
Chapter 8
Scene Analysis Using Morphological
Mathematics and Fuzzy Logic

Victoria Lynn Fox, Mariofanna Milanova and Salim Al-Ali

Abstract Owing to compound textural features, intensity inhomogeneity, image
layers, and variations of statistics inherent, the segmenting of complicated images
into areas of similarity for scene analysis is a challenging task. In this work, a
morphological active contour is developed to increase efficiency of current active
contour schemes and a fuzzy clustering energy is incorporated into the active contour
algorithm to increase accuracy and flexibility. Finally, to aid in the segmentation of
figures for scene analysis, a visual attention is incorporated into the fuzzy clustering.
The savings in computational efficiency garnered from using a morphological curve
evolution rather than a partial differential equation and corresponding Euler-
Lagrange equations combined with the expert knowledge garnered from a visual
attention fuzzy logic scheme translates into a highly accurate and efficient segmen-
tation method for scene analysis.
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8.1 Introduction

While the statistics of large data sets of images follow certain regularities, statistics
of singular images are found to be capable of a large variance in statistical analysis
[1]. Therefore, the applications, which work with individual images, must seek to
exploit the variability of the image while acknowledging the established statistical
properties of natural images as a group. As an example, consider the spatial structure
of a natural image, which is often irregular with contours produced by different
boundaries, markings, and shadows. These boundaries can sometimes be determined
by exploiting luminance and contrast within the given natural scene. In a survey of
natural image statistics, Geisler [2] notes, in general, natural images, i.e. images with
significant local covariance, tend to have large variations in local luminance and
contrast with a low correlation in their average joint distribution. However, global
statistics have shown that strong features tend to cluster in natural images and, thus,
ignoring global information in light of only local information often results in poor
segmentation results, when considering natural images [3]. Therefore, the segmen-
tation protocols seeking to exploit luminance and contrast in a natural image must
consider both local and global statistics, which leads to an increase in computational
cost in segmentation algorithms. It bears mentioning that the statistics involving
luminance and contrast are of only one group of statistical models for natural images.
To effectively segment natural images, one must also consider other statistical
information, such as textural information given by entropy and homogeneity, depth
given by the scene scale of the image or levels of color saturation in a multispectral
image. With each additional feature space, the complexity of a given algorithm
grows. Therefore, it is very important for the mechanism of an image segmentation
method to be as efficient as possible with low computational cost while minimizing
error.

While the last two decades have seen a large variety of image segmentation
methods with many able to produce reasonable segmentations on images with
moderate complexity, see [1, 2, 4] and their references as examples of effective
segmentation techniques, computational efficiency is still a concern, when seg-
menting a complex image. Many state-of-the-art methods can become impractically
time-consuming or are limited in the types or size of images that can be processed.
Often, feature vectors are sacrificed in order to increase computational speed
resulting in a lower level of accuracy in general for the algorithm [3]. The proposed
method presented in this work is a computational low-cost segmentation method
that effectively segments a variety of complex images. This method makes use of
mathematical morphology, fuzzy logic clustering, and visual attention, all of which
are incorporated into a hybrid, level set active contour method.

The chapter is organized as the follows. Background material is presented in
Sect. 8.2. The proposed method is developed in Sect. 8.3. Conclusion is situated in
Sect. 8.4.
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8.2 Background Material

Let us consider briefly the background materials including segmentation methods
(Sect. 8.2.1), the basics of morphological mathematics (Sect. 8.2.2), application of
fuzzy logic in imaging (Sect. 8.2.3), and visual attention issues (Sect. 8.2.4).

8.2.1 Segmentation Methods

The objective of segmentation is to partition an image into regions. With the
assumption that every section in an image is sufficiently homogenous, edge-based
segmentation determines the transition between two sections on the basis of dis-
continuities alone. When this assumption is not valid, a region-based segmentation
usually provides a more realistic segmentation product.

In order to detect meaningful discontinuities between sections, most edge-
detection techniques employ the use of first- and second-derivatives. The first-order
derivative of choice is the gradient vector of an image I(x, y) given as Eq. 8.1,
which is obtained by the partial derivatives at every pixel location.

rI ¼ gx
gy

� �
¼ oI=ox

oI=oy

� �
:X ! <2 ð8:1Þ

To determine the presence of edges, the magnitude of the gradient vector is
computed with Eq. 8.2.

rIj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2x þ g2y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oI=oxð Þ2þ oI=oyð Þ2

q
: X ! < ð8:2Þ

Since it is zero in areas of constant intensity and its values are related to the
degree of intensity change in areas of variable intensity. The Laplacian of an image
function I(x, y) is the sum of the second-order derivatives, defined by Eq. 8.3.

r2I ¼ o2I
ox2

þ o2I
dy2

: X ! < ð8:3Þ

While the Laplacian is seldom used by itself for edge detection due to its
sensitivity to noise, it is powerful, when used in combination with other edge-
detection techniques. The edge detection by gradient operations generally performs
well only in images with defined intensity transitions and relatively low noise.
However, computationally, the gradient operator methods have a relatively lower
cost than other segmentation methods because the computation can be performed
with a local filtering operation [5].
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While the edge-based segmentation focuses on discontinuities in intensity levels,
the region-based techniques find the regions directly. The basic formulation of
region-based segmentation with R representing a region in the image can be given
with a series of conditions. The first condition states that every pixel must be
assigned a region while the second condition requires that points in a region be
connected (e.g., 4- or 8-connected) and the third condition indicates the regions
must be disjoint. The fourth condition states that pixels in a segmented region must
share some predefined common features while the fifth condition indicates that
adjacent regions are different in the sense of the predefined feature spaces [6].

