
5
6 / D D5..y=x/

6/;

– f .x; y/ D Trm1

�
x
h
D1

5

�
y

x

�i6�
; D1

5
Dickson polynomial.

7. Four functions related to the two more o-polynomials:

– ı2.z4Cz/Cı2.1CıCı2/.z3Cz2/
z4Cı2z2C1 C z1=2, where Trm1 .1=ı/ D 1 and, if m � 2 [mod 4],

then ı 62 F4 ;

–
Trnm.v

r /.zC1/CTrnmŒ.vzCv2
m
/r �.zCTrnm.v/z

1=2C1/1�r
Trnm.v/

C z1=2, where m is even, r D
˙ 2m�1

3
, v 2 F22m , v2

mC1 D 1, and v ¤ 1.

Class 1 of Niho bent functions corresponds to the so-called Subiaco hyperovals,
related to the first of the two classes of o-polynomials recalled above in 7 [40]
Classes 2 and 3 correspond to Adelaide hyperovals [39] related to the second of
the two classes of o-polynomials recalled above in 7 .

Open Problem 6 : Clarify the relation between EA-equivalence of Niho bent
functions and equivalence of the corresponding o-polynomials/hyperovals.
Open Problem 7 : Find more univariate Niho bent functions having simple
expression, related to the two last classes of o-polynomials.

• Bent functions associated to AB functions:

Definition 2 The nonlinearity of a vectorial function F W Fn2 ! F
n
2 (resp. F2n !

F2n) equals:

nl.F / D minfnl.b � F /I b 2 F
n
2 n f0gg (resp. minfnl.Trn1.bF //I b 2 F

�
2ng):

F is almost bent (AB) if nl.F / D 2n�1 � 2 n�1
2 , which is the best possible value (see

more in [12]).
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Table 1 Known AB power functions xd on F2m

Functions Exponents d Conditions

Gold 2i C 1 gcd.i; m/D 1, 1 � i < m=2
Kasami 22i � 2i C 1 gcd.i; m/D 1, 2 � i < m=2
Welch 2k C 3 m D 2k C 1
Niho 2k C 2 k2 � 1, k even m D 2k C 1

2k C 2 3kC1
2 � 1, k odd

Theorem 4 ([20]) Let F be a function from F
m
2 to itself. Then F is AB if and only

if �F W .F2m/2 ! F2 defined by

�F .a; b/ D 1,
�
a ¤ 0
9x jF.x/C F.x C a/ D b

is bent. The dual function satisfies

f�F .a; b/ D 1,
�
b ¤ 0
b�b�F .a/ ¤ 0 :

The known AB power functions F.x/ D xd , x 2 F2m are given in Table 1.
The associated bent functions �F are studied in [4]. We give them below:

Gold : �F .a; b/ D Trm1
�

b

a2
i
C1

�
with 1

0
D 0;

Kasami, Welch, Niho : F.xC1/CF.x/ D q.x2sCx/ (q permutation determined
by Dobbertin, gcd.s;m/ D 1);

F.x C 1/C F.x/ D b has solutions if and only if Trm1 .q
�1.b// D 0.

Then: �F .a; b/ D
�

Trm1 .q
�1.b=ad//C 1 if a ¤ 0,

0 otherwise.

– Kasami: s D i , q.x/ D x2
i
C1

Pi 0

jD1 x
2j iC˛Trm1 .x/

C 1; where

i 0 � 1=i mod m; ˛ D
�
0 if i 0 is odd
1 otherwise

:

– Welch: s D k, q.x/ D x2kC1C1 C x3 C x C 1.
– Niho: s D k=2 if k is even and s D .3k C 1/=2 if k is odd, q.x/ D(

1

g.x2
s
�1/C1 C 1 if x … F2

1 otherwise
where

g.x/ D x22sC1C2sC1C1 C x22sC1C2sC1�1 C x22sC1C1 C x22sC1�1 C x
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The functions �F associated to Kasami, Welch, and Niho functions with m D
7; 9 are neither in the completed MM class nor in the completed PSap class.

The other known infinite classes of AB functions are quadratic; their associated �F
belong to the completed MM class.

Open Problem 8 : Find infinite classes of bent functions whose bivariate trace
representation (4) involves several values of o.i; j /.

3.4 Bent Functions in Hybrid Form and Kerdock Codes

A known infinite class of quadratic bent functions is defined over F2n�1 � F2 as

fu.x
0; xn/ D

n
2�1X

iD1
Trn�11 ..ux0/2iC1/C xnT rn�11 .ux0/; where u 2 F

�
2n�1 ; x

0 2 F2n�1 :

The difference (i.e., the sum) of two functions of such form corresponding to two
distinct values of u is bent as well.

It is easily shown that any code of length 2n (i.e., any set of Boolean functions)
equal to the union of at least two cosets of the first-order Reed-Muller code RM(1,n)
has minimum distance bounded above by 2n�1 � 2m�1, with equality if and only if
all the differences between the elements of two distinct cosets are bent functions.

The Kerdock code of length 2n (n � 4 even) equals the union of all the cosets
fu C RM.1; n/ where u ranges over F2n�1 . It is an optimal code (it was shown by
Delsarte that no code exists with better parameters, e.g., with smaller length, same
size, and same minimum distance, or larger size, same length, and same minimum
distance, or larger minimum distance, same length, and same size).

Open Problem 9 : Find a code with the same parameters as the Kerdock code
(for instance, find a set of 2n�1 � 1 bent functions in n variables whose pairwise
sums are also bent) and which is not equivalent to a subcode of the second-order
Reed-Muller code.

3.5 Determining the Duals of Bent Functions in Univariate
Form

Lemma 1 Let .u; v/ be an autodual basis of F2n over F2m . Let f be bent over F2n
and g.x; y/ D f .ux C vy/, x; y 2 F2m .

Then:

c�f .auC bv/ D b�g.a; b/:
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The dual of Niho class 2 of bent functions [31] has been determined in [18]. Let v
be such that Trnm.v/ D 1 and b4 D a2v2m�1. Then

Qf .a 1
2 x/ D

Trm1

0

@



v
2mC1
2 C 1C Trnm.v

2mx/
�
 

Trnm.vx/C v
2mC1
2

Trnm.v�1/

! 1
3

1

A

has algebraic degree mC3
2

(hence, Qf is EA-inequivalent to f ).
The dual of the Kholosha-Leander extension of class 2 has also been determined

[5].

Open Problem 10 : Determine the duals of Niho bent functions 1 and 3.

The duals of Mesnager’s functions have been determined [50, 52, 53].

4 Secondary Constructions of Bent Functions

We call secondary a construction of bent functions from already known bent
functions, in the same numbers of variables or not (while primary constructions,
like Maiorana-McFarland construction, build bent functions from scratch).

4.1 A Maiorana-McFarland-Like Construction

Let r; s be two positive integers such that n D rCs is even and r < s. Let � W Fs2 7!
F
r
2 be such that ��1.a/ is an .s � r/-dimensional affine subspace of Fs2, for every
a 2 F

r
2, and let g be a Boolean function on F

s
2 whose restriction to ��1.a/ is bent,

for every a 2 F
r
2.

Then f .x; y/ D x � �.y/C g.y/I x 2 F
r
2; y 2 F

s
2; is bent on F

n
2 .

4.2 Adding the Indicator of a Flat

The condition for preserving bentness when adding the indicator of an affine
subspace of Fn2 is given in [7] and recalled in [11].
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4.3 A Secondary Construction Which Does Not Increase
the Number of Variables

Let f1, f2, and f3 be three Boolean functions on F
n
2 . Let s1 D f1 C f2 C f3 and

s2 D f1f2 C f1f3 C f2f3. Then

c�f1 C c�f2 C c�f3 D c�s1 C 2c�s2 : (5)

If f1, f2, and f3 are bent, then:

– if s1 is bent and if Qs1 D Qf1C Qf2C Qf3, then s2 is bent, and Qs2 D Qf1 Qf2C Qf1 Qf3C Qf2 Qf3;
– if cs2�.a/ is divisible by 2m for every a (e.g., if s2 is bent), then s1 is bent [10].

Open Problem 11 : Deduce significantly new and large classes of bent functions
from this construction (classes are found in [10], but they are a little peculiar).

4.4 Rothaus’ Construction

Let f1, f2, f3 be bent functions on F
n
2 such that f1 C f2 C f3 is bent as well, then

the function on F
nC2
2 :

f .x; xnC1; xnC2/ D
f1.x/f2.x/C f1.x/f3.x/C f2.x/f3.x/C xnC1xnC2
CŒf1.x/C f2.x/�xnC1 C Œf1.x/C f3.x/�xnC2

is bent [59].

4.4.1 Designing the Initial Functions in the Rothaus Construction

Definition 3 A permutation � on F
m
2 is called an orthomorphic permutation if the

function � C Id , where Id.x/ D x, is also a permutation.

Theorem 5 ([22]) Let � be a permutation on F
m
2 . Let � and  be orthomorphic

permutations on F
m
2 . Let g1; g2; g3 be three m-variable Boolean functions. Let

�1 D �I �2 D � ı �1I �3 D  ı .�1 C �2/
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then the four following MM functions are bent:
h1.x; y/ D x � �1.y/C g1.y/;
h2.x; y/ D x � �2.y/C g2.y/;
h3.x; y/ D x � �3.y/C g3.y/;
h1 C h2 C h3:

:

Open Problem 12 : Find more general constructions of initial functions for the
Rothaus construction.

4.5 The Indirect Sum and Its Generalizations

A very general secondary construction of bent functions with initial conditions was
given in [8]:

Theorem 6 Let f be a Boolean function on F
rCs
2 D F

r
2 � F

s
2, where r , s are even,

such that, for any y 2 F
s
2, the function on F

r
2:

fy W x 7! f .x; y/

is bent. Then f is bent if and only if for any element u of Fr2, the function

#u W y 7! efy.u/

is bent on F
s
2, and the dual of f is the function Qf .u; v/ D e#u.v/.

The Rothaus construction, which uses four bent functions whose sum is null, is a
particular case of this construction, corresponding to r D 2 (indeed, any function
.xnC1; xnC2/ 7! a0 C xnC1xnC2 C a1xnC1 C a2xnC2 is bent and has dual a0 C
xnC1xnC2 C a2xnC1 C a1xnC2 C a1a2). Another particular case, called the indirect
sum, uses four bent functions as well but is built differently and does not need any
initial condition:

Corollary 1 ([9]) Let f1; f2 be bent on F
r
2 (r even) and g1; g2 be bent on F

s
2 (s

even). Define

h.x; y/ D f1.x/C g1.y/C .f1 C f2/.x/ .g1 C g2/.y/I x 2 F
r
2; y 2 F

s
2:

Then h is bent and

Qh.x; y/ D Qf1.x/C Qg1.y/C . Qf1 C Qf2/.x/ . Qg1 C Qg2/.y/I x 2 F
r
2; y 2 F

s
2:

Indeed, any function x 7! f1.x/Ca0Ca1.f1Cf2/.x/ is bent and has dual Qf1.x/C
a0 C a1. Qf1 C Qf2/.x/. The name of “indirect sum” comes from the name of the
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well-known direct sum, which corresponds simply to h.x; y/ D f1.x/Cg1.y/, and
that the indirect sum generalizes.

A generalization of the indirect sum needing initial conditions is given in [22]:

Theorem 7 Let f1; f2, and f3 be bent on F
r
2. Let g1; g2, and g3 be bent on F

s
2.

Let �1 D f1 C f2 C f3 and �2 D g1 C g2 C g3. If �1 and �2 are bent and if
e�1 D ef1 C ef2 C ef3, then f .x; y/ D

f1.x/C g1.y/C .f1 C f2/.x/.g1 C g2/.y/C .f2 C f3/.x/.g2 C g3/.y/

is a bent function in r C s variables.

The indirect sum is a particular case of this construction: it corresponds to the
case f2 D f3 and/or g2 D g3. The Rothaus construction is also a particular case.

Case of application: Let p.x/ and �.x/ be r-variable bent functions such that
there exists a 2 F

r
2 nonzero such that Dap D Da� . We can take f1.x/ D

p.x/; f2.x/ D p.x C a/; f3.x/ D �.x/.
Another generalization of the indirect sum is also given in [22]:

Theorem 8 Let f0; f1, f2, and f3 be bent functions on F
r
2 and g0; g1, g2, and g3 be

bent functions on F
s
2.

Let �j D fj Cf.jC1/mod 4Cf.jC2/mod 4 and "j D gj Cg.jC1/mod 4Cg.jC2/mod 4,
where j D 0; 1; 2; 3. If �j and "j are bent functions and if for every j D 0; 1; 2; 3,
we have e�j D efj C Qf.jC1/mod 4 C Qf.jC2/mod 4, then f .x; y/ D

f0.x/C g0.y/C .f0 C f1/.x/.g0 C g1/.y/C .f1 C f2/.x/.g1 C g2/.y/C
.f2 C f3/.x/.g2 C g3/.y/ is bent.

Case of application: under the same conditions as in the case of application of
Theorem 7 (let p.x/ and �.x/ be r-variable bent functions such that there exists a
nonzero vector a 2 F

r
2 such thatDap D Da�), we can take f0.x/ D p.x/; f1.x/ D

p.x C a/; f2.x/ D �.x/ and f3.x/ D �.x C a/.
Open Problem 13 : Generalize the indirect sum without initial condition.
Open Problem 14 : Find more general cases of application of Theorems 7 and 8;
deduce new classes.

4.5.1 A Modification of the Indirect Sum

A modified indirect sum is introduced in [66]:

Theorem 9 Let n and m be two positive even numbers and � 2 f1; 2; : : : ; ng,  2
f1; 2; : : : ; mg. For x D .x1; : : : ; xn/ 2 F

n
2 and y D .y1; : : : ; ym/ 2 F

m
2 , let x0 D

.x1; : : : ; x��1; x�C1; : : : ; xn/ 2 F
n�1
2 and y0 D .y1; : : : ; y�1; yC1; : : : ; ym/ 2

F
m�1
2 . Let f be an n-variable bent function and g an m-variable bent function. We
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consider the restrictions of f and g: f0.x0/ D f .x1; : : : ; x��1; 0; x�C1; : : : ; xn/,
f1.x

0/ D f .x1; : : : ; x��1; 1; x�C1; : : : ; xn/, g0.y0/Dg.y1; : : : ; y�1; 0; yC1; : : : ;
ym/, g1.y0/ D g.y1; : : : ; y�1; 1; yC1; : : : ; ym/, and we define

h.x0; y0/ D f0.x/˚ g0.y/˚ .f0 ˚ f1/.x/ .g0 ˚ g1/.y/:

Then h is a bent function in n C m � 2 variables. Further, the dual of h is
obtained from the functions f0.x0/ D Qf .x1; : : : ; x��1; 0; x�C1; : : : ; xn/, f1.x0/ D
Qf .x1; : : : ; x��1; 1; x�C1; : : : ; xn/, g0.y0/ D Qg.y1; : : : ; y�1; 0; yC1; : : : ; ym/ and
g1.y

0/ D Qg.y1; : : : ; y�1; 1; yC1; : : : ; ym/, by the same formula as h is obtained
from f0; f1; g0, and g1.

4.5.2 A New Secondary Construction

We have seen just before Theorem 2 that, given two Boolean functions f and
f 0, we have

P
x;y2Fn2 .�1/f .x/Cf

0.y/Cx�y D P
x2Fn2 .�1/f .x/b�f 0.x/. If f 0 is bent,

then we deduce
P

x;y2Fn2 .�1/f .x/Cf
0.y/Cx�y D 2m

P
x2Fn2 .�1/f .x/C

ef 0.x/. This

implies that, for every a; b 2 F
n
2 , we have

P
x;y2Fn2 .�1/f .x/Cf

0.y/Cx�yCa�xCb�y D
P

x;y2Fn2 .�1/f .x/Ca�xCf
0.y/C.xCb/�y D P

x;y2Fn2 .�1/f .xCb/Ca�.xCb/Cf
0.y/Cx�y

equals 2m.�1/a�bPx2Fn2 .�1/f .xCb/Ca�xC
ef 0.x/. Denoting ef 0 by g, we deduce:

Proposition 1 Let f be any n-variable Boolean function and g be any n-variable
bent function. Then the 2n-variable function f .x/C Qg.y/Cx �y is bent if and only
if f .xC b/C g.x/ is bent for every b (or equivalently f .x/C g.xC b/ is bent for
every b).

Note that the bent function f .x; y/ D Trm1 .x
2iC1 C y2

iC1 C xy/, x; y 2 F2m

(recalled in Sect. 3.3), where n is co-prime with 3 and i is co-prime with m, looks
like the function of Proposition 1, but its bentness is not a case of application of
Proposition 1 since Trm1 .x

2iC1/ is never bent (its linear kernel containing always 1).
If f is quadratic, then the condition “f .x C b/ C g.x/ is bent for every b” in

Proposition 1 simplifies in “f .x/C g.x/ is bent” since f .x/C f .x C b/ is affine.
We have then, denoting f C g by h:

Corollary 2 If two n-variable bent functions g.x/ and h.x/ differ by a quadratic
function, then the 2n-variable function .g C h/.x/C Qg.y/C x � y is bent.

Examples of cases of application are:

– Any pairs of quadratic bent functions; for instance, pairs of functions involved in
Kerdock codes (see Sect. 3.4);

– Maiorana-McFarland functions: let � and � 0 be permutations on F
m
2 differing

by an affine function (for instance, let � be an orthomorphic permutation and
� 0 D �CId ) and let u; v be two Boolean functions on Fm2 differing by a quadratic
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function, then we can take g.x1; x2/ D x1 � �.x2/ C u.x2/ and h.x1; x2/ D
x1 � � 0.x2/C v.x2/; x1; x2 2 F

m
2 ; these functions can be nonquadratic.

Note that Proposition 1 could have also been proved as a corollary of Theorem 6.
In fact, Theorem 6 (or more precisely its version obtained by exchanging the roles
of x and y) allows proving a slightly more general result:

Theorem 10 Let f be any n-variable Boolean function, let g be any n-variable
bent function and let � be any mapping from F

n
2 to itself. Then the 2n-variable

function f .x/C Qg.y/C �.x/ � y is bent if and only if f .x/C g.�.x/C b/ is bent
for every b.

Indeed, for every fixed x 2 F
n
2 , function y 7! f .x/C Qg.y/C �.x/ � y is bent and

the value of the dual of this function at u 2 F
n
2 equals f .x/C g.y C �.x//.

Note that if g is quadratic and � is an affine permutation, then f .x/Cg.�.x/Cb/
is bent if and only if f .x/Cg.�.x// is bent. Let then h.x/ be another bent function;
then taking f .x/ D g.�.x//C h.x/, the condition in Theorem 10 is satisfied. We
have then:

Corollary 3 Let g be any quadratic bent function and � any affine permutation.
Let h be any bent function; then the 2n-variable function g.�.x//Ch.x/C Qg.y/C
�.x/ � y is bent.

This gives one more case of application of Corollary 2 since the two bent functions
g.�.x//C h.x/C Qg.y/C �.x/ � y and h.x/C Qg.y/ differ by a quadratic function.

Another case of application of Theorem 10 is when, for every b 2 F
n
2 , the set

f�.x/C bI x 2 F
n
2g is either included in the support of g or disjoint from it, and f

is bent.

Corollary 4 Let f; g be two n-variable bent Boolean functions and let � be any
mapping from F

n
2 to itself such that Im.�/ D f�.x/I x 2 F

n
2g is either included

in or disjoint from any translate of supp.g/. Then the 2n-variable function f .x/C
Qg.y/C �.x/ � y is bent.

Denoting, for every E;F � F
n
2 , the set fx C x0I x 2 E; x0 2 F g by E C F ,

the condition on Im.�/ is equivalent to .Im.�/ C Im.�// \ .supp.g/ C .Fn2 n
supp.g/// D ;.

The construction of Theorem 10 can be turned into a construction of bent
functions from arbitrary functions, which generalizes the Maiorana-McFarland
construction. Indeed, given two n-variable Boolean functions f and g and a
mapping � from F

n
2 to itself, let us define

h.x; y/ D f .x/C g.y/C �.x/ � y: (6)

This 2n-variable Boolean function has Walsh transform:

b�h.a; b/ D
X

x;y2Fn2
.�1/f .x/Cg.y/C�.x/�yCa�xCb�y D

X

x2Fn2
.�1/f .x/Ca�x b�g.�.x/C b/:
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If g is an affine function, then without loss of generality, up to EA-equivalence, we
can take g.y/ D 0; the support of b�g is then f0g, the value of b�g at 0 equals 2n,
and h is bent if and only if � is a permutation. This is the Maiorana-McFarland
construction.

If g has Walsh support of a pair, then without loss of generality, up to EA-
equivalence, we can take g.y/ D y1y2, and we have then supp.b�g/ D fx 2
F
n
2 j x3 D : : : D xn D 0g and b�g.x1; x2; 0; : : : ; 0/ D 2n�1.�1/x1x2 ; then h is bent if

and only if, for every a; b 2 F
n
2 , we have, denoting by �i .x/ the i th coordinate of

�.x/:

X

x2Fn2 j�3.x/Db3;:::;�n.x/Dbn
.�1/f .x/Ca�xC.�1.x/Cb1/.�2.x/Cb2/ D ˙2:

For instance, if:

• every pre-image by the mapping x 7! .�3.x/; : : : ; �n.x// is a two-dimensional
affine subspace of Fn2 ,

• �1.x/ and �2.x/ are constant on every such pre-image,
• and the restriction of f to such pre-image has odd Hamming weight,

then h is bent. But such construction is close to that of Sect. 4.1 (in which y
would be replaced by .x; y1; y2/, x by .y3; : : : ; yn/, g.y/ by f .x/ C y1y2, �.y/
by .�3.x/; : : : ; �n.x// and with 2n in the place of n and r D n C 2). The only
difference is with the terms �1.x/y1 C �2.x/y2 which are present here and are not
in the construction of Sect. 4.1.

Open Problem 15 : Find secondary constructions based on new ideas, if possible
without initial conditions.

5 Rotation Symmetric (RS) Bent Functions and Idempotent
Bent Functions

Rotation symmetric (RS) Boolean functions, which have been originally introduced
by Filiol and Fontaine in [32, 33] under the name of idempotent functions and soon
after studied by Pieprzyk and Qu [58] under their final name, have received some
attention since their introduction. RS structure allowed obtaining Boolean functions
in odd numbers of variables beating the best known nonlinearities [41].

RS functions also have the interest of needing less space to be stored and of
allowing faster computation of the Walsh transform.

There have been recent developments on RS and idempotent bent functions.
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5.1 RS Bent Functions

A Boolean function f is RS if it is invariant under the cyclic shift:

f .xn�1; x0; x1; : : : ; xn�2/ D f .x0; x1; : : : ; xn�1/:

In other words, the support of an RS function is a cyclic (but not necessarily linear)
code.See more on RS functions in [27, 34, 61, 62]

The dual of an RS bent function is an RS bent function.
The next lemma on quadratic RS functions is more or less known, but, as far as

we know, it has never been published.

Lemma 2 Let f .x/ D P
0�i<j�n�1 ai;j xixj C `.x/ be any quadratic Boolean

function, where ai;j 2 F2 and ` is affine. Let M be the associated matrix (see [49]),
whose term located at row i and column j equals ai;j if i < j , aj;i if i > j and 0
if i D j . Then f is RS if and only if M is circulant (i.e., each row of M is a cyclic
shift of the previous row) and ` is RS.

Proof If f is RS, then ` is RS and aiCk;jCk D ai;j for every i < j and every k,
where the indices are taken in Z=nZ. This equality applied for 1 � k � n � j � 1
shows that the part ofM located at the right of the diagonal is circulant; applied for
n� j � k � n� i � 1, it shows that ai 0;j 0 D ai 0Ck;j 0Ck for every i 0 > j 0 and every
k and the part ofM located at the left of the diagonal is circulant. And we have also
ai;n�1 D aiC1;0. Hence,M is circulant. The converse is similar. �

5.1.1 Infinite Classes of RS Bent Functions

The situation of RS bent functions is very similar to that of bent functions in trace
forms: many of the known classes belong to completed MM class, and their bentness
may then seem easily explained. However, finding RS bent functions is difficult and
has theoretical and practical interest.

• Quadratic RS bent functions have been characterized in [35] by the fact that some
related polynomial P.X/ over F2 such that XnP

�
1
X

� D P.X/ is co-prime with
Xn C 1: given c1; : : : ; cm in F2, the function:

m�1X

iD1
ci

0

@
n�1X

jD0
xj xiCj

1

AC cm
0

@
m�1X

jD0
xj xmCj

1

A

is bent if and only if the polynomial
Pm�1

iD1 ci .Xi CXn�i /C cmXm is co-prime
withXnC1. This condition is equivalent to the fact that the linearized polynomial
L.X/ DPm�1

iD1 ci .X2i C X2n�i
/C cmX2m , which we can write

Pn�1
iD0 ciX2i by

setting cn�i D ci , is a permutation polynomial (a necessary condition is that
L.1/ ¤ 0, i.e., cm D 1).
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– An example of such polynomial is with ci D 0 for i ¤ m. Another example is
with ci D 1 for i D 1; : : : ; n�1 since L.X/ equals thenXCTrn1.X/ which is
a permutation polynomial since n is even (equivalently,

Pn�1
iD1 Xi is co-prime

with Xn C 1). This provides the two infinite classes

m�1X

jD0
xj xmCj

and

m�1X

iD1

0

@
n�1X

jD0
xj xiCj

1

AC
0

@
m�1X

jD0
xj xmCj

1

A

of quadratic RS bent functions.
– More examples can be found. For instance, let k be such that 2k � 2 divides n

and 2k � 1 is co-prime with n. Then

�
X2

k
�1C1

XC1

� n

2k�2 CXn C 1 has the form

Pm�1
iD1 ci .Xi C Xn�i / C cmX

m (indeed,

�
X2

k
�1C1

XC1

� n

2k�2

is self-reciprocal,

has degree n, and is normalized) and is co-prime with Xn C 1 (indeed, the

zeroes of

�
X2

k
�1C1

XC1

� n

2k�2

in the algebraic closure of F2 are the elements of

F2k n F2, and for any � 2 F2k n F2, we have �n C 1 ¤ 0, since � 7! �n is a
permutation of F�

2k
). Taking for example k D 2, we have

�
X2 CX C 1�m C

Xn C 1 D
X

0�u;v;w�m
uCvCwDm;2uCv62f0;ng

mŠ

uŠvŠwŠ
X2uCv, and for n not divisible by 3, the

following function is RS bent:

X

0�u;v;w�m
uCvCwDm;2uCv2f1;:::;m�1g

mŠ

uŠvŠwŠ

0

@
n�1X

jD0
xj x2uCvCj

1

AC
0

@
m�1X

jD0
xj xmCj

1

A ;

where the coefficients are taken modulo 2.
– If n is a power of 2, then according to [60, Proposition 3.1], the func-

tion
Pm�1

iD1 ci

Pn�1

jD0 xj xiCj
�
C cm


Pm�1
jD0 xj xmCj

�
is bent if and only if

Pn�1
iD0 ci D 1, that is, cm D 1. Note that this can also be proved slightly

differently: given some normal element ˛ of F2n (i.e., some element of F2n
such that .˛; ˛2; : : : ; ˛2

n�1
/ is a normal basis, i.e., ˛; ˛2; : : : ; ˛2

n�1
are linearly

independent), the condition on L is equivalent to the fact that
Pn�1

iD0 ci˛2
i

is
also a normal element (see more in [57]); according to [56, Corollary 5.2.9],
an element ˛ of F2n is normal if and only if Trn1.˛/ D 1 (and ˛ 62 F2, but this
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is implied by Trn1.˛/ D 1 since n is even). Hence,
Pn�1

iD0 ci˛2
i

is normal if and
only if Trn1.

Pn�1
iD0 ci˛2

i
/ D 1, that is, cm D 1. See more at Sect. 5.2.1.

Open Problem 16 : Find more infinite classes of quadratic RS bent functions,
valid for every even n.

• Two infinite classes of cubic RS bent functions belonging to the completed MM
class were found recently:

–
n�1X

iD0
.xi xtCixmCi C xixtCi /C

m�1X

iD0
xi xmCi ; where m= gcd.m; t/ is odd [35];

–
n�1X

iD0
xi xiCrxiC2r C

2r�1X

iD0
xixiC2rxiC4r C

m�1X

iD0
xixiCm; where m D 3r [36].

Open Problem 17 : Find more classes of cubic RS bent functions.

5.2 Univariate RS Functions (Idempotents), Bivariate
Expressions

Definition 4 Let f .x/ be a Boolean function on F2n . We say that f is an
idempotent if

f .x/ D f .x2/; for all x 2 F2n :

A function f .x/ DP2n�1
jD0 aj xj or f .x/ DP

j2�n Tro.j /1 .aj x
j /C a2m�1x2m�1 is

an idempotent if and only if every coefficient aj belongs to F2.
For any Boolean function f .x/ overF2n and every normal basis .˛; ˛2; : : : ; ˛2

n�1
/

of F2n , the function

.x0; : : : ; xn�1/ 7! f

 
n�1X

iD0
xi˛

2i

!

is RS if and only if f is an idempotent.

Remark 2 This property leads to a notion of equivalence between RS functions:
if two RS functions are linked as above to the same idempotent, through the
choices of two normal bases, these two RS functions can be considered as
equivalent (note that this is a subcase of linear equivalence). More precisely, given a
normal element ˛, another normal element can be written ˛0 D P

j2Z=nZ cj ˛2
j

where x 7! P
j2Z=nZ cj x2

j
is a permutation (if n is a power of 2, then this

condition is equivalent to
P

j2Z=nZ cj D 1); the two functions g.x0; : : : ; xn�1/ D
f

Pn�1

iD0 xi˛2
i
�

and g0.x0; : : : ; xn�1/ D f

Pn�1

iD0 xi˛0
2i
�

are related by the
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relation g0.: : : ; xj ; : : :/ D g.: : : ;
P

i2Z=nZ xi cj�i ; : : :/. In other words, g0 is
deduced from g by multiplying the input by a nonsingular circulant matrix (so
we can call circulant-equivalence this equivalence). We can check that the rotation
symmetry of g is equivalent to that of g0 since the shift on the input of g corresponds
to the inverse shift on the input of g0 and vice versa.

The related equivalence classes can be large: if, for instance, n is a power of
2, then we have recalled above that any element ˛ 2 F2n is normal if and only
if Trn1.˛/ D 1; there are then 2n�1 normal bases, and an equivalence class can

potentially have a size near 2n�1

n
.

Linear equivalence between RS functions is more general than the equivalence
above. Even equivalence under permutation of the variables is. For instance, the 8-
variable RS functions

P7
iD0 xixiC1xiC2xiC5 and

P7
iD0 xi xiC1xiC3xiC4 are equiva-

lent under permutation and not under circulant-equivalence; see [26, Remark 1.10].
Refer more generally to [26] and the references therein for linear and affine
equivalences of RS functions.

Remark 3 Knowing an infinite class of idempotent bent functions is not equivalent
to knowing an infinite class of RS bent functions, since there is no expression valid

for an infinite number of values of n of the decomposition of

Pn�1

iD0 xi˛2
i
�j

over

the normal basis .˛; ˛2; : : : ; ˛2
n�1
/, except for j null or equal to a power of 2.

5.2.1 Known Bent Idempotents

• The function f 0.z/ D Trm1 .z
2mC1/ and the function f 0.z/ D Trm1 .z

2mC1/ C
Pm�1

iD1 Trn1.z
2iC1/ are bent quadratic idempotents. More generally, given

c1; : : : ; cm in F2, the function equal to cmT rm1 .x
2mC1/ C Pm�1

iD1 ciT rn1 .x2
iC1/

is bent if and only if gcd.
Pm�1

iD1 ci .Xi C Xn�i / C cmXm;Xn C 1/ D 1 [48].
This condition is the same as that obtained for quadratic RS bent functions in
Sect. 5.1.1. The two first classes described in that subsection correspond to the
classes of bent idempotents given above. The third example in Sect. 5.1.1 gives
a third general example here. For instance, for n not divisible by 3, we have the
following bent idempotent:

Trm1 .z
2mC1/C

X

0�u;v;w�m
uCvCwDm;2uCv2f1;:::;m�1g

mŠ

uŠvŠwŠ
Trn1.z

22uCvC1/;

where the coefficients are taken modulo 2. Of course, what is written at
Sect. 5.1.1 when n is a power of 2 is valid here. Note that more results, valid
for more general values of n, can be found in [65].

• The Niho bent functions [31] recalled at Sect. 3.2

Trm1 .az2
mC1/C Trn1.bzd /
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are bent idempotents when the coefficients a and b equal 1. The extension of the
second class by Leander et al. [45] gives also a bent idempotent.

• The generalized Dillon and Mesnager functions are potentially bent idempotents,
under conditions involving Kloosterman sums:

– For every m such that Km.1/ is null, g1.x/ D Trn1.x
r.2m�1// is bent when

gcd.r; 2m C 1/ D 1.

– For every m odd such that Km.1/ D 4, g2.x/ D Trn1.x
r.2m�1//C Tr21.x

2n�1
3 /

is bent when gcd.r; 2m C 1/ D 1.

But the conditionKm.1/ D 0 never happens as shown in [47, Theorem 2.2], and
it can be checked by computer that the condition Km.1/ D 4 never happens as
well for 5 � m � 20:

• For n D 2m D 6r , r � 1, Trn1.z
1C2rC22r / C Tr2r1 .z

1C22rC24r / C Trm1 .z
1C2t / D

Trr1..zC z2
3r
/1C2rC22r /C Trm1 .z

1C2t / is a bent idempotent [36].

5.3 Secondary Constructions of Rotation Symmetric
and Idempotent Bent Functions

We precise the relationship between RS functions and the bivariate representation of
idempotent functions; a proper relationship is between weak RS functions (invariant
under circular permutation of indices by two positions) and weak idempotents (a
natural notion that we introduce). This gives a way of constructing a new RS n-
variable function where n � 2 [mod 4], from two known semi-bent RS functions
in m variables, by using the indirect sum (the definition of semi-bent functions is
recalled below). It provides an infinite class of RS bent functions of algebraic degree
4 and an infinite class of bent idempotents of algebraic degree 4 as well. This section
and the next one are a recall and an extension of results from [15].

5.3.1 Bivariate Representation of Idempotents

Most bent functions being known in bivariate form, it is useful to characterize the
bivariate representation of idempotent and RS functions. The situation is easier
whenm is odd (which is the case of most known bent functions).

Given w 2 F22 n F2, we have w2 D w C 1, w4 D w, and we can take .w;w2/
for basis of F2n over F2m , since we have w2

w D w 62 F2m for m odd. Any element of
F2n can then be written in the form xwC yw2, where x; y 2 F2m . Note that, given
a normal basis .˛; : : : ; ˛2

m�1
/ of F2m , a natural normal basis of F2n over F2 is

.˛w; .˛w/2; .˛w/4; .˛w/8; : : : ; .˛w/2
m�1

; .˛w/2
m

; .˛w/2
mC1

; : : : ; .˛w/2
n�1

/ D

.˛w; ˛2w2; ˛4w; ˛8w2; : : : ; ˛2
m�1

w; ˛w2; ˛2w; : : : ; ˛2
m�1

w2/: (7)
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Since .xw C yw2/2 D y2w C x2w2, the shift z 7! z2 corresponds to the mapping
.x; y/ 7! .y2; x2/. Given a function f .x; y/ in bivariate form, the related Boolean
function over Fn2 obtained by decomposing the input xwC yw2 over the basis (7) is
then RS if and only if f .x; y/ D f .y2; x2/. Note that applying this identitym times
gives f .x; y/ D f .y; x/ and applying itmC1 times gives f .x; y/ D f .x2; y2/; the
double condition “f .x; y/ D f .y; x/ and f .x; y/ D f .x2; y2/” is then necessary
and is also sufficient.

Open Problem 18 : Handle the case m even.

More generally, let m and k be two co-prime integers and n D mk. Let ˛ be a
normal element of F2m over F2 and w a normal element of F2k over F2. We know
that ˛w is a normal element of F2n over F2 (see [56, Proposition 5.2.3]. We have
then the normal bases .˛; : : : ; ˛2

m�1
/ of F2m over F2 (which is in the same time a

basis of F2n over F2k ), .w; : : : ;w2
k�1
/ of F2k over F2 (also a basis of F2n over F2m),

and

.˛w; ˛2w2; : : : ; ˛2
i .mod m/

w2
i .mod k/

; : : : ; ˛2
n�1 .mod m/

w2
n�1 .mod k/

/

of F2n over F2. Any element of F2n can be written in the form
Pk�1

iD0 xiw2
i
, where

xi 2 F2m . Since .
Pk�1

iD0 xiw2
i
/2 D Pk�1

iD0 x2i w2
iC1 .mod k/

, the univariate shift z 7! z2

corresponds to the mapping

.x0; : : : ; xk�1/ 7! k.x
2
0 ; : : : ; x

2
k�1/;

where k.x0; : : : ; xk�1/ D .xk�1; x0; : : : ; xk�2/ is the cyclic shift over Fk2m .
Given a Boolean function f .x0; : : : ; xk�1/ in k-variate form (where xi 2 F2m),

the related Boolean function over Fn2 obtained by decomposing
Pk�1

iD0 xiw2
i

over (7)
is then RS if and only if

f .x0; : : : ; xk�1/ D f .k.x20 ; : : : ; x2k�1//:

Proposition 2 Let m and k be two co-prime integers and n D mk. Let ˛
be a normal element of F2m over F2 and w a normal element of F2k over
F2. Then the n-variable Boolean idempotents are those polynomials f .z/
representing Boolean functions over F2n whose associate k-variate expressions,
defined as f .x0; : : : ; xk�1/ D f .

Pk�1
iD0 xiw2

i
/, satisfy f .x0; : : : ; xk�1/ D

f .k.x
2
0 ; : : : ; x

2
k�1//. In particular, if k D 2, the n-variable Boolean idempotents

are those polynomials f .z/ representing Boolean functions over F2n whose
associate bivariate expressions f .x; y/ D f .wx C w2y/ satisfy f .x; y/ D
f .y2; x2/.

Applying the identity m times gives f .x0; : : : ; xk�1/ D f .mk .x0; : : : ; xk�1//,
and applying it k times gives f .x0; : : : ; xk�1/ D f .x2

k

0 ; : : : ; x
2k

k�1/. Since m
and k are co-prime, there exist integers u and v such that um C vk D 1.
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Then applying u times the identity f .x0; : : : ; xk�1/ D f .mk .x0; : : : ; xk�1//
and v times f .x0; : : : ; xk�1/ D f .x2

k

0 ; : : : ; x
2k

k�1/ gives f .x0; : : : ; xk�1/ D
f .k.x0; : : : ; xk�1// and f .x0; : : : ; xk�1/ D f .x20 ; : : : ; x

2
k�1/. The double

condition “f .x0; : : : ; xk�1/ D f .k.x0; : : : ; xk�1// and f .x0; : : : ; xk�1/ D
f .x20 ; : : : ; x

2
k�1/” is then necessary, and it is also clearly sufficient.

Definition 5 Under the hypotheses of Proposition 2, we call any polynomial f .z/
whose k-variate expression satisfies f .x0; : : : ; xk�1/ D f .x20 ; : : : ; x

2
k�1/ a k-weak

idempotent.

Note that the condition f .x0; : : : ; xk�1/ D f .x20 ; : : : ; x
2
k�1/ is equivalent to

f .x0; : : : ; xk�1/ D f .x2k0 ; : : : ; x2kk�1/ since m and k are co-prime.

Proposition 3 The set of n-variable idempotent functions is included in that of
k-weak idempotents. An idempotent is a k-weak-idempotent invariant under the
shift k .

The corresponding definition at the bit level is obtained by decomposing the
univariate representation over the normal basis (7) and the k-variate representation
over the basis .˛; : : : ; ˛2

m�1
/:

Definition 6 Let m and k be two co-prime integers and n D mk. A Boolean
function

f .x0;0; y1;1; : : : ; xn�1;n�1/

(where each first index is reduced modulo k and each second index is reduced
modulo m) over F

n
2 is k-weak RS if it is invariant under the cyclic shift by k

positions.

For n D 2m, m odd, we can see that a function f .x0; y1; x2; y3; : : : ; xn�2; yn�1/
(where each index is reduced modulo m; we skip the first index) over Fn2 is 2-weak

RS if it is invariant under the transformation

�
xj 7! xjC1
yj 7! yjC1

.

Such 2-weak RS function is RS if and only if in bivariate form, it is invariant
under .x; y/ 7! .y; x/.

Proposition 4 A Boolean function f .x0;0; y1;1; : : : ; xn�1;n�1/ is RS if and only if it
is m-weak RS and k-weak RS.

We shall call the 2-weak idempotents (resp. the 2-weak RS functions) simply weak
idempotents (resp. weak RS functions). An example of a weak RS function is the
direct sum f .x/C g.y/ where f and g are RS m-variable functions; such function
is RS when f D g.

Remark 4 All the functions derived from o-polynomials with coefficients equal to
1 are bent weak idempotents.
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5.3.2 A Secondary Construction of RS and Idempotent Functions

We have seen that the direct sum allows constructing, for n D 2m, an n-
variable weak idempotent from two m-variable idempotents. The indirect sum
allows constructing, for n D 2m, an n-variable weak idempotent h from four m-
variable idempotents f1; f2; g1; g2:

h.x; y/ D f1.x/C g1.y/C .f1 C f2/.x/ .g1 C g2/.y/I x; y 2 F2m:

If f1 D g1 and f2 D g2, then we obtain the idempotent h.x; y/ D f1.x/Cf1.y/C
.f1 C f2/.x/ .f1 C f2/.y/. This gives also a secondary construction of an RS
n-variable function from two RS m-variable functions (n D 2m, m odd). This
function is bent if the two functions are semi-bent.

Definition 7 For odd m, a Boolean function on F
m
2 is called semi-bent if its Walsh

transform takes values 0 and ˙2mC1
2 only. See more on semi-bent functions in [19,

25, 42, 54].

Proposition 5 ([15]) Let f1 and f2 be two m-variable RS semi-bent functions, m
odd, and let n D 2m. If the Walsh supports of f1 and f2 are complementary, then
h.x0; y1; x2; y3; : : : ; xn�2; yn�1/ D f1.x0; : : : ; xm�1/C f1.y0; : : : ; ym�1/C .f1 C
f2/.x0; : : : ; xm�1/.f1 C f2/.y0; : : : ; ym�1/ is bent RS.

Indeed, the Walsh transform b�h.a0; b1; a2; b3; : : : ; an�2; bn�1/ of h is equal to
1
2
c�f1.a/

�
c�f1.b/C c�f2.b/

�C 1
2
c�f2.a/

�
c�f1.b/ � c�f2.b/

�
(see [11]).

Note that, according to Parseval’s relation, the Walsh supports of f1 and f2
have size 2m�1 and then can be complementary. Note also that the secondary
construction of Proposition 5 is closely related to that of Theorem 9. It is well
known that two m-variable functions f1 and f2 (m odd) are semi-bent with
complementary Walsh supports if and only if the .m C 1/-variable function
f .x; xmC1/ D f1.x/ C xmC1f2.x/; x 2 F2m; xmC1 2 F2, is bent. Indeed, we
have Wf .a; amC1/ D Wf1.a/C .�1/amC1Wf2.a/, implying that f is bent when f1
and f2 are semi-bent with complementary Walsh supports; and we have Wf1.a/ D
1
2

�
Wf .a; 0/CWf .a; 1/

�
and Wf2.a/ D 1

2

�
Wf .a; 0/�Wf .a; 1/

�
, implying that

f1 and f2 are semi-bent with complementary Walsh supports when f is bent. But
note that when f is RS, f1 and f2 are in general not RS, and when f1 and f2 are
RS, f is in general not RS.

A case of application of the construction of Proposition 5 happens with the bent
quadratic function involved in the definition of the Kerdock code (see Sect. 3.4):

f .x; xmC1/ D
m�1
2X

iD1
Trm1 .x

2iC1/C xmC1Trm1 .x/:

This function is bent and its semi-bent restrictions f1 and f2 to the hyperplanes of
equations xmC1 D 0 and xmC1 D 1 are idempotent functions of x. But the resulting
function h derived by the indirect sum is quadratic, because f1 C f2 is linear, and
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this reduces its interest. Another example, found in [15], of such a pair .f1; f2/ will
yield an infinite class of idempotent bent functions of algebraic degree 4:

Proposition 6 For every odd m, the following m-variable idempotent functions
f1.x/ D tr.x/ C tr.x2

.m�1/=2C1/ and f2.x/ D tr.x3/ are semi-bent functions with
complementary Walsh supports.

Proof We know (see [11, Theorem 8.23]) that a quadratic Boolean function f over
F2m has for Walsh support the set of elements a 2 F2m such that tr.ax/ C f .x/ is
constant on Ef where Ef D fx 2 F2m=8y 2 F2m ; f .x C y/ C f .x/ C f .y/ C
f .0/ D 0g is the so-called linear kernel of f . We also know that function f is
semi-bent, form odd, if and only if Ef has dimension 1 (i.e., has size 2). Functions

f1 and f2 have kernels of equations x2
.m�1/=2 C x2.mC1/=2 D 0 and x2 C x2m�1 D 0,

which are, respectively, equivalent to the equations x C x2 D 0 and x C x4 D 0.
These two equations have the same set of solutions, equal to F2 (using that m is
odd for the second one). Hence, both functions are semi-bent. The first function f1
has then Walsh support fa=tr.a/ D 0g, and the second one f2 has Walsh support
fa=tr.a/C tr.1/ D 0g; these Walsh supports are complementary since tr.1/ D 1.�

Theorem 11 ([15]) Let n D 2m, m odd. We define the m-variable idempotent
functions f1.x/ D Trm1 .x/ C Trm1 .x

2.m�1/=2C1/ and f2.x/ D Trm1 .x
3/. Then

h.x; y/ D f1.x/ C f1.y/ C .f1 C f2/.x/ .f1 C f2/.y/ is a bent idempotent with
algebraic degree 4.

Similarly, we define the RS functions f �1 .x/ D
Pm�1

iD0 .xi C xix.m�1/=2Ci / and
f �2 .x/ D

Pm�1
iD0 xi x1Ci , where the subscripts are taken modulo m. Then function

h�.x0; y1; x2; y3; : : : ; xn�2; yn�1/ D f �1 .x0; : : : ; xm�1/ C f �1 .y0; : : : ; ym�1/ C
.f �1 C f �2 /.x0; : : : ; xm�1/.f �1 C f �2 /.y0; : : : ; ym�1/ is an RS bent function of
algebraic degree 4.

Open Problem 19 : Construct classes of RS bent functions of all algebraic degrees
between 5 and m.

6 A Transformation on Rotation Symmetric Bent Functions

We can observe a correspondence in Theorem 11 between the functions f1; f2; h
from one hand side and the functions f �1 ; f �2 ; h� for the other hand side. It is
simpler to describe how f1; f2; h can be obtained from f �1 ; f �2 ; h� rather than vice
versa. Given an RS Boolean function f , we consider the function f 0.z/ over the
finite field of order 2n, expressed in trace representation and obtained from the
ANF of f .x0; : : : ; xn�1/ by replacing xi by z2

i
. Functions f1; f2; h are obtained

from f �1 ; f �2 ; h� by the transformation f 7! f 0. Given an RS Boolean function f ,
function f 0 happens to be always a Boolean idempotent function (its idempotence
is merely related to the fact that f is Boolean, and its binarity is related to the fact
that f is RS).
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Proposition 7 ([15]) Let f .x0; : : : ; xn�1/ be any Boolean RS function over F
n
2 ,

then

f 0.z/ D f .z; z2; : : : ; z2n�1

/

is a Boolean idempotent. In other words, if:

f .x0; : : : ; xn�1/ D
X

u2Fn2
aux

u; then:

f 0.z/ D
X

u2Fn2
auz

Pn�1
iD0 ui 2i

is a Boolean idempotent, and any idempotent Boolean function can be obtained this
way.

Note that the trace representation of f 0 is directly deduced from the ANF of f , even
for infinite classes of functions f , and has a very similar shape (note that this is not
at all the case between an idempotent function and the related RS function obtained
by decomposing the input over a normal basis); the question whether f and f 0 (or
more coherently the RS function obtained from f 0 by decomposing the input over
a normal basis) are the same function up to affine equivalence is then natural. We
show now with examples that the two functions are in general affinely inequivalent.

Examples

• If f is the indicator of f.1; 0; 1; 0; : : : ; 1; 0/; .0; 1; 0; 1; : : : ; 0; 1/g, then, as

observed in [15], we have f 0.z/ D z
2n�1
3 .1 C z/

2n�1
3



.1C z/

2n�1
3 C z

2n�1
3

�
,

which has Hamming weight 2n � 2 � 2n�4
3

.
If f is the indicator of f.0; : : : ; 0/; .1; : : : ; 1/g, then f 0 is the indicator of F2.

Hence, f and f 0 can be affinely equivalent or not, and two functions f and g
can be affinely equivalent without that f 0 and g0 be EA-equivalent.

• If f .x/ DPn
iD1


Q
j¤i xi

�
, then f 0 is the inverse function tr.z2

n�2/.

6.1 Relationship Between the Bentness of f and f 0

We study the relationship between the bentness of f and that of f 0: we check with
infinite classes of RS functions that f can be bent when f 0 is not and that f 0 can
be bent when f is not; we show that if f is quadratic, then it is bent if and only if
f 0 is bent, and we study classes of bent RS non-quadratic functions f for which f 0
is bent.



Open Problems on Binary Bent Functions 237

6.1.1 Quadratic Functions

The characterizations recalled in Sects. 5.1.1 and 5.2.1 for the bentness of quadratic
RS functions and bent idempotents, given, respectively, in [35] and [48], are the
same. Then:

Theorem 12 If f is a quadratic RS function, then f is bent if and only if f 0 is
bent.

6.1.2 An Infinite Class of Cubic Bent RS Functions f Such That f 0
Is Not Bent

Let

ft .x/ D
n�1X

iD0
.xixtCi xmCi C xixtCi /C

m�1X

iD0
xixmCi

over Fn2 , where n D 2m and 0 < t < m is such that m= gcd.m; t/ is odd. Then we
have recalled that f is bent and it is shown in [15] that

f 0t .z/ D Trn1.z
1C2tC2m/C Trn1.z

1C2t /C Trm1 .z
1C2m/

is not bent.

6.1.3 An Infinite Class of Cubic Bent Idempotents f 0 Such That f Is Not
Bent

Let

f 0.z/ D Trm1 .x
1C2m/C Trn1.x

d /I d D .2m � 1/=4C 1

be the second Niho bent function given in [31]; then, as shown in [15]

f .x/ D
n�1X

iD0
xix1Ci xmCi C

m�1X

iD0
xixmCi

can be written in the MM form where � is not a permutation, and f is then not bent.

6.1.4 Infinite Classes of Bent RS Functions f Such That f 0 Is Bent

A first example is given by Theorem 11. Let us give another example.
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Let

f .x/ D
n�1X

iD0
xixrxiC2r C

2r�1X

iD0
xixiC2rxiC4r C

m�1X

iD0
xi xiCm;

where n D 2m D 6r with r � 1.
We know that f and f 0.z/ D Trn1.z

1C2rC22r /C Tr2r1 .z
1C22rC24r /C Trm1 .z

1C2t / D
Trr1..zC z2

3r
/1C2rC22r /C Tr�.t/1 .z1C2t / are bent.

Our investigations suggest that searching RS bent functions f provides larger
probability of success when we choose them such that f 0 is bent and vice versa.

The transformation f 7! f 0 is however not an equivalence between RS bent
functions; the bent functions are likely to be new under affine equivalence.

