
Chapter 3
Methods for Detecting of Structural
Changes in Computer Vision Systems

Yury S. Radchenko and Aleksey V. Bulygin

Abstract The automation of experimental investigations based on video recording
and different artificial vision applications often require that changes in a sequence of
frames be detected without the observer’s assistance. Variations in brightness,
color, and size of an object are easily detectable using energy criteria. Nevertheless,
some problems demand the use of algorithms capable of responding to small scale
and texture changes of images. These problems can be solved by applying the
criteria of Mean Structural Similarity Index Measure (MSSIM) and the developed
Mean Nonparametric Structural Similarity Index Measure (MNSSIM), as well as
the spectral algorithm for detecting structural changes in a frame, which have been
used to good effect in video codec analysis. The profitable features of these criteria
are their computational simplicity and their conformance to the human visual
system. The criteria have not only a sensitivity for difference of comparing frames,
but also have high stability of Gaussian and non-Guassian (impulse) noises. This
chapter describes the MSSIM, the own developed MNSSIM algorithms, and the
spectral criterion, which provides the experimental confirmation of operating
characteristics and features. The use of these criteria in automatic detection of
changes in video captured scientific research scenes, the detection of motion or
variable fragments in video frames in the intelligent video systems, and the
application in video coding systems are discussed.
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3.1 Introduction

The automation of scientific researches based on video recording, smart vision, and
video coding applications require that changes in a sequence of frames be detected
without observer’s assistance. Variations in object brightness, color, and size are
easily detectable by Mean-Square Error (MSE) and Peak Signal to Noise Ratio
(PSNR) energy criteria [1]. However, a number of tasks require algorithms that
react on structural (texture) variations of images. Generally, an image region with
variable structure is formless.

Another problem of vision systems is a variation of observation conditions and
also interference. The problem solution is based on the use of high robust and
interference-immunity decision making algorithms. The detection of variations in
the image segment structure is based on spectral and correlation analysis of spatial-
temporal domain. At present, the quasi-optimum heuristic algorithms applying
variations of correlation features exist. However, they are non-invariant to spectrum
in various bases in relation to a segment movement and change of texture features.

The structural differences of images can be determined by various techniques.
Figure 3.1 shows the criteria and the metrics being a basis to detect these differences.
The authors analyzed difference estimation methods and algorithms for images
presented by the numbered blocks.

The MSSIM criterion [2–4] and its modification MNSSIM [5] are the tri-criterion
functionals that respond to the changes of brightness, contrast, and correlation
features of image. Therefore, the MSSIM, the MNSSIM, and other modifications are
the energy criteria for detecting image variations. They are sensitive to texture
variations as well. The growing popularity of these criteria is proved by their quite
appropriate compliance with the human vision system.

The image as a whole or its separate blocks can be expanded in a generalized
Fourier series by using the system of orthogonal functions ukmðx; yÞ. The following
methods can be emphasized among a multitude of orthogonal basis: the Discrete
Cosine Transform (DCT) [1] and its integer variant called pseudo-cosine transform
[6], Walsh-Hadamard transform [1], wavelet transform [7, 8]. In the researches
[9–12], the class of discrete polynomial transforms and easily version discrete
Chebyshev transform or the Generalized DCT (GDCT) were proposed. The GDCT
has a number of special properties that allow the efficient image processing.

The current research has proved that the spectral algorithms can be a base to
implement the image structural variation detectors, which are robust to the change
of observation conditions and interference. Let us notice that the MNSSIM algo-
rithms and spectral algorithms are quite simple in computation.

The next Sect. 3.2 covers examples of using the MSSIM and the MNSSIM.
Section 3.3 provides the description of spectral criteria of structural image simi-
larity. Spectral field variation detection is discussed in Sect. 3.4. Experimental
confirmation of structural similarity criteria is situated in Sect. 3.5. Conclusion is
drawn in Sect. 3.6.
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3.2 Pixel Structural Similarity Criteria

The task of detection and estimation for the structural similarity of two images
having uncertain structures is a crucial issue in computer vision. The random
images or frames of video sequence can be analyzed. This task cannot be for-
malized in full and has not yet been solved unambiguously. Objective structural
similarity criteria may be classified in the following manner: single factor criteria,
multi-factor criteria, and integral criteria being a combination of single factor and
multi-factor criteria.