The region growing is a technique that merges regions of interest into a larger
region of interest. The pixel aggregation is an example of a region growing tech-
nique. In pixel aggregation, an initial set of seed points grows regions from the
seeds by joining neighboring pixels, if they satisfy given criteria. In its most basic
form, segmentation starts with two initial seeds, and then the region grows, if
neighboring pixels satisfy the following criteria: |I(x, y) − I(seed)| < τ, in which τ is
some predefined threshold. The selection of initial seeds is often based on the nature
of applications or images. If a priori information is not obtainable, then the clus-
tering techniques must be used to determine the pixels that can be used as seeds.
Despite the simple nature of the algorithm, there are several problematic areas in the
implementation of region growing: descriptors of region properties alone can yield
misleading results, if connectivity is not taken into consideration.

The statistical estimation is another common approach in a region-based seg-
mentation [7]. When considering the statistical segmentation of images, authors
generally suppose the existence of two random fields: the field of “classes” and the
field of “measurements.” With this method, two sections are considered to be
homogenous and accordingly merged, if they have common parameter values
within a given threshold. In application, the parameters of a section cannot be
directly observed; rather they can only be inferred from the observed data. This
inference, if often made using Bayes’s rule and the conditional probability density
function pðIðx; yÞjhmÞ, which presets the conditional probability statistic derived
from the data (Iðx; yÞÞ, will be observed, given that section m has the parameter
values of hm. In typical statistical region merging algorithms [8], stochastic esti-
mates in the parameter space are obtained for different sections, and merging
decisions are based on the similarity of these parameters.

Unfortunately, there is a limitation of most estimation-based segmentation
methods in that they do not explicitly represent the uncertainty in the estimated
parameter values and, therefore, are prone to error, when the parameter estimates
are poor. To counteract this limitation, a Bayesian probability of homogeneity uses
all of the information contained in the statistical image model rather than just
estimating parameter values. The probability of homogeneity is based on the ability
to formulate a prior probability density function on the parameter space, and
measures the uniformity by taking the expectation of the data likelihood over a
posterior parameter space.
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In general, the region-based methods yield more reasonable segmentations than
edge-based algorithms, when an image has relatively large noise and/or requires the
use of local properties combined with global properties. However, the complexity
and computational cost of region-based methods can be large, particularly when
considering methods based upon partial differential equations, e.g. active contour
methods. Active contours are the energy-based segmentation methods that seek to
guide partitioning of an image via the minimization of a cost functional.

The first efforts in formulating the boundary detection problem as an energy
minimization problem resulted in the energy-minimizing splines guided by external
constraint forces that pull the splines towards objects of interest [9]. These splines
were dubbed snakes by their creators, Kass, Witkin, and Terzopoulos, because the
contours appeared to slither across an image as it moved toward local minima. In
the classical formulation, the boundary detection consisted of matching a deform-
able model to an image by means of energy minimization. Representing the
position of a snake parametrically by C sð Þ ¼ x sð Þ; y sð Þ: 0� s� Lð Þ:< ! X; where
L denotes the length of the contour C, s is the arc length, and Ω represents the entire
domain of an image I(x, y), the energy functional can be written as Eq. 8.4, where
Eint and Eext represent the internal energy and external energy functions.

E Cð Þ ¼ Eint þ Eext ð8:4Þ

The internal energy function determines the smooth shape (regularity) of the
contour. A common choice for the internal energy is a functional given by Eq. 8.5,
where C sð Þ � C nð Þ ¼ fðx nð Þ; yðnÞÞ: 0� n�N; s ¼ 0þ nDsg and L ¼ NDs.

Eint ¼
ZL
0

a C0ðsÞj j2þb C00ðsÞj j2ds �
XN
0

a C0ðnÞj j2 þ b C00ðnÞj j2Ds ð8:5Þ

Here α controls the tension of the contour and β controls the rigidity of the
contour. The external energy term determines the criteria of contour evolution
depending on the image I(x, y) and can be defined as Eq. 8.6, where Eimg(x, y)
denotes a scalar function defined on the image plane, so the local minimum of Eimg

attracts the snakes to edges.

