
Chapter 7
Optimal Measurement of Visual Motion
Across Spatial and Temporal Scales

Sergei Gepshtein and Ivan Tyukin

Abstract Sensory systems use limited resources to mediate the perception of a
great variety of objects and events. Here a normative framework is presented for
exploring how the problem of efficient allocation of resources can be solved in
visual perception. Starting with a basic property of every measurement, captured by
Gabor’s uncertainty relation about the location and frequency content of signals,
prescriptions are developed for optimal allocation of sensors for reliable perception
of visual motion. This study reveals that a large-scale characteristic of human vision
(the spatiotemporal contrast sensitivity function) is similar to the optimal pre-
scription, and it suggests that some previously puzzling phenomena of visual
sensitivity, adaptation, and perceptual organization have simple principled
explanations.
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7.1 Introduction

Biological sensory systems collect information from a vast range of spatial and
temporal scales. For example, human vision can discern modulations of luminance
that span nearly seven octaves of spatial and temporal frequencies, while many
properties of optical stimulation (such as the speed and direction of motion) are
analyzed within every step of the scale.

The large amount of information is encoded and transformed for the sake of
specific visual tasks using limited resources. In biological systems, the resources
are the large but finite number of neural cells. The cells are specialized: each is
sensitive to a small subset of optical signals, presenting sensory systems with the
problem of allocation of limited resources. This chapter is concerned with how this
problem is solved by biological vision. How are the specialized cells distributed
across the great number of potential optical signals in the environments that are
diverse and variable?

The extensive history of vision science suggests that any attempt of vision theory
should begin with an analysis of the tasks performed by visual systems. Following
Aristotle, one may begin with the definition of vision as “knowing what is where by
looking” [1]. The following argument concerns the basic visual tasks captured by
this definition. The “what” and “where” of visual perception are associated with two
characteristics of optical signals: their frequency content and locations, in space and
time. The last statement implicates at least five dimensions of optical signals (which
will become clear in a moment).

The basic visual tasks are bound by first principles of measurement. To see that,
consider a measurement device (a “sensor” or “cell”) that integrates its inputs over
some spatiotemporal interval. An individual device of an arbitrary size will be more
suited for measuring the location or the frequency content of the signal, reflected in
the uncertainties of measurement. The uncertainties associated with the location and
the frequency content are related by a simple law formalized by Gabor [2], who
showed that the two uncertainties trade off across scales. As the scale changes, one
uncertainty rises and the other falls.

Assuming that the visual systems in question are interested in both the locations
and frequency content of optical signals (“stimuli”), the tradeoff of uncertainties
will attain a desired (“optimal”) balance of uncertainties at some intermediate scale.
The notion of the optimal tradeoff of uncertainty has received considerable attention
in studies of biological vision. This is because the “receptive fields” of single neural
cells early in the visual pathways appear to approximate one or another form of the
optimal tradeoff [3–10].

Here the tradeoff of uncertainties is formulated in a manner that is helpful for
investigating its consequences outside of the optimum: across many scales, and for
cell populations rather than for single cells. Then the question is posed of how the
scales of multiple sensory cells should be selected for simultaneously minimizing
the uncertainty of measurement for all the cells, on several stimulus dimensions.
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This article concentrates on how visual motion can be estimated at the lowest
overall uncertainty of measurement across the entire range of useful sensor sizes
(in artificial systems) or the entire range of receptive fields (in biological systems).
In other words, the following is an attempt to develop an economic normative
theory of motion-sensitive systems. Norms are derived for efficient design of such
systems, and then the norms are compared with facts of biological vision.

This approach from first principles of measurement and parsimony helps to
understand the forces that shape the characteristics of biological vision, but which
had appeared intractable or controversial using previous methods. These charac-
teristics include the spatiotemporal contrast sensitivity function, adaptive transfor-
mations of this function caused by stimulus change, and also some characteristics of
the higher-level perceptual processes, such as perceptual organization.

The chapter has the following structure. The uncertainty relation in one
dimension is presented in Sect. 7.2, generalized to two dimensions (of space and
time) in Sect. 7.3. The optimal conditions for motion measurement in view of the
uncertainly are explored in Sect. 7.4. Efficient allocation of sensors according to the
optimal conditions is described in Sect. 7.5. Conclusions are situated in Sect. 7.6.

7.2 Gabor’s Uncertainty Relation in One Dimension

The outcomes of measuring the location and the frequency content of any signal by
a single sensory device are not independent of one another. The measurement of
location assigns the signal to interval Dx on some dimension of interest x. The
smaller the interval the lower the uncertainty about signal location. The uncertainty
is often described in terms of the precision of measurements, quantified by the
dispersion of the measurement interval or, even simpler, by the size of the interval,
Dx. The smaller the interval, the lower the uncertainty about location, and the higher
the precision of measurement.

The measurement of frequency content evaluates how the signal varies over x,
i.e., the measurement is best described on the dimension of frequency of signal
variation, fx. The measurement of frequency content is equivalent to localizing the
signal on fx: assigning the signal to some interval Dfx. Again, the smaller the
interval, the lower the uncertainty of measurement and the higher the precision.1

The product of uncertainties about the location and frequency content of the
signal is bounded “from below” [2, 11–13]. The product cannot be smaller than
some positive constant Cx:

UxUf �Cx; ð7:1Þ

1 For brevity, here “frequency content” will sometimes be shortened to “content.”
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where Ux and Uf are the uncertainties about the location and frequency content of
the signal, respectively, measured on the intervals Dx and Dfx.

Equation 7.1 means that any measurement has a limit at UxUf ¼ Cx. At the limit,
decreasing one uncertainty is accompanied by increasing the other. For simplicity,
let us quantify the measurement uncertainty by the size of the measurement interval.
Gabor’s uncertainty relation may therefore be written as

DxDfx �Cx; ð7:2Þ

and its limiting condition as

DxDfx ¼ Cx: ð7:3Þ

Let us consider the consequences of the uncertainty relation for sensory mea-
surement, first for single sensors (Sect. 7.2.1) and then for sensor populations
(Sect. 7.2.2), which afford several benefits (Sect. 7.2.3).

7.2.1 Single Sensors

First, consider how the uncertainty relation constrains the measurements by a single
measuring device: a “sensor.” Figure 7.1 illustrates three spatial sensors of different
sizes. In Fig. 7.1a, the measurement intervals of the sensors are defined on two
spatial dimensions. For simplicity, let us consider just one spatial dimension, x, so
the interval of measurement (“sensor size”) is Dx.

The limiting effect of the uncertainty relation for such sensors has a convenient
graphic representation called “information diagram” (Fig. 7.1b). Let the two mul-
tiplicative terms of Eq. 7.3 be represented by the two sides of a rectangle in
coordinate plane (x, fx). Then Cx is the rectangle area. Such rectangles are called
“information cells” or “logons.” Three logons, of different shapes but of the same
area Cx, are shown in Fig. 7.1b, representing the three sensors:

• The logon of the smallest sensor (smallest Dx, left) is thin and tall, indicating
that the sensor has a high precision on x and a low precision on fx.

• The logon of the largest sensor (right) is thick and short, indicating a low
precision on x and a high precision on fx.

• The above sensors are specialized for measuring either the location or frequency
content of signals. The medium-size sensor (middle) offers a compromise: its
uncertainties are not as low as the lowest uncertainties (but not as high as the
highest uncertainties) of the specialized sensors. In this respect, the medium-size
sensor trades one kind of uncertainty for another.

The medium-size sensors are most useful for jointly measuring the locations and
frequency content of signals.
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The ranking of sensors can be formalized using an additive model of uncertainty
(Fig. 7.1c). The motivation for such an additive model is presented in Appendix 1.
Let us assume that visual systems have no access to complete prior information
about the statistics of measured signals (such as the joint probability density
functions for the spatial and temporal locations of stimuli and their frequency
content). Instead, the systems can reliably estimate only the means and variances of
the measured quantities.

Accordingly, the overall uncertainty in Fig. 7.1c has the following compo-
nents. The increasing function represents the uncertainty about signal location:
Ux ¼ Dx. The decreasing function represents the uncertainty about signal content:
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Fig. 7.1 Components of
measurement uncertainty.
a The image is sampled by
three sensors of different
sizes. b The three sensors are
associated with Gabor’s
logons: three rectangles that
have the same areas but
different shapes, according to
the limiting condition of the
uncertainty relation in Eq. 7.3.
c Functions Ux and Uf

represent the uncertainties
about the location and content
of the measured signal (the
horizontal and vertical extents
of the logons in b,
respectively), and function Uj

represents the joint
uncertainty about signal
location and content
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Uf ¼ Dfx ¼ Cx=Dx (from Eq. 7.3). The joint uncertainty of measuring signal
location and content is represented by the non-monotonic function Uj:

Uj ¼ kxUx þ kf Uf ¼ kxDxþ kf
1
Dx

; ð7:4Þ

where kx and kf are positive coefficients reflecting how important the components
of uncertainty are relative to one another.

The additive model of Eq. 7.4 implies a worst-case estimate of the overall
uncertainty (explained just below in terms of the minimax principle). The additive
components are weighted, while the weights are playing several roles. They bring
the components of uncertainty to the same units, allowing for different magnitude of
Cx, and representing the fact that the relative importance of the components
depends on the task at hand.2

The joint uncertainty function (Uj in Fig. 7.1c) has its minimum at an inter-
mediate value of Dx. This is a point of equilibrium of uncertainties, in that a sensor
of this size implements a perfect balance of uncertainties about the location and
frequency content of the signal [14]. If measurements are made in the interest of
high precision, and if the location and the frequency content of the signal are
equally important, then a sensor of this size is the best choice for jointly measuring
the location and the frequency content of the signal.

The Minimax Principle
What is the best way to allocated resources in order to reduce the chance of gross
errors of measurement. One approach to solving this problem is using the minimax
strategy devised in game theory for modeling choice behavior [15, 16]. Generally,
the minimax strategy is used for estimating the maximal expected loss for every
choice and then pursuing the choices for which the expected maximal loss is
minimal. In the present case, the choice is between the sensors that deliver infor-
mation with variable uncertainty.

In the following, the minimax strategy is implemented by assuming the maximal
(worst-case) uncertainty of measurement across the sensors spanning the entire
range of the useful spatial and temporal scales. This strategy is used in two ways.
First, the consequences of Gabor’s uncertainty relation are investigated under the
assumption that the uncertainty of measurement is as high as possible (i.e., using
the limiting case of uncertainty relation; Eq. 7.3). Second, the outcomes of mea-
surement on different sensors are anticipated by adding their component uncer-
tainties, i.e., using the joint uncertainty function of Eq. 7.4. (Advantages of the
additive model are explained in Appendix 1.) Suppose that sensor preferences are
ranked according to the expected maximal uncertainty: the lower the uncertainty,
the higher the preference.

2 Different criteria of measurement and sensor shapes correspond to different magnitudes of Cx.
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7.2.2 Sensor Populations

Real sensory systems have at their disposal large but limited numbers of sensors.
Since every sensor is useful for measuring only some aspects of the stimulus,
sensory systems must solve an economic problem: they must distribute their sensors
in the interest of perception of many different stimuli. Let us consider this problem
using some simple arrangements of sensors.

First, consider a population of identical sensors in which the measurement
intervals do not overlap. Figure 7.2a contains three examples of such sensors, using

Fig. 7.2 Allocation of multiple sensors. a Information diagrams for a population of four sensors,
using sensors of the same size within each population, and of different sizes across the populations.
b Uncertainty functions. The red curve is the joint uncertainty function introduced in Fig. 7.1, with
the markers indicating special conditions of measurement: the lowest joint uncertainty (the circle)
and the equivalent joint uncertainty (the squares), anticipating the optimal sets and the equivalence
classes of measurement in the higher-dimensional systems illustrated in Figs. 7.3 and 7.4.
c Preference functions. The solid curve is a function of allocation preference (here reciprocal to the
uncertainty function in b: an optimal distribution of sensors, expected to shift (dashed curve) in
response to change in stimulus usefulness
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the information diagram introduced in Fig. 7.1. Each of the three diagrams in
Fig. 7.2a portrays four sensors, identical to one another except they are tuned to
different intervals on x (which can be space or time). Each panel also contains a
representation of a narrow-band signal: the yellow circle, the same across the three
panels of Fig. 7.2a. The different arrangements of sensors imply different resolu-
tions of the system for measuring the location and frequency content of the
stimulus.

• The population of small sensors (small Dx on the left of Fig. 7.2a) is most
suitable for measuring signal location: the test signal is assigned to the rightmost
quarter on the range of interest in x. In contrast, measurement of frequency
content is poor: signals presented anywhere within the vertical extent of the
sensor (i.e., within the large interval on fx) will all lead to the same response.
This system has a good location resolution and poor frequency resolution.

• The population of large sensors (large Dx on the right of Fig. 7.2a) is most
suitable for measuring frequency content. The test signal is assigned to a small
interval on fx. Here, measurement of location is poor. This system has a good
frequency resolution and poor location resolution.

• The population of medium-size sensors can obtain useful information about
both locations and frequency content of signals. It has a better frequency res-
olution than the population of small sensors, and a better location resolution than
the population of large sensors.

Consequences of the different sensor sizes are summarized by the joint uncer-
tainty function in Fig. 7.2b. (For non-overlapping sensors, the function has the same
shape as in Fig. 7.1c). The figure makes it clear that the sensors or sensor popu-
lations with very different properties can be equivalent in terms of their joint
uncertainty. For example, the two filled squares in Fig. 7.2b mark the uncertainties
of two different sensor populations: one contains only small sensors and the other
contains only large sensors.

The populations of sensors, in which the measurement intervals overlap, are
more versatile than the populations of non-overlapping sensors. For example, the
sensors with large overlapping intervals can be used to emulate measurements by
the sensors with smaller intervals (Appendix 2), reducing the uncertainty of
stimulus localization. Similarly, groups of overlapping sensors with small mea-
surement intervals can emulate the measurements by sensors with larger intervals,
reducing the uncertainty of identification. Overall, a population of the overlapping
sensors can afford lower uncertainties across the entire range of measurement
intervals, represented in Fig. 7.2b by the dotted curve: a lower-envelope uncer-
tainty function. Still, the new uncertainty function has the same shape as the
previous function (represented by the solid line) because of the limited total
number of the sensors.
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7.2.3 Cooperative Measurement

To illustrate the benefits of measurement using multiple sensors, suppose that the
stimulation was uniform and one could vary the number of sensors in the popu-
lation at will, starting with a system that has only a few sensors, toward a system
that has an unlimited number of sensors.

• A system equipped with very limited resources, and seeking to measure both the
location and the frequency content of signals, will have to be unmitigatedly
frugal. It will use only the sensors of medium size, because only such sensors
offer useful (if limited) information about both properties of signals.

• A system enjoying unlimited resources will be able to afford many specialized
sensors or groups of such sensors (represented by the different information
diagrams in Fig. 7.2a).

• A moderately wealthy system: a realistic middle ground between the extremes
outlined above will be able to escape the straits of Gabor’s uncertainty relation
using different specialized sensors and thus measuring the location and content
of signals with high precision.

As one considers systems with different numbers of sensors, from small to large,
one expects to find an increasing ability of the system to afford the large and small
measurement intervals. As the number of sensors increases, their allocation will
expand in two directions, up and down on the dimension of sensor scale: from using
only the medium-size sensors in the poor system, to using also the small and large
sensors in the wealthier systems. This allocation policy is illustrated in Fig. 7.2c.
The preference function in Fig. 7.2c indicates that, as the more useful sensors are
expected to grow in number, the distribution of sensors will form a smooth function
across the scales. As mentioned, the sensitivity of the system is expected to follow a
function monotonically related to the preference function.

Increasing the number of sensors selective to the same stimulus condition is
expected to improve sensory performance, manifested in lower sensory thresholds.
One reason for such improvement in biological sensory systems is the fact that
integrating information across multiple sensors will help to reduce the detrimental
effect of the noisy fluctuations of neural activity, in particular when the noises are
uncorrelated.

The preference function in Fig. 7.2c is exceedingly simple: it merely mirrors the
joint uncertainty function of Fig. 7.2b. This example helps to illustrate some special
conditions of the uncertainty of measurement and to anticipate their consequences
for sensory performance. First, the minimum of uncertainty corresponds to
the maximum of allocation preference, where the highest sensitivity is expected.
Second, equal uncertainties correspond to equal allocation preferences, where equal
sensitivities are expected. Allocation policies are considered again in Sects. 7.4 and
7.5, where the relationship is studied between a normative prescription for resource
allocation and a characteristic of performance in biological vision.
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7.3 Gabor’s Uncertainty in Space-Time

Let us consider how Gabor’s uncertainty generalizes to two dimensions. A two-
dimensional spatiotemporal uncertainty function is introduced in Sect. 7.3.1, and
the equivalence classes of uncertainty are derived in Sect. 7.3.2. The interaction
between the spatial and temporal dimensions of uncertainty is discussed in
Sect. 7.3.3.

7.3.1 Uncertainty in Two Dimensions

Consider a more complex case, where signals vary on two dimensions: space
and time. Here, the measurement uncertainty has four components, illustrated in
Fig. 7.3a. The bottom of Fig. 7.3a is a graph of the spatial and temporal sensor sizes
ðT; SÞ ¼ ðDt;DsÞ. Every point in this graph corresponds to a “condition of mea-
surement” associated with the four properties of sensors.3 By Gabor’s uncertainty
relation, spatial and temporal intervals ðDt;DsÞ are associated with, respectively, the
spatial and temporal frequency intervals ðDft;DfsÞ.

The four-fold dependency is explained on the side panels of the figure using
Gabor’s logons, each associated with a sensor labeled by a numbered disc. For
example, in sensor 7 the spatial and temporal intervals are small, indicating a good
precision of spatial and temporal localization (i.e., concerning “where” and “when”
the stimuli occurs). But the spatial and temporal frequency intervals are large,
indicating a low precision in measuring spatial and temporal frequency content
(a low capacity to serve the “what” task of stimulus identification). This pattern is
reversed in sensor 3, where the precision of localization is low but the precision of
identification is high.

As in the previous example (Fig. 7.1b, c), here the one-dimensional uncertainties
are summarized using joint uncertainty functions: the red curves on the side panels
of Fig. 7.3b. Each function has the form of Eq. 7.4, applied separately to spatial:

US ¼ k1Sþ k2=S

and temporal:

UT ¼ k3T þ k4=T

3 Here the sensors are characterized by intervals following the standard notion that biological
motion sensors are maximally activated when the stimulus travels some distance Ds over some
temporal interval Dt [17].
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dimensions, where S ¼ Ds and T ¼ Dt. Next, spatial and temporal uncertainties are
combined for every spatiotemporal condition:

UST ¼ UT þ US

to obtain a bivariate spatiotemporal uncertainty function:

UST ¼ k1Sþ k2
S
þ k3T þ k4

T
ð7:5Þ

represented in Fig. 7.3b by a surface.
The spatiotemporal uncertainty function in Fig. 7.3b has a unique minimum, of

which the projection on graph ðT; SÞ is marked by the red dot: the point of perfect
balance of the four components of measurement uncertainty. Among the conditions

Fig. 7.3 Components of
measurement uncertainty in
space-time. a Spatial and
temporal information
diagrams of spatiotemporal
measurements. The numbered
discs each represents a sensor
of particular spatial and
temporal extent, S ¼ Ds and
T ¼ Dt. The rectangles on
side panels are the spatial and
temporal logons associated
with the sensors. b The
surface represents the joint
uncertainty about signal
location and frequency
content of signals across
sensors of different spatial and
temporal size. The contours in
the bottom plane (S, T) are
sets of equivalent uncertainty
(reproduced for further
consideration in Fig. 7.4).
Panel A is adopted from [18]
and panel B from [19]
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of imperfect balance of uncertainties, consider the conditions of an equally
imperfect balance. These are the equivalence classes of measurement uncertainty,
represented by the level curves of the surface. The concentric contours on the
bottom of Fig. 7.3b are the projections of some of the level curves.

7.3.2 Equivalence Classes of Uncertainty

Contours of equal measurement uncertainty are reproduced in Fig. 7.4 from the
bottom of Fig. 7.3b. The pairs of connected circles indicate that the slopes of
equivalence contours vary across the conditions of measurement. This fact has
several interesting implications for the perception of visual motion.

First, if the equivalent conditions of motion perception were consistent with the
equivalent conditions of uncertainty, then some lawful changes in the perception of
motion would be expected for stimuli that activate sensors in different parts of the
sensor space. This prediction was confirmed in studies of apparent motion, which is
the experience of motion from discontinuous displays, where the sequential views
of the moving objects (the “corresponding image parts”) are separated by spatial (r)
and temporal (s) distances. Perceptual strength of apparent motion in such displays
was conserved: sometimes by changing r and s in the same direction (both
increasing or both decreasing), which is the regime of space-time coupling [22], and
sometimes by trading off one distance for another: the regime of space-time tradeoff
[23]. Gepshtein and Kubovy [20] found that the two regimes of apparent motion
were special cases of a lawful pattern: one regime yielded to another as a function
of speed, consistent with the predictions illustrated in Fig. 7.4.

Fig. 7.4 Equivalence classes of uncertainty. The contours represent equal measurement
uncertainty (reproduced from the bottom panel of Fig. 7.3b and the red circle represents the
minimum of uncertainty. The pairs of connected circles labeled “space-time coupling” and “space-
time tradeoff” indicate why some studies of apparent motion discovered different regimes of
motion perception in different stimuli [20, 21]
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Second, the regime of space-time coupling undermines one of the cornerstones
of the literature on visual perceptual organization: the proximity principle of per-
ceptual grouping [24, 25]. The principle is an experimental observations from the
early days of the Gestalt movement, capturing the common observation that the
strength of grouping between image parts depends on their distance: the shorter
the distance the stronger the grouping. In space-time, the principle would hold, if
the strength of grouping had not changed, when increasing one distance (r or s)
was accompanied by decreasing the other distance (s or r): the regime of tradeoff
[26]. The fact that the strength of grouping is maintained by increasing both r and
s, or by decreasing both r and s, is inconsistent with the proximity principle [21].

7.3.3 Spatiotemporal Interaction: Speed

Now let us consider the interaction of the spatial and temporal dimensions of
measurement. A key aspect of this interaction is the speed of stimulus variation: the
rate of temporal change of stimulus intensity across spatial location. The dimension
of speed has been playing a central role in the theoretical and empirical studies of
visual perception [17, 27, 28]. Not only is the perception of speed crucial for the
survival of mobile animals, but it also constitutes a rich source of auxiliary infor-
mation for parsing the optical stimulation [29, 30].

What is more, speed appears to play the role of a control parameter in the
organization of visual sensitivity. The shape of a large-scale characteristic of visual
sensitivity (measured using continuous stimuli) is invariant with respect to speed
[31, 32]. And a characteristic of the strength of perceived motion in discontinuous
stimuli (giving rise to “apparent motion”) collapse onto a single function, when
plotted against speed [20].

From the present normative perspective, the considerations of speed measure-
ment (combined with the foregoing considerations of measuring the location and
frequency content) of visual stimuli have two pervasive consequences, which are
reviewed in some detail next. First, in a system optimized for the measurement of
speed, the expected distribution of the quality of measurement has an invariant
shape, distinct from the shape of such a distribution conceived before one has taken
into account the measurement of speed (Fig. 7.4). Second, the dynamics of visual
measurement, and not only its static organization, will depend on the manner of
interaction of the spatial and temporal aspects of measurement.

In Figs. 7.3 and 7.4, a distribution of the expected uncertainty of measurement
was derived from a local constraint on measurement. The local constraint was
defined separately for the spatial and temporal intervals of the sensor. The con-
siderations of speed measurement add another constraint, which has to do with the
relationship between the spatial and temporal intervals.
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The ability to measure speed by a sensor defined by spatial and temporal
intervals depends on the extent of these intervals. As it is shown in Fig. 7.5a,
different ratios of the spatial extent to the temporal extent make the sensor differ-
ently suitable for measuring different magnitudes of speed.

This argument is one consequence of the Law of The Minimum [33], illustrated
in Fig. 7.5b using Liebig’s barrel. A broken barrel with the staves of different
lengths can hold as much content as the shortest stave allows. Using the staves of
different lengths is wasteful because a barrel with all staves as short as the shortest
stave would do just as well. In other words, the barrel’s capacity is limited by the
shortest stave.

Similarly, a sensor’s capacity for measuring the speed is limited by the extent of
its spatial and temporal intervals. The capacity is not used fully, if the spatial and
temporal projections of vector v are larger or smaller than the spatial and temporal
extents allow (v1 and v3 in Fig. 7.5b). Just as the extra length of the long staves is
wasted in the Liebig’s barrel, the spatial extent of the sensor is wasted in mea-
surement of v1 and the temporal extent is wasted in measurement of v3. Let us
therefore start with the assumption that the sensor defined by the intervals S and T is
best suited for measuring speed v ¼ S=T .

7.4 Optimal Conditions for Motion Measurement

Several special conditions of motion measurements — the minima of uncertainty
and the shape of the optimal set of measurement — are introduced, respectively, in
Sects. 7.4.1 and 7.4.2.

Fig. 7.5 Economic measurement of speed. a The rectangle represents a sensor defined by spatial
and temporal intervals (S and T). From considerations of parsimony, the sensor is more suitable for
measurement of speed v2 ¼ S=T than v1 or v3 since no part of S or T is wasted in measurement of
v2. b Liebig’s barrel. The shortest stave determines barrel’s capacity. Parts of longer staves are
wasted since they do not affect the capacity
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7.4.1 Minima of Uncertainty

The optimal conditions of measurement are expected, where the measurement
uncertainty is the lowest. Using a shorthand notation for the spatial and temporal
partial derivatives of UST in Eq. 7.4, oUS ¼ oUST=oS and oUT ¼ oUST=oT , the
minimum of measurement uncertainty is the solution of

oUT dT þ oUSdS ¼ 0: ð7:6Þ

The optimal condition for the entire space of sensors, disregarding individual
speeds, is marked as the red point in Fig. 7.4. To find the minima for specific speeds
vi, let us rewrite Eq. 7.6 such that speed appears in the equation as an explicit term.
By dividing each side of Eq. 7.6 by dT , and using the fact that vi ¼ dS=dT , Eq. 7.6
becomes

oUSvi þ oUT ¼ 0: ð7:7Þ

The solution of Eq. 7.7 is a set of optimal conditions of measurement across
speeds. To illustrate the solution graphically, consider the vector form of Eq. 7.7,
i.e., the scalar product

gðT ;SÞ; vðT ;SÞ
D E

¼ 0; ð7:8Þ

where the first term is the gradient of measurement uncertainty function

gðT ;SÞ ¼ ðouT ; ouSÞ ð7:9Þ

and the second term is the speed

vðT ;SÞ ¼ ðT; vTÞ ð7:10Þ

for sensors with parameters ðT ; SÞ. For now, assume that the speed, to which a
sensor is tuned is the ratio of spatial to temporal intervals (v ¼ S=T) that define the
logon of the sensor. (Normative considerations of speed tuning are reviewed in
Sect. 7.3.3.)

The two terms of Eq. 7.8 are shown in Fig. 7.6: separately in panels A-B and
together in panel C. The blue curve in panel C represents the set of conditions
where vectors v and g are orthogonal to one another, satisfying Eq. 7.8. This curve
is the “optimal set” for measuring speed while minimizing the uncertainty about
signal location and content.
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7.4.2 The Shape of Optimal Set

The solution of Eq. 7.8 was derived for speed defined at every point in the space of
intervals (T,S): the blue arrows in Fig. 7.6b. This picture is an abstraction that
disregards the fact that measurements are performed while the sensors integrate
stimulation over sensor extent. The solution of Eq. 7.8 that takes this fact into
account is described in Fig. 7.7. The integration reduces differences between the
directions of adjacent speed vectors (panel B), and so the condition of orthogonality
of g and v is satisfied at locations other than in Fig. 7.6.

The red curve Fig. 7.7c is the “integral” optimal set for measuring speed. This
figure presents an extreme case, where speeds are integrated across the entire range
of stimulation, as if every sensor had access to the expected speed of stimulation
across the entire range of stimulus speed:

ve ¼
Z1
0

pðvÞvdv; ð7:11Þ

where pðvÞ is the distribution of speed in the stimulation. At this extreme, every v is
co-directional with the expected speed.

In comparison to the local optimal set (the blue curve in Fig. 7.7c), many points
of the integral optimal set (the red curve) are shifted away from the origin of the
parameter space. The shift is small in the area of expected speed ve (the black line in
Fig. 7.8), yet the shift increases away from the expected speed, such that the integral
optimal set has the shape of a hyperbola.

The position of the optimal set in the parameter space depends on the prevailing
speed of stimulation [19], as Fig. 7.8 illustrates. This dependence is expected to be
more pronounced in cases where the integration by receptive fields is large.

Fig. 7.6 Graphical solution of Eq. 7.8 without integration of speed. a Local gradients of
measurement uncertainty g. b Speeds v, to which the different sensors are tuned. c Optimal
conditions (blue curve) arise, where g and v are orthogonal to one another (Eq. 7.8). The yellow
circles are two examples of locations, where the requirement of orthogonality is satisfied. (Arrow
lengths are normalized to avoid clutter.)
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To summarize, the above argument has been concerned with how speed inte-
gration affects the optimal conditions for speed measurement. At one extreme, with
no integration, the set of optimal conditions could have any shape. At the other
extreme, with the scope of integration maximally large, the optimal set is a
hyperbola. In between, the larger the scope of integration, the more the optimal set
resembles a hyperbola. The position of this hyperbola in the parameter space
depends on the prevalent speed of stimulation.

This argument has two significant implications. First, the distribution of
resources in the visual system is predicted to have an invariant shape, which is
consistent with results of measurements in biological vision (Fig. 7.9) using a
variety of psychophysical tasks and stimuli [27, 34–36]. Second, it implies that
changes in statistics of stimulation will have a predictable effect on allocation of
resources, helping the systems adapt to the variable stimulation, a theme developed
in the next section.

Fig. 7.7 Graphical solution of Eq. 7.8 with integration of speed. a Local gradient of measurement
uncertainty g as in Fig. 7.6a. b Speeds v integrated across multiple speeds. c Now the optimal
conditions (red curve) arise at locations different from those in Fig. 7.6 (the blue curve is a copy
from Fig. 7.6c)

Fig. 7.8 Effect of expected stimulus speed. The red and blue curves are the optimal sets derived in
Figs. 7.6 and 7.7, now shown in logarithmic coordinates to emphasize that the “integral” optimal
set (red) has the invariant shape of a rectangular hyperbola, whereas the “local” optimal set (blue)
does not. From a to c, the expected stimulus speed (Eq. 7.11) decreases, represented by the black
lines. The position of the integral optimal set changes accordingly
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7.5 Sensor Allocation

In this section, let us consider adaptive allocation of sensors: its norms (Sect. 7.5.1)
and mechanisms (Sect. 7.5.2).

7.5.1 Adaptive Allocation

Allocation of sensors is likely to depend on several factors that determine sensor
usefulness, such as sensory tasks and properties of stimulation. For example, when
the organism needs to identify rather than localize the stimulus, large sensors are
more useful than small ones. Allocation of sensors by their usefulness is therefore
expected to shift, for example as shown in Fig. 7.2c.

Such shifts of allocation are expected also because the environment is highly
variable. To insure that sensors are not allocated to stimuli that are absent or
useless, biological systems must monitor their environment and the needs of
measurement. As the environment or needs change, the same stimuli become more
or less useful. The system must be able to reallocate its resources: change properties
of sensors such as to better measure useful stimuli.

Because of the large but limited pool of sensors at their disposal, real sensory
systems occupy a middle ground between the extremes of sensor “wealth.” Such
systems can afford some specialization but they cannot be wasteful. They are
therefore subject to Gabor’s uncertainty relation, but they can alleviate conse-
quences of the uncertainty relation, selectively and to some extent, by allocating
sensors to some important classes of stimuli. Allocation preferences of such sys-
tems is expected to look like that in Fig. 7.2c, yet generalized to multiple stimulus
dimensions.

To summarize, the above analysis suggests that sensory systems are shaped by
constraints of measurement and the economic constraint of limited resources. This
is because the sensors of different sizes are ordered according to their usefulness in
terms of Gabor’s uncertainty relation. These considerations are simple preceding
in the one-dimensional analysis undertaken so far. In the more complex case
considered in the next section, this approach leads to nontrivial conclusions. In
particular, this approach helps to explain several puzzling phenomena in perception
of motion and in motion adaptation.

The preceding analysis has led to a prescription for how receptive fields of
different spatial and temporal extents ought to be distributed across the full range of
visual stimuli. By this prescription, changes in usefulness of stimuli are expected to
cause changes in receptive field allocation. Now consider some specific predictions
of how the reallocation of resources is expected to bring about systematic changes
in spatiotemporal visual sensitivity. Because the overall amount of resources in the
system is limited, an improvement of visual performance (such as a higher sensi-
tivity) at some conditions will be accompanied by a deterioration of performance
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(a lower sensitivity) at other conditions, leading to counterintuitive patterns of
sensitivity change.

Let us assume should be allocated to the equally useful stimuli, when certain
speeds become more prevalent or more important for perception than other speeds
period. Then, the visual system is expected to allocate more resources to the more
important speeds. For example, Fig. 7.10a, b contains maps of spatiotemporal
sensitivity computed for two environments, with high and low prevailing speeds.
Figure 7.10c is a summary of differences between the sensitivity maps. The pre-
dicted changes form well-defined foci of increased performance and large areas of
decreased performance. Gepshtein et al. [37] used intensive psychophysical
methods [38] to measure the entire spatiotemporal contrast sensitivity function in
different statistical “contexts” of stimulation. They found that sensitivity changes
were consistent with the predictions illustrated in Fig. 7.10.

Fig. 7.9 Human spatiotemporal contrast sensitivity function, shown as a surface in a and a
contour plot in b. Conditions of maximal sensitivity across speeds form the thick curve labeled
“max.” The maximal sensitivity set has the shape predicted by the normative theory: the red curve
in Fig. 7.7. The mapping from measurement intervals to stimulus frequencies is explained in
[19, 27]. Both panels are adopted from [31]
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Fig. 7.10 Predictions for adaptive reallocation of sensors. a, b Sensitivity maps predicted for two
stimulus contexts: dominated by high speed in a and low speed in b. The color stands for normalized
sensitivity. c Sensitivity changes computed as 100� a=b; where a and b are map entries in a and b,
respectively. Here, the color stands for sensitivity change: gain in red and loss in blue
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These results suggest a simple resolution to some long-standing puzzles in the
literature on motion adaptation. In the early theories, adaptation was viewed as a
manifestation of neural fatigue. Later theories were more pragmatic, assuming that
sensory adaptation is the organism’s attempt to adjust to the changing environment
[39–42]. But evidence supporting this view has been scarce and inconsistent. For
example, some studies showed that perceptual performance improved at the
adapting conditions, but other studies reported the opposite [43, 44]. Even more
surprising were systematic changes of performance for stimuli very different from
the adapting ones [44]. According to the present analysis, such local gains and
losses of sensitivity are expected in a visual system that seeks to allocate its limited
resources in face of uncertain and variable stimulation (Fig. 7.10). Indeed, the
pattern of gains and losses of sensitivity manifests an optimal adaptive behavior.

This example illustrates that in a sensory system with scarce resources, opti-
mization of performance will lead to a reduction of sensitivity to some stimuli. This
phenomenon is not unique to sensory adaptation [45]. For example, demanding
tasks may cause impairment of visual performance for some stimuli, as a conse-
quence of the task-driven reallocation of visual resources [46, 47].

7.5.2 Mechanism of Adaptive Allocation

From the above it follows that the shape of the spatiotemporal sensitivity function,
and also transformations of this function, can be understood by studying the
uncertainties implicit to visual measurement. This idea received further support
from simulations of a visual system equipped with thousands of independent
(uncoupled) sensors, each having a spatiotemporal receptive field [48, 49].

In these studies, spatiotemporal signals were sampled from known statistical
distributions. Receptive fields parameters were first distributed at random. They
were then updated according to a generic rule of synaptic plasticity [50–53]. The
changes of receptive fields amounted to small random steps in the parameter space,
modeled as stochastic fluctuations of the spatial and temporal extents of the
receptive fields. Step length was proportional to the (local) uncertainty of mea-
surement by individual receptive fields. The steps were small, where the uncertainty
was low, and the receptive fields changed little. Where the uncertainty was high, the
steps were larger, so the receptive fields tended to escape the high-uncertainty
regions. This stochastic behavior led to a “drift” of receptive fields in the direction
of low uncertainty of measurement [49], predicted by standard stochastic methods
[54], as if the system sought stimuli that could be measured reliably (cf. [55]).

Remarkably, the independent stochastic changes of receptive fields (their
uncoupled “stochastic tuning”) steered the system toward the distribution of
receptive field parameters predicted by the normative theory described in Sect. 7.4,
and leading to the distribution of sensitivity observed in human vision (Fig. 7.9).
When the distribution of stimuli changed, mimicking a change of sensory environ-
ment, the system was able to spontaneously discover an arrangement of sensors
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optimal for the new environment, in agreement with the predictions illustrated in
Fig. 7.10 [56]. This is an example of how efficient allocation of resources can emerge
in sensory systems by way of self-organization, enabling a highly adaptive sensory
behavior in face of the variable (and sometimes unpredictable) environment.

7.6 Conclusions

A study of allocation of limited resources for motion sensing across multiple spatial
and temporal scales revealed that the optimal allocation entails a shape of the
distribution of sensitivity similar to that found in human visual perception. The
similarity suggested that several previously puzzling phenomena of visual sensi-
tivity, adaptation, and perceptual organization have simple principled explanations.
Experimental studies of human vision have confirmed the predictions for sensory
adaptation. Since the optimal allocation is readily implemented in self-organizing
neural networks by means of unsupervised leaning and stochastic optimization, the
present approach offers a framework for neuromorphic design of multiscale sensory
systems capable of automated efficient tuning to the varying optical environment.
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Appendices

Appendix 1. Additivity of Uncertainty

For the sake of simplicity, the following derivations concern the stimuli that can be
modeled by integrable functions I : R ! R of one variable x. Generalizations to
functions of more than one variable are straightforward. Consider two quantities:

• Stimulus location on x, where x can be space or time, and the “location”
indicates respectively “where” or “when” the stimulus has occurred.

• Stimulus content on fx, where fx can be spatial or temporal frequency of stimulus
modulation.

Suppose a sensory system is equipped with many measuring devices (“sensors”),
each used to estimate both stimulus location and frequency content from “image”
(or “input”) IðxÞ. Assume that the outcome of measurement is a random variable
with probability density function pðx; f Þ. Let
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pxðxÞ ¼ R
pðx; f Þdf ;

pf ðf Þ ¼ R
pðx; f Þdx ð7:12Þ

be the (marginal) means of pðx; f Þ on dimensions x and fx (abbreviated as f ).
It is sometimes assumed that sensory systems “know” pðx; f Þ, which is not true in

general. Generally, one can only know (or guess) some properties of pðx; f Þ, such as its
mean and variance. Reducing the chance of gross error due to the incomplete infor-
mation about pðx; f Þ is accomplished by a conservative strategy: finding the minima
on the function of maximal uncertainty, i.e., using a minimax approach [15, 16].

The minimax approach is implemented in two steps. The first step is to find such
pxðxÞ and pf ðf Þ, for which measurement uncertainty is maximal. (The uncertainty is
characterized conservatively, in terms of variance alone [2]). The second step is to
find the condition(s), at which the function of maximal uncertainty has the smallest
value: the minimax point(s).

Maximal uncertainty is evaluated using the well-established definition of entropy
[58] (cf. [59, 60]):

HðX;FÞ ¼ �
Z

pðx; f Þ log pðx; f Þ dxdf :

According to the independence bound on entropy (Theorem 2.6.6 in [61]),

HðX;FÞ�HðXÞ þ HðFÞ ¼ H�ðX;FÞ; ð7:13Þ

where

HðXÞ ¼ � R
pxðxÞ log pxðxÞ dx;

HðFÞ ¼ � R
pf ðf Þ log pf ðf Þ df :

Therefore, the uncertainty of measurement cannot exceed

H�ðX;FÞ ¼ � R
pxðxÞ log pxðxÞ dx

� R
pf ðf Þ log pf ðf Þ df : ð7:14Þ

Eq. 7.14 is the “envelope” of maximal measurement uncertainty: a “worst-case”
estimate.