Open Question: what are the relationships between the cryptographic parameters
of f 0 and those of f ?

Conclusion
The research on bent functions continues to be very active. Much work has
been done recently. The less recent results which are not recalled in this
chapter can be found in [11], and results on bent vectorial functions can
be found in [12, 13]. There are many connections with other domains of
mathematics and computer science (designs, difference sets, Kloosterman
sums, coding, cryptography, sequences, etc.) that we could not detail in this
chapter. Important open problems remain (a few evoked in this chapter).
Super-classes (partially-bent functions, plateaued functions, etc.), related
classes (semi-bent functions), and subclasses (hyperbent functions) pose
many problems not evoked here either (see [11]). A complete classification
remains elusive.

Acknowledgments We thank Thomas Cusick, Guangpu Gao, and Sihem Mesnager for useful
information.
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On Semi-bent Functions and Related Plateaued
Functions Over the Galois Field F2n

Sihem Mesnager

Abstract Plateaued functions were introduced in 1999 by Zheng and Zhang
as good candidates for designing cryptographic functions since they possess
desirable various cryptographic characteristics. They are defined in terms of the
Walsh–Hadamard spectrum. Plateaued functions bring together various nonlinear
characteristics and include two important classes of Boolean functions defined in
even dimension: the well-known bent functions and the semi-bent functions. Bent
functions (including their constructions) have been extensively investigated for more
than 35 years. Very recently, the study of semi-bent functions has attracted the
attention of several researchers. Much progress in the design of such functions
has been made. The chapter is devoted to certain plateaued functions. The focus
is particularly on semi-bent functions defined over the Galois field F2n (n even). We
review what is known in this framework and investigate constructions.

1 Introduction

The so-called plateaued functions in n variables (or r-plateaued functions) were
introduced in 1999 by Zheng and Zhang in [54] for 0 < r < n. They were first
studied by these authors in [55, 56] and further by Carlet and Prouff in [7] as good
candidates for designing cryptographic functions. The Walsh–Hadamard spectrum
is a very important tool to define and design plateaued functions. An n-variable
Boolean function is said to be r-plateaued if the values of its Walsh transform

belong to the set f0;˙2 nCr
2 g for some fixed r , 0 � r � n. Consequently, plateaued

functions have low Hadamard transform, which provides protection against fast
correlation attacks [33] and linear cryptanalysis [31]. It has been shown in [54]
that plateaued functions are significant in cryptography as they possess desirable
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various cryptographic characteristics such as high nonlinearity, resiliency, low
additive autocorrelation, and high algebraic degree and satisfy propagation criteria.
Plateaued functions bring together various nonlinear characteristics. They include
three significant classes of Boolean functions: the well-known bent functions, the
near-bent functions and the semi-bent functions. More precisely, the bent functions
are exactly 0-plateaued functions, the near-bent (also called semi-bent in odd
dimension) are 1-plateaued functions, and the semi-bent functions are 2-plateaued
functions. 0-plateaued functions and 2-plateaued functions on F2n exist when n is
even, while the 1-plateaued functions on F2n exist when n is odd.

For r 2 f0; 1; 2g, r-plateaued functions have been actively studied and have
attractive much attention due to their cryptographic, algebraic, and combinatorial
properties.

In the mathematical field of combinatorics, bent functions (or 0-plateaued
functions) are a special type of Boolean functions. Introduced and named in 1974 by
Rothaus [46] in research not published until 1976, firstly studied by Dillon [14], bent
functions are so called because they are as different as possible from all linear and
affine functions (more precisely, they are at maximum Hamming distance from the
set of all affine functions). They are extremal objects in combinatorics and Boolean
function theory and have been studied for about 35 years (even more, under the name
of difference sets in elementary Abelian 2-groups). The motivation for the study
of these particular difference sets is mainly cryptographic, but bent functions play
also a role in sequence theory, as difference sets, and especially in coding theory,
as elements of Reed-Muller codes. Bent functions exist only with even number of
inputs n and have 2-valued spectrum˙2 n2 . The definition of bent function has been
extended in several ways, leading to different classes of generalized bent functions
that share many of the useful properties of the original. A lot of research has been
devoted to designing constructions of bent functions. The reader can refer to the
book’s chapter of Carlet [4] for general constructions of bent functions and to the
following references [37, 41, 44] for a complete state of the art on bent functions
defined over the Galois field F2n , including the main constructions obtained until
2012.

Another special family of plateaued functions defined in even dimension is the
set of semi-bent functions. The notion of semi-bent function has been introduced in
1994 by Chee et al. [11]. Nevertheless, these functions had been previously investi-
gated in [2] under the name of three-valued almost optimal Boolean functions. Very
recently, the development of the theory of semi-bent functions has increased. For
very recent results on the treatment of semi-bent functions, we refer to [6,38–40,43].
The motivation for their study is firstly related to their use in cryptography (we
recall that in the design of cryptographic functions, various characteristics need be
considered simultaneously). Indeed, unlike bent functions, semi-bent functions can
also be balanced and resilient. They also possess various desirable characteristics
such as low autocorrelation, and a maximal nonlinearity among balanced plateaued
functions, satisfy the propagation criteria, and have high algebraic degree. Secondly,
besides their practical use in cryptography, they are also widely used in code
division multiple access (CDMA) communication systems for sequence design



On Semi-bent Functions and Related Plateaued Functions Over the Galois Field F2n 245

(see, e.g., [17, 19–21, 23, 24, 45]). In this context, families of maximum-length
sequences (maximum-length linear feedback shift-register sequences) having three-
valued cross-correlation are used. Such sequences have received a lot of attention
since the late 1960s and can be generated by a semi-bent function [10]. Up to 2011,
the main constructions of semi-bent functions in even dimension are either quadratic
functions [48] or derived from power polynomials Trn1.x

d / for a suitably chosen d
(see [10]). Since then, several constructions of semi-bent have been proposed in the
literature. The principal engine of this progress is the result of several important
observations in connection with the construction of bent functions [5, 36, 42]. We
shall describe this more precisely in Sect. 4.2.

The chapter is devoted to certain plateaued functions. Special attention is directed
to semi-bent functions. We review what is known in this context and investigate
new constructions. The chapter is organized as follows. In Sect. 2, we fix our main
notation and recall the necessary background. Section 3 is devoted to r-plateaued
functions. We recall some basic concepts concerning these functions. In Sects. 3.1–
3.3, we treat special classes of r-plateaued functions and present an overview related
to the notion of bent, near-bent, and semi-bent functions, respectively. Next, in
Sect. 4, we focus on the class of semi-bent functions. We survey the constructions
discovered recently. We first point out the relationship between the semi-bentness
property of some type of functions and some exponential sums (involving Dickson
polynomials). Secondly, we emphasize the link between semi-bent functions and
some bent functions. Finally, we study the new connections between semi-bent
functions and oval polynomials from projective finite geometry and investigate
several constructions. Open problems related to semi-bent functions are given in
Sect. 4.

2 Background

For any set E , E? D E n f0g and #E will denote the cardinality of E . For any
positive integer k, F2k denotes the finite field of order 2k.

Let n be a positive integer. A Boolean function f is a map from the vector space
F
n
2 of all binary vectors of length n to the finite field with two elements F2, i.e.,
f W Fn2 ! F2. The Hamming weight of a Boolean function f on F

n
2 , denoted by

wt.f /, is the size of the support of the function,i.e., the set fx 2 F
n
2= f .x/ ¤ 0g.

The Hamming distance dH.f; g/ between two functions f and g is the size of the
set fx 2 F

n
2= f .x/ ¤ g.x/g. Thus it equals wH .f ˚ g/.

In cryptography, the most usual representation of these functions is the algebraic
normal form (ANF) :

f .x1; : : : ; xn/ D
X

I�f1;:::;ng
aI

 
Y

i2I
xi

!
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where the aI ’s are in F2. The terms
Q
i2I xi are called monomials. The algebraic

degree of a Boolean function f equals the global degree of its (unique) ANF, that
is, the maximum degree of those monomials whose coefficients are nonzero.

There exist several kinds of possible trace (univariate) representations of Boolean
functions (see, e.g., [4, p. 266]) which are not necessary unique and use the identi-
fication between the vector space F

n
2 and the field F2n . A possible representation of

Boolean functions using such an identification is to consider any Boolean function
as a polynomial in one variable x 2 F2n of the form f .x/ D P2n�1

jD0 aj xj where
the aj ’s are elements of the field. This representation exists for every function from
F2n to F2n , and such a function f is Boolean if and only if a0 and a2n�1 belong to
F2 and a2j D a2j for every j 6D 0, 2n � 1, where 2j is taken modulo 2n � 1. This
allows representing f .x/ in a (unique) trace expansion. Recall that for any positive
integer k, and r dividing k, the trace function from F2k to F2r , denoted by Trkr , is
the mapping defined as

Trkr .x/ WD
k
r �1X

iD0
x2

ir D x C x2r C x22r C � � � C x2k�r

:

In particular, we denote the absolute trace over F2 of an element x 2 F2n by
Trn1.x/ D

Pn�1
iD0 x2

i
.

A unique representation of a Boolean function over F2n by means of trace
functions is of the form

f .x/ D
X

j2�n
Tro.j /1 .aj x

j /C �.1C x2n�1/ (1)

called its polynomial form, where:

– �n is the set of integers obtained by choosing one element in each cyclotomic
class of 2 modulo 2n � 1 (the most usual choice for j is the smallest element in
its cyclotomic class, called the coset leader of the class).

– o.j / is the size of the cyclotomic coset of 2 modulo 2n � 1 containing j (recall
that, the cyclotomic class of 2 modulo 2n � 1 denoted by C.j / is defined as
C.j / WD fj; j 2; j 22; j 23; : : : ; j 2o.j /�1g where o.j / is the smallest positive
integer such that j2o.j / � j .mod 2n � 1/).

– aj 2 F2o.j / .
– � D wt.f / modulo 2 where wt.f / is the Hamming weight of the image vector

of f , that is, the cardinality of its support supp.f / WD fx 2 F2n j f .x/ D 1g.
Note that the expression of f given by (1) can also be written under a non-unique

form Trn1.P.x// where P.x/ is a polynomial over F2n .
The algebraic degree of f is then equal to the maximum 2-weight of an exponent

j for which aj 6D 0 if � D 0 and to n if � D 1. Recall that the 2-weight w2.j / of an
integer j equals by definition the number of 1’s in its binary expansion. In particular,
affine functions are those of algebraic degree at most 1.
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Quadratic functions are those of algebraic degree 2. They can be represented as
follows: when n is even,

f .x/ D
n
2�1X

iD1
Trn1.aix

2iC1/C Tr
n
2

1 .a n2 x
1C2 n2 /

where ai 2 F2n ;8i; 0 � i � n=2 and an
2
2 F2n=2 .

When n is odd,

f .x/ D
n�1
2X

iD1
Trn1.aix

2iC1/; ai 2 F2n :

The rank of a quadratic function f is defined as follows:

rank.f / D n � dimF2
rad.Bf /

where rad.Bf / WD fx 2 F2n j Bf .x; y/ D 0;8y 2 F2ng with Bf the bilinear form
defined as

Bf .x; y/ WD f .x C y/C f .x/C f .y/:

Set kf WD dimF2 rad.Bf /. Then 2 divides .n�kf /. Any quadratic Boolean function
on F2n has a rank 2t with 0 � t � b n

2
c [29] and can be obtained as follows: set

QBf .x; y/ WD f .0/Cf .x/Cf .y/Cf .xCy/. Then the rank of f equals 2t if and
only if the equation QBf .x; y/ D 0 for any y 2 F2n in x has exactly 2n�2t solutions.
The set Ef WD fx 2 F2n ; j 8y 2 F2n ; QBf .x; y/ D 0g is called the linear kernel
of f .

Note that a significant result dealing with quadratic Boolean functions of rank 2t
has been obtained by Helleseth and Kumar [21] (see Theorem 1).

The bivariate representation of Boolean functions is defined only when n D 2m
is even as follows: we identify F

n
2 with F2m � F2m , and we consider then the input

to f as an ordered pair .x; y/ of elements of F2m . There exists a unique bivariate
polynomial

X

0�i;j�2m�1
ai;j x

i yj

over F2m such that f is the bivariate polynomial function over F2m associated to it.
Then the algebraic degree of f equals

max
.i;j / j ai;j¤0

.w2.i/C w2.j //;
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and f being Boolean, its bivariate representation can be written in the form

f .x; y/ D Trm1 .P.x; y//

where P.x; y/ is some polynomial in two variables over F2m .
Now, let f be a Boolean function over F2n and a 2 F2n . The derivative of f with

respect to a is defined as

Daf .x/ D f .x/C f .x C a/;8x 2 F2n :

For .a; b/ 2 F2n � F2n , the second-order derivative of f with respect to .a; b/ is
defined as

DbDaf .x/ D f .x/C f .x C b/C f .x C a/C f .x C aC b/;8x 2 F2n :

The notion of Walsh transform refers to a scalar product. When F
n
2 is identified

with the field F2n by an isomorphism between these two n-dimensional vector spaces
over F2 , it is convenient to choose the isomorphism such that the canonical scalar
product “�” in F

n
2 coincides with the canonical scalar product in F2n , which is the

trace of the product : x � y D Trn1.xy/ for x; y 2 F2n .
If f is a Boolean function defined on F2n , then the Walsh–Hadamard transform

of f is the discrete Fourier transform of the sign function �f WD .�1/f of f , whose
value at ! 2 F2n is defined as follows:

8! 2 F2n ; c�f .!/ D
X

x2F2n
.�1/f .x/CTrn1.!x/:

The Walsh transform satisfies the well-known Parseval’s relation

X

!2F2n
c�f 2.!/ D 22n:

Note that not all values of the Walsh–Hadamard transform can have the same sign,
except when the function is affine. This comes from the fact that we then have
P

!2F2n c�f .!/
�2 D P

!2F2n c�f
2.!/ which implies that all these values are null

except one (see, for instance, [42]).
The Walsh–Hadamard transform is an important tool for research in cryp-

tography. It plays an important role to characterize many cryptographic criteria
for Boolean functions but also to define some significant cryptographic Boolean
functions used in various type of symmetric cryptosystems.

Finally, the rank of quadratic Boolean functions is connected with the distribution
of its Walsh–Hadamard transform values. The following result concerning the
distribution of the Walsh transform of quadratic Boolean functions is due to
Helleseth and Kumar.
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Table 1 Walsh spectrum of
quadratic function with
rank 2t

Value of b�f .!/, ! 2 F2n Number of occurrences

0 2n�2t

2n�t 22t�1 C 2t�1

�2n�t 22t�1 � 2t�1

Theorem 1 ([21]) Let f be a quadratic Boolean function on F2n with rank 2t ,
0 � t � b n

2
c. Then the distribution of its Walsh transform is given in Table 1.

3 Plateaued Functions

Plateaued Boolean functions can be defined as follows.

Definition 1 A Boolean function f defined over F2n is said to be r-plateaued if

the values of its Walsh transform c�f are in f0;˙2 nCr
2 g, for some fixed r , r D

0; 1; : : : ; n.

The r-plateaued functions exist only when n� r is even; equivalently, if n and r

have the same parity (which implies that 2 divides nC r). The value � WD 2
nCr
2 is

usually called the amplitude.

Remark 1 Note that if f is an r-plateaued function on F2n , then its Walsh transform

c�f can be expressed by c�f D ..�1/g C .�1/h/2 nCr�2
2 for some Boolean g and h

defined over F2n .

Plateaued functions can be characterized by their second-order derivatives. More
precisely:

Proposition 1 ([7]) A Boolean function f on F2n is plateaued if and only if there
exists � (necessarily the amplitude of f ) such that for every x 2 F2n

X

a;b2F2n
.�1/DaDbf .x/ D �2

where DaDbf is the second-order derivative of f with respect to .a; b/ 2 F
2
2n .

A direct consequence of the previous proposition is that all the quadratic
functions are plateaued. Several properties of plateaued functions have been studied.
Concerning the degree of r-plateaued functions, it has been shown in [56] that for
a given fixed n and r with r > 0, the maximum possible degree of r-plateaued on
F2n is n�rC2

2
(while the maximum possible degree of 0-plateaued on F2n is n

2
) and

that this upper bound is sharp. Other properties of plateaued functions can be found
in [2].

The existence of r-plateaued functions on F2n (0 < r < n) has been shown
in [56]. However, there exist some results concerning the nonexistence of certain
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types of plateaued functions. More precisely, Xia et al. have proved in [52] that
there are no homogeneous1 0-plateaued of degree n

2
when n � 4. This result on the

nonexistence of homogeneous 0-plateaued functions has been extended on one hand
by Meng et al. [34] for functions of degree n

2
�k (0 � k � n

2
) and on the other hand

by Hyun et al. [22] for 0-plateaued functions f (not necessarily homogeneous) of
minimum degree (i.e., the lowest degree among the degrees of nonconstant terms
in f n

2
� k (0 � k � n

2
). Moreover, very recently, it has been proved in [22] the

nonexistence of r-plateaued functions on F2n (0 < r < n) with certain degree for a
given n � N and r (where N is some integer depending on r). More precisely:

Proposition 2 ([22]) For any nonnegative integer k, there exists an integerN such
that for an integer n � N , there is no r-plateaued function (0 < r < n) over F2n of

minimum degree n�rC2
2
� k, where N is the smallest integer satisfying

� NCr
2 Ck
rCk

�
<

2
NCr�2

2 � 1:
As a consequence, it has been shown in [22] that there is no homogeneous
1-plateaued function over F2n of degree nC1

2
when n � 7, and there is no

homogeneous 2-plateaued function over F2n of degree n
2

when n � 6.

3.1 Plateaued Functions: The Special Class of 0-Plateaued
Functions (Bent Functions)

Bent functions introduced in 1974 [14,46] are extremal objects in combinatorics and
Boolean function theory. They are maximally nonlinear Boolean functions. Recall
that the nonlinearity of a Boolean function f , denoted by nl.f /, is defined as the
minimum Hamming distance between f and all affine functions (i.e., of degree at
most 1). It can be expressed by means of the Walsh transform as follows:

nl.f / D 2n�1 � 1
2

max
b2F2n

ˇ
ˇc�f .b/

ˇ
ˇ:

Because of the well-known Parseval’s relation
P

b2F2n c�f .b/
2 D 22n, nl.f / is upper

bounded by 2n�1 � 2n=2�1. This bound is tight for n even.

Definition 2 Let n be an even integer. A Boolean function on F2n is said to be bent
if the upper bound 2n�1� 2n=2�1 on its nonlinearity nl.f / is achieved with equality.

Bent functions on F2n exist then only when n is even. We have the following
main characterization of the bentness for Boolean functions in terms of the Walsh
transform:

1A Boolean function f is said to be homogeneous of degree r if f .x/ D P2n�1
iD0 ai x

i where
ai D 0 for wt .i / 6D r , where wt .i / is the Hamming weight of i .
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Table 2 Walsh spectrum of
bent functions (0-plateaued)
f with f .0/ D 0

Value of b�f .!/, ! 2 F2n Number of occurrences

2
n
2 2n�1 C 2 n�2

2

�2 n2 2n�1 � 2 n�2
2

Proposition 3 Let n be an even integer. A Boolean function f is then bent if and
only if its Walsh transform satisfies c�f .a/ D ˙2 n2 for all a 2 F2n .

Hence, the Walsh transform provides a basic characterization of bentness.
However, for a given Boolean function f , the Walsh transform can definitely not
be used in practice to test in an efficient way the bentness of f , especially if all its
values are computed naively one at a time as exponential sums. Thanks to Parseval’s
identity, one can determine the number of occurrences of each value of the Walsh
transform of a bent function (see Table 2).

Bent functions are not classified. A complete classification of these functions is
elusive and looks hopeless. So it is important to design constructions in order to find
as many of bent functions as possible. A good reference for general properties and
general constructions of bent functions is the book’s chapter of Carlet [4]. We refer
to [37] and [41] for a survey and a general overview of the constructions discovered
recently including the relationship between the bentness property of some type of
bent functions and some exponential sums, namely, Kloosterman sums (involving
Dickson polynomials). Finally, note that a nice construction of bent functions have
been derived from plateaued functions in [8].

3.2 Plateaued Functions: The Special Class of 1-Plateaued
Functions (Near-Bent Functions)

Near-bent functions (or 1-plateaued functions) on F2n exist only when n is odd.
They are defined as follows.

Definition 3 Let n be an odd integer. A Boolean function on F2n is said to be

near-bent if its Walsh transform satisfies c�f .a/ 2 f0;˙2 nC1
2 g for all a 2 F2n .

Note that a function from F2n ! F2n is said to be almost bent if it has
Walsh-Fourier spectrum f0;˙2 nC1

2 g, that is, the same as a near-bent function. The
difference between an almost bent function and a near-bent function is that almost
bent functions map F2n ! F2n , whereas near-bent functions map F2n ! F2 . In this
context, f W F2n ! F2n is almost bent if and only if each of the Boolean functions
x 7! Trn1.vf .x// is near-bent, for all v 2 F

?
2n .

Thanks to Parseval’s identity, one can determine the number of occurrences of
each value of the Walsh transform of a near-bent function (see Table 3).
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Table 3 Walsh spectrum of
near-bent functions
(1-plateaued) f with
f .0/ D 0

Value of b�f .!/, ! 2 F2n Number of occurrences

0 2n�1

2
nC1
2 2n�2 C 2 n�3

2

�2 nC1
2 2n�1 � 2 n�3

2

Again from Parseval’s identity, it is straightforward to see that the support of the
Walsh transform c�f of a near-bent function f on F2n is of cardinality 2n�1 (i.e.,
#supp.c�f / D 2n�1).

In the particular case of quadratic functions, there exists a criterion on the
near-bentness involving the dimension of the linear kernel (see, e.g., [10]). More
precisely, it is well known (see Sect. 8.5.2 in [4]) that a quadratic Boolean function f
over F2n has for Walsh support the set of elements ˛ 2 F2n such that Trn1.˛x/Cf .x/
is constant onEf , whereEf WD fx 2 F2n ; j 8y 2 F2n ; f .xCy/Cf .x/Cf .y/C
f .0/ D 0g is the linear kernel of f . It has been proved that f is near-bent over F2n ,
if and only if Ef has dimension 1 (i.e., has size 2). Note that from Theorem 1, it is
easy to see that quadratic Boolean function f is near-bent if and only if the rank of
f is n � 1, that is, kf D 1.

Several constructions of quadratic near-bent functions have been obtained in the
literature. We give a list of the known families of quadratic near-bent functions on
F2n , n odd:

• f .x/ D Trn1.x
2iC1/, gcd.i; n/ D 1 [17].

• f .x/ DP n�1
2

iD1 Trn1.x
1C2i / [1].

• f .x/ DPb n�1
2 c

iD1 ciTrn1.x
1C2i /; ci 2 F2 [10].

• f .x/ D Trn1.x
2iC1 C x2

jC1 C x2
tC1/, 1 � i < j � t � n�1

2
, i C j D

t ,gcd.n; i/ D gcd.n; j / D gcd.n; i C j / D 1 [10].

• f .x/ DP n�1
2

iD1 ciTrn1.x
1C2i /, ci 2 F2 , gcd.xn C 1; c.x// D xC 1 where c.x/ D

P n�1
2

iD1 ci .xi C xn�i / [24].
• f .x/ D Trn1.x

2iC1/C Trn1.x
2iC1/, gcd.n; i C j / D gcd.n; i � j / [24].

• f .x/ DPr
iD0 Trn1.x

1C2kCid
/, gcd.2k C rd; n/ D 1 [24].

• f .x/ D P q�1
2

iD1 Trn1.x
1C2pi / C Trn1.x

1C2q /, n D pq, 3 6 jp, p odd, q odd,
gcd.p; q/ D 1 [16].

Because bent functions exist in even dimensions and near-bent functions exist
in odd dimensions, the possibility exists of moving up and down between bent
and near-bent functions. The four possibilities are discussed in [26]; see also some
results in [2]. In [27], Leander and McGuire have considered the problem on going
up from a near-bent function to a bent function and proposed constructions. In
particular, it has been shown that two n-variable functions g and h (n odd) are
near-bent with complementary Walsh supports (i.e., supp.b�g/ \ supp.b�h/ D ;) if
and only if the .n C 1/-variable function x 7! f .x; xnC1/ D g.x/ C xnC1h.x/;
x 2 F

n
2 , xnC1 2 F2 is bent. The restrictions to a .2n/-bent function to any hyperplan
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and to the complement of this hyperplan (view as .2n� 1/-Booleans functions) are
near-bent. The problem of the construction of .2n/-bent functions from two .2n�1/-
near-bent functions has also been considered by Wolfmann with a different point of
view in [49]. Some progress on this question has been made very recently in [51]
and [50]. In particular, Wolfmann [50] has introduced a way to construct new bent
functions starting from a near-bent functions having a specific derivative or from
a bent function such that the sum of the two components is a Boolean function
of degree 1. Some open problems have been presented by Wolfmann [50] in the
continuation of his interesting approach.

In 2005, Charpin et al. [10] have proved that some classes of near-bent functions
can been derived via the composition with nonpermutation linear polynomials. In
fact, the composition of any linear permutation polynomialP with a quadratic near-
bent function gives rise again to a near-bent function x 7! f .P.x//. However,
it is not necessary for P to be a permutation polynomial in order for f ı P
to be near-bent. In fact, one may choose a linear mapping P from F2n to F2n

which is still near-bent. Charpin et al. [10] have exhibited some nonpermutation
linear polynomials that preserve the near-bentness property when composed with
a quadratic near-bent function. For more details on the treatment of near-bent
functions, we send the reader to [10].

Finally, very few secondary constructions of near-bent functions (i.e., construc-
tions of new near-bent functions from two or several already known ones) have
been proposed in the literature. The following statement shows that secondary
constructions of near-bent functions can be derived under a condition involving the
derivative functions.

Theorem 2 Let n be an odd integer. Let f and g be two near-bent functions over
F2n . Assume that there exists an element a of F2n such that Daf D Dag. Then the
function h D f CDaf .f C g/ is a near-bent function on F2n .

Proof Let us compute the Walsh transform of h for every ! 2 F2n . We have

b�h.!/ D
X

x2F2n

�.h.x/C Trn1.!x// D
X

x2F2n

�.f .x/CDaf .x/.f Cg/.x/C Trn1.!x//:

Now, one can split the sum depending whether Daf is equal to 1 or not (recall
that Daf .x/ D f .x/C f .x C a/):

b�h.!/ D
X

x2F2n jDafD0
�.f .x/C Trn1.!x//C

X

x2F2n jDafD1
�.g.x/C Trn1.!x//

D 1

2


 X

x2F2n
�.f .x/C Trn1.!x//C

X

x2F2n
�.f .x C a/C Trn1.!x//

�

C1
2


 X

x2F2n
�.g.x/C Trn1.!x//�

X

x2F2n
�.g.x C a/C Trn1.!x//

�
:
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Hence,

b�h.!/ D 1

2


 X

x2F2n
�.f .x/C Trn1.!x//C

X

x2F2n
�.f .x/C Trn1.!.x C a///

�

C1
2


 X

x2F2n
�.g.x/C Trn1.!x//�

X

x2F2n
�.g.x/C Trn1.!.x C a///

�

D 1

2



c�f .!/.1C �.Trn1.!a///

�
C 1

2



b�g.!/.1 � �.Trn1.!a///

�
:

Now, f and g being near bent, therefore if Trn1.!a/ D 0, then b�h.!/ D c�f .!/ 2
f0;˙2 nC1

2 g. And if Trn1.!a/ D 1, then b�h.!/ D b�g.!/ 2 f0;˙2 nC1
2 g, which

completes the proof. ut

3.3 Plateaued Functions: The Special Class of 2-Plateaued
Functions (Semi-Bent Functions)

Semi-bent functions (or 2-plateaued functions) on F2n exist only when n is even. So,
in this section n denotes an even integer, and we set m D n

2
. Semi-bent functions

are defined as follows.

Definition 4 Let n be an even integer. A Boolean function on F2n is said to be

semi-bent if its Walsh transform satisfies c�f .a/ 2 f0;˙2 nC2
2 g for all a 2 F2n .

Thanks to Parseval’s identity, one can determine the number of occurrences of
each value of the Walsh transform of a semi-bent function (see Table 4).

Using the relationship between the nonlinearity and the Walsh spectrum, it is
immediate to see that the nonlinearity of a semi-bent function on F2n equals 2n�1 �
2
n
2 . In addition, the possible values of the Hamming weight of a semi-bent function

are 2n�1, 2n�1 � 2m and 2n�1 C 2m.
Many recent progresses have been made on the treatment of semi-bent functions.

In the next section, we focus on the constructions of such functions.

Table 4 Walsh spectrum of
semi-bent functions
(2-plateaued) f with
f .0/ D 0

Value of b�f .!/, ! 2 F2n Number of occurrences

0 2n�1 C 2n�2

2
nC2
2 2n�3 C 2 n�4

2

�2 nC2
2 2n�3 � 2 n�4

2
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4 Semi-Bent Functions (in Even Dimension): Constructions
and Characterizations

In the following, we present a general overview of the main known constructions of
semi-bent functions and investigate new constructions.

4.1 On Constructions of Quadratic Semi-Bent Functions

The first papers dealing with constructions of semi-bent functions have been
dedicated to quadratic functions. In this particular case of functions, there exists
a criterion on the semi-bentness involving the dimension of the linear kernel defined
above (see, e.g., [10]). More precisely, it has been proved that f is semi-bent over
F2n , if and only if its linear kernel Ef (defined previously) has dimension 2. Note
that from Theorem 1, it is easy to see that quadratic Boolean function is semi-bent
if and only if the rank of f is n � 2, that is, kf D 2.

Several constructions of quadratic semi-bent functions have been obtained in the
literature. We give a list of the known quadratic semi-bent functions on F2n , n D
2m:

• f .x/ D Pb n�1
2 c

iD1 ciTrn1.x
1C2i /, ci 2 F2, gcd.

P n
2�1
iD1 ci .xi C xn�i /; xn C 1/ D

x2 C 1 [10].
• f .x/ D Trn1.˛x

2iC1/, ˛ 2 F
?
2n , i even,m odd [48].

• f .x/ D Trn1.˛x
2iC1/, m even, i odd, ˛ 2 fx3; x 2 F

?
2ng where ˛ 2 F

?
2n [48].

• f .x/ D Trn1.˛x
2iC1/, m odd, i odd, gcd.m; i/ D 1, ˛ 2 fx3; x 2 F

?
2ng where

˛ 2 F
?
2n [48].

• f .x/ D Trn1.x
2iC1Cx2jC1/,m odd, 1 � i < j < m, gcd.n; iCj / D gcd.n; j�

i/ D 1/, gcd.n; i C j / D gcd.n; j � i/ D 2 [48].

• f .x/ DPm�1
2

iD1 Trn1.ˇx
1C4i /, m odd, ˇ 2 F

?
4 [16].

• f .x/ D Pm�1
2

iD1 ciTrn1.ˇx
1C4i /, ci 2 F2 , ˇ 2 F

?
4 , m odd, gcd.

Pm�1
2

iD1 ci .xi C
xm�i /; xm C 1/ D x C 1 [16].

• f .x/ D Pk
iD1 Trn1.ˇx

1C4di / ˇ 2 F
?
4 , m odd, d � 1, 1 � k � m�1

2
, gcd.k C

1;m/ D gcd.k;m/ D gcd.d;m/ D 1 [16].
• f .x/ D Trn1.ˇx

1C4i C ˇx1C4j / ˇ 2 F
?
4 , m odd, 1 � i < j � b n

4
c, gcd.i C

j;m/ D gcd.j � i; m/ D 1 [16].
• f .x/ D Trn1.ˇx

1C4i C x1C4j C x1C4t /, ˇ 2 F
?
4 , m odd, 1 � i < j < t � b n

4
c,

i C j D t , gcd.i;m/ D gcd.j;m/ D gcd.j; t/ D 1 [16].
• f .x/ D Trn1.ˇx

1C4i C ˇx1C4j C ˇx1C4t /, ˇ 2 F
?
4 , 1 � i < j < t � b n

4
c,

i C j D 2t , j � i D 3hp, 3 6 jp, n D 3kq, 3 6 jq, gcd.2t;m/ D 1, h � k [16].

• f .x/ D Trn1.ˇx
1C4i C ˇx1C4j C ˇx1C4t /, ˇ 2 F

?
4 , m odd, 1 � i; j; t � b n

4
c,

j � i D 2t , t 6D i , j C i D 3up, 3 6 jp, n D 3vq, 3 6 jq, gcd.2t;m/ D 1, u � v
[16].
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• f .x/ D Trn1.ˇx
1C4i Cˇx1C4j Cˇx1C4t /, ˇ 2 F

?
4 , 1 � i; j; t � b n

4
c, j � i D 2t ,

t 6D i , j C i D 3up, 3 6 jp, n D 3vq, 3 6 jq, gcd.2t;m/ D 1, u � v [16].
• f .x/ D Trn1.ˇx

1C4i Cˇx1C4j Cˇx1C4t Cˇx1C4s /, ˇ 2 F
?
4 , 1 � i; j; t; s � b n

4
c,

i < j , t < s, i C j D t C s D r , t 6D i , gcd.r;m/ D gcd.m; s � i/ D
gcd.m; s � j / D 1 [16].

4.2 On Constructions of Semi-Bent Functions From Bent
Functions

In the following subsections, we are dealing with the construction of semi-bent
functions from bent functions. We shall present several such kinds of constructions.
A natural problem arises is:

Problem 1 Find new primary constructions of bent functions from semi-bent
functions.

4.2.1 Primary Constructions in Univariate Representation from Niho and
Dillon Bent Functions

In 2011, many concrete constructions of semi-bent functions of maximum algebraic
degree have been discovered. Indeed, in [38], the semi-bentness of several infinite
families functions in polynomial form constructed via Dillon and Niho exponents
has been studied in detail. From this study, explicit criteria in terms of Kloosterman
sums for deciding whether a function expressed as a sum of trace functions is
semi-bent or not have been derived. Kloosterman sums have been used as a very
suitable tool to study the semi-bentness property of several functions in univariate
representation. In particular, we have showed in [38] that the values 0 and 4 of
Kloosterman sums defined on F2m give rise to semi-bent functions on F2n . Below is
the list of the known semi-bent functions constructed via the zero of Kloosterman
sums:

• f .x/ D Trn1.axr.2
m�1//C Trn1.cx.2

m�1/ 12C1/, Km.a/ D 0 [38].
• f .x/ D Trn1.axr.2

m�1// C Trn1.cx.2
m�1/ 12C1/ C Trn1.x

.2m�1/ 14C1/, Trnm.c/ D 1, m
odd,Km.a/ D 0 [38].

• f .x/ D Trn1.axr.2
m�1// C Trn1.cx.2

m�1/ 12C1/ C Trn1.x
.2m�1/3C1/, Km.a/ D 0

Trnm.c/ D 1 [38].
• f .x/ D Trn1.axr.2

m�1// C Trn1.cx.2
m�1/ 12C1/ C Trn1.x

.2m�1/ 16C1/; Trnm.c/ D 1,
Km.a/ D 0, m even [38].

• f .x/ D Trn1.axr.2
m�1//CTrn1.˛x

2mC1/CTrn1.
P2��1�1

iD1 x.2
m�1/ i2� C1/; gcd.�;m/ D

1, ˛ 2 F2n , Trnm.˛/ D 1, Km.a/ D 0 [38].
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Below is the list of the known semi-bent functions constructed via the value four
of Kloosterman sums:

• f .x/ D Trn1.axr.2
m�1// C Tr21.bx

2n�1
3 / C Trn1.cx.2

m�1/ 12C1/; m odd, Km.a/ D 4

[38].
• f .x/ D Trn1.ax3.2

m�1// C Trn1.cx.2
m�1/ 12C1/ C Tr21.bx

2n�1
3 /; m odd and m 6� 3

.mod 6/ Km.a/ D 4 [38].

• f .x/ D Trn1.axr.2
m�1//C Tr21.bx

2n�1
3 /C Trn1.cx.2

m�1/ 12C1/C Trn1.x
.2m�1/ 14C1/,m

odd,Km.a/ D 4 [38].

• f .x/ D Trn1.axr.2
m�1// C Tr21.bx

2n�1
3 / C Trn1.cx.2

m�1/ 12C1/ C Trn1.x
3.2m�1/C1/;

Trnm.c/ D 1, m odd,Km.a/ D 4 [38].

• f .x/ D Trn1.axr.2
m�1// C Trn1.˛x

2mC1/ C Trn1.
P2��1�1

iD1 x.2
m�1/ i2� C1/ C

Tr21.bx
2n�1
3 /; gcd.�;m/ D 1, ˛ 2 F2n , Trnm.˛/ D 1, m odd, Km.a/ D 4

( [38]).

All the families of semi-bent functions presented above are of maximum
algebraic degreem and then are suitable for use in symmetric cryptosystems.

The previous constructions can be generalized leading to general constructions
of semi-bent functions via Dillon-like exponents and Niho exponents. First, recall
that Dillon-like exponents are of the form s.2m � 1/.

A positive integer s (always understood modulo 2n � 1) is said to be a Niho
exponent and xs a Niho power function, if the restriction of xs to F2m is linear. One
can show that the restriction of the power function x 7! xs to F2m is linear then
s D 2j for some j < n. As we consider Trn1.x

d /, without loss of generality, we can
assume that s is in the normalized (unique) representation s D .2m � 1/d C 1 with
1 � d � 2m.

The following statement is due to Carlet and the author [6]. An alternative direct
proof has been proposed in [12].

Theorem 3 ([6, 12]) Denote by ˝n the set of Boolean functions f defined on F2n

by f .x/ D P
i2�n;m Tro.i/1 .ai x

i / where �n;m is the set of cyclotomic cosets Œi � such
that i � 0 .mod 2m � 1/. Denote by �n the set of Boolean functions f defined on
F2n by f .x/ DP

i2�0
n;m

Tro.i/1 .ai x
i / where �0n;m is the set of cyclotomic cosets Œi �

such that i � 2j .mod 2m � 1/ for some j (j < n). Set

Dn WD ff 2 ˝n such that f is bent with f .0/ D 0g

and set

Nn WD ff 2 �n such that f is bent with f .0/ D 0g:

Let g 2 Dn and h 2 Nn. Then g C h is semi-bent on F2n .

Let us specify some infinite families of semi-bent functions in univariate form.
Firstly, we give a list of infinite families containing bent functions defined on F2n
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belonging to the class PS ap; here, Km.a/ WD P
x2F2m �

�
Trm1 .ax C 1

x
/
�

denotes
the binary Kloosterman sums on F2m and Cm.a; a/ WD P

x2F2m �
�
Trm1 .ax3 C ax

�
/

denotes the cubic sums on F2m :

• g1.x/ D Trn1.axr.2
m�1//; gcd.r; 2m C 1/ D 1, a 2 F

?
2m such that Km.a/ D 0 [9].

• g2.x/ D Trn1.axr.2
m�1//C Tr21.bx

2n�1
3 /; gcd.r; 2m C 1/ D 1, m > 3 odd, b 2 F

?
4 ,

a 2 F
?
2m such that Km.a/ D 4 [36].

• g3.x/ D Trn1.a�
ix3.2

m�1// C Tr21.ˇ
j x

2n�1
3 /; m odd and m 6� 3 .mod 6/, ˇ is a

primitive element of F4 , � is a generator of the cyclic group U of .2m C 1/-th of
unity, .i; j / 2 f0; 1; 2g2, a 2 F

?
2m such that Km.a/ D 4 and Trm1 .a

1=3/ D 0 [35].

• g4.x/ D Trn1.a�
ix3.2

m�1// C Tr21.ˇ
j x

2n�1
3 /; m odd and m 6� 3 .mod 6/, ˇ is a

primitive element of F4 , � is a generator of the cyclic group U of .2m C 1/-th of
unity, i 2 f1; 2g, j 2 f0; 1; 2g, a 2 F

?
2m such that Km.a/ C Cm.a; a/ D 4 and

Trm1 .a
1=3/ D 1 [35].

• g5.x/ DP2m�1�1
iD1 Trn1

�
ˇxi.2

m�1/�; ˇ 2 F2m n F2 [18].

• g6.x/ D P2m�2�1
iD1 Trn1

�
ˇxi.2

m�1/�; m odd and ˇ.2
m�4/�1 2 fx 2 F

?
2m ITrm1 .x/ D

0g [18].

Secondly, we give a list of known Niho bent functions in Nn:

• h1.x/ D Trm1
�
a1x

2mC1�; a1 2 F
?
2m .

• h2.x/ D Trn1


a1x

.2m�1/ 12C1 C a2x.2m�1/3C1
�

.

a1 2 F
?
2n , a2

mC1
2 D a1 C a2m1 D ˇ5 for some ˇ 2 F

?
2n [15];

• h3.x/ D Trn1


a1x

.2m�1/ 12C1 C a2x.2m�1/ 14C1
�

.

a1 2 F
?
2na

2mC1
2 D a1 C a2m1 , m odd [15].

• h4.x/ D Trn1


a1x

.2m�1/ 12C1 C a2x.2m�1/ 16C1
�

; a1 2 F
?
2n a

2mC1
2 D a1 C a2m1 , m

even [15].
• h5.x/ D Trn1

�
˛x2

mC1 CP2r�1�1
iD1 xsi

�
, r > 1 such that gcd.r;m/ D 1, ˛ 2 F2n

such that ˛C˛2m D 1, si D .2m�1/ i2r .mod 2mC1/C1, i 2 f1; : : : ; 2r�1�1g
[25].

By Theorem 3, we recover the families in univariate form containing semi-bent
functions derived previously by the author in [38].

A complete list of the known functions in Dn can be found in [44] with additional
functions in [28] Now, note that Dn coincides with the set of Boolean functions
f W F2n ! F2 such that the restriction to uF?2m is constant for every u 2 U with
f .0/ D 0 while Ln coincides with the set of Boolean functions on F2n such that the
restriction to uF?2m is linear for every u 2 U with f .0/ D 0:

A stronger version of the previous statement has been proved in [6].

Theorem 4 ([6]) Let n D 2m with m > 2. Keeping the same notation as in
Theorem 3. Set

An WD ff W F2n ! F2 s.t the restriction to uF?2m is affine for every u 2 U g:
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Then a function f in An is semi-bent if and only if f can be written as the sum of a
function in Dn and a function in Ln.

Example 1 Identify the semi-bent Boolean function f over F64 of the form f .x/ D
Tr61.ax36/C Tr61.bx32/C Tr61.cx56/: Set f D gC h where g W x 2 F64 7! Tr61.cx56/
and h W x 2 F64 7! Tr61.ax36/ C Tr61.bx32/. We have 36 � 1 .mod 7/, 36 � 22

.mod 7/ and 56 � 0 .mod 7/. So 36 and 32 are Niho exponents, while 56 is a
Dillon exponent. According to the above result, f is semi-bent if and only if its
Niho part (that is, the function h) is bent and its Dillon part (i.e., the function g) is
bent. On one hand, the bentness of h depends only on the bentness of x 7! Tr61.ax36/
(since x 7! Tr61.bx32/ is linear). But 36 D 7� 1

2
C1 where 1

2
is understood modulo 9.

Thus, the function x 7! Tr61.ax36/ is bent if and only if Tr63.a/ D aCa8 6D 0. Hence,
h is bent if and only if a C a8 6D 0 (a 2 F64 ). On the other hand, g.x/ is of the
form Trn1.cx2m�1/ with m D n

2
D 3 (the size of the cyclotomic class of 56 modulo

26 � 1 D 63 is 6). Therefore, g is bent, if and only if Km.c
2mC1/ D K3.c

9/ D 0

whereKm denotes the Kloosterman sums over F2m . Let ˛ be a primitive element of
F8 such that ˛3 C ˛2 C 1 D 0. Then, it is easy to check that g is bent, if and only
if c9 2 f˛; ˛2; ˛4g, that is, c9 D ˛2

j
for some j (since the Kloosterman sums is

invariant under the Frobenius mapping). Finally, one can conclude that f is semi-
bent on F64 , if and only if aC a8 6D 0 and c9 D ˛2j for some j where ˛ 2 F8 such
that ˛3 C ˛2 C 1 D 0.

Recall [14] that a spread is a collection fEi; i D 1; : : : ; 2mC1g of vector spaces
of dimensionm D n=2 such thatEi \Ej D f0g for every i and j and

S2mC1
iD1 Ei D

F2n . The classical example of spread is fuF2m I u 2 U gwhereU is the multiplicative
group fu 2 F2n I u2mC1 D 1g. Theorem 4 can be stated in more general setting as
follows.

Theorem 5 ([6]) Letm � 2 and n D 2m. Let fEi; i D 1; : : : ; 2mC1g be a spread
in F2n and h a Boolean function whose restriction to every Ei is linear (possibly
null). Let S be any subset of f1; : : : ; 2m C 1g and g D P

i2S 1Ei .mod 2/ where
1Ei is the indicator of Ei . Then g C h is semi-bent if and only if g and h are bent.

Given a spread .Ei /iD1;:::;2mC1, the previous theorem provides a characterization
of the semi-bentness for a function whose restriction to everyE�i is affine (i.e., equal
to the sum of a function whose restriction to every Ei is linear and of a function
whose restriction to every E�i is constant).

Remark 2 One can modify the hypothesis of Theorem 5 by assuming that we have
only a partial spread. There exists an example due for m even to Dillon [14] of
a partial spread in F2n  F2m � F2m which is not included in a spread: E1 D
f0g�f0g�F2m�1�F2 andEa D f.x; �; a2xCaTrm�11 .ax/Ca�;Trm�11 .ax//I .x; �/ 2
F2m�1 � F2g for a 2 F2m�1 (the corresponding function g is quadratic bent). By
modifying the hypothesis, we need then to add a condition on the Ei ’s, and we have
only a sufficient condition for g C h being semi-bent:

Let g be a bent function in the PS class, equal to the sum modulo 2 of the
indicators of l WD 2m�1 or 2m�1 C 1 pairwise “disjoint” vector spaces Ei having
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dimensionm, and h a bent function which is linear on eachEi . Assume additionally
that for every c 2 F2n there exist at most 2 indices i such that 8e 2 Ei; h.e/ D
Trn1.ce/. Then gC h is semi-bent.

Problem 2 Find semi-bent functions obtained by applying the result of Remark 2.

Problem 3 Show that some semi-bent functions obtained above in [6] are not
extendable to .n C 2/-variable bent functions (or deduce new bent functions from
them).

4.2.2 Primary Constructions in Bivariate Representation from the Class
H of Bent Functions

Semi-bent functions in bivariate representation have been derived from the class
H of bent functions introduced by Carlet and the author in [5] and from the
partial spread class PS ap of bent functions introduced by Dillon [14]. Recall that
functions of the class PS ap are a subclass of the partial spread class PS defined
as the set of all the sums (modulo 2) of the indicators of 2m�1 or 2m�1 C 1 pairwise
supplementary m-dimensional subspaces of F2n . The elements of PS ap can be
defined in an explicit form as follows.

Definition 5 Let n D 2m and let F2n be identified, as a vector space, with F2m�F2m .
The partial spread class PS ap consists of all the functions f defined as follows: let
g be a balanced Boolean function over F2m (i.e., wt.g/ D 2m�1) such that g.0/ D 0
(but, in fact, this last condition is not necessary for f to be bent). Then f is defined
from F2m � F2m to F2 as f .x; y/ D g. x

y
/ (i.e., g.xy2

m�2/) with x
y
D 0 if y D 0.

The functions from class PS ap are those whose supports can be uniquely written
as
S

u2S uF?2m where U is the set fu 2 F2n I u2mC1 D 1g and S is a subset of U of
size 2m�1. We shall also include in PS ap the complements of these functions.

Now, functions of the class H are defined in bivariate form as follows.

Definition 6 ([5]) Functions h of the class H defined on F2m �F2m are of the form

h.x; y/ D
�

Trm1
�
x 

�
y

x

��
if x ¤ 0

Trm1 .�y/ if x D 0 (2)

where  W F2m ! F2m and � 2 F2m and satisfying the following condition:

8ˇ 2 F
?
2m; the function z 7! G.z/C ˇz is 2-to-1 on F2m ; (3)

where G is defined as: G.z/ WD  .z/C �z.

The current list of examples of functions h from the class H is the following:

• h.x; y/ D Trm1 .x
�5y6/, m odd.

• h.x; y/ D Trm1 .x
5
6 y

1
6 /, m odd.
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• h.x; y/ D Trm1 .x
�3�.2kC1/y3�2kC4/, m D 2k � 1.

• h.x; y/ D Trm1 .x
�3�.2k�1�1/y3�2k�1�2/, m D 2k � 1.

• h.x; y/ D Trm1 .x
1�2k�22k y2kC22k /, m D 4k � 1.

• h.x; y/ D Trm1 .x
23k�1�22kC2ky1�23k�1C22k�2k /, m D 4k � 1.

• h.x; y/ D Trm1 .x
1�22kC1�23kC1

y2
2kC1C23kC1

/, m D 4k C 1.

• h.x; y/ D Trm1 .x
23kC1�22kC1C2ky1�23kC1C22kC1�2k /, m D 4k C 1.

• h.x; y/ D Trm1 .x
1�2k y2k C x�.2kC1/y2kC2 C x�3�.2kC1/y3�2kC4/, m D 2k � 1.

• h.x; y/ D Trm1 .y.y
2kC1x�.2kC1/ C y3x�3 C yx�1/2k�1�1/, m D 2k � 1;

• h.x; y/ D Trm1 .x
5
6 y

1
6 C x 1

2 y
1
2 C x 1

6 y
5
6 /, m odd.

• h.x; y/ D Trm1 .xŒD1
5

�
y

x

�
�6/, m odd, where D1

5
is the Dickson polynomial of

index 1
5
.

The following result provides constructions of semi-bent functions from the
classes H and PS ap.

Theorem 6 ([6]) The sum of a function defined on F2m �F2m from the class PS ap

and a function defined on F2m � F2m from the class H is semi-bent on F2m � F2m .

4.2.3 A Construction from Bent Functions via the Indirect Sum

In [3], Carlet has introduced a secondary construction (which means a construction
of new functions from ones having the same properties) of bent functions. Later,
such a construction was called as the “indirect sum” because it generalizes the well-
known direct sum introduced by Dillon and Rothaus [14, 46]. The indirect sum is
defined as follows.

Definition 7 ([3]) Let n D r C s where r and s are positive integers. Let f1, f2 be
Boolean functions defined on F2r and g2, g2 be two Boolean functions defined on
F2s . Define h as follows (i.e., h is the concatenation of the four functions f1, f1˚1,
f2, and f2 ˚ 1, in an order controlled by g1.y/ and g2.y/):

8.x; y/ 2 F2r �F2s ; h.x; y/ D f1.x/Cg1.y/C.f1.x/Cf2.x//.g1.y/Cg2.y//:

Using the indirect sum, we derive a general constructions of semi-bent functions
from both bent and semi-bent functions.

