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Abstract The digital video stabilization is oriented on the removal of unintentional
motions from video sequences caused by camera vibrations under external condi-
tions, motion of robots stabilized platforms in a rugged landscape, a sea, oceans, or
jitters during a non-professional hand-held shooting. The approaches for digital
video stabilization in static and dynamic scenes are similar. However, objectively
the analysis of dynamic scenes is needed in advanced intelligent methods. Several
sequential stages include the choice of the key frames, the local and global motion
estimations, the jitters compensation algorithm, the inpainting of frames boundaries,
and the blurred frames restoration, for which the novel methods and algorithms
were developed. The proposed application of fuzzy logic operators improves the
separation results between the unwanted motion and the real motion of rigid
objects. The corrective algorithm compensates the unwanted motion in frames;
thereby the scene is aligned. The quality of stabilization in test video sequences was
estimated by Peak Signal to Noise Ratio (PSNR) and Interframe Transformation
Fidelity (ITF) metrics. During experiments, the PSNR and ITF estimations were
received for six video sequences received from the static camera and eight video
sequences received from the moving camera. The ITF estimations increase up on
3–4 dB or 15–20 % relative to the original video sequences.
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9.1 Introduction

The unintentional video camera motions are usual artifacts in non-professional
hand-held shooting, surveillance tasks, or shooting by cameras, which are main-
tained on the mobile moving platforms in outdoor environment. As a result, the
processing of non-stabilized original video sequence by the well-known conven-
tional filters will not provide good segmentation, recognition, and surveillance of
moving objects in static and dynamic scenes [1]. Also such technique is wide
applied in video encoding tasks [2]. In this chapter, the novel methods of Digital
Video Stabilization (DVS) for video surveillance task are developed for the static
and dynamic scenes. The DVS algorithms as pseudo real-time and unreal-time
applications are represented, depending from criteria of accuracy/computer speed.
The novelty consists in the application of Takagi-Sugeno-Kang (TSK) model for
improvement the motion vectors clustering, the decision procedure of key frames
choice, and the reconstruction procedure of frame boundaries in static scenes and
texture tiles from neighbor frames in dynamic scenes. Some often cases of objects
surveillance are studied.

All variety of methods for videos stabilization techniques can be classified as
mechanical, optical, electronic, and digital approaches. Historically, the mechanical
stabilization based on a feedback from vibration sensors (gyros, accelerometers,
etc.) were the first applied in video cameras [3]. Various control techniques are used
for the stabilized platforms. Conventional design methods, modern synthesis tools
such as linear quadratic regulator or linear quadratic Gaussian with loop transfer
recovery, and fuzzy control systems can be used for these purposes [4]. The scope
of such devices is wide but sometimes it is required the additional video stabil-
ization, when a magnitude of vibrations has large values.

The optical image stabilization manipulates the images before their getting to the
Charge-Coupled Device (CCD). The optical devices use prisms or lens of a moving
assembly for tuning of light length way through camera lens systems. Vibrations
occur the shifting of the lens group on a plane perpendicular to the optical axis in
both horizontal and vertical directions. Two vibration-detecting sensors are used to
detect the angle and speed of movement [3]. Usually for these purposes, the
additional knowledge about physical motion of camera is required. Also the optical
stabilization is not suitable for small sizes mobile cameras. Thus, the DVS became
the most appropriative decision in modern compact video devices [5].

The electronic stabilization systems detect the camera jitters through their sen-
sors, when the light hits the CCD. This responds by a slightly moving, and the
image remains in the same position on the CCD. Such effect decreases a video
quality because the pseudo-stabilized CCD area becomes smaller. Therefore, a
digital zooming or oversized CCD is required. Electronic stabilization has the
advantage against the optical stabilization by reducing of lens complexity and price.

The DVS approach is achieved by the synthesis of new imagery based on removal
of unintentional motions between key frames and the reconstruction of frame
boundaries after frame stabilization. The complexity of this task connects with a
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separation the motion of objects from the unwanted camera jitters. In the case of static
scenes, the proposed stabilization method does not consider specialties of camera
motion trajectory. Such interpretation permits to edit static scenes faster and exactly
and allows the pseudo real-time applications. However, such approach failures under
the fast or changeable motions, which are often occurred in the dynamic scenes. In
this case, it is needed to choice the criterion – accuracy or computer speed. According
to the chosen criterion, some novel procedures are developed. In the pseudo real-time
applications, the last 25–30 frames are analyzed. In the unreal-time applications, a
whole video sequence is acquired, and then new frames are generated to compensate
the warping between two successive original frames [6]. The most of stabilization
techniques have a deal with the rigid objects. The non-rigid objects possess such
specialties, which do not permit to generalize their processing.

The DVS algorithms ought to be robust to cluttered scene background, moving
objects, and lighting change. One of such fast algorithms uses the feature-histogram
building [7]. Various 2D and 3D stabilization algorithms are presented in [8–10]. A
mosaic-based registration technique was described by Hansen in the pioneer
research [11]. This system was based on a multi-resolution iterative procedure that
estimated the affine motion parameters between levels of image Laplacian pyramid.
The optical flow of local patches was computed by using a cross-correlation scheme.

The chapter is organized as follows. In Sect. 9.2, the problem statement of DVS
for static and dynamic scenes is discussed. The description of the existing
approaches for DVS is provided by Sect. 9.3. The main novel methods and algo-
rithms suitable for static and dynamic scenes stabilization are detailed in Sects. 9.4
and 9.5, respectively. Section 9.6 presents a discussion of experimental results,
involving experiments with stationary and moving video cameras. Conclusion and
future development remarks are given in Sect. 9.7.

9.2 Problem Statement

The processing of video sequence occurs in the spatio-temporal domain. The DVS
task is not the exclusion. Let an original video sequence VSor FRð Þjz, where FR is a
frame, z is a common number of frames, be a non-stabilized video sequence. Its
transformation to the stabilized video sequence VSst FRð Þjz includes the sequential
sub-transformations. For static scenes, they are represented by Eq. 9.1, where the
operator Osf selects a current set of frames FSFRt ...FRtþn for current processing,
t ∈ {0, 1, 2, …, z − 1} is a number of frame, n is a number of selected frames, the
operator Ome estimates an unwanted motion in a scene, the operator Omc com-
pensates an unwanted motion, the operator Omi scales an area of stabilized frames.

VSor FRð Þjz �!
Osf

FSFRt ...FRtþn �!
Ome FSFRt ...FRtþn �!

Omc FSFRt ...FRtþn �!
Omi VSst FRð Þjz

ð9:1Þ
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As a result, the stabilized video sequence VSst FRð Þjz with the same number of
frames will be created. Such fractional processing of frames is actual procedure for
pseudo real-time applications. For non-real time applications in static scene, a finite
set of frames CSFR0...FRz�1 may be used.

For dynamic scenes, Eq. 9.1 is extended by the additional operator Oss, which
divides an original video sequence in the relatively static scenes with non-essential
changing for current video processing. Equation 9.2 provides the transformations
for dynamic scenes, where SSi is a set of scenes, i ∈ {0, 1,…, m − 1} is a number of
scene, m is a total amount of scenes.

VSor FRð Þjz �!
Oss SSFRt ...FRtþn �!

Osf

FSFRt ...FRtþn �!
Ome FSFRt ...FRtþn �!

Omc FSFRt ...FRtþn �!
Omi VSst FRð Þjz

ð9:2Þ

Sometimes the blurred frames or frames with strong jutties appear in a video
sequence. Their interpolation is executed by one of known methods, if the first and
the last frames of the current scene have the appropriative quality for the DVS;
otherwise the frames with high jutties are replaced by the interpolated frames. In
this case Eq. 9.2 is replaced by Eq. 9.3, where Ofi is the operator of frames inter-
polation. Each of Eqs. 9.1–9.3 corresponds to the special task of computer vision.

VSor FRð Þjz �!
Oss SSFRt ...FRtþn �!

Osf

FSFRt ...FRtþn �!
Ome FSFRt ...FRtþn �!

Ofi
VSst FRð Þjz

ð9:3Þ

9.3 Related Work

The DVS methods smooth and compensate the undesired motion of video camera
and then restore frames by algorithms of digital video processing. Usually the DVS
task is divided in three sub-tasks: a motion estimation, a motion compensation, and
a motion inpainting. The motion estimation is a crucial aspect of video stabilization.
A great variability of motion estimation methods, which were actively developed
during last years, can be classified in two main categories [12]: the comparative and
the gradient methods shown in Table 9.1. The dynamic textures are the special class
of objects, usually background, which are characterized by an alternate motion
(a motion of growth or water under a wind). In the DVS task, it is not required to
estimate such motion, only to detect and ignore. The majority objects of interest are
the rigid objects, and the main motion estimation methods are developed for their
segmentation [13]. The non-rigid objects have a gaseous or liquid structure and do
not require the exact estimations of their motion in a scene for the DVS [14]. Let us
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notice that all motion estimation methods are calculated in the spatio-temporal
domain of the original video sequences.

The efficient algorithm of statistical DVS was presented by Shakoor and
Moattari [15]. The algorithm reduces the computational cost of Block-Matching
Algorithm (BMA) by using a mean and a variance of pixels in each analyzed block
with predetermined sizes (usually 16 × 16 pixels). According to such approach, the
best block should not have a uniform area and should belong to a background
without moving objects.