One of the simplest single factor criteria is a deviation of MSE. The MSE is
determined by Eq. 3.1 for a separate image brightness or color component, where
X; Y are images under a comparison (X ¼ xij

� �
, Y ¼ yij

� �
, i ¼ 1. . .n, j ¼ 1. . .m).

MSEðX; YÞ ¼
Pn;m

i¼1;j¼1 ðxij � yijÞ2
n � m ð3:1Þ

This criterion cannot be applied to human vision system. According to the MSE
criterion, the images differ from each other, if the brightness reduces by 5 % only
(the human vision system does not recognize this while the brightness options of
different computer screens vary much more). At the same time, the images with the
pronounced color variation of separate point, mild stripes, or frequency distortion
resulting in a sharpness loss will be recognized as “almost unchanged”.

The widely used nowadays PSNR for a separate brightness or color component
of an image is expressed by Eq. 3.2, whereMAXI is the maximum value assumed by
the image component element.

Methods for image 
difference detection

Differences 
of spectra
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2

Correlation 
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Fig. 3.1 Methods and algorithms for structural image difference detection, where 1 are algorithms
based on MSSIM, MNSSIM1, and MNSSIM2 structural criteria, 2 are algorithms based on
difference of generalized orthogonal basis spectra, 3 are algorithms based on difference of
correlation features of moving video sequence fragments, 4 are spectral algorithms for texture
anisotropy detection and estimation, 5 is a spectral algorithm for moving object detection, 6 are
algorithms based on the Kullback and the Bhattacharyya information metrics
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PSNRðX; YÞ ¼ 10 � log MAX2
I

MSE

� �
¼ 10 � log10

2552 � n � mPn;m
i¼1;j¼1 ðxij � yijÞ2

ð3:2Þ

For an RGB image, each component R, G, or B occupies 8 bits and, hence,
MAXI= 2

8− 1 = 255 for this image. This measure is appropriate due to the logarithmic
scale. It has the same drawbacks that root-mean-square deviation does [1, 13].

In a number of cases, the criterion should assume a variation of all image colors.
The total PSNR for a full color RGB image PSNRRGB is calculated based on the
summed squared error of the components provided by Eq. 3.3, where the maximum
value is max S2R ¼ 3 � 2552 � n2 � m (n� n is a number of pixels in a block, for the
sake of simplicity the blocks are assumed to be square), v is a number of blocks,

g ¼ 1. . .m is a number of the current block, ðx gð Þ
i; j ; y

gð Þ
i; j ÞR;G;B are brightness of R, G,

B components of pixels of blocks of images under comparison.

S2R ¼
Xm
g¼1

f
Xn
i; j¼1

x gð Þ
i; j � y gð Þ

i; j

� �2

R
þ

Xn
i; j¼1

x gð Þ
i; j � y gð Þ

i; j

� �2

G
þ

Xn
i; j¼1

x gð Þ
i; j � y gð Þ

i; j

� �2

B
g ð3:3Þ

Hence, Eq. 3.3 can be re-written as Eq. 3.4.

PSNRRGB ¼ 10 � lg maxS2R
�
S2R

� �
¼ 10 � lg 3 � 2552 � n2 � m

S2R

� �
ð3:4Þ

The PSNR can be calculated for images in the YUV color format and other
formats by equations similar to Eqs. 3.3–3.4. The combined criterion PSNRRGB

provides the image similarity performance, which is more relevant for human
vision. However, Eqs. 3.1–3.4 are slightly sensitive to texture image changes.

At the moment one of the criteria closest to the subjective perception of the
recovered image quality, if the MSSIM [2–4, 14] characterizes a similarity of X and
Y images by brightness, contrast, and structure, i.e. it is tri-factor. It appears as
Eq. 3.5, where Xg; Yg are the images compared in a block having number
g ¼ 1. . .m, v is a number of blocks.