Theorem 7 Let n D rCs with r and s two even integers. Let h be as in Definition 7.
Assume that f1 and f2 are semi-bent on F2r and that g1 and g2 are bent on F2s . Then
h is semi-bent on F2n .
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Proof Set r D 2 and s D 2� . Let’s compute the Walsh transform of h for every
.a; b/ 2 F2r � F2s . We have

b�h.a; b/ D
X

x2F2r

X

y2F2s
�.f1.x/C g1.y/C .f1.x/C f2.x//.g1.y/C g2.y//

CTrr1.ax/C Trs1.by//:

Now, one can split the sum depending whether g1.y/C g2.y/ is equal to 1 or not :

b�h.a; b/ D
X

x2F2r

X

y2F2s jg1.y/Cg2.y/D1
�.f2.x/C g1.y/C Trr1.ax/C Trs1.by//

C
X

y2F2s jg1.y/Cg2.y/D0
�.f1.x/C g1.y/C Trr1.ax/C Trs1.by//:

Now, note that the indicator of the set fy 2 F2s j g1.y/ C g2.y/ D 1g can be
written as 1��.g1.y/Cg2.y//

2
. Similarly, one can write the indicator of the set fy 2

F2s j g1.y/C g2.y/ D 0g as 1C�.g1.y/Cg2.y//
2

. Hence,

b�h.a; b/ D c�f1.a/
�
c�g1.b/C c�g2.b/

2

�
C c�f2.a/

�
c�g1.b/� c�g2.b/

2

�
:

Now, if g1 and g2 are bent, then

�
c�g1.b/� c�g2.b/

2

��
c�g1.b/C c�g2.b/

2

�
D 1

4


�
c�g1.b/

�2 � �c�g2.b/
�2� D 0:

and thus only the two following situations can occur

c�g1.b/ � c�g2.b/
2

D 0 and
c�g1.b/C c�g2.b/

2
D ˙2�

or

c�g1.b/ � c�g2.b/
2

D ˙2� and
c�g1.b/C c�g2.b/

2
D 0:

Now f1 and f2 being semi-bent : c�f1.a/ 2 f0;˙2C1g and c�f2.a/ 2 f0;˙2C1g.
Therefore b�h.a; b/ 2 f0;˙2C�C1g proving that h is semi-bent. ut
Remark 3 Obviously, the roles of f1 and f2 can be exchanged with those of g1 and
g2. This means that one can exchange the property of bentness and semi-bentness
in Theorem 7.
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4.2.4 A Simple Construction of Semi-Bent Functions from Bent Functions
by Field Extension

Another kind of construction of semi-bent functions from bent functions is given by
the simple following statement. When we identify F2n with the vector space F

n
2 , it

corresponds to a simple construction of an .nC2/-variable semi-bent function from
an n-variable bent function.

Proposition 4 ([12]) Let n be an even positive integer. Let f be a Boolean function
over F2nC2 ' F2n�F4 . For ı 2 F4 , we define a Boolean function fı over F2n�F4 by

fı.y; z/ D f .y/C Tr21.ız/;8y 2 F2n ; z 2 F4 :

If f is bent over F2n then fı is semi-bent over F2nC2 .

4.2.5 Construction of Semi-Bent Functions from Bent Functions
by Considering the Derivative Functions

Recall that the derivative of a Boolean function f on F2n with respect a 2 F2n is
defined by Daf .x/ D f .x/ C f .x C a/. The following construction of semi-bent
functions from bent functions under a strong condition on the derivatives functions
has been shown in [48].

Theorem 8 ([48]) Let n be an even positive integer. Let f and g be two bent
functions over F2n . Assume that there exists a 2 F2n such thatDaf .x/ D Dag.x/C1
for all x 2 F2n . Then the function h D f CgCDaf CDa.fg/ is semi-bent over F2n .

A possible construction of semi-bent functions by applying Theorem 8 is
provided by the following statement.

Proposition 5 Let f be a bent function defined over F2n (with n even). Define a
Boolean function g by g.x/ D f .x C a/ C Trn1.bx/;8x 2 F2n where a and b are
elements of F2n such that Trn1.ab/ D 1. Then the function h D f CgCDaf CDa.fg/
is semi-bent over F2n .

Proof The bentness is invariant under the addition of linear functions. Thus g is
also bent. Moreover, one hasDag.x/ D g.x/Cg.xCa/ D f .xCa/CTrn1.bx/C
f .x/ C Trn1.bx/ C Trn1.ab/ D Daf .x/ C Trn1.ab/ D Daf .x/ C 1. The proposition
follows from Theorem 8. ut
Notice that quadratics semi-bent functions can be easily derived from Proposition 5.

Problem 4 Find other examples of constructions of non-quadratic semi-bent func-
tions h starting from two bent functions f and g satisfying Daf .x/ D Dag.x/ C 1
for some a 2 F2n .
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4.3 A General Construction of Semi-Bent Functions Based
on Maiorana–McFarland’s Construction

Recall that the Maiorana–McFarland’s constructions are the best known primary
constructions of bent functions [14,32]. The Maiorana–McFarland class is the set of
all the Boolean functions on F2m�F2m of the form f .x; y/ D x��.y/Cg.y/I x; y 2
F2m where “�” denotes an inner product in F2m , � is any permutation on F2m , and
g is any Boolean function on F2m . Any such function is bent (the bijectivity of �
is a necessary and sufficient condition for f being bent). By computing the Walsh
transform, it is easy to see that if � is a 2-to-1 mapping from F2m to on F2m , then f is
semi-bent on F2m � F2m . Consequently, the reader notices that using the Maiorana–
McFarland method, any permutation leads to the construction of bent functions and
any mapping 2-to-1 leads to the construction of semi-bent functions.

The following statement provides an example of construction of semi-bent
functions via the Maiorana–McFarland method.

Proposition 6 Let r be a positive integer. Set m D 2r � 1. Let g be any Boolean
function over F2m . Define over F2m � F2m a Boolean function by f .x; y/ D
Trm1 .xy2

rC2 C xy/C g.y/, 8.x; y/ 2 F2m � F2m . Then f is semi-bent.

Proof We have to prove that f is semi-bent, that is, its Walsh transform takes
only the values 0, 2mC1 and �2mC1. Compute the Walsh transform of f . For every
.a; b/ 2 F2m � F2m , we have:

c�f .a; b/ D
X

x2F2m

X

y2F2m
.�1/Trm1 .xy2

r
C2Cxy/Cg.y/CTrm1 .ax/CTrm1 .by/

D
X

y2F2m
.�1/g.y/CTrm1 .by/

X

x2F2m
.�1/Trm1 .xy2

r
C2Cxy//CTrm1 .ax/

D
X

y2F2m
.�1/g.y/CTrm1 .by/

X

x2F2m
.�1/Trm1 ..y

2rC2Cy/x/

D 2m
X

y2F2m jy2rC2CyDa
.�1/g.y/CTrm1 .by/:

Now, according to Cusick and Dobbertin [13], the equation y2
rC2 C y D a has 0

or 2 solutions in F2m . The mapping y 2 F2m 7! y2
rC2 C y C a is 2-to-1 for every

a 2 F2m . Therefore,

c�f .a; b/ 2 f0;˙2mC1g

which completes the proof. ut



On Semi-bent Functions and Related Plateaued Functions Over the Galois Field F2n 265

4.4 A Construction from APN Functions

Let us recall the definition of almost perfect nonlinear (APN) functions.

Definition 8 Let F be a mapping from F2m to itself (m a positive integer). The
functionf is said to be APN if,maxa2F?

2m
maxb2F2m#fx 2 F2m j F.xCa/CF.x/ D

bg D 2.

APN functions are important research objects in cryptography and coding theory.
Given an APN function, one can derive a construction of semi-bent function in the
sprit of Maiorana–McFarland’s method.

Proposition 7 Letm be a positive integer. Let F W F2m ! F2m be an APN function,
g a Boolean function over F2m and ˛ 2 F

?
2m . Denote byD˛F the derivative function

of F with respect to ˛ defined by D˛F.x/ D F.x C ˛/C F.x/;8x 2 F2m . Define
over F2m�F2m a Boolean function by f .x; y/ D Trm1 .xD˛F.y//Cg.y/;8.x; y/ 2
F2m � F2m . Then f is semi-bent.

Proof Let us compute the Walsh transform of f . For every .a; b/ 2 F2m � F2m , we
have

c�f .a; b/ D
X

x2F2m

X

y2F2m
.�1/Trm1 .xD˛F.y//Cg.y/CTrm1 .ax/CTrm1 .by/

D
X

y2F2m
.�1/g.y/CTrm1 .by/

X

x2F2m
.�1/Trm1 .x.D˛F.y/Ca//

D 2m
X

y2F2m jD˛F.y/Da
.�1/g.y/CTrm1 .by/:

Now, sinceF is APN, the mapping y 2 F2m 7! D˛F.y/ is 2-to-1 for every ˛ 2 F
?
2m .

Hence, c�f .a; b/ 2 f0;˙2mC1g which completes the proof. ut

4.5 Several Constructions from Hyperovals and Oval
Polynomials

Let PG2.2
n/ be the two-dimensional projective space over F2n . The one-

dimensional subspaces of F
3
2n are then the points, and the two-dimensional

subspaces of F
3
2n are called the lines. A hyperoval in PG2.2

n/ can be defined
as follows.

Definition 9 (Hyperoval) A hyperoval in PG2.2
n/ is a set of 2nC2 points; no three

of them are collinear (i.e., lie in a line2).

2We say a point p D .x0; : : : ; xn/ is on a line LŒy0; : : : ; yn� if and only if x0y0 C x1y1 C � � �
xnyn D 0.
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A particular type of polynomials on F2n give rise to hyperovals in PG2.2
n/. More

precisely:

Definition 10 An oval polynomial on F2n is a polynomial G on F2n such that the
set of points f.1; t; G.t//; t 2 F

n
2g [ f.0; 0; 1/; .0; 1; 0/g (denoted byD.G/) forms a

hyperoval of PG2.2
n/ (for short, an o-polynomial).

There is a close connection between the hyperovals and the o-polynomials since
a hyperoval of PG2.2

n/ can be represented by D.G/ where G is an o-polynomial
on F2n . In fact, there exists a necessary and sufficient condition for a mapping over
F2n to give a hyperoval of PG2.2

n/. This leads to a reformulation of the definition
of an o-polynomial given as follows.

Definition 11 A permutation polynomial G over F2n is an o-polynomial if, for
every � 2 F2n , the function

z 2 F2n 7!
(
G.zC�/CG.�/

z if z ¤ 0
0 if z D 0

is a permutation of F2n .

Note that if G is an o-polynomial over F2n then, z 2 F2n 7! G.z/C ˛z is 2-to-1
for every ˛ 2 F

?
2n .

The current list, up to equivalence, of the known o-polynomials on F2m is given
in [5].

A simple construction of semi-bent functions from hyperovals of PG2.2
m/ with

m > 2 is given by the following statement.

Theorem 9 Let k be a positive integer such that 2 � k � 2m � 2. Let D.k/ WD
f.1; t; tk/; t 2 F2mg [f.0; 0; 1/; .0; 1; 0/g (m > 2) be a hyperoval of PG2.2

m/ and
g be a Boolean function on F2m . Then the function f defined over F2m � F2m by
f .x; y/ D Trm1 .xyk C xy/C g.y/ is semi-bent.

Proof We have to prove that f is semi-bent, that is, its Walsh transform takes
only the values 0, 2mC1 and �2mC1. Compute the Walsh transform of f . For every
.a; b/ 2 F2m � F2m , we have:

c�f .a; b/ D
X

x2F2m

X

y2F2m
�



Trm1 .xyk C xy/C g.y/C Trm1 .ax/C Trm1 .by/
�

D
X

y2F2m
�


g.y/C Trm1 .by/

�X

x2F2m
�



Trm1 .xyk C xy/C Trm1 .ax/
�

D
X

y2F2m
�


g.y/C Trm1 .by/

� X

x2F2m
�



Trm1 ..y
k C y C a/x/

�

D 2m
X

y2F2m jykCyDa
�


g.y/C Trm1 .by/

�
:
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Now, since D.k/ is a hyperoval of PG2.2
m/ then according to Maschietti [30], the

equation yk C y C a D 0 has either zero or two distinct solutions in F2m for every
a 2 F2m (m > 2). Therefore, c�f .a; b/ 2 f0;˙2mC1g which completes the proof.

ut
An application of Theorem 9 is given by the next proposition.

Proposition 8 Let m be a positive odd integer with m > 2. Let g be a Boolean
function on F2m . Then the function f defined overF2m�F2m by f .x; y/ D Trm1 .xy6C
xy/C g.y/ is semi-bent.

Proof According to Theorem 9, f is semi-bent if D.6/ WD f.1; t; t6/; t 2 F2mg [
f.0; 0; 1/; .0; 1; 0/g (m > 2) is a hyperoval of PG2.2

m/. According to Segre and
Bartocci [47], for m odd with m > 3, D.6/ is a hyperoval of PG2.2

m/. It remains
to check the case m D 3. According to Maschietti [30], it suffices to prove that the
equation y6 C y D a has either zero solution or two distinct solutions in F2m , for
every a 2 F2m . The result is trivial for a D 0. Now, let a 2 F

?
2m . Using the fact

that y7 D 1 for y 6D 0, it is easy to see that the number of solutions of the equation
y6 C y D a in F2m is equal to the number of solutions of y2 C ayC 1 D 0 in F

?
2m ,

which equals 2 (since if y2 C ay C 1 D 0 has two identical solutions implies that
a D 0, which contradicts the hypothesis). ut

In the following, we show how one can construct several infinite classes of semi-
bent functions from o-polynomials. The first result in this direction was given in
[6] which is closely related to the construction of semi-bent functions in bivariate
representation from the class H of bent functions and the class of partial spreads
PS ap given by Theorem 6.

Theorem 10 ([6]) Let G be an o-polynomial on F2m , and g be Boolean function
on F2m such that g.0/ D 0 and wt.g/ D 2m�1 (i.e., g is balanced on F2m ). Let
� 2 F2m . Define over F2m � F2m the Boolean function f by

f .x; y/ D Trm1 .�y C xG.yx2
m�2//C g.yx2

m�2/; .x; y/ 2 F2m � F2m:

Then f is semi-bent.

Very recently, several more constructions of semi-bent functions have been derived
from o-polynomials [40]. An important point is that the notion of oval polynomial
over F2m appears to be suitable to build 2-to-1 mappings on F2m . Such a property
has been used to built infinite classes of semi-bent functions.

Theorem 11 ([40]) Let ˛ be a primitive element of F2m and j a positive integer in
the range Œ0; 2m � 2�. Let G be an o-polynomial on F2m and g a Boolean function
on F2m . Define over F2m � F2m a Boolean function f by

f .x; y/ D Trm1 .xG.y/C ˛j xy/C g.y/; .x; y/ 2 F2m � F2m :

Then f is semi-bent.
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Problem 5 Find other permutations G than oval polynomials having the property
that y 7! G.y/C ˛j y is 2-to-1 (which is the key in the proof of Theorem 11).

In the following, we emphasize the following observation.

Proposition 9 ([40]) Any semi-bent function of Theorem 11 is the sum of two bent
functions in the class of Maiorana–McFarland.

Remark 4 Note that if we take at random two bent functions, even in the class of
Maiorana–McFarland, their sum would not be probably semi-bent in most cases
(the reader should notice that semi-bent functions of Theorem 10 can also be
decomposed in the sum of two bent functions).

Problem 6 Find new constructions of semi-bent functions using permutations other
than oval polynomials.

Another construction of semi-bent function in bivariate representation has been
derived by the author in [40].

Theorem 12 ([40]) Let m be a positive integer. Assume m D 2m1 C 1 odd. Let G
be an o-polynomial on F2m and g be a Boolean function on F2m . Define a Boolean
function f in bivariate representation as

f .x; y/ D Trm1



xG2m1C1C1.y/C xyG2m1C1

.y/C xG3.y/C xyG2.y/
�

CTrm1


.xy2

m1C1 C xy2 C x/G.y/C xy2
m1C1C1 C xyC xy3

�

Cg.y/; .x; y/ 2 F2m � F2m :

Then f is semi-bent on F2m � F2m .

Now, Theorems 11 and 12 can be generalized since other semi-bent functions of
a more general form can be obtained from o-polynomials.

Theorem 13 ([40]) Let �1 and �2 be two permutations of F2m whose composition
�1 ı ��12 is an o-polynomial on F2m . Let g be a Boolean function over F2m . Let f
be the Boolean function defined on F2m � F2m by

.x; y/ 2 F2m � F2m ; f .x; y/ D Trm1 .x.�1.y/C �2.y///C g.y/:

Then f is semi-bent.

A first consequence of the previous theorem is the following statement which
provides another primary construction of semi-bent functions.

Theorem 14 ([40]) Let m be an odd positive integer. Define the Boolean function
f on F2m � F2m as

.x; y/ 2 F2m � F2m ; f .x; y/ D Trm1
�
y6x C y5x C y3x C yx

�C g.y/
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where g is any Boolean function over F2m . Then f is semi-bent.

A generalization of Theorem 12 is given by the following statement.

Theorem 15 ([40]) Let � be a permutation of F2m . Let ˛ be a primitive element
of F2m and j a nonnegative integer. Let G be an o-polynomial and g a Boolean
function over F2m . Define

8.x; y/ 2 F2m � F2m; f .x; y/ D Trm1 .�.G.y/C ˛jy/x/C g.y/:

Then f is semi-bent.

Let L.x/ D Pm�1
sD0 ˛sx2

s
and l.x/ D Pm�1

sD0 ˛sxs be two polynomial over
F2m . L.x/ and l.x/ are the 2-associate of each other. More specifically, l.x/ is the
conventional 2-associate of L.x/ and L.x/ is the linearized 2-associate of l.x/. It is
well known thatL is a linear permutation polynomial, if and only if, the determinant
of the matrix .˛2

i

i�j /0�i;j�m�1 is not zero.
A possible construction of semi-bent functions involving linearized polynomials

and oval polynomials is given by the following statement.

Proposition 10 Let L.x/ and l.x/ two polynomials on F2m defined as above.
Assume that l.x/ is co-prime with xm � 1. Let a 2 F2m such that Trm1 .a/ D 0

and ı be a non zero elements of F2m . Let G be an o-polynomial on F2m and g any
Boolean function on F2m . Then the function f defined on F2m � F2m as

f .x; y/ D Trm1



axTrm1 .G.y/C ıy/C xL.G.y/C ıy/

�
C g.y/

is semi-bent.

Proof The proposition follows from Theorem 15 and Corollary 3.6 in [53]. ut
In [5], we have introduced the notion of o-equivalence between two oval

polynomials.

Definition 12 ([5]) Two functionsG andG0 are o-equivalent if one can be obtained
from the other by a sequence of the following list of transformations:

1. G 7! G0 whereG0 W z 2 F2m 7! G0.z/ WD G.�zC�/ with � 2 F
?
2m and � 2 F2m ,

2. G 7! G0 whereG0 W z 2 F2m 7! G0.z/ WD �G.z/C� with � 2 F
?
2m and � 2 F2m ,

3. G 7! G0 where G0 W z 2 F2m 7! G0.z/ WD zG.z2
m�2/ (with G.0/ D 0),

4. G 7! G0 where G0 W z 2 F2m 7! G0.z/ WD G.z2j /2m�j
where j 2 N,

5. G 7! G0 where G0 W z 2 F2m 7! G0.z/ WD G�1.z/.
Recall the notion of extended affine equivalence between two Boolean functions.

Definition 13 Two Boolean functions f and f 0 defined on F2n are called extended
affine equivalent (EA-equivalent) if f 0 D f ı � C ` where the mapping � is an
affine automorphism on F2n and ` is an affine Boolean function (affine functions are
those whose algebraic degree is at most 1).
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A discussion about the EA-equivalence between two semi-bent Boolean func-
tions constructed from o-equivalent ovals polynomials can be found in [40].

4.6 Secondary Constructions of Semi-Bent Functions

In general, “secondary constructions” means constructions of new functions from
ones having the same properties. Only few secondary constructions of semi-bent
functions have been considered in the literature. An example of a secondary
construction of semi-bent functions based on a strong condition on the derivative
functions has been given in [48].

Theorem 16 ([48]) Let f and g be two semi-bent functions over F2n (with n even).
Assume that there exists an element a in F2n such thatDaf D Dag. Then the function
h D f CDaf .f C g/ is semi-bent on F2n .

The reader notices that Theorem 7 shows that the indirect sum could be used
to construct semi-bent functions from both bent and semi-bent functions. The
construction derived from Theorem 7 can be therefore viewed as a secondary-like
construction of semi-bent functions.

Problem 7 Find new secondary constructions of semi-bent functions, that is,
constructions of new semi-bent functions from two or several already known ones.

Conclusion
The research activity on bent functions has lasted over 35 years and remains
intensive. However, very recently, many advances have been made subse-
quently on super classes of bent functions (plateaued functions, etc.) and
related classes of bent functions (semi-bent functions, etc.). In particular
many new connections in the framework of semi-bent functions with other
domains of mathematics and computer science (Dickson polynomial, Kloost-
erman sums, spreads, oval polynomial, finite geometry, coding, cryptography,
sequences, etc.) have been exhibited. The research in this framework is
relatively new (comparatively to the context of bent functions) and is becom-
ing very active. Despite recent progress, much remains to do. In particular,
although many concrete constructions of semi-bent functions have been
discovered, the general structure of semi-bent functions is still unclear.

Acknowledgements The author wishes to thank Claude Carlet for his careful reading and
interesting comments.
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True Random Number Generators

Mario Stipčević and Çetin Kaya Koç

Abstract Random numbers are needed in many areas: cryptography, Monte Carlo
computation and simulation, industrial testing and labeling, hazard games, gam-
bling, etc. Our assumption has been that random numbers cannot be computed;
because digital computers operate deterministically, they cannot produce random
numbers. Instead, random numbers are best obtained using physical (true) random
number generators (TRNG), which operate by measuring a well-controlled and
specially prepared physical process. Randomness of a TRNG can be precisely,
scientifically characterized and measured. Especially valuable are the information-
theoretic provable random number generators (RNGs), which, at the state of
the art, seem to be possible only by exploiting randomness inherent to certain
quantum systems. On the other hand, current industry standards dictate the use of
RNGs based on free-running oscillators (FRO) whose randomness is derived from
electronic noise present in logic circuits and which cannot be strictly proven as
uniformly random, but offer easier technological realization. The FRO approach is
currently used in 3rd- and 4th-generation FPGA and ASIC hardware, unsuitable for
realization of quantum RNGs. In this chapter we compare weak and strong aspects
of the two approaches. Finally, we discuss several examples where use of a true
RNG is critical and show how it can significantly improve security of cryptographic
systems, and discuss industrial and research challenges that prevent widespread use
of TRNGs.
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1 Introduction

True random numbers and physical nondeterministic random number generators
(RNGs) seem to be of an ever-increasing importance. Random numbers are essential
in cryptography (mathematical, stochastic, and quantum), Monte Carlo calculations,
numerical simulations, statistical research, randomized algorithms, lotteries, etc.
Today, true random numbers are most critically required in cryptography and its
numerous applications to our everyday life: mobile communications, e-mail access,
online payments, cashless payments, ATMs, e-banking, Internet trade, point of sale,
prepaid cards, wireless keys, general cybersecurity, distributed power grid security
(SCADA), etc.

Without loss of generality in the rest of this chapter, we will assume that
generators produce random bits.

In applications where provability is essential, randomness sources (if involved)
must also be provably random; otherwise, the whole chain of proofs collapses.
In cryptography, where due to Kerckhoffs’ principle all parts of protocols are
publicly known except some secret (the key or other information) known only to
the sender and the recipient, it is clear that the secret must not be calculable by an
eavesdropper, i.e., it must be random. For example, the well-known BB84 quantum
key distribution protocol [5] (described in Sect. 3.4) would be completely insecure
if only an eavesdropper could calculate (or predict) either Alice’s random numbers
or Bob’s random numbers or both. From analysis of the secret key rate presented
therein, it is obvious that any predictability of random numbers by the eavesdropper
would leak relevant information to him, thus diminishing the effective key rate. It
is intriguing [79] that in the case that the eavesdropper could calculate the numbers
exactly, the cryptographic potential of the BB84 protocol would be zero. Indeed one
of the recent successful attacks on quantum cryptography exploits the possibility
to control local quantum RNGs by exploiting a design flaw of two commercial
quantum cryptographic systems and one practical scientific system. This example,
discussed below, shows that the local RNGs assumed in BB84 are essential for its
security and may not be exempt from the security proof.

Lotteries are yet another serious business where random numbers are essential.
Due to the large sum of money involved (estimated six billion USD annually only
online and only in the USA [36]), some countries have set explicit requirements
for RNGs for use in online gambling and lottery machines and have set certificate
issuing authorities. For example, the Lotteries and Gaming Authority (LGA) of
Malta has prescribed a list of requirements for RNGs, stipulated in the Remote
Gaming Regulations Act [45]. An RNG that does not conform to this act may not
be legally used for gambling business. These rules have been put forward in order
to ensure fair game by providers and to prevent possibility that gamers manipulate
the system by foreseeing outcomes.

RNGs have been an occupation of scientists and inventors for a long time. Whole
branches of mathematics have been invented out of a need to understand random
numbers and ways to obtain them. At the dawn of the modern computing era, John
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von Neumann was one of the first to note that deterministic Turing computers are
not able to produce true random numbers, as he put it in his well-known statement
that “Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”

RNGs are one of the hottest topics of research in recent years. There have been
about 83 patents per year in the last decade, 1418 in total since 1970, and countless
scientific articles published regarding true RNGs. Still, a sharp discrepancy between
the number of publications and very modest number of products (only four quantum
RNGs and a handful of Zener noise-based mostly phased-out RNGs) that ever made
it to the market [33,34,57,60] clearly indicates immaturity of most of the art. In our
view, the main problems are lack of randomness proofs and poor reproducibility of
the majority of solutions presented so far. The search for true randomness continues.

2 Pseudorandom Number Generators

Historically, there have been two approaches to random number generation: algo-
rithmic (pseudorandom) and by a physical process (nondeterministic).

Pseudorandom number generators (PRNG) are well known in the art and we are
not going to address them here in great detail. Surveys and individual examples
of PRNGs can be found elsewhere [32, 40, 48, 49, 92]. In a nutshell, a PRNG
is nothing more than a mathematical formula, which produces a deterministic,
periodic sequence of numbers, which is completely determined by the initial state
called the seed. By definition such generators are not provably random. In practice,
PRNGs feature perfect balance between 0s and 1s (zero bias) but also strong long-
range correlations, which undermine cryptographic strength and can show up as
unexpected errors in Monte Carlo calculations and modeling.

While most modern PRNGs pass all known statistical tests, there are myths about
some PRNGs being much better than the others. The truth is that every PRNG shows
its weakness in some particular application. Indeed PRNGs are often found to be the
cause of erroneous stochastic simulations and calculations [11,12,15,21,29,40,45,
55, 58, 70, 87]. As for cryptographic purposes, all major families of PRNGs have
been cryptanalyzed so far [40, 61, 74], and use of PRNG where an RNG should be
used will therefore present a big security risk for the protocol in question. We will
revisit this point in more detail in Sect. 6.

In any case, due to strict determinism of PRNG algorithms, no PRNG is random
by any reasonable definition of randomness. Let us illustrate this by a fictitious
anecdote. Alice wanted to impress Bob, by a particular version of Mersenne Twister
PRNG [49] for which she claimed that it produces true random numbers, by asking
him to test them. Bob agreed but asked a minimum of 1 Giga bytes of random data
to be sent to him via e-mail. Alice produced the huge file but her mailing program
refused to send such a big file. Cutting a file into small pieces and sending multiple
e-mails, etc. was an option but too big a nuisance for both of them. Finally, Bob
received from Alice a 1 kilobyte e-mail containing the following short notice: “Dear
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Bob, Please find attached a program in C++. Compile it, use the following seed:
12345678 and stop the program after producing 1 Giga bytes of data. That is what
I wanted to send you." Instead of reproducing the file and running on his computer
very time-consuming tests, Bob shortly answered: “Dear Alice, if you think that 1
Giga bytes of truly random data can, under any circumstances, can be compressed
without loss to just 1,000 bytes, than I have nothing more to say to you!”

Advantages of PRNGs are their low cost, ease of implementation, and user-
friendliness, especially in a CPU-available environment such as a PC computer,
but one has to be cautious when it comes to use of PR numbers for simulations,
cryptography, and in fact any use.

3 True Random Number Generators

Due to Kerckhoffs’ principle, the definition of a RNG suitable for cryptography
must include that even if every detail is known about the generator (schematic,
algorithms, etc.), it still must produce totally unpredictable bits. In contrast to
PRNGs, physical (true, hardware) RNGs extract randomness from physical pro-
cesses that behave in a fundamentally nondeterministic way which makes them
better candidates for true random number generation. A physical RNG is a piece
of hardware separate from the computer, usually connected to it via USB or PCI
bus. Importing random numbers into a user program is complicated and requires
original drivers. Prices range from 1k USD to 30k USD for bit production rates from
4 to 150 megabits per second [33, 34, 60]. Examples of physical processes used to
generate randomness include: Johnson’s noise [54], Zener noise [77], radioactive
decay [22, 26], photon path splitting at the two-way beam splitter, photon arrival
times, etc. [9,13,22,23,26,35,38,63,77,80,88–90,93]. Unlike the PRNGs, physical
random number generators suffer from uneven probabilities of zeros and ones, that
is, bias (b), defined as the difference of probabilities of 1s and 0s:

b D p.1/� p.0/
2

(1)

and short-range correlations which are best captured by serial autocorrelation
coefficients (ak), defined, for example, in [40]:

ak D
PN�k

iD1 .bi � Nb/.biCk � Nb/PN�k
iD1 .bi � Nb/2

(2)

where fb1; b2; : : : ; bN g is an N bits long random string and k is the lag or “order”
of the coefficient. Both b and ak are normalized such that they can take on values in
the interval Œ�1; 1� and that an ideal RNG exhibits b D 0 and ak D 0. True RNGs
are generally constructed such that the correlation among bits is small—which is,
namely, the idea of randomness. In some cases the physical system that is measured
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Fig. 1 Classification of random number generators

is being “reset” to an initial condition after production of each bit in order to reduce
autocorrelation. Therefore in most cases only a few lowest-order autocorrelation
coefficients are significant, ideally only the first one, which is named autocorrelation
and denoted by a.

There are very many constructions or true RNGs and research is still getting
impetus, but in our view one can roughly classify the present art into four families:

• Noise-based RNGs
• Free-running oscillator RNGs
• Chaos RNGs
• Quantum RNGs

The tree of RNGs is illustrated in Fig. 1. Mathematical, pseudorandom generators
can also be divided into several categories depending on the type of algorithm used.

Note that our definition of a true RNG is not to be confused with a pseudorandom
number generator implemented in CMOS logic or similar hardware; such a gener-
ator is still a PRNG, since it is just a hardware implementation of a mathematical
method. Next, we are going to address each of the above families in some detail.

3.1 Noise-Based RNGs

Johnson’s effect [54] creates random voltage on terminals of any resistive material
which is held at a temperature higher than absolute zero. Johnson’s noise is due to
random thermal motion of the quantized electric charge (i.e., carriers). However,
long-range carrier correlations in conductors cause correlations in movements of
electric charges, and, therefore, the resulting voltage is not completely random [4].

Zener noise (in semiconductor Zener diodes) is caused by tunneling of carriers
through quantum barriers of ideally constant height and width. If current is
sufficiently low, individual “jumps” of carriers through barriers will be seen as
voltage peaks across the diode, forming a pink noise of perfect randomness. An
interesting property of this kind of noise is that at sufficiently high inverse voltage,
the diode exhibits high internal avalanche gain. Such a gain mechanism leads to
large amplitude of the noise and is highly insensitive to electromagnetic radiation
from the environment. However, the Zener effect is never found well isolated in
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physical devices from other effects nor is the quantum barrier constant. Most of the
aforementioned processes in resistors and Zener diodes have some memory effect.
This means that an instantaneous voltage across the device depends on voltages
in the (near) past and this in turn leads to a correlation among random numbers
extracted therefrom.

Other popular sources of noise include: inverse base-emitter breakdown in
bipolar transistors, laser phase noise [30], chaos noise [44], etc. The biggest problem
with all kinds of noises is that randomness of noise sources cannot be well charac-
terized, measured, or even controlled during fabrication of the device. Furthermore,
some noise mechanisms (notably Johnson’s noise) produce rather tiny voltages
that need to be strongly amplified before conversion to digital form. The strong
amplification introduces further deviations from randomness due to the limited
amplifier bandwidth and gain nonlinearity. Also, fast electrical switching of binary
logic used in the RNG circuitry produces strong electromagnetic interference so that
multiple nearby RNGs (especially if on chip) tend to mutually synchronize causing
the dramatic drop of overall entropy. On top of that, highly sensitive amplifiers allow
easy manipulation of noise-based RNGs by external electromagnetic fields which
can be exploited for cryptographic attacks.

The general idea of noise-based true RNG is the following. The random analog
voltage is sampled periodically and compared to a certain predefined threshold: if
higher, then “1” is generated; otherwise, “0” is generated (Fig. 2). It is obvious that
the threshold can be set so that the probabilities of 1s and 0s are roughly the same.
However, fine-tuning of the threshold poses an insurmountable time-consuming
problem and can never be done properly. For example, if tuning of bias to value
of 0.1 requires 10 s, then tuning to 10 times the lower value (0.01) would take 100
times longer (the required timescales as square of improvement ratio). And then
there is a problem of stability: even the smallest drift of the mean value (e.g., due to
temperature or supply voltage change) will create a noticeable bias. Provability of
any noise RNG is complicated and eventually made impossible for three reasons:

1. Provability of randomness of the exploited noise source
2. Effect of the sampling/digitizing procedure
3. Eventual use of deterministic post-processing

Going from this basic circuit, researchers have proposed many circuits whose aim
is to improve the randomness, notably the bias.

Fig. 2 Noise-based RNG.
Noise is fed to a level
comparator whose output is
either 0 or 1 depending on
whether its positive input is
below or above the threshold
value VBIAS. Upon Request,
a fresh new random bit will
sit on the Output
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Fig. 3 A zero-bias noise-based RNG by Bagini and Bucci. The biased output produced by an
imperfect threshold principle is divided by 2 by a T flip-flop. The output of the T flip-flop spends
exactly 50 % of the time in state 1 and is sampled periodically by a pulse generator. The idea is
that when sampled (by the D flip-flop), it will yield either 0 or 1 with perfectly equal probabilities.
However, in practice non-negligible deviation from perfect bias will occur and correlations will
exist

First, the most obvious improvement would be to somehow de-bias the raw noise
stream in hardware without the need for any adjustment of the threshold voltage.
An interesting solution to that has been discovered by Vincent [93], generalized
by Chevalier and Menard [9], and independently rediscovered later by Bagini and
Bucci [2] and Stipcevic [77].

In the Bagini–Bucci generator [2] shown in Fig. 3, the analog voltage from the
free-running noise source is periodically sampled at frequency fCk1 and compared
to a threshold value at the comparator. Whenever the comparator produced logical
“1” the T-type flip-flop (TFF) changes its state. If the sampled process is random and
stationary, because of time symmetry of this process, the output of the TFF spends
half of the time in the low state and the other half in the high state. There are a couple
of problems with that design. First, the holding capacitor acts as a memory that
remembers the previous analog voltage. Due to finite impedances in the circuit when
charged with the next voltage level, the voltage will be to some extent dependent on
the previous one, thus creating the autocorrelation. The second problem is that if the
TFF is interrogated at too high a rate, it will tend to give the same answer several
times in a row, thus producing positively autocorrelated output, even when the basic
random process is truly random! The only way to circumvent this problem is to use
a bit sampling frequency fCk2 much lower than the noise sampling frequency fCk1,
for example, fCk2 D fCk1=N , thus arriving at an asymptotically random sequence
of bits in the limit of N !1.

In the variation of this principle named “time summation of a random signal”
[76, 77] shown in Fig. 4, time-wise random pulses at the output of the comparator
COMP are counted by a modulo 2 counter (TFF) whose output gets sampled upon a
request sent over the Request input. The results are similar to the Bagini–Bucci
circuit except that bits can be generated faster because both the low-pass filter
and sampling circuits are not needed. Also, it features a naturally incorporated
automated zero-bias loop consisting of the comparator COMP, a low-pass filter with
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Fig. 4 A zero-bias noise-based RNG by Stipcevic. Time-wise random events appearing at COMP
are summed at the input of the toggle flip-flop (TFF), and when the sum becomes bigger than the
predefined time interval bit sampling period T, random output is equal to the number of random
pulses in that interval mod 2. This is similar to a Bagini–Bucci generator except that there is no
need for a low-pass filter and a sampling circuit. There is no requirement that bits be sampled
periodically. On top of that, there is an automated zero-bias loop

a time constant much bigger than the bit sampling rate, and an amplifier OPA. The
loop sets the threshold for the comparator in such a way that a comparator spends
half of the time in state “1” which is important to minimize autocorrelation. The TFF
then takes care of complete canceling of the bias. In case of periodic bit sampling,
again, correlation among bits will be nonvanishing even if the pulses are completely
random unless the ratio between mean frequencies of random pulses at the sampling
frequency (N ) goes to infinity. In practice however N only needs to be sufficiently
large to keep correlations at the desired level.

The bad side of this “sampling” principle, illustrated in Figs. 3 and 4, is that it
required N random events to produce one random bit (low efficiency). The good
side is that by letting N be large enough, one can obtain any desired level of
randomness quality, at least theoretically. Practically however, small imperfections
in logical circuits, such as uneven high-to-low and low-to-high transitions, will
ultimately limit the achievable randomness. Regarding provability of randomness of
this principle, technical imperfections of the individual components, unclear theory
of operation of the “noise source,” and overall complexity of the circuit make it
impossible to arrive to a credible proof of randomness.

The next example of noise class of RNGs is the Intel RNG [37] implemented in
a limited series of computer processors (Fig. 5). It uses amplified thermal noise of a
resistor to disturb a voltage-controlled oscillator, thus arriving to a “slow” random
pulse generator which is used to sample a “high-speed” periodic oscillator. This fast-
slow dichotomy is similar to the above described sampling RNGs and is known not
to generate theoretically perfect randomness unless the ratio of fast to slow does tend
to infinity. A particular peculiarity of this construction is that a voltage-controlled
oscillator (a steady oscillator has zero entropy) is disturbed by a noisy voltage, thus
very probably yielding a lesser entropy than available from the noise source. The
important property of such a construction is that its frequency cannot surpass a
certain limit, thus guaranteeing a high enough ratio between the aforementioned



True Random Number Generators 283

Fig. 5 A Johnson noise-based RNG by Intel. A high-speed periodic digital oscillator is sampled
at approximately random times defined by a Johnson noise signal. Time-wise random events
appearing at COMP are summed at the input of the toggle flip-flop (TFF)

high and low frequencies. It is therefore clear that the bits generated at the latch flip-
flop (Super Latch) are not very random and require post-processing which consists
of a modified (and patented) von Neumann method of efficiency 1/4 [83].

Yet another Intel RNG appeared in 2011 after “10 years of research” which is
apparently extremely simple [83] (Fig. 6a). The idea is to obtain a circuit that does
not have any (apparent) analog parts and is therefore compatible with logic chips.
The circuit consists of two Yin-Yang connected inverters and two “oddly connected
transistors.” The authors explain that this circuit has two stable states: 0 and 1. If
everything is perfectly symmetric, when transistors are driven high, the output will
end up in either low or high state. The authors further explain that even though
ideally the output value should be random, even the smallest difference in speed
or strength of inverters would lead to high imbalance between zeros and ones (we
would add: and possibly to complete lockup). Therefore Intel has put an additional
current-injecting mechanism that makes inverters controllable enough so that they
can be made “equal.” The quality of random numbers must be very low, because
Intel uses 2-stage post-processing in order to remove bias and correlations (Fig. 6b).
The first stage is an unspecified randomness corrector after which “raw” bits become
“high-quality random seeds.” The second stage is a PRNG seeded by these high-
quality seeds. It remains unclear why high-quality true random numbers would be
passing through a PRNG, but there might be only two reasons. Either these hardware
numbers are not very good and must be further processed by the PRNG or Intel must
comply with FIPS PUB-140 [19] which explicitly does not endorse any true RNG
for cryptographic purposes and in this way numbers technically exit from a PRNG.

All the above examples utilize electronic noise: a resource which is becoming
less and less available because manufacturers of electronics components and chips
make every possible effort to make it ever smaller. Therefore researchers have turned
to sources capable of producing fluctuating voltage similar to electronics noise but
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Fig. 6 Intel’s “quantum” random number generator. (a) Basic digital RNG circuit. Upon each
pulse, output stabilizes in random binary state. This is in fact yet another noise-driven generator
based on a specially prepared trimmed RS-type flip-flop whose both set and reset inputs are tied
together and driven at the same time. The specialty of this flip-flop is that its inner gates may be
current-trimmed in such a way as to make it possible that the output may stabilize in either low or
high state. (Normally it would be locked to either state or produce high bias because of the smallest
asymmetry of its internal gates.) (b) The post-processing scheme

Fig. 7 Laser phase noise-based true RNG. Intensity of noise is determined by fundamental
uncertainty of phase, while its whiteness, that is, a Gaussian distribution of instantaneous
amplitude, is due to the central limit theorem

whose origin is more fundamental and therefore has less sensitivity to technological
advances. For example, very fast noise can be obtained by lasers. Lasers exhibit
very fast fluctuations which can be detected by fast PIN or avalanche photodiodes
(APDs), thus producing wide-band electrical noise.

One such example is the phase noise of a single laser (Fig. 7) invented by the
CREAM group [30].

This is an example of a white noise-based generator where a Gaussian-shaped
distribution of analog electrical amplitudes has been obtained by optical rather than
electrical means (e.g., such as discussed in the Bagini–Bucci generator [2] and some
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others described above). The noise source, shown in Fig. 7, is realized by use of a
single mode VCSEL laser where the signal and its delayed copy have been brought
to interference on an APD detector via a Michelson–Morley type interferometer, a
system also known as “homodyne” detection. The electrical noise produced at a very
high gain-bandwidth photodiode is the result of phase jitter of the laser. The noise
voltage produced by the APD is then digitized by a fast (40 MHz) analog to digital
converter (ADC) with 8-bit resolution and the numbers so obtained are further
processed to obtain random bits at 20 Mbit/s. Authors show that if the delay is much
longer than the laser coherence time of 1.6 ns, then the phase jitter is dominated by
quantum effects which are separate from any construction detail and depend only
on the laws of physics. In that regime, adding sufficient jitter leads to near-perfect
Gaussian distribution via the central limit theorem, similar to the principle utilized in
[77]. The authors further measure the autocorrelation function of the analog noise
and show that after about 10 ns, all correlations die off. To be on the safe side,
sampling of noise is made every 25 ns, and after further simple post-processing,
one obtained 20 Mbit/s of random data that passed all relevant statistical tests
(mentioned in Chap. 4). The similar phase self-interference principle is exploited
in [59]. The advantage of the quantum phase noise over the electronic noise is that
its amplitude is determined by fundamental laws and is therefore (in the ideal case)
independent of technological details of the laser. In our finding though, the authors
here were not considering two important points. First, the time delay introduces a
“rolling” memory effect that necessarily leads to autocorrelation of the noise voltage
generated by the APD, and, therefore, the bits obtained therefrom would not be
random even if the phase jitter itself is random. Second, the bit generating algorithm,
which most critically includes digitization of an analog quantum-random effect, is
only approximate and good care has to be exercised in order to keep randomness
at the desired level at all times. Even so, this is one of the very rare noise-based
generators which are characterized by clean sequence of in-principle provable and
well-understood physical and algorithmic processes.

More examples of noise-based true random number generators can be found in
the scientific literature and in the free-access worldwide patent database Espacenet
[20].

For all noise-based generators, some kind of post-processing is required. In some
cases a simple ad hoc post-processing such as XORing several subsequent bits or
von Neumann [94] de-biasing may be good enough. But if the raw bits exhibit
strong correlations, simple procedures may not be sufficient to eliminate correlations
among bits which can even be enhanced by simple de-biasing procedures or
changed from short-range ones to long-range ones. A better approach is found in
complex, often offline post-processing which however brings in its own problems
(see Sect. 3.4).

There is a strong tendency among researchers to name noise-based RNGs
“quantum RNG” because noise is ultimately caused by small particles governed by
the laws of quantum mechanics. But noise is also a collective effect, a summation
of many individual motions, and therefore its quantum property is “blurred” by a
collective behavior which is somewhere between quantum and classical worlds.
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Furthermore, motion of particles which generate noise (e.g., electrons in a wire)
is usually intercorrelated by action of forces among them to such extent that the
noise may not be completely random [4]. Note that an autocorrelation of the order
of a percent may not be important when motion of electrons is considered but if so
generated random numbers with the serial autocorrelation of the same order (0.01)
are used in numerical simulations, the results may be completely wrong. Finally
noise cannot be “restarted” in order to interrupt correlations between successive
measurement/bit production.

In conclusion, a decent proof of randomness for present noise-based RNGs seems
impossible because the underlying physical processes are not well isolated and do
not rely on obvious or scientifically provable randomness.

3.2 Chaos RNG

Probably the most objectionable principle for physical generation of random
numbers is to obtain them from repeated measurements of a physical system in
chaos. The philosophical problem here is that chaos assumes the existence of an
underlying order in what is seemingly random. So why would someone knowingly
make use of a nonrandom system in order to generate random numbers? We are not
aware of anyone so far asking or answering this question. In our opinion, authors
often resort to this type of generators because of three reasons:

1. Conceptual mixing of chaos and randomness
2. (Mis)belief that hard-to-describe systems necessarily behave in random fashion
3. Robustness of certain chaotic systems to produce macroscopic levels of “noise”

easily utilizable to generate random numbers essentially via noise RNG methods
(as described in Sect. 3.1)

At present state-of-the-art most convenient chaotic systems for fast generation of
random numbers are optical, electrical, or opto-electrical, although mechanical
constructions have also been demonstrated, for example, in [52]. In this section we
present several typical designs.

Lasers can be brought to chaotic fluctuation of output power by many different
mechanisms. Well known are chaotic constructions involving distributed feedback
lasers [44]. One very simple but extremely fast self-feedback chaotic laser system

Fig. 8 The chaotically behaved intensity of a self-feedback laser is read by a photodiode (PD)
whose amplitude is sampled by a fast ADC and further processed by performing a high-order
differentiation, to yield a world record bit production speed of 300 Gigabit/s
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Fig. 9 All-optical laser consisting of (a) ultra-wide-band chaotic laser (UWB), (b) all-optical
sampler, and (c) all-optical comparator

[38] is shown in Fig. 8. Again, the light of chaotically fluctuating amplitude is
detected by a fast photodiode (PD) whose amplitude is sampled by a fast 8-bit ADC
and further processed by performing a high-order differentiation, to yield a world
record bit production speed of 300 Gigabit/s.

Lasers offer means for realizing very fast chaotic systems and are frequently used
for random number generation. Due to the possibility to build tiny lasers, resonators,
and various passive and active optical elements on a chip, such generators can be
completely integrated and can feature a low power consumption.

A RNG shown in Fig. 9 [44] consists of an ultra-wide-band (UWB) chaotic
laser (a), amplitude sampler (b), and comparator (c). Its principle of operation is
a copy-paste of the Bagini–Bucci noise generator described earlier (Fig. 3) with the
difference that instead of electrical noise here the light intensity of a chaotic laser
is used as a source of randomness. The interesting distinguishing characteristic of
this RNG is that it is “all optical,” meaning that all signals and signal processing are
done at the optical level, even the output numbers are in fact digital levels of light
intensity: low light intensity signifies “0,” while high intensity signifies “1.” This is
interesting for use in all-optical processing chips, and furthermore, if so needed, the
output can be easily converted into an electrical signal by use of a fast photodiode
and a suitable amplifier.

The UWB chaotic laser is made of two distributed feedback lasers, “master” and
“slave” (Fig. 9a) with master disturbing the feedback loop of the slave in such a
way as to enhance its bandwidth in a chaotic regime [97]. The output intensity is
extracted from the feedback loop by means of a beam splitter and sampled by an
optical sampler at a constant sampling frequency determined by the mode-locked
laser (Fig. 9b). Each sampled value of light intensity is then compared to a threshold
value by means of an all-optical comparator (Fig. 9c) resulting in either high output
intensity (“1”) or low intensity (“0”). The random bits are produced at the pace of
the mode-locked laser.
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Fig. 10 All-optical XORing of two independent RNGs reduces bias and correlations among bits

Bits so obtained are biased and somewhat autocorrelated. Since they are pro-
duced at periodic times, the authors resort to a convenient bias and correlations-
reducing procedure by XORing simultaneous output bits of two identical, inde-
pendent RNGs, as shown in Fig. 10. The resulting random bits pass relevant
statistical tests [44]. The chaotic behavior of the master-slave UWB laser has
been theoretically modeled and the bandwidth of the model shown to agree with
experimental data [98], in an attempt to support the claim of randomness of the
above RNG. However, modeling or proving the shape and width of the noise
spectrum of a source proves nothing about its randomness.

In a body of research related to chaotic RNGs, some authors claim to use
system(s) in chaos without actually providing any direct evidence that the system
in use for random number generation is indeed in chaos [85], some are able to
demonstrate chaotic behavior, for example, by studying ballistic maps or Lyapunov
exponents [62], and some even go so far as to model the chaotic behavior of the
system and confirm it experimentally [44, 97, 98]. But whichever the case, chaotic
RNGs have a theoretic base common to those PRNGs which operate by simulating
a deterministic chaotic system, for example, and therefore in the long run became
short-breathed in producing new entropy, inevitably ending in producing not more
than a small fraction of 1 bit of entropy per each new generated random bit.

A general objection to the very idea of the generation of random numbers
by chaos is that chaotic behavior is defined as a specific type of solution of
the differential equation which, supplemented by initial conditions, describes the
system. Because any such equation and data contain only a limited (small) amount
of information, once that much information is extracted from the system by
measurements there is no new information that can be extracted from it, and con-
sequently all further measurements contain (asymptotically) zero new information.
In particular it means that a chaotic system, in theory, can only produce a limited
set of random bits and that all the rest must be perfectly or near perfectly correlated
to that set. Having said that, we understand that a realistic chaotic system never
behaves exactly as it would by obeying the “equation of motion” that models it
because of random quantum or statistical effects which randomize the system’s
phase-space trajectory all the time. However, these additional effects are not the
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Fig. 11 Schematic diagram
of fast (left) and slow (right)
FROs. Oscillation frequency
is determined by internal
delays and stray capacitances

basis for a chaotic RNG (and therefore not accounted for in its definition) and also
are usually too tiny or ineffective to make any significant difference in a system
whose behavior is mostly determined by a macroscopically observable chaos. On
the other hand, fundamental quantum randomness alone can be harnessed for the
production of provable random numbers, as we will discuss in Sect. 3.4.

3.3 Free-Running Oscillator RNGs

When the output of a logical inverter circuit is fed to its input, the circuit turns to an
oscillator, a so-called free-running oscillator (FRO) (Fig. 11).

An inverting gate is in practice a very high-gain inverting amplifier. Connecting
its output to the input creates the Zeno paradox: if the output is in logical HIGH
state, then the input will be as well and the NOT action will drive the output to go
LOW. Once the output goes LOW, the NOT action will drive it to HIGH and so
forth. Theoretical Boolean logic analysis will yield that the output is undetermined,
but in practice due to the finite propagation delay of the NOT element, the circuit
will oscillate. The peculiarity of this oscillation is that it appears in a circuit with
negative feedback (180ı phase shift), while in electronics theory negative feedback
leads to “stabilization” rather than to oscillation. The reason for that is that by
analyzing logical states we assumed infinite gain. However, since in practice gain
is never infinite, it may happen that the circuit locks (stabilizes) into some voltage
state between zero and one without any or with very small amplitude oscillations
which are not capable of driving further logic circuits. To help oscillations, one may
intentionally add some reactance in the feedback loop so as to produce phase shift
different from˙180ı. The same function may be provided with stray reactances. In
that case, the Barkhausen criterion may be satisfied for some high-frequency pole
and oscillations will appear. Due to the complex mechanism of free oscillations,
their frequency is typically quite sensitive to variation of power supply voltage and
temperature but these changes are slow compared to the oscillation frequency. On
the other hand, the electronic noise present at the input adds to the signal fed back
from the output and after being strongly amplified causes very fast, random jitter
of frequency and phase of oscillations. In that sense, FRO RNG can be regarded
as a special case of a noise-based generator. Since the noise of each such circuit is
individual, it is reasonable to assume that the multiple oscillators even when on the
same chip have different frequencies and that their mutual phases walk off randomly
in time. But when multiple such oscillators are close to each other (e.g., on a single
chip), they tend to synchronize through electromagnetic interaction facilitated by
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the high gain of FRO amplifiers. In effect, the immense gain of NOT gates required
to amplify tiny electronic noise to a noticeable level also helps to pick up any other
nearby interference. This effect known as “phased interlock” [54] may adversely
affect the performance of the design and is a major problem inherent with FROs.
Interlocked rings have waveforms that share (nearly) the same phase and this will
lead to (near) pseudorandom operation. The same effect of high gain makes FROs
vulnerable to attacks with external electromagnetic radiation.