Eext ¼
ZL

0

Eimg C sð Þð Þds �
XN
n¼0

Eimg C nð Þð ÞDs ð8:6Þ

The edge attraction function, Eimg, was originally presented as a combination of
three separate functionals: Eimg ¼ wlineEline þ wedgeEedge þ wtermEterm: Since the
presentation of the original algorithm, there have been many other functionals
suggested for Eimg and one common example is a function of image gradient, given
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by Eq. 8.7, which incorporates a Gaussian smoothing filter, Gσ, with standard
deviation σ and a suitably chosen constant λ.

Eimg x; yð Þ ¼ 1
k rGr � I x; yð Þj j :X ! < ð8:7Þ

In order to solve the geometric contour problem, one must find the contour C
that minimizes the total energy term E within the given set of weights, α, β, and λ.

In order to achieve an accurate location of edges, the classical snake algorithm
must be initialized sufficiently near the edge or object of interest. Estimating a
correct position of an initial contour without prior knowledge is a challenging
problem. Also, classical geometric contours are only able to separate a region into
two sub-regions and cannot, subsequently split into multiple boundaries or merge
from multiple initial contours. In order to correct this deficiency, Hamilton-Jacobi
formulations [5] were applied to active contours and resulted in the creation of
geodesic active contours.

The level set function / x; yð Þ was proposed by Oshar and Sethian [5] as a
formulation to implement active contours. Oshar and Sethian represented a contour
implicitly via a two-dimensional Lipschitz-continuous function / x; yð Þ:X ! <
defined on the image plane. On a particular level, usually the zero level, the level set
function is defined as a contour, such as Eq. 8.8, where Ω denotes the entire image
plane.

C ¼ x; yð Þ:/ x; yð Þ ¼ 0f g; 8ðx; yÞ 2 X ð8:8Þ

As the level set function increases from the initial stage, the corresponding set of
contours, C, moves toward the exterior.

By using the zero level, the contour can be defined as the border between a
positive area and negative area. Thus, the contour can be identified by checking the
sign of /ðx; yÞ. Using the zero level, the level set is usually represented by Eq. 8.9.

/ x; yð Þ ¼
\0 x; yð Þ inside C
¼ 0 x; yð Þ on C
[ 0 x; yð Þ outside C

8<
: ð8:9Þ

The initial level set function /0 x; yð Þ:X ! < is usually given as a signed dis-
tance from the initial contour such as in Eq. 8.10 in a way that ±D(a, b) denotes a
signed distance between a and b and Nx;y C0ð Þ denotes the nearest neighbor pixel on
the initial contours C ¼ Cðt ¼ 0Þ from (x, y).

/0 x; yð Þ ¼ / x; yð Þ: t ¼ 0f g ¼ �D x; yð Þ;Nx:y C0ð Þ� �
; 8 x; yð Þ 2 X ð8:10Þ

The deformation of the contour is generally represented as a Partial Differential
Equation (PDE). The initial proposal for a formulation of contour evolution using
the magnitude of the gradient, given by Osher and Sethian [5], states by Eq. 8.11,
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where v denotes a constant speed term to push or pull the contour and jð�Þ : X ! <
denotes the mean curvature of the level set function ϕ(x, y) given by Eq. 8.12.

o/ðx; yÞ
ot

¼ r/ x; yð Þj j vþ ej / x; yð Þð Þð Þ ð8:11Þ

jð/ðx; yÞÞ ¼ div
r/
r/k k

� �
¼ /xx/

2
y � 2/x/y/xy þ /yy/

2
x

ð/2
x þ /2

yÞ3=2
ð8:12Þ

The curvature term is used to control the regularity of the contour as the internal
energy term does in the classic snake model while ɛ controls the balance between
the smoothness and the robustness of the evolution.

Chan and Vese [10] proposed a new form of contour evolution that is very
popular in current research methods, the active contour without the edges method.
The length of the contour Cj j can be approximated by a function of ϕ(x, y) such as in
Eq. 8.13, where Heð�Þ denotes the regularized form of the unit step function,
Hð�Þ:X ! < given by Eq. 8.14 and deð�Þ denotes the derivative of Heð�Þ.

Cj j � Le / x; yð Þð Þ ¼
Z

rHe / x; yð Þð Þj jdxdy ¼
Z

de / x; yð Þð Þ r/ðx; yÞj jdxdy
ð8:13Þ

H x; yð Þ ¼ 1 if / x; yð Þ� 0
0 if / x; yð Þ\0

	
8 x; yð Þ 2 X ð8:14Þ

Since Heð�Þ produces either a 0 or 1 depending on the sign of the input, deð�Þ
produces nonzero results only on the contour of Eq. 8.13, where ϕ(x, y) = 0. The
associated Euler-Lagrange equation [11] obtained byminimizing Leð�Þwith respect to
ϕ and parameterizing the descent directions by an artificial time t is given by Eq. 8.15.

o/ðx; yÞ
ot

¼ de / x; yð Þð Þj / x; yð Þð Þ ð8:15Þ

The contour evolution motivated by this equation can be interpreted as the
motion by mean curvature minimizing the length of the contour. Therefore,
Eq. 8.12 is considered as the motion motivation by partial differential equation,
while Eq. 8.15 is considered as the motion motivated by energy minimization.

A convenient characteristic of level-set contours is that the contour can split or
merge as the topology of the level set function changes. As a result, level set
methods can detect more than one boundary simultaneously and several initial
contours can be placed. The computational cost of level set methods, however, is
high because computation should be done on the same dimension as the image
plane. Yet, due to the convenience and flexibility of level set methods, they are a
practical method to use in the research of segmenting multi-region images.
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8.2.2 Morphological Mathematics

First introduced by Matheron [12] and Serra [13], the mathematical morphology
views an image as a set of geometric structures then transforms it with the use of a
smaller geometrically defined set, commonly referred to as a structuring element.
The structuring element is translated over the image set and with the use of basic set
operations (i.e. union and intersection), the fundamental operations of dilation and
erosion are obtained.

For a binary image, entries consisting of 0 represent background information and
entries consisting of 1 represent foreground entries. In a binary erosion, A	B, in
which A is eroded by the structuring element B, consists of all points, for which the
translation of B over A fits inside of A. In other words, it is the set operation
A	B ¼ fxjBx 
 Ag. A binary dilation is the dual operation to erosion and is defined
by the set complementation of erosion. The dilation of a set A by structuring element
B is given by A � B ¼ ½Ac	 �Bð Þ�c. To dilate A by B, B is rotated around the origin
to create ð�BÞ, the complement of A is eroded by ð�BÞ, and then the complement of
the erosion is taken. To illustrate with a sample binary image matrix, let the binary
image be represented by A and the structuring element is represented by B as given
by the matrix in Eq. 8.16. The erosion of A by B is given by the matrix in Eq. 8.17
while the dilation of A by B is given by the matrix in Eq. 8.18.

A ¼

0 1 0 1 0
1 1 1 0 1
1 1 0 0 1
1 0 1 1 0
0 0 1 1 0

2
66664

3
77775 B ¼ 1 1

1 0

� �
ð8:16Þ

A	B ¼

0 0 0 0 0
1 1 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 1 0 0

2
66664

3
77775 ð8:17Þ

A � B ¼

0 1 1 1 1
1 1 1 1 1
1 1 1 0 1
1 1 1 1 1
1 0 1 1 1

2
66664

3
77775 ð8:18Þ

From erosion and dilation, the morphological operations of opening and closing
can be defined. A morphological opening on a binary image is defined as
A}B ¼ A	Bð Þ � B, where the image A is eroded by B, and then the result of the
erosion is dilated by B. Using the sets defined in Eq. 8.16, A}B has the results
represented in Fig. 8.1.
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The morphological closing on a binary image is defined as A
 B ¼ ðA� BÞ	B.
Using the sets defined in Eq. 8.16, A
 B results in the matrix and image repre-
sentation in Fig. 8.2.

For a binary structuring element B, the locations, where B is equal to zero, are
referred to as neutral elements since they do not affect the image during the mor-
phological operation. For gray-scale morphology, the morphological operations
transform the gray-scale image into a binary data set with an extra dimension
representing the gray-level. Since the gray-scale level of an image is bound to a
finite domain of [0, m], the neutral elements of a gray-scale structuring element are
the elements with values of m [14]. This is due to the nature of the definition of
gray-scale morphology operators, in which they are used as the invariants to the
maximum and minimum operators.

In continuous gray-scale morphology, images are viewed as functions mapping a
grid to R[ ð�1;1Þ. Since gray-scale images are restricted to integer values
between some range of values (i.e. 0–255 for 8 bit), it is necessary to restrict
the discrete gray-scale morphology mapping to the integer range imbedded in the
image format. With these preliminaries stated, the erosion and dilation of an gray-

scale image, AðxÞ, by a structuring element BðxÞ, can be defined as ðA	BÞðxÞ ¼
inf
y 2 B

A yð Þ � B y� xð Þ½ � and A� Bð Þ xð Þ ¼ sup
y 2 B

A yð Þ � B y� xð Þ½ �, respectively.

8.2.3 Fuzzy Logic

Fuzzy logic is composed of multi-logic systems that have been developed in
opposition to the classical logic, which uses an “on/off” switch in its assessment of
membership. In fuzzy logic sets, the membership is determined by values assigned

(a) (b)

Fig. 8.1 Example of morphological opening on a binary set. a A matrix form of A}B. b An
image representation of A}B

(a) (b)

Fig. 8.2 Example of morphological closing on a binary set. a A matrix form of A
 B. b An
image representation of A
 B
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to linguistic expressions and human decisions. The use of fuzzy logic in imaging is
primarily in the practice of image clarity and identification of objects [15]. It is a
modification of this second usage, i.e. identification of objects, where segmentation
has begun to use fuzzy logic.