MSSIM ¼ 1
m
�
Xm
g¼1

SSIMðXg; YgÞ ð3:5Þ

The SSIM criterion is a block criterion. This means that it is applied not to the
whole image at once but to its separate parts—equal blocks of the image, and later
this value is averaged by all computed blocks producing the resulting MSSIM value
for the whole image. In the general case, the SSIM(X, Y) value for each block is
calculated by Eq. 3.6, where lðx; yÞis a brightness comparison functional, cðx; yÞ is a
contrast comparison functional, sðx; yÞ is a structure comparison functional, a, b, c
are the control coefficients.
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SSIMðX; YÞ ¼ lðx; yÞacðx; yÞbsðx; yÞc ð3:6Þ

In accordance with control coefficients α = β = γ = 1 [4], the comparison
functionals in the blocks are calculated by Eq. 3.7.

lðx; yÞ ¼ 2lxly þ C1

l2x þ l2y þ C1
cðx; yÞ ¼ 2rxry þ C2

r2
x þ r2

y þ C2
sðx; yÞ ¼ rxy þ C3

rxry þ C3
ð3:7Þ

Here variables have the following meanings:
– μX, μY are the sample mean for image blocks Xη and Yη, respectively,

lX ¼ 1
N2 �

XN�1

i; j¼0

xij lY ¼ 1
N2 �

XN�1

i; j¼0

yij:

– σX
2, σY

2 are sample variance for image blocks Xη and Yη, respectively,

r2
X ¼ 1

N2 �
XN�1

i; j¼0

ðxij � lXÞ2 r2
Y ¼ 1

N2 �
XN�1

i; j¼0

ðyij � lY Þ2:

– rXY is a moment of correlation between image blocks Xη and Yη

rXY ¼ 1
N2 �

XN�1

i; j¼0

ðxij � lXÞðyij � lYÞ:

Within constant C3, a functional sðx; yÞ coincides with the Pearson’s sample
correlation coefficient. C1, C2, C3 are small constants preventing incorrect behavior
of the criterion when the moments are cleared. In accordance with [2–4] one can
assume C1 ¼ 0:01Lð Þ2;C2 ¼ 0:03Lð Þ2;C3 ¼ 0:5C2; L is image bit width.

The MSSIM criterion assumes values from −1 to 1. The value of 1 is obtained
only in the case, when one and the same image is compared. This means that closer
an image compared to the original image, closer the criterion value to 1.

A selection of functional sðx; yÞ in Eq. 3.7 as a measure of structural difference is
mostly justified, when the comparing vectors have the values with multivariate
Gaussian distribution. Therefore, the MSSIM criterion perfectly distinguishes tex-
tures in a form of Gaussian noise. When the laws of distortion distribution are
unknown (non-Gaussian), it is reasonable to apply estimates of the respective
structural characteristics based on nonparametric statistics [15]. To estimate mean
brightness, it is efficient to use a samplemedianwith higher stability as comparedwith
the sample mean and one of the rank correlation coefficients instead of the Pearson’s
correlation coefficient. Two modifications of the structural similarity criterion based
on the nonparametric MNSSIM1 and MNSSIM2 was proposed in [5, 7].
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For MNSSIM1, the functionals below (Eq. 3.8) are suggested instead of Eq. 3.7

lðx; yÞ ¼ 2mxmy þ C1

m2
x þ m2

y þ C1
cðx; yÞ ¼ 2rmxrmy þ C2

rm2
x þ rm2

y þ C2
sðx; yÞ ¼ Rsðx; yÞ; ð3:8Þ

where mx ¼ medianað~xÞ and my ¼ medianað~yÞ are medians of the brightness vec-

tors in image blocks x and y, respectively, rm2
x ¼ mediana ð~x� mxÞ2

h i
and rm2

y ¼
mediana ð~y� myÞ2

h i
are medians of the squared vector difference of brightness and

the median, Rs(x, y) is Spearman’s rank correlation coefficient [15]. The Rs values
change from −1 to 1, while Rs = 0 means the absence of correlation.