The basic BMA is suitable for motion analysis of rigid objects under the
assumption that shift, rotation, and scale changing between frames are non-sig-
nificant and can be neglected. First, a previous frame is divided on non-crossed
blocks with similar sizes, which are defined by an intensity function It(x, y), where
(x, y) are coordinates, t is a discrete time instant. Second, for each block in the small
neighborhood −Sx < dx < +Sx and −Sy < dy < +Sy, the most similar block in a current
frame It+1(x + dx, y + dy) is searched, which is also divided on the non-crossed
blocks with the same sizes as a previous frame. The similarity is determined by a
minimization of the error functional e(·) according to the applied metric. Usually
three metrics are used such as Sum of Absolute Differences (SAD), Sum of Squared
Differences (SSD), and Mean of Squared Differences (MSD) (Eq. 9.4), where n is a
number of analyzed surrounding blocks.

eSAD dx; dy
� � ¼XN

x¼1

XN
y¼1

Itþ1 x; yð Þ � It xþ dx; yþ dy
� ��� ��

eSSD dx; dy
� � ¼XN

x¼1

XN
y¼1

Itþ1 x; yð Þ � It xþ dx; yþ dy
� �� �2

eMSD dx; dy
� � ¼ 1

n� n

XN
x¼1

XN
y¼1

Itþ1 x; yð Þ � It xþ dx; yþ dy
� �� �2

ð9:4Þ

Table 9.1 Classification of motion estimation methods

Groups of
objects

Comparative methods Gradient methods

Dynamic
textures

Method of spatio-temporal fractal analysis
Analysis based on autoregression
functions

Rigid objects Background subtraction*
Block-matching
algorithm*
Density motion functions*
Motion patterns

Edge points tracking
Feature points tracking
Optical flow
Kurtosis estimations

Non-rigid objects Background subtraction*
Block-matching
algorithm*

Feature points tracking
Optical flow

High speed and less accurate methods are labeled by symbol ‘*’
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To reduce the unnecessary computation, the partial distortion elimination was
introduced in SAD-metric (pSAD) by Shakoor and Moattari [15]. Therefore,
eSAD(dx, dy) is transformed in Eq. 9.5, where k = 1, 2, …, N, k is a kth partial SAD.

epSAD dx; dy
� � ¼Xk

x¼1

XN
y¼1

Itþ1 x; yð Þ � It xþ dx; yþ dy
� ��� �� ð9:5Þ

If an intermediate sum in k rows is larger than the minimum value of matching
distortion, then the following computation is unnecessary. When the best block
from four current estimated blocks is selected, a Local Motion Vector (LMV) is
calculated only for the best block by use a full search strategy. This algorithm gives
the main attention to search a stabilized macro-block in a frame, for which the
LMVs and a Global Motion Vector (GMV) are calculated.

Methods from Table 9.1 include the steps for the LMVs and the GMVs defi-
nition. The GMVs are the basic for scene correction. For the GMVs estimations, a
Speeded–Up Robust Features (SURF) tracking and a discrete Kalman filter were
proposed in the researches [16, 17]. The SURF algorithm is used to obtain the
stable feature points in the neighbor frames for global motion estimation by six
parameters in 2D affine camera model [18]. The matching of SURF descriptors was
done by the nearest neighbor distance ratio method. The Kalman filter estimated the
process state at some time and then obtained the feedback measurements. The
Kalman filter smoothed the estimated accumulated affine transformations by
removing the high frequency components. During the motion compensation stage,
the difference between the smoothed parameters and the estimated ones permitted to
reconstruct the stabilized video sequence.

To account the temporal lighting variations, the generalized optical flow con-
straint under the non-uniform lighting change was used in the research [19]. Instead
of using the traditional optical flow, the generalized optical flow constraint was
applies in a local window of frame. The authors represented their performance of
optical flow by Eq. 9.6, where It−1(x, y) and It(x, y) are intensity functions in a
previous frame (t − 1) and a current frame t, respectively, u and v are velocity vector
components along axes OX and OY, respectively, w is a constant for compensating
the non-uniform lighting change.

oIt�1 x; yð Þ
ox

uþ oIt�1 x; yð Þ
oy

vþ It�1 x; yð Þ � wþ It�1 x; yð Þ � It x; yð Þ ¼ 0 ð9:6Þ

Three parameters (u, v, w) are estimated by the iterative linear least squares
method in a local window. The main idea of such iterative process is to move the
block with the newly estimated motion vector and to compute the updated flow
constraints in a recursive manner. Let us notice that the Lucas and Kanade optical
flow computation method cannot provide the reliable motion estimation in the close
homogeneous regions. Chang et al. [19] suggested the procedure for homogeneous
regions detection by Eq. 9.7, where T is a user-defined threshold.
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X
x;y2Wi;j

oIt�1 x; yð Þ
ox

����
����þ oIt�1 x; yð Þ

oy

����
����

� �
\T ð9:7Þ

Such homogeneous regions are skipped. Thereby, the approach can be called the
sparse optical flow vectors estimation. The camera motion parameters are smoothed
temporally to reduce the motion fluctuations by using a regularization method,
which is considered the cost function for the penalty of data deviations and the cost
function corresponding to the temporal motion smoothness constraint.

One of interesting approaches for fast and accurate global motion estimation is
based on the Levenburg–Marquardt Algorithm (LMA) and several sub-sampling
patterns with their combinations [20]. The LMA is a method based on the gradient
descent for iteratively estimation of parameters of perspective model. The LMA is a
highly expensive computationally method but it was substantially accelerated by
using the sub-set selection methods based on the pixel-sub-sampling patterns. Partly
the pixel sub-sampling patterns are similar to the BMA applied to the gradient
frames.

One of the most popular approaches for motion compensation is based on the
assumption that the GMVs have a high-frequency component, and the application
of the low-pass filtering will free the original video sequence from the unwanted
motion. In this case, the application of a first-order infinite impulse response of a
low-pass filter integrates a differential motion in a scene and smoothes the global
movement trajectory. Also a smoothing algorithm based on the smoothing absolute
frame positions provides a successful stabilization performance [21, 22]. To other
decisions, it may be concerned the application of discrete Fourier transform, Kal-
man filter, fuzzy systems, and fuzzy Kalman systems [23, 24]. Some adaptive filters
with a smoothing factor and the adaptive procedures were proposed to remove the
camera jitters [25, 26].

In the research of Puglisi and Battiato [27], the fast and the accurate block–based
local motion estimator based only a translational motion together with a robust
alignment algorithm using a voting are proposed. The collected information from
the different spatial locations in a frame is applied to compute the GMVs through a
voting strategy. The GMVs are related to a similarity motion model: two transla-
tions, one zoom factor, and one rotation. An integral projection-based error function
is used in a search strategy. Instead of usual intensity function, the authors applied
the gradient of integral projections that provides a high accuracy.

The fuzzy Kalman compensation of the GMVs in the log-polar plane was
proposed by Kyriakoulis and Gasteratos [28]. Due to special features of the log-
polar plane, each GMV was calculated as the average value of the four LMVs. Then
the GMV displacements were imported in the fuzzy Kalman system. The fuzzy
system was tested with several types of the Membership Functions (MFs), the
different aggregation and the defuzzification methods.

For hand-held cameras and third-generation mobile phones, the unwanted motion
is mainly caused by two independent motions: the camera motion (ego-motion) and
the undesired hand jitter (high-frequency motion) [29]. The independent component
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analysis searches the components that are both statistically independent and non-
Gaussian. The authors assume that the estimated LMVs between the consecutive
frames are the time-varying signals xj(t) and are a linear mixture of the ICs si(t). The
relative amplitude of each independent motion vector si at the estimated LMV is
related to the selected frame region and can be defined as a weighting factor aij for
each type of motion. The mixture xj, j = 2 for two frame regions is represented by
Eq. 9.8.

x1 ¼ a11s1 þ a12s2
x2 ¼ a21s1 þ a22s2

ð9:8Þ

Some original approaches can be found in the researches, dedicating to video
stabilization by using a principal component analysis [30], an independent compo-
nent analysis [31], a probabilistic global motion estimation based on Laplacian two-
bit plane matching [32], wavelet transformations [33], a calculation of statistical
functions, mean and variance of pixels in each block of the BMA [15], etc. An
algorithm to estimate the global camera motion with Shift-Invariant Feature Trans-
form (SIFT) features was proposed by Hu et al. [34]. These SIFT features have been
proved to be affine invariant and used to remove the intentional camera motions.

Tanakian et al. [35] proposed the integrated system of the video stabilizer and
the video encoder by using the BMA for the LMVs detection, the histogram
analysis for the GMVs detection, and the low pass filtering for a Smooth Motion
Vector (SMV) obtaining as the intentional motion correction. The authors sug-
gested a low pass filtering to remove a high frequency component of intentional
motion. They approximate the SMVs by the first-order auto-regression function
(Eq. 9.9), where α is a smoothing factor, 0 ≤ α ≤ 1; n is a frame number.

SMVnj j ¼ a SMVn�1j j þ 1� að Þ GMVnj j ð9:9Þ

The authors proposed a rule to chose α value (α = 0.1 or α = 0.95) in dependence
of the GMVs and the SMVs magnitudes in the previous frames. In their following
research, a fuzzy system for tuning of smoothing factor α was suggested according
to noise and camera motion acceleration [36]. The trapezoidal and triangular the
MFs were used for adaptive filtering of horizontal and vertical motion components
between (n − 3), (n − 2), (n − 1), and n frames.

To product the full-frame stabilized video sequence with a good visibility is the
final stage of the DVS. The direct pixel based on the full-frame video stabilization
approach was proposed by Matsushita et al. [37]. This approach uses a technique of
image mosaics by accumulating neighboring frames with natural stitching of
multiple images and a motion deblurring method to reduce the motion blur caused
by the original camera motion. The propagated motion field, based on a pyramidal
version of the Lucas-Kanade optical flow computation, is used to help naturally fill
up the missing image areas even for scene regions that are non-planar and dynamic.
Also in order to sharpen the blurry frames by a novel interpolation-based deblurring
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method was developed. The crucial idea is to transfer the blurry pixels in a current
frame by the corresponding sharper pixels from neighbor frames. This method
works well in most videos except the cases with a large area cover of moving object
and impossibility of correct the GMVs detection.

The method of dual-tree complex wavelet transform for video stabilization was
developed by Pang et al. [38]. This method considers the dependence between the
phase changes of wavelet transform and shift invariant feature displacement in a
spatial domain. The smoothness of motion jitters is achieved by the optimal
Gaussian kernel filtering. This phase-based method is invariant to lighting changes,
but has a high computational cost. Usually the technologies of image warping are
used, which reduce an area of stabilized frame. The motion inpainting of frame
boundaries (the reconstruction of frame boundaries) can be successfully applied for
static scenes. However, this may be impossible in dynamic scenes, when the
reconstruction data are absent in neighbor frames.

Liu et al. [8, 39] proposed a content-preserving warping based on two objectives:
to displace all tracked feature coordinates to their regularized re-projected locations
and, at the same time, to minimize the warping distortion in the content-rich regions
with a minimum computational cost.

A novel method to stabilize video sequences based on a 3D perspective camera
model without recovering the dense depth maps was proposed in the research of
Zhang et al. [40]. By balancing the smoothness and similarity, a video stability was
optimized related to rotation, zooming, and translation components with suitable
weights. Based on a 3D perspective camera model, the depth relative motion
(camera translation) and the depth irrelative motion (camera rotation and zooming)
were separated. The corresponding SIFT features are constrained frame by frame
according to the epipolar geometry theory with application of RANdom SAmple
Consensus (RANSAC) algorithm.