A linguistic variable is a term used in our natural language to describe some
concept that usually has vague or ill-defined values. For example, if researcher tried
to describe the frequency heights of an image in the frequency domain, the lin-
guistic variable would be “height” and the typical values would be “low”, “med-
ium”, and “high” and would define our clustering. The fuzzy expert system process
is composed of four steps:

1. Fuzzification—convert the data to fuzzy sets via membership functions.
2. Inference—perform all fuzzy logical operations and apply an implication

method.
3. Composition—apply an aggregation method for fuzzy sets acquired in the

inference step.
4. Defuzzification—convert the final fuzzy conclusion back to raw data to obtain

final weights.

It is important to note that fuzzy logic is not logic that is fuzzy; rather it is the
logic of fuzziness. While the linguistic variable may be filled with ambiguity, the
output of the defuzzification is a value that will guide the image segmentation.

There are several fuzzy membership functions to help cluster the values of the
linguistic variable. In choosing the linguistic variables and terms for the fuzzy logic
model, it is important to be directed by the following guidelines [16]:

1. The features should carry enough information about the image and should not
require any domain-specific knowledge for their extraction.

2. They should be easy to compute in order for the approach to be feasible for a
large image collection.

3. They should relate well with the human perceptual characteristics since users
will finally determine the suitability of the retrieved images.

8.2.4 Visual Attention

In 1964, Neisser [17] presented a popular model, in which human vision consists of
pre-attentive and attentive stages. The pre-attentive stage focuses on local spatial
discontinuity, while in the attentive stage, relationships between these discontinu-
ities are created and clustering takes place. In the pre-attentive stage, the principles
of proximity, simplest form, and continuity factor into the decision, of where the
spatial discontinuities take place. The attention stage additionally takes note of
similarity features (e.g. color, luminosity, texture) and shape to aid in the process.

In computational vision, the numerous approaches to the attention model of
scene analysis can be categorized as two methodologies: bottom-up and top-down.
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In bottom-up attention, dissimilarities attract the attention of the vision model. In
the top-down methodology, the viewer searches for a specific feature and the
expected objects receive the attention [18]. Through both of these methodologies, a
saliency map can be created to aid in the segmentation of the visual scene. In
general, bottom-up attention models are based upon feature detection (e.g. orien-
tation, shape, texture) that is easily estimated by a computer while top-down models
are more subjective and increase computational complexity in that they depend on
contextual clues, objectives, and expert knowledge of the viewer. In an effort to
reduce computational cost, the method presented here will make use of the bottom-
up saliency model known as Context-Aware Saliency [19, 20].

Context-Aware Saliency Detection (CASD) makes use of the principles of
Gestalt vision psychology in its formulation. Particularly, the model makes use of
following information:

1. Local, pre-attentive features such as color, texture, and contrast.
2. Global attentiveness, which identify features that deviate from the norm.
3. Perceptual organization rules such as a visual scene containing at least one

center of gravity.
4. High-level factors such as distance priors or shape priors.

Using the local-global feature fusion and perceptual organization rules, the
CASD detects the salient objects along with the regions of the image around the
salient object in order to lend context to the salient region. The local, pre-attentive
features give distinctive areas a high saliency and homogenous regions a low
saliency score. Frequently occurring features are classified as part of the ground and
rare features are classified as part of the figure per global attentiveness. Perceptual
organization groups salient pixels that are in close proximity to each other and
discounts salient pixels that are not connected. Finally, a center prior contributes to
the determination, of which of the salient pixels have the highest fixation levels.
Thus, the CASD makes use of the similarity and proximity principles of Gestalt
psychology with exceptionally low computational cost. In particular, the method
evaluates pixels in patches in order to evaluate the context of each pixel. Consid-
ering a single patch pi of scale s at each pixel, a single pixel i is salient, when the
patch containing the pixel is unique with respect to all other patches in the image.
This capability of incorporating context patches with the salient object gives the
CASD model the flexibility needed for scene analysis.

8.3 Proposed Method

The proposed method is based on morphological operations (Sect. 8.3.1), hybrid
morphological contour (Sect. 8.3.2), and representation of fuzzy morphological
contour with visual attention (Sect. 8.3.3).
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8.3.1 Morphological Mean Curvature

In the image processing application of level set active contours, the curve, C:Rþ �
0; 1½ � ! R

2; is represented implicitly as a level set of an embedding function. If we
set u:Rþ � R

2 ! R as an implicit representation of our contour, it will become
C tð Þ ¼ fðx; yÞju t; x; yð Þð Þ ¼ 0g. During the contour evolution, infinitesimal change
of the contour is controlled by differential operators. In other words, a differential
operator D guides the contour evolution with the partial differential equation C tð Þ ¼
D Cð Þ: In partial differential equation formulations of active contours, the smoothing
force regularly takes the form of mean curvature motion and acts as a regularization
term.

The underlying principal of mean curvature motion is the evolution of a simple
closed curve, whose points move in the direction of the normal with specified
velocity. Rewriting D Cð Þ ¼ F � N ; where N is the normal to the contour and F is
a scalar field, one can determine the velocity of evolution at each point on the
contour. In level set implementations, the evolution of u(x, y) is ou

ot ¼ ruj j � F and
will equal Eq. 8.19, when F is the divergence of the normalized gradient (i.e.
Euclidean curvature of C) and gives the curvature of the implicit curve at each point.

ou
ot

¼ ruj jdiv ru
ruj j

� �
ð8:19Þ

The parameter u(x, y) must be discretized in image processing in order to be
applied to the grid of image information, which is usually expressed as pixels in two
dimensional applications. The discretization of the differential operator is not
always a trivial task and results in one of the losses of efficiency in many image
processing contour applications. As a result, the search for a low-cost estimator of
mean curvature motion is an area of active research.

One of the more significant contributions to the topic is provided by [21], in
which it is proven the two-dimensional mean curvature term can be replaced by the
mean of two morphological operators for a single iteration of the method. To
morphologically approximate mean curvature, we let B represent line segments of
set length then define the morphological continuous line operators as mentioned in
Eqs. 8.20–8.21.

Ahuð Þ xð Þ ¼ sup
B 2 B

inf
y 2 xþ hB

u yð Þ ð8:20Þ

J huð Þ xð Þ ¼ inf
B 2 B

sup
y 2 xþ hB

u yð Þ ð8:21Þ

Using these operators, let us then define the mean operator as Eq. 8.22, in which
the scheme in [21] relates the mean operator with the mean curvature motion by
Eq. 8.23.
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F huð Þ xð Þ ¼ Ahuð Þ xð Þ þ J huð Þ xð Þ
2

ð8:22Þ

F huð Þ xð Þ ¼ u xð Þ þ 1
4
h2 ruj jdiv ru

ruj j
� �

xð Þ þ O h3
� � ð8:23Þ

Using a small h and subtracting u(x) from each side of (Eq. 8.23), results in the
infinitesimal generator of the F h operator will be the following:

lim
h!0þ

h�1 F ffiffiffiffi
4h

p u

 �

xð Þ � u xð Þ
h i

¼ ruj jdiv ru
ruj j

� �
xð Þ: ð8:24Þ

From Eq. 8.24 one can solve the mean curvature motion by means of the F h

operator. However, since the F h operator generates new level set values after a
single iteration, it ceases to be morphological. In [22] and [23], Alarez et al. modify
the Catte, Dibos, and Koepfler scheme with the use of operator composition, which
states that given any two operators P1

h and P2
h, we have, for a small h, Eq. 8.25.

P2
h=2 � P1

h=2u � P2
huþ P1

hu
2

ð8:25Þ

From this, Alarez et al. show that the non-morphological operator F ffiffiffiffi
4h

p can be
approximated by the morphological operator represented in Eq. 8.26 with a base of
B2 and is equivalent to Eq. 8.11.

A ffiffi
h

p � J ffiffi
h

p � A ffiffi
h

p uþ J ffiffi
h

p u

2
ð8:26Þ

8.3.2 A Hybrid Morphological Contour

Some authors lay out the format for a hybrid morphological contour [24, 25]. This
section is a brief review of the algorithm for the contour extraction. While the
combination of an edge based and region based active contour, commonly referred
to as a hybrid contour, results in increased computational complexity in order to
mitigate the shortcomings of either method alone, the hybrid morphological contour
has a low complexity and circumventing a method’s shortcoming does not sig-
nificantly add to the computational cost.

In the hybrid method, the coupling of the strong edge term and region statistics
creates a symbiotic relationship. When the edge term is low, the curve is attracted
toward the region of interest. However, when the curve is far away from an edge,
the region statistics take control of the curve evolution and the contour resists
becoming a stationary model. Using the Active Contour without Edges presented as
a basis for the active contour (Eq. 8.27) with the region statistics are used by the
third and fourth terms.
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F c1; c2; Cð Þ ¼ l Length of Cð Þ þ p Area in Cð Þ
þ k1

Z
inC

u� c1j j2dxþ k1

Z
out C

u� c2j j2dx ð8:27Þ

Parameters λ1 and λ2 weight the importance of the regions inside and outside the
curve, respectively, while c1 and c2 are the average intensity levels inside and
outside the contour. In the hybrid morphological active contour, the third and fourth
terms of Eq. 8.27 are incorporated directly into the algorithm.

The first term of the Active Contour without Edges is replaced with the mor-
phological mean curvature evolution described in Eq. 8.25 while the second term
becomes the edge-based portion of the hybrid method. In edge based methods,
the contour flow is often represented with the formulation given in Eq. 8.28, where
g(I)|∇u|v is the balloon force, ∇g(I)∇u is the edge attraction force, and

g Ið Þ ruj jdiv ru
ruj j


 �
is mean curvature motion.

ou
ot

¼ g Ið Þ ruj jvþrg Ið Þruþ g Ið Þ ruj jdiv ru
ruj j

� �
ð8:28Þ

The parameter g(I) represents an edge image attractor usually obtained from an
edge detector, u denotes the contour, and v is an inflation (or deflation) constant.
Focusing on the balloon force, g(I) could be obtained from any edge detector
appropriate for the image. Traditionally, one would use an edge detector, which is
low in the edges of the image such as Eq. 8.29.

g Ið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a rGr � Ij jp ð8:29Þ

In the hybrid morphological active contour method, morphological operations of
dilation and erosion are used to approximate the balloon force. The dilation of a
function is defined as Dhuð Þ xð Þ ¼ supy2hBuðx� yÞ while erosion is defined by
Ehuð Þ xð Þ ¼ infy2hBuðx� yÞ. The radius of the operator is denoted by h and B is a
disk structuring element of radius one. The function ud:Rþ � R

2 ! R, where
ud t; xð Þ ¼ Dtuo xð Þ is the solution to Eq. 8.30 for the initial condition ud 0; xð Þ ¼
uo xð Þ [26].

oud
ot

¼ rudj j ð8:30Þ

As a result, Dh is the infinitesimal generator of Eq. 8.9. Using a comparable
rational, we have the function ud:Rþ � R

2 ! R, where ue t; xð Þ ¼ Etuo xð Þ is the
solution to Eq. 8.31.
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oue
ot

¼ � ruej j ð8:31Þ

Using the morphological operators Dh and Eh, one can now solve level set
evolution PDEs. In the balloon force term, g(I) manages the balloon force in
individual sections of the curve. The smaller g(I) becomes, the closer the curve is to
the edge. With the use of a threshold, factor g(I) can be discretized into the mor-
phological formulation. The product |∇u|v leads to the PDES in Eqs. 8.30 and 8.31.
If v is positive, the PDE becomes the dilation PDE. Likewise, if v is negative, then
the erosion PDE is used.

In the Active Contour without Edges, the internal and external forces are
combined through addition of the terms. Our hybrid morphological active contour
combines them by iteratively interchanging their discretized formulations. In every
iteration, first the balloon force with the edge attraction energy will be applied, then
the region force is applied, and at last the mean curvature motion over the
embedded level set function u is computed. Given the contour evolution at itera-
tion, un : R2 ! 0; 1f g, unþ1 is defined using the steps of the algorithm mentioned
below (Eq. 8.32).

Algorithm (1)
Step 1

unþ1
balloon xið Þ ¼

ðDduÞ xið Þ if g Ið Þ xið Þ[ 0 and v[ 0
ðEduÞ xið Þ if g Ið Þ xið Þ[ 0 and v\0
unballoon otherwise:

8<
:

Step 2

unþ1
region ¼

1 if runþ1
balloon

�� ��½ k1 I � c1ð Þ2�k2 I � c2ð Þ2

 i

xið Þ\0

0 if runþ1
balloon

�� ��½ k1 I � c1ð Þ2�k2 I � c2ð Þ2

 i

xið Þ[ 0

unþ1
ballonðxiÞ otherwise

8>><
>>: ð8:32Þ

c1 ¼
R
X I � HðuÞdxR

inside C dx
and c2 ¼

R
X I � 1� H uð Þð ÞdxR

inside C dx

Step 3

unþ1 ¼ ðAd � J dunþ1
regionÞðxiÞ if gðIÞðxÞ[ 0

unþ1
regionðxiÞ otherwise

(

The experimental results presented in [24] and [25] clearly show the efficiency
and robustness of the hybrid morphological active contour.
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8.3.3 A Fuzzy Morphological Contour with Visual Attention

A fuzzy morphological approach for contour with visual attention supposes the
analysis of fuzzy energy, building of visual attention model, and creation of
combined algorithm.

In [27], Krindis and Chatzis introduced a new type of energy to drive active
contours during the segmentation process. This energy, referred to as fuzzy energy,
was derived from using a fuzzy logic clustering method and then employs the
membership values and weights into the active contour formulation. Specifically,
the following functionals are incorporated into a regional active contour model
provided by Eq. 8.33, where Ω is the image domain and C is an evolving curve such
that C ⊂ Ω.

F1 Cð Þ þ F2 Cð Þ ¼
Z
X

u x; yð Þ½ �m I x; yð Þ � c1j j2dxdyþ
Z
X
½1

� u x; yð Þ�m I x; yð Þ � c2j j2dxdy
ð8:33Þ

An image I(x, y) is clustered into two regions by a fuzzy clustering algorithm,
where u(x, y) represents the membership values of a pixel for each region and m is
a weighting exponent on each fuzzy membership. The model is formulated in a
pseudo-level set due to the fact that membership values of u(x, y) = [0, 1]. The
pseudo-level set is a set of Lipschitz similar function u: I ! R presented in Eq. 8.34
and maintains the ideology of using membership values to define u(x, y).

C ¼ fðx; yÞ 2 I: u x; yð Þ ¼ 0:5g
Cinside ¼ fðx; yÞ 2 I: u x; yð Þ[ 0:5g
Coutside ¼ fðx; yÞ 2 I: u x; yð Þ\0:5g

8<
: ð8:34Þ

Unfortunately, while the Fuzzy Energy based Active Contour proves to be
computationally efficient, it suffers in its inability to robustly segment textural or
multispectral images. However, the flexibility provided by fuzzy energy can be
translated into the hybrid morphological active contour by changing the region-
based step of the algorithm and morphing the level set into the pseudo-level set of
Eq 8.34. The region step will take the form of Eq. 8.35, where c1 represents the
average inside the contour and c2 is the average outside the contour.

unþ1
region ¼

1

1þ k1 I�c1ð Þ2ðxÞ
k2 I�c2ð Þ2ðxÞ


 � 1
m�1

ð8:35Þ

c1 ¼
R
X I � ðuÞmdxR

XðuÞmdx
c2 ¼

R
X I � 1� uð ÞmdxR

X 1� uð Þmdx
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The parameter m represents the fuzzy weighting exponent defined in the fuzzy
rules for the clustering.

The visual attention model is incorporated into the hybrid morphological active
contour in two ways. First, the saliency of an image is calculated and then trans-
formed into an edge image to help define the boundary of the salient object (see
Fig. 8.3) giving the algorithm the image created by g(I) from Eq. 8.28. Second, the
visual attention result is compared to the fuzzy clustering results, and the fuzzy
clustering result, which most closely matches the saliency image, is used as the
basis for the fuzzy energy (see Fig. 8.4).

The algorithm incorporating fuzzy energy and visual attention into the hybrid
morphological active contour is given below, where the membership values from
the fuzzy clustering most similar to the saliency image give u0.

Algorithm (2)

pixel is
on C if I : u0 x; yð Þ ¼ 0:5
inside C if I : u0ðx; yÞ[ 0:5
outside C if I : u0 x; yð Þ\0:5

8<
:

The Algorithm 2 includes the following steps.
Step 1

unþ1
balloon xð Þ ¼

ðDduÞ xð Þ if g Ið Þ xð Þ[ 0 and v[ 0
ðEduÞ xð Þ if g Ið Þ xð Þ[ 0 and v\0
unballoon otherwise:

8<
:

Fig. 8.3 Example of boundary extraction. a An original image courtesy of Caltech [28]. b A
saliency map generated by CASD. c Edges from saliency map

Fig. 8.4 Examples of fuzzy clustering result with three classes. a Class 1 membership map. b
Class 2 membership map. c Class 3 membership map
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The parameter g(I) is an edge attractor image calculated using Eq. 8.28 on the
saliency image.

Step 2

unþ1
region ¼

1

1þ k1 I�c1ð Þ2ðxÞ
k2 I�c2ð Þ2ðxÞ


 � 1
m�1

Fig. 8.5 Segmentation results of fuzzy morphological active contour with visual attention. a An
original image. b Segmentation result. c An original image. d Segmentation result
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where c1 ¼
R
X
I�ðuballoonÞmdxR
X
ðuballonÞmdx

, c2 ¼
R
X
I� 1�uballoonð ÞmdxR
X
1�uballoonð Þmdx , and m is the fuzzy energy mem-

bership weighting exponent.
Step 3

unþ1 ¼ ðAd � J dunþ1
regionÞðxiÞ if gðIÞðxÞ[ 0

unþ1
regionðxiÞ otherwise

(

The images in the experiment are taken from the computational vision dataset at
Caltech [28], GrabCut [29], and the Berkley Segmentation Dataset and Benchmark
[30]. The images are chosen at random and are grayscale or RGB. The images have
illumination artifacts, shadows, texture, the multiple objects to segment, intensity
inhomogeneity, and noise, i.e. typical image artifacts that make segmentation of
visual scenes a nontrivial task. Figure 8.5 demonstrates a random sampling of the
results.

The comparison of the fuzzy c-means clustering to the saliency image is con-
ducted automatically and uses similarity cues to make the selection, of which result
to use. The membership function values of each pixel in the chosen clustering result
are then used to create the level set function. This results in the use of fuzzy energy
in the active contour and prompts a change in the calculations of the level set during
the region competition portion of the method. As demonstrated with the sample
image results, the algorithm successfully segments salient figures in interior and
exterior environments. It also successfully segmented foreground figures in areas of
high texture. These results lend themselves to the effective segmentation of static
images for scene analysis.

8.4 Conclusion

The images segmented in this work represent just the tip of the possible image types
this method has the potential to segment. It would be trivial to extend the work to a
true multispectral algorithm as well as incorporating more texture cues into the
fuzzy membership rules. The extension of the algorithm to video sequences would
also be a simple matter of changing the image parameters to video and incorpo-
rating a comparison module for each frame of videos. The use of a saliency model
to compare clustering results leading into the membership values for the contour
evolution helps ensure the method will segment a salient object as defined by
human vision research. As a final point, the savings in computational efficiency
garnered from using a morphological curve evolution rather than a partial differ-
ential equation and corresponding Euler-Lagrange equations translates into a highly
accurate and efficient segmentation method.
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