The functionals (Eq. 3.9) are used in the MNSSIM2.

lðx; yÞ ¼ 2mxmy þ C1

m2
x þ m2

y þ C1
cðx; yÞ ¼ 2rxry þ C2

r2
x þ r2

y þ C2
sðx; yÞ ¼ Rsðx; yÞ ð3:9Þ

In other words, a contrast comparison functional cðx; yÞ should remain the same
as for the MSSIM (Eq. 3.7). The structure comparison functional sðx; yÞ and
brightness comparison functional lðx; yÞ should be used as those used in the
MNSSIM1 (Eq. 3.8). Constants C1 and C2 from Eqs. 3.8–3.9 are identical to those
used to calculate the MSSIM [2, 4]. The MNSSIM2 criterion is computationally
simpler than the MNSSIM1.

Therefore, the MNSSIM1 and the MNSSIM2 criteria are the tri-factor criteria
that use the nonparametric estimations of random field parameters. Nonparametric
criteria of the MNSSIM1 and the MNSSIM2 structural similarities are practically
identical to the MSSIM criterion at the presence of Gaussian distortion. However, if
a point interference or other non-Gaussian statistics interference or a block dis-
tortion take place, then the MNSSIM1 and the MNSSIM2 metrics are better for
human subjective vision than the estimation by the MSSIM.

3.3 Spectral Criteria of Structural Image Similarity

The image in a block can be expanded into a generalized Fourier series by the system
of continuous ukmðx; yÞ or discrete orthogonal functions ukmði; jÞ [10–12, 17–19].

Let us examine the main types and features of orthogonal transforms for con-
tinuous arguments. A sequence of functions ukðzÞf g, k ¼ 0; 1; . . .1 is called
orthonormal against qðzÞprovided by Eq. 3.10, where dmn is a Kronecker symbol,
z has no dimension value.

ðum;unÞ ¼
Z

umðzÞunðzÞ qðzÞdz ¼ dmn ð3:10Þ
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For weight function qðzÞ, ratios qðzÞ� 0 and 0� R b
a qðzÞdz\1 exist. The

system of functions ukðzÞf g, wkðzÞf g, k ¼ 0; 1; . . .; k0 is called bi-orthogonal
against weight qðzÞ (Eq. 3.11).

ðum;wnÞ ¼
Z

umðzÞwnðzÞqðzÞdz ¼ dmn ð3:11Þ

The full and closed set of functions ukðzÞf g is of great interest.
In the following Sects. 3.3.1 and 3.3.2, the polynomial transform and the discrete

transforms are discussed, respectively.

3.3.1 Polynomial Transforms

An important class of functions ukðzÞf g with the properties of orthogonality,
completeness and closure is orthogonal polynomials pkðzÞ satisfying the Eq. 3.12,
where dm is a norm of polynomial pmðzÞ.

Zb

a

qðzÞpmðzÞpkðzÞdz ¼ dmdkm ð3:12Þ

To expand the signals, one can apply the following conventional orthogonal
polynomials [11, 20, 21]:

• The Hermitian polynomials HmðzÞ, Eq. 3.13.

qðzÞ ¼ expð�z2Þ pmðzÞ ¼ HmðzÞ �1\z\1 ð3:13Þ

• The Laguerre polynomials, Eq. 3.14.

qðzÞ ¼ za expð�zÞ pm ¼ LamðzÞ 0� z\1 ð3:14Þ

• The Jacobi polynomials pmðzÞ ¼ Pða;bÞ
m ðzÞ , Eq. 3.15.

qðzÞ ¼ ð1� zÞað1þ zÞb a[ � 1 b[ � 1 � 1� z� 1 pmðzÞ ¼ Pða;bÞ
m ðzÞ
ð3:15Þ
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The Jacobi polynomials form a wide group of orthogonal polynomials. The
important particular cases of Jacobi polynomials are:

• The Legendre polynomials

PnðzÞ ða ¼ b ¼ 0Þ qðzÞ ¼ 1:

• The Chebyshev polynomials of the 1st and 2nd types provided by Eq. 3.16.