By the Boltzmann theorem on maximum-entropy probability distributions [61],
the maximal entropy of probability densities with fixed means and variances is
attained, when the functions are Gaussian. Then, the maximal entropy is a sum of
their variances [61] and

pxðxÞ ¼ 1

rx
ffiffiffiffiffiffi
2p

p e�x2=2r2x ;

pf ðf Þ ¼ 1

rf
ffiffiffiffiffiffi
2p

p e�f 2=2r2f ;
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where rx and rf are the standard deviations. Then maximal entropy is

H ¼ r2x þ r2f : ð7:15Þ

That is, when pðx; f Þ is unknown, and all one knows about marginal distributions
pxðxÞ and pf ðf Þ is their means and variances, the maximal uncertainty of mea-
surement is the sum of variances of the estimates of x and f . The following minimax
step is to find the conditions of measurement, at which the sum of variances is the
smallest.

Appendix 2. Improving Resolution by Multiple Sampling

How does an increased allocation of resources to a specific condition of mea-
surement affect the (spatial or temporal) resolution at that condition? Consider setW
of sampling functions

wðsrþ dÞ; r 2 R; r[ 0; d 2 R;

where r is a scaling parameter and d is a translation parameter. For a broad class of
functions wð�Þ, any element of W can be obtained by addition of weighted and
shifted wðsÞ. The following argument proves that any function from a sufficiently
broad class that includes wðsrþ dÞ can be represented by a weighted sum of
translated replicas of wðsÞ.

Let w�ðsÞ be a continuous function that can be expressed as a sum of a con-
verging series of harmonic functions:

w�ðsÞ ¼
X
i

ai cosðxisÞ þ bi sinðxisÞ:

For example, Gaussian sampling functions of arbitrary widths can be expressed
as a sum of cosð�Þ and sinð�Þ. Let us show that, if jwðsÞj is Riemann-integrable, i.e.,
if

�1\
Z1
�1

wðsÞjds\1

and its Fourier transform bw does not vanish for all x 2 R: bwðxÞ 6¼ 0 (i.e., its
spectrum has no “holes”), then the following expansion of w� is possible:

w�ðsÞ ¼
X
i

ciwðsþ diÞ þ eðsÞ; ð7:16Þ
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where eðsÞ is a residual that can be arbitrarily small. This goal is attained by proving
identities

cosðx0sÞ ¼ P
i
ci;1wðsþ di;1Þ þ e1ðsÞ;

sinðx0sÞ ¼ P
i
ci;2wðsþ di;2Þ þ e2ðsÞ; ð7:17Þ

where ci;1, ci;2 and di;1, di;2 are real numbers, while e1ðsÞ and e2ðsÞ are arbitrarily
small residuals.

First, write the Fourier transform of wðsÞ as

bwðxÞ ¼ Z1
�1

wðsÞe�ixsds

and multiply both sides of the above expression by eix0t:

eix0tbwðxÞ ¼ eix0t
Z1
�1

wðsÞe�ixsds ¼
Z1
�1

wðsÞe�iðxs�x0tÞds: ð7:18Þ

Change the integration variable:

x ¼ xs� x0t ) dx ¼ xds; s ¼ xþ x0t
x

;

such that Eq. 7.18 transforms into

eix0tbwðxÞ ¼ 1
x

Z1
�1

w
xþ x0t

x

� �
e�ixdx:

Notice that bwðxÞ ¼ aðxÞ þ ibðxÞ. Hence

eix0tbwðxÞ ¼ eix0tðaðxÞ þ ibðxÞÞ ¼ ðcosðx0tÞ þ i sinðx0tÞÞðaðxÞ þ ibðxÞÞ

and

eix0tbwðxÞ ¼ ðcosðx0tÞaðxÞ � sinðx0tÞbðxÞÞ þ iðcosðx0tÞbðxÞ þ sinðx0tÞaðxÞÞ:
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Since bwðxÞ 6¼ 0 is assumed for all x 2 R, then aðxÞ þ ibðxÞ 6¼ 0. In
other words, either aðxÞ 6¼ 0 or bðxÞ 6¼ 0 should hold. For example, suppose that
aðxÞ 6¼ 0: Then

Re eix0tbwðxÞ� �
þ bðxÞ
aðxÞ Im eix0tbwðxÞ� �

¼ cosðx0tÞ a2ðxÞ þ b2ðxÞ
aðxÞ

� �
:

Therefore,

cosðx0tÞ ¼ aðxÞ
a2ðxÞþb2ðxÞ

� �
Re 1

x

R1
�1

w xþx0t
x

� �
e�ixdx

� �

þ bðxÞ
a2ðxÞþb2ðxÞ

� �
Im 1

x

R1
�1

w xþx0t
x

� �
e�ixdx

� �
:

ð7:19Þ

Because function wðsÞ is Riemann-integrable, the integrals in Eq. 7.19 can be
approximated as

Re
1
x

Z1
�1

w
xþ x0t

x

� �
e�ixdx

0
@

1
A ¼ D

x

XN
k¼1

w
xk þ x0t

x

� �
cosðxkÞ þ �e1ðt;NÞ

x
;

ð7:20Þ

Im
1
x

Z1
�1

w
xþ x0t

x

� �
e�ixdx

0
@

1
A ¼ D

x

XN
p¼1

w
xp þ x0t

x

� �
sinðxpÞ þ �e2ðt;NÞ

x
;

ð7:21Þ

where xk and xp are some elements of R.
From Eqs. 7.19–7.21 it follows that

cosðx0tÞ ¼
X2N
j¼1

cj;1w
x0t
x

þ dj;1
� �

þ e1ðt;NÞ:

Given that bwðxÞ 6¼ 0 for all x and letting x ¼ x0, it follows that

cosðx0tÞ ¼
X2N
j¼1

cj;1w tþ dj;1
� �þ e1ðt;NÞ; ð7:22Þ
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where

�e1ðt;NÞ
x0

aðx0Þ
a2ðx0Þ þ b2ðx0Þ þ

�e2ðt;NÞ
x0

bðx0Þ
a2ðx0Þ þ b2ðx0Þ ð7:23Þ

An analogue of Eq. 7.22 for sinðx0tÞ follows from sinðx0tÞ ¼ cosðx0tþ p=2Þ.
This completes the proof of Eq. 7.17 and hence of Eq. 7.16.
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