The literature survey shows a great variability of existing stabilization methods.
Often the authors solve the DVS task for a static scene and prefer to use more
simple decisions in order to provide the pseudo real-time applications.

9.4 Video Stabilization in Complex Static Scenes

The DVS in static scenes is a particular case of the DVS in dynamic scenes. The
both approaches have some common procedures and a similar logic of realization
but the differences are also essential, especially on the stage of motion inpainting.
For static scenes, it is required to find vectors of unwanted motion, which are
enough uniform distributed in each original frame and have the similar magnitudes
and directions.

The motion estimation of cluttered background is the task with a high compu-
tational cost. The main goal of the current research was not only to develop the
novel algorithms for separation of motion vectors but also to design the fast
algorithms in order to make the DVS in a static scene as a pseudo real-time
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application. These issues are performed in Sect. 9.4.1. Motion compensation by the
smoothing of global motion in a static scene and camera path estimation is situated
in Sect. 9.4.2. Section 9.4.3 provides the static scene alignment with using two main
techniques: the stabilized frame scaling with the reduced stabilized frame area and
the frame borders restoration with the non-changeable frame sizes.

9.4.1 Motion Estimation in Static Scene

According to the problem statement representing in Sect. 9.2, the motion estimation
in static scenes can be provided by fast comparative methods. The small dis-
placements of objects in a scene between two sequential frames may be roughly
performed as the parallel transitions from frame to frame. Usually a motion of
objects in static scene satisfies the assumption that a motion is described by the
almost continuous function. The proposed modification of the BMA based on a
statistical model of background is concerned to fast realization of the basic BMA.
Let us consider the enhanced statistical model of a background.

The enhanced statistical model of background in a static scene is based on the
following parameters: an average of frames Imed (medium values), a mean value
μ(x, y), and a variance σ2(x, y) for K frames, which are described by the intensity
function It(x, y), where x and y are coordinates of a current pixel, t is a number of
frame at moment t. A mean value μ(x, y) and a variance σ2(x, y) for K frames are
calculated by Eqs. 9.10–9.11, where wt(x, y) are the weighting coefficients.

l x; yð Þ ¼
XK
t¼1

wt x; yð Þ � It x; yð Þ
 !, XK

t¼1

wt x; yð Þ
 !

ð9:10Þ

r2 x; yð Þ ¼ 1
K � 1

XK
t¼1

wt x; yð Þð Þ2� It x; yð Þ � l x; yð Þð Þ2
 !, XK

t¼1

wt x; yð Þ
 !2

ð9:11Þ

Let us notice, that Eq. 9.11 gives a unbiased estimator of variance σ2(x, y) for
small K value, K < 30.

The weighting coefficients are used for minimization of spikes, which are
maximally removed from the average of frames Imed (a noisy compensation) and are
normally distributed. Equation 9.12 provides the estimations for wt(x, y), where
standard deviation σex is calculated from K neighbor frames in a spatial domain.
The use of weighting coefficients wt(x, y) in the statistical model of background
permits to build a robust background model without any training video sequences.
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wt x; yð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

ex

p exp � It x; yð Þ � Imed x; yð Þð Þ2
2r2

ex

 !
ð9:12Þ

The statistical model of background (Eqs. 9.10–9.12) is recalculated periodically
because of lighting or meteorological changes. The enhanced model of background
separates the background and the foreground moving objects. If Eq. 9.13 is exe-
cuted, then this pixel is a foreground pixel, and otherwise. Value λ is equaled to 3
according to the rule of three sigma: all values of normal distributed random
variable lay in the interval ±3σ with not less reliability than 99.7 %.

l x; yð Þ � I x; yð Þj j2 � k2r2 x; yð Þ ð9:13Þ

Such statistical model is especially effective, when a set of sequential frames
without moving objects can be provided. This requirement is ordinary for the
outdoor and the indoor surveillance tasks. The worse results are received, when the
moving objects with a small area (less 5–8 % of frame area) appear in static scene.
The most problematic case connects with the moving object with a large sizes,
when only the probable regions with or without motion are determined.

The background subtraction and the BMA are the main comparative methods of
fast motion estimation. The background subtraction is the simplest motion esti-
mation technique. For each current frame, the intensity values and the color com-
ponents of each pixel are compared with the corresponding values of pixels in an
initial averaged (sampling) frame of video sequence. As a result, the binary masks
of moving foreground objects in a scene will be received. Such method is a noise-
dependent. Therefore, a median filter or the mathematical morphological operators
are applied for binary masks improvement. The filter parameters determine the
sensitivity and the reliability of background subtraction method. The simplicity and
the high computational speed are its main advantages. However, shadows, dynamic
background, lighting change, and camera inaccuracy make this approach the non-
used in practice.

More appropriate decision connects with the BMA application for a set of
sequential frames. Experiments show that 25 frames processing (near 1 s) is a good
decision that provides a delay for receiving of stabilized video sequence in 2–4 s. In
surveillance systems as the urban surveillance or computer vision in the outdoor
environment, such results are satisfied. The hardware realization by CUDA tech-
nology will reduce the processing duration in times.

The proposed procedure for motion estimation includes three steps:

• The local motion estimations by fast BMA modification.
• The accuracy improvement by using the Takagi-Sugeno-Kang model.
• The global motion estimation in a frame.

Let us consider local motion estimation by the BMA. The basic BMA has
various interpretations such as full search, pattern search, and recursive search,
among others [12]. The full search strategy provides the best results with the highest
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computational cost. There are known its modifications such as three step search,
four step search, block based gradient descent search, diamond search algorithm,
adaptive rood pattern search, etc., which were developed to reduce the computa-
tional cost with a non-essential quality loss. All these fast search algorithms are
based on the assumption that a block distortion measure increases monotonically
around the global minimum. However, the search process can be easily trapped in
one of the local minimums, a lot of which are included in any video sequence as
noises, lighting changes, or dynamic textures. To avoid such problem, the Markov
model with three states was proposed by Chen et al. [41] to provide an acceptance
probability of being able to jump out of a local minimum. Also many BMA
modifications were developed for various cases of motion estimation, for example,
a motion estimation in noisy video sequences [42], fast BMA [43], Gaussian
mixture model [44], a motion estimation by using Lie operators [45], a bilinear
deformable BMA [46], a fuzzy logic BMA [47], etc.

A motion vector MV(dx, dy), for which an error functional e according one of
metrics (Eq. 9.4) has the minimum value, is considered as a displacement vector for
the given block. It shows the displacement of the left top corner in the marked block
from a previous frame (t − 1) to a current frame t. The proposed BMA modification
uses the transparent masks for moving objects and the opaque mask for a static
background, which often involves periodical motions of textons. Usually such
motion is not interesting for estimation and ignored. In the case of static scene, all
values of background pixels can be set to a constant value, for example, −1. When a
motion is detected, the transparent mask is put on a visual object. Therefore, the
intensity function describing a moving object will be available for estimation
especially during the overlapping of visual objects. Forcibly maintained to negative
constant values, the opaque background masks permit to reduce BMA calculations
due to only the analysis in a neighbor region. The procedure of basic BMA is
reactivated periodically (with interval 1 s) as an additional search of other moving
objects, appearing in static scene. As a result, a set of the LMVs fields will be built
for the chosen frames; the LMVs field shows the motion vectors between two
neighbor frames. Such LMVs field is enough chaotic, and the following procedure
is to separate of the LVMs as “good” and as “bad” motion vectors.

The field of LMVs includes the motion vectors, which describe an unwanted
cameramotion and objects motion in a scene. For such clustering, a novel fast method
for detection of unwanted camera motion was developed based on Takagi-Sugeno-
Kang (TSK) model. A fuzzy zero-order TSK model is adopted to infer the quality
index: four different output fuzzy sets are defined to describe the quality of the
matching, named as excellent, good, medium, and bad [48]. A zero-order TSKmodel
is very simple, compact, and computationally efficient model, which permits to use
the adaptive techniques. These adaptive techniques customize the MFs in such
manner that the input data are modeled by a fuzzy system in the best way. Also a quite
complex data behavior can be interpreted by using the “IF–THEN” fuzzy rules. In our
experiments, the triangle, trapezoidal, and S-shape MFs to partitioning the LMVs
were used. A view of these MFs is represented in Fig. 9.1, parameters a and b of
S-shape membership are fitted empirically. Our recommendations are to use
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a = 0.5 and b = 1.5 for the non-noisy video sequence and a = 0.75 and b = 1.75 for the
noisy video sequence. The recommended S-shape functions are situated in Fig. 9.2.

The inputs of fuzzy logic model are two error measures: an Euclidean distance
ei between expected and the real LMVs calculated in one of SAD, SSD, or MSD
metrics (magnitude of vectors) E′ = (e1, e2, …, ei, …en) and an angle between these
LMVs ci, C′ = (c1, c2, …, ci, …cn), where i = 1…n. In this research, the similar
approach from [49] to find error deviations di

e and di
c was used. The median values

ME and MC of sets E′ = (e1, e2, …, ei, …en) and C′ = (c1, c2, …, ci, …cn), i = 1…n,
respectively, are provided by Eq. 9.14.

dei ¼ ei=ME dci ¼ ci=MC ð9:14Þ

Values of error deviations di
e and di

c from Eq. 9.14 are mapped in three different
classes of accuracy: high, medium, and low. The lower values of error deviations
are mapped to the best class, and otherwise. If the MFs are overlapped, then better
class of the input fuzzy set is chosen.

The output of fuzzy logic model indicates a final reliability of estimation for a
quality of the matching by using the TSK model. The quality index is a value in the
range [0, 1]. It shows the quality of the LMVs, which are clustered in four classes:
excellent, good, medium, and bad. The “IF–THEN” fuzzy rules defined for two
inputs (error deviations di

e and di
c) are the following:

Fig. 9.1 A view of the MFs in the TSK model: a triangle, b trapezoidal, c S-shape

Fig. 9.2 A view of S-shape MFs: a for the non-noisy video sequence, b for the noisy video
sequence
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• IF (both inputs = “high”) THEN (quality = “excellent”).
• IF ((one input = “high”) AND (other input = “medium”)) THEN

(quality = “good”).
• IF (both inputs = “medium”) THEN (quality = “medium”).
• IF (at least one input = “low”) THEN (quality = “bad”).