TnðzÞ ða ¼ b ¼ �1=2Þ qðzÞ ¼ ð1� z2Þ�1=2

UnðzÞ ða ¼ b ¼ 1=2Þ qðzÞ ¼ ð1� z2Þ1=2
ð3:16Þ

For practical use, the most convenient Jacobi polynomials are the polynomials of
Legendre and Chebyshev of the 1st and 2nd types.

The Chebyshev polynomials of the 1st type have a number of useful properties
so that their use to expand the signals is very attractive. The Chebyshev polynomial
of the 1st type TmðzÞ associated with weight function qðzÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
can be

determined variously. One of the most appropriate means has a view of Eq. 3.17.

TmðzÞ ¼ cosðm � arccosðzÞÞ ð3:17Þ

For the Chebyshev polynomials Tmð�zÞ ¼ ð�1Þm � TmðzÞ. According to
Tmþ1ðzÞ ¼ 2 � z � TmðzÞ � Tm�1ðzÞ, one can get Eq. 3.18.

T0ðzÞ ¼ 1 T1ðzÞ ¼ z T2ðzÞ ¼ 2z2 � 1 T3ðzÞ ¼ 4z3 � 3z
T4ðzÞ ¼ 8z4 � 8z2 þ 1

ð3:18Þ

The orthogonality condition of functions Tm(z) is provided by Eq. 3.18.

Z1

�1

TmðzÞTkðzÞffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p dz ¼
0 k 6¼ m
p k ¼ m ¼ 0
p
2 k ¼ m 6¼ 0

8<
: ð3:19Þ

Nulls of the Chebyshev polynomials are easily determined from Eq. 3.17, which
can be re-written as Eq. 3.20.

TmðzÞ ¼ cosðm � arccosðzÞÞ ¼ 0 ð3:20Þ
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Based on the above equations, one can get Eq. 3.21.

zk ¼ cos
2k þ 1
2m

p k ¼ 0; 1; 2; . . .;m� 1 ð3:21Þ

Expansion of function f ðzÞ in the Chebyshev polynomials of the 1st type has a

form of Eq. 3.22, where dm ¼ p=2 m 6¼ 0
p m ¼ 0



is a norm of the Chebyshev

polynomials.

Cm ¼ 1
dm

Z1

�1

f ðzÞTmðzÞffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p dz

f ðzÞ ¼
X1
m¼0

CmTmðzÞ
ð3:22Þ

The expansion in the Chebyshev polynomials of the 1st type TmðzÞ is the most
converged among all possible expansions in degrees zk, k ¼ 0; 1; . . .1.

The above relations are generalized for a 2D case. Let X be a region of the 2D
Euclidian space and z ¼ ðz1; z2Þ be a point in this space. The basis of function
orthonormality can be defined by scalar product (Eq. 3.23).Z

X

qðzÞukmðzÞwr nðzÞdz ¼ dkrdmn ð3:23Þ

The system of functions ukmðzÞ, wr;nðzÞ is bi-orthogonal. The system of functions
ukmðzÞ;wr nðzÞf g depends on the form of weight function qðzÞ and geometry of

region X. Then for function f ðzÞ with the finite norm and weight qðzÞ, there are
possible two equal presentations by Eqs. 3.24–3.25.

Ckm ¼
Z
X

qðzÞf ðzÞukmðzÞdz f ðzÞ ¼
X
k;m

CkmwkmðzÞ ð3:24Þ

Br n ¼
Z
X

qðzÞf ðzÞwr nðzÞdz f ðzÞ ¼
X
r;n

Br nur nðzÞ ð3:25Þ

It should be noted, that a bi-orthogonality is a typical feature of multi-dimensional
expansions.