The basic principle of random number generation with FROs is that output of a
fast FRO (which can be either logical 0 or logical 1) is sampled by a slow FRO. This
is an equivalent to abrupt stopping of a quickly turning wheel of fortune. Because
the wheel spins so “fast,” it appears stopped at a “random” position. In case of
two FROs, it is important that the relative phase jitter, between the fast and the
slow FRO, is both random and large enough. Clearly, if there is no relative phase
jitter the output will provide repetitive binary patterns. If the jitter is random but
small, deviation from the repetitive pattern will be small as well leading to near
pseudorandom behavior. If FROs synchronize or at least partially synchronize, a
pattern with stochastic excursion (noise) would appear. Apart from that, another
very important problem with FRO RNGs is that the output amplitude of an FRO
depends on the details of the stray reactances and delays in the circuit. As explained
above, for a particular circuit it may well happen that the output amplitude of an
FRO is too small to drive the logic circuitry or that the FRO locks in some state and
stops oscillating. Schmitt action at the input of the first inverter (Fig. 11) can help
minimize this problem but at the expense of lowering the oscillation frequency and
complicating the fabrication.

In spite of all these problems, current security standards [65] practically dictate
the use of RNGs based on free FROs. The NIST standard FIPS140-2 [19]
says: “There are no FIPS Approved nondeterministic random number generators.”
Consequently, the FRO approach currently is used in 3rd- and 4th-generation
FPGA, CPLD, and ASIC hardware for various cryptographic purposes. One real-
life example that illustrates well the combinatorial cuisine typically needed to obtain
a decent RNG is the entropy source for PadLock “quantum” RNG implemented in
VIA C3 processors [88–91]. It consists of four FROs, 3 fast (450–810 MHz) and

Fig. 12 VIA C3 PadLock random number generator samples fast FRO (A) by slow FRO (D)



True Random Number Generators 291

1 slow (20–68 MHz). Wide tolerance on the frequencies already shows problems
that we mentioned before: it is very hard to control the parameters of FROs during
fabrication. In this topology fast FRO (A) is sampled by a slow FRO (D) as
discovered in the patent application [78]. At least one of the two FROs must be
of good randomness, and since it is easier to achieve with the slower one, VIA went
for that option. The slow generator is made of FROs B, C, and D. First, B and C
are slowed down by 1/8 dividers and their XORed outputs are used to disturb slow
FRO D (which is the only one featuring digital input). Resulting bits appear at the
output Q of the D-type flip-flop in synchronization with pulses from the FRO D.
Optionally, the output is filtered through a von Neumann corrector [94] which cuts
the bit production rate roughly by a factor of 4 (see description in Chap. 4). Looking
at this schematic, it is clear that it is impossible to arrive to a proof of its randomness.
According to VIA [88], the analog bias voltage injected into this otherwise digital
circuitry “may (or may not!) improve the statistical characteristics of the random
bits.” The bottom line is that the random numbers are still of low quality and in
order to pass tests must be corrected (Sect. 3) by a full-blown secure hash algorithm
SHA-1 which is hardwired into the logic circuits on the same chip [88].

Because the digital logic chip infrastructure is unsuitable for realization of
a quantum RNG (Sect. 3.4), an FRO approach seems to be a reasonable viable
alternative. However, a caveat with FROs is that the semiconductor industry is
making an enormous effort to make the electronics noise as small as possible and
it generally goes down with newer versions of a chip. Consequently the effect of
jitter can be very small and cause the FRO-based RNG to operate in nearly PRNG
regime. Therefore the implementation details of an FRO-based RNG most often
have to be tailored for each specific type or generation, and the technology of a
programmable/reconfigurable or ASIC chip and its uniformity of operation cannot
be guaranteed from batch to batch.

A partial solution to the above-mentioned problems has been recently found in
a novel synergistic combination of a linear feedback shift register (LFSR) [27] and
FRO, called the Fibonacci ring oscillator (FIRO) and Galois ring oscillator (GARO)
[16]. The idea is to have a seeded LFSR-like PRNG which is realized as a clocked
FRO. Such true random number generators do receive an initial state (seed), but
although the seed sets the initial state, two identical generators with identical seed
would diverge in time as they are under the influence of (at least partially) individual
noises. Figure 13 shows the schematic of GARO and FIRO.

Still, even with this interesting and innovative principle, the problem is cross-
platform non-portability of the design and the requirement of sufficiently large noise
for the scheme to work in a reasonably random (far from pseudorandom) regime.
Furthermore, the authors warn that the design must be done most carefully in
order to minimize interlocking with the system clock and other logic circuits in the
chip, including nearby FROs. Therefore they experimented with spatial placement
of FROs in the chip. They also conclude that randomness of either of the two
generator families by itself is not perfect and could be “enhanced” by XORing two
independent generators, most favorably one GARO and one FIRO.
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Fig. 13 Galois ring oscillator (up) and Fibonacci ring oscillator (down). Number of stages defines
order (r), while switches fi define coefficients of the feedback polynomial

More examples on FRO pre- and post-processing gymnastics, including XORing
multiple generators, combinations with LFSRs, etc., can be found in [81]. The
complexity of post-processing procedures required to pass the statistical tests with
FRO-based RNGs is often such that any randomness proof is impossible, but even
more interestingly the authors almost never seem to be aware that a proof is needed.
A rare exemption in that respect is the work of Sunar et al. [82] where a theoretical
model of an FRO-based RNG has been presented, analyzed, and proven but later
criticized in [101] as nonrealistic. We however found the whole proof unsatisfactory
because it is based on McNeill’s model of FRO which simply postulates that free
oscillations occur as a nonstationary random process without actually linking the
postulate to reality, for example, by means of laws of physics. An excellent further
reading and summary of problems and cuisine used to minimize them is found in
[101]. Further reading on FRO-based RNGs is given in [81].

In conclusion, FRO-based RNGs are low-cost, low-entropy solutions whose only
good side is the fact that they can be easily implemented in conventional pro-
grammable or reconfigurable logical chips which are used in various cybersecurity
solutions, but they do not offer either very good or provable randomness.

3.4 Quantum RNGs

What is a quantum random number generator? Since we live in a world governed
by the laws of quantum physics, any true random number generator (e.g., a rolling
dice, or a flipping coin) may be named “quantum.” However, we want to reserve this
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name for only those generators which utilize a single intrinsically random quantum
effect (realized as close as possible to its theoretical idealization) measured over
and over again in order to produce random bits in such a way that between any
two sets of measurements used to deduce random bits, the system is reset to the
same initial conditions. It may seem strange that such a physical setup (generator)
is even possible, namely, that starting from exactly the same initial conditions and
measured in exactly the same way, it gives different results, but quantum physics
allows it. In this section we describe and explain multiple examples described in
scientific articles and patents.

It turns out that some things in nature come in the smallest amounts known
as quanta. For example, the electron carries the smallest quantity of charge, e.
Similarly, there is the smallest quantity of information, called qubit. A single
quantum of light (photon) can be used as a carrier of one qubit, but there are many
other examples and they are not limited only to elementary particles. Qubit can be
thought of as a linear combination of two bit values: 0 and 1. When a certain type of
measurement is performed on a qubit, it will “project” to either pure 0 or pure 1 state
in the basis in which the measurement has been carried out. Very often photons are
used in QRNGs because they are easy to create, manipulate, and detect. To illustrate
this let us consider circularly polarized photon entering a polarizing beam splitter
(PBS) (Fig. 14). The PBS decomposes polarization of incident light and sends the
linear horizontal component to one output port and the linear vertical component to
the other port.

Thus, a circularly polarized photon has equal content of both linear polarizations,
but since it cannot be split in half, it has exactly 50 % chance to exit either port. If
now we label one of the ports as “0” and the other as “1,” we immediately get a
theoretically perfect RNG whose randomness is guaranteed by the laws of quantum
physics. Note that the system being “measured” is always the same yet it always
gives a new random result. This is completely different from chaotic and noisy
generators where in order to get a different result systems must change.

Quantum RNGs based on this (or other principles) can be made pretty good,
and the imperfections of any type (multiphoton emission, non-perfect circular
polarization, beam splitter port axis misalignment, detector dead time, afterpulsing
and memory effects, etc.) can be measured independently of the bit generation

Fig. 14 Spatial principle
QRBG. Circularly polarized
photon splits onto a linear
horizontal/vertical analyzer
with 50 % chance to finish in
either of the two output ports
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process so their effect on random numbers can be estimated with precision and
dealt with in post-processing (see Sect. 3.5). This method is a basis for a commercial
generator [33].

The main problem in practical realization of the beam splitting RNG is that
it requires two detectors. Their initial differences and subsequent walk-off with
time due to aging and/or temperature effects will have an immediate impact on
the quality of random numbers. For example, if the photon detection efficiencies of
detectors are not perfectly equal, or if the beam splitter is not perfectly 50/50 %,
then the probability of ones will not be equal to the probability of zeros. This
problem can be minimized by use of a beam splitting scheme which utilizes only
one photon detector [75] shown in Fig. 15, but still the beam splitting ratio must
be precisely adjusted mechanically. Leftover problems arise from detector dead
time and afterpulsing leading to correlations which are impossible to eliminate
completely but can be reduced below any desired level by targeted post-processing.

The beam splitter RNG is an example of a “spatial principle” in which the value
of the random bit, 0 or 1, is determined by the place at which the photon ends up.
A complementary “temporal principle” uses time information of random photon
emission, for example, in direct atomic (or quantum dot) relaxation, from well-
saturated lasers, etc.

A simple time interval method shown in Fig. 16, which is particularly immune
to hardware imperfections, has been proposed in [80]. It uses time rather than

Fig. 15 Optical quantum random number generator based on beam splitting which makes use of
only one photon detector in order to avoid bias fluctuation with aging and initial tolerances

Fig. 16 Timing principle QRBG. Photons from a single photon Poissonian source fall onto a
single photon detector. Time intervals t1 and t2 spanned by three subsequent photon detections
are compared: if t1 > t2 then produce “0,” if t2 > t1 then produce “1,” and if t1 D t2 then produce
nothing (skip)
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Fig. 17 A general processing scheme of the temporal principle QRBG. Time-random photons fall
onto the single photon detector consisting of a photomultiplier, an amplifier, and a comparator,
such that each detected photon generates one logical pulse. Pulses are then processed according to
the desired bit extraction principle and transmitted to a computer

space information contained in a random event generator (REG). In [80] photon
emission and detection processes are used for the first time instead of much slower
(and more dangerous!) radioactive decay [22,26]. The bit production principle is as
follows. Time intervals t1 and t2 spanned by three subsequent photon detections are
compared: if t1 > t2 then produce “0,” if t2 > t1 then produce “1,” and if t1 D t2
then produce nothing (skip).

The schematic of the physical setup is shown in Fig. 17. Because only one photon
detector is used, both bias and correlations are suppressed to almost undetectable
levels, yet there is nothing to be adjusted (unlike with the beam splitting principle).

The problem with this method is how the time intervals are measured. The
crucial improvement made in [80] is the notion that clock measuring time intervals
(ti ) must be started in synchronization with beginning of each interval; otherwise,
the method would produce correlated bits even if fed by perfectly random events.
This was not understood in previous works and patents [22] which consequently
must have yielded correlated output, but this was not detected at the time because
the clock frequency (10 MHz) was much higher than the source mean frequency
(10 kHz) in which case correlations are small. It can be shown that this method
not only performs well at low ratio between clock and RPG frequencies but that it
also cancels out almost all imperfections: intensity change of the source, efficiency
change, dead time, and afterpulsing of the photon detector. It is also highly immune
to actual distribution of random interval times, as long as events are independent of
each other. Furthermore, random bit production is self-clocked so if either source
or detector dies, there will be no bits at the output. This generator was the first one
found to pass all known tests including “usual” t-statistical tests [47,67,68,96] and
some undisclosed algorithmic randomness tests [31].

A mixture of beam splitter and temporal principle is described in [35]. An
unpolarized photon stream from the light source (LED) is passed through a polarizer
reaching a polarizing beam splitter (NPBS), much the same as in the aforementioned
beam splitter RNG (Fig. 14). With careful adjustment of the relative angle between
polarizer and NPBS axis (ideally 45ı), detectors D1 and D2 should produce
random, mutually uncorrelated pulses of equal frequency (however adjustment of
the polarizer angle is an insurmountable task, as explained for RNG in Fig. 3). While
pulses from D1 reset (input R) the RS-type flip-flop setting the output to LOW state,
D2 sets (input S) the flip-flop to HIGH state. The output of the said flip-flop is
sampled at periodic times in order to generate random bits (Fig. 18).
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Fig. 18 Optical quantum random number generator based on beam splitting and periodic sampling
principles

Fig. 19 Optical quantum random number generator based on near-exponential statistics of photon
time detection. The main detector imperfections, the dead time and pileup, have been found to
work in favor of smaller bias and serial autocorrelation which have been found to be as small as
2 � 10�5 without post-processing

Being a combination of beam splitting and sampling principles, this construction
inherits the worst of both:

1. Bias is unstable (sensitive to temperature variations) and only mechanically
adjustable.

2. Correlations due to the finite sampling period as discussed in noise generators,
and all that even if a perfectly random source of photons is assumed.

A commercial QRNG of Fürst et al. [23,60] utilizing only the temporal principle
is shown in Fig. 19. The data-taking schematic is equivalent to the general scheme
given in Fig. 17 with the light source being a low-intensity operated LED weakly
coupled to a photomultiplier tube. Low coupling ensured low photon sampling
rate on the order of 10�8 which suppresses any eventual photon correlations far
beyond the detectable level. The bit extraction method is implemented in an FPGA
reconfigurable chip and is as follows. The number of detected photons is counted
in intervals of a constant time yielding a Poissonian statistics. An even number of
events within an interval is interpreted as “1” and odd as “0.” The authors note that
due to the nonsymmetric shape of the Poissonian distribution, the probability of
ones is not equal to the probability of zeros. However, due to the two imperfections
in the photon detector (nonzero dead time and dependence of dead time with the
detection frequency), the resulting distribution is not Poissonian but more bell
shaped, thus favorably leading to a bias that quickly tends to zero as the counting
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interval length rises. The authors show and compare experimental and theoretical
results for modeled bias; however they do not model or prove anything about
correlations. Instead, correlations are simply evaluated from generated bits using
a linear autocorrelation coefficient. Theoretically, bias tends to zero as detection
frequency goes to infinity. Empirically, the preferred operating condition is close
to as high as possible a detection frequency but a bit smaller due to rising
problems in the photon detector. But in the same limit, it is to be expected that
fluctuating bias produces an increasing level of complex short-range correlations
among bits—which however has not been mathematically modeled and/or brought
into connection with the imperfections of the setup. The problem with this approach
is that it fails to describe a theoretical model of an RNG that gives perfect random
numbers based on a (nearly) ideally random quantum effect (e.g., low-intensity
emission from LED) and assuming ideal apparatus. Consequently it fails to clearly
prove randomness and to model deviation from perfect randomness introduced by
implementation-related imperfections. Nevertheless, this generator has a practical
value because it apparently passes all relevant statistical tests. It is however to be
understood that an acceptable randomness proof cannot be obtained by passing any
number of randomness tests (as will be discussed in Sect. 3.5).

Yet another commercial quantum RNG which utilizes photon arrival time
information has been presented by Picoquant [57, 95]. Here the complete chain of
reasoning required for a convincing randomness proof has been at least attempted
and, according to the authors, successfully established. As in the previous example,
a random event source of the type shown in Fig. 17 is made utilizing essentially
the same technique as in [23] (LED + photomultiplier tube). The specific difference
of this construction with respect to previously described ones which use high-
speed photon detection and produce �1 bit per detection [23, 35, 75, 80] is that
the random detections are made at a relatively low mean frequency of 12.5 MHz,
thus operating in a regime far from dead time and pileup effects producing a highly
precise exponential distribution of time intervals (Fig. 20 left). The time intervals

Fig. 20 Optical quantum random number generator based on highly precise exponential dis-
tribution of photon detection times: schematic (left) product photo (right). The times between
subsequent random events are measured by a very precise timing hardware resulting in integer
numbers that represent the time. These numbers are then used to extract much more than 1 bit
per detected photon resulting in 150 Mbit/s overall average bit production rate obtained after post-
processing with resilient functions (see Sect. 3.5)
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t1; t2; t3; : : : are measured by a nanosecond precision, and quasi-exponentially
distributed integer numbers so obtained are used to generate on average14 random
bits per each detected photon yielding 160 million raw random bits per second.
The imperfections both in the extraction method and in hardware (timers, detectors,
light source) are modeled resulting in a convincing lower bound on the average per-
bit entropy of the raw bits. The average entropy is then improved by compression
of the raw stream by resilient functions (see Sect. 3.5) to the level theoretically
indistinguishable from true randomness even for bit strings of unrealistic length.
The weakest link, in our opinion, is this last post-processing step because it is
not clearly proven that resilient functions are effective against the specific type of
imperfections present in raw bits, that is, that bounds on post-processed bits hold.
However, raw bits are already very close to randomness, and further post-processing
by resilient functions clearly improves the pass rate of statistical tests indicating that
the resulting bits are very close to true randomness. Indeed, post-processed bits at
an average speed of 150 Mbit/s pass all relevant statistical tests as well as some
undisclosed statistical and algorithmic tests performed by the University of Twente
research group [31]. Still, caution is maybe in order when resilient functions are
used because some researchers [81] point out that resilient functions appear to be
limited in their ability to eliminate the effects of active adversaries on the output bits.
A similar principle but by digitization of an analog quantum amplitude is described
in [1].

An example of a very fast (110 Mbit/s) generator of similar construction and
philosophy as the previous one has been presented in [99,100, Figure 21]. In the first
article, faint continuous light (from an LED) shines upon a photon detector which
produces random events (detections) quite similar to the general system shown
in Fig. 17. Times between subsequent events are measured with a high resolution
clock in order to obtain integer numbers that approximately follow exponential
distribution. These numbers presented in binary form do not yield random bits
because they have been drawn from a highly nonuniform distribution (namely,
exponential cut-off near zero at the dead time). In order to obtain more uniformly
distributed numbers, in the subsequent article the light from the source (LED)
is shaped in pulses with sharply rising power starting from the beginning to the
end of each pulse. The idea is that by using carefully tailored pulse shape, the
times between subsequent photon detections would become uniform rather than
exponential. There are caveats with this. First, the time intervals between photon
detections are measured with a free-running clock which has been noted in [80] to
immediately lead to correlations even if incoming random events are truly random.
Second, this scheme critically depends on the resulting distribution being exactly
uniform, while the authors measured only approximate ones. Third, by using a very
high-speed clock, the authors try to “squeeze out” as many random bits as they
can from a single photon event (20 bits per detected photon) which generally
leads to great amplification of hardware imperfections, thus leading to pretty bad
raw random bits, as indeed was found. Fourth, the approximate results relating to
the variable pulse power are both fundamental (i.e., pulse power should tend to
infinity at the end of pulse proportional to 1=.t � t0/ where t0 is the pulse length)
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Fig. 21 Optical quantum random number generator based on near-uniform photon arrival times
from a specially shaped optical pulses

Fig. 22 Optical quantum random number generator based on periodically gated, “self-
differencing” approach operated avalanche photodiode (APD). The power of DFB cw laser
(1,550 nm) is adjusted (by means of variable attenuator) such that the strength of the electromag-
netic field falling on the surface of the APD causes roughly 0.004 avalanche detections per gate,
resulting in 4.01 MHz of random bits

and practical (pulse shape is achieved by an analog, only partially precise circuit,
thus not allowing us to properly conduct proof of randomness. The authors also note
that this circuit produces strong electrical disturbances in nearby circuitry which, in
our view, makes it unsuitable for miniaturization to a chip level. And finally, the
theoretical basis for exponential time-arrival distribution is drawn out of a steady
field assumption, whereas here the strength of the light electromagnetic field is
wildly varying so even theoretical grounds for this generator are not clean (Figs. 21
and 22).

This generator belongs to a broad niche of RNG constructs whose general philos-
ophy is to produce partially random data and then filter it through a pseudorandom
hash function (such as SHA-256 used in this example) in the hope of improving the
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randomness (see Sect. 3.5). We believe this is a very problematic approach and here
is our reasoning. Proof of randomness in this case relies on estimating the entropy
of the source of raw bits and on the process of randomness amplification by hashing.
The hashing procedure is generally not foolproof [3] and does not allow just blind
application of the hash function to a badly constructed generator. Let us imagine, for
example, that raw RNG source produces some sequences more often than the others
(which indeed is the case if it is nonrandom). Then the hash of these sequences (the
hash function being deterministic) would also produce some sequences more often
than the others meaning that even the “corrected” bits would not be random. A nice
confirmation of this comes from this very example: even after hashing, the produced
bits are not completely random and fail some statistical tests.

We saw that photon emission and photon detection techniques are often used
in quantum random number generators. The photon detection rate of current single
photon detectors is a limiting factor in achievable random bit product rate especially
for semiconductor APDs. APDs are small and convenient for single photon detec-
tion on a chip scale; however they suffer from imperfections that are especially bad
for random number generation and consequently rarely used for that purpose. The
biggest problems are relatively long dead time (induced by requirement to quench
avalanche between subsequent detections) and high afterpulsing rate (usually in the
range 1–10 %). In order to advance on this, Toshiba has developed a special, so-
called “self-differencing” approach [102] to readout of semiconductor avalanche
photodiodes which promises significantly higher detection rates (lower dead time)
than the usual active quenching method while suppressing afterpulses by effectively
squaring the afterpulsing probability. This new technique has been used for random
number generation by the same group of authors [18]. Namely, even though this
method does not offer spectacular improvements in general because it inherently
prefers operating the APD at low detection efficiency, it is very well suited for
use in random number generation because of its high gating speed and complete
irrelevance of the photon detection efficiency for that application.

A distributed feedback (DFB) laser in continuous wave (cw) mode is used as
the light source. The power of the DFB laser (1,550 nm) is adjusted (by means
of variable attenuator) such that the strength of the electromagnetic field reaching
the surface of the APD causes roughly 0.004 avalanche detections per gate. When
detection occurs, a new random bit is generated and its value is “0” if it occurred
on an even gate or “1” if on an odd gate. Taking into account the detection
efficiency of 0.004, this method yields 4.01 MHz of random bits. This bit generating
process is intrinsically biasless (probabilities of zeros and ones are equal) but
(what is not noted by the authors of this article) there is an intrinsic negative
autocorrelation which rises with detection efficiency. Namely, in the limiting case
of efficiency 1 (one detection per gate), there would always be a “1” after “0”
and vice versa, thus producing a completely deterministic sequence 01010101 � � �
which has autocorrelation equal to �1. Even though the authors claim that this
method of generating random numbers could, in principle, be extended to much
higher rates by using a higher laser power and a detection rate of up to 100 MHz
(efficiency of 0.100), it is clear that at that point the autocorrelation would amount
to approximately �0:1 and the bits would not pass any randomness test.
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There are numerous other variations of space and time principles that can be
found in the scientific and patent literature.

In conclusion, the most distinctive characteristic of a quantum approach to
random number generation is that, at least in principle, it makes it possible to
establish a simple relation between the randomness of numbers, the exploited
physical process, and the implementation imperfections, thus offering a possibility
for scientific proof of randomness. Careful practical realizations come sufficiently
close to theoretical idealization and allow for an independent assessment of
implementation imperfections, the effects of which can, if required, be dealt with
by information-theoretic post-processing (see Sect. 3.5). On top of that, quantum
random detection processes exist that are inherently highly insensitive to electro-
magnetic radiation (e.g., avalanche amplification in semiconductor photodiodes),
thus offering immunity to side-channel manipulation by external fields. Because of
all said, quantum RNGs are the best choice for true random number generation for
cryptography and other applications which critically require true random numbers.
The most significant drawback of the present solutions is that they make use of bulky
physical objects and therefore cannot be miniaturized to the chip level using present
technologies. Furthermore, due to the frequent use of photon detectors, QRNGs are
typically very expensive and much slower than software PRNGs. Fortunately, the
nascent science and technology of optical chips offers a promising avenue for fast,
miniature, and affordable quantum RNGs, and significant advances can be expected
in this exciting field in the near future.

3.5 Post-processing

True random number generators can never be made perfect and therefore some post-
processing is usually required. There exist a plethora of post-processing algorithms
whose purpose is to eliminate imperfections present in “raw” random numbers
produced by physical generators. A good review of post-processing methods is
given in [81]. Here we will only categorize and shortly describe the main principles.

The general idea of post-processing (Fig. 23) is to sacrifice a certain percentage
of bits in order to arrive at a smaller but more random set. There are basically four
techniques:

1. Ad hoc simple correctors
2. Whitening with cryptographic hash functions

Fig. 23 General schematic of random number post-processing
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3. Extractor algorithms [71, 72]
4. Resilient functions [10, 42, 43, 69]

Although there is a “gray zone” of what part of random number production belongs
to bit extraction method and which to post-processing, the bit extraction is usually
a first and very simple step which converts physical measurement of an analog
or digital signal into the “raw” digital random binary number (such as digitizing
analog noise via a threshold comparator shown in Fig. 2), whereas post-processing
is a more complex process designed to reduce or completely remove imperfections
that are necessarily present after the first step. While bit extraction is always made
in hardware, post-processing algorithms are usually so complicated that they can
only be executed by a computer (or a microcontroller or FPGA) although the most
valuable post-processing techniques are those simple enough to be suitable for direct
implementation in hardware.

Generally, post-processing takes a lot of resources and blurs. In our opinion,
a good true RNG should be post-processing-free or use minimal ad hoc post-
processing. Most popular post-processing techniques can be categorized into four
families as described in the following.

3.5.1 Ad Hoc Simple Correctors

Ad hoc corrector examples are XORing two or more neighboring bits from the
same RNG [72], omitting bits (decimator), feeding an LFSR with imperfect random
numbers [84], Latin square bit reshuffling [47], von Neumann [94] and Peres [56]
de-biasing, XORing two or more RNGs that work in parallel [14, 44], etc.

It is important to note that ad hoc, naïve processing can lead to unexpected
problems. For example, it is usually considered a good idea to apply a von Neumann
de-biasing scheme [94] in order to completely remove any bias from the sequence
of bits. The scheme works as follows. The biased bit sequence is cut into a
sequence of non-overlapping pairs of bits. Pairs 11 and 00 are discarded, 01 is
converted to “0,” and 10 is converted into “1.” While it is tempting to think that
the probability of occurrence of 10 is equal to the probability of 01 (and therefore
the resulting sequence has no bias), it is often overlooked that this is true only if the
bits are completely independent (no correlations). The following extreme example
illustrates how miserably von Neumann’s procedure can fail. Let us consider the
sequence: 101010101010 � � � . It obviously readily has no bias. After application of
von Neumann de-biasing, the sequence reads: 111111 � � � which is a maximally
biased and maximally correlated sequence. The reason for this unexpected result
is that the original sequence is maximally anticorrelated and therefore quite far
from the assumption of complete statistical independence. Generally, if the raw
string is correlated, naïve de-biasing procedure may even increase the bias or create
other unexpected statistical deficiencies. On the other hand, simple and easy-to-
understand ad hoc correctors have the advantage over more complex procedures, in
that they are easier to include in a randomness proof.
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3.5.2 Cryptographic One-Way (Hash) Functions

A one-way hash function is a mathematical function whose domain is a whole set
of integer numbers and whose output is a binary number of exactly N bits, where
N usually is in the range from 128 to 512. Hash functions are characterized by two
requirements:

• Given an output value, there is no faster way to find a corresponding input than
by random guessing (i.e., a hash function is “one way”).

• The probability of two different inputs yielding the same output is less than or
equal to 1=2N .

One of the most popular post-processing techniques is “whitening” of output
of a TRNG by means of a cryptographic hash function, such as MD5, SHA-1,
SHA-2, SHA-256, and SHA-512. Many authors believe that a bad RNG that does
not pass statistical tests, and runs through a “cryptographic” hash compression
procedure would magically become very good, without actually demonstrating any
theoretical understanding on why this should be the case. Indeed a very interesting
example given in [99] demonstrates that hashing a bad generator can fail to enhance
randomness enough to pass statistical tests.

From a performance perspective, implementing a hash function in hardware
chips is pretty resource demanding, so in most cases hashing is done on a computer;
two exemptions to this rule are the aforementioned Intel’s RNG in Fig. 5 and VIA
C3 in Fig. 12, which make use of SHA-1 hardwired right next to the RNG on the
same chip. Regarding the provability of randomness of the hashed output, even
though interesting results on privacy (and randomness) amplification have been
theoretically exercised for Wegman’s Universal Hash Function(s) [7], in the case
of real-life, black-box hash functions (which probably contain unknown statistical
or security weaknesses), it is hard to perform a convincing proof of randomness.
For example, a hash function may contain statistical problems like some output
strings being more probable than others which would then be inherited by the
output bits even if the function is fed by perfect random numbers. On top of that,
hash functions are usually used at the end of the post-processing leaving a bitter
aftertaste in the mouth that physically generated random numbers actually exit
out of a deterministic, complex, black-box piece of software which has not been
specifically designed for the purpose.

3.5.3 Extractor Functions

A more scrutinized approach to randomness healing is offered by the young theory
of extractors [71]. A randomness extractor is an algorithm that converts a long
weakly random sequence into a shorter sequence with almost perfect randomness.
For some randomness sources, provable extractors exist but no single randomness
extractor currently exists that has been proven to work when applied blindly to any
type of a high-entropy source. The problem with extractor algorithms is that they
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require a memory buffer and a lot of CPU which complicates the hardware and
slows down the overall output bit rate.

Extractor functions for post-processing of true random number generators were
proposed by Barak et al. [3]. The initial purpose was to achieve designs robust
against changes in the physical generators due to, for example, aging, temperature
changes, or attacks. Extractor functions are stateless functions with quantifiable
properties originally developed as a tool for complexity theory. The aforementioned
group of authors has developed a mathematical model to capture an adversary’s
influence on the randomness source and give an explicit construction based on
universal hash functions which is proven for its output properties even if nonlocal
correlations exist in the input source.

More on the theory and practice of extractors can be found in [72].

3.5.4 Resilient Functions

Yet another approach to enhancing randomness by filtering through some determin-
istic process is the use of resilient functions that were introduced by Sunar et al. [82]
as the post-processing step for an FRO RNG design. The idea is, according to the
authors, to “filter out any deterministic bits” from the raw string in the environment
where some bits may be under the control of an attacker and that bits are then
considered “deterministic.” The authors of [82] study the degree of resilience of the
procedure against active adversaries (therefrom comes the name of these functions).
In short, an .n;m; k/-resilient function is a function f W F n ! Fm such that every
possible output m-tuple is equally likely to occur when the values of k input bits
are fixed and the remaining n � k bits are each chosen at random. The elements of
F are binary values 0 and 1. The important distinguishing characteristic of resilient
functions is that they have been constructed specifically to nullify the attacks on a
(certain percentage of) random bits—a point of high importance in cryptographic
applications of random numbers (see Sects. 4–6).

More on the theory and practice resilient functions can be found in [10, 42, 43,
69, 82].

4 Randomness Evaluation (Testing)

The most important notion about statistical testing is the following: if a generator
passes all known statistical tests, this does not prove that it is random—it only means
that it passes all currently known randomness tests. Tomorrow it can fail some new
test or it already fails in the way known only to its constructors.

Most randomness tests check one or more statistical properties of long sequences
of random numbers, for example, bias, serial autocorrelation, etc. Some compi-
lations of tests are more oriented toward problems in PRNGs (e.g., DIEHARD
[47]), some more to true RNGs (e.g., ENT [96]), while some are of general nature
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(e.g., Universal Test [50], NIST STS [68]). The unfortunate fact is that there is an
infinite number of statistical properties which truly random numbers must satisfy.
Tests themselves are not perfect: some contain errors discovered later [44, 65] or
constants of questionable precision obtained by simulation using “trusted” RNGs
such as combination of white noise and “black noise” [47].

Running a comprehensive set of tests takes many CPU hours: to test 1E9 bits
with NIST STS, it takes about 6 h on the fastest single core CPU, while to produce
that many bits with a commercial QRNG, it takes between 7 and 250 s.

Randomness tests are very time consuming—it takes much shorter time to
generate numbers than to test them. Nevertheless, randomness testing is important
for constructors of RNGs. Therefore in some cases where one can reasonably expect
only certain type of imperfections (especially for quantum RNGs), one will tend to
use only special tests sensitive to these particular imperfections in order to arrive at
more efficient testing.

5 Random Numbers in Quantum Cryptography

Quantum cryptography is a protocol of public agreement of a symmetric crypto-
graphic key, meaning if two parties A and B possess a small common secret key,
then using this protocol they will be able to establish a common secret key of any
length. This cryptographic function is also known as “secret key growing.” The
ultimate goal of establishing a long secret key is to use it as a one-time pad and
thus obtain transfer of data in absolute secrecy. There are several mathematically
identical QC protocols. The first one, named after its creators as BB84, appeared in
1984 and was experimentally realized in 1991 [5].

In the BB84 scenario, Alice and Bob are connected via two different channels:
the quantum channel (usually well-shielded optic fiber) capable of conducting single
photons of light and an unsecured “classical” channel such as a telephone line, radio
link, or the Internet.

Here is the simplified schematic of how the protocol works: Alice can prepare
photons in different polarization states. In order to establish a secret key, Alice
sends to Bob a sequence of random numbers encoded in photon polarizations as
follows: “1” is equiprobably encoded either as linear vertical (LV) or left circular
(LC) polarization, while “0” is equiprobably encoded either as linear horizontal
(LH) or right circular (RC). Bob has two polarization analyzers: one which can
correctly measure linear polarizations (L) and the other which can correctly measure
circular polarizations (C). Alice chooses one polarization at random, prepares the
photon, and sends it to Bob. Bob chooses one of the two analyzers at random and
measures with it the photon received from Alice. If, by chance, Bob has chosen the
right polarizer, he will receive 0 or 1 as sent by Alice. If Bob has chosen the wrong
polarizer, he will receive 0 or 1 with equal probability regardless of what Alice has
sent. So after receiving a photon from Alice, Bob announces (over an authenticated
but not secret public channel) which polarizer he has just used (L or C). Note that
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this says nothing to a potential eavesdropper about the value of the bit Bob has got.
Alice responds with “Keep it” or “Trash it.” So bit by bit the two of them are building
their secret key. The laws of quantum mechanics prevent qubits from being faithfully
copied, so an eavesdropper can obtain only limited information about Alice’s and
Bob’s string and furthermore eavesdropping can be detected by Alice and Bob.

It is straightforward to see that the whole protocol would be completely insecure
if only the eavesdropper could calculate (or predict) either Alice’s random numbers
or Bob’s random numbers or both. From the analysis of the secret key rate presented
in [6], it is obvious that any predictability of random numbers by the eavesdropper
would leak relevant information to him, thus diminishing the effective key rate. It
is intriguing (and obvious) that in the case that the eavesdropper could calculate
the numbers exactly, the cryptographic potential of the BB84 protocol would be
zero. This example shows that the local RNGs assumed in BB84 are essential for its
security and should not be taken for granted.

Apart from what has been described above, the BB84 protocol has two more
subprotocols. Namely, due to the quantum incoherence, losses in the quantum
channel or eavesdropping Alice and Bob will not have the exact same strings of bits
after the first phase, although the two strings will have a lot of common information.
Therefore the second subprotocol, the “Data Reconciliation,” is used to equalize the
two strings, albeit at a cost of leaking some small information to an eavesdropper.
Fortunately, Alice and Bob can calculate a lower limit of their mutual information
after the two initial phases and then perform the privacy amplification phase in order
to arrive to a shorter but much more private key. These two subprotocols require
further random numbers.

The protocol BB84 is considered information theoretically proven [28, 73]
meaning that an attacker simply has not enough information to calculate the
plaintext even given infinite computing resources. This is in strong contrast with the
widely used “deterministic cryptography” where an attacker has enough information
to calculate the key except that it would probably require insurmountably large
computation resources and/or time. The caveat with QC is that the security proof
holds only against the family of attacks considered in the proof. Unfortunately,
with time, it became evident that unexpected attacks on QC which utilize various
quantum effects are feasible which makes QC much less “untouchable.”

For example, in 2007 an MIT group presented an attack that gave Eve as much
as 100 % of information about the key albeit at an expense of elevated BER [39],
but the attack was reassuringly classified as “simulation only” because it assumed
that Eve has a specific information about Bob’s receiver that she apparently could
not get.

As with any other cryptographic procedure, some problems in real-world
implementation of the protocol, especially of the quantum channel and real photon
detectors, could be used to weaken the cryptographic security of the protocol and
open pathways for attacks.

A beautiful demonstration of serious weakening and even 100 % breaking of the
key without any notice to legitimate parties has been made by Makarov et al. in 2010
[24, 46]. The demonstration has been made on the commercial QC systems from
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Swiss company ID Quantique, based in Geneva, Switzerland, and one by MagiQ
Technologies, based in Boston, Massachusetts. Improvements that would make QC
resistant to those attacks are possible and have been proposed [46], but the lesson
learned from this is that even protocols whose theoretical base is proven secure in
some scenario are not to be automatically assumed immune to all practical attacks.
The attack was made possible because the authors have found a way to manipulate
RNG at the receiving station by exploiting weaknesses of single photon detectors.
To make things even worse, this strategy made the previously mentioned MIT attack
truly viable (not anymore just a simulation). This is yet another example of the
importance of (local) RNGs to the security of a cryptographic scheme.

In conclusion, the quantum cryptographic protocol BB84 requires that both Alice
and Bob possess their private (local) provable RNGs. This is a highly critical
requirement. Note that a public server of random numbers cannot substitute for
local generators because the random numbers would have to be delivered to Alice
and Bob in perfect secrecy in the first place, and the server would have to be trusted.

6 Random Numbers in Statistical Cryptography

Statistical cryptography was invented by Ueli Maurer in 1991. The so-called
SKAPD protocol [51] resembles quantum cryptography and likewise consists of
three subprotocols. In fact the last two subprotocols (the Data Reconciliation and the
Privacy Amplification) are the same as in QC. However, the first subprotocol, named
“Advantage Distillation” (AD), is completely different and it does not involve
the quantum channel which potentially makes it much more practical. Instead,
it requires something called “binary channel with noise” which is theoretically a
classical communication channel complemented with a provable RNG.

The condition for successful key agreement is that prior to the AD protocol,
the common information shared by Alice and Bob is greater than the common
information shared by either Alice and Eve or Bob and Eve.

The practical problem with SKAPD is that it contains an unspoken “zeroth
phase” in which Alice and Bob obtain their partially correlated initial strings of
bits which satisfy the above condition. There is no known plausible way to make
the zeroth phase possible although some scenarios have been proposed (scanning
the surface of the Moon, listening to noise from faraway galaxies, taking big chunks
of Internet data, etc.).

7 Random Numbers in Deterministic Cryptography

What we call here “deterministic cryptography” in this chapter is what is widely
known as just “cryptography.” Some authors use the name “mathematical cryptog-
raphy.” It is the contemporary cryptography based on the difficulty of computing
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discrete logarithms in Galois groups and elliptic curve groups, and also the
factorization of composite numbers into primes. It also needs and uses random data;
an excellent short survey is given in [8]. Since all such security protocols are by
definition deterministic and therefore reversible, the only true security resource is
that nondeterministic part: a key or one-time data which is supposed to be “random.”
The quality and provability of randomness are therefore crucial for the security of
the whole system.

In fact deterministic cryptography is the only version in wide use, and most
cryptographers are not aware of or do not care about the existence of either
quantum cryptography or statistical cryptography because apparently they are not
yet practical or sufficiently trusted. Therefore it is important to explore what makes
contemporary commercial-grade protocols secure and what could be done to get the
maximum security out of them. Our hypothesis is that if a protocol requires random
numbers, then use of a TRNG maximizes its security. Without ambition to make
a strict proof or to give a comprehensive review, here let us have a look at several
examples supporting this hypothesis:

1. The Diffie–Hellman key establishment protocol [17] enables the same func-
tionality as the above-mentioned BB84 and SKAPD protocols and is used, for
example, in the “https” protocol in order to establish a session key. The protocol
requires both parties (Alice and Bob) to generate private random data and after
some operations send them to each other. A more resistant version of DH requires
further random data used for digital signatures. A vulnerability of the PRNG
built in an early version of the Netscape Internet browser led to a complete
compromise of the subsequent cryptographic protocol. An example is the attack
on Netscape’s 40-bit RC4-40 [64] challenge data and encryption keys, which
was able to break the https protocol in a minute or so, as described in [25]. The
authors of this article stipulate that 128-bit version RC4-128 would not be much
harder to break either if seeding is done in a similar fashion.

2. The RSA public key protocol relies on the generation of public and private keys
separately by Alice and Bob. In order to create a private/public pair of keys, it
is necessary to generate two unique, large prime numbers. Already calculating
prime number candidates involves random numbers. After that, candidates need
to be tested for primality using the Miller–Rabin algorithm which requires
random numbers as the bases in order to properly test for primality. Additional
one-time random numbers may be used in the process of actual communication.
Where high-entropy physical random bits are not available or are time expensive
(like on a typical PC computer), there is a tendency to “expand” a short random
string to a long one by pseudorandom methods. This approach can create
serious cryptographic weaknesses because an attacker must guess a much smaller
number of bits than he or she would in the case of use of truly random numbers.

3. Similarly, research into a cryptographic attack on the partially pseudoran-
dom number generator of an AES-based commercial cryptographic system is
described in [66].
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To conclude, in deterministic cryptography, random numbers are the only part
of the protocol which is different from point to point, and furthermore their true
randomness is sometimes a prerogative for correct calculations. Therefore, even
though most deterministic cryptography primitives are not secure, using true random
numbers ensures the highest achievable security with these methods.

8 Open Problems and Outlook

In this survey chapter we attempt to show the importance of random numbers
for the strength of cryptographic protocols not only for quantum and stochastic
cryptographies where random numbers are an essential part of the data exchanged
between communicating parties but also for contemporary deterministic cryptogra-
phy where the unpredictability and maximal entropy of the random numbers used
therein maximize the overall cryptographic strength.

True random number generators seem to be in modest use, even though some
companies make a good profit from them [33]. From the available data, it seems
that TRNGs are mainly sold to online gambling companies, state security agencies,
and the product labeling and testing industry. At the time of writing this survey, the
main problems preventing more widespread use of true random number generators
in general are:

1. the lack of generator designs whose proofs of randomness would be at the
same time correct, convincing, and demonstrated to be resilient to expected
imperfections in hardware

2. the (widespread) lack of understanding that pseudorandom numbers cannot be
used as a substitute for true random numbers in so many applications, notably
cryptography, both classical and quantum, computer security, Monte Carlo
simulations, lotteries, testing of products and their functionality, and many more

3. the high price of true random number generators
4. the lack of support of true random number generators in various popular software

that requires random numbers which makes them hard to use

9 Additional Comments and References

A distinctive difference between PRNG and TRNG is the provability of the latter.
While mathematical proof of randomness is impossible, for TRNGs we do not rely
solely on mathematics but also on sets of physical postulates which lie outside
of mathematics. Indeed, the only provable feature of a PRNG is that it is not
random because all numbers produced thereby can be calculated from a single
initial number: the seed. On the other hand, TRNGs seem to be inevitably plagued
with “small imperfections” in hardware which turn into measurable deviations from
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randomness which calls for post-processing. But complex post-processing blurs or
weakens our belief in the eventual randomness proof. Furthermore, the practice of
withholding information on the operating of a TRNG as well as a scientific proof of
its randomness seems to be almost a rule when it comes to commercial TRNGs.
Manufacturers justify this by the need to protect their intellectual property and
technology. While such justification is fine when it regards common products (e.g.,
a dishwasher), it is exactly what ruins the purpose of a TRNG because without a
clear insight into the technology and randomness proof of a TRNG, one falls back
to the unprovability situation of a PRNG. On the other side of the coin, in scientific
publications proofs of randomness are offered very rarely too, probably because the
proof is the hard part of the research while it does not seem to be required by the
editors of scientific journals. Most researchers therefore fall back to the minimum-
action strategy: make a TRNG, obtain at least one random number sequence that
passes the chosen set of randomness tests, and publish. However, without a detailed
investigation of the sensitivity of the extracted randomness on small variations in
hardware and without a randomness proof, a scientific design cannot proceed toward
a product. In our view this situation has been improving and will continue to improve
very slowly over time, thus ensuring a longevity and freshness of the research on
TRNGs.

Even though there is a large collection of publications which document the fact
that PRNGs may fail their purpose as RNGs [11, 12, 15, 19, 21, 29, 36, 40, 45, 55, 58,
70, 78, 87], we see that PRNGs are still in much more widespread use than TRNGs
even in most critical applications. Among the reasons is the fact that PRNGs are so
much more convenient, simpler, and cheaper to use than TRNGs, and also there is a
ubiquitous lack of understanding of what randomness is and what it isn’t, supported
by the nonexistence of a widely accepted definition of randomness [40]. Clearly,
further research on that subject is needed.

All commercial TRNGs whose speed is at least 1 Mbit/s are bulky and the price is
in the range $5–25k, which is more expensive than most of the software that would
use a TRNG. It therefore generally does not pay a software manufacturer to make
its product much more expensive by requiring a third-party TRNG for generating
random numbers. In extreme rare cases though, a software has been married to a
selected TRNG: for example, Mathematica and Quantis (by a third party) [53].

Commercial TRNGs typically come with drivers that support transfer of random
numbers to programming languages such as Pascal or C++ on selected operating
systems, e.g., [33], using a product specific subroutine or program library function.
This is probably the maximum that a manufacturer can reasonably do to support
its product. On the other hand, most commercial or free software that uses or needs
random numbers does not come with support for any TRNG. This means that having
a precompiled software, there is practically no way to connect it to any TRNG. The
only viable solution to include a TRNG in a software package would be to write
it from scratch and include in it specific function calls associated with the specific
chosen TRNG. Since there is no industry standard for access to a TRNG from within
a computer program (unlike, e.g., to access printers or other common peripherals),
one could support only a specific TRNG per programming effort. In our view it
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is clear that as long as there is no standardized way to access TRNGs, or, better
yet, until TRNGs are physically integrated in computers and are accessible in major
programming languages, their popularity will remain minimal.

While it is clear that true randomness cannot be generated by deterministic
operations and that therefore it must rely on physical phenomena, the problem of
generating good enough randomness and the provability of randomness remain
the main open problems with physical RNGs. New directions in the development
of physical RNGs will probably concentrate on self-calibrating [41, 86] or no-
calibration devices [80] with fundamentally random quantum phenomena as a
source of randomness.
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76. M. Stipčević, Apparatus and method for generating true random bits based on time integration
of an electronic noise source. WIPO Patent Number WO03040854, 17 October 2001
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How to Sign Paper Contracts? Conjectures
and Evidence Related to Equitable and Efficient
Collaborative Task Scheduling

Eric Brier, David Naccache, and Li-yao Xia

Abstract This chapter explores ways of performing a kind of commutative task by
N parties, of which a particular scenario of contract signing is a canonical example.
Tasks are defined as commutative if the order in which parties perform them can
be freely changed without affecting the final result. It is easy to see that arbitrary
N -party commutative tasks cannot be completed in less thanN �1 basic time units.

We conjecture that arbitrary N -party commutative tasks cannot be performed
in N � 1 time units by exchanging less than 4N � 6 messages and provide
computational evidence in favor of this conjecture. We also explore the most
equitable commutative task protocols.

1 Introduction

This chapter explores ways of performing commutative tasks by N parties denoted
A0; : : : ;AN�1. Tasks are defined as commutative if the order in which parties
perform them can be freely changed without affecting the final result. Furthermore,
another requirement is that this result is distributed among the N parties in the end.

A typical formulation, used throughout this work, is the material signature of a
contract by N parties. As the contract signing protocol ends, each party obtains a
printed contract bearing the N signatures of all other parties. Empty contracts can
be printed by all parties. Each contract must transit through all parties to eventually
bear all the required signatures.

This problem is not only of theoretical interest. Cryptography conceals the
meaning of information but not its existence. In many cases network monitoring
allows to infer useful information from the message flow. This attack is called
traffic analysis. A well-known way to defeat traffic analysis consists in continuously
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padding the communication channel with dummy packets to simulate constant
bandwidth occupation.

Ferguson and Schneier [1] states that “. . . it is very hard to hide information
about the size or timing of messages. The known solutions require Alice to
send a continuous stream of messages at the maximum bandwidth she will ever
use. . . This might be acceptable for military applications, but it is not for most
civilian applications. . . ”

We also refer the reader to [2] who mentions that: “. . . In practice this problem
has been known for a very long time, and countermeasures are routinely used
in modern link encryptors, by making sure that they always send information
between sender and receiver, inserting dummy information if necessary [3]. By
doing so, they seek to obscure the difference between actual communication and
non-communication. Unfortunately, the approach taken by link encryptors to “keep
the channel full” is infeasible on the Internet, due to the requirement that the
communication infrastructure serves the needs of multiple parties. . . ”

It is hence useful to look for economical ways in which parties can exchange
information without revealing their activity. Here envelopes represent constant-size
encrypted data containers.1 We show how to exchange containers betweenN parties
in a way that ascertains that 8i ¤ j , party Ai can send a message to Aj in N � 1
elementary time units, provided that the container’s capacity has not been exceeded.

Situation N parties want to sign a contract. Signatories consider the contract valid
when each party possesses a copy of the contract bearing all N genuine signatures
(which can only be affixed by their respective owners). Parties are unable to meet
physically, so they have to employ a postal service.

Firstly, a total of N copies with no signature must be printed, any party can print
some of these empty contracts (printing doesn’t have to be done by one unique party,
quite the opposite in fact).

Secondly, these copies must be sent among the parties. If at some point, party A
wants to send k contracts to party B, A can put these in one single envelope and pay
a postal fee for the envelope independently of its contents.

We can assume that whenever a party receives a contract it has not yet signed,
the party signs it immediately. The problem consists in finding a contract signing
protocol such that each contract has gone through every party at least once and such
that at the end, the N contracts are distributed among the N parties.

We denote by P such a protocol.

1Ai gets a container, decrypts it, and examines its contents. Ai extracts any messages sent to
him and erases these messages from the container. Ai potentially inserts into the container new
messages for other parties and re-encrypts the container for the next receiving party without
changing the container’s size.



How to Sign Paper Contracts? Conjectures and Evidence Related to Equitable. . . 319

The notation Ai

k Aj will mean “Ai signs k contracts and sends them to Aj ”.
We study protocols according to the following three natural criteria:

Cost The cost of a protocol P is the cumulated postal fee paid by all parties. We
also make the assumption that this fee also does not depend on the sender and
receiver, so we can consider that cost proportional to the number of envelopes sent
globally (hereafter $1=envelope).

A first natural goal consists in minimizing the postage fees Cost.P; N /. We
prove that minP Cost.P; N / D 2N � 2.

The cheapest protocols are referred to simply as cheap protocols.

Time In this work, we assume that transmitting an envelope takes 1 day while
neglecting the administrative delay to have the contract signed once it has been
received.

It is easy to see that the contract signing task cannot be completed in less than
N � 1 days. We call protocols that run in N � 1 days fast protocols. If N days are
allowed, reaching the $.2N �2/ cost’s lower bound is simple (e.g., protocol Pseq in
Sect. 2). Hence, we will focus our attention on the costs of fast protocols. We show
how to construct some fast protocols that cost $.4N � 6/ and conjecture that this
cost is optimal:

Conjecture 1 For all N the cheapest fast protocol costs $.4N � 6/.
We checked this conjecture forN � 8 by exploiting problem symmetries and by

using backtracking.

Equitableness It is interesting to find protocols in which postage costs are
distributed between parties as evenly as possible.

We observed that for 6 � N � 8, there exist fast protocols in whichN �6 parties
pay $4 and 6 parties pay $3.

We do not know how to construct such optimally equitable protocols otherwise
than by computerized search. We call such protocols equitable.

Even though current evidence that equitable protocols exist for all N is very
limited, heuristics (more details are given in Sect. 10) suggest that all fast protocols
are inherently inequitable in the following sense:

Conjecture 2 In every fast protocol for N parties, the most burdened party must
pay $˝.N/.

Convention In “xxxx-protocol” the xxxx will stand for any combination of the
letters F,C,E,M meaning: fast, cheap, equitable and minimal.
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2 Straightforward Non-fast Protocols

A trivial sequential protocol is the following:

The sequential protocol Pseq

Day Event

0 A0 prints N empty contracts

i D 0; : : : ; N � 2 Ai

N AiC1

N � 1 For j D 0; : : : ; N � 2:

AN � 1 1 Aj

Note that:

– Pseq is not fast because Pseq validates the contracts on day N , assuming that
indexing days starts from 0.

– Pseq is cost optimal, i.e., Cost.Pseq; N / D 2N � 2.
– Pseq is inequitable because AN�1 pays $.N � 1/ while all other parties pay $1.

3 Graphical Representation

A protocol is entirely defined by the path followed by each contract, i.e., the
sequence of Ai s that the contracts transit through each day (one row in Fig. 1).

For such a matrix to reflect a valid protocol, each Ai must appear at least once in
each row and once in the last column.

We will use a very convenient graphical representation to illustrate protocols
(e.g., Fig. 1). The graph of a protocol for N parties and D days is a bidimensional
graph with N � .D C 1/ vertices.

Vertex .d; i/ represents Ai on day d .

Fig. 1 The matrix and the
graph of Pseq

0 1 2 3 4 5 0
0 1 2 3 4 5 1
0 1 2 3 4 5 2
0 1 2 3 4 5 3
0 1 2 3 4 5 4
0 1 2 3 4 5 5 0 1 2 3 4 5 6

0

1

2

3

4

5

5

5

5

5

5
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Fig. 2 A graph may
correspond to several
different protocols

0 1 2 0
1 0 2 1
0 1 2 2

0 1 2 0
0 1 2 1
1 0 2 2

1 0 2 0
0 1 2 1
0 1 2 2

2

2

An edge is drawn between .d; i/ and .d C 1; j / if Ai sends an envelope to Aj

on day d . Edges may be labeled with the number of contracts in the corresponding
envelope.

Note that such graphs may not uniquely characterize a protocol (see Fig. 2).

4 Fast Protocols

It is easy to see that it takes at least N � 1 days to complete the contract signing
process and that there is a very simple solution for doing so:

The circular protocol Pcir

Day Event

0 Each party prints one empty contract

i D 0; : : : ; .N � 1/ For j D 0; : : : ; N � 1:

Aj

1 AjC1 mod N

– Pcir is fast because Pcir validates the contracts on day N � 1, assuming that
indexing days starts from 0.

– Pcir is far from being cost optimal, i.e., Cost.Pcir; N / D N.N � 1/.
– Pcir is equitable because each party pays $.N � 1/.

We observe that Pcir outperforms Pseq by one day, but this (small) improvement
comes at the rather high price of a quadratic increase in postage costs.

It is hence natural to ask if linear-cost fast protocols exist and, more generally,
find out what the cost CFP.N / of the cheapest fast protocol is.

5 A Linear Protocol

The following protocol was designed following the intuition that to reduce costs,
contracts must follow very similar routes. The obstruction to this is that each
contract must carefully avoid one participant, namely, the party at which this
contract’s route will end. We hence design two parallel routes with one contract
jumping from one route to the other, at each step.
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The linear protocol Plin

Day Event

0 A0 prints N � 1 empty contracts

A1 prints one empty contract

i D 0; : : : ; N � 3 B Ai has N � i � 1 contracts

Ai

1 AiC2

Ai

N�i�2
 AiC1

B AiC1 has i C 1 contracts

AiC1

iC1 AiC2

N � 2 AN�2

1 AN�1

For j D 0; : : : ; N � 2:

AN�1

1
 Aa

j

aEach Aj gets from AN�1 the contract unsigned by Aj

Fig. 3 The matrix and the
graph of Plin

1 2 3 4 5 0
0 2 3 4 5 1
0 1 3 4 5 2
0 1 2 4 5 3
0 1 2 3 5 4
0 1 2 3 4 5

Fig. 4 The matrix and the
graph of Pcir

1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3
0 1 2 3 4

Cost.Plin; N / D 4N�6. The cost vector of Plin (fees paid by fA0; : : : ;AN�1g)
is

.2; 3; 3; : : : ; 3; 3„ ƒ‚ …
N�3 times

; 2; N � 1/

As mentioned previously, we conjecture $.4N�6/ to be optimal, i.e., CFP.N / D
4N � 6. We thus call $.4N � 6/ protocols cheap protocols. The matrix and graph
of a circular (resp. linear) protocol are given in Fig. 3 (resp. 4).
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6 Counting Protocols

We denote by
SN : the set f0; : : : ; N � 1g
SN : the set of NŠ permutations of SN

6.1 Observations

Label each contract by the index of the party that will eventually own this contract;
the sequence of parties that each contract n goes through in N � 1 days must be a
permutation of the set fA0; : : : ;AN�1g. As such we can identify a fast protocol with
an ordered set of N permutations,2 in which the nth permutation ends with n.

Also note that for any fast protocol, on day N � 1 there will always be N
envelopes sent, one to each party.

6.2 Number of Protocols

We have tried to enumerate fast protocols and look for some pattern in their
numbers.

As pointed out supra, a fast protocol can be bijectively mapped to an ordered set
of N permutations of SN , P D .P0; : : : ;PN�1/ where Pn.N � 1/ D n.

Using P D Plin in Fig. 3 as an example, the nth row Pn is the cycle
�.n; : : : ; N / D .0; : : : ; n � 1; nC 1; nC 2; : : : ; N; n/.

For n D 0; : : : ; N � 1, consider the nth row without its last coordinate :
.Pn.0/; : : : ;Pn.N � 2// is a permutation of SN n fng ' SN�1.

The last coordinate that was removed must be equal to the row index. Conse-
quently, fast protocols can be bijectively mapped onto sets of N permutations of
SN�1. There are therefore ..N � 1/Š/N fast protocols. Using that identification, we
denote the set of fast protocols by .SN�1/N .

6.2.1 Using Symmetry

There is a lot of symmetry in this problem, that we exploited to examine a
(somewhat) lesser number of protocols.

2Of SN .
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The relabeling of P by a permutation � 2 SN is the protocol obtained by
renaming each party An as A�.n/:

�.P/ D .� ıP��1.0/; � ıP��1.1/; : : : ; � ıP��1.N�1//:

Notice that the change of index is such that .�.P//n.n/ D n.

6.2.2 Protocol Isomorphism

Two protocols P;P0 are truly isomorphic,3 if P can be transformed into P0 by
relabeling. We denote this relation by P � P0.

P � P0
def” 9� P0 D �.P/

The number of number of fast protocols up to true isomorphism NFPT.N / as a
function of N is currently unknown for N > 6.

A naïve algorithm for deciding if P � P0 requires O.N2 � NŠ/ time. We will
now show that the protocol isomorphism decision problem4 can be solved inO.N3/

time.
An interesting relabeling is �Id D P�1n for some n 2 SN . �Id satisfies:

.�Id.P//N�1 D Id

that is to say that the last (.N � 1/th) row of the relabeled matrix is the identity
permutation.

And this equality holds if and only if �Id D P�1n for some n.
In the lexicographical order on permutations � D .�.0/; : : : ; �.N � 1// seen as

words of length N , Id is the smallest of all permutations.
Hence, when looking at protocols, which are ordered sets of N permutations

.Qn/nD0;:::;N�1 as the concatenation .QN�1; : : : ;Q0/ (this is a relation on N �
N matrices observed as words of length N2), we notice that the set IP D
fP�1n .P/ j n D 0; : : : ; N � 1g contains the lexicographically smallest protocols
which are isomorphic to P: it is exactly the set of protocols isomorphic to P such
that the last row of their matrix is Id.

Note that IP does not always have cardinalityN , e.g., in Pcir illustrated in Fig. 4,
IPcir D fPcirg is a singleton.

Furthermore, the family of sets IP defines a partition of the set of matrices whose
last row is the identity permutation. Each IP has size at most N . And only one
protocol per set is minimal in its true isomorphism class.

3Or isomorphic when there is no ambiguity as is the case until the other relation is presented.
4That is, given P;P0 2 SN

N�1, decide if P 
 P0.
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Fig. 5 Two isomorphic
protocols P (above) and
P0 D �.P/ (below), where
� D P�1

0 D .4 1 0 3 2/. P0 is
the lexicographically smallest
protocol isomorphic to P

2 1 4 3 0
3 2 4 0 1
0 1 4 3 2

2 1 4 0 3
3 2 1 0 4

4 1 2 3 0
3 0 2 4 1
3 0 1 4 2

0 1 2 4 3
0 1 2 3 4

σ

Hence a lower bound of the number of fast and minimal protocols is:

NFPT.N / � ..N � 1/Š/N�1
N

This is also a rough estimate of the actual numberNFPT.N /, if we assume that for
most protocols, informally, jSPj 	 N (approximately equal). This approximation
means that protocols are rarely their own relabeling by a nontrivial permutation;
this indicates that the roles played by all parties are generally asymmetrical in some
sense. Although limited, the current evidence shows a rather accurate lower bound.

For N D 5, we found that there are NFPT.5/ D 66; 360 different protocols up to

isomorphism, which is pretty close to .4Š/4

5
D 66; 355:2.

For N D 6 we get NFPT.6/ D 4; 147; 236; 820' .5Š/5

6
D 4; 147; 200; 000.

By examining only the N permutations that constitute P, it is possible to
determine in O.N3/ time the smallest protocol isomorphic to P (e.g., Fig. 5).

It is then a matter of checking equality between those single minimal representa-
tives to decide if two protocols are isomorphic.

All in all, this process claims O.N3/ time.

6.2.3 Simple Isomorphism

Another equivalence relation can be defined by only considering the last row of
every matrix, and the corresponding relabeling. Two protocols P and P0 are simply
isomorphic if their respective relabelings by the permutation found in the last row
are equal:

.PN�1/.P/ D .P0N�1/.P0/:
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Simple isomorphism is a proper subrelation of true isomorphism: two isomorphic
protocols are simply isomorphic, but the converse is not always true.

However, this new relation is peculiar in that:

– compared to true isomorphism, it is easier to tell whether a matrix is the
lexicographical minimum of its simple isomorphism class, as it amounts to
checking that the last row is the identity,

– simple isomorphism classes partition the set of protocols evenly into sets of size
.N � 1/Š, as every class can be bijectively mapped to SN�1 by associating an
arbitrary permutation to its last row. We can find the number of protocols with
a given cost by only enumerating protocols up to simple isomorphism, and then
multiplying their number by .N � 1/Š. In particular, the number of fast protocols
up to simple isomorphism is:

NFPS.N / D NFP.N /

.N � 1/Š D ..N � 1/Š/
N�1:

True isomorphism does not define an even partition, in fact the number of
matrices isomorphic to P is .N � 1/Š � jIPj, which is not a constant.

6.2.4 Backtracking

We have designed a backtracking algorithm to enumerate all fast protocols whose
costs are bounded by a certain value.

The algorithm consists in incrementally completing a partial protocol in every
possible way while keeping track of a lower bound on the cost, and backtracking as
soon as the upper limit is reached (e.g., when the lower bound exceeds 4N � 6).

As pointed out earlier, to enumerate matrices up to (true or simple) isomorphism,
we can consider only matrices whose last row is the identity permutation, as all
minimal representatives of isomorphism classes are to be found among these.

The number of such matrices is ..N �1/Š/N�1; compared with the original ..N�
1/Š/N , this saves the effort of one iterative layer over a set of permutations.

In the case of true isomorphism, when a complete protocol is obtained, we check
if it is lexicographically minimal in its isomorphism class, in which case it can be
processed or stored for further examination.

To prune even more possibilities, we can further exploit the fact that the protocols
we are looking for need to be lexicographically minimal. For example, instead
of checking minimality once the protocol has been completed, it is possible to
relabel the partial protocol to see that any completion of it will not be minimal.
Unfortunately, in our attempt, the resulting overhead outweighted the pruning. We
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Table 1 Number of protocols per N and per cost up to simple isomorphism. Note that there are
no $13 protocols. Here TOTAL is equal to ..N � 1/Š/N�1

NFPS.N /& N D 4 N D 5 N D 6 N D 7 N D 8

Cost D $10 32

Cost D $11 80

Cost D $12 104

Cost D $14 305

Cost D $15 2,080

Cost D $16 9,590

Cost D $17 31,500

Cost D $18 76,105 3,960

Cost D $19 105,900 49,236

Cost D $20 106,296 414,612

Cost D $21 2,601,276

Cost D $22 13,618,017 59,703

Cost D $23 59,672,844 1,305,388

Cost D $24 221,523,600 16,320,507

Cost D $25 686,256,012 158,145,372

Cost D $26 1,792,257,378 1,268,548,841 1,078,176

Cost D $27 3,770,289,744 8,844,900,603 37,965,696

Cost D $28 6,119,608,548 54,834,944,423 694,507,192

Cost D $29 7,281,092,136 305,436,177,578 Unknown

Cost D $30 4,935,812,637 Unknown Unknown

Cost > $30 Unknown Unknown

Total 3Š3 4Š4 5Š5 6Š6 7Š7

assume this is due to the small values of N we could examine, and that this
modification results in a faster algorithm for greater protocols.

By exhaustively examining all protocols whose last row is Id, we could enumer-
ate all fast protocols for N � 6 (Tables 1 and 2).

And using backtracking as described above, we enumerated some of the cheapest
protocols for N D 7; 8 while checking5 that protocols cheaper than $.4N � 6/ do
not exist.

Table 1 also provides the number of $c protocols for 4N � 6 � c � N.N � 1/.

5Our Ocaml code is available at http://www.eleves.ens.fr/home/xia/posting.

http://www.eleves.ens.fr/home/xia/posting
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Table 2 Number of protocols per N and per cost up to true isomorphism. Note that there are no
$13 protocols

NFPT.N /& N D 4 N D 5 N D 6 N D 7 N D 8

Cost D $10 9

Cost D $11 10

Cost D $12 104

Cost D $14 61

Cost D $15 416

Cost D $16 1,918

Cost D $17 6,300

Cost D $18 15,221 663

Cost D $19 21,180 8,206

Cost D $20 21,264 69,138

Cost D $21 433,554

Cost D $22 2,269,917 8,529

Cost D $23 9,945,474 186,484

Cost D $24 36,922,032 2,331,501

Cost D $25 114,376,002 22,592,196

Cost D $26 298,714,009 181,221,263 134,772

Cost D $27 628,381,792 1,263,557,229 4,745,712

Cost D $28 1,019,946,014 7,833,563,489 86,813,703

Cost D $29 1,213,515,356 43,633,739,654 Unknown

Cost D $30 822,654,663 Unknown Unknown

Cost > $30 Unknown Unknown

Total 123 66,360 4,147,236,820 Unknown Unknown

7 Equitableness

In Plin, all parties but one pay a fixed fee, and one party pays a fee that increases
with N . This is not an equitable protocol. We hence looked for the most equitable
cheap protocol.

We measure equitableness using the Theil index:

TN .P/ D 1

N

NX

nD1

mn

Qm log

mn

Qm
�

wheremn is the fee paid by An and

Qm D 1

N

NX

nD1
mn

is the average fee.
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Table 3 Protocol enumeration up to simple isomorphism

N NCPS.N / NCEPS.N / ATICPS.N / TICEPS.N /

2 1 1 0 0

3 4 4 0 0

4 32 32 0:020136 0:020136

5 305 40 0:037728 0:011069

6 3; 960 24 0:057973 0

7 59; 703 84 0:077496 0:005786

8 1; 078; 176 216 0:094730 0:008475

NCP number of cheap protocols
NCEP number of cheap and equitable protocols
ATICP average Theil index of cheap protocols
TICEP Theil index of cheap and equitable protocols

Table 4 Protocol enumeration up to true isomorphism

N NCPT.N / NCEPT.N / ATICPT.N / TICEPT.N /

2 1 1 0 0

3 2 2 0 0

4 9 9 0:020136 0:020136

5 61 8 0:037728 0:011069

6 663 5 0:057825 0

7 8; 529 12 0:077496 0:005786

8 134; 772 27 0:094730 0:008475

NCP number of cheap protocols
NCEP number of cheap and equitable protocols
ATICP average Theil index of cheap protocols
TICEP Theil index of cheap and equitable protocols

A smaller TN .P/ value expresses a more equitable protocol.
We computed the average Theil index of (fast and) cheap protocols, and we also

enumerated those that are equitable with results in Tables 3 and 4.
ForN D 7, the average Theil index computed over all minimal representatives of

protocol isomorphism classes is' 0:077, whereas the minimum index is' 0:0058,
reached by the 12 FCEM protocols given in the appendix. We also illustrate in Fig. 6
one of the 27 FCEM protocols for N D 8, found by automated search.

7.1 Symbol Insertion Experiments

It is natural to wonder if FCE protocols can be constructed from smaller ones. To
get a hint, we took all 27 eight-party FCEM protocols P1; : : : ;P27 and performed
the following exploration:

for i D 1! 27 do
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1 5 6 4 7 2 3 0
4 5 6 3 7 2 0 1
0 1 6 3 4 5 7 2
1 5 6 4 7 2 0 3
1 5 6 3 7 2 0 4
0 1 6 4 7 2 3 5
0 1 2 3 4 5 7 6
0 1 2 3 4 5 6 7

Fig. 6 Equitable protocol, N D 8 of cost vector .4; 3; 3; 4; 3; 3; 3; 3/ (example)

Fig. 7 Symbol deletion experiment (example). The deleted symbol is 0

for ` D 1! 8 do
M  the matrix of Pi where row ` was suppressed.
M 0  M where all occurrences of ` were suppressed.
check if the protocol corresponding to M 0 is an FCE-protocol.

end for
end for
Indeed, the above algorithm detected 168 different ways to build (non necessarily

minimal) eight-party FCE protocols by inserting new symbols into 7 seven-party
FCEM protocols. The process is illustrated in Fig. 7.

The experiment was repeated mutatis mutandis by eliminating all possible
combinations of two rows (and their corresponding pairs of symbols). There were
136ways to obtain eight-party FCE protocols using symbol insertions into six-party
FCEM protocols. Only two protocols out of the five equitable six-party protocols
enabled these insertions, and 17 out of the 27 eight-party FCEM protocols could be
reached that way.

Results are available online.6

6http://www.eleves.ens.fr/home/xia/posting.

http://www.eleves.ens.fr/home/xia/posting
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We doubt that this process would allow to infer a general process for constructing
.N C1/ party FCE protocols by extendingN -party FCE protocols for the following
reason: for N D 6; 7; 8 all FCE protocols have four active parties on day N � 2,
never 2 or 3 nor 5.

The exhaustive list of matrices for N D 6; 7; 8 hints that we cannot do better
than four parties on day N � 2. If there was an algorithm allowing to build FCE
protocols from smaller ones, this algorithm would have to add active parties on day
N � 2, and it would be unexpected for it not to work for six, seven, or eight parties.

We regard this as evidence that the algorithmic construction of FCEM protocols
is a nontrivial problem.

This approach can be used to find a way of generating cheap protocols rather than
equitable protocols. Indeed, there is a pattern we have discovered, though without
the use of this approach, as explained in Sect. 9.1.

8 Lower Bounds

8.1 General Case

With no conditions on the protocol’s durationD, we show that

min
P

Cost.P; N / D 2N � 2

as achieved by Pseq.
It should be noted that in general having some party hold a contract for several

consecutive days without sending it away is an allowed “move,” and is of course
free of charge.

Only with the now unassumed constraint of validation in N � 1 days, it becomes
necessary to have all contracts circulating in envelopes every day.

The same applies as well to the fact that a contract can transit through one same
party multiple times.

Proof The proof is done by induction on the number of parties N .
When N D 1, it is clear that Cost.P; 1/ D 0.
Assume that for every N -party protocol P0, Cost.P0/ � 2N � 2. Let us prove

that for every .N C 1/-party protocol, Cost.P/ � 2N .
Let P be a $c .N C 1/-party protocol.
By conveniently removing one party from P, we will create anN -party protocol

P0 that costs at most $.c � 2/.

c � 2 � Cost.P0/
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Fig. 8 Transformation on
day 0 (first transformation)

Then, using the inductive hypothesis for P0,

Cost.P0/ � 2N � 2

will conclude the inductive step.
At least one party is to print an empty copy of the contract, which will be sent

using one envelope. Without loss of generality, we can assume that AN is one of
those who print contracts, that is the party we will want to remove from this protocol.

8.1.1 A First Protocol Transformation

Instead of having AN print contracts (on day 0) and send them to A˛0 ;A˛1 ; : : :

(not necessarily on day 0), we will have A˛0 ;A˛1 ; : : : print these contracts. Because
AN is assumed to print at least one contract, at least one less envelope will be used
(Fig. 8).

We now have to consider the points in time at which AN receives some contracts.
This must happen at least once, as every party must receive a final copy of the

contract at some point.

8.1.2 A Second Protocol Transformation

The following transformation removes another envelope from the process.

– If AN receives only one envelope containing only the contract that AN is to own,
then we can just remove this envelope from the protocol.

– Otherwise, AN receives some contracts which are to be signed by AN . Then
these contracts need to be rerouted away (not necessarily on the same day),
excluding the contract that is ultimately bound to reach AN that we will just
remove.

Denote by Aˇ0 ;Aˇ1 ; : : : the parties those contracts will be sent to next. There
must be at least one of them, Aˇ0 . Since AN is to be removed, we can change the
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Fig. 9 Transformation when
AN receives envelopes
(second transformation)

destination of the contracts to Aˇ0 instead of AN , and one less envelope will be
used as Aˇ0 does not need to send a contract to himself (Fig. 9).

With the above two transformations, we can obtain an N -party protocol instead
of an N C 1 one while removing at least one envelope with each transformation.
Therefore the resulting protocol costs at most $.c � 2/.

We can conclude that for all N -party protocols, Cost.P/ � 2N � 2.

8.2 Fast Protocols

Although still unsatisfactory, a lower bound CFP.N / � 3N � 5C log2.N / can be
proven.

We first prove that CFP.N / � 3N � 4.

Proof Assume that CFP.N / � 3N � 5 for some N .
Since CFP.2/ D 2, we can assume that N � 3.
Let P be a $CFP.N / protocol, i.e., a protocol using less than 3N � 5 envelopes.
We know that on day N � 2, exactly N envelopes are sent. Hence between days

0 and N � 3, strictly less than 2.N � 2/ envelopes would be sent.
On at least one day � N � 3, only one envelope is sent; therefore all contracts

go through one same party, and on the last day the contract that this party receives
would have gone through it twice, which is impossible.

The N contracts must follow N different paths between days 0 and N � 2, as
the final destination of each contract is the only party it hasn’t gone through during
days 0 to N � 2. Moreover, we can bound the number of different available paths
when using 3N � 4C q envelopes by 2qC1.
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Proof We say that party An is active on day d in protocol P if An has at least one
contract on day d , i.e., 9k such that Pk.d/ D n.

For every active party on each day between days 1 and N � 3, choose one
envelope among those sent; we call those chosen envelopes default envelopes. Also
choose only one default envelope on day 0.

The number of default envelopes is equal to the cumulated number of active
parties in days 1 toN�3, plus one on day 0. That is at least 2N�5 as a consequence
of the previous proof. There are also N envelopes sent on day N � 2.

Therefore there are at most q C 1 non-default envelopes between days 0 and
N � 2.

We associate any path between days 0 and N � 2 with the set L of non-default
envelopes that it contains.7 This defines an injection into the set of subsets of non-
default envelopes, whose size is at most 2qC1.

The reverse procedure to recover a path � from its associated subset L consists
in the following, starting on day 0:

– If no envelope sent on day 0 is in L, then path� starts with the default envelope.
– Otherwise there should be a unique such envelope, and this is the first envelope

in the path.

The reason why we chose only one default envelope on day 0 is that we don’t
know yet where the path begins from. This default envelope allows to set a default
starting party at the same time.

Once the first envelope in � is found,�.0/ and�.1/ are known.
We carry on by induction. On each day d D 1; : : : ; N � 2, assume that �.d/ is

known; there is at most one envelope in L which was sent on day d . If there is none,
then �.d C 1/ is the recipient of the default envelope sent by �.d/.

A conflict in this procedure, where there are several envelopes in L among those
sent on day d , means that L is not associated with any path.

This procedure shows that there are at most 2qC1 paths.

Since there must be at least N paths, q � log2.N /� 1.
In conclusion,

CFP.N / � 3N � 5C log2.N /:

7The reader is referred to Fig. 10 for a clarifying example.
An edge .d;�/� .d C 1;�/ means that A˛ sends an envelope to Aˇ on day d .
The path .1; 5; 6; 4; 7; 2; 3/ is associated to the set f.0; 1/�.1; 5/I .2; 6/�.3; 4/I .5; 2/�.6; 3/g

(the final destination of the corresponding contract is A0).
Note that all available paths on this graph are not necessarily taken by a contract, e.g.,

.4; 5; 6; 4; 7; 2; 3/ is associated to f.0; 4/� .1; 5/I .5; 2/� .6; 3/g.
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1 5 6 4 7 2 3 0
4 5 6 3 7 2 0 1
0 1 6 3 4 5 7 2
1 5 6 4 7 2 0 3
1 5 6 3 7 2 0 4
0 1 6 4 7 2 3 5
0 1 2 3 4 5 7 6
0 1 2 3 4 5 6 7

Fig. 10 Protocol from Fig. 6 where edges representing default envelopes are drawn in thick lines

3 2 1 0
3 2 0 1
0 1 3 2
0 1 2 3

Fig. 11 On day 1, only two envelopes are sent

9 Leads

Looking at the proof of the previous lower bound, it is natural to wonder whether
we can improve on the lower bound of two envelopes/day.

This is however the best we can do as illustrated in Fig. 11.
This example can be generalized to all N � 4.
Other examples were found where only two envelopes were sent on a day other

than N � 3.

9.1 A Wider Class of Protocols

Given one $.4N � 6/ protocol P for N � 2, such that on day 0 only two parties
print empty contract copies, we can build an .N C 1/-party protocol verifying the
same property.

This construction can produce the Plin protocol and many more cheap protocols
which do not comply with the above property, starting with one smaller-size
protocol.
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Fig. 12 Extension of the
protocol of Fig. 11

4 3 2 1 0
4 3 2 0 1
4 0 1 3 2
4 0 1 2 3
3 0 1 2 4

Extend every path in protocol P by appending N at the beginning (N paths are
defined that way).

Choose n 2 SN , consider the path � ending at n, draw a new path that begins at
n, ends at N , and follows� in between.

This method hints that the number of $.4N � 6/ protocols grows at least a fast
as a factorial. Example: Fig. 12.

9.2 Another Point of View

This problem of contract signature can be equivalently formulated as a variant of the
traveling salesman problem. This alternative point of view may provide more insight
into the problem, although to this date it is still unclear in what way precisely.

There are N salesmen who are located at different cities at the beginning, and
each of them wishes to visit all N cities while minimizing transport fees. To that
end, they can cooperate by carpooling, such that if k salesmen are at the same city
at the same time and if their current destinations are the same, then the overall cost
of transport is the same as for 1 salesman.

This formulation amounts to looking at signing protocols in reversed time.
Moreover, this point of view reveals several possible generalizations. Indeed, since
in this chapter we consider that any party can send mail to any other party, this
relationship can be described by a complete graph; it is then natural to wonder
how the problem changes with more general classes of graphs: not necessarily
complete, with weights indicating different fees or routing delays associated to
different sources and destinations, etc.

However a notion such as equitableness for the parties becomes meaningless, as
focus is shifted from parties/cities to contracts/salesmen, instead we can then define
equitableness for the salesmen.
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10 Open Questions and Further Research

Besides proving (or refuting) Conjectures 1 and 2, we encourage readers to research
the following open problems:

Algorithmic Construction of FCE Protocols If equitable protocols exist for all
N , design an efficient strategy for constructing FCE protocols. Here “efficient”
means constructing a protocol in O.N t/ for some fixed t .

It seems there cannot be more than four “active” parties on dayN � 2, whatever
the protocol is. If that is true then, and because there must be N envelopes sent on
this last day, one of the parties is going to pay at least $N=4. The best case is $N=4
for every four parties.

Assume on the contrary that equitable protocols exist for allN , or even a weaker
form of equitableness where the individual cost is bounded by a constant C . On day
N � 2, N envelopes must be sent. Since every party pays less than $C , there are
at least N=C active parties on day N � 2, N=C2 on day N � 3, and so on. There
would be a treelike structure at the end of the corresponding graph, which means a
lot of active parties—whereas the idea behind the current minimal cost protocols is
quite the opposite. When N is large enough, this takes a lot of envelopes to set up;
in fact we believe that it takes too many and that there won’t be enough on the first
days. But we are unsure and maybe such a tree would end up being possible.

Being able to look for equitable protocols for N D 9 would be a first step.
Finding out if equitable protocols still exist for N D 12 or 13 would provide very
strong evidence in favor of or against the existence of equitable protocols for all N .

Finding a Protocol Matching (or Best Matching) a Given Cost Vector Given a
cost vector:

c D
(

c0; c1; : : : ; cN�2; 4N � 6 �
N�2X

iD0
ci

)

identify the protocol Ps that deviates as little as possible from c.

What Are the Possible Cost Vectors? Let PN D fP1; : : : ;PNCP.N /g be all N -
party FC protocols. Let si denote the cost vector of Pi 2 PN with elements sorted
by increasing order.8 How many different si s are there? What can be said about their
frequencies?

Nonconstant Postage Fees We assumed that the cost of an envelope is independent
of the number of contracts sent. What happens for a general cost function f .k/, for
instance, f .k/ D akC b or f .k/ D adk=be?

8That is, renumbering the parties by increasing workload.
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Continuous Flow Communication This chapter dealt with a latency of N � 1
days. What happens if N � 1 shifted protocols are started simultaneously so that
N � 1 protocols are always run in parallel? Here the most equitable setting would
be N � 6 parties paying $.4N � 10/ and six parties paying $.4N � 9/ but is this
achievable?9 If so, how regular can the spending rate of each party be? (i.e., avoid
sudden “spending bursts”).

If Conjecture 2 Is True Does relaxing the fast protocol hypothesis enable
equitableness?

Acknowledgements The authors thank Oğuzhan Külekci for interesting discussions and useful
remarks notably concerning the variant of the traveling salesmen problem.

9For example, if we launch seven shifted instances of Fig. 6 we get a very uneven split of cost
where A0 and A3 pay $4 every day (i.e., a total of $28 each) whereas the other six parties pay $3
every day (i.e., a total of $21 each).
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Appendix: FCEM Protocols for N D 7

1 4 5 6 2 3 0
0 4 5 6 2 3 1
0 1 5 3 4 6 2
1 4 5 6 2 0 3
0 1 5 6 2 3 4
0 1 2 3 4 6 5
0 1 2 3 4 5 6

1 4 5 6 2 3 0
3 4 5 6 2 0 1
0 1 5 3 4 6 2
1 4 5 6 2 0 3
0 1 5 6 2 3 4
0 1 2 3 4 6 5
0 1 2 3 4 5 6

4 5 1 6 2 3 0
0 5 2 3 4 6 1
0 5 1 3 4 6 2
4 5 1 6 2 0 3
0 5 1 6 2 3 4
0 1 2 3 4 6 5
0 1 2 3 4 5 6

2 5 4 6 1 3 0
0 5 2 3 4 6 1
0 5 4 6 1 3 2
2 5 4 6 1 0 3
0 5 2 6 1 3 4
0 1 2 3 4 6 5
0 1 2 3 4 5 6

4 5 2 6 1 3 0
0 5 2 3 4 6 1
4 5 0 6 1 3 2
4 5 0 6 1 2 3
0 5 2 6 1 3 4
0 1 2 3 4 6 5
0 1 2 3 4 5 6

1 5 2 3 4 6 0
4 5 0 6 2 3 1
1 5 0 3 4 6 2
4 5 0 6 2 1 3
1 5 0 6 2 3 4
0 1 2 3 4 6 5
0 1 2 3 4 5 6

5 1 2 3 4 6 0
4 5 0 6 2 3 1
1 5 0 3 4 6 2
4 5 0 6 2 1 3
1 5 0 6 2 3 4
0 1 2 3 4 6 5
0 1 2 3 4 5 6

6 1 2 3 4 5 0
4 5 0 6 2 3 1
1 5 0 3 4 6 2
4 5 0 6 2 1 3
1 5 0 6 2 3 4
0 1 2 3 4 6 5
0 1 2 3 4 5 6

1 5 2 3 4 6 0
2 5 4 6 0 3 1
1 5 4 6 0 3 2
2 5 4 6 0 1 3
1 5 2 6 0 3 4
0 1 2 3 4 6 5
0 1 2 3 4 5 6

1 5 2 3 4 6 0
4 5 2 6 0 3 1
4 5 1 6 0 3 2
4 5 1 6 0 2 3
1 5 2 6 0 3 4
0 1 2 3 4 6 5
0 1 2 3 4 5 6

5 1 2 3 4 6 0
2 5 0 3 4 6 1
4 5 0 6 1 3 2
4 5 0 6 1 2 3
2 5 0 6 1 3 4
0 1 2 3 4 6 5
0 1 2 3 4 5 6

6 1 2 3 4 5 0
2 5 0 3 4 6 1
4 5 0 6 1 3 2
4 5 0 6 1 2 3
2 5 0 6 1 3 4
0 1 2 3 4 6 5
0 1 2 3 4 5 6
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Theoretical Parallel Computing Models for GPU
Computing

Koji Nakano

Abstract The latest GPUs are designed for general purpose computing and attract
the attention of many application developers. The main purpose of this chapter is
to introduce theoretical parallel computing models, the Discrete Memory Machine
(DMM) and the Unified Memory Machine (UMM), that capture the essence of
CUDA-enabled GPUs. These models have three parameters: the number p of
threads and the width w of the memory and the memory access latency l . As
examples of parallel algorithms on these theoretical models, we show fundamental
algorithms for computing the sum and the prefix-sums of n numbers. We first show
that the sum of n numbers can be computed inO. nw C nl

p
C l logn/ time units on the

DMM and the UMM. We then go on to show that ˝. nw C nl
p
C l logn/ time units

are necessary to compute the sum. We also present a simple parallel algorithm for
computing the prefix-sums that runs inO.n log n

w C nl log n
p
C l logn/ time units on the

DMM and the UMM. Clearly, this algorithm is not optimal. We present an optimal
parallel algorithm that computes the prefix-sums of n numbers inO. nwC nl

p
Cl logn/

time units on the DMM and the UMM. We also show several experimental results
on GeForce Titan GPU.

1 Introduction

Research into parallel algorithms has a long history of more than 40 years.
Sequential algorithms have been developed mostly on the random access machine
(RAM) [1]. In contrast, since there are a variety of connection methods and patterns
between processors and memories, many parallel computing models have been
presented and many parallel algorithmic techniques have been shown on them.
The most well-studied parallel computing model is the parallel random access
machine (PRAM) [5,7,30], which consists of processors and a shared memory. Each
processor on the PRAM can access any address of the shared memory in a time unit.
The PRAM is a good parallel computing model in the sense that parallelism of each

K. Nakano (�)
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problem can be revealed by the performance of parallel algorithms on the PRAM.
However, since the PRAM requires a shared memory that can be accessed by all
processors at the same time, it is not feasible.

The graphics processing unit (GPU) is a specialized circuit designed to accelerate
computation for building and manipulating images [10,11,17,31]. Latest GPUs are
designed for general purpose computing and can perform computation in applica-
tions traditionally handled by the CPU. Hence, GPUs have recently attracted the
attention of many application developers [10, 26, 27]. NVIDIA provides a parallel
computing architecture called CUDA (compute unified device architecture) [29], the
computing engine for NVIDIA GPUs. CUDA gives developers access to the virtual
instruction set and memory of the parallel computational elements in NVIDIA
GPUs. In many cases, GPUs are more efficient than multicore processors [18], since
they have hundreds of processor cores and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs: the global memory and
the shared memory [29]. The global memory is implemented in off-chip DRAMs
with large capacity, say, 1.5–6 GB, but its access latency is very high. The shared
memory is an extremely fast on-chip memory with lower capacity, say, 16–48 KB.
The efficient usage of the global memory and the shared memory is a key for
CUDA developers to accelerate applications using GPUs. In particular, we need
to consider the coalescing of the global memory access and the bank conflicts of
the shared memory access [17, 18, 28]. To maximize the bandwidth between the
GPU and the DRAM chips, the consecutive addresses of the global memory must
be accessed at the same time. Thus, threads of CUDA should perform coalesced
access when they access to the global memory. The address space of the shared
memory is mapped into several physical memory banks. If two or more threads
access to the same memory banks at the same time, the access requests are processed
sequentially. Hence, to maximize the memory access performance, threads should
access to distinct memory banks to avoid the bank conflicts of the memory access.

Memory machine models, the Discrete Memory Machine (DMM) and the Unified
Memory Machine (UMM) [22], are parallel computing models which reflect the
essential features of the shared memory and the global memory of NVIDIA GPUs.
The outline of the architectures of the DMM and the UMM are illustrated in Fig. 1.
In both architectures, a sea of threads (Ts) are connected to the memory banks
(MBs) through the memory management unit (MMU). Each thread is a random
access machine (RAM) [1], which can execute fundamental operations in a time
unit. We do not discuss the architecture of the sea of threads in this chapter, but we
can imagine that it consists of a set of multicore processors which can execute many
threads in parallel. Threads are executed in SIMD [4] fashion, and the processors
run on the same program and work on the different data.

MBs constitute a single address space of the memory. A single address space
of the memory is mapped to the MBs in an interleaved way such that a word of
data of address i is stored in the .i mod w/th bank, where w is the number of MBs.
The main difference of the two architectures is the connection of the address line
between the MMU and the MBs, which can transfer an address value. In the DMM,
the address lines connect the MBs and the MMU separately, while a single address



Theoretical Parallel Computing Models for GPU Computing 343

Fig. 1 The architectures of
the DMM and the UMM
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line from the MMU is connected to the MBs in the UMM. Hence, in the UMM, the
same address value is broadcast to every MB, and the same address of the MBs can
be accessed in each time unit. On the other hand, different addresses of the MBs can
be accessed in the DMM. Since the memory access of the UMM is more restricted
than that of the DMM, the UMM is less powerful than the DMM.

The performance of algorithms of the PRAM is usually evaluated using two
parameters: the size n of the input and the number p of processors. For example, it
is well known that the sum of n numbers can be computed in O. n

p
C logn/ time

on the PRAM [5]. On the other hand, four parameters, the size n of the input, the
numberp of threads, the width w, and the latency l of the memory are used when the
performance of algorithms on the DMM and on the UMM is evaluated. The width
w is the number of memory banks and the latency l is the number of time units to
complete the memory access. Hence, the performance of algorithms on the DMM
and the UMM is evaluated as a function of n (the size of a problem), p (the number
of threads), w (the width of a memory), and l (the latency of a memory). In NVIDIA
GPUs, the width w of global and shared memory is 16 or 32. Also, the latency l of
the global memory is several hundreds of clock cycles. In CUDA, a grid can have
at most 65,535 blocks with at most 1,024 threads each [29]. Thus, the number p of
threads can be 65 million.

Suppose that an array a of n numbers is given. The prefix-sums of a is the array
of size n such that the i th (0 � i � n � 1) element is aŒ0� C aŒ1� C � � � C aŒi �.
Clearly, a sequential algorithm can compute the prefix-sums by executing aŒiC1� 
aŒi C 1� C aŒi � for all i (0 � i � n � 2). The computation of the prefix-sums
of an array is one of the most important algorithmic procedures. Many sequential



344 K. Nakano

algorithms such as graph algorithms, geometric algorithms, image processing, and
matrix computation call prefix-sums algorithms as a subroutine. In particular, many
parallel algorithms use a parallel prefix-sum algorithm. For example, the prefix-sum
computation is used to obtain the preorder, the in-order, and the post-order of a
rooted binary tree in parallel [5]. So, it is very important to develop efficient parallel
algorithms for the prefix-sums.

As examples of parallel algorithms on the DMM and the UMM, this chapter
shows algorithms for computing the sum and the prefix-sums. We first show that the
sum of n numbers can be computed inO. nwC nl

p
Cl logn/ time units using p threads

on the DMM and the UMM with width w and latency l . We then go on to discuss
the lower bound of the time complexity and show three lower bounds, ˝. nw/-time
bandwidth limitation, ˝. nl

p
/-time latency limitation, and ˝.l logn/-time reduction

limitation. From this discussion, the computation of the sum and the prefix-sums
takes at least ˝. nw C nl

p
C l logn/ time units on the DMM and the UMM. Thus, the

sum algorithm is optimal. For the computation of the prefix-sums, we first evaluate
the computing time of a well-known simple algorithm [8,30]. We show that a simple
prefix-sum algorithm runs in O.n log n

w C nl log n
p
C l logn/ time. Hence, this fact

shows this simple prefix-sum algorithm is not optimal, and it has an overhead of
factor logn both for the bandwidth limitation n

w and for the latency limitation nl
p

.
We show an optimal parallel algorithm that computes the prefix-sums of n numbers
in O. nw C nl

p
C l logn/ time units on the DMM and the UMM.

This chapter is organized as follows. Section 2 introduces the Discrete Memory
Machine (DMM) and the Unified Memory Machine (UMM) [22]. In Sect. 3, we
evaluate the computing time of the contiguous memory access to the memory of the
DMM and the UMM. The contiguous memory access is a key ingredient of parallel
algorithm development on the DMM and the UMM. Using the contiguous access,
we show that the sum of n numbers can be computed inO. nwC nl

p
Cl logn/ time units

in Sect. 4. We then go on to discuss the lower bound of the time complexity and show
three lower bounds,˝. nw /-time bandwidth limitation,˝. nl

p
/-time latency limitation,

and˝.l logn/-time reduction limitation in Sect. 5. Section 6 shows a simple prefix-
sum algorithm, which runs in O.n log n

w C nl log n
p
C l logn/ time units. In Sect. 7, we

show an optimal parallel prefix-sum algorithm running in O. nw C nl
p
C l logn/ time

units. Section 8 presents several implementation and experimental results of the
sum and the prefix-sum algorithms using GeForce Titan GPU. In Sect. 9, we briefly
show several published results on memory machine models. The final section offers
conclusion of this chapter.

2 Memory Machine Models: DMM and UMM

The main purpose of this section is to define the Discrete Memory Machine (DMM)
and the Unified Memory Machine (UMM) [22].
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Fig. 2 Banks and address
groups for w D 4
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We first define the Discrete Memory Machine (DMM) of width w and latency
l . Let mŒi� (i � 0) denote a memory cell of address i in the memory. Let BŒj � D
fmŒj �;mŒjCw�; mŒjC2w�; mŒjC3w�; : : :g (0 � j � w�1) denote the j th bank of
the memory as illustrated in the Fig. 2. Clearly, a memory cell mŒi� is in the .i mod
w/th memory bank. We assume that memory cells in different banks can be accessed
in a time unit, but no two memory cells in the same bank can be accessed in a time
unit. Also, we assume that l time units are necessary to complete an access request
and continuous requests are processed in a pipeline fashion through the MMU. Thus,
it takes k C l � 1 time units to complete k access requests to a particular bank.

We assume that p threads are partitioned into p

w groups of w threads called warps.
More specifically, p threads are partitioned into p

w warpsW.0/;W.1/, : : :,W.pw�1/
such that W.i/ D fT .i �w/; T .i � wC 1/; : : : ; T ..i C 1/ � w� 1/g (0 � i � p

w � 1).
Warps are dispatched for memory access in turn, and w threads in a warp try to
access the memory at the same time. In other words,W.0/;W.1/; : : : ;W.pw �1/ are
dispatched in a round-robin manner if at least one thread in a warp requests memory
access. If no thread in a warp needs memory access, such warp is not activated for
memory access and is skipped. When W.i/ is activated, w thread in W.i/ sends
memory access requests, one request per thread, to the memory. We also assume
that a thread cannot send a new memory access request until the previous memory
access request is completed. Hence, if a thread sends a memory access request, it
must wait l time units to send a new memory access request.

For the reader’s benefit, let us evaluate the time for memory access using
Fig. 3 on the DMM for p D 8, w D 4, and l D 5. In the figure, p D 8

threads are partitioned into p

w D 2 warps W.0/ D fT .0/; T .1/; T .2/; T .3/g and
W.1/ D fT .4/; T .5/; T .6/; T .7/g. As illustrated in the figure, four threads in
W.0/ try to access mŒ7�;mŒ5�;mŒ15�, and mŒ0�, and those in W.1/ try to access
mŒ10�;mŒ11�;mŒ12�, and mŒ9�. The time for the memory access is evaluated under
the assumption that memory access is processed by imaginary l pipeline stages
with w registers each as illustrated in the figure. Each pipeline register in the first
stage receives memory access request from threads in an activated warp. Each i th
(0 � i � w � 1) pipeline register receives the request to the i th memory bank. In
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Fig. 3 An example of memory access

each time unit, a memory request in a pipeline register is moved to the next one. We
assume that the memory access completes when the request reaches the last pipeline
register.

Note that the architecture of pipeline registers illustrated in Fig. 3 are imaginary,
and it is used only for evaluating the computing time. The actual architecture should
involve a multistage interconnection network [6, 14] or sorting network [2, 3] to
route memory access requests.

Let us evaluate the time for memory access on the DMM. First, the access request
for mŒ7�;mŒ5�;mŒ0� is sent to the first pipeline stage. Since mŒ7� and mŒ15� are in
the same bank BŒ3�, their memory requests cannot be sent to the first stage at the
same time. Next, the mŒ15� is sent to the first stage. After that, memory access
requests formŒ10�;mŒ11�;mŒ12�;mŒ9� are sent at the same time, because they are in
different memory banks. Finally, after l � 1 D 4 time units, these memory requests
are processed. Hence, the DMM takes 2 C 1 C 4 D 7 time units to complete the
memory access.

We next define the Unified Memory Machine (UMM) of width w as follows. Let
AŒj � D fmŒj �w�; mŒj �wC1�; : : : ; mŒ.j C1/ �w�1�g denote the j th address group
as illustrated in Fig. 2. We assume that memory cells in the same address group are
processed at the same time. However, if they are in the different groups, one time
unit is necessary for each of the groups. Also, similarly to the DMM, p threads are
partitioned into warps and each warp access to the memory in turn.

Again, let us evaluate the time for memory access using Fig. 3 on the UMM for
p D 8, w D 4, and l D 5. The memory access requests byW.0/ are in three address
groups. Thus, three time units are necessary to send them to the first stage of pipeline
registers. Next, two time units are necessary to send memory access requests by
W.1/, because they are in two address groups. After that, it takes l � 1 D 4 time
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units to process the memory access requests. Hence, totally 3 C 2 C 4 D 9 time
units are necessary to complete all memory access.

3 Contiguous Memory Access

The main purpose of this section is to review the contiguous memory access on the
DMM and the UMM shown in [22]. Suppose that an array a of size n (� p) is given.
We use p threads to access all of nmemory cells in a such that each thread accesses
to n

p
memory cells. Note that “accessing” can be “reading from” or “writing in.” Let

aŒi � (0 � i � n � 1)denote the i th memory cells in a. When n � p, the contiguous
access can be performed as follows:

[Contiguous memory access]
for t  0 to n

p
� 1 do

for i  0 to p � 1 do in parallel
T .i/ accesses aŒp � t C i �
Let us evaluate the computing time. For each t (0 � t � n

p
� 1), p threads

access p memory cells aŒpt�; aŒpt C 1�; : : : ; aŒp.t C 1/ � 1�. This memory access
is performed by p

w warps in turn. More specifically, first, w threads in W.0/ access
aŒpt�; aŒpt C 1�; : : : ; aŒpt C w � 1�. After that, p threads in W.1/ access aŒpt C
w�; aŒptCwC1�; : : : ; aŒptC2w�1�, and the same operation is repeatedly performed.
In general, p threads in W.j / (0 � j � p

w � 1) accesses to aŒptC jw�; aŒptC jwC
1�; : : : ; aŒpt C .j C 1/w � 1�. Since w memory cells accessed by a warp are in the
different bank, the access can be completed in l time units on the DMM. Also, these
w memory cells are in the same address group, and thus, the access can be completed
in l time units on the UMM.

Recall that the memory access is processed in pipeline fashion such that w threads
in each W.j / send w memory access requests in one time unit. Let us consider two
cases:

Case 1: pw � l If this is the case, pw warps send memory access requests in turn,
and the first memory access requests by the first warp W.0/ are completed in
l time units as illustrated in Fig. 4. After that, w threads in W.0/ can send
next memory access requests immediately, and they can be completed in l time
units. This is repeated n

p
times. After all memory access requests by W.0/ are

completed, it takes p

w � 1 time units to complete the last memory access requests
byW.pw �1/. Hence, the contiguous access can be done in nl

p
C p

w �1 time units.

Case 2: pw > l When the memory access requests by w threads in W.0/ are
completed, they cannot send next memory requests immediately. They must wait
until w threads in W.pw � 1/ send the memory access requests. Hence, all warps
send memory access request continuously in turn as illustrated in Fig. 4. Since
each of p

w warps sends memory access requests n
p

times, it takes p

w � np D n
w

time units to send all memory access requests. After that, the last memory access
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Fig. 4 The time chart of the contiguous memory access

requests by the last warp are completed in l�1 time units. Hence, the contiguous
access can be done in n

w C l � 1 time units.

With cases 1 and 2 combined, the prefix-sums can be computed inO. nw C nl
p
C l/

time units. Further, if n < p then the contiguous memory access can be simply done
using n threads out of the p threads. If this is the case, the memory access can be
done by O. nw C l/ time units. Therefore, we have,

Lemma 1 The contiguous access to an array of size n can be done inO. nwC nl
p
Cl/

time using p threads on the UMM and the DMM with width w and latency l .

4 An Optimal Parallel Algorithm for Computing the Sum

The main purpose of this section is to show an optimal parallel algorithm for
computing the sum on the memory machine models.

Let a be an array of n D 2m numbers. Let us show an algorithm to compute
the sum aŒ0� C aŒ1� C � � � C aŒn � 1�. The algorithm uses a well-known parallel
computing technique which repeatedly computes the sums of pairs. We implement
this technique to perform contiguous memory access. The details are spelled out as
follows:



Theoretical Parallel Computing Models for GPU Computing 349

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 5 Illustrating the summing algorithm for n D 16 numbers

[Optimal algorithm for computing the sum]
for t  m � 1 downto 0 do
for i  0 to 2t � 1 do in parallel
aŒi � aŒi �C aŒi C 2t �
Figure 5 illustrates how the sums of pairs are computed. From the figure, the

reader should have no difficulty to confirm that this algorithm computes the sum
correctly.

We assume that p threads to compute the sum. For each t (0 � t � m � 1), 2t

operations “aŒi �  aŒi � C aŒi C 2t �” are performed. These operations involve the
following memory access operations:

• reading from aŒ0�; aŒ1�; : : : ; aŒ2t � 1�,
• reading from aŒ2t �; aŒ2t C 1�; : : : ; aŒ2 � 2t � 1�, and
• writing in aŒ0�; aŒ1�; : : : ; aŒ2t � 1�.
Since these memory access operations are contiguous, they can be done in O.2

t

w C
2t l
p
C l/ time using p threads both on the DMM and on the UMM with width w and

latency l from Lemma 1. Thus, the total computing time is

m�1X

tD0
O.
2t

w
C 2tl

p
C l/ D O.2

m

w
C 2ml

p
C lm/

D O. n
w
C nl

p
C l logn/



350 K. Nakano

and we have

Theorem 1 The sum of n numbers can be computed in O. nw C nl
p
C l logn/ time

units using p threads on the DMM and on the UMM with width w and latency l .

5 The Lower Bound of the Computing Time

Let us discuss the lower bound of the time necessary to compute the sum on the
DMM and the UMM to show that our parallel summing algorithm for Theorem 1
is optimal. Since the sum is the last value of the prefix-sums, this lower bound
discussion for the sum can be applied to that for the prefix-sums. We will show
three lower bounds of the sum,˝. nw/-time bandwidth limitation,˝. nl

p
/-time latency

limitation, and ˝.l logn/-time reduction limitation.
Since the width of the memory is w, at most w numbers in the memory can be

read in a time unit. Clearly, all of the n numbers must be read to compute the sum.
Hence, ˝. nw / time units are necessary to compute the sum. We call the ˝. nw/-time
lower bound the bandwidth limitation.

Since the memory access takes latency l , a thread can send at most t
l

memory
read requests in t time units. Thus, p threads can send at most pt

l
total memory

requests in t time units. Since at least n numbers in the memory must be read to
compute the sum, pt

l
� n must be satisfied. Thus, at least t D ˝. nl

p
/ time units are

necessary. We call the˝. nl
p
/-time lower bound the latency limitation.

Next, we will show the reduction limitation, the ˝.l logn/-time lower bound.
The formal proof is more complicated than those for the bandwidth limitation and
the latency limitation.

Imagine that each of n input numbers stored in the shared memory (or the global
memory) is a token and each thread is a box. Whenever two tokens are placed in a
box, they are merged into one immediately. We can move tokens to boxes and each
box can accept at most one token in l time units. Suppose that we have n tokens
outside boxes. We will prove that it takes at least l logn time units to merge them
into one token. For this purpose, we will prove that if we have n0 tokens at some
time, we must have at least n0

2
tokens l time units later. Suppose that we have n0

tokens such that k of them are in k boxes and the remaining n0 � k tokens are out
of boxes. If k � n0 � k, then we can move k tokens to k boxes and can merge
k pairs of tokens in l time units. After that, n0 � k tokens remain. If k > n0 � k,
then we can merge n0 � k pairs of tokens and we have k tokens after l time units.
Hence, after l time units, we have at least max.n0 � k; k/ � n0

2
tokens. Thus, we

must have at least n0

2
tokens l time units later. In other words, it is not possible to

reduce the number of tokens by less than half. Hence, in t time units, we have at
least n

2
t
l

tokens. Since n

2
t
l
� 1 must be satisfied, it takes at least t � l logn time

units to merge n tokens into one. It should be clear that reading a number by a thread
from the shared memory (or the global memory) corresponds to a token movement
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to a box. Therefore, it takes at least ˝.l logn/ time units to compute the sum of n
numbers.

From the discussion above, we have

Theorem 2 Both the DMM and the UMM with p threads, width w, and latency l
take at least ˝. nw C nl

p
C l logn/ time units to compute the sum of n numbers.

From Theorem 2, the parallel algorithm for computing the sum shown for Theo-
rem 1 is optimal.

6 A Simple Prefix-Sum Algorithm

We assume that an array a with n D 2m numbers is given. Let us start with a
well-known simple prefix-sum algorithm for array a [8,9] and show it is not optimal.
The simple prefix-sum algorithm is written as follows:

[A simple prefix-sum algorithm]
for t  0 to m � 1 do
for i  2t to n � 1 do in parallel
aŒi � aŒi �C aŒi � 2t �
Figure 6 illustrates how the prefix-sums are computed.
We assume that p threads are available and evaluate the computing time of the

simple prefix-sum algorithm. The following three memory access operations are
performed for each t (0 � t � m � 1) by:

• reading from aŒ0�; aŒ1�; : : : ; aŒn � 2t � 1�,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0-1 1-2 2-3 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-150 3-4

0-1 0-2 0-3 2-5 3-6 4-7 5-8 6-9 7-10 8-11 9-12 10-13 11-14 12-150 1-4

0-1 0-2 0-3 0-5 0-6 0-7 1-8 2-9 3-10 4-11 5-12 6-13 7-14 8-150 0-4

0-1 0-2 0-3 0-5 0-6 0-7 0-8 0-9 0-10 0-11 0-12 0-13 0-14 0-150 0-4

Fig. 6 Illustrating the simple prefix-sum algorithm for n D 16 numbers
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• reading from aŒ2t �; aŒ2t C 1�; : : : ; aŒn � 1�, and
• writing in aŒ2t �; aŒ2t C 1�; : : : ; aŒn � 1�.
Each of the three operations can be done by contiguous memory access for n �
2t elements. Hence, the computing time of each t is O.n�2tw C .n�2t /l

p
C l/ from

Lemma 1. The total computing time is

m�1X

tD0
O.
n � 2t

w
C .n � 2t /l

p
C l/ D O.n logn

w
C nl logn

p
C l logn/:

Thus, we have

Lemma 2 The simple prefix-sum algorithm runs O.n log n
w C nl log n

p
C l logn/ time

units using p threads on the DMM and on the UMM with width w and latency l .

If the computing time of Lemma 2 matches the lower bound shown in Theorem 2,
the prefix-sum algorithm is optimal. However, it does not match the lower bound. In
the following section, we will show an optimal prefix-sum algorithm whose running
time matches the lower bound.

7 An Optimal Prefix-Sum Algorithm

This section shows an optimal algorithm for the prefix-sums running O. nw C nl
p
C

l logn/ time units. We use m arrays a0; a1; : : : am�1 as work space. Each at (0 �
t � m � 1) can store 2t numbers. Thus, the total size of the m arrays is no more
than 20 C 21 C � � � C 2m�1 � 1 D 2m � 1 D n � 1. We assume that the input of n
numbers are stored in array am of size n.

The algorithm has two stages. In the first stage, interval sums are stored in the m
arrays. The second stage uses interval sums in them arrays to compute the resulting
prefix-sums. The details of the first stage are spelled out as follows.

[Compute the interval sums]
for t  m � 1 downto 0 do
for i  0 to 2t � 1 do in parallel
at Œi � atC1Œ2 � i �C atC1Œ2 � i C 1�

Figure 7 illustrates how the interval sums are computed. When this program
terminates, each at Œi � (0 � t � m� 1; 0 � i � 2t � 1) stores at Œi � n2t �C at Œi � n2t C
1�C � � � C at Œ.i C 1/ � n2t � 1�.

In the second stage, the prefix-sums are computed by computing the sums of the
interval sums as follows:

[Compute the sums of the interval sums]
for t  0 to m � 1 do
for i  0 to 2t � 1 do in parallel
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0-1 0-2 0-3 0-5 0-6 0-7 0-8 0-9 0-10 0-11 0-12 0-13 0-14 0-150 0-4

0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15

0-3 4-7 8-11 12-15
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Fig. 7 Illustrating the optimal prefix-sum algorithm for n D 16 numbers

atC1Œ2 � i C 1� at Œi �

for i  0 to 2t � 2 do in parallel
atC1Œ2 � i C 2� atC1Œ2 � i C 2�C at Œi �

Figure 7 shows how the prefix-sums are computed. In the figure, “atC1Œ2 � i C 1� 
at Œi �” and “atC1Œ2 � iC2� atC1Œ2 � iC2�Cat Œi �” correspond to “copy” and “add,”
respectively.

When this algorithm terminates, each amŒi � (0 � i � 2t�1) stores the prefix-sum
amŒ0�CamŒ1�C� � �CamŒi �. We assume that p threads are available and evaluate the
computing time. The first stage involves the following memory access operations
for each t (0 � t � m� 1):

• reading from atC1Œ0�; atC1Œ2�; : : : ; atC1Œ2tC1 � 2�,
• reading from atC1Œ1�; atC1Œ3�; : : : ; atC1Œ2tC1 � 1�, and
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• writing in at Œ0�; at Œ1�; : : : ; at Œ2t � 1�.
Every two addresses is accessed in the reading operations. Thus, these three memory
access operations are essentially contiguous access, and they can be done inO.2

t

w C
2t l
p
C l/ time units. Therefore, the total computing time of the first stage is

m�1X

tD1
O.
2t

w
C 2t l

p
C l/ D O.

n

w
C nl

p
C l logn/:

The second stage consists of the following memory access operations for each t
(0 � t � m � 1):

• reading from at Œ0�; at Œ1�; : : : ; at Œ2
t � 1�,

• reading from atC1Œ2�; atC1Œ4�; : : : ; atC1Œ2tC1 � 2�, and
• writing in atC1Œ0�; atC1Œ1�; : : : ; atC1Œ2tC1 � 1�.
Similarly, these operations can be done in O.2

t

w C 2t l
p
C l/ time units. Hence, the

total computing time of the second stage is also O. nw C nl
p
C l logn/. Thus, we have

Theorem 3 The prefix-sums of n numbers can be computed inO. nw C nl
p
C l logn/

time units using p threads on the DMM and the UMM with width w and latency l .

From Theorem 2, the lower bound of the computing time of the prefix-sums is
˝. nw C nl

p
C l logn/. Thus, The prefix-sum algorithm for Theorem 3 is optimal.

8 Experimental Results

This section is devoted to show experimental results. We have implemented an
algorithm for computing the sum (Theorem 1) on the shared memory and the
global memory on GeForce Titan and evaluated the performance. We have also
implemented the simple prefix-sum algorithm (Lemma 2) and the optimal prefix-
sum algorithm (Theorem 3) on GeForce Titan. GeForce Titan has 2688 processor
cores in 14 streaming multiprocessors.

Figure 8 shows the computing time of the three algorithms on GeForce Titan.
The computing time is evaluated for 4,096 32-bit (float) numbers for the shared
memory. We have used n

2
threads of a CUDA block for n 32-bit (float) numbers,

when n � 2; 048 and 1,024 threads for n D 4; 096, because a CUDA block can have
up to 1,024 threads. Since the capacity of the shared memory is up to 48 KB, we can
implement these algorithms up to 4,096 32-bit numbers. The running times of the
sum algorithm and that of the simple prefix-sum algorithm are almost the same for
small n, because the latency overhead l logn is dominant in the computing time.
On the other hand, the optimal prefix-sum algorithm takes much more computing
time, because its latency overhead is more than 2l logn. However, the bandwidth
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Fig. 8 The computing time of the sum and the prefix-sums on the shared memory and the global
memory on GeForce Titan

overhead n log n
w of the naive algorithm is dominant when n is large. Hence, the

running time of the naive algorithm is larger than the others for large n.
Figure 8 also shows the computing time for 1K-128M (210 � 227) 32-bit (float)

numbers on the global memory. We have used n
2

threads in multiple CUDA blocks
for n 32-bit (float) numbers. We can see that the bandwidth overhead O. nw/ for the
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sum algorithm and the optimal prefix-sum algorithm and O.n log n
w / for the simple

prefix-sum algorithm is dominant for large n. For small n, the latency overhead
l logn is dominant.

9 Open Problems in Memory Machine Models

Although GPUs have recently attracted the attention of many application developers
and many researchers have been devoted to develop efficient algorithms on GPUs,
there are few theoretical researches on GPU computing. Most of the research results
on GPU computing are:

• to develop and implement parallel algorithms using CUDA, and
• to evaluate the performance on a specific GPU.

However, we are not able to evaluate the goodness of parallel algorithms by
the running time of a specific GPU, since the running time depends on many
factors including programming skills, compiler optimization, GPU card models,
and CUDA versions. It is very important to evaluate the performance of parallel
algorithms for GPU computing by theoretical analysis. So, we have published
memory machine models for GPU computing and published several algorithmic
techniques on memory machine models.

So far, we have several results on memory machine models. In [22], we first
introduced memory machine models, the DMM and the UMM, and presented
several fundamental algorithms including transposing of a matrix. We have pre-
sented several algorithm for computing the prefix-sums on memory machine models
in [19, 21]. In [12], we have published graph coloring-based technique for optimal
offline permutation on the memory machine models. We have implemented these
algorithms on the GPU and evaluated the performance. The experimental results
show that theoretical analysis of the performance on memory machine models
gives good estimates of the running time on the GPU. In [16, 20], we have
shown optimal parallel algorithms for approximate string matching and evaluated
the performance on the GPU. We have developed new algorithm gadget called
sequential memory access and have designed optimal parallel algorithms for the
dynamic programming running on the UMM [24]. Further, we have shown a
new generic algorithmic technique called random address shift on the DMM to
reduce the memory access congestion to memory banks [25]. Quite recently, we
have introduced Hierarchical Memory Machine (HMM), which consists of multiple
DMMs and a single UMM [13,23]. The HMM features the hierarchical structure of
CUDA-enabled GPUs. Figure 9 illustrates the architecture of HMM. Each DMM
corresponds to a streaming multiprocessors of CUDA-enabled GPUs. Also, all
DMMs combined correspond to the UMM. Thus, theoretical analysis of algorithms
on the HMM is more realistic for GPU computing.
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Fig. 9 The Hierarchical Memory Machine (HMM)

We still have a lot of things to do in the area of theoretical research for GPU
computing. Many researchers have developed many parallel algorithmic techniques
on traditional parallel computing models [5, 7, 15, 30] such as PRAMs. However,
in many cases, direct implementation of the memory machine models is not
efficient. We need to consider the memory access characteristics of the memory
machine models when we design parallel algorithms on them. There are a lot of
open problems to develop algorithmic techniques for graph problems, geometric
problems, and optimization problems, among others.

Conclusion
This chapter introduces theoretical parallel computing models, the Discrete
Memory Machine (DMM) and the Unified Memory Machine (UMM), that
capture the essence of CUDA-enabled GPUs. We have shown that the sum
and the prefix-sums can be computed inO. nw C nl

p
C l logn/ time units on the

DMM and the UMM. We have also shown that˝. nwC nl
p
C l logn/ time units

are necessary to compute the sum. We also show several experimental results
on a CUDA-enabled GPU.
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Membrane Computing: Basics and Frontiers

Gheorghe Păun

Abstract Membrane computing is a branch of natural computing inspired by the
structure and the functioning of the living cell, as well as by the cooperation of
cells in tissues, colonies of cells, and neural nets. This chapter briefly introduces
the basic notions and (types of) results of this research area, also discussing open
problems and research topics. Several central classes of computing models (called
P systems) are considered: cell-like P systems with symbol objects processed by
means of multiset rewriting rules, symport/antiport P systems, P systems with active
membranes, spiking neural P systems, and numerical P systems.

1 Introduction

Membrane computing is a branch of natural computing initiated in [22] and having
as its main goal to abstract computing models from the architecture and the
functioning of living cells, considered alone or as parts of higher order structures,
such as tissues, organs (brain included), and colonies of cells (e.g., of bacteria).
Several classes of computing devices, called P systems, were introduced in this
framework. Their basic features/ingredients are the following: (1) the membrane
structure, of a cell-like (hierarchical, described by a tree) or a tissue-like (described
by an arbitrary graph) type, defining compartments (also called regions), where
(2) multisets of objects (i.e., sets with multiplicities associated with their elements)
evolve according to given (3) evolution rules inspired from the biochemistry of the
cell; the objects and the rules are placed in the compartments; the functioning of
the model is distributed, as imposed by the compartments defined by membranes;
and parallel evolution rules are applied simultaneously in all regions, to all objects
which can evolve.

We will enter immediately into some details. What is important here is to under-
stand membrane computing as a framework for devising computing models (where
“computing” is understood in the Turing sense, of an input–output well-defined
process, which provides a result after halting) which are distributed and parallel
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and rather different from the many computing devices known in (theoretical)
computer science, dealing with a data structure which is not very common to
computer science, but it is fundamental for biology, the multiset. We interpret
the chemicals which swim in water in the compartments of a cell, from ions to
large macromolecules, as atomic objects (in the etymological sense), identified by
symbols in a given alphabet; their multiplicity in a compartment matters, but there
is no ordering, and no positional information (like in the strings usually processed
in computer science by automata, grammars, rewriting machineries). We ignore at
this stage chemicals bound on membranes or on the cytoskeleton (as well as the
structure of chemicals), although also such details were taken into consideration
in certain variants of P systems. In turn, the rules by which the objects evolve are
also inspired by the functioning of the cell; the most investigated are the multiset
rewriting rules, similar to the biochemical reactions, but also many other types of
rules were considered: abstraction of biological operations such as symport and
antiport, membrane division, creation, separation, etc. In neural-like P systems, one
uses specific operations, for instance, spiking rules.

At this level, membrane computing is interested in understanding the computing
processes taking place in cells, in order to learn something possibly useful for
computer science, in the same way as many (actually, most: the only exception is
DNA computing, which comes with a different goal, that of using DNA, and other
ingredients from biology, as a support for computations) areas of natural computing
look to biology in order to improve the use/the efficiency of existing computers.
The domain developed very much in this direction—but also well developed are
the applications, especially in biology and biomedicine, in ecology, linguistics,
computer science, economics, approximate optimization, etc. We will discuss here
only some theoretical issues, and we refer the reader to [2, 3, 30] for details about
applications.

When introducing a new computability model, the basic theoretical questions
concern the computing power and the computing efficiency, in both cases comparing
the new model with standard models and classifications in computer science: the
power of Turing machines and of their restrictions and the classes in computational
complexity. The equivalence in power with Turing machines is desired from two
points of view: according to Turing–Church thesis, this is the maximal power an
algorithmic model can achieve, and, moreover, the equivalence with Turing machine
also means programmability (the existence of universal computing devices in the
sense of universal Turing machines). In turn, the efficiency question is expected
to have answers indicating a speedup when passing from Turing machines to the
new model, if possible, indicating (even only theoretical) ways to solve classically
intractable problems (typically, NP-complete problems) in a feasible time (typically,
polynomial).

Membrane computing provides encouraging answers to both these questions.
Most of the classes of P systems are Turing complete, even when using ingredients
of a reduced complexity—a small number of membranes, rules of simple forms,
and ways of controlling the use of rules directly inspired from biology, while
certain classes of P systems are also efficient; they can solve NP-complete (even
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PSPACE-complete) problems in a polynomial (often, linear) time; this speedup is
obtained by means of a space-time trade-off, with the (exponential) space obtained
during the computation, in a linear time, by means of bioinspired operations, such
as membrane division, membrane creation, string replication, etc.

For the fifteen years since its beginning, membrane computing is quite well
developed at all levels (theory, applications, software), and its bibliography is very
large. The reader is advised to look for details, at various levels of developments
of this research area, in [25] and in the handbook [30]. A comprehensive source of
information (with many papers, PhD theses, and pre-proceedings volumes available
for downloading) can be found on the P systems website from [36]. In general, we
refer the reader to these bibliographical sources, so that in what follows we only
specify a few references.

2 Cell-Like P Systems

We introduce now, in some detail, the basic (the first introduced and the most
investigated) class of P systems, the cell-like P systems processing multisets
of symbol objects. We discuss first the basic ingredients: membrane structure,
multisets, and multiset processing rules.

2.1 Membrane Structure

The starting point is the (eukaryotic) cell and its compartmentalization by means
of membranes, hierarchically arranged. We represent such a (spatial) structure in
the way suggested in Fig. 1. Please notice the intuitive terminology used, the way
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Fig. 1 A membrane structure and its tree representation
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of defining compartments (“protected reactors,” where specific biochemistry takes
place), and the one-to-one correspondence between membranes and compartments.
The membranes are usually labeled; thus, we can identify by a label both the
membrane and its associated region.

A hierarchical structure of membranes can be represented by a rooted unordered
tree, with labeled nodes; the tree which describes the membrane structure in
Fig. 1 is given in the right hand side of the same figure. The root of the tree
is associated with the skin membrane, and the leaves are associated with the
elementary membranes. The tree representation directly suggests a formal way to
represent a membrane structure as a string of labeled matching parentheses. For
instance, a string corresponding to the structure from Fig. 1 is the following:

Œ 1 Œ 2 �2 Œ 3 � 3 Œ 4 Œ5 � 5 Œ 6 Œ 8 �8 Œ 9 � 9 � 6 Œ7 � 7 � 4 � 1

Of course, several strings can represent the same membrane structure, because the
tree is not ordered; hence, membranes placed at the same level (and hence the
corresponding parentheses) can interchange their place.

2.2 Multisets

In the compartments of a cell, there are various chemicals swimming in water (at this
stage, we ignore the chemicals, mainly proteins, bound on membranes, but there are
classes of P systems taking them into account). Therefore, the natural data structure
to use in this framework is the multiset, the set with multiplicities associated with
its elements.

Formally, a multiset over a given set U is a mapping M W U �! N, where
N is the set of nonnegative integers. For a 2 U , M.a/ is the multiplicity of a in
M . If the set U is finite, U D fa1; : : : ; ang; then the multiset M can be explicitly
given in the form f.a1;M.a1//; : : : ; .an;M.an//g, thus specifying for each element
of U its multiplicity in M . In membrane computing, the usual way to represent a
multiset M D f.a1;M.a1//; : : : ; .an;M.an//g over a finite set U D fa1; : : : ; ang
is by using strings: w D aM.a1/1 a

M.a2/
2 : : : a

M.an/
n and all permutations of w represent

M ; the empty multiset is represented by �, the empty string. The total multiplicity
of elements of a multiset (this is also called the weight of the multiset) clearly
corresponds to the length of a string representing it.

A few basic notions about multisets (union, inclusion, difference) are useful in
membrane computing, but they are defined in a natural way; hence, we do not recall
them here and refer to [1] for details.
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2.3 Evolution Rules

The main way the chemicals present in the compartments of a cell evolve is by
means of biochemical reactions which consume certain chemicals and produce
other chemicals. In what follows, we consider the chemicals as unstructured, hence
described by symbols from a given alphabet; we call these symbols objects. There
are classes of P systems which also consider structured objects, especially described
by strings, but we refer to the bibliography for details. In each compartment of a cell
(of the membrane structure describing it), we have a multiset of objects, maybe the
empty one. Corresponding to the biochemical reactions, we get multiset rewriting
rules.

We write such a rule in the form u ! v, where u and v are multisets of
objects (represented by strings over a given alphabet). The objects indicated by u
are consumed and those indicated by v are produced. It is important to have in mind
that both the objects and the rules are placed in the compartments of the membrane
structure. The rules in a given compartment are applied only to objects in the same
compartment. In order to make the compartments cooperate, we can move objects
across membranes, and this can be achieved by adding target indications to the
objects produced by a rule u! v. The indications we use here are here, in, and out,
with the meanings that an object associated with the indication here remains in the
same region, one associated with the indication in goes immediately into an adjacent
lower membrane, nondeterministically chosen, and out indicates that the object has
to exit the membrane, thus becoming an element of the region surrounding it. For
instance, we can have aab ! .a; here/.b; out/.c; here/.c; in/. Using this rule in a
given region of a membrane structure means to consume two copies of a and one
of b (they are removed from the multiset of that region), and one copy of a, one of
b, and two of c are produced; the resulting copy of a remains in the same region,
and the same happens with one copy of c (indication here), while the new copy
of b exits the membrane, going to the surrounding region (indication out), and one
of the new copies of c enters one of the children membranes, nondeterministically
chosen. If no such child membrane exists, that is, the membrane with which the rule
is associated is elementary, then the indication in cannot be followed, and the rule
cannot be applied. In turn, if the rule is applied in the skin region, then b will exit
into the environment of the system (and it is “lost” there; it can never come back, as
there is no rule associated with the environment). In general, the indication here is
not specified when giving a rule.

The evolution rules are classified according to the complexity of their left hand
side. A rule with at least two objects in its left hand side is said to be cooperative; a
particular case is that of catalytic rules, of the form ca ! cv, where c is an object
(called catalyst) which assists the object a to evolve into the multiset v; rules of the
form a! v, where a is an object, are called noncooperative.

Biochemistry suggests various ways to extend the form of the rules, in particular
ways to control their application. For instance, we can add promoters (objects which
should be present in the compartment where the rule is applied) and inhibitors
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(objects which, if present, forbid the use of the rule). A priority relation can also
be considered as a partial order relation on the set of rules present in a region; in
each step, only rules with a maximal priority among the applicable rules can be
used. A special ingredient is the membrane dissolution action: when applying a
rule of the form u ! vı, besides the replacement of the multiset u by the multiset
v, the membrane where the rule is applied is “dissolved”; its contents, object, and
membranes alike, become part of the contents of the surrounding membrane, while
its rules disappear with the membrane. The skin membrane is never dissolved.

There are several other types of rules for handling objects and also for handling
membranes. The basic ones will be presented later. Now we pass to a crucial point
in the definition of P systems: the ways of using the rules. Membranes, objects, and
rules constitute the architecture of the computing model (its syntax); it is important
to see how this model can function (its semantics).

2.4 Ways of Using the Rules

Having in mind the biochemical reality, the rules in a compartment of a membrane
structure should be used in a nondeterministic (the objects to evolve and the
rules by which they evolve are chosen in a nondeterministic manner) and parallel
way. The parallelism adopted in membrane computing is the maximal one. More
formally stated, we look to the set of rules and the multiset of objects from a given
compartment and try to find a multiset of rules, by assigning multiplicities to rules,
with two properties: (1) the multiset of rules is applicable to the multiset of objects
available in the respective region, that is, there are enough objects to apply the rules a
number of times as indicated by their multiplicities, and (2) the multiset is maximal,
i.e., no further rule can be added to it (no multiplicity of a rule can be increased)
such that the obtained multiset is still applicable.

Thus, an evolution step in a given region consists of finding a maximal applicable
multiset of rules, removing from the region all objects specified in the left hand sides
of the chosen rules (with multiplicities as indicated by the rules and by the number
of times each rule is used), producing the objects from the right hand sides of the
rules, and then distributing these objects as indicated by the targets associated with
them.

Several alternatives are possible and were investigated in membrane computing:
limited parallelism (only a given number of rules should be applied), sequential use
of rules (only one at a time in each region), minimal parallelism (if a region can
evolve, then at least one rule is used there), and asynchronous use of rules (no clock
is assumed at the level of the system).

We continue here only with the maximal parallelism, and we define now
computations, which are sequences of transitions between configurations of the P
system, defined as above, by the maximally parallel nondeterministic use of rules
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in each configuration. Similar to Turing machines, we consider that a computation
is successful if and only if it halts; it reaches a configuration where no rule can
be applied to the existing objects. With a halting computation, we can associate a
result in various ways. One possibility is to count the objects present in the halting
configuration in a specified elementary membrane (internal output), or we can count
the objects which leave the system during the computation (external output). In both
cases the result is a number.

Starting from an initial configuration of the system and proceeding through
transitions, because of the nondeterminism of the application of rules, we can
get several halting computations, hence several results. In this way, a P system
computes (or generates) a set of numbers. This corresponds to grammars in formal
language theory. We can also use the system in the accepting mode, corresponding
to automata: we start from the initial configuration, where some objects codify
an input, and we accept that input if and only if the computation halts. A more
general case is that of computing a function: we start with the argument introduced
in the initial configuration, and we obtain the value of the function in the end of the
computation.

2.5 A Formal Definition of a P System

Formally, a cell-like P system is a construct

˘ D .O;C;�;w1; : : : ;wm;R1; : : : ; Rm; iin; iout/;

whereO is the alphabet of objects,C � O is the set of catalysts,� is the membrane
structure (with m membranes), given as an expression of labeled parentheses,
w1; : : : ;wm are strings over O representing multisets of objects present in the
m regions of � at the beginning of a computation, R1; : : : ; Rm are finite sets of
evolution rules associated with the regions of �, and iin; iout are the labels of input
and output regions, respectively; iout can be the environment, denoted env. If the
system is used in the generative mode, then iin is omitted, and if the system is used
in the accepting mode, then iout is omitted. The number m of membranes in � is
called the degree of ˘ .

In the generative case, the set of numbers computed by ˘ (in the maximally
parallel nondeterministic mode) is denoted by N.˘/. The family of all sets N.˘/
computed by systems ˘ of degree at most m � 1 and using rules of ˛ forms
is denoted by NOPm.˛/; if there is no bound on the degree of systems, then
the subscript m is replaced with �. According to the previous classification, ˛ 2
fncoo; cat; coog, with the obvious meaning.
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2.6 A Simple Example

We illustrate the previous definitions with a simple example, of a computing P
system, of a catalytic type, also using the membrane dissolution feature. The initial
configuration of the system is given in a graphical representation in Fig. 2 and
formally is the following one:

˘ D .O;C;�;w1;w2; R1;R2; iin; iout/; where:

O D fa; b1; b01; b2; c; eg (the set of objects);

C D fcg (the set of catalysts);

� D Œ 1 Œ 2 �2 � 1 (membrane structure);

w1 D c (initial objects in region 1);

w2 D � (initial objects in region 2);

R1 D fb1 ! b1; e ! eoutg (rules in region 1);

R2 D fa! b1b2; cb1 ! cb01; b2 ! b2e; cb1 ! cb01ıg (rules in region 2);

iin D 2 (the input region);

iout D env (the output region = the environment):

This system computes the function n �! n2, for any natural number n � 1: any
number n is introduced in the system in the form of n copies of the object a placed
in region 2, and then the computation can start. It proceeds as follows.

Fig. 2 A P system with
catalysts and dissolution

1
2

c

a → b1b2

cb1 → cb1

b2 → b2e

cb1 → cb1δ

b1 → b1

e → eout



Membrane Computing: Basics and Frontiers 369

The only rule to be applied is a ! b1b2 in region 2. Because of the maximal
parallelism, it has to be applied simultaneously to all copies of a. Thus, in one step,
all n objects a are replaced by n copies of b1 and n copies of b2. From now on, the
other rules from region 2 can be used. The catalytic rule cb1 ! cb01 can be used only
once in each step, because the catalyst is present in only one copy. This means that
in each step one copy of b1 gets primed. Simultaneously (because of the maximal
parallelism), the rule b2 ! b2e should be applied as many times as possible, and
this means n times, because we have n copies of b2. In this way, in each step we
change one b1 to b01 and we produce n copies of e (one for each copy of b2). The
computation should continue in region 2 (note that no rule can be applied in the skin
region) as long as there are applicable rules. At any step, instead of cb1 ! cb01,
in region 2 we can use the rule cb1 ! cb01ı, which replaces one b1 by b01 but also
dissolves membrane 2. All objects in region 2 are left free in region 1. If at least one
object b1 exists, then the computation will continue forever by means of the rule
b1 ! b1 from region 1; hence, no result is obtained. Conversely, as long as the rule
cb1 ! cb01ı is not used, the rule b2 ! b2e in region 2 should be used; hence, again
the computation is non-successful; it lasts forever if no copy of b1 still exists. This
means that the rule cb1 ! cb01ı should be used, and this must be done in the moment
when the last object b1 is consumed, replaced by b01. Consequently, a catalytic rule
is applied exactly n steps, simultaneously with using n times in parallel the rule
b2 ! b2e. In this way, n2 copies of e are introduced in region 2 and left free in the
skin region after dissolving membrane 2. The rule e ! eout will send immediately
all these copies of e to the environment, and the computation halts. The result is the
desired one, n2.

The previous system can be easily transformed in a generative one: we only have
to provide, nondeterministically, n copies of a to region 2, for all n. For instance, we
can add a further membrane, with label 3, inside membrane 2, containing initially a
copy of an object d and two rules:

d ! da; d ! aı:

After producing m � 0 copies of a by means of the rule d ! da, one introduces
one further copy of a and one dissolves membrane 3 (rule d ! aı). From now on,
the computation continues as above. For the modified system ˘ 0, we get N.˘ 0/ D
fn2 j n � 1g.

3 The Power of Catalytic P Systems

We have mentioned already that many classes of P systems are equivalent in power
with Turing machines. This is not a surprise for cooperating P systems, but it is
unexpected for catalytic P systems. Moreover, the number of catalysts sufficient for
obtaining the computational completeness is also rather reduced, too.
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Let us denote by NPm.catr / the family of sets of numbersN.˘/ computed (gen-
erated) by P systems with at most m membranes, using catalytic or noncooperative
rules, containing at most r catalysts. When all the rules of a system are catalytic,
we say that the system is purely catalytic, and the corresponding families of sets
of numbers are denoted by NPm.pcatr /. When the number of membranes is not
bounded by a specifiedm (it can be arbitrarily large), then the subscriptm is replaced
with �.

We denote by NRE the family of recursively enumerable (i.e., Turing com-
putable) sets of natural numbers and by NREG the family of semilinear sets of
natural numbers (they are the length sets of Chomsky regular languages, hence the
notation).

The following fundamental results are known:

Theorem 1 (i) NP2.cat2/ D NRE, [7];
(ii) NREG D NP�.pcat1/ � NP�.pcat2/ � NP2.pcat3/ D NRE, [10, 11].

Two resisting open problems appear here, related to the borderline between
universality and non-universality: (1) are catalytic P systems with only one catalyst
universal? (2) are purely catalytic P systems with two catalysts universal? The
conjecture is that both these questions have a negative answer, but it is also felt
that “one catalyst is almost universal”: adding to P systems with one catalyst
various features which, at the first sight, look weak enough, we already obtain
the universality (see [8]); similar results were obtained also for purely catalytic P
systems with two catalysts (see [5]).

Here we briefly recall (following [27]) the universality results for one catalyst P
systems with additional ingredients:

• Introducing a priority relation among rules [22].
• Using promoters and inhibitors associated with the rules.
• Controlling the computation by means of controlling the membrane permeability,

by actions ı (decreasing the permeability) and 	 (increasing the permeability)
[23].

• Besides catalytic and non-cooperating rules, also using rules for membrane
creation, [19].

• Considering, instead of usual catalysts, bi-stable catalysts, [31], or mobile
catalysts, [14].

• Imposing target restrictions on the used rules, [8]; the universality was obtained
for P systems with 7 membranes, and it is an open problem whether or not the
number of membranes can be diminished.

• Imposing to P systems the idea from time-varying grammars and splicing
systems, [8]; the universality of time-varying P systems is obtained for one
catalyst P systems with only one membrane, having the period equal to 6, and
it is an open question whether the period can be decreased.

• Using in a transition only (labeled) rules with the same label—so-called label
restricted P systems [15].
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Several of these results were extended in [5] to purely catalytic P systems with
two catalysts. It remains open to do this for all the previous results, as well as to look
for further ingredients which, added to one catalyst P systems or to purely catalytic
P systems with two catalysts, can lead to universality. It would be interesting to find
such ingredients which work for one catalyst systems and not for purely catalytic
systems with two catalysts, and conversely.

We end this section with a somewhat surprising issue: we know that NP2.cat2/ D
NRE, but no example of a P system with two catalysts which generates a nontrivial
set of numbers (for instance, f2n j n � 1g; fn2 j n � 1g) is known. In fact,
the problem is to find a system of this kind as simple as possible (otherwise, just
repeating the construction in the proof from [7], starting from a register machine
computing a set as above, we get an example, but of a large size). A first answer to
this question is given in [33], where a catalytic P system with 54 rules is produced,
but it is expected that this number could be reduced.

4 Efficiency: P Systems with Active Membranes

We proceed now to the second main question to investigate for any new computing
model: the efficiency. We have mentioned that for P systems as considered above,
the so-called Milano theorem was proved in [35]: such systems can be simulated
in polynomial time by means of Turing machines; hence (assuming that P ¤
NP, as one usually expects), these systems cannot solve NP-complete problems
in polynomial time. This is somewhat surprising because even noncooperative P
systems can generate exponentially many objects in linear time: just consider a rule
of the form a ! aa; because of the maximal parallelism, in n steps we get 2n

copies of object a. This exponential workspace does not help, and the intuition is
that this happens because this space is not structured; the same rules are applied to
all exponentially many objects. The situation changes if further membranes can be
created, thus introducing a structure in the set of objects.

This also corresponds to the situation in biology, where also the membranes
evolve: they can be divided, created, and destroyed, while also operations like
exo-, endo-, and phagocytosis are met, etc. All of these kinds of operations were
considered in membrane computing. Particularly interesting are the operations
of membrane division and membrane creation, because they bring efficiency to
P systems. We present here only the operation of membrane division, and the
framework is that of P systems with active membranes, introduced in [24], which
are constructs of the form

˘ D .O;H;�;w1; : : : ;wm;R/;

where O;w1; : : : ;wm are as in a P system with multiset rewriting rules; H is a
finite set of labels for membranes;� is a membrane structure of degreem � 1, with
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polarizations associated with membranes, that is, “electrical charges” fC;�; 0g; and
R is a finite set of rules, of the following forms:

(a) Œ ha! v� eh, for h 2 H; e 2 fC;�; 0g; a 2 O; v 2 O�
(object evolution rules)

(b) aŒh �
e1
h ! Œhb�

e2
h , for h 2 H; e1; e2 2 fC;�; 0g; a; b 2 O

(in communication rules)
(c) Œ ha �

e1
h ! Œh �

e2
h b, for h 2 H; e1; e2 2 fC;�; 0g; a; b 2 O

(out communication rules)
(d ) Œ ha �

e
h ! b, for h 2 H; e 2 fC;�; 0g; a; b 2 O

(dissolving rules)
(e) Œ ha �

e1
h ! Œhb �

e2
h Œhc �

e3
h , for h 2 H; e1; e2; e3 2 fC;�; 0g; a; b; c 2 O

(division rules for elementary membranes; in reaction with an object, the
membrane is divided into two membranes with the same label, and possibly
of different polarizations; the object specified in the rule is replaced in the two
new membranes possibly by new objects; the remaining objects are duplicated
and may evolve in the same step by rules of type .a/).

Note that each rule has specified the membrane where it is applied; the membrane
is part of the rule; that is why we consider a global set of rules, R. The rules are
applied in the maximally parallel manner, with the following details: a membrane
can be subject of only one rule of types (b)–(e); inside each membrane, the rules of
type (a) are applied in parallel; each copy of an object is used by only one rule of
any type. The rules are used in a bottom-up manner: we use first the rules of type
(a) and then the rules of other types; in this way, in the case of dividing membranes,
the result of using first the rules of type (a) is duplicated in the newly obtained
membranes. As usual, only halting computations give a result, in the form of the
number of objects expelled into the environment during the computation.

Several generalizations are possible. For instance, a division rule can also change
the labels of the involved membranes:

(e0) Œ h1a �
e1
h1
! Œ h2b �

e2
h2
Œh3c �

e3
h3

,
for h1; h2; h3 2 H; e1; e2; e3 2 fC;�; 0g; a; b; c 2 O .

The change of labels can also be considered for rules of types (b) and (c). Also,
we can consider the possibility of dividing membranes in more than two copies or
even of dividing nonelementary membranes (in such a case, all inner membranes
are duplicated in the new copies of the membrane).

P systems with active membranes can be used for computing numbers, in the
usual way, but the main usefulness of them is in devising polynomial time solutions
to computationally hard problems by a time-space trade-off. The space is created
both by duplicating objects and by dividing membranes. An encoding of an instance
of a decidability problem is introduced in the initial configuration of the P system
(in the form of a multiset of objects), the computation proceeds, and if it halts and
a special object yes is sent to the environment, then the respective instance has the
positive answer.



Membrane Computing: Basics and Frontiers 373

A large research area starts at this point. The first important step is to formally
define complexity classes for P systems with active membranes. This has been
already done since several years—we refer to [32] and to its references. The
respective classes refer to a parallel computing time, which also covers the steps
for producing the exponential space necessary to the computation. Of course, very
important are the ingredients used by the considered P systems: using or not using
a specified type of rules (for instance, membrane dissolution rules)? how many
polarizations, three (as in the initial definition) or a smaller number? how much
time is allowed for constructing the system(s) which will solve a given decidability
problem?

An intriguing question appears here. In classic computational complexity, a
problem Q is solved in the uniform way: we have to start from Q (and its size
parameters) when constructing the algorithm AQ which solves Q and not from
instances Q.1/;Q.2/; : : : of Q; AQ depends on Q, while encodings of instances
Q.i/ are introduced in AQ and their answer is provided. Starting from an instance
Q.i/ and building an algorithm AQ.i/ for solving that instance do not look fair; we
can solve Q.i/ during “programming”AQ.i/ and then provide the answer in a time
which is not the correct one.

Interesting enough, in many experiments in DNA computing, one however
proceeds in this nonuniform way, constructing the “wet computer” starting from
an instance of the problem, not from the problem itself. This can be accepted also
in membrane computing and even in complexity theory, provided that the time
for constructing AQ.i/ is carefully limited. If this happens, then we cannot cheat
“too much,” working on solving the problem itself during the programming phase.
We call semi-uniform a solution to a problem Q obtained in this way. (Again,
formal definitions can be found in the literature, e.g., in [32].) The problem now
is natural: which is the relation between uniform and semi-uniform complexity
classes? (Surprisingly enough, the classic complexity theory seems to not have
examined this natural question.) When a problem can be solved in a semi-uniform
way, can it be also solved (in the same amount of time) in the uniform way? (In many
cases, in membrane computing, uniform and semi-uniform families coincide—but
not in all cases! Moreover, while initially semi-uniform solutions were reported to
various problems, nowadays only uniform solutions are considered acceptable.)

Another “nonstandard” question concerns the possibility to use precomputed
resources, and the suggestion comes again from biology. It is known that the brain
contains a huge number of neurons, but in each moment only a small part of
them seem to be active. The same is known for the liver, which in each moment
uses only part of its cells, depending on the task it has to cope with. Can this
idea be also used in computability? Roughly speaking, we can assume as given
“for free” (we do not care which is the time for constructing it) a computing
device which is initially “arbitrarily large,” but it contains only a limited amount
of information; a decidability problem is introduced in this initial configuration,
the information spreads across the arbitrarily large workspace, and the answer is
provided in a specified way. The strategy is rather natural; it can be useful in many
circumstances where we have “enough” time before the computation itself (this can
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be the case, e.g., in cryptography); hence, we can prepare in advance an arbitrarily
large “computer,” without too much data inside, which is fed with the problem to
solve in the moment when the problem appears. Still, this way of solving problems is
not yet investigated in complexity theory. Actually, neither in membrane computing
we do not have a formal framework for this approach, although this strategy has been
used several times in solving computationally hard problems in a polynomial time
(especially in cases when the exponential workspace cannot be produced during the
computation).

Another technical detail, specific to membrane computing, is the fact that,
in their general form, the P systems are nondeterministic computing devices.
However, when solving a problem, we want to have a deterministic solution. This
difficulty can be solved either by working only with deterministic P systems or,
more adequately/realistic, by leaving the system to be nondeterministic, but asking
to have a behavior which guarantees that the solution is the “real” one. This
can be achieved if we can ensure that the system is confluent: the computation
proceeds nondeterministically, but either eventually all computations reach the
same configuration (strong confluence) and after that the computation continues
in a deterministic way, or the computation is nondeterministic as a whole, but all
computations halt and provide the same answer (weak confluence).

The complexity investigations are among the most active in membrane com-
puting at this moment. Besides membrane division, membrane creation (by means
of rules of the form a ! Œ hb�h, where a; b are objects and h is a label), string
replication and other operations were used. The reader is referred to the complexity
chapter from [30] and to the literature available at [36] for details—including many
problems which are still open in this area.

5 Other Important Classes of P Systems

We briefly discuss now three important classes of P systems, with fundamental
differences with respect to the P systems considered in the previous sections. For
two of them (symport/antiport and spiking neural P systems) the motivation comes
from biology; the third class (numerical P systems) has a motivation related to
economics. Each of these variants of P systems gave birth to a strong branch of
membrane computing, still with many open problems and research topics waiting
to be addressed. (Numerical P systems also have a surprising area of applications—
robot control. We strongly believe that these systems can find applications in many
other areas where functions of several variables should be computed in an efficient
way.)

We do not introduce here the tissue-like P systems, although their study is well
developed, both in what concerns the theory (power and efficiency) and applications:
the more general graph structure describing the arrangement of membranes/cells can
cover more phenomena than the cell-like structure.
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5.1 Symport/Antiport P Systems

In the functioning of the cell, one of the most interesting (and important) ways to
pass chemicals across membranes is by means of protein channels, which can select
in various ways the transported chemicals. We consider here the coupled passage of
chemicals through protein channels, the operations called symport (two—or more—
chemicals pass together across a membrane, in the same direction) and antiport (the
case when the chemicals move in opposite directions).

We can formalize these operations by considering symport rules of the form
.x; in/ and .x; out/ and antiport rules of the form .z; out Iw; in/, where x; z; and
w are multisets of arbitrary size; one says that the length of x, denoted jxj, is
the weight of the symport rule and max.jzj; jwj/ is the weight of the antiport rule.
Such rules just move objects across membranes, but they can replace the multiset
rewriting rules considered in the previous sections, and we get in this way a class
of P systems which are again computationally universal, equivalent in power with
Turing machines.

Formally, a P system with symport/antiport rules is a construct of the form

˘ D .O;�;w1; : : : ;wm;E;R1; : : : ; Rm; iin; iout/;

where all components O;�;w1; : : : ;wm; iin; iout are as in a P system with multiset
rewriting rules, E � O , and R1; : : : ; Rm are finite sets of symport/antiport rules
associated with themmembranes of �. The objects ofE are supposed to be present
in the environment of the system with an arbitrary multiplicity.

We define transitions, computations, and halting computations in the usual way,
making use of the nondeterministic maximally parallel mode of applying the rules.
A system can be used in the generating, accepting, or computing mode.

The symport/antiport P systems were introduced in [21] and investigated in a
large number of papers; the reader is referred to Chapter 5 of [30] for details
and references. From this chapter we recall one example, illustrating the power of
symport/antiport rules (used in the maximally parallel way), namely, Example 5.3.
It is a P system working in the accepting mode: a number of objects is introduced in
region 1, and this number is accepted if the computation halts. Here is the system:

˘ D .fag; Œ1Œ 2Œ 3 � 3� 2� 1; �; �; �; fag; R1; R2;R3; 1/;
R1 D f.aa; outI a; in/g;
R2 D f.a; in/g;
R3 D f.aa; out/; .aa; in/g:

The system is given in the graphical form in Fig. 3: the rules are written near the
corresponding membranes; arbitrarily many copies of a are assumed to be present
in the environment.
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1

2

3
(aa, out; a, in)

(a, in)
(aa, out)
(aa, in)

Fig. 3 A symport/antiport P system

We introduce a number n of copies of object a in region 1. By using the rule
.aa; outI a; in/ 2 R1 in a maximally parallel way, this number is repeatedly divided
by 2, with a remainder in the case the reached number is odd. If a remainder exists,
then the rule .a; in/ 2 R2 must be used. We finish the halving of objects in region
1 with only one copy of a in region 2 if and only if n is of the form 2k, for some
k � 0; otherwise at least two copies of a arrive to region 2. In the latter case, the
rules of R3 can be used forever; hence, the computation never halts. Consequently,
the set of numbers accepted by the system ˘ is f2k j k � 0g.

Symport/antiport P systems (with reduced weights) are universal—we refer to
[30] for details.

Not explored are the computational complexity properties of these systems; note
that in the previous form, symport/antiport P systems do not have the possibility
of dividing membranes (or other similar operations useful for generating an
exponential workspace in a linear time), but such operations can be introduced and
then “fypercomputations” are expected, in the sense of [26].

6 Spiking Neural P Systems

Spiking neural P systems (SN P systems) have a completely different architecture
and functioning, as they start not from the cell but from the brain biology. Actually,
we only consider here the neuron cooperation by means of spikes, a feature also
much investigated in the neural computing (see, e.g., [18]). We do not define
formally the SN P systems, but we only describe informally such a system, followed
by an example.

In short, an SN P system consists of a set of neurons (represented by membranes)
placed in the nodes of a directed graph (the arcs are called synapses) and containing
spikes, denoted by the symbol a. Thus, the architecture is that of a tissue-like P



Membrane Computing: Basics and Frontiers 377

system, with only one kind of objects present in the cells. The objects evolve by
means of spiking rules, which are of the form E=ac ! aI d , where E is a regular
expression over fag and c; d are natural numbers, c � 1; d � 0. The meaning is that
a neuron containing k spikes such that ak 2 L.E/; k � c; can consume c spikes
and produce one spike, after a delay of d steps. This spike is sent to all neurons
to which a synapse exists outgoing from the neuron where the rule was applied.
There also are forgetting rules, of the form as ! �, with the meaning that s � 1
spikes are removed, provided that the neuron contains exactly s spikes. The system
works in a synchronized manner, i.e., in each time unit, each neuron which can use
a rule should do it, but the work of the system is sequential in each neuron: only (at
most) one rule is used in each neuron. One of the neurons is considered to be the
output one, and its spikes are also sent to the environment. The moments of time
when a spike is emitted by the output neuron are marked with 1; the other moments
are marked with 0. This binary sequence is called the spike train of the system—it
might be infinite if the computation does not stop.

The result of a computation is encoded in the distance between the first two
spikes sent into the environment by the (output neuron of the) system. Other ways
to associate a result with a computation were considered; the spike train itself can
be taken as the result of the computation, and in this way the system generates a
binary sequence (a finite string, if the computation halts).

We recall an example from paper [12] where the SN P systems were introduced.
It is given in Fig. 4, thus also suggesting the usual way of representing SN P systems.
(The rules E=ac ! aI d with L.E/ D ac are written in the simplified way ac !
aI d .)

The neuron out spikes in step 1 by means of the rule a3 ! aI 0. All its spikes are
consumed. The spike emitted goes immediately to the environment and to neuron 1.
The spike goes along the path 1; 2; : : : ; n � 2 and gets doubled when passing from
neuron n � 2 to neurons n � 1 and 0. Both these last neurons get fired. As long as

Fig. 4 An SN P system
generating an arithmetical
progression

. . . a → a; 0
2

out

a3

a3 → a; 0
a2 → a; 0

a → λ

0

n–1 n

1

n–2

a → a; 0

a → a; 1 a → a; 0 a → a; 0

a → a; 0

a2 → λ
a → a; 0
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neurons 0 and n� 1 spike in different moments (because neuron 0 can use either of
its rules, hence also the one with delay), no further spike exits the system (neuron
out gets only one spike and forgets it immediately), and one passes along the cycle
of neurons 1; 2; : : : ; n � 1; n again and again. If neurons 0 and n � 1 spike at the
same time (neuron 0 uses the rule a ! aI 0), then the system spikes again—hence
in a moment of the form ni; i � 1. The spike of neuron out arrives at the same time
in neuron 1 with the spike of neuron n, and this halts the computation, because of
the rule a2 ! �, which consumes the spikes present in the system. Consequently,
the system computes the arithmetical progression fni j i � 1g.

There are several classes of SN P systems using various combinations of
ingredients (rules of restricted forms, e.g., without a delay, without forgetting rules,
or extended rules, e.g., producing more than one spike), as well as asynchronous
SN P systems (no clock is considered; any neuron may use or not use a rule),
with exhaustive use of rules (when enabled, a rule is used as many times as made
possible by the spikes present in a neuron), with certain further conditions imposed
to the halting configuration, etc. For most SN P systems with unbounded neurons
(arbitrarily many spikes can be found in each of them), characterizations of Turing
computable sets of natural numbers are obtained. When the neurons are bounded,
characterizations of the family NREG are usually obtained. SN P systems can also
be used in the accepting and the computing ways.

Many questions remain to be investigated in this area, and the membrane
computing literature contains several collections of such research topics. We recall
here only two, also mentioned recently in [27]:

• To further investigate the power and the properties of SN dP systems, that is,
to combine the idea of distributed P systems introduced in [29] with that of
spiking neural P systems. The dP systems consider “systems of P systems,” each
one with its own input, in the form of a string, communicating among them
by means of antiport rules; the concatenation of the input strings is accepted if
the whole system eventually halts. Note that we have here an explicit splitting
of the input task, in the form of the strings “read” from the environment
by each component, then an overall computation, with the cooperation of all
components/modules. There are cases when this strategy can speed up the
recognition of the input string. SN dP systems were already introduced in [13],
but only briefly investigated.

• To investigate the possibility of using SN P systems as pattern recognition
devices, in general, in handling 2D patterns. One of the ideas is to consider a
layer of input neurons which can read an array line by line, and the array is
recognized if and only if the computation halts.
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7 Numerical P Systems

This class of P systems looks somewhat “exotic” in the framework of membrane
computing. It takes only the membrane structure from cell-like P systems, but,
instead of multisets of objects, uses numerical variables placed in compartments and
evolving according to production-repartition programs inspired from economics.

Such a program has the form

F.x1;i ; : : : ; xk;i /! c1jv1 C c2jv2 C � � � C cnjvn
where F is a function of k variables, x1;i ; : : : ; xk;i are (part of the) variables in
region i , c1; : : : ; cn are natural numbers, and v1; v2; : : : ; vn are variables from region
i and from the parent and the children regions. The idea is that using the function
F , one computes “the production” of region i at a given time, and this production is
distributed to variables v1; v2; : : : ; vn proportionally with the coefficients c1; : : : ; cn.
More formally, let

C D
nX

sD1
cs:

At a time instant t � 0, we compute F.x1;i .t/; : : : ; xk;i .t//. The value q D
F.x1;i .t/; . . . ,xk;i .t//=C represents the “unitary portion” to be distributed accord-
ing to the repartition expression to variables v1; : : : ; vn. Thus, vs will receive
q � cs; 1 � s � n.

A production function may use only part of the variables from a region. Those
variables “consume” their values when the production function is used (they become
zero)—the other variables retain their values. To these values—zero in the case
of variables contributing to the region production—one adds all “contributions”
received from the neighboring regions.

Thus, a numerical P system is a construct of the form

˘ D .�; .Var1;Pr1;Var1.0//; : : : ; .Varm;Prm;Varm.0//; xj0;i0 /;

where � is a membrane structure with m membranes labeled injectively by
1; 2; : : : ; m, Vari is the set of variables from region i , Pri is the set of programs
from region i (all sets Vari ;Pri are finite), Vari .0/ is the vector of initial values for
the variables in region i , and xj0;i0 is a distinguished variable (from a distinguished
region i0), which provides the result of a computation.

Such a system evolves in the way informally described before. Initially, the
variables have the values specified by Vari .0/; 1 � i � m. A transition from a
configuration at time t to a configuration at time t C 1 is made by (1) choosing
nondeterministically one program from each region, (2) computing the value of the
respective production function for the values of local variables at time t , and then (3)
computing the values of variables at time tC1 as directed by repartition protocols. A
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Fig. 5 An example of a
numerical P system

1

2

3

x1,1[0]

x1,2[0]

2x1,2 + 1 → 1|x1,1

x1,3[0]

2(x1,3 + 1) → 1|x1,3 + 1|x1,2

sequence of such transitions forms a computation, with which we associate a set of
numbers, namely, the numbers which occur as positive values of the variable xj0;i0 ;
this set of numbers is denoted by NC.˘/. If all numbers, positive or negative, are
taken into consideration, then we write N.˘/.

Figure 5 gives an example of a deterministic numerical P system (only one
program in each region), with the distinguished variable x1;1. One can easily see
that variable x1;3 increases by 1 at each step, also transmitting its value to x1;2. In
turn, region 2 transmits the value 2x1;2C 1 to x1;1, which is never consumed; hence,
its value increases continuously. In the initial configuration all variables are set to
0. Thus, x1;1 starts from 0 and continuously receives 2i C 1, for i D 0; 1; 2; 3; : : : ,
which implies that in n � 1 steps the value of x1;1 becomes

Pn�1
iD0.2i C 1/ D n2,

and consequentlyN.˘/ D fn2 j n � 0g.
We denote by NNCPm.polyn.r/; div/ the family of sets NC.˘/ generated by

numerical P systems with m � 1 membranes, using polynomials of degree n � 0
with at most r � 0 variables as production functions; div indicates the fact that we
consider only systems whose programs have the property that the production at any
moment, F.x1;i .t/; : : : ; xk;i .t//, is divisible by the sum of repartition coefficients,
C . Variants can be considered, e.g., with the remainder being lost, or carried to the
next production in that region. If the system is deterministic, we add D in front of
the notation. Any parameter which is not bounded is replaced with �.

Somewhat expected, numerical P systems are computationally complete [28]:

Theorem 2 NRE D NNCP8.pol5.5/; div/ D NNCP7.poly5.6/; div/.

In the framework of robot control (see, e.g., [20, 34]), two important extensions
were introduced. First, a catalyst-like control on using the programs was considered,
introducing enzymatic programs, of the form

F.x1;i ; : : : ; xk;i /jej;i ! c1jv1 C c2jv2 C � � � C cnjvn;

where ej;i is a variable from Vari different from x1;i ; : : : ; xk;i and from v1; : : : ; vn.
Such a program is applicable at a time t only if ej;i .t/ > min.x1;i .t/; : : : ; xk;i .t//.
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Using enzymes helps (in particular, the selection of positive values of the output
variable can be done inside the system, not imposed as an external condition):

Theorem 3 NRE D NNP7.poly5.5/; enz/.

Very important are the ways to define the transitions in a parallel way, using
more programs at a time. Two possibilities were considered: (1) all programs in a
region (which can be applied, under enzymes control) are applied, but each variable
is used only once (this is called the oneP mode), and (2) as above, with each variable
appearing as many times as necessary (denoted allP).

The following results were obtained in [16]:

Theorem 4 NRE D NNP1.poly1.1/; enz; allP/ D NNP1.poly1.1/; enz, oneP).

Natural problems appear in this context: What about the nonenzymatic systems?
Improve the parameters in Theorem 2, for the sequential case.

Only recently numerical P systems were investigated from the computational
complexity point of view [17], and the results are rather interesting. Here is the
framework: a language L � f0; 1g� is decided by a numerical P system ˘ in
polynomial time if ˘ contains two variables acc; rej, and after introducing the
number 1x (for all x 2 L) in a specified variable,˘ halts in O.jxjk/ time, and:

• If x 2 L, then acc D 1; rej D 0.
• If x … L, then acc D 0; rej D 1.

We denote by P-ENP.X/;X � fC;�;�;�g, the corresponding complexity
class, when using enzymatic numerical P systems working in the allP mode; the
set X indicates the operations used in the production functions. The following
characterizations of P and PSPACE were obtained in [17]:

Theorem 5 (i) P-ENP.C;�/ D P, (ii) P-ENP.C;�;�;�/ D PSPACE.

Also in this case there are several questions which remain to be investigated:
what about sequential systems, about systems working in the oneP mode, about
nonenzymatic systems?

All these results (universality and efficiency—when using all four arithmetical
operations) look very promising from the application point of view, while the robot
control case is also encouraging. Numerical P systems deserve further research
efforts.

8 Closing Remarks

This chapter has only presented some basic facts (notions and results) of membrane
computing, at a rather informal level, always pointing also to research topics which
wait to be investigated. Technical details and comprehensive lists of open problems
can be found in the domain literature, in particular through the membrane computing
website at [36]. From the point of view of application, we find particularly interest-
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ing the computational complexity results: P systems of various types can solve hard
problems in a feasible time (due to the inherent massive parallelism, distribution,
possibility of creating an exponential workspace in a linear time, by means of
operations directly inspired from biology). It is important however to note that at
this time there is no laboratory implementation of a P system. In exchange, there are
many software products, helping to simulate P systems on usual computers, on grids
and networks, on parallel hardware (such as GPU—Graphics Processing Units),
and on other electronic supports. Based on such software and implementations,
significant applications were reported, especially in biology, biomedicine, ecology,
and approximate optimization. The domain is fast evolving, so that the reader
interested in this research area is advised to watch progress through the mentioned
website or to keep in touch with the membrane computing community.
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15. K. Krithivasan, Gh. Păun, A. Ramanujan, On controlled P systems. Fundamenta Informaticae
131(3–4), 451–464 (2014)

16. A. Leporati, A.E. Porreca, C. Zandron, G. Mauri, Improving universality results on parallel
enzymatic numerical P systems, in Proc. 11th Brainstorming Week on Membrane Computing
(Fénix Editora, Sevilla, 2013), pp. 177–200

17. A. Leporati, A.E. Porreca, C. Zandron, G. Mauri, Enzymatic numerical P systems using
elementary arithmetic operations, in Proc. 14th Intern. Conf. on Membrane Computing
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25. Gh. Păun, Membrane Computing. An Introduction (Springer, Berlin, 2002)
This is the first survey of membrane computing, systematizing the notions and the results
at only a few years after the initiation of this research area. After an informal introduction
(“Membrane computing—what it is and what it is not”) and a chapter providing the biological
and the computability prerequisites for the rest of the book, one presents the cell-like P
systems with symbol objects and multiset rewriting rules, the systems with symport/antiport
rules, the P systems with string objects, and then the tissue-like P systems; their computing
power is investigated; then one passes to the computing efficiency (“Trading space for time”),
considering P systems with membrane division, membrane creation, string replication, and
precomputed resources. Two more chapters present “further technical results” and “(attempts
to get) back to reality.” The book ends with a list of open problems and of universality results.
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28. Gh. Păun, R. Păun, Membrane computing and economics: Numerical P systems. Fundamenta
Informaticae 73, 213–227 (2006)
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A Panorama of Post-quantum Cryptography
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Abstract In 1994, Peter Shor published a quantum algorithm capable of factoring
large integers and computing discrete logarithms in Abelian groups in polynomial
time. Since these computational problems provide the security basis of conventional
asymmetric cryptosystems (e.g., RSA, ECC), information encrypted under such
schemes today may well become insecure in a future scenario where quantum
computers are a technological reality. Fortunately, certain classical cryptosystems
based on entirely different intractability assumptions appear to resist Shor’s attack,
as well as others similarly based on quantum computing. The security of these
schemes, which are dubbed post-quantum cryptosystems, stems from hard prob-
lems on lattices, error-correcting codes, multivariate quadratic systems, and hash
functions. Here we introduce the essential notions related to each of these schemes
and explore the state of the art on practical aspects of their adoption and deployment,
like key sizes and cryptogram/signature bandwidth overhead.

1 Introduction

In the 1990s, Peter Shor introduced new concerns to cryptography. He discovered
a quantum algorithm able to factor large integers and compute discrete logarithms
in finite fields in polynomial time, more precisely O.log3 N / [84]. These concerns
are due to the fact that the security of conventional techniques used in asymmetric
cryptography is based precisely on these or related problems (e.g., RSA, ECC)
[59, 81].
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Another even more effective threat are the recent discoveries of classical
algorithms for solving certain discrete logarithms used in asymmetric encryption
[6].

Fortunately, there exist cryptographic schemes based on different computational
problems that resist the known attacks with quantum computers. They became
known as post-quantum cryptosystems: this is the case of cryptosystems based
on lattices [42], error-correcting codes [55, 64], multivariate quadratic systems
(MQ) [28, 48], and hash functions [28, 29], excluding symmetric encryption
buildings in general.

Given the new paradigm of Internet of Things, in which any object is able
to connect to the Internet. A side effect of this interconnectivity is a possible
vulnerability of these embedded systems. Attacks that have been primarily aimed at
PCs can be launched against cars, cell phones, e-tickets, and RFIDs. In this scenario,
the devices are typically characterized by shortages in energy supply (via battery)
and limited processing power, storage, and often communication channels with low
bandwidth (e.g., SMS).

Since embedded systems are typically deployed on a large scale, cost becomes
designers’ main concern. Therefore, security solutions for embedded systems must
provide low cost, which can be achieved with tools that minimize overhead trans-
mission, processing, and memory occupation. In this sense, symmetric encryption
techniques already attend the required metrics, and asymmetric encryption is the
bottleneck in the most cases.

Asymmetric cryptographic primitives for encryption and digital signatures are
essential in a modern security framework. However, conventional techniques are
not efficient enough in some aspects, which makes them unsuitable for embedded
platforms, specially highly resource-constrained ones. In this context the absence
of costly operations (operations with large integers, especially modular exponentia-
tions) of post-quantum techniques makes them more attractive in such scenarios, as
described previously.

The objective of this chapter is to introduce the basics of the main lines of
post-quantum cryptography research (hash-based signatures, MQ systems, error-
correcting codes, and lattices), as well as presenting the latest research focusing
on improvements regarding key sizes and signature/cryptogram overheads of these
schemes.

2 Hash-Based Digital Signature Schemes

Hash-based digital signature schemes became popular after Ralph Merkle’s
work [56] in 1979. The scheme proposed by Merkle (MSS) is inspired by Lamport
and Diffie’s one-time signature scheme [49]. The security of these signature
schemes depends on the collision resistance and inversion resistance of the hash
function used. The scheme (MSS) is considered practical, and although there is not
a proof, it is believed to be resistant against quantum computers. The disadvantage
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of one-time signature schemes is that a key pair can only be used for one signature,
although this signature can be verified an arbitrary number of times.

2.1 Hash Function

Cryptographic hash functions are used in security applications such as digital
signatures, identification data and key derivation, among others. Formally, a hash
function h W f0; 1g�! f0; 1gn takes as input an arbitrarily long stringm and returns
a fixed string r of size n, the hash value (i.e., r D h.m/).

Since the image f0; 1gn of h is a subset of f0; 1g�, it is easy to see that more than
one message is mapped to the same hash value (or digest). Some applications require
that it be computationally infeasible for an attacker to find two random messages that
generate the same digest; one such example is that of digital signatures, in which
the hash of messages are signed, not the messages themselves.

2.2 Properties

The primary properties that a hash function h W f0; 1g� �! f0; 1gn should possess
are pre image resistance, second pre image resistance, and collision resistance:

• Pre image resistance: Let r be a known digest. Then, it should be infeasible to
find a valuem such that h.m/ D r .

• Second pre image resistance: Let m be a known message. Then, it should be
infeasible to find m0 such that m0 ¤ m e h.m0/ D h.m/.

• Collision resistance: It should be infeasible to find a pair m;m0 2 f0; 1g� such
that m0 ¤ m and h.m0/ D h.m/.

Another desirable property for practical applications is that the hash function be
efficient (speed, memory, energy, etc.) when implemented on various computing
platforms (hardware and/or software). It is easy to see that a function that is collision
resistant is also second pre image resistant, but the reciprocal is not necessarily true.

2.3 Construction of Hash Functions

The design of hash functions has been based on various techniques such as
block ciphers [54, 78, 93], the iterative Merkle-Damgård method [56], the sponge
construction [16], and primitive arithmetic [25].

Standards based on these functions have evolved, mainly due to successive
attacks advertised in the literature and specialized events. Recently, the National
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Institute of Standards and Technology (NIST) selected the Keccak [15] algorithm as
the winner of a 5-year competition to create a new Secure Hash Algorithm standard.

2.4 Signature Schemes

A signature scheme SIGN is a triple of algorithms .GEN; SIG;VER/ which satisfies
the following properties:

• The key generation algorithm GEN receives as input a security parameter 1n and
produces a key pair .X; Y /, where X is the private key and Y is the public key.

• The signature generation algorithm SIG takes as input a message M 2 f0; 1g�
and a private key X and produces a signature Sig, denoted by Sig SIGX.M/.

• The signature verification algorithm VER takes as input a messageM , a signature
Sig of M , and a public key Y and produces a bit b, where b D 1 means that the
signature is valid and b D 0 indicates that the signature is not valid.

2.5 One-Time Signature Schemes

One-time signature schemes first appeared in the work of Lamport [49] and
Rabin [27, Chapter “Digitalized signatures” by Michael O. Rabin]. Merkle [56]
proposed a technique to transform a one-time signature scheme into a scheme
with an arbitrary but fixed number of signatures. The following describes the
Lamport [49] and Winternitz [57] schemes.

2.5.1 Lamport-Diffie One-Time Signature Scheme

The Lamport-Diffie one-time signature scheme (LD-OTS) was proposed in [49]. Let
n be a positive integer, the security parameter of LD-OTS. LD-OTS uses a one-way
function

f W f0; 1gn! f0; 1gn

and a cryptographic hash function

g W f0; 1g�! f0; 1gn:

LD-OTS Key Pair Generation The signature key X consists of 2n bit strings of
length n chosen uniformly at random:

X D .x0Œ0�; x0Œ1�; : : : ; xn�1Œ0�; xn�1Œ1�/ 2R f0; 1g.n;2n/:
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The verification key Y is

Y D .y0Œ0�; y0Œ1�; : : : ; yn�1Œ0�; yn�1Œ1�/ 2 f0; 1g.n;2n/;

where yi Œj � D f .xi Œj �/, 0 � i � n � 1, j D 0; 1.

LD-OTS Signature Generation The digest d of a message M is signed using the
signature key X . Let d D g.M/ D .d0; : : : ; dn�1/. The signature of d is

Sig D .sig0; : : : ; sign�1/ D .x0Œd0�; : : : ; xn�1Œdn�1�/ 2 f0; 1g.n;n/:

The signature Sig is a sequence of n bits strings, each one of length n, and the
signature elements are chosen from the key X according to the bits of the message
digest. Then, for each bit di of d , it selects the corresponding string of length n
from the private key X ; that is, the algorithm selects xi Œdi �. To verify a signature,
the verifier first computes the message digest d D g.M/ D .d0; : : : ; dn�1/ and
selects yi Œdi � from Y , the verification (public) key. Then, it checks whether

Sig D .f .sig0/; : : : ; f .sign�1// D .y0Œd0�; : : : ; yn�1Œdn�1�/:

If the signature is valid; otherwise it is refused. Observe that signature verification
requires n evaluations of g while signing requires no evaluation of g.

Figure 1 illustrates the Lamport scheme. In this example, the one-way function
used was f .x/ D xC1mod 16. For the public key generation, 2n evaluations of the

Fig. 1 Lamport one-time signature scheme example



392 P.S.L.M. Barreto et al.

one-way function are required, one for each element ofX . For signature verification,
n evaluations of the one-way function are required, one for each element of Sig.

2.5.2 Winternitz One-Time Signature Scheme

Winternitz proposed an improvement to Lamport’s one-time signature scheme,
reducing the size of the public and private keys. This scheme (W-OTS) was first
mentioned in [57]. W-OTS uses a one-way function

f W f0; 1gn! f0; 1gn

and a cryptographic hash function

g W f0; 1g�! f0; 1gn;

where n is a positive integer. W-OTS uses a parameter w which is the number of bits
to be signed simultaneously. Larger values for w result in smaller signature keys
and longer times for signing and verification. A comparative analysis of the running
times and key sizes in terms of parameter w is found in [29].

W-OTS Key Pair Generation Given parameter w 2 N, the private key is

X D .x0; : : : ; xt�1/ 2R f0; 1g.n;t/;

where the xi are chosen uniformly at random. The size t is computed as t D t1C t2,
where

t1 D
&
n

w

'

; t2 D
&
blog2 t1c C 1C w

w

'

:

The verification key

Y D .y0; : : : ; yt�1/ 2 f0; 1g.n;t/

is computed by applying the one-time function f to each element of the signature
key 2w � 1 times:

yi D f 2w�1.xi /; for i D 0; : : : ; t � 1:

In order to minimize storage requirements, the use of the pseudorandom number
generator (PRNG) described in [65] is suggested [20]. This PRNG enables the
recovery of all signature keys based only on the initial seed SEED0, SEEDin !
.RAND; SEEDout/.
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Fig. 2 Winternitz key pair generation

Figure 2 shows an example of key pair generation in the Winternitz signature
scheme, using a PRNG and a one-way function. The PRNG computes .SEEDx/!
.xi ; SEEDx/. This scheme produces smaller signature keys than Lamport’s, but it
increases the number of one-way function evaluations from 1 to 2w � 1 for each
element of the key signature.

W-OTS Signature Generation To generate the signature, first compute the messa-
ge digest d D g.M/ D .d0; : : : ; dn�1/. If necessary, add zeros to the left of d , so
as to make the bitlenght of d divisible by w. Then, d is split into t1 binary blocks
of size w, resulting in d D .m0jj : : : jjmt1�1/, where jj denotes concatenation. The
mi blocks are represented as integers in f0; 1; : : : ; 2w � 1g. Now, a checksum c is
computed as

c D
t1�1X

iD0
.2w �mi/:

Since c � t12w, the length of the binary representation of c is less than blog2 t12
wcC

1 D blog2 t1c C wC 1. If necessary, add zeros to the left of c in order to make the
bitlength of string c divisible by w. Then, the extended string c can be divided into
t2 blocks c D .c0jj : : : jjct2�1/ of length w. Let b D d jjc be the concatenation of
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the extended string d with the extended string c. Thus, b D .b0jjb1jj : : : jjbt�1/ D
.m0jj : : : jjmt1�1jjc0jj : : : jjct2�1/. The signature is computed as

Sig D .sig0; : : : ; sigt�1/ D .f b0.x0/; f
b1.x1/; : : : ; f

bt�1 .xt�1//:

W-OTS Verification To verify signature Sig D .sig0; : : : ; sigt�1/ of message M ,
first calculate .b0; : : : ; bt�1/ in the same way it was computed during signature
generation; then, compute

sig0i D f 2w�1�bi .sigi /; for i D 0; : : : ; t � 1:

Finally, check whether

Sig D .sig00; : : : ; sigt�1/ D Y D .y0; : : : ; yt�1/:

If the signature is valid, then sigi D f bi .xi /, and therefore,

f 2w�1�bi .sigi / D f 2w�1.xi / D yi
holds for i D 0; 1; : : : ; t � 1.

2.6 Merkle Digital Signature Scheme

In the Merkle digital signature scheme described below, the one-time signing key
and the verification key are the leaves of the tree, and the public key is the root.
A tree with height H and 2H leaves will have 2H one-time key pairs (public and
private).

2.6.1 Merkle Key Generation

For the generation of the Merkle public key (pub), which corresponds to the root of
the Merkle tree, one must first generate 2H one-time key pairs (public and private),
for each leaf of the Merkle tree.

One-Time Key Pair Generation A one-time signature algorithm generates private
keysXŒu� and public keys Y Œu�, for each leaf of the Merkle tree, u D 0; : : : ; 2H �1.
Algorithm 2.1 describes the process of one-time key pair generation.

Merkle Public Key Generation (Pub) Algorithm 2.2 generates the Merkle tree
public key pub. The input values are the initial leaf leafIni and tree height H .
Each leaf node nodeŒu� of the tree receives the corresponding verification key Y Œu�.
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Algorithm 2.1 Winternitz one-time key pair generation (Leafcalc) [56]
Require: Winternitz parameter t and w; seed SEEDx .
Ensure: verification key Y ;

for (i D 0, i < t , i++) do
.xŒi �; SEEDx/ D PRNG.SEEDx/I
y[i] = f 2w

�1.xŒi �/I
end for
Y=g.yŒ0�jj : : : jjyŒt � 1�/I
return Y;

Algorithm 2.2 Merkle public key generation (CalcRoot) [56]
Require: Leaf leafIni; tree height H ; seed SEEDin.
Ensure: The root of the tree pub.

Create a stack stackNode.
SEED[0]=SEEDin

for (u D leafIni, u < 2H , u++) do
.SEEDx; SEEDŒuC 1�/ D PRNG.SEEDŒu�/I
nodeŒu�:digest = Leafcalc.t; SEEDx/

Push nodeŒu� in the stack stackNode
while The nodes at the top of the pilhaNo has the same height do

Pop nodeŒright�
Pop nodeŒleft�
Compute nodeŒparent�:digest D g.nodeŒleft�:digestjjnodeŒright�:digest/
if nodeŒparent�:height=H then

return .nodeŒparent�/
else

Push nodeŒparent� into stackNode
end if

end while
end for

The inner nodes of the Merkle tree nodeŒparent� contain the hash value of the
concatenation of their left and right children, nodeŒleft� and nodeŒright�, respectively.
Each time a leaf u is calculated and stacked in stackNode, the algorithm checks if the
nodes at the top of the stackNode have the same height. If the nodes have the same
height, the two nodes will be unstacked and the hash value of their concatenation
will be pushed into stackNode. The algorithm terminates when the root of the tree
is found.

Figure 3 shows the order in which the nodes are stacked on the tree according
to Algorithm 2.2. The nodes in gray represent the nodes that have already been
generated. For example, the 4th node generated (leaf u D 2) received Y Œ2�. The
3rd node is the hash result of the concatenation of the nodes 1 and 2.
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Fig. 3 Merkle public key generation (pub)

2.6.2 MSS Signature Generation

Scheme MSS allows the generation of 2H signatures for a tree of heightH . Suppose
we want to signMŒu�messages, for u D 0; ::; 2H �1. Each messageMŒu� is signed
with the one-time signature key XŒu� resulting in a signature SigŒu�.

An authentication path Aut is used to store the nodes in the path needed to
authenticate leaf Y Œu�, eliminating the need for sending the whole tree to the
receiver.

The Merkle signature SIG consists of one-time signature SigŒu� for leaf u, the
corresponding verification key Y Œu�, the index u (index leaf), and its authentication
path, Aut D .AutŒ0�; ::;AutŒH � 1�/. Therefore, the signature is

SIG D .u; SigŒu�; Y Œu�; .AutŒ0�; : : : ;AutŒH � 1�//:

The Classic Authentication Path Algorithm The classic authentication path
algorithm (Path Regeneration Algorithm) [56] computes node authentication path
Aut for each tree leaf, needed to authenticate public key pub of the Merkle tree.
This algorithm uses two stack variables, Aut and Aux. Stack Aut contains the path
of current authentication and stack Aux saves the next authentication nodes that will
be needed. Aut is formed by right siblings at each level of the authentication path
connecting the leaf to the root of the Merkle tree.

We now describe the computation of authentication paths. The first authentica-
tion path is generated during the execution of Algorithm 2.2. The next authentication
path is generated if a new signature is required. In Fig. 4, the nodes in gray show the
first authentication path Aut for leaf u D 0.
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Fig. 4 Implementation of Algorithm 2.2 with the first authentication path

Algorithm 2.3 The Path Regeneration Algorithm [56]
Require: Tree height H ; seed SEEDin.
Ensure: One authentication path Aut.

for (u D 0, u < 2H , uCC) do
for (h D 0; h < H; hCC) do return Aut of leaf u

A signature with leaf u is done
for (h D 0; h < H; hCC) do

if .uC 1/=.2h/ D 0 then
Update AutŒh� D AuxŒh�
nodeIni D .uC 1C 2h/˚ 2h.
AuxŒh� = CalcRoot.nodeIni; h; SEEDin/.

end if
end for

end for
end for

Output and Update Phases Algorithm 2.3 shows the steps for producing the
authentication path for the next leaf u in the tree. The algorithm starts by signing
leaf u D 0; then, the leaf is updated in one unit, and the next authentication path is
computed efficiently since only the nodes that change in the path will be updated.

Algorithm 2.3 updates authentication nodes by executing function

CalcRoot.nodeIni; h; SEEDin/:

Function CalcRoot executes Algorithm 2.2 for node nodeIni. After 2h rounds, the
value of the selected node will be computed.
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2.6.3 MSS Signature Verification

The signature verification consists of two steps [12, Chapter “Hash-based Digital
Signature Schemes” by J. Buchmann, E. Dahmen and M. Szydlo]: in the first,
signature Sig is verified using the one-time verification key Y Œi � and the underlying
one time algorithm; in the second step, the public key of the Merkle tree is
validated, and the receiver calculates its authentication path, reconstructing the path
.pŒ0�; : : : ; pŒh�/ from leaf i to the root, for all heights h. Index i is used to decide
the order in which the authentication path is reconstructed. Initially, for leaf i ,
pŒ0� D g.Y Œi �/. For each h D 1; 2; : : : ;H , pŒh� is computed using the condition
(if bi=.2h�1/c � 1 mod 2) and the recursive formula

pŒh� D
�
g.AutŒh � 1�kpŒh � 1�/ if bi=.2h�1/c � 1 mod 2;
g.pŒh � 1�kAutŒh � 1�/ otherwise.

Finally, if value pŒH� is equal to the public key pub, the signature is valid.

2.7 CMSS: An Improved Merkle Signature Scheme

The CMSS scheme [20] is a variation of the MSS scheme which allows the increase
of the number of signatures from 220 to 240. In addition, CMSS reduces key pair
generation time, signature generation time, and private key size. In [20] it was
demonstrated that CMSS is competitive in practice, by presenting a highly efficient
implementation within the Java Cryptographic Service Provider FlexiProvider and
showing that the implementation can be used to sign messages within Microsoft
Outlook.

In the CMSS scheme, two MSS authentication trees are used, a subtree and a
main tree, each one with 2h leaves, where h D H=2. Thus, we increase the number
of signatures in relation to MSS. Note that MSS becomes impractical for H > 25

since private keys are too large and the key pair generation takes too much time.
For example, to generate 220 signature keys, two trees with 210 leaves are generated
with CMSS, while with MSS, a single tree with 220 leaves is constructed. Therefore,
key generation time is reduced.

In order to improve signature generation time, CMSS uses Szydlo’s algo-
rithm [89], which is more efficient for constructing authentication paths. This
algorithm was implemented in [24], in which the purpose is to balance the number
of calculated leaves in each authentication path.

As for reducing the private key size, a pseudo-number random generator
PRNG [65] is used, where only the seed of the PRNG is stored. By using a hash
function of n bits and the Winternitz parameter t , the signature key will have .t � n/
bits. Thus, one needs only to store a seed of n bits.
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Fig. 5 CMSS signature scheme

The CMSS public key is the root of the main tree. The messages are signed using
the leaves of the subtree. After the first 2h signatures have been generated, a new
subtree is constructed and used to generate the next 2h signatures.

CMSS Key Generation For key pair generation, the MSS key pair generation is
called twice. The subtree and its first authentication path are generated. Then, the
main tree and its first authentication path are computed.

The CMSS public key is the root of the main tree. CMSS uses the Winternitz one
time signature scheme. Figure 5 shows the CMSS scheme.

CMSS Signature Generation CMSS signature generation is carried out in various
parts. First, the one-time signature of the message is computed using the leaf of
subtree. After that, the one-time signature of the root of the subtree is computed
using the leaf of the main tree. This signature will be recalculated in the next
signature only if all the leaves of the current subtree have already been used. Then,
the authentication path of both trees (main and subtree) is appended in the signature
and the next authentication paths are computed. Thus, the next subtree is partially
constructed, and the CMSS private key is updated.

CMSS Verification To verify the CMSS signature, it is required the checking of
the roots of both subtrees and both one-time signatures.
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2.8 GMSS: Merkle Signatures with Virtually Unlimited
Signature Capacity

The GMSS scheme was published in 2007 [23]. It is another variation of the Merkle
signature scheme, which allows a virtually unlimited 280 number of messages to
be signed with one key pair. The basic construction of GMSS consists of a tree
with T layers (subtrees). Subtrees in different layers may have different heights.
To reduce the cost of signature time, GMSS distributes the cost of one signature
generation across previous signatures and key generation. Thus, this scheme allows
for the choice of different parameters w of Winternitz in different subtrees, in order
to produce smaller signatures.

GMSS Key Generation For each subtree, the one-time key generation algorithm
computes the signature keys and Algorithm 2.2 calculates the roots. The first
authentication path of each subtree is stored during generation of the root. Then,
the signatures Sig	 of Merkle subtrees, for 	 D 2; : : : ; T , will be computed to be
used in the first signature. Since those signature values change less frequently for
the upper layers, the precomputation can be distributed over many stages, resulting
in a significant improvement of the signing speed. To ensure small size of private
keys, only the seed of the PRNG needs to be stored.

GMSS Signature Generation The root of a subtree is signed with the one-time
signature key corresponding to the parent tree. Root	 denotes the root of the tree 	 .
Sig	 denotes the one-time signature of Root	 , which is generated using the leaf l of
parent 	 . The message digest d is signed using the leaves on the deepest layer T .

The number of messages that can be signed with a GMSS key is S D 2h1C:::ChT ,
where h1; : : : hT are the heights of the subtrees. The GMSS signature consists of:

• the index leaf s;
• the one-time signatures Sigd and Sig	i;ji for i D 2; : : : ; T , j D 0; : : : ;

2h1C:::Chi�1 � 1.
• authentication paths AutŒ	i;ji ; li � of leaves li , for i D 1; : : : ; T , j D
0; : : : ; 2h1C:::Chi�1 � 1.

During the signature generation roots Root	i;1 are also calculated, as are the
authentication paths AutŒ	i;1; 0� of trees 	i;1, for i D 2; : : : ; T . The signature
generation is split into two parts. The first, online part, computes Sigd . The second,
offline part, precomputes the authentication paths and one-time signatures of the
roots required for upcoming signatures.

GMSS Verification The GMSS signature verification is essentially the same as
that of schemes MSS and CMSS: the verifier checks the one-time signatures Sigd
and Sig	i;ji for i D 2; : : : ; T and j D 0; : : : ; 2h1C:::Chi�1 � 1. Therefore, she verifies
the roots Root	 for 	 D 2; : : : ; T , and the public key using the corresponding
authentication path.
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2.9 XMSS: eXtended Merkle Signature Scheme

The hash-based signature scheme XMSS [22] is a variation of MSS, and it was the
first practical forward secure signature with minimal security requirements. This
scheme uses a function family F and a hash function family G. XMSS is efficient,
provided thatG and F are efficient. The parameters of XMSS are n 2 N, the security
parameter; w 2 N.w > 1/, the Winternitz parameter; m 2 N, the message length;
H 2 N, the tree height; the one-time signature keys x 2 f0; 1gn, chosen randomly
with uniform distribution; a function family

Fn D ffK W f0; 1gn! f0; 1gnjK 2 f0; 1gngI

and a hash function gK , chosen randomly with uniform distribution from the family

Gn D fgK W f0; 1g2n! f0; 1gnjK 2 f0; 1gn:g

The one-time signature key x is used to construct the one-time verification y,
by applying the function family Fn. In [22] the family function used was fK.x/ D
g.Pad.K/jjPad.x//, for a key K 2 f0; 1gn, x 2 f0; 1gn. Pad.z/ D .zjj10b�jzj�1/,
for jzj < b, where b is the size of the hash function block.

The XMSS scheme uses a slightly modified version of the WOTS proposed
in [21]. This modification makes collision resistance unnecessary: the iterated
evaluations of a hash function is replaced by a random walk through the function
family Fn, as follows: for K; x 2 f0; 1gn, e 2 N, and fK 2 Fn, the function f e

K.x/

is f 0
K.x/ D K . For e > 0, the function is f e

K.x/ D fK0.x/, whereK 0 D f e�1
K .x/.

Modified WOTS Key Pair Generation First compute the Winternitz parameters

l1 D
&

m

log2.w/

'

; l2 D
$

log2.l1.w � 1//
log2.w/

%

C 1; l D l1 C l2:

The public verification key is

Y D .y1; : : : ; yl / D .f w�1
sk1 .x/; : : : ; f w�1

skl
.x//;

where ski is the private signature key chosen uniformly at random and f w�1 as
defined above.

Modified WOTS Signature Generation This scheme signs messages of binary
length m. The message bits are processed in base w representation. The message is
M D .m1,. . . ,ml1/, mi 2 f0; :::;w � 1g: The checksum C D Pl1

iD1.w � 1 � mi/

in base w representation, and the length l2 are appended to M , resulting in b D
.b1; : : : ; bl /. The signature is

Sig D .sig1; : : : ; sigl / D .f b1
sk1
.x/; : : : ; f

bl
skl
.x//:
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Modified WOTS Verification To check the signature, the verifier constructs the
values b D .b1; : : : ; bl / as in the signature generation and then checks the equality

.f
w�1�b1

sig1
.x/; : : : ; f

w�1�bl
sigl

.x// D .y1; : : : ; yl /:

XMSS Public Key Generation XMSS is a modification of the Merkle tree. A tree
of height H has H C 1 levels. XMSS uses the hash function gK and bitmasks
(bitmaskTree) .bl;j jjbr;j / 2 f0; 1g2n, chosen uniformly at random, where bl;j is
the left bitmask and br;j is the right bitmask. The nodes on level j , 0 � j � H , are
written NODEi;j , 0 � i < 2H�j , and 0 < j � H . The nodes are computed as

NODEi;j D gK..NODE2i;j�1 ˚ bl;j /jj.NODE2iC1;j�1 ˚ br;j //:

The bitmasks are the main difference to the other Merkle tree constructions, since
they allow one to replace the collision resistant hash function family. Observe, in
Fig. 6, how the tree nodes NODEi;j in the XMSS scheme are constructed at each
level j , to generate the public key of the tree.

To generate a leaf of the XMSS tree, an L-tree is used. The one-time public
verification keys .y1; : : : ; yl / are the first l leaves of an L-tree. If l is not a power
of 2, then there are not sufficiently many leaves. A node that has no right sibling
is lifted to a higher level of the L-tree until it becomes the right sibling of another
node. The hash function uses new bitmasks (bitmaskLtree). The bitmaskLtree are
the same for each of those trees. The XMSS public key contains the bitmaskTree,
bitmaskLtree, and the root of the XMSS tree.

Fig. 6 XMSS signature scheme [21]
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2.10 Security of the Hash-Based Digital Signature Schemes

In this section we present the main results known about the security of hash-based
digital signature schemes.

In [12, Chapter “Hash-based Digital Signature Schemes” by J. Buchmann,
E. Dahmen and M. Szydlo], it was proved that the Lamport-Diffie one-time
signature scheme has existential unforgeability under an adaptive chosen message
attack .CMAsecure/, assuming that the underlying one-way function is pre
image resistant. In the same work, it was also proved that the Merkle signature
scheme has existential unforgeability under the assumption that the hash function
is collision resistant and the underlying one-time signature scheme has existential
unforgeability.

On the security of XMSS, in [21], it was proved the following result: if Hn is
a second preimage-resistant hash function family and Fn a pseudorandom function
family, then XMSS is existentially unforgeable under chosen message attacks. In
addition, in the same paper, it was shown that XMSS is forward secure under some
modifications on the key generation process.

Hülsing [44] showed that W-OTS is existentially unforgeable under adaptive
chosen message attacks. In the same work it was also shown that scheme XMSSMT

is secure; more specifically, it is proved the following result: if Hn is a second-
preimage-resistant hash function family and Fn is a pseudorandom function family,
then XMSSMT is a forward secure signature scheme.

2.11 Implementation Results

In this section we present a summary of recent works on the implementation of
variants of the Merkle signature scheme.

We use the following notation: time to generate keys (tkey), time to generate a
signature (tsig), and time to verify a signature (tver). Table 1 shows timings which
were obtained in the following works:

• CMSS scheme [20] software implementation on a Pentium M 1:73 GHz, 1 GB of
RAM running Microsoft Windows XP for 240 signatures and w D 3;

• GMSS scheme [23] software implementation on a Pentium computer dual core
1:8 GHz for 240 signatures (w1 D 9 and w2 D 3 were 390min, 10:7 ms and 10:7
ms);

• XMSS scheme [22] software implementation on an Intel(R) Core (TM) i5M540,
2:53GHz computer with Infineon technology;

• CMSS scheme [85] hardware implementation on a novel architecture on an FPGA
Platform (Virtex-5);

• XMSS scheme [66] software implementation on an Intel Core i7�2670QMCPU,
2:20 GHz with 6 GB of RAM.
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Table 1 Implementation results

Schemes Hash H w tkey tsig (ms) tver (ms)

CMSS [06] SHA2 40 (3,3) 120.7 min 40:9 3:7

GMSS [07] SHA1 40 (9,3) 390 min 10:7 10:7

XMSS [11] SHA2 20 4 408.6 s 6:3 0:51

CMSS [11] SHA2 30 4 820 ms 2:7 1:7

XMSS [13] SHA2 20 4 553 s 2:7 0:31

In Table 1 the size of all public keys is 32 bytes, except for the XMSS scheme,
that also has to store the bitmasks. The private key and signature are smaller in
the XMSS scheme, since in the other schemes it is necessary to store information
of more than one tree. The XMSS scheme presented the best timings for signing
and verification on a software implementation, given that only one authentication
path needs to be updated and checked for each signature. However, the XMSS is
only recommended for applications requiring up to 220 signature keys, since the
generation of more keys is too time consuming. A Multi Tree XMSS (XMSSMT) [79]
based on algorithms CMSS and GMSS is recommended for applications that require
a large numbers of signatures.

3 Multivariate Schemes

Multivariate public key cryptosystems (MPKC) constitute one of the main public
key families considered potentially resistant against the powerful quantum comput-
ers. The security of MPKC schemes is based upon the difficulty of solving nonlinear
system of equations over finite fields. In particular, in most cases, such schemes are
based upon multivariate systems of quadratic equations because of computational
advantages. This last problem is known as multivariate quadratic problem or MQ
Problem, and it was shown to be NP-complete by Patarin [69]. MPKC has been
developed more intensively in the last two decades. It was shown that, in general,
encryption schemes were not as secure as it was believed to be, while signatures
constructions can be considered viable.

The idea behind MPKC is to define a trapdoor one-way function whose image
is a nonlinear system of multivariate equations over a finite field. The public key is
given by a set of polynomials:

P D fp1.x1; : : : ; xn/; � � � ; pm.x1; : : : ; xn/g

where each pk is a nonlinear polynomial (usually quadratic) in the variables x D
.x1; � � � ; xn/:

pk.x1; : : : ; xn/ WD
X

1�i�j�n
P
.k/
ij xixj C

X

1�i�n
L
.k/
i xi C c.k/; 1 � k � m (1)
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Fig. 7 Pure quadratic map or
transform

and all the coefficients and variables are in Fq . In order to make the previous
definition simpler, we will adopt vector notation, which is closer to practical
implementations:

pk.x/ WD xP .k/xT C L.k/xT C c.k/; 1 � k � m (2)

where P .k/ 2 F
n�n
q is a n � n matrix, whose entries are the quadratic terms

coefficients of pk.x1; : : : ; xn/, L.k/ 2 F
n
q is a vector whose entries are the

linear terms coefficients of pk.x1; : : : ; xn/ and c.k/ denotes the constant term of
pk.x1; : : : ; xn/. Finally, x is the row vector of variables Œx1; : : : ; xn�. Figure 7
illustrates the pure quadratic transformation (or map) xP .k/xT (whose evaluation
provides a certain element of the finite field denoted by hk 2 Fq).

A formal definition for the MQ Problem is given as follows.

Definition 1 (MQ Problem) Solve the random system p1.x/ D p2.x/ D � � � D
pm.x/ D 0, where each pi is quadratic in variables x D .x1; : : : ; xn/. All
coefficients and variables are in K D Fq , the field with q elements.

In other words, the target of the MQ Problem is to find a solution x for a given
map P . In 1979, Garey and Johnson proved [33, page 251] that the decision variant
of the MQ Problem over binary finite fields is NP-complete.

On the other hand, the proposed MQ signature schemes in literature do not rely
their security only on the original MQ Problem. In order to invert the trapdoor one-
way function, which means finding the original private system (or an equivalent),
it is necessary to solve a related problem called the Isomorphism of Polynomials
Problem or IP Problem, proposed by Patarin [70].

Definition 2 (Isomorphism of Polynomials Problem) Letm; n 2 N be arbitrarily
fixed. Further denote P;Q W Fnq ! F

m
q two multivariate quadratic maps and T 2

F
mxm
q , S 2 F

nxn
q two bijective linear maps, such that P D T ıQ ı S. Given P and

Q, find T and S.

In other words, the IP Problem goal is to find T and S for a given pair .P;Q/.
Note that, originally, S was defined as an affine instead of linear transformation [71].
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But, Braeken et al. [18, Sec. 3.1] noticed that the constant part is not important for
the security of certain MQ schemes and thus can be omitted.

3.1 Construction of MQ Keys

Generically, a typical MQ private key consists of two linear transformations T and
S along with a quadratic transformation Q. Note that Q presents certain particular
trapdoor structure. We will present two distinct trapdoor structures in Sect. 3.2 for
the UOV and Rainbow signature schemes. The trapdoor structure will allow the
signer to easily solve the public MQ system in order to generate valid signatures.
The public key is simply given by the composition P D T ı Q ı S. For some
signature schemes it is not necessary to explicitly use the map T, since it is reduced
to the identity [12, Chapter 6].

The main difference among distinct MQ signature schemes falls in the trapdoor
structure of Q. Since public keys have the same structure in most schemes, verifying
a signature follows the same procedure, in other words checking if a given signature
x is a solution of a public quadratic system pk.x/ D hk; 1 � k � m. For other
trapdoor constructions, the reader can see, for example, [94].

It is worth to mention an obvious optimization in the public matricesP .k/ defined
over odd characteristic fields that provides a reduction by a factor about two in the
space representation. From the definition of the summation of the quadratic part
of pk.x1; : : : ; xn/ (Eq. 1), the coefficient of the term xixj is P .k/

ij C P .k/
ji ; thus,

one can update the coefficient P .k/
ij of the P .k/ with the value P .k/

ij C P
.k/
ji and

the coefficient P .k/
ji with zero for i � j � n, which makes the matrix P .k/ upper

triangular. After applying this representation one is able to define a unique public
matrix called the public matrix of coefficients, denoted MP . Each row of MP is
given by the linearization of the coefficients of each upper triangular matrix P .k/.
Figure 8 illustrates this construction.

Fig. 8 Public matrix of coefficients



A Panorama of Post-quantum Cryptography 407

3.2 UOV and Rainbow MQ Signatures

One of the main still secure MQ signature families is the Unbalanced Oil and
Vinegar (UOV) construction which was proposed by Patarin [48]. The name Oil and
Vinegar came from the fact that variables .x1; � � � ; xn/ of a certain quadratic private
system are separated in two subsets O D .x1; � � � ; xm/ and V D .xmC1; � � � ; xn/, in
such a way that variables of the first set are never mixed in a term of the quadratic
system.

Formally, the trapdoor consists of a purely quadratic map, called the central map,
Q W Fn ! F

m with

Q D ff1.u1; : : : ; un/; : : : ; fm.u1; : : : ; un/g

and

fk.u1; : : : ; un/ WD
X

1�i�j�n
Q
.k/
ij uiuj � uQ.k/uT (3)

The central map has an additional restriction in its polynomials fk.u1; : : : ; un/.
It is imposed that a certain part of its coefficients be zeros. The set of variables u is
divided in two subsets: the one of vinegar variables ui with i 2 V D f1; � � � ; vg and
the one of oil variables ui with i 2 O D fvC 1; � � � ; ng ofm D n� v elements. The
restriction on the polynomials fk is that they have no term combining any two oil
variables. That assures that we do not have quadratic (or crossed) terms in oils. Thus,
we only have terms combining the following sort of variables v�v and o�v. Patarin
showed that given this construction one can fix arbitrary values for the vinegars and
then get a linear system in the oils. This remaining linear system will have a solution
with high probability, i.e., 1 � 1=q, and can be solved using Gaussian elimination
with complexity O

�
n3
�
. The structure of the private polynomials is the following:

fk.u1; � � � ; un/ WD
X

i;j2V; i�j
Q
.k/
ij uiuj C

X

i2V; j2O
Q
.k/
ij uiuj (4)

In order to generate a signature x 2 F
n
q of a given message, particularly of its

hash h 2 F
m
q , the signer have to invert the map P.x/ D Q.S.x// D h. Defining

x0 D x � S , one first solves the multivariate system, x0Q.k/x0T D hk , 1 � k � m,
finding x0. Finally, the signature x D x0S�1 is computed.

As explained before, the structure of the matricesQ.k/ allows to efficiently solve
the MQ system, by choosing v vinegar variables at random and then solving the
resulting system for the remaining m oil variables. If the linear system has no
solution, repeat the process by choosing new vinegar variables until it has a valid
solution.
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A signature x for h is valid, if and only if, all polynomials pk constituting the
public key have their evaluation satisfied, i.e., pk.x1; � � � ; xn/ D xP .k/xT D hk ,

1 � k � m. The consistency of the verification P.x/
‹D h is shown next:

p.x/ D xP xT

D x.Q ı S/xT

D x.SQST/xT

D .x0S�1/.SQST/.x0S�1/T

D x0.S�1S/Q.S T.S�1/T/x0T

D x0IQIx0T

D x0Qx0T

D h:

Historically, UOV signatures came from Oil and Vinegar or OV construction
[68], where the number of vinegars and oils are the same (balanced oil and vinegar),
but that construction was shown insecure [47]. Next, it was redesigned a way to
make it secure by unbalancing the amount of each subset (v > m), what originated
the Unbalanced Oil and Vinegar (UOV) signature [48]. Figure 9 illustrates the
structure of each UOV private polynomial.

In order to hide the trapdoor structure at polynomials fk , an invertible lin-
ear transformation S 2 F

n�n
q is applied to the right of Q. So the resulting

public map is P D Q ı S. The private key is given by the pair sk WD
.Q;S/ and the public key is composed by polynomials P WD p.x1; � � � ; xn/ D
fp1.x1; � � � ; xn/; � � � ; pm.x1; � � � ; xn/g. So, it becomes clear that the security of the
system is not directly based on the MQ Problem and indeed recovering the private

Fig. 9 UOV central map
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Fig. 10 Rainbow central map Q with two bands

key is related to the difficult to decompose P in Q and S, in other words, to solve
the IP Problem.

An important variant of the UOV scheme is the Rainbow [28] signature. It was
proposed by Ding and Schmidt, whose main advantage is the shorter signature
footprints attained compared to UOV [91, Section 3].

The basic idea of the Rainbow signature is to separate the m private UOV
equations into smaller bands and partitioning the variables accordingly; in other
words, each band has its own oils and vinegars. After a band is processed, all of
its variables become the vinegars for the next band and so on until the last band is
processed.

Typically the central map is divided into only two bands, since this configuration
has been shown the most suitable in the sense that it avoids certain structural attacks
and keeps the signatures reasonably short [91].

Rainbow central map Q with two bands, for example, is divided in two layers as
shown in Fig. 10 where v1 and o1 are the number of vinegars and oils of the first
layer and v2 and o2 are the number of vinegars and oils of the second layer. Note
that v2 D o1 C v1.

The signature procedure is similar to UOV one, choosing vinegars at random for
the first band in order to be able to compute its oils, as it is done in UOV. Then,
these computed variables (vinegars plus oils) are used as vinegars for the next band.

3.3 The Cyclic UOV Signature

An interesting step towards the reduction of UOV/Rainbow key sizes was made by
means of the Cyclic UOV/Rainbow constructions [74, 77]. Petzoldt et al. noticed
the existence of a linear relation between part of the public quadratic map and the
private quadratic map. That relation was exploited in order to construct key pairs in
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a different unusual way being able to reduce the size of the public key. The idea is to
firstly generate the quadratic part of the public key with a desired compact structure
and then compute the quadratic part of the private key by using the linear relation.

Therefore, it is possible to obtain shorter public keys while the private ones
remain random looking and without any apparent structure. The structure suggested
by Petzoldt et al. was the one that uses circulant matrices, which is the origin of
the name Cyclic UOV [77]. Circulant matrices are very compact, since they can be
represent by simply its first row. Thus, the public key can be stored in a efficient
manner, apart from some advantages in processing like Karatsuba and fast Fourier
transform (FFT) techniques.

Cyclic UOV keys are constructed as follows. Firstly, one generates an invertible

linear transform S 2 F
n�n
q , where Sij

$ Fq; 1 � i; j � n, and, from S, one
computes the aforementioned linear relation and denoted by AUOV WD ˛rsij :

˛rsij D
�
Sri � Ssi , i=j
Sri � Ssj C Srj � Ssi , otherwise:

In order to illustrate how the public and private matrices of coefficients,MP and
MF , are related, we have initially Figs. 11 and 12 that separate the proper parts of
these matrices.

BlocksB ofMP and F ofMF obey the relationB WD F �AUOV.S/. Thus, for the
key generation, one may first generate matrix MP with B with circulant structure
and then computing F WD B �A�1UOV.S/. That methodology was able to reduce UOV
public key size in about 6 times for the security level of 80 bits.

As mentioned above, MQ signatures have been developed more intensively in
the last two decades. Many constructions were purposed toward key size reduction
which is the main disadvantage today. Table 2 shows some of them.

Fig. 11 Cyclic UOV: public matrix of coefficients
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Fig. 12 Cyclic UOV: private matrix of coefficients

Table 2 MQ signatures evolution

Construction jskj jpkj jhashj jsigj Ref.

Rainbow(F24 , 30, 29, 29) 75.8 KiB 113.4 KiB 232 352 [75]

Rainbow(F31 , 25, 24, 24) 59.0 KiB 77.7 KiB 232 392 [75]

CyclicUOV(F28 , 26, 52) 14.5 KiB 76.1 KiB 208 624 [74]

NC-Rainbow(F28 , 17, 13, 13) 25.5 KiB 66.7 KiB 384 672 [95]

Rainbow(F28 , 29, 20, 20) 42.0 KiB 58.2 KiB 272 456 [75]

CyclicLRS(F28 , 26, 52) 71.3 KiB 13.6 KiB 208 624 [76]

UOVLRS(F28 , 26, 52, 26) 71.3 KiB 11.0 KiB 208 624 [76]

CyclicRainbow(F28 , 17, 13, 13) 19.1 KiB 10.2 KiB 208 344 [74]

4 Code-Based Schemes

In this section we will discuss the theory and practice of cryptosystems based on
error-correcting codes.

Coding theory aims at ensuring that when transmitting a collection of data over
a channel subject to noise (i.e., the perturbations in the data), the recipient of this
transaction can recover the original message. For this, one must find efficient ways to
add redundant information to the original message such that if the message reaches
the recipient containing errors (existing inversion in certain bits in case of binary
messages), the receiver can decode it.

In the cryptographic context, the primitive adds errors in a word of an error-
correcting code and compute a syndrome relative to the parity check matrix of this
code.

The first construction was a public key encryption scheme proposed by Robert
J. McEliece in 1978 [55]. The private key is a random, binary, and irreducible
Goppa code (which will be reviewed in Sect. 4.1.1), and the public key is a
random generator matrix with a permuted version of this code. The ciphertext is
a codeword in which some errors were introduced, and only the owner of the private
key can correct these errors (and thus decrypt the message). A few years later
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some parameter modifications were necessary to keep the security level high, but
it remains unbroken until now.

4.1 Linear Codes

For a better technical understanding of this section, we first explain some basic
concepts used within the code-based cryptography.

Matrix and vector indices will be numbered from 0 throughout this context,
unless otherwise stated. Let p be a prime, and let q D pm for some integer m > 0.
Fq denotes the finite field with q elements. The degree of a polynomial g 2 FqŒx� is
denoted by deg.g/. It is also defined the notion of Hamming weight and Hamming
distance:

Definition 3 The Hamming weight of a vector u 2 C � F
n
q is the number of

nonzero coordinates on it, i.e., wt.u/ D #fi; 0 6 i < n j ui ¤ 0g. The Hamming
distance between two vectors u; v 2 C � F

n
q is the number dist.u; v/ of coordinates

that these vectors differ from each other, i.e. dist.u; v/ WD wt.u � v/.

Now we will introduce some useful concepts to the task of encoding messages.
The first refers to the linear code, which can be defined as

Definition 4 A (binary) linear Œn; k� error-correcting code C is a subspace of Fn2 of
dimension k.

A vector u 2 C is also called codeword (or, briefly, a word) of C .
As a vector space, C is represented by a base, which can be written as a generator

matrix:

• A generator matrix G of C is a matrix over Fq such that C D hGi, where hGi
indicates the vector space generated by the rows of G. Normally the rows of G
are independent and the matrix has dimension k�n; in other words, 9G 2 F

k�n
q W

C D fuG 2 F
n
q j u 2 F

k
qg.

• We say that a generator matrix G is in the systematic form if its first k columns
form the identity matrix.

• The so-called dual code C? is the orthogonal code of C to the scalar product
over Fq and is a linear code of dimension n � .n � k/ over Fq .

Alternatively, C is fully featured as the core of a linear transformation specified
by a parity check matrix (or abbreviated parity matrix):

• A parity matrix H over C is a generator matrix of C?. In other words, 9H 2
F
r�n
q W C D fv 2 F

n
q j HvT D 0r 2 F

r
qg, where r D n � k is the codimension of

C (i.e., the dimension of the orthogonal space C?).

It is easy to see that G and H , although not uniquely defined (because there is
no one single basis for C or to C?), are related by HGT D 0 2 F

r�k
q .
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The linear transformation defined by a parity matrix is called syndrome function
of the code. The value of this transformation over any vector u 2 F

n
q is called

syndrome of this vector. Clearly, the syndrome of any codeword is always null.

Definition 5 The distance (or minimum distance) of a C � F
n
q code is the minimum

Hamming distance between words of C , i.e., dist.C / D minfwt.u/ j u 2 C g.
We write Œn; k; d � for a code Œn; k� whose minimum distance is (at least) d . If

d > 2t C 1, it is said that the code is capable of correcting at least t errors, in the
sense that there is no more than one codeword with a Hamming distance no more
than t from any vector of Fnq .

Several computational problems involving codes are intractable, starting with the
actual determination of the minimum distance of a code. The following problems
are important for code-based cryptography:

Definition 6 (General Decoding) Let Fq be a finite field, and let .G;w; c/ be a
triple consisting of a matrix G 2 F

k�n
q , an integer w < n, and a vector c 2 F

n
q . The

general decoding problem (GDP) is the question if there is a vector m 2 F
k
q such

that e D c �mG has Hamming weight wt.e/ 6 w.

The search problem associated with the GDP is to calculate the vector m given
the word with errors c.

Definition 7 (Syndrome Decoding) Let Fq be a finite field, and let .H;w; s/ be
a triple consisting of an H 2 F

r�n
q , an integer w < n, and a vector s 2 F

r
q .

The syndrome decoding problem (SDP) is whether there is a vector e 2 F
n
q with

Hamming weight of wt.e/ 6 w such that HeT D sT.

The problem associated with the SDP consists in computing the error pattern e
given its syndrome se WD eH T.

Both the general decoding problem and the problem of syndrome decoding for
linear codes are NP -complete [9].

In contrast to the overall results, the knowledge of the structure of certain
codes makes the GDP and SDP soluble in polynomial time. A basic strategy to
define code-based cryptosystems is therefore keep secret the information about the
structure of the code and publish a code associated without any apparent structure
(hence, by hypothesis hard to decode).

4.1.1 Goppa Codes

One of the most important families of linear error-correcting codes for cryptographic
purposes is the Goppa codes:

Definition 8 Given a prime number p, q D pm for some m > 0, a sequence L D
.L0; : : : ; Ln�1/ 2 F

n
q of distinct elements, and a monic polynomial g.x/ 2 FqŒx�

of degree t (called generator polynomial) such that g.Li / ¤ 0 to 0 6 i < n, the
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Goppa code � .L; g/ is the code Fp-alternate corresponding to GRSt .L;D/ over
Fq , where D D .g.L0/�1; : : : ; g.Ln�1/�1/.

The distance of an irreducible binary Goppa code is at least 2t C 1 [43],
and therefore a Goppa code can correct up to t errors (using, e.g., Patterson’s
algorithm [72]), sometimes a little more [11]. Appropriate decoding algorithms
can still decode t errors when the generator g.x/ is not irreducible but free of
squares. For example, one can see equivalently a binary Goppa code as an alternate
code defined by the generator polynomial g2.x/, in which case any alternate
is able to decode t errors. Codes called wild extend this result under certain
circumstances [14]. For all other cases, there is no known decoding method capable
of correcting more than t=2 errors.

Equivalently we can define Goppa codes in terms of its syndrome function:

Definition 9 Let L D .L0; : : : ; Ln�1/ 2 F
n
q be a sequence (called support) of

n 6 q distinct elements, and let g 2 FqŒx� be a monic irreducible polynomial of
degree t such that g.Li / ¤ 0 for all i . For any word e 2 F

n
p is defined a polynomial

Goppa syndrome se 2 FqŒx� as

se.x/ D
n�1X

iD0

ei

x �Li mod g.x/: (5)

The syndrome is a linear function of e. We also present an alternative definition
for Goppa codes:

Definition 10 The Goppa code Œn; n � mt� over Fp supported L and generator
polynomial g is the core function syndrome (Eq. 5), i.e., the set of � .L; g/ WD
fe 2 F

n
p j se � 0 mod gg.

Writing se.x/ WDPi si x
i for some s 2 F

n
q , we can show that sT D HeT with

H D toep.g1; : : : ; gt /
� vdmt .L0; : : : Ln�1/
� diag.g.L0/�1; : : : ; g.Ln�1/�1/

(6)

Thus,H D T VD where T is a Toeplitz matrix t � t , V is a Vandermonde matrix
t � n, and D is a diagonal matrix n � n according to the following definitions:

Definition 11 Given a sequence .g1; : : : ; gt / 2 F
t
q for some t > 0, the Toeplitz

matrix toep.g1; : : : ; gt / is the matrix t � t with components Tij WD gt�iCj for j 6 i
and Tij WD 0 in other cases, namely,

toep.g1; : : : ; gt / D

2

6
66
4

gt 0 : : : 0

gt�1 gt : : : 0
:::

:::
: : :

:::

g1 g2 : : : gt

3

7
77
5
:
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Definition 12 Given t > 0 and a sequence L D .L0; : : : ; Ln�1/ 2 F
n
q for some

n > 0, the Vandermonde matrix vdm.t; L/ is the matrix t � n with components
Vij D Lij , i.e.,

vdm.t; L/ D

2

6
6
6
6
6
4

1 : : : 1

L0 : : : Ln�1
L20 : : : L2n�1
:::

: : :
:::

Lt�10 : : : Lt�1n�1

3

7
7
7
7
7
5
:

Definition 13 Given a sequence .d0; : : : ; dn�1/ 2 F
n
q for some n > 0, we denote

by diag.d0; : : : ; dn�1/ a diagonal matrix with componentsDjj WD dj , 0 6 j < n,
andDij WD 0 in other cases, namely,

diag.d0; : : : ; dn�1/ D

2

6
6
6
4

d0 0 : : : 0

0 d1 : : : 0
:::
:::
: : :

:::

0 0 : : : dn�1

3

7
7
7
5
:

4.2 Decodability

All codes Œn; k� with distance d satisfy the Singleton limit, which states that d 6
n�kC 1. The existence of a binary linear code Œn; k� with distance d is guaranteed
since:

d�2X

jD0

 
n � 1
j

!

< 2n�k:

This is called the Gilbert-Varshamov (GV) boundary. Random binary codes
achieve the GV bound, in the sense that the above inequality is very close to
equality [53]. There is no known family of binary codes, however, that can be
decoded in subexponential time until the GV limit nor known subexponential
algorithm for decoding general codes to the GV limit.

Consider a code Fp-alternant with length n and able to decode t errors, derived
from a code GRS over Fpm . The syndrome space have size pmt. However, decodable
syndromes are only those that match the error vector with weight not exceeding t .
In other words, only

Pt
wD1

�
n
w

�
.p � 1/w nonzero syndromes are uniquely decodable,

and thus its density is

ı D 1

pmt

tX

wD1

 
n

w

!

.p � 1/w:
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If the code length is a fraction 1=pc of the maximum length for any c > 0, i.e.,
n D pm�c , the density can be approximated by

ı  1

pmt

�
nt

tŠ

�
.p � 1/t D .pm�c/t .p � 1/t

pmtt Š
D
�
p � 1
pc

�t
1

t Š
:

A particularly good case is therefore ı > 1=tŠ, which occurs when pc=.p �
1/ 6 1, i.e., c 6 logp.p � 1/ or n > pm=.p � 1/. Unfortunately this also means
that, for binary codes, the highest densities are reached only by codes of maximum
length or nearly maximum; otherwise the density is reduced by a factor 2ct . For
codes of maximum length (n D pm and hence c D 0), the density simplifies to
ı  .p � 1/t=tŠ that achieves the relative minimum ı  1=tŠ for binary codes.

We will also be interested in the particular case of error patterns if a particular
magnitude prevails over the others and more especially when all the error magni-
tudes are equal. In this case, the density of decodable syndromes is ı  .p � 1/=tŠ
which again reaches the minimum ı  1=tŠ in binary codes.

4.3 Code-Based Cryptosystems

The original McEliece encryption schemes [55] and Niederreiter [64], despite the
historic name, but inaccurate and undue, as cryptosystems, are best described as
trapdoor one-way functions than as full encryption methods themselves. Functions
of this nature can be transformed in various ways in cryptosystems, for example,
Fujisaki-Okamoto transform.

Interestingly, McEliece and Niederreiter commonly show a substantial speed
advantage over traditional processing schemes. For example, a code of length n
presents time complexityO.n2/, while Diffie-Hellman/DSA systems, as well as the
operations of the RSA private exponent system, have time complexity O.n3/ and
keys with n bits.

For simplicity, the descriptions of McEliece and Niederreiter schemes below
assume that patterns of correctable errors are binary vectors of weight t , but
variants with broader patterns of error are possible, as the ability to decode the
underlying code. Simple and effective criteria for choosing parameters are provided
in Sect. 4.3.3. Each encryption scheme consists of three algorithms: MakeKeyPair,
Encrypt, and Decrypt.

4.3.1 McEliece

• MakeKeyPair. Given the desired level of security �, choose a prime p (com-
monly p D 2), a finite field Fq with q D pm for some m > 0, and a Goppa code
� .L; g/ with support L D .L0; : : : ; Ln�1/ 2 .Fq/

n (with distinct elements)
and generator polynomial g 2 FqŒx� of degree t and free of squares satisfying
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g.Lj / ¤ 0, 0 6 j < n. Let k D n � mt. The choice is guided so that the
cost of decoding a code Œn; k; 2t C 1� is at least 2� steps. Compute a systematic
generator matrix G 2 F

k�n
p for � .L; g/, i.e., G D ŒIk j �MT � for any matrix

M 2 F
mt�k
p and Ik an identity matrix of order k. The private key is sk WD .L; g/

and the public key is pk WD .M; t/.
• Encrypt. To encrypt a plaintext d 2 F

k
p , we choose a vector e

$ f0; 1gn � F
n
p

with weight wt.e/ 6 t , and compute the encrypted text c  dGC e 2 F
n
p .

• Decrypt. To decrypt an encrypted text c 2 F
n
p with the knowledge of L and g,

we compute the decodable syndrome c, apply in it a decoder to determine the
error vector e, and recover the plain text d from the first k columns of c � e.

4.3.2 Niederreiter

• MakeKeyPair. Given the desired level of security �, choose a prime p (com-
monly p D 2), a finite field Fq with q D pm for some m > 0, and a Goppa
code � .L; g/ with support L D .L0; : : : ; Ln�1/ 2 .Fq/n (of distinct elements)
and a generator polynomial g 2 FqŒx� of degree t and free of squares satisfying
g.Lj / ¤ 0, 0 6 j < n. Let k D n � mt. The choice is guided so that the
cost of decoding a code Œn; k; 2t C 1� is at least 2� steps. Compute a systematic
parity matrix H 2 F

mt�n
p for � .L; g/, i.e., M D ŒM j Imt� for some matrix

M 2 F
mt�k
p and Imt the identity matrix of order mt. Finally, choose as public

parameter a function of rank permutation � W B.n; t/ ! Z=
�
n
t

�
Z. The private

key is sk WD .L; g/ and the public key is pk WD .M; t; �/.
• Encrypt. To encrypt a plaintext, d 2 Z=

�
n
t

�
Z is represented d as a error pattern

e  ��1.d/ 2 f0; 1gn � F
n
p of weight wt.e/ D t , and compute as a ciphertext

syndrome s  eHT 2 F
mt
p .

• Decrypt. To decrypt an encrypted text s 2 F
mt
p with the knowledge of L and

g, this syndrome becomes another one decodable, applies to income results a
decoder to determine the error vector e, and recovers from this the plaintext d  
�.e/.

4.3.3 Parameters for Code-Based Cryptosystems

The classical schemes of McEliece and Niederreiter, implemented on the class of
Goppa codes, remain safe until the present date, in contrast to implementations
on many other families of codes proposed [41, 67]. Indeed, Goppa codes have
weathered well the intense attempts of cryptanalysis, and despite considerable
progress in the area [10] (see also [12] for review), they remain essentially intact
for cryptographic purposes that have been suggested in the pioneering work of
McEliece [55].
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Table 3 suggests parameters for the underlying codes of cryptosystems such as
McEliece or Niederreiter and size jpkj in bits of the resulting public key. Only
generic Goppa codes are considered irreducible.

We notice that in this generic Goppa codes scenario, these schemes are adversely
affected by very large keys compared to conventional counterparts. That is the
importance of seeking ways to reduce the key sizes, maintaining intact the level
of security associated.

The first steps toward the goal of reducing the size of the keys without reducing
the level of security in post-quantum cryptosystems were given by Monico et al.
through codes with low-density parity check (matrix) (LDPC codes) [61], after
that by Gaborit with quasi-cyclic codes [31], and Baldi and Chiaraluce through a
combination of both [4].

4.4 LDPC and QC-LDPC Codes

LDPC codes were invented by Robert Gallager [32] and are linear codes obtained
from sparse bipartite graphs. Suppose that G is a graph with n nodes on the left side
(called message nodes) and r nodes on the right side (called verification nodes), as
can be seen in Fig. 13 below. The graph gives rise to a linear code of size n and block
size of at least n � r as follows: the n coordinates of the code words are associated

Table 3 Parameters for
McEliece/Niederreiter using
generic binary Goppa codes

m n k t lg WF jpkj
11 1893 1431 42 80:025 661122

12 2887 2191 58 112:002 1524936

12 3307 2515 66 128:007 1991880

13 5397 4136 97 192:003 5215496

13 7150 5447 131 256:002 9276241

Fig. 13 Bipartite graph
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with n message nodes. The code words are the vectors .c1; : : : ; cn/ such that, for
all verification nodes, the sum of positions between neighboring message nodes is
zero.

The graph representation is analogous to the matrix representation looking at the
adjacency matrix of the graph:H is a binary matrix r � n whose entry .i; j / is 1 if
and only if the i th check node is connected to the j th message node in the graph.
Then the LDPC code defined by the graph is the set of vectors c D .c1; : : : ; cn/

such thatH � cT D 0. The matrixM is called parity matrix for the code. Conversely,
any binary matrix r �n gives rise to a bipartite graph between nmessage nodes and
r verification nodes, and the code defined to null space of M is precisely the code
associated with that graph. Therefore, any linear code has a representation such as
a code associated with a bipartite graph (note that this graph is not defined solely
by the code). However, not every binary linear code has a representation as a sparse
bipartite graph. If there is, then the code is called low-density paritycheck code.

An important subclass of LDPC codes which have advantages over other codes
in the same class of codes is the quasi-cyclic low-density parity check (QC-
LDPC) [90]. In general, a Œn; k� QC-LDPC code satisfies n D n0b and k D k0b

(and thus also r D r0b) for some b, n0, k0 (and r0) and admits a parity matrix
consisting of n0 � r0 blocks of circulating sparse b � b submatrices. A particularly
important case is when b D r (and r0 D 1 and k0 D n0 � 1), since a systematic
parity matrix for this code is fully defined by the first line of each r � r block. It is
said that the parity matrix is in the circulant form.

However, it was shown that all these proposals contain vulnerabilities that make
them unsuitable for cryptographic purposes [67]. Indeed, in these methods, the
trapdoor was essentially protected by any other mechanism including a private
permutation of the underlying code. The attack strategy in this scenario is to obtain
a soluble system of linear equations that the components of the permutation matrix
must satisfy and was set up successfully because of the overly restrictive nature of
the secret permutation (since it needs to preserve the quasi-cyclic structure of the
result) and the fact that the secret code is a subcode of a very particular public code.

An attempt to fix the proposal of Baldi and Chiaraluce was presented [5]. More
recently, Berger et al. [8] showed how to avoid the problems of the original Gaborit
scheme and removed vulnerabilities previously known through two techniques:

1. Extract public keys shortened by blocks of very long private codes, exploring a
theorem due to Wieschebrink about NP -completeness to distinguish shortened
codes [92];

2. Working with the subfield subcodes of an intermediate field between the original
field and the extension field of the original GRS code adopted by construction.

These techniques have been applied with some success to quasi-cyclic codes.
However, almost all of this family of codes was subsequently broken due to
structural failure of security, more precisely a relationship between the secret
structure and certain multivariate quadratic equation systems [30].

Historical and experiential wisdom suggests, therefore, to restrict the search for
more efficient parameters of code-based cryptosystems to the class of Goppa codes.
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4.5 MDPC and QC-MDPC Codes

An interesting subclass of the LDPC codes consists of moderate density parity check
codes (MDPC) and their quasi-cyclic variant (QC-MDPC) [60].

These codes, introduced by Misoczki et al., have densities low enough to enable
decoding by simple (and arguably more efficient) methods of belief propagation and
Gallager’s bit flipping. Yet densities are high enough to prevent attacks based on the
presence of very sparse words in the dual code as seen in the Stern attack [87] and
variants, without ruining the error correction capability, as well as keeping decoding
attacks based on information set [10, 13] also unfeasible.

Moreover, to prevent structural attacks as proposed by Faugère et al. [30]
and Leander and Gauthier [36], oriented encryption codes should be maintained
as much as possible without structure except for the secret trapdoor that allows
private decryption, and in the case of quasi-cyclic codes, external symmetries
allow an efficient implementation. Finally, the circulant symmetry can introduce
security weaknesses as pointed out by Sendrier [83], but with respect to attacking
performance, it induces only a polynomial gain (specifically linear), and a small
adjustment in the parameters completely eliminates this problem. Typical densities
in this case are in the range from 0.4 to 0.9 % of the code size, an order of
magnitude above LDPC codes, but much better than previously mentioned MDPC,
and certainly appropriate for Gallager codes. The construction is also as random as
possible, maintaining only the desired density and circulant geometry. Furthermore,
the code size is much higher than typical values for MDPC.

4.6 Method for Gallager’s Hard Decision Decoding
(Bit Flipping)

In this section we describe Gallager’s hard decision decoding algorithm, or more
simply bit flipping, following the concise and clear description of Huffman and
Pless [46]. This algorithm is necessary to recover the original message from the
encrypted codeword with errors.

We assume that the codeword is encrypted with a binary LDPC code C for
transmission and the vector c is received. To calculate the syndrome s D cHT, each
bit received from c affects at most dv components of this syndrome. If only the j th
bit of c contains an error, then the corresponding dv with component si of s is equal
to 1, indicating the parity check equations that are not satisfied. Even if you have a
few other bits with error among those who contributed to the calculation of si , it is
expected that several of dv components of s are equal to 1. This is the basis of the
decoding algorithm of Gallager, both hard decision decoding and bit flipping:

1. Compute cHT and determine the unsatisfied parity checks (namely, the parity
checks where the components of cHT equal 1).
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2. For each of the n bits, compute the number of unsatisfied parity checks involving
that bit.

3. Flip the bits of c that are involved in a number of unsatisfied parity check
equations overcoming some threshold.

4. Repeat steps 1, 2, and 3 until either cHT D 0, in which case c has been
successfully decoded, or until a certain bound in the number of iterations is
reached, in which case decoding of the received vector has failed.

The bit-flipping algorithm is not the best method for decoding LDPC codes; in
fact, the belief propagation technique [32, 46] is known for its ability to exceed
correction errors. However, belief propagation decoders involve a computation with
a probability increasingly refined for each bit of the received word c containing an
error, incurring floating-point arithmetic and high-precision approaches that suit the
process and computationally expensive algorithms. In a scenario where the number
of errors is fixed and known in advance, as is the case for cryptographic applications,
parameters can be adjusted so that complex and expensive decoding methods, such
as belief propagation, are no longer needed.

4.7 Digital Signatures with Error Correcting Codes

After unsuccessful attempts to create a digital signature scheme based on error-
correcting codes [2, 88], in 2001, Courtois, Finiasz, and Sendrier proposed a
promising scheme [26].

4.7.1 CFS

The CFS has been proposed as a System of Digital Signatures based on McEliece
Cryptographic System. By definition, a system of digital signature must provide a
way to sign any document in such a way that uniquely identifies its author, and
which has an efficient public signature verification algorithm. For these tasks, a
linear code must be chosen, illustrated below as C . So, CFS uses a public hash
function h to compress the document m by computing the vector h.m/. Decoding
this hash with the chosen error correction code algorithm, we obtain a vector c0,
corresponding to the signature of the message m. For signature verification, simply
encrypt c0, received with the message m, and verify that if it corresponds to the
calculation of the hash of the message m, as follows:

• Make Key Pair:

1. Choose a Goppa code G.L; g.X//;
2. Compute a corresponding .n� k/ � n parity check matrixH ;
3. Compute V D SHP , where S is a random binary invertible matrix .n� k/�
.n � k/ and P is a random permutation matrix n � n.

The private key is G, and the public key is .V; t/.
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• Signature:

1. Find the short i 2 N such that, for c D h.m; i/ and c0 D S�1c, c0 is a
decodable syndrome of G.

2. Using the decoding algorithm of G, compute the error vector e0, whose
syndrome is c0, i.e., c0 D H.e0/t .

3. Compute et D P�1.e0/t .
Therefore, the signature is the pair .e; i/.

• Signature Verification:

1. Compute c D Vet .
2. Accept iff c D h.m; i/.
Although CFS is a still safe signature scheme after going through many

cryptanalysis, it is not suitable for standard applications commonly used today, since
besides the size of public keys to sign the cost is too large for a set of reliable
parameters.

5 Lattice-Based Schemes

From the mathematical point of view, historically lattices have been studied since
the 18th century by mathematicians such as Lagrange and Gauss. However, the
interest in cryptography starts more recently with Ajtai’s work, that proves the
existence of one-way functions based on the hardness of the shortest vector problem
(SVP). The versatility and flexibility of lattice based cryptography, in terms of
possible cryptographic features and simplicity of the basic operations, make it one
of the most promising lines of research in cryptography. Moreover, some lattice
schemes are supported by security demonstrations that rely on the worst-case
hardness of certain problems.

Lattice-based cryptography can be divided in two categories: (i) those with a
security proof, as, for example, is the case of Ajtai’s construction or cryptosystems
based on the LWE problem, whose encryption and decryption are quadratic or even
cubic algorithms involving the manipulation of a matrix A, associated with the
public key, which is not efficient when compared to conventional cryptography; and
(ii) those without a security proof, but with efficient implementations, for example,
the NTRU cryptosystem. A recent result [86] reduces the security of NTRU-based
cryptosystems to the worst-case problem over ideal lattices. Although hard problems
over lattices may not be hard over ideal lattices, no polynomial algorithm is known
to solve them, even when considering a polynomial approximation factor or the
utilization of quantum computation.
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5.1 Basic Definitions

Definition 14 Let R
m be a m-Dimensional Euclidean Vector Space, and B D

fb1; : : : ; bng be a set of n linearly independent vectors, the lattice L in R
m is

the additive subgroup, that consists of all linear combinations of B with integer
coefficients, in other words:

L .b1; : : : ; bn/ D
(

nX

iD1
xibi W xi 2 Z

)

;

where the vectors b1; : : : ; bn are the called basis vector of L and the set B is called
lattice basis.

Alternatively, it is possible to define lattices using matrix notation. LetB 2 R
m�n

be a matrix, the lattice generated by B is defined as L D fBx j x 2 Z
ng, such

that the determinant det .B/ is independent from the basis choice and corresponds
geometrically to the inverse of the lattice point density in Z

m.

Definition 15 Given the lattice L .B/, the basis vectors can be seen as edges of
a dimension n parallelepiped. Thus, we define P.B/ D fBx j x 2 Œ0; 1/ng,
denominated the fundamental parallelepiped of B . We can also define a symmetric
fundamental parallelepiped as P1=2.B/ D fBx j x 2 Œ�1=2; 1=2/ng, the
centralized fundamental parallelepiped of B . Figures 14 and 15 show examples
of fundamental parallelepipeds on dimension 2.

Theorem 1 Let L be a lattice and let P.B/ be the fundamental parallelepiped of
L . Then, given an element w 2 L , we can write w as w D v C t , with v 2 L
and t 2 P.B/, such that t is uniquely determined. This operation is equivalent to
a modular reduction, where the vector t is interpreted as w .mod P.B// (Fig. 16).

The volume of the fundamental parallelepiped is related with the determinant of
B , and given by Vol.P.B// D j det.B/j. Given two basis B D fb1; : : : ; bng and
B 0 D fb01; : : : ; b0ng for lattice L , we have that det.B/ D ˙ det.B 0/.

Fig. 14 P.B/

v1

v2
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Fig. 15 P1=2.B/

v1

v2

Fig. 16 Reduction modulo
P.B/

v

w
t

The most important computational problem in lattices is the shortest vector
problem (SVP), it is defined as follows: given the lattice L .B/, one has to find a
nonzero vector with minimum norm. In practice, it is used an approximation factor
�.n/ such that we look for a vector whose norm is less than the minimum multiplied
by �.n/.

The following problems are also important for cryptographic purposes:

• closest vector problem (CVP). Given lattice L .B/ and a vector t 2 R
m, the goal

is to find the vector v 2 L .B/ closest to t ;
• shortest independent vector problem (SIVP). Given basis B 2 Z

m�n, we must
find n linearly independent lattice vectors .v1; : : : ; vn/, such that maximum norm
among these vectors is minimum.

Definition 16 Given lattice L and basis B D .v1; : : : vn/, the Hadamard ratio,
denoted by H .B/, is defined as follows:

H .B/ D
 
j detL j

Q
1�i�n jjvi jj

!1=n
:
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It is easy to show that, for any basis B , we have that 0 � H .B/ � 1.
Furthermore, the closer this ratio is to 1, the “more orthogonal” is the basis.

A particularly important class in lattices is that of q-ary lattices class, denoted
by �q . Given an integer q, the vector coordinates are restricted to be elements in
Zq . Given the matrix A 2 Z

n�m
q , the q-ary lattice is determined by the rows of A,

instead of the columns. That is, it is formed by vectors y D AT s .mod q/, for
s 2 Z

n. The orthogonal q-ary lattice, �?q , corresponding to matrix A, is given by
vectors y such that Ay D 0 .mod q/. Given the lattice L , the dual lattice, L �,
is formed by vectors y, such that hx; yi 2 Z, for x 2 L . In particular, the q-ary
orthogonal lattice, �?q .A/, is the same as q�q.A/

�.

5.1.1 LLL Algorithm

The LLL Algorithm is important in lattice because the practical security analysis
in general are based this algorithm. In fact, the LLL can be used to tackle the
SVP and related problems, as we will see later. In this section we will describe the
LLL algorithm. Given a lattice and a basis for it, LLL computes a new basis, with
Hadamard ratio closer to 1. In other words, the LLL algorithm performs a basis
reduction, because the computed basis has lower norm and greater orthogonality
than the original one.

In a vector space with a basis .v1; � � � ; vn/, an orthonormal basis can easily be
obtained by using the Gram-Schmidt algorithm. In lattices we can apply a similar
approach using Gauss reduction. The idea used in Gauss reduction is the same as
in Gram-Schmidt algorithm, where we have �ij D viv�j =jjv�j jj2, but the values �ij

are not necessarily integers. Thus, Gauss reduction considers the closest integers
b�ije. The algorithm ends when this closest integers are zero, a condition that only
in dimension 2 is sufficient to prove that the shortest vector was found.

Definition 17 Let B D .v1; : : : ; vn/ be a basis for lattice L and let B� D
.v�1 ; : : : ; v�n/ be the Gram-Schmidt orthogonal basis. The basis B is called LLL-
reduced if the following conditions are satisfied:

Algorithm 5.1 Gauss reduction
Require: A basis .v1; v2/.
Ensure: Returns a basis with shortest vector (v�

1 ) and with a vector v�

2 that cannot be reduced by
subtracting v1.
Let v�

1 D v1 and v�

2 D v2.
while true do

if jjv�

2 jj < jjv�

1 jj then
Swap v�

1 and v�

2 .
end if
Compute m D bv�

1 :v
�

2 =jjv�

1 jj2e.
if m D 0 then return .v�

1 ; v
�

2 /.
end if
Swap v�

2 and v�

2 �mv�

1 .
end while
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Algorithm 5.2 LLL
Require: A basis .v1; : : : ; vn/.
Ensure: Returns a basis with the shortest vector (v�

1 ) and a vector v�

2 that cannot be reduced by
subtracting v1.
k D 2.
v�

1 D v1.
while k � n do

for j D 1 till j D k � 1 do
vk D vk � b�k;j ev�

j .
end for
if jjv�

k jj2 � . 34 � �2k;k�1/jjv�

k�1jj then
k D k C 1.

else
Swap vk�1 and vk .

end if
end while

return .v1; : : : ; vn/.

Norm condition: j�i;j j D vi :v
�

j

jjv�

j jj2 �
1
2

for all 1 � j < i � n.

Lovász condition: jjv�i jj2 � . 34 � �2i;i�1/jjv�i�1jj2 for all 1 < i � n.

Theorem 2 Let B be an LLL-reduced basis for lattice L ; then, B solves the SVP
problem with approximation factor 2.n�1/=2.

It is important to justify the choice of value 3=4. If this value were replaced by 1,
we would have a Gauss reduction. However, there is no proof that the algorithm
would end in polynomial time. In fact, any value strictly less than 1 would be
enough. Thus, cryptosystems based on SVP and CVP must have their parameters
well chosen in order to avoid attacks based on the LLL algorithm.

In general, given a basis .v1; : : : ; vn/, it is possible to obtain a new basis satisfying
the norm condition, just by subtracting multiples of v1; : : : ; vk�1 from vk , in order
to reduce the absolute value of vk . If the norm condition is satisfied, we verify if
Lovász condition is also satisfied; if not, the vectors are reordered and the procedure
is repeated, executing the norm reduction again.

5.2 Lattice Based Hash

The first lattice-based cryptosystem was proposed by Ajtai [1]. This work is very
important because it presented a worst-case reduction, in the sense that an attack
to the cryptosystem leads to solutions of hard instances of problems on lattices. In
particular, inverting the hash function has, in average, the same complexity as the
SVP problem on dual lattices in the worst case.

Specifically, given integers n;m; d; q, we build a cryptographic hash family, fA W
f0; : : : ; d � 1gm ! Z

n
q , indexed by matrix A 2 Z

n�m
q . Given a vector y, we have
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Algorithm 5.3 Ajtai’s hash
Require: Integers n;m; q; d � 1. A matrix A chosen uniformly in Z

n�m
q . A vector y 2

f0; : : : ; d � 1gm.
Ensure: A vector f .y/ 2 Z

n
q .

return f .y/ D A:y .mod q/.

that fA.y/ D Ay .mod q/. Algorithm 5.3 describes these operations. A possible
parameter choice is d D 2; q D n2;m  2n log q= logd , such that we obtain a
compression factor of 2.

The scheme’s security follows from the fact that if one is able to find a collision
fA.y/ D fA.y0/, then it is possible to compute a short vector, y � y0 in L �q .A/.

This proposal is really simple and can be efficiently implemented; however
in practice, hash functions are designed in an ad-hoc way, without theoretical
guarantees provided by a security proof, so that they are faster than Ajtai’s
construction. Moreover, if an attacker has access to sufficiently many hash values,
then it is possible to recover the fundamental domain of L �q .A/, allowing an
attacker to compute collisions easily.

In 2011, Stehle and Steinfeld [86] proposed a collision-resistant hash function
family with better algorithms, whose construction will be important to digital
signature schemes, as we are going show in Sect. 5.4.

5.3 Lattice-Based Encryption

5.3.1 GGH

The GGH cryptosystem [42] allows us to easily understand the use of lattices in
public key cryptography. This cryptosystem uses the orthonormality of the basis in
the key pair definition. The private key is defined as a basis Bpriv, formed by almost
orthonormal vectors, namely, vectors with Hadamard ratio close to 1.

In general, the cryptosystem works as follows:

• The encryption algorithm adds noise r 2 R
n to the plaintext m 2 L , obtaining

the ciphertext c D mC r ;
• The decryption algorithm must be able to remove the inserted noise. Alterna-

tively, it is necessary to solve an instance of the CVP problem.

Figure 17 shows a two-dimensional lattice, with basis given by vectors v1 and v2,
almost orthogonal. Figure 18 shows a different basis to the same lattice, composed
by vectors whose Hadamard ratio is close to zero.

In lattices with high dimension, if basis orthonormality is closer to zero, then
the CVP problem becomes harder. Thus, we can define the public key as a basis
Bpub, such that H .Bpub/ is close to zero. Furthermore, if we know the private key
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Fig. 17 Good basis

v1

v2

Fig. 18 Bad basis

v1

v2

Bpriv, then it is possible to use Babai’s algorithm [3], defined below, to recover the
plaintext.

The general idea of Babai’s algorithm is to represent the vector c using private
basis Bpriv, solving the linear system in n equations. As c 2 R

n�n, to obtain a lattice
point L , each coefficient ti 2 R

n must be approximated to the nearest integer ai ,
where this operation is denoted by ai  btie. This procedure is simple and works
very well, since the basisBpriv is sufficiently orthonormal, reducing rounding errors.

One way to attack the cryptosystem is trying to reduce the basis Bpub, in order to
obtain shorter vectors, with Hadamard ratio close to 1. In dimension two the problem
can be easily solved using Gauss reduction (algorithm 5.1). For higher dimensions
the problem is considered hard, although in 1982 there was a great advance, with
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Algorithm 5.4 Babai’s algorithm
Require: Dimension n lattice L ; a vector cBpub D .c1; : : : ; cn/, where ci 2 R; and a basis Bpriv D
.s1; : : : ; sn/, sufficiently orthonormal.

Ensure: The vector m 2 L that solves the CVP problem with respect to c and L .
Solve the linear system c D t1s1 C : : :C tnsn, on variables ti , for 1 � i � n.
for i D 0 till i D n do

ai  btie
end for

return m a1s1 C : : : ansn

the invention of LLL algorithm [50]. Thus, the cryptosystem parameters must be
designed to resist LLL basis reduction.

5.3.2 NTRU

The NTRU cryptosystem [45] is originally constructed over polynomial rings but
can also be defined over lattices, because the underlying problem can be interpreted
as being SVP and CVP. Hence, the solution of these problems would mean an attack
to the cryptosystem if parameters are not carefully chosen.

The cryptosystem uses the following polynomial rings: R D ZŒx�=.xN � 1/,
Rp D .Z=pZ/Œx�=.xN � 1/ and Rq D .Z=qZ/Œx�=.xN � 1/, where N;p; q are
positive integers.

Definition 18 Given positive integers d1 and d2, we define T .d1; d2/ as the class
of polynomials that have d1 coefficients equal to 1, d2 coefficients equal to �1
and the remaining coefficients equal to zero. These polynomials are called ternary
polynomials.

The parameters are given by .N; p; q; d/, where N and p are prime numbers,
.p; q/ D .N; q/ D 1 and q > .6d C 1/p. The private key corresponds to the
polynomials f .x/ 2 T .d C 1; d/ and g.x/ 2 T .d; d/. Public key is given by
polynomial h.x/ � Fq.x/:g.x/, where Fq.x/ is the multiplicative inverse of f .x/
in Rq .

Given message m.x/ 2 R, with coefficients in the interval Œ�p=2; p=2�, r.x/ is
randomly chosen and the ciphertext is computed by e.x/ � ph.x/:r.x/ C m.x/
.mod q/.

To decrypt, we first compute the function a.x/ � f .x/:e.x/ .mod q/, such that
its coefficients are in the interval Œ�q=2; q=2�. The message m.x/ is obtained by
computingm.x/ � Fp.x/:a.x/ .mod p/:

• KeyGen. Choose f 2 T .d C 1; d/ such that f has inverse in Rq and
Rp . Choose also g 2 T .d; d/. Compute Fq as the inverse of f in Rq and,
analogously, Fp is the inverse of f in Rp . The public key is given by h D Fq:g.

• Encrypt. Given plaintext m 2 Rp , choose randomly r 2 T .d; d/ and compute
e � pr:hCm .mod q/, where h is a public key.
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• Decrypt. Compute a D bf:eeq � bpg:r C f:meq . Finally, the message can be
obtained computingm � Fp:a .mod p/.

5.3.3 LWE (Learning with Errors)-Based Encryption

In this section, we are going to present a cryptosystem based on the LWE problem,
that is, an efficient proposal with security proof based on worst-case problems over
lattices [80]. This proof was a quantum reduction; in other words, it shows that a
cryptosystem vulnerability implies the existence of a quantum algorithm to solve
hard problems over lattices. In 2009, Peikert gave a classical reduction for the
security proof [73].

Definition 19 The LWE problem consists in finding the vector s 2 Z
n
q , given the

equations hs; ai i C ei D bi .mod q/, for 1 � i � n. The values ei are small errors
that were inserted according to the distribution D , generally taken as a Gaussian
distribution.

In 2010, Lyubaskevsky, Peikert, and Regev used polynomial rings to define the
scheme RLWE [52]. Let f .x/ D xd C 1, where d is a power of 2. Given the
integer q and an element s 2 Rq D ZqŒx�=f .x/, the ring-LWE problem over Rq ,
with respect to the distribution D , is defined as that of finding s satisfying equations
s:ai C ei D bi .mod Rq/, for 1 � i � n, such that ai and bi are elements of Rq ,
and modular reduction on Rq is the same as reducing by the polynomial modulo
f .x/ and its coefficients modulo q. The LWE based cryptosystem problem can be
constructed as follows:

• KeyGen. Choose randomly a 2 Rq and generate s and e in R using distribution
D . The private key is given by s, while the public key is given by .a; b D a:sCe/.

• Encrypt. To encrypt d bits, it is possible to interpret these bits as R polynomial
coefficients. The encryption algorithm then chooses r; e1; e2 2 R, using the same
distribution D and computes .u; v/ in the following way:

u D a:r C e1 .mod q/,

v D b:r C e2 C bq=2c:z .mod q/:

• Decrypt. To decrypt, the algorithm computes

v � u:s D .r:e � s:e1 C e2/C bq=2c:z .mod q/:

According to the parameters choice, we have that .r:e� s:e1C e2/ has maximum
size q=4, such that each plaintext bit can be computed verifying each coefficient
from the obtained result. If the coefficient is closer to 0 than to q=2, then the
corresponding bit is 0; otherwise it is 1.

Some concepts in this section, for example, the cyclotomic polynomial ring
and the Gaussian distribution D , were recently incorporated to the NTRU scheme,
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allowing us to construct a semantically secure scheme efficient for lattice-based
encryption [86], whose public and private keys and encryption and decryption
algorithms have complexity QO.�/, such that � is the security parameter.

5.3.4 Homomorphic Encryption

In 2009, Gentry proposed the construction of a fully homomorphic encryption
scheme [37], solving a problem open since 1978, when Rivest, Adleman, and
Dertouzos conjectured the existence of privacy homomorphisms [62], such that
the encryption function is also an algebraic homomorphism. In other words,
it is possible to add and multiply encrypted texts, so that when decrypted we
obtain the corresponding result with respect to the same operation, executed using
corresponding plaintexts.

If the plaintext space is given by f 0; 1 g, then bit addition is equivalent to
logic exclusive disjunction, while multiplication is equivalent to logic conjunction.
Hence, it is possible to compute any Boolean circuit over encrypted data, which
implies that we can evaluate any algorithm homomorphically with encrypted
arguments, obtaining an encrypted output.

Using homomorphic encryption it is possible to delegate algorithm computation
to a server, maintaining input confidentiality. This is interesting for cloud comput-
ing, because it allows the construction of applications such as encrypted databases,
encrypted disks, encrypted search engines, etc.

The computational complexity of performing homomorphic encryption is, nev-
ertheless, still a hindrance for its practical utilization. Recently, Brakerski proposed
the use of the LWE problem to construct fully homomorphic encryption [19],
reducing the algorithms’ complexities and achieving polylogarithmic complexity
per operation. Brakerski used a new way to manage noise growth, which allowed
us to execute a greater number of multiplications. In particular, he proposed
a modulo reduction algorithm, which implicitly reduced the noise growth rate.
An algorithm called dimension reduction allows us to replace the bootstrapping
procedure by a new method (similar in many aspects), which leads to better
parameters. Nevertheless, even considering recent optimizations, homomorphic
encryption remains not practical.

5.4 Digital Signatures

GGH and NTRU cryptosystems can be converted into digital signature
schemes [12]. However, such proposals do not have a security proof and, in fact,
there are attacks that allow us to recover the private key given a sufficiently large
number of signatures [63].

In 2007, Gentry, Peikert, and Vaikuntanathan [39] created a new kind of
trapdoor function f with an extra property: an efficient algorithm that, using the
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trapdoor, samples elements from the preimage of f . A composition of Gaussians
is used to obtain a point close to a lattice vector. This distribution has standard
deviation greater than the basis vector within maximum norm, such that reduction
by fundamental parallelepiped has indistinguishable distribution from uniform.
Furthermore, this construction does not reveal the lattice geometry, because the
normal distribution is spherical. Given messagem and a hash functionH that maps
plaintexts to the preimage of f , we compute the point y D H.m/. The signature
is given by ı D f �1.y/. To verify the signature, we compute f .ı/ D H.m/.
This kind of construction was proposed by Bellare and Rogaway [7], using trapdoor
permutations and modeling H as a random oracle. Therefore, a digital signature
scheme is obtained, with existential unforgeability under adaptive chosen plaintext
attack. We can use a Gaussian to generate the noise e, such that f .e/ D y and
y D vC e, for a point v chosen uniformly in the lattice. Thus, the construction has
a security proof based on lattices worst-case problems.

This construction can be viewed with respect to two functions: fA.x/ D Ax

.mod q/, Ajtai’s construction, and gA.s; e/ D AT s C e, LWE problem, such that
the first function is surjective and the second is injective. In 2012, Micciancio and
Peikert [58] showed a simple, secure, and efficient way to invert gA and sample
from the preimage of fA, allowing the construction of an efficient digital signature
scheme. In this proposal, the Gaussian composition allowed parallelism (in later
work [39], and subsequent proposals [86], it was inherently sequential), leading
to a concrete improvement. The optimizations described above can be used in
applications based on function gA or sampling from preimage of fA; hence, it is
not only important for digital signatures, but also to secure encryption construction
in the adaptive chosen ciphertext attack.

5.5 Other Applications

Lattice-based cryptography is interesting not only because it resists to quantum
attacks but also because it is a flexible alternative to the construction of cryptosys-
tems. In particular, the ring-LWE problem has become more and more important, as
it allows us to construct stronger trapdoor functions, with better parameters for both
security and performance [58].

Gentry [38] analyzed how flexible a cryptosystem can be, considering not
just fully homomorphic encryption, but also with respect to access control. Thus,
lattice-based cryptography seems to be, according to Gentry, a feasible alternative
to explore the limits of possible applications with cryptography. Among other
applications, we emphasize the following:

• multilinear maps. Bilinear pairings can be used in different contexts, as, for
example, in identity-based encryption. The generalization of this concept, called
multilinear maps, is very useful and, although no proposal appeared for a while,
many applications were suggested. Using the noise concept, also present in
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homomorphic encryption, Garg, Gentry, and Halevi achieved the construction
of multilinear maps [34];

• identity-based encryption. For some time, identity-based encryption was only
achievable by using bilinear pairings. Using lattices, many proposals were
put forward [17, 39], built upon the dual scheme E , composed by algorithms
fDualKeyGen;DualEnc;DualDecg, as pointed out in Sect. 5.3.3. Specifically,
DualKeyGen computes the private key as the error e, chosen using the Gaussian
distribution, while the public key is given by u D fA.e/. To encrypt a bit b,
the algorithm DualEnc randomly chooses s, chooses x and e0 according to the
Gaussian, and computes c1 D gA.s; x/ e c2 D uT sCe0Cb:bq=2c. The ciphertext
is hc1; c2i. Finally, DualDec computes b D c2 � eT c1. Then, given the hash
function H , modeled as a random oracle mapping identities to public keys of
the dual cryptosystem, the identity-based encryption scheme was constructed as
follows:

– Setup. Choose the public key A 2 Z
n�m
q and the master key as the trapdoor

s, according to the description in Sect. 5.4;
– Extraction. Given the identity id, we compute u D H.id/ and the decryption

key e D f �1.u/, using the trapdoor preimage sampling algorithm with
trapdoor s;

– Encrypt. Given bit b, return hc1; c2i D DualEnc.u; b/;
– Decrypt. Return DualDec.e; hc1; c2i/.

• functional encryption. Functional encryption is a new primitive in cryptogra-
phy, that opens new horizons [51]. In this system, a public function f .x; y/
determines what the user that knows the key y can infer from a ciphertext,
denoted by cx , according to parameter x. Within this model, the one who encrypts
a message m can previously choose what kind of information is obtained after
decryption. Moreover, a trusted party is responsible for key sy generation, which
can be used to decrypt cx , returned as output for f .x; y/, without necessarily
revealing information about m. With this approach it is possible to define an
identity-based encryption scheme as a functional encryption special case, such
that x D .m; id/ and f .x; y/ D m if and only if y D id. A recent result [35]
proposes the construction of a functional encryption scheme based on lattices,
being able to deal with any polynomial-size Boolean circuit;

• attribute-based encryption. This is a functional encryption special case, such
that x D .m; �/ and f .x; y/ D m if and only if �.y/ D 1. Namely, the
decryption works since y, the decryptor’s attribute, satisfies the predicate �, such
that the encryptor can determine a access control policy (predicate �) for the
cryptosystem. There are proposals to achieve this kind of operations based on
the LWE problem [82], and the multilinear map construction mentioned above
has been used by Sahai and Waters [40] to propose an attributed-based scheme
for any Boolean circuit, showing one more time the versatility of lattice-based
cryptography;

• obfuscation. There is a negative result proving that obfuscation is impossible in
a certain security model. However, it was recently proposed the construction of
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indistinguishability obfuscation which, in a different security model, is proved
to be the best possible approach. The LWE problem was used to construct this
kind of primitive [35], being part of a functional encryption construction. Such
schemes, therefore, although versatile, are relevant mostly for their theoretical
importance rather than for their practical applications.

Concluding Remarks
As we have seen, not all is lost for the deployment of efficient and flexible
cryptosystems in a scenario where large quantum computers are a techno-
logical reality. Many proposals have already attained a fairly good level of
maturity, and one can even discern some patterns in schemes based on differ-
ent underlying security assumptions, in the sense of there existing strikingly
similar schemes based on codes, lattices, MQ systems and sometimes even
hash functions. Determining how far the analogies can go (and why) is an
interesting line for future investigation.

At the same time, practical considerations are ever more often being
addressed in the literature, as they are as important as theoretical ones in a
truly post-quantum scenario where conventional systems would have to be
replaced.

The fact that post-quantum schemes can also provide functionalities not
available elsewhere has already been, and is likely to continue to be, a strong
additional motivation for further research in the area.
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