Each of these four classes is mapped in a set of the constant values (1.0, 0.75,
0.5, 0.25, 0.0) [48]. During our experiments, the results for noisy video sequences
were received with a set of the constant values (1.0, 0.85, 0.65, 0.4, 0.0). The TSK
models for non-noisy and noisy video sequences with the sets of constant values
(1.0, 0.75, 0.5, 0.25, 0.0) and (1.0, 0.85, 0.65, 0.4, 0.0), respectively, are show in
Fig. 9.3. The TSK model permits to discriminate the LMVs with excellent and good
quality and detect the best LMVs (with excellent and good values of indexes) in
order to improve the final result.

Our following researches permitted to speed the LMVs calculation for both types
of video sequences in the static scenes. Let us introduce the initial procedure, which
will put an invisible grid on each frame adaptively to the frame sizes with 40–60
cells. The sizes of such grid are less than the frame sizes in order to reject the
boundary areas of frame, which are more stressed to artifacts of instability. For five
first frames in a scene, the LMVs estimations and their improvements by TSK
model are calculated for all cells of this grid. For each cell, the information of
reliable LMVs is accumulated under the condition, that 4–16 reliable LMVs are
determined in a cell. According to the scene background, some of such cells are
selected for the following analysis. Therefore, the LMVs of unwanted motion are
calculated only in the selected cells, that permits to avoid the challenges of lighting
change or moving foreground objects and reduce the number of analyzing cells in
1.5–3 times. Figure 9.4 provides such adaptive and fast technique for frame number
69 from video sequence “EllenPage_Juggling.avi”. Figure 9.5 illustrates several
frames from the same video sequence with the imposed grid.

The selected cells include information only about unwanted motion that also
increases an accuracy of the GMV in a frame. Let us consider the technique of the
global motion estimation in static scene. The global motion caused by a camera
movement is estimated for each frame by using a clustering model. On the one

Fig. 9.3 The interpretation of the TSK model: a for the non-noisy video sequence, b for the noisy
video sequence
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hand, the LMVs of background are very similar in magnitudes and directions. On
the other hand, they are essentially different from the motion vectors of foreground
objects. The procedure, classifying the LMVs in two clusters – background and
foreground, has the following steps:

Step 1. The histogram H is built, which includes only valid LMVs with excellent
and good values of indexes (near 30 % from all detected LMVs).

Step 2. The LMVs are clustered by a criterion of the similar magnitudes.
Step 3. The LMV with a maximum magnitude from background motion cluster is

chosen as the GMV for a current frame.

The example of a histogram with valid LMVs is presented in Fig. 9.6.
For the GMV detection, the TSK model can be also applied. The global motion

includes two major components: a real motion (for example, a panning) and an
unwanted motion caused by camera jitters. Usually an unwanted motion corre-
sponds to a high frequency signal. Therefore, the low-frequency filtering can
remove the unwanted motion.

The model, proposed in the research of Kyriakoulis and Gasteratos [28], was
used to create a Smooth Motion Vector (SMV) calculated by Eq. (9.14). The low-
pass filter of the first order requires the low computational cost and can be used in a
real-time application.

(a) (b)

(c) (d)

Fig. 9.4 The adaptive technique for LMVs estimation in static scene, video sequence
“EllenPage_Juggling.avi”: a the initial frame 69; b all calculated LMVs; c the reliable LMVs
based on the TSK model; d the reliable LMVs in the selected cells of imposed grid
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Frame 551

Frame 553

Frame 555

Frame 557

Frame 559

Frame 561

Frame 563

Fig. 9.5 The LMVs estimation in static scene from video sequence “EllenPage_Juggling.avi”: all
calculated LMVs are in the left column; the reliable LMVs based on the TSK model are in the
middle column; the reliable LMVs in the selected cells of imposed grid are in the right column
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9.4.2 Unwanted Motion Compensation

The unwanted motion compensation in static scenes is based on a smoothing of the
GMVs. Any moving rigid object has the following states [50]:

• Appearance. The object is appearing in a scene.
• Mature. The object has been continuously tracked in some interval for approval

that it is a foreground object, not a noise.
• Temporarily unavailable. The object temporarily loses its track because of being

hidden, noised, or exited.
• Occlusion. The object is partially or totally hidden by other objects in a scene.
• Disappearance. The object may either already exit from a scene or be hidden by

background objects such as buildings or trees.
• Reappearance. The object appears again after disappearing. The surveillance is

restarted.
• Out of scene. The object has indeed moved away in a scene and its track

considered terminated.

Only “appearance”, “mature”, “occlusion”, and “reappearance” are considered in
the DVS task. For these purposes, the well-designed techniques are developed,
including shadow compensation, lighting enhancement, and others challenges
[51, 52].

The tuning procedure of a smoothing factor α, based on the analysis of previous
25 frames, was proposed. First, for k-sampling of frames, a global difference GDiffk
is calculated by Eq. 9.15, where |GMVi| is a magnitude of global motion vector in
frame I, k > 25.

GDiffk ¼
Xk

i¼k�25

GMVij j � GMVi�1j jj j ð9:15Þ

Fig. 9.6 The example of a
histogram with valid LMVs
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Second, a value of α is chosen by Eq. 9.16, where αmax = 0.95 and αmin = 0.5 are
maximum and minimum empirical values. In any case, the result from Eq. 9.16 is
rounded to αmax.

ak ¼
GDiffk
GMVmaxj j � amax

amin
if GDiffk\ GMVmaxj j

amax if GDiffk � GMVmaxj j

�
ð9:16Þ

The GMV in a frame is selected from the LMVs with maximum magnitude. It is
easy may be done from a histogram with valid LMVs (Fig. 9.6). The total amount
of LMVs with the similar magnitudes and directions are calculated. The LMV with
the maximum value is considered as the GMV in a current frame.

9.4.3 Static Scene Alignment

In most algorithms for static scene stabilization, a motion inpainting is often con-
sidered as a scene alignment task [27]. At present time, two approaches of scene
alignment are known. They are based on a frame scaling with reduction of frame
sizes and a restoration of frame borders with conservation of frame sizes. For
dynamic scenes, this is more complex task in comparison of static scenes.

For simple static scene, a scene alignment procedure can be simplified by a
forcibly replacement of background from the statistical background model dis-
cussing in Sect. 9.4.1. In this case, only motion of moving objects ought to be
compensated, and static scene alignment does not necessary. To make such
“replaced” static scene more realistic, the procedures for rendering natural dynamic
textures or other artifacts are required.

For each frame after calculation of smooth factor α, a module of smooth motion
vector SMVn is determined using Eq. 9.9. A magnitude of Undesirable Motion
Vector (UMV) UMVn is calculated by Eq. 9.17.

UMVnj j ¼ GMVnj j � SMVnj j ð9:17Þ

In the development of scene alignment method, a direction of vector SMVn is
normalized up to 8 directions with 45° step. For restoration of current frame, pixels
are shifted on a value of Accumulated Motion Vector (AMV) AMVn of unwanted
motion by using Eq. 9.18. The stabilized location in a frame is determined from
previous frames, beginning from a key frame, where m is a number of key frames in
a video sequence.

AMVn ¼
Xn
i¼m

UMVij j ð9:18Þ
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The role of key frame is to represent the homogeneous regions in a following set
of frames. The technique of key frame detection has been widely studied in [53, 54].
For static scenes, it is necessary to find the frames with the significant inter-frame
difference. It means that the important motion changing occurs in a scene. Our
recommendations connect with the limited power of such set, not more 25 frames.
Then the following key frame ought to be chosen. The using of such technique
permits to stabilize a video sequence with scaling. The sizes of such stabilized
frames become less on 10–20 % relative the original video sequence that Fig. 9.7
demonstrates. Experiments show that the application of frame scaling for dynamic
scenes may reduce the stabilized frame area up to 50–60 % that is not acceptable for
the user.

All existing video inpainting algorithms can be broadly classified in two cate-
gories: Partial Differential Equation (PDE)-based methods and Texture Synthesis
(TS)-based methods. The PDE-based image inpainting reconstructs the missing
data spatially by extending the edges and filling the hole with smoothed color
information by a diffusion process. In this case, a temporary nature of video
sequence is ignored, and each frame is considered as an individual image. Such
approach does not reproduce the texture and suffer from the blurred artifacts. This
method is effective for restoring of small scratches or spots in archival footage.

The non-parametric sampling is an important class of TS-based methods, which
uses the spatio-temporal patches extracted from the neighbor frames. The space-
time patches called epitomes are created by a probabilistic learning of large number
space-time patches taken from input video sequence [55].

The simple technique for static background frame borders restoration was applied
in this research. Any static scene can be represented as two layers – foreground and
background layers according to the affine model and as several layers – foreground
and 2–3 background layers according to the perspective model of scene. The
background layer (layers) is delivered by the statistical background model.

(a)

(b)

Fig. 9.7 The scaling resume for frames 540, 555, and 570 from video sequence “EllenPage_Jugg-
ling.avi”: a a non-stabilized video sequence, b the stabilized video sequence by changing of frame
boundaries
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The foreground layer includes moving objects tracking by Kalman filter with fol-
lowing processing by the de-blocking filter with sizes 5 × 5 pixels to smooth the
boundaries of the moving regions.

9.5 Video Stabilization Method in Dynamic Scenes

The analysis of dynamic scenes is the most complex issue in video processing. In
literature, the researches devoting to DVS in dynamic scenes are sparsely repre-
sented. Before motion estimation, compensation, and inpainting, it is required to
separate a video sequence on the relatively static scenes. The DVS task is solved for
each separated scene, and then stabilized fragments ought to be collected in a whole
stabilized video sequence. At this stage, the local smooth estimations of unwanted
camera motion can be applied to smooth transitions between scenes. A valid scene
transition does not require the additional processing. A sharp scene transition is
needed in a future algorithm development or is executed by the user.

Section 9.5.1 provides a scene separation model. The recommended methods for
motion estimation of background and moving objects are discussed in Sect. 9.5.2.
The deblurring methods for the DVS task are proposed in Sect. 9.5.3. The unwanted
motion compensation for dynamic scenes is represented in Sect. 9.5.4. At last,
Sect. 9.5.5 includes the issues of motion inpainting in dynamic scenes by frames
interpolation.

9.5.1 Scene Separation

For accurate DVS in dynamic scenes, a video sequence ought to be cut in separate
relatively static scenes. Then the DVS task is partly added up to the DVS in static
scenes discussed in Sect. 9.4, but with a dynamic background. The continuous
outdoor shooting can be concerned to the complex cases, when the explicit cut of
scenes is impossible, and the user’s help is needed. All methods and algorithms of
scenes cut can be divided in two categories. Methods from the first category use
information from a service recording of video sequence, In other words, labels of
beginning and ending of video scenes are located during a shooting by operator
manually or by a video camera automatically in compliance with turn-on and turn-
off modes of shooting [56].

Methods from the second category are based on the inner information of video
sequence, and usually include two stages. On the first stage, frames histograms,
configuration and number of feature points, color areas location, and other
parameters are estimated [57]. On the second stage, the adaptive threshold values
are determined, according to which a procedure of scenes cut is executed. The
proposed algorithm, using the configuration of feature points, is realized cyclically
from frame to frame and involves three steps:
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Step 1. The calculation of distance from each feature point to the center of frame
j by Eq. 9.19, where xFPi, yFPi are coordinates of feature point i, xcj, ycj are
coordinates of a center point of frame j.

Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xFPij � xcj
� �2þ yFPij � ycj

� �2q
ð9:19Þ

Step 2. The calculation of feature point displacement Dij by using Eq. 9.20, where
THj is a threshold for frame j for each feature point cyclically.

Dij � Dij�1
�� ��\THj ð9:20Þ

Step 3. The calculation a number of feature points, which have large shifts in
frame j by Eq. 9.21, where THav is an average threshold.

f D; THj; j
� � ¼ count THJ [ THavð Þ ð9:21Þ

If the function f(·) from Eq. 9.21 is in a local maximum in a current frame, then
the previous and the following frames are the scene boundaries in video sequence.
Such function displaces three types of dynamic scenes performance: valid transi-
tion, smooth transition, and sharp transition as Fig. 9.8 shows.

The smooth transition is the most complex case for DVS. Our recommendations
connect with the sub-dividing of such transition in several sub-scenes for better
visibility receiving.

Fig. 9.8 Examples of scenes cut depending from a number of feature points, which have large
displacement values
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9.5.2 Deblurring for Visual Objects with Complex Motion

The blur is a usual effect during a hand-held shooting. Unfortunately, the classical
DVS approach based on the smoothness of camera motion leaves the blurriness
artifacts untouched [39]. On the one hand, it is caused by camera jitters or both
camera jitters and motion of objects. Such blur ought to be compensated before
motion estimations, because the tracking of feature points or a motion field building
are not reliable in the blurred frames. On the other hand, it may be assumed that
only small amount of frames in the original video sequence are blurred frames. Such
specialties permit to restore the original video sequence by a deblurring procedure
more successful in comparison with other scopes of video restoration. The common
strategy is to find the blurred frames, create the spatio-temporal blur kernel, and
restore the blurred frames. Let us notice that a deblurring procedure can be applied
only in the unreal-time applications.

The deblurring as a fundamental problem has been extensively studied in image
processing and computer vision [58]. Its causes may be a high speed of moving
objects or a directed high speed of moving camera. The most of existing methods
are based only on the spatial blur kernel. The reasonable way of the classical
approach is based on the single frames deblurring with following generation a
temporal result. Through the non-aligned frames and a temporal coherence, even
the classical multi-frame deblurring approaches are useless [59, 60].

The proposed approach removes the blurs caused only by a hand-held shooting.
If a video sequence contains the blurring objects in a scene, then one of existing
deblurring techniques may be applied, for example, the single image deblurring
[61], the multi-image deblurring [62], the video deblurring by interpolation [37].

Let us suppose that an original video sequence is separated in scenes, and
the following discussion will be concern to a single scene, which includes non-
significant displacement describing by the simplest translation model because of
neighbor frames similarity. For detection a blurred frame, the simple procedure
of neighbor frames subtraction in each pixels with following total sum calculation
of their absolute differences is used. Preliminary, the frames ought to be trans-
formed to YUV-color space, and the brightness component Y is analyzed. A blur
frame is characterized by a higher homogeneity distribution, and experiments show
that such differences between normal and blur frames will be less than between two
non-blurred frames in a non-stabilized video sequence.

A motion blurring due to camera jitters can be modeled as a spatial-temporal
invariant convolution process described by Eq. 9.22, where f is a blurred frame, g is
a non-blurred frame, p is the blur kernel (point spread function), n is the noise, and a
sigh * means the convolution operator.

f ¼ g � pþ n ð9:22Þ

The recovery of frame g from a blurred frame f calls the image deconvolution
problem. Two cases of image deconvolution: a non-blind deconvolution and a blind
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deconvolution (the last one is actual for the DVS task), always varies in the different
frames. In the case of a blind deconvolution, both a blur kernel p and a frame g are
unknown. However, the prior assumptions of a kernel p and a frame g have to be
made. The Gaussian-type optical blurring may be accepted, and also a frame g can
be replaced by an adjacent non-blurred frame. In general, the motion blur kernel is
expressed by Eq. 9.23, where C is a continuous curve of finite length in dimension
R2 denoting a camera trajectory, v(x, y) is a speed function varying along a curve
C. However, the estimation of camera trajectory and the definition of speed function
is not a trivial task.

p ¼ v x; yð Þ Cj ð9:23Þ

In particular case, when the blurred images are caused only by camera jitters, the
simple procedure for blurred images detection is proposed. If small linear dis-
placement in two neighbor frames is known, then the total sum of pixels differences
will have less value between non-blurred and blurred frames or between two
blurred frames in comparison with two non-blurred frames. The experimental
results confirmed such assumption. Two variants of blurred frames restoration are
possible, when a number of blurred frames is 1–2 and more. In the first case, the
source for local blur kernel will be a decreased by the non-blurred frame to avoid
the problems with shifts of boundaries. In the second case, the complex procedure
of frames interpolation is required [63], which will replace the blurred frames by
2–5 interpolated frames. Let us specify the common expression for restoration of a
single blurred frame. First, the local blur kernels are applied for each pixels as
a weighed function fb(j, l) of a patch in a warping frame centered by pixel l. As a
result, the deblur function fd(i, m) will be received in a spatial slicing window Wi,
i = n × n, n = 7–11 pixels centered by pixel m. Equation 9.24 provides the local
patch deblurring, where w(i, m, j, l) is a weight, determined by Eq. 9.25 as a
Gaussian distributed value.

fd i;mð Þ ¼

P
j;lð Þ2Wi;m

w i;m; j; lð Þfb j; lð Þ
P

j;lð Þ2Wi;m

w i;m; j; lð Þ ð9:24Þ

w i;m; j; lð Þ ¼ exp � fb j; lð Þ � fd i;mð Þð Þ2
2r2

Wi;m

 !
ð9:25Þ

Second, the deblurred frame is formed by the local deblurred patches, which can
overlap each others. The more accurate approach connects with a patch-based
texture synthesis [64]. To accelerate the debluring process of overlapped patches, a
sparse regular grid may be built, which also helps to avoid an over-smooth
de-blurring effect caused by averaging of many patches.

Figure 9.7 shows the stabilization result by changing of frame boundaries in
static scene. The similar effect is watched in dynamic scene. The using of
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background model or/and a tile texture reconstruction of frame boundaries [65]
permits to leave frame sizes non-changeable. More offensive problems appear,
when a source of tile texture reconstruction is absent in the original video sequence.
In this case, the texture synthesis using data from neighbor spatial regions can be
applied to interpolate the missing pixels.

9.5.3 Motion Estimation of Background and Foreground

Usually the building of the background model without moving foreground objects
is impossible. The local motion estimation can be done by using a multi-level
motion model in affine or perspective scenes with depth. This is one of the main
issues in the dynamic scene processing. For global motion estimation, a clustering
procedure from Sect. 9.4.1 may be applied with more often re-calculations
according to current camera speed. The motion estimation in a dynamic scene is
implemented by a way including the following steps:

• The motion estimation of background.
• The motion estimation by feature tracking.
• The accurate estimation of moving objects by optical flow

The main idea of preliminary background motion estimation consists in detec-
tion such motion level (levels), which is owned to the background of dynamic scene
with a high probability value. The basic model of multi-level motion is built on the
following assumptions:

• Each pixel in a current frame is characterized by a motion vector, which con-
nects it with a pixel in following frame.

• A set of various parametric motion levels exists. Each of levels uses the own
probability model.

• A motion on each level is determined by a mixture Gaussian model.

In this model, a set of inner similar motion levels ml is determined, which
correspond to the rigid objects situated on the different distances from a moving
camera and regions rf in a frame. Let some motion structure MSi(x, y) in a point
(x, y) of ith current frame corresponds to a level motion lm with θlm parameters. It
means that in following (i + 1) frame, a motion model MSi+1(x, y) will be shifted in
a point ((x, y) + v(x, y, θml)) with an error of measurement Vxy, ml, which has value 1,
if a structure owns to mlth motion level, and otherwise. Let us assume that any
frame has a Gauss noise with standard deviation σ. Equation 9.26 provides a
plausibility function, where θ = (θ1, …, θrf).
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L V ; hð Þ ¼ �
X
xy;ml

Vxy;ml
MSi x; yð Þ �MSiþ1 xþ vx x; y; hmlð Þ; yþ vy x; y; hmlð Þ� �� �2

2r2 þ C

ð9:26Þ

The probabilities of motion values can be represented as the clustering maps of
local motion estimations in each level and are provided by Eq. 9.27, where Vxy,ml

denotes a motion level. Each intensity level determines a motion level, and each
motion level connects with own motion model of affine type usually.

P Vxy;ml ¼ 1jMSi;MSiþ1; h
� � ð9:27Þ

For background estimation, not all from a set of motion levels can be chosen but
only whose, which have better stabilization results; in other words the levels, where
the moving objects are absent. After such pseudo-static levels extraction, a back-
ground motion for the LMVs estimation can be built. For each pixel, a Caussian
distribution P(Ixy,ml | θ) in RGB color space is determined by Eq. 9.28, where
Iml(x, y) is the intensity value of pixel (x, y) on motion level ml, μi is a mean value in
neighborhood, Σi is the covariance matrix, and |Σi| is its determinant. Values μml and
Σml are determined from a set of initial frames in dynamic scene.

P Ixy;ml hj
� � ¼ 1

2pð Þ3=2 P1=2
ml

��� ��� exp � 1
2

Iml x; yð Þ � lmlð ÞT
X�1

ml

Iml x; yð Þ � lmlð Þ
 !

ð9:28Þ

The updating of such background model is not required because a scene is
dynamic, and the background model will recalculated with a high frequency in
comparison with a static scene. In general, the efficiency of background estimation
is determined by a camera speed [66]. More speed value of camera means a less-
successful background motion approximation.

The core of the DVS is the LMVs estimations of objects motions, and more
acceptable decision for dynamic scenes will be a feature tracking approach. Two
main strategies the SIFT and the SURF algorithms were investigated in dynamic
scenes. The SIFT algorithm detects and describes the distinctive features based on
difference of Gaussians of an image at different scales [67]. It detects the robust
features, and builds a key point descriptor (for each feature), which is invariant to
translation, rotation and scale. Such technique provides the accurate interframe key
point matching and includes four steps, as mentioned below:

• The Difference-of-Gaussian (DoG) scale-space construction.
• The stable feature detection.
• The gradient orientation and magnitude assignment.
• The extraction of feature descriptor.
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The first three items can be regarded as the step of feature detection, and the
fourth one as the step of feature description. The SIFT feature is invariant to
translation, scaling, and rotation, while at the same time it quite robust to lighting
change. A number of key points are restricted according to data interpolation,
removal of low-contrast feature points, and feature points with high edge responses,
using a threshold value, affine or 3D projection parameters. The detection of ori-
entation is based on the local image gradient directions. In the neighborhood of
feature point, Eqs. 9.29–9.30 calculate the gradient magnitude M(x, y, σ) and the
orientation θ(x, y, σ), where L(x, y, σ) is a Gaussian-smoothed image at required
scale; σ is a standard deviation; (x, y) is coordinates of pixel [67].

M x; y;rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L xþ 1; y;rð Þ þ L x� 1; y;rð Þð Þ2þ L x; yþ 1;rð Þ þ L x; y� 1;rð Þð Þ2

q
ð9:29Þ

h x; y; rð Þ ¼ arctg
L x; yþ 1; rð Þ þ L x; y� 1; rð Þ
L xþ 1; y; rð Þ þ L x� 1; y; rð Þ ð9:30Þ

Then the orientation histogram with 36 bins (10° on an each bin) is created by
the gradient magnitudes and the Gaussian-weighted circles with σ = 1.5 σ. The
orientations, corresponding to local peaks (more 80 %), are assigned with the
feature points. During a step of descriptor extraction, the local gradient data is used
to create the future point descriptors (a set of 16 histograms aligned in a 4 × 4 grid,
each with 8 orientation bins). Thus, the resulting descriptor contains 128 elements.

However, it is very difficult to achieve the software-based real-time computing
of SIFT features due to its computational complexity. At present, the hardware
architectures are designed. One of such architectures is implemented in a fully
parallel hardware based on Field Programmable Gate Array (FPGA) with the SIFT
feature description by a high-performance fixed-point Digital Signal Processor
(DSP) chip. Such FPGA + DSP hardware module designed by Zhong et al. can be
directly driven by the output of a regular video camera [68]. The system is able to
detect the SIFT features in the images with sizes 320 × 256 pixels within 10 ms and
takes merely about 80 μs per a SIFT feature descriptor.

The SURF descriptor is based on convolutions and uses the Hessian matrix-
based measure for a distribution-based detector [69]. The Hessian matrixes in
continuous and discrete variants are presented in Fig. 9.9.

The Hessian matrix H(P, σ) in a point P is determined by Eq. 9.31, where
Lxx(P, σ), Lxy(P, σ), Lyx(P, σ), and Lyy(P, σ) are convolutions the second derivative
of Gaussian G(P) with a function describing a frame Ip in a point P along OX
direction, diagonal in the first quadrant, OY direction, and diagonal in the second
quadrant respectively.
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H P;rð Þ ¼ Lxx P;rð Þ Lxy P;rð Þ
Lyx P;rð Þ Lyy P;rð Þ
	 


ð9:31Þ

Equation 9.32 calculates the convolution along OX direction.

Lxx P;rð Þ ¼ o2

ox2
G Pð Þ � IP ð9:32Þ

The SURF is based on the Haar wavelet response in the selected direction. It
constructs a square region aligned to it, and extracts the SURF descriptor, which is
invariant to rotation. The Haar wavelets are easy computed by integral images, if
the window location in a point of interest is split up in 4 × 4 sub-regions. An
underlying intensity pattern (first derivatives) of each sub-region is described by
vector VH = (Σdx, Σdy, Σ|dx|, Σ|dy|), where dx and dy are the Haar wavelet responses
in horizontal and vertical directions, | dx | and | dy | are absolute values of corre-
sponding responses. The overall vector will contain 64 elements. The resulting
SURF descriptor is invariant to rotation, scaling, and lighting change. The SURF
detector has a similar performance in comparison with other descriptors being at the
same time faster.

In some applications, the DoGs detector (the Laplacian of Gaussian detector) is
used, which shows the difference between two Gaussian smoothed images. Such
approach is applied for the SIFT detector to build a scale space pyramid by sub-
sampling images and convolving with differently sized kernels. Maxima and
minima values are determined to find the response from the Difference of Gaussian

Fig. 9.9 A view of Hessian matrix: a a continuous variant along OX, b a continuous variant along
OY, c a continuous variant along XY, d a discrete approximation along OX, e a discrete
approximation along OY; f a discrete approximation along XY

Ui-nUi-n-1

Ui+n Ui+n+1

Ui+1

Ui+n-1

Ui-n+1

Ui-1 Ui

Fig. 9.10 A view of FELF detector
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function in the 9-pixel neighborhood on the same scale level, at the scale level
above, and the scale level below. The similar approach is used in a Finite Element
Laplacian Feature (FELF) detector, where second order Gaussian smoothed image
derivatives are used to compute the Hessian matrix [70]. Figure 9.10 provides a
view of such detector.

The following feature points tracking by Lucas-Kanade algorithm [71] is a well-
designed procedure, discussing in literature [12, 72].

The optical flow is a widely distributed method for accurate motion estimation in
video sequences [73, 74]. It builds the motion vectors between two neighbor frames
at time instants t and (t + δt) in every pixel position with coordinates (x, y). The
intensity function I(x, y, t) moves by δx, δy, and δt between two neighbor frames.
Under the assumption that the intensity function, which describes a visual object,
remains constant, the main equation of optical flow for motion estimation in video
sequences, can be written in a view of Eq. 9.33.

I x; y; tð Þ ¼ I xþ dx; yþ dy; t þ dtð Þ ð9:33Þ

On account of the motion is small enough, Eq. 9.33 may be performed by
expanding function I(x, y, t) in a Taylor series by Eq. 9.34, where H.O.T. means
high order terms, which are small enough and ignored.

I xþ dx; yþ dy; t þ dtð Þ ¼ I x; y; tð Þ þ oI
ox

dxþ oI
oy

dyþ oI
ot

dt þ H:O:T: ð9:34Þ

From Eq. 9.34, the Eq. 9.35 follows, where vx and vy are the (x, y) speed
components, δx/δt, δy/δt, δt/δt are the partial derivatives in coordinates (x, y, t).

oI
ox

dxþ oI
oy

dyþ oI
ot

dt ¼ 0

oI
ox

dx
dt

þ oI
oy

dy
dt

þ oI
ot

dt
dt

¼ 0

oI
ox

vx þ oI
oy

vy þ oI
ot

¼ 0

ð9:35Þ

The Eq. 9.35 applied to the gradient of intensity function is represented as
symmetric covariance 3D structure tensor JS [12]. The eigenvalues Λ = {λk}, (k = 1,
2, 3) in neighborhood 3 × 3 pixels are characterized the local intensity displace-
ments along two spatial axes OX and OY in Euclid space and a temporal axis. The
intensity maps λ1(I), λ2(I), λ3(I), based on eigenvalues λ1(x, y, t), λ2(x, y, t),
λ3(x, y, t) of local 3D structure tensor, provide the motion estimations in three
dimensions.

To other known estimations of optical flow, the Bouguet approach [75] and the
Horn-Schunck approach [76] can be mentioned. The Bouguet approach implements
a sparse iterative version of Lucas-Kanade tracking feature points in the pyramids.
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In the classical Horn-Schunck method, the optical flow estimations are performed
as a variational problem, when a vector field is defined as a minimum of certain
energy functional J under the assumption that the frame noise and the optical flow
derivatives have a Gaussian distribution. This functional includes two terms: a data
term provided by the optical flow constraint and a regularity term based on the
gradient of the optical flow. The Eq. 9.36 shows a common view of functional J,
where a weight parameter α shows a smoothness degree in a regularity term, Ω is a
vector field.

J ¼
Z
X

Ixvx þ Iyvy þ It
� �2

dt þ a2 rvxj j2þ rvy
�� ��2� �

ð9:36Þ

The optical flow separates the spatio-temporal set of pixels in a set of “moving”
points and a set of “static” points. For more accurate separation of such sets espe-
cially in noisy (type “salt–pepper”) video sequence, additional procedures can be
recommended based on Lorentzian estimator, Tukey’s bi-weight estimator, German-
McClure estimator, or Leclerc estimator. For Gaussian noisy video sequences, the
improvement can be achieved by applying the higher-order statistics. The optical
flow values are caused by an additive noise, which is often modeled by a Gaussian
distribution (hypothesis H1) or by a true motion in each pixel (hypothesis H0) in
Eq. 9.37, where vk �rð Þ is a flow estimation in a frame k, zk �rð Þ is an additive Gaussian
noise, and uk �rð Þ is the lighting variation caused by true motion [77].

H0 : v
0
k �rð Þ ¼ zk �rð Þ

H1 : v
1
k �rð Þ ¼ uk �rð Þ þ zk �rð Þ ð9:37Þ

The computer cost of pixels separation on moving (active) and static ones is
reduced, if the Gaussianity in the optical flow estimations will be detected. The
classical measure of Gaussianity is the kurtosis, which is equaled to 0 for a
Gaussian random variable. The kurtosis is determined by Eq. 9.38, where y is a
random value, E[·] is an expectation.

kurt yð Þ ¼ E y4

 �� 3 E y2


 �� �2 ð9:38Þ

The kurtosis values for active pixels are significantly higher than those for static
pixels with noise-induced optical flow values. The binary mask, which demon-
strates a pixel activity, can separate pixels on moving and static more accurate that
permits better motion compensation caused by camera jitters.
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9.5.4 Unwanted Motion Compensation

The unwanted motion compensation can be realized by different ways: a smoothing
of the GMVs, camera path estimation, and one of surveillance mode – a frame
retargeting. Let us consider these cases particularly.

The challenge of the GMVs smoothing is closely tried with a key frames
extraction in dynamic scene. The intervals between key frames can have different
values. If key frames are extracted, then the task is transformed for the GMVs
smoothing in static scene, as this was considered in Sect. 9.4.1.

For dynamic scenes, the extraction of key frame is more difficult task in com-
parison to the static scene. The accurate inter-frame differences can be calculated as
the correlation of RGB color channels, color histogram, moments of inertia, or
descriptors based on feature points [78–80]. Also the difference between the current
frame and the follow key frame ought to have a significant value. The mentioned
characteristics have high computational cost, and do not propose a real-time
application. In this research, a way for calculation of feature points was chosen to
detect the key frames in dynamic scene. If a number of feature points is essentially
changed in local regions of frame, then this frame is marked as a key frame.

The procedure of camera path estimation requires a pre-segmentation of back-
ground, feature descriptors extraction, and background objects recognition in
adjacent key frames. The main idea is to find “good” corresponding points and track
their displacements in all frames between key frames. As a result, two envelope
curves from points with high and low ordinate values will be built because of jump
camera jitters. Then the curve with middle ordinate value can be interpolated by
linearization (if an angle of shooting does not change, and only transitions are
available) or by bilinear or bi-cubic functions (if an angle of shooting changes, and
transitions/rotations are available) under the assumption that the ideal trajectory of
camera is a blend curve. Such points compulsory own to background. Several pairs
of such corresponding points can be determined in adjacent key frames to increase a
reliability of camera path estimation.

If displacements between real and interpolated trajectories are calculated for each
frame, then the locations of moving foreground object may be recalculated by the
displacement values under assumption that a motion is defined by the affine motion
model. This approach is enough complex: to find the corresponding points with the
following interpolation is a separate high computational task. It can be simplified, if
the calibrated video camera will be used. However, the camera calibration for
dynamic scenes is too difficult and continuous procedure.

A video retargeting is one of ways for the DVS, when the object of interest is
held in the center of a frame in the stabilized position. Such surveillance can be
realized by some techniques beginning from the feature points tracking to Kalman
filter application. In this section, let us discuss the application of Kalman filter and
particle filter for the DVS tasks. Also the interesting issue connects with the
re-targeting of non-rigid objects.

290 M.N. Favorskaya et al.



The Kalman filter provides a recursive solution to the linear optimal filtering and
applies in static and dynamic environment [81]. Feature evaluation by Kalman filter
during a tracking process is under the following constrains [82]:

• The confidence estimations and discriminative ability of a feature has the
Gaussian distribution.

• Features with higher discriminative ability should have larger confidence esti-
mation, and vice versa.

First, the state of Kalman filter is represented as the combination of confidence
estimationsWt = {wt(1), wt(2),…, wt(N)} and variation “speed” ΔWt =Wt −Wt−1 of
each feature, where wt(i) is a confidence estimation of ith feature. Second, the
measurements of the filter St = {St(1), St(2), …, St(N)} are provided by a frame in a
time instant t. The predicted equation and the measurement equation of Kalman
filter are calculated by Eq. 9.39, where IN×N is an identity matrix describing a
targeting object, ut is a displacement and vt is a speed, ut and vt are both Gaussian
noised functions.

Wtþ1

tþ1

 !
¼

IN�N IN�N

0 IN�N

 !
Wt

DWt

 !
þ ut

Stð Þ ¼ IN�N 0ð Þ
Wt

DWt

 !
þ vt

8>>>>><
>>>>>:

ð9:39Þ

The particle filter is an estimation algorithm for implementing a recursive
temporal Bayesian filter by Monte Carlo simulations. It represents a posterior state
of moving object by a set of random samples with associated confidence estima-
tions. The feature evaluation by using the particle filter can calculates the confi-
dence estimations or discriminative abilities for non-Gaussian and non-linear
distribution [83]. The core of this procedure is to define such feature set, each
feature in which is seen as a particle. As a result, a weighted sample of particles at
frame t, {(i, wt(i))}, i = 1, 2, …, N, where i denotes the ith feature (particle), is
created. The iterations of this process evaluate the temporal consistency even a
variation of features is a non-linear and a non-Gaussian [84].

The challenges of non-rigid deformations, rotations, appearance, occlusions, and
drifting are known as the template update problem or stability-plasticity dilemma.
However, most of approaches such as robust learning algorithms [85], different
learning paradigm [86], multiple different classifiers [87], or a conservative learning
framework [88] are limited to a bounding-box-based representation.

To avoid of inaccuracy, the segmentation of non-rigid objects can be represented
by the deformable parts model [89] or models obtained via the generalized Hough-
transform [90, 91]. These methods need large amount of labeled training data,
which cannot be provided during a tracking of unknown objects.

In the research of Godec et al. [92], a novel tracking-by-detection approach is
proposed. It is based on the online Hough ferns and a couple of procedures: the
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voting-based detection and back-projection with a rough GrabCut segmentation
[93]. The randomized Hough ferns use simple pixel comparisons as splitting tests
that allows the robustly detection of the non-rigid objects. The voting-based
detection procedure has a valid geometric relation. The back-projection procedure
roughly separates the object from the background pixel-wise. Such approach is very
perspective for non-rigid natural objects and blurred objects segmentation.

The random ferns are such modification of random forest, which is based on
independent flat test structures instead of tree-like structures [94, 95]. For S binary
tests, the best matching class c for a given image sample v is estimated by Eq. 9.40
assuming a uniform prior distribution over all classes.

c ¼ argmax
c

P c vjð Þ ¼ argmax
c

P c x1; x2. . .; xSjð Þ

¼ argmax
c

P x1; x2. . .; xS cjð Þ ð9:40Þ

However, the joint features distribution over all tests cannot be modeled in
practice. The features are grouped in several independent sets xS. If a power of set is
equaled 1, then a well-known Naïve-Bayes formulation is acceptable (Eq. 9.41).

P x1; x2; . . .; xS cjð Þ ¼
YS
c¼1

P xS cjð Þ ð9:41Þ

The Random Ferns is based on a semi-Naïve-Bayes formulation of Eq. 9.41
using larger feature sets and expressed by Eq. 9.42, where ~xm denotes a set test and
M is a number of used groups.

P x1; x2; . . .; xS cjð Þ ¼
YM
m¼1

P ~xm cjð Þ ð9:42Þ

Godec et al. show that Naïve formulation can be used for tracking, if P(xn − c) is
modeled by using histograms instead of binary features [96]. However, binary tests
can be also interpreted as a semi-Naïve formulation. For tracking of unknown
objects, a node optimization is difficult because of the limited training data in
several frames. A special tree-growing scheme was proposed by Saffari et al. [85].
The more complex statistics use the Hough-transform.

9.5.5 Motion Inpainting in Dynamic Scenes

The motion inpainting in dynamic scenes can be considered as the task of missing
data restoration. Many interesting methods are designed for texture reconstruction,
for example, image inpainting by contourlet transform [97], regularized image
restoration [98], etc. More reasonable approach is the information extraction from
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the sharp neighbor frames. In this research, two cases are applied: the frame
boundaries restoration and the frames interpolation between key frames.

Frame boundaries restoration in dynamic scenes includes two cases, when the
missing pixels can be taken from the previous frame and when it is impossible.
First, the assumption is declared that the missing pixels can be founded. A pseudo-
panoramic background may be built from neighbor stabilized frames, and it will be
the source of tile texture reconstruction by a line or a field of textons with following
inpainting of moving foreground objects in the reconstruction area [65]. Second, if
the reconstruction information is absent (very sharp jitters respect to the whole
video sequence or the sequential blurred frames), the decision is accepted about
removal such frames and adding the interpolated frames under the assumption of
smooth camera motion.

For the DVS task, it is enough to apply the simplest linear model of background
and foreground objects motion. In this case, the point coordinates (xn, yn) in
reconstruction frame n are calculated by Eq. 9.43.

xn
yn

	 

¼ n� 1ð Þ � xi � xi�1

yi � yi�1

	 

ð9:43Þ

By using a normalized correlation function, the location of slicing window
11 × 11 or 15 × 15 pixels from stabilized area of a recoverable frame and a pseudo-
panoramic background is determined. Such value shows the background place
suitable for restoration of frame boundaries. Then a field of textons is replaced in a
missing area of frame with corresponding stitching procedures [99, 100]. If a
foreground moving object is in this part of scene, then its image is also restore
according to linear motion model but with the own shifts. Let us notice that the
proposed frame boundaries restoration is out from border of real-time application
because the analysis of sequential frames can be required, and also the work with
texture is usually a durable process.

The task of missing frames interpolation is a separate complex issue in digital
video processing. In the current research, this is an additional aspect of motion
inpainting in dynamic scenes and concerns only to the blurred frames. The goal is to
improve a video sequence, when several sequential frames are blurred very
strongly, and the procedure proposed in Sect. 9.5.2 is a non-useful processing.

In such particular case, the blurred frames are removed. Then very complex and
computer high cost analysis is initiated for such pseudo-static scene. The main idea
is to build the previous and the following trajectories of moving objects in a missing
interval. The procedure is based on interpolation of two data types: background and
foreground. In literature, the main attention gives consideration for interpolation of
moving foreground objects in a scene. Three main approaches, among others, are
used:

• The interpolation based on functions [101–104].
• The interpolation based on autoregressive modeling [105, 106].
• The interpolation using Markov random fields [107–112].
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Objectively, if more blurred frames are in a video sequence, then the results of
interpolation will be worse especially in the dynamic scenes.

9.6 Discussion of Experimental Results

Two main directions of the experimental work were determined: the motion esti-
mations based on the proposed methods (Sect. 9.6.1) and the stabilization esti-
mations (Sect. 9.6.2). Six video sequences received from the static camera and eight
video sequences received from the moving camera were used in this research. The
titles, URL, and snapshots of some investigated static and dynamic scenes are
presented in Tables 9.2 and 9.3, respectively.