Processing implementation is greatly simplified, when functions ukmðx; yÞ ¼
ukðxÞumðyÞ are factorized. For a signal f ðx; y; sÞ, a pair of transforms is performed
by Eq. 3.26, where (x, y) is a non-normalized coordinates of field’s point, s is a
vector parameter of shift, rotation and other affine transformations.
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f ðx; y; sÞ ¼
X
m

X
k

CmkðsÞumðxÞukðyÞ CmkðsÞ ¼
Z Z

X

f ðx; y; sÞumðxÞukðyÞdxdy

ð3:26Þ

If ax; ay denote a typical size of sub-region X, z1 ¼ x=ax; z2 ¼ y=ay, then
Eq. 3.26 can be re-written by Eq. 3.27, where dm is a norm of orthogonal pmðzÞ
polynomials with weight qðzÞ.

f ðx; yÞ ¼
X
m;k

Cmkpmðx=axÞpkðy=ayÞ ð3:27Þ

Cmk ¼ ðdmdkÞ�1
ZZ

X
f ðaxz1; ayz2Þqðz1Þpmðz1Þqðz2Þpkðz2Þdz1dz2

¼ ðdmdkÞ�1
Z

qðz1Þpmðz1Þdz1
Z

f ðaxz1; ayz2Þqðz2Þpkðz2Þdz2
ð3:28Þ

It is obvious from Eqs. 3.27–3.28, that the spectral coefficients are determined by
a sequential integration of x, y coordinates that is greatly simplify the computation.

3.3.2 Discrete Transforms

Let us analyze a generality and a difference of continuous and discrete transforms
(Table 3.1). Here /kðnÞf g; n ¼ 0. . .N � 1 is a complex basis of orthonormal
vectors. In the general case, it is necessary to use a bi-orthogonal basis

~ukðnÞf g; ~wkðnÞ
n o

to expand a signal.

Let us consider a vector-matrix transform notation. Let vector F be a column of
signal samples, as show in Eq. 3.29.

F ¼
f ð0Þ
:

f ðN � 1Þ

0
@

1
A ð3:29Þ

The transform matrix can be written by Eq. 3.30.

U ¼
u0ð0Þ u0ð1Þ . . . u0ðN � 1Þ
u1ð0Þ u1ð1Þ . . . u1ðN � 1Þ
. . . . . . . . . . . .
uN�1ð0Þ uN�1ð1Þ . . . uN�1ðN � 1Þ

0
BB@

1
CCA ð3:30Þ

A pair of signal-to-spectrum transform in the matrix form has a view of Eq. 3.31.
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C ¼ UF F ¼ U�1C ) UTC ð3:31Þ

If U�1 ¼ UT ; det Uð Þ ¼ �1, then U is an orthogonal matrix and any two lines
of it are orthogonal vectors. For a bi-orthogonal matrix transforms, Eq. 3.32 can be
written.

C ¼ UF F ¼ WC WU ¼ 1 ð3:32Þ

Let us consider a discrete variant of 2D transform. In this case the function is
setup on a 2D discrete point grid, Eq. 3.33.

f ðx; yÞ ) f ði; jÞ i; j ¼ 0. . .N � 1 ð3:33Þ

The samples form a square matrix F ¼ f ði; jÞ½ �. The same grid could be uniform
or it can be formed non-uniformly by a special law.

A pair of transforms of a signal matrix to a spectral matrix is determined by
Eq. 3.34.

Ckm ¼
X
i; j

f ði; jÞu	
kmði; jÞ f ði; jÞ ¼

X
k;m

Ckmukmði; jÞ ð3:34Þ

If the discrete basis functions are factorized, then Eq. 3.35 is accomplished.

ukmði; jÞ ¼ ukðiÞumðjÞ ð3:35Þ

Expansion and synthesis are reduced to serial operations in i and j. This oper-
ation is of the form below in the matrix form, Eq. 3.36.

C ¼ UFUT F ¼ U�1CðU�1ÞT ð3:36Þ

Table 3.1 The difference of continuous and discrete transforms

Continuous signal Discrete signal

x 2 0;T½ � x ¼ xn ¼ nDT , n ¼ 0. . .N � 1

f ðxÞ f ðnÞ ¼ f ðxnÞ
ukðxÞ ~uk ¼ ukð0Þukð1Þ ukð2Þ . . .ukðN � 1Þð Þ
uk ;umð Þ ¼ R

T
ukðxÞu	

kðxÞdx ¼ dkm ð~uk ;~umÞ ¼
PN�1

n¼0
ukðnÞu	

mðnÞ ¼ dkm

Ck ¼
Z
T

f ðxÞu	
kðxÞdx

f ðxÞ ¼
X1
k¼0

CkukðxÞ

Ck ¼
XN�1

n¼0

f ðnÞu	
kðnÞ

f ðnÞ ¼
X1
k¼0

CkukðnÞ
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Let us consider the Discrete Fourier Transform (DFT). The basis orthogonal
functions [1, 18, 19] have the form of Eq. 3.37.

