
Gaussian Mixture Model Based Non-Local Means
Technique for Mixed Noise Suppression

in Color Images

Maria Luszczkiewicz-Piatek

University of Lodz, Faculty of Mathematics and Computer Science,
Department of Applied Computer Science, Banacha 22, 90-238 Lodz, Poland

mluszczkiewicz@math.uni.lodz.pl

Abstract. In this paper a new approach to reduction of a mixture of
Gaussian and random impulse noises in color images is presented. The
proposed filtering scheme is based on the application of the Bilateral
Filter in order to address the problem of impulse noise reduction by
determining the rate of region homogeneity, for calculating the weights
needed for the Non-Local Means (NLM) averaging operation. Gaussian
Mixture Model approach is applied for determining similarity between
local image regions. The proposed solution is capable to successfully
suppress the mixed noise of various intensities, at a lower computational
cost than NLM method, due to the adaptive choice of size of search
window for similar local neighborhoods. Experimental results prove that
the introduced design yields better results than the Non-Local Means and
Anisotropic Diffusion techniques in the case of color images contaminated
by strong mixed Gaussian and impulsive noise.

1 Introduction

Over the recent years, many spectacular technological achievements have revo-
lutionized the way information is acquired and handled. Nowadays, more than
ever, there is an exponentially growing number of color images being captured,
stored and made available on the Internet and therefore the interest in color im-
age enhancement is rapidly growing. Quite often, color images are corrupted by
various types of noise introduced by malfunctioning sensors in the image forma-
tion pipeline, electronic instability of the image signal, faulty memory locations
in hardware, aging of the storage material, transmission errors and electromag-
netic interferences due to natural or man-made sources. The problem of the noise
reduction is one of the most frequently performed image processing operation,
as the enhancement of images or video streams corrupted by noise, is essential
stage in order to facilitate further image processing steps.

Let us note, that there exist large collection of efficient methods designed to
remove Gaussian noise. The significant leap was made by proposing Non-Local
Means Filter (NLM) [1]. This idea is based on the estimation the original image
using weighted mean along similar local patches. This filter is very efficient when
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applied for restoring images corrupted by Gaussian noise, but fails in the presence
of distortions introduced by impulsive noise. Similarly, the problem of impulse
noise removal was also explored by many approaches e.g. [3,4,7].

Let us consider that although methods proved to be very effective in removing
Gaussian noise generally fail when impulse noise is present. Moreover, methods
successfully dealing with impulse noise usually lose their effectiveness when ap-
plied for other noise type removal.

In recent years a few filters were proposed for removing of a mixture of Gaus-
sian and impulse noises [5,6,8], although such noises can take place quite often.
One of the approaches to this problem is ROAD statistics [2] applied for detect-
ing noisy pixels combined with Bilateral Filter [13] for Gaussian noise removal,
resulting in Trilateral Filter (TriF) and its variations e.g. [7].

This work is focused on restoration of images corrupted by mixed Gaussian
and impulse noise using the concept of the adaptive weighted averaging (i.e.
NLM approach), where assigned weights help to determine the outlying ob-
servations, decreasing their influence on the filtering result based on the region
homogeneity assessment, evaluated using Bilateral Filter approach.

The reminder of this paper is organized as follows. Section 2 introduces the
concept of region homogeneity assessment using Bilateral Filter approach. In
Section 3 the similarity between image patches using Gaussian Mixture Model
is introduced. Non-Local Means filtering scheme is introduced in Section 4. Ex-
perimental setup and results are presented and discussed in Sections 5 and 6
accordingly.

2 Region Homogeneity

The proposed solution, based on NLM approach, averages image pixels on the
basis of the similarity of their surrounding. However, if it would be the only crite-
rion for evaluating new pixel value, only the influence of the Gaussian noise will
be suppressed. Let us note, that even if the pixels, whose local neighborhood is
similar to the local neighborhood of the pixel which is currently being processed
are similar, the calculated average, can be significantly influenced if averaged
pixels are corrupted by impulse noise. Therefore, the proposed approach over-
comes this drawback by identifying those pixels which are outlying from their
local surrounding. Thus, even if their local neighbourhood is similar to that of
the processed pixel, they should be considered less important during the av-
eraging process. This is achieved by the application of the homogeneity maps
[10] based on Bilateral Filter approach. In details, each pixel is represented in
the weight map, as the associated coefficient reflecting its similarity to the color
of neighboring pixels with the relation to the spatial distance between them.
In consequence, this approach assigns significantly larger weights to pixels be-
longings to large color regions, than to small ones, often reflecting unimportant
details, artifacts or impulse noise. Thus, this approach provides information if
analyzed pixel is significantly different than its neighbours, indicating that it can
be corrupted by e.g. impulse noise or it is edge pixel.
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In details, the weights assigned to the pixel at position (x, y) are computed
according to the following scheme:

wx,y =
1

n

∑

(i,j)∈W

exp

(

−‖ cx,y − ci,j ‖
h

)k1

· exp
(

−di,j
δ

)k2

, (1)

where ci,j and cx,y denote the color pixels at positions (i, j) and (x, y) respec-
tively, h is the color difference scaling parameter, di,j is the Euclidean distance
between the pixel at position (i, j) and (x, y), which is the center of the filtering
window W and δ is a spatial normalizing parameter equal to the diameter of
the square filtering window. The number of pixels n in W was set to be equal
to 10% of the total number of pixels in the image and we assumed k1 = k2 = 2.
For the color difference evaluation the CIEDE2000 color similarity measure [11]
was used.

Fig. 1 presents the homogeneity maps, evaluated using the formula 1, for
exemplary original images corrupted with mixture of Gaussian (σ = 10) and
impulse (p = 0.1) noise. The lower values indicate that pixel neighbourhood is
non-homogenous in terms of color.

Fig. 1. The color homogeneity maps (right in each pair) for original images corrupted
with mixture of Gaussian (σ = 10) and impulse noise (p=0.1) (left in each pair)

3 Gaussian Mixture Modeling

Next step of the proposed methodology is to determine the similarity between
pixel region on the basis of their Gaussian Mixture Models (GMM). Each local
neighborhood is represented by GMM parameters. These parameters are com-
pared in order to determine the region similarity.

The very important decision concerning the color image data modeling is the
choice of the color space suitable for the retrieval experiments. In this paper the
results were evaluated using the CIE La∗b∗ color space[12].

The first step in evaluating region similarity is to construct the histogram
H(x, y) in the a−b chromaticity space defined asH(x, y) = N−1�{ai,j = x, bi,j =
y}, where H(x, y) denotes a specified bin of a two-dimensional histogram with
a component equal to x and b component equal to y, the symbol � denotes the
number of samples in a bin and N is the number of color image pixels.

The next stage of the presented technique is the modeling of the color
histogram using the Gaussian Mixture Models (GMM) and utilizing the
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Expectation-Maximization (EM) algorithm for the model parameters estima-
tion, [13].

Let us assume the following probabilistic model: p(x|Θ) =
∑M

m=1 αmpm(x|θm),
which is composed of M components and its parameters are defined as:
Θ = (α1, . . . αM , θ1, . . . , θM ), with

∑M
m=1 αm = 1. Moreover, each pm is a func-

tion of the probability density function which is parameterized by θm. Thus, the
analyzed model consists of M components with M weighting coefficients αm.
Finally after derivations shown in [13] the model parameters are defined as:

αk+1
m = N−1

∑N

i=1
p(m|xi, Θk), μk+1

m =

∑N
i=1 xi · p(m|xi, Θk)
∑N

i=1 p(m|xi, Θk)
, (2)

υk+1
m =

∑N
i=1 p(m|xi, Θk)(xi − μk+1

m )(xi − μk+1
m )T

∑N
i=1 p(m|xi, Θk)

, (3)

where μ and υ denote the mean and variance,m is the index of the model compo-
nent and k is the iteration number. The E (Expectation) and M (Maximization)
steps are performed simultaneously, according to (2) and (3) and in each iter-
ation, as the input data we use parameters obtained in the previous one, until
convergence. The number of components are initially set to 20 and decreased in
each iteration if associated weight αm is less than 0.01.

4 Non-Local Means Algorithm

Let us assume the following image formation model F (x, y) = I(x, y) + n(x, y),
where x, y represents the pixel coordinates, I is the original image, F is the
noise infested image, and n(x, y) is the additive noise component respectively.
The noise component is white, Gaussian noise distributed with zero mean and
variance σ2. The goal of the denoising is to obtain an estimate Î(x, y) from
I(x, y) using the observed image F (x, y). The NLM algorithm computes the
estimate of the original image according to the following equation: Î(x, y) =∑

k,lεI Wx,y(k,l)F (k,l)
∑

k,lεI Wk,l
. Finally, the evaluated filter output Î(x, y) is a weighted

average of the image pixels. Let us underline that the NLM approach does
not restrict the weighted average to only a local neighborhood of the processed
pixel, but pixels of the entire image can be taken into account. The weights
W are computed based on the differences of the two local regions centered at
coordinates x, y and k,l as follows:

Wx,y(k, l) = exp
−‖F (Ωx,y −Ωk,l)‖2a

ϕ2
, (4)

where Ωx,y and Ωk,l are two windows centered at x, y and k, l respectively, ‖ · ‖2a
is the Gaussian weighted Euclidean distance, a is the standard deviation of the
Gaussian kernel and ϕ is a parameter controlling the degree of filtering, chosen
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experimentally, [1]. Let us note that the number of arithmetic operations needed
is quite large. The solution proposed in this paper adaptively chooses the size of
region S of searching of similar local neighborhoods Ωx,y and Ωk,l on the basis
of the pixel nature (e.g. whether it is impulse noise corrupted or it is edge pixel).

5 Experimental Setup

In order to suppress noise using the proposed GMM -NLM technique firstly
the homogeneity map should be calculated using the scheme described in previ-
ous Section 2. Then the obtained values are analyzed. If the homogeneity map
value w(x, y) associated with the image pixel F (x, y) is low it indicates that this
pixel can be either influenced by impulse noise or is edge pixel. In both cases
low value indicates that pixel is distinctively different that its surrounding. For
noise suppression purposes it is important to differentiate between pixels which
are impulse noise infested (need to be corrected) and belongs to edge (need to
be preserved). Thus, the GMM -NLM method examines the surrounding Υx,y
of that pixel in homogeneity map in form of comparison between median value
of the surrounding and the analyzed value. In case of these two values are dis-
tinctively different the search window Sx,y in which the image patches Ωk,l are
compared to Ωx,y, is enlarged in order to find and take into account more sim-
ilar local regions. On the contrary, if analyzed image pixel belongs to the edge,
the enlargement of the search region Sx,y will not improve the denoising results,
because distant pixels, separated by the detected edge, possibly will not have
similar neighborhoods to that of the analyzed pixel. Such approach is motivated
by computation savings, i.e. less local regions to visit and compare.

The search window Sx,y (sx,y × sx,y) size is calculated on the basis of the
formula sx,y = round(ξ · r · w(x, y) + η + 3) where ξ is the smaller of the width
and length dimensions of the analyzed image, r is the scale ratio (here assumed
r = 5%), w(x, y), wε(0, 1) is the homogeneity coefficient evaluated using Eq.1,
η is coefficient related to nature of pixel local non-homegeneity (i.e. η = κ ·
[w(x, y) − Υ̃x,y], for κ = 10). Then, the comparison of the local neighborhoods
Ωk,l for the image pixels in the search region Sx,y to local neighborhood Ωx,y

is evaluated. The size of the image patch Ωx,y (øx,y×øx,y) is also related to
homogeneity maps values wx,y, such that øx,y = round(10 · wx,y + 3). Each
local neighborhood Ω is is modeled using GMM technique described in Section
6 producing vector of model parameters compared by Earth Mover’s Distance
[14]. The measured EMD distance is defined as a minimum amount of work
needed to transform one histogram into the other. As this method operates on
signatures and their weights using GMM, we assigned as signature values the
mean of each component and for the signature weight the weighting coefficient
of each Gaussian in the model. The nature of the EMD measure, accepting
slight shifts in color histogram rather than bin-by-bin comparison, is well suited
in case of distortions introduced by Gaussian noise. Having the local patches
similarities calculated, the new estimate of the pixel value Î(x, y) is evaluated
on the basis of the formula 4 with region similarities calculated using approach
introduced in this Section, where ϕ = s.
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6 Noise Suppression Results

In order to test the proposed methodology the mixture of Gaussian and impulse
noise were applied to the set of original images shown in Fig. 2. The efficiency of
this approach was evaluated in terms of the visual quality of the restored image
and also in terms of objective quality measures. Additionally, the proposed so-
lution effectiveness was compared with the denoising NLM [1] and Anisotropic
Diffusion [15] methods.

Firstly, the proposed filtering scheme was tested on the standard test images:
GIRL, LENA and PEPPERS (Fig. 2) corrupted with mixed Gaussian and im-
pulse noise (salt & pepper in each channel). The test images were contaminated
by: mixed Gaussian and impulsive noise of σ = 10 and p = 0.1, σ = 20 and
p = 0.2, σ = 30 and p = 0.3, where p denotes the contamination probability.
The restoration capabilities of the proposed solution in terms of visual quality
for mixture noise of σ = 0.1 and p = 0.1 can be seen in Fig. 3. Let us note that
significant noise suppression can be observed along with edge preserving. This
Fig. also illustrates the ineffectiveness of the Non-Local Means technique when
impulse noise is present.

(a) GIRL (b) LENA (c) PEPPERS

Fig. 2. Color test images

Fig. 4 illustrates the noise suppression capabilities of the proposed GMM −
NLM technique for mixture of Gaussian noise (σ = 20 and σ = 30) and impulse
noise of various intensity p = {0.1, 0.2, 0.3} in comparison with the original image
PEPPERS.

The noise removal capabilities of the proposed solution was tested using the
Peak Signal to Noise Ratio (PSNR) and the Mean Absolute Error (MAE).
The Peak Signal to Noise Ratio is given as PSNR = 20 · log10

(
MAX I√
MSE

)
, where

MSE (Mean Squared Error) is defined by MSE =
∑N

i=1

∑3
k=1[Ok(xi)−Jk(xi)]

2

3N ,
where k denotes k − th color channel of analyzed pixel, Ok is original image,
J denotes filtered version of original image and N is total number of image
pixels. PSNR measure is the impulse noise suppression of analyzed filtering
method. The Mean Absolute Error (MAE) is used to estimate filter ability
to preserve fine details and is calculated using the following formula: MSE =
∑N

i=1

∑3
k=1[Ok(xi)−Jk(xi)]

3N . The PSNR and MAE values calculated for mixture
of Gaussian (σ = {10, 20, 30}) and impulse noise (p = {0.1, 0.2, 0.3}) for test
images shown in Fig. 2 are summarized in Fig. 5.
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Fig. 3. The comparison between original images corrupted with mixture Gaussian
(σ = 20) and impulse noise (p=0.2) (left) and its denoised versions usin Non-Local
Means technique (middle) and proposed GMM-NLM method (right)

original image σ = 20, p = 0.1 σ = 20, p = 0.2 σ = 20, p = 0.3

original image σ = 30, p = 0.1 σ = 30, p = 0.2 σ = 30, p = 0.3

Fig. 4. The noise suppression results evaluated for mixture of Gaussian noise (σ = 20
in upper row and σ = 30 for bottom row) and impulse noise (p = {0.1, 0.2, 0.3})
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LENA
PSNR MAE

p−σ 10 20 30
0.1 25.07 24.79 23.60
0.2 24.79 24.70 23.30
0.3 24.60 24.26 22.48

10 20 30
9.03 9.44 11.43
9.56 9.95 12.34
10.01 10.82 14.00

PEPPERS
PSNR MAE

p−σ 10 20 30
0.1 24.76 23.67 21.82
0.2 24.22 23.42 21.40
0.3 23.81 22.92 20.77

10 20 30
8.32 9.67 13.06
9.15 10.57 14.45
10.14 11.85 16.37

GIRL
PSNR MAE

p−σ 10 20 30
0.1 25.31 24.33 22.46
0.2 25.89 24.10 22.15
0.3 24.44 23.57 21.36

10 20 30
8.66 9.73 12.61
9.49 10.59 14.05
10.43 11.94 16.30

Fig. 5. The PSNR and MAE values calculated for mixture of Gaussian (σ =
{10, 20, 30}) and impulse noise (p = {0.1, 0.2, 0.3}) for test images shown in Fig. 2

LENA
PSNR MAE

(p, σ) GMM NLM AD
(0.1, 10) 25.074 19.51 25.24
(0.2, 20) 24.70 20.22 24.01
(0.3, 30) 22.48 21.09 22.67

GMM NLM AD
9.03 9.22 9.16
9.95 11.76 11.42
14.08 13.93 14.43

PEPPERS
PSNR MAE

GMM NLM AD
24.76 18.54 24.33
23.42 19.48 22.52
20.717 20.84 20.83

GMM NLM AD
8.32 10.49 10.69
10.57 13.21 14.22
16.37 16.59 18.06

Fig. 6. Comparison of PSNR and MAE values evaluated for proposed solution, Non-
Local Means [1] method and Anisotropic Diffusion [15]

The effectiveness of the proposed solution was also tested in comparison with
Non-Local Means (NLM) method. In this approach the control parameters de-
pend on the noise intensity and therefore they were experimentally chosen to
provide the best possible noise suppression results. Proposed method efficiency
was also compared with Anisotropic Diffusion (AD), [15]. The comparison results
in terms of PSNR and MAE were summarized in Fig. 6.

7 Conclusions

In this paper a new noise reduction method that combines the Non-Local Means
averaging (for Gaussian noise removing) scheme with the region homogeneity
assessment (for impulse noise suppression) is introduced. Our new noise reduc-
tion method, called GMM -NLM , outperforms significantly the NLM scheme
in case of mixture noise, at a lower computational cost due to the adaptive choice
of size of search window for similar local neighborhoods and the size of each im-
age patch. Also, the noise parameters do not need to be estimated during the
image processing. Moreover, this approach can decrease the computation cost
in comparison with classical NLM approach. The proposed method was also
compared with Anisotropic Diffusion technique yielding better results.
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