All experiments were executed by the designed software tool “DVS Analyzer”,
v. 2.04, which was developed in Laboratory of Image and Videos Processing
(Department of Informatics and Computer Technique, Siberian State Aerospace
University). The software tool “DVS Analyzer” has two modes: the pseudo real-
time stabilization of video sequences, which are broadcasted from the surveillance
cameras (the simplified processing) and the unreal-time stabilization of available
video sequences (the intelligent processing). The architecture of the software tool
includes the extended set of program modules, which can be designed or developed
independently each from others. The Pre-processing Module, the Motion Estima-
tion Module, the Motion Compensation Module, the Motion Inpainting Module, the
Module of Quality Estimation, the Core Module, and the Interface Module are
the main components of the software tool “DVS Analyzer”. Let us briefly discuss
the functionality of each program module.

The Pre-processing Module involves various spatio-temporal filters such as the
auto-contrast filter, the temporal 2D_cleaner filter, and the adaptive Gauss filter,
which are applied to frames representing in color RGB-, HSV-, and YUV-spaces.
Also this module divides a video sequence in the scenes. The Motion Estimation
Module calculates the LMVs by the BMA and feature correspondences. It builds
the GMVs in frames by using of fuzzy TSK model. The Motion Compensation
Module determines the SMVs in each frame based on the GMVs. The Motion
Inpainting Module realizes the frame stabilization by a re-calculating of an original
frame according to the UMVs in scenes. The procedure for restoration of frame
boundaries and the deblurring procedure are executed in this module. The Module
of Quality Estimation provides the quality comparison of original and stabilized
video sequences according to PSNR and ITF metrics. The Core Module controls
and coordinates the work of all other Modules and includes program codec for a
pre-processing and saving of the stabilized video sequences. The Interface Module
displays the received results in file/monitor/printed version.

The software tool “DVS Analyzer”, v. 2.04 was designed in the Rapid Appli-
cation Development Embracadero RAD Studio 2010. Some external software tools
were used: the libraries “Video for Windows” for initial processing and “Alpha-
Controls 2010”, v. 7.3 for enhanced user interface and a video codec “K-Lite Codec
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Pack”, v. 8.0. The experiments were performed on a computer with the following
configuration: CPU Intel Core I5.760, 4 Gb RAM, Nvidia GeForce 460GTX,
Windows 7 64 bit.

Fig. 9.11 Graphics of motion estimation and compensation results in static scenes:
a “SANY0025_xvid.avi”, b “lf_juggle.avi”, c “akiyo.avi”
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9.6.1 Experimental Results for Motion Estimations

The experimental graphics for motion estimation and compensation are represented
in Figs. 9.11 and 9.12 for static and dynamic scenes, respectively.

The motion estimations in static scenes by using the TSK model provide more
accurate estimations of the global motion due to the fact that the motion of

Fig. 9.12 Graphics of motion estimation and compensation results in dynamic scenes:
a “Cat_orig.avi”, b “Gleicher4.avi”, c “Sam_1.avi”
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foreground objects is not considered. Such algorithmic specialty is well demon-
strated in video sequences (“road_cars_krasnoyarsk_synthetic.avi”; “akiyo.avi”,
“Butovo_synthetic.avi”). In original video sequences with static scenes, these dif-
ferences are less and appear only in the GMV estimations. For video sequences
including many small sizes objects (“lf_juggle.avi”, “Butovo_synthetic.avi”), the
algorithm for motion estimations by using the TSK model shows the best results
increasing ITF value up on 3 dB. For the dynamic scenes stabilization, the detection
of the SMVs is the most important step. Such SMVs detection is executed based on
the GMVs in a frame.

The non-contrast regions in frames decrease the quality of stabilization (“El-
lenPage_Juggling.avi”, “Gleicher4.avi”, “Gleicher1.avi”) and show the unpredicted
results. Therefore, the non-contrast regions do not process in the most of frames.
The frames with such “rejected” regions are represented in Fig. 9.13.

If the GMVs are estimated inaccurate, then the quality of following stabilized
video sequence will decrease. The developed algorithm of motion estimation is
non-sensitive to the large moving foreground moving in video sequences “Ellen-
Page_Juggling.avi”, “Sam_1.avi”, “Cat_orig.avi”, “Cleicher3.avi”. The best global
motion estimations were received for video sequence “EllenPage_Juggling.avi” due
to ignoring the fast moving of foreground objects.

9.6.2 Experimental Results for Stabilization Estimations

The objective estimations of the DVS quality were calculated by Mean-Square
Error (MSE) and PSNR metrics between a current frame Icur and a key frame Ikey,
which are expressed in Eqs. 9.44–9.45, where Imax is a maximum of pixel intensity,
m and n are the frame sizes along OX and OY axes.

MSE ¼ 1
m� n

Xm
y¼1

Xn
x¼1

Icur x; yð Þ � Ikey x; yð Þ� �2 ð9:44Þ

Fig. 9.13 The frames with “rejected” regions for motion estimations: a “EllenPage_juggling.avi”,
b “Gleicher1.avi”
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PSNR ¼ 10log10
I2max

MSE

� �
ð9:45Þ

The PSNR metric is useful for estimations between neighbor frames. The quality
of the ITF estimations provides the objective estimation in whole video sequence.

Fig. 9.14 Graphics of stabilization quality in static scenes: a “SANY0025_xvid.avi”, b “lf_jug-
gle.avi”, c “akiyo.avi”
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The ITF of the stabilized video sequence is almost higher than the ITF of the
original video sequence. This parameter is calculated by Eq. 9.46, where Nfr is a
frame amount in a video sequence.

Fig. 9.15 Graphics of stabilization quality in dynamic scenes: a “Cat_orig.avi”, b “Gleicher4.
avi”, c “Sam_1.avi”
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ITF ¼ 1
Nfr

XNfr

k¼0

PSNRk ð9:46Þ

The experimental graphics for stabilization quality are represented in Figs. 9.14
and 9.15 for static and dynamic scenes respectively. As shown from Figs. 9.14 and
9.15, the PSNR estimations of the stabilized video sequences are always higher than
the PSNR estimations of the original video sequences.

Tables 9.4 and 9.5 contain the ITF estimations for all (used in experiments)
whole video sequences with static scenes and dynamic scenes, respectively.

As it seems from Tables 9.4 and 9.5, the video stabilization results are different
for various video sequences because of varied foreground and background content,
moving objects, lighting, noisy, and the shooting condition. The using of the TSK
model provides the increment of the ITF estimations up on 3–4 dB or 15–20 %.

The stabilization and temporal results of “Deshaker”, “WarpStabilizer”, “Video
Stabilization with Robust L1 Optimal Camera Paths”, and our developed “DVS
Analyzer” are situated in Table 9.6.

Table 9.4 ITF estimations for static scenes

Video sequence ITF estimations (dB)

Original Without TSK model With TSK model

road_cars_krasnoyarsk.avi 22.70482 22.80707 25.91258

SANY0025_xvid.avi 20.5389 21.09076 23.79189

lf_juggle.avi 24.30286 24.37177 28.06012

akiyo.avi 35.92952 39.14661 39.53257

EllenPage_Juggling.avi 24.65855 25.23049 28.58255

Butovo_synthetic.avi 22.26415 27.19789 27.20789

Table 9.5 ITF estimations for dynamic scenes

Video sequence ITF estimations (dB)

Original Without TSK model With TSK model

Cat_orig.avi 25.07131 26.47094 28.14086

Gleicher4.avi 19.29703 19.50634 23.18371

Sam_1.avi 19.09737 19.28141 22.20112

Gleicher1.avi 18.86996 19.48223 22.78846

Gleicher2.avi 19.91954 20.36718 24.56673

Gleicher3.avi 16.55214 16.71899 20.12285

new_gleicher.avi 17.28921 17.81638 21.70575

yuna_long_original.avi 17.84131 18.94389 21.46971
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The ITF estimations of the proposed software tool “DVS Analyzer” provides
better results (at average 1–3 dB or 5–15 %) with the lower processing time
relatively the existing software tools.

9.7 Conclusion and Future Development

In this chapter, the intelligent methods for digital video stabilization in static and
dynamic scenes were developed. The extended literature review represents the
state-of-art in the DVS till the present time. In this research, many novel reasonable
methods were proposed and realized including the statistical background model, the
scene separation in video sequences received from the moving camera, the fuzzy
TSK model application, the detection of “good” regions in frames, which contain
only camera jitters, frames boundaries restoration in static and dynamic scenes, etc.
All methods and algorithms were realized by the designed software tool “DVS
Analyzer”, v. 2.04.

For experiments, six video sequences received from the static camera and eight
video sequences received from the moving camera were used. Graphics of the
motion estimation and compensation and the stabilization quality demonstrate the
improvements relative to the original video sequences. The PSNR and ITF metrics
were used to estimate the received results. The stabilized results directly depend
from varied foreground and background content, the moving objects, lighting,
noisy, and the shooting condition for each video sequence. The ITF estimations
increase up on 3–4 dB or 15–20 % relative to the original video sequences. The ITF
estimations of the proposed software tool “DVS Analyzer” provides better results
(at average 1–3 dB or 5–15 %) with the lower processing time relatively the
existing software tools.

Table 9.6 Comparison of stabilization algorithms for static and dynamic scenes

Video sequence Algorithm

Deshaker WarpStabilizer Video Stabiliza-
tion with robust
L1 optimal cam-
era paths

DVS analyzer

ITF
(dB)

Time
(s)

ITF
(dB)

Time
(s)

ITF
(dB)

Time
(s)

ITF
(dB)

Time
(s)

EllenPage_Juggling.
avi

25.61 3.53 26.68 4.53 27.33 3.17 28.58 3.54

Gleicher4.avi 20.33 1.89 19.15 2.78 20.45 1.44 23.18 1.66

Sam_1.avi 20.09 1.22 20.27 2.65 20.58 1.01 22.20 1.23

road_cars_krasnoyarsk 22.31 1.45 21.48 2.15 25.2 1.29 25.91 0.24

SANY0025xvid.avi 23.53 1.33 22.7 1.87 22.74 1.34 23.79 0.17

lf_juggle.avi 26.65 1.22 24.41 1.64 26.15 1.18 28.06 0.15
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The future efforts are connected with the development of advanced motion
inpainting methods and algorithms for the DVS task and also fast realization of
algorithms without the essential accuracy reduction for pseudo real-time
applications.
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