~ukðnÞ ¼ exp j2p
kn
N

� �
¼ Wkn W ¼ exp j

2p
N

� �
n ¼ 0. . .N � 1

k ¼ 0. . .N � 1
ð3:37Þ

The orthogonality condition and the functions’ norm are defined by Eq. 3.38.

XN�1

n¼0

WknW	ln ¼ 0 k 6¼ l
N k ¼ l



ð3:38Þ

Then the pair of transforms with non-symmetric normalizing coefficients is
computed by Eq. 3.39.

Ck ¼ 1
N

XN�1

n¼0

f ðnÞWkn f ðnÞ ¼
XN�1

k¼0

CkW
�kn ð3:39Þ

For the DFT, there are other variants of normalizing coefficients before the sum
up, for example, the expressions from Eq. 3.40.

Ck ¼
XN�1

n¼0

f ðnÞWkn f ðnÞ ¼ 1
N

XN�1

k¼0

CkW
�kn ð3:40Þ

When the DFT is applied, it is essential that a discrete signal f ðnÞ is considered to
be periodically extended with the period of N, while spectrum Ck is also discrete and
periodic with the period of N. Therefore, a condition is imposed on border frequency
Dfm of continuous signal f ðtÞ and sampling step T: DfmT � 0:5. The DFT with
reduced number of operations is called Fast Fourier Transform (FFT) [1, 17, 22].
If a signal f ðnÞ is true, then Eq. 3.41 is executed.

Ckj j ¼ CN�kj j argðCkÞ ¼ � arg ðCN�kÞ ð3:41Þ

Therefore, the FFT for such signal calculates only a half of spectral coefficients.
Let us consider the Discrete Cosine Transform (DCT) in two cases—one-

dimensional and two-dimensional DCT.
One-dimensional DCT.
A non-normalized basis functions [1, 18, 19] are determined by Eq. 3.42, where

n ¼ 0. . .N � 1.

~ukðnÞ ¼ cos pk
2nþ 1
2N

� �
¼ cos pk

nþ 0:5
N

� �
ð3:42Þ
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The parameter N may be both even and odd. However, the transform with even
N [1] is often used in practice. The orthogonality condition for these functions is
provided by Eq. 3.43.

XN�1

n¼0

~ukðnÞ~ulðnÞ ¼
N k ¼ l ¼ 0
N=2 k ¼ l 6¼ 0
0 k 6¼ l

8<
: ð3:43Þ

During the calculation of a signal spectrum, the orthonormal basis functions is
applied as it shown in Eq. 3.44.

ukðnÞ ¼
ffiffiffiffi
2
N

r
� gk � cos pk

nþ 0:5
N

� �
gk ¼

ffiffiffiffiffiffiffi
0:5

p
k ¼ 0

1 k 6¼ 0



ð3:44Þ

In this case, the direct and the reverse DCTs are expressed by Eqs. 3.45–3.46.

Ck ¼
ffiffiffiffi
2
N

r
� gk

XN�1

n¼0

f ðnÞ cos pk
nþ 0:5

N

� �
ð3:45Þ

f ðnÞ ¼
ffiffiffiffi
2
N

r XN�1

k¼0

gkCk cos pk
nþ 0:5

N

� �
ð3:46Þ

Two-Dimensional DCT.
The transforms with symmetric normalization of direct and reverse transform

matrices have a view of Eq. 3.47, where F ¼ f ði; jÞ½ � is a source block and
C = [Ckm] is its spectrum.

C ¼ UFUT F ¼ UTCU ð3:47Þ

The matrices of the direct U and reverse DCT coincide, Eq. 3.48.

U ¼ ukðnÞ½ � ¼
ffiