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Abstract. In this paper, we present and discuss experimental results
of a new concept of algorithm for video compression. It is named Pre-
dictive Vector Quantization (PVQ) and incorporates competitive neu-
ral network quantizer and neural network predictor. It is important for
the image compression based on this approach to correctly detect scene
changes in order to improve performance of the algorithm. We describe
the scene detection algorithm based on the image entropy and discuss
its effectiveness.

1 Introduction

Multimedia data transmission is widely spread nowadays. Most of the applica-
tions require effective data compression in order to decrese the required band-
width or storage space. Various techniques of coding of the data achieve this
goal by reducing data redundancy. In most of the algorithms and codecs a spa-
tial compensation of images as well as movement compensation in time is used.
Video compression codecs can be found in such applications as:

1. various video services over the satellite, cable, and land based transmission
channels (e.g., using H.222.0 / MPEG-2 systems);

2. by wire and wireless real-time video conference services (e.g., using H.32x or
Session Initiation Protocol (SIP) [1]);

3. Internet or local area network (LAN) video streaming [2];
4. storage formats (e.g., digital versatile disk (DVD), digital camcorders, and

personal video recorders) [3].

Currently, many image and video compression standards are used. The most
popular are JPEG and MPEG. They differ in the level of compression as well
as application. JPEG and JPEG2000 standards are used for image compression
with an adjustable compression rate. There is a whole family of international
compression standards of audiovisual data combined in the MPEG standard,
which is described in more details in literature [4]. The best known members are
MPEG-1, MPEG-2, and MPEG-4. We used a PVQ (Predictive Vector Quanti-
zation) algorithm in our work to compress a video sequence. It combines a VQ
(Vector Quantization) [5,6] and DPCM (Differential Pulse Code Modulation).
More information on the techniques can be found in sources [7,8,9]. To detect
a scene change we used method based on the entropy. Then we can change
necessary parameters of the predictor and the codebook.
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2 Video Compression Algorithm

The design of the compression algorithm described here is based on the existing
algorithm described in [7,8,9]. We chose this algorithm because thanks to neural
network it exhibits better adjustment parameters to a frame and gives better
image quality after compression. The extension includes a scene change detection
algorithm, which is based on the entropy of frames. The diagram below Fig. 1.
shows the proposed algorithm.

Fig. 1. Video compression algorithm

2.1 Neuronal Image Compression

Fig. 1 [9] shows the architecture of the PVQ. It combines the Huffman coding
with a vector extension of the scalar differential pulse code modulation scheme
[7,8]. The block diagram of the PVQ algorithm consists of the encoder and
decoder, each containing: an identical neural-predictor, a codebook, a neural
vector quantizer, the Huffman coder.

The successive input vectors V (t) are introduced to the encoder. The differ-
ence E (t) = [e1 (t) , e2 (t) , ..., eq (t)]

T given by the equation

E (t) = V (t)−V (t) (1)
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Fig. 2. The architecture of the image compression algorithm
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is formed, where: V (t) = [v1 (t) , v2 (t) , ..., vq (t)]
T is the predictor of V (t).

Statistics shows that fewer quantization bits are required by the difference E (t)
than the original subimage V (t). The next step is vector quantization of E (t)
using the set of reproduction vectors G = [g0,g1, ...,gJ ] (codebook), where
gj = [g1j , g2j , ..., gqj ]

T (codewords). For every q-dimensional difference vector
E (t), the distortion (usually the mean square error) between E (t) and every
codeword gj, j = 0, 1, ..., J − 1 is computed. The codeword gj0 (t) is selected as
the representation vector for E (t) if

dj0 = min
0≤j≤J

dj , (2)

a measure d in expression (2)we can take e.g. the Euclidean distance. Observe
that by adding the prediction vector V (t) to the quantized difference vector
gj0 (t) we get the reconstructed approximation Ṽ (t) of the original input vector
V (t), i.e.

Ṽ (t) = V (t) + gj0 (t) . (3)

The prediction vector V (t) of the input vector V (t) is made from past ob-
servation of reconstructed vector Ṽ (t− 1). In our algorithm, the predictor is
specifically designed for this purpose as a nonlinear neural network. As the last
stage, the set of the j0 (t) is coded by the Huffman coder. The codebook of the
Huffman coder is designed using a set of counters fj which count how frequently
given label j0 (t) occurs after presentation of all vectors V (t). The appropriate
codewords h0 (t) from the Huffman codebook are broadcasted via the trans-
mission channel to the decoder, where they are decoded and the reconstructed
vector Ṽ (t) is formed in the same manner as in the encoder (see formula (3)).

2.2 Scene Detection

Among many other approaches [10,11,12], the methods based on the entropy are
worth to take into account. We were used the phenomenon of the entropy to
determine the complexity of information stored in each film frames. The general
formula for the entropy on the greyscale video materials looks like:

Ej = −
N∑

i=0

pilog(pi), (4)

where Ej is a characteristic value calculated from current frame, pi is the next
pixel from this frame, and N is a number of whole pixels in current image.
Since we have been used HSV color gamut, we must calculate the value of the
entropy for each coefficient in palette. The individual components of the HSV
model aren’t equal. The hue (H) has the biggest importance in the process of
determining the coefficient. Even the slightest change of its value should lead
to detecting scene changes. A bit less importance has the color saturation (S),
which even larger changes are for us fully acceptable. The value of the color (V)
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has for us the lowest importance. Hence the final value of entropy for each frames
in the HSV color space will be calculated from the formula:

Fn(E) = a ·Ej(H) + b · Ej(S) + c · Ej(V ) (5)

Parameters of a, b and c corresponds to the weighting factors for the entropy
component of HSV. For our experiment, the values are successively set to values
0.9, 0.3 and 0.1 [13]. To detect new keyframe we compare current keyframe with
subsequent frames. The following formula describes used compare operation:

Ej,k =
|Ej − Ek|

Ek
, (6)

where j is a number of our current frame and k is a current key frame. The
first key frame is always the first image taken at start of the film. The next key
frames are being calculated based on the comparison result (see formula 6). The
threshold value for determining a keyframe was selected experimentally and is
set to be −0.2. If the entropy value is lower than the assumed threshold, the
algorithm determines a new key frame.

Fig. 3. Scene change detection algorithm

3 Experimental Result

The effectiveness of the algorithm was tested on a set of uncompressed frame
captured by a digital USB camera of a 640 × 480 resolution with 256 levels of
grey. Four tests were conducted. In the first and second test, we used the frames
within a single scene (Fig. 4). In the first test, the frames were compressed
creating separate codebook and the predictor for each frames (Fig. 5). For the
second test we used the same codebook and the predictor for all frames(Fig. 6).

A transit frames between scenes were chosen for the third and fourth tests
based on the scene change detection algorithm (Fig. 7). In this algorithm each
frame is compare with the keyframe. When the new scene is detected the algo-
rithm marks a new keyframe (Fig. 8). Thanks to the training of predictor and
codebook for the keyframe, algorithm adapts better compression parameters to
the set of frames and improves the image quality after decompression (Fig. 9).
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Fig. 4. a)original sequence b)compressed sequence test 1 c)compressed sequence test 2

Fig. 5. Difference between frames in test 1

Fig. 6. Difference between frames in test 2



64 M. Knop and P. Dobosz

Fig. 7. a)original sequence b)compressed sequence test 3 c)compressed sequence test 4

Fig. 8. Scene change detection

Fig. 9. MSE change
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In test 3 the same codebook and predictor were used before and after the
scene transit. As the results show, this approach is insufficient in case of a major
scene change (Fig. 10). For the fourth test, the scene transition was detected
and separate codebooks and predictors were created for frames before and after
the scene transition (Fig. 11).

Fig. 10. Difference between frames in test 3

Fig. 11. Difference between frames in test 4

4 Conclusions

The tests show that the scene change detection algorithm is especially useful
for the presented compression algorithm. It is apparent that without the scene
detection video sequence compressed by our algorithm would exhibit a poor
quality of frames after the scene transition. On the other hand, the amount of
data resulting from including the compression parameters for every frame would
greatly impact the output file’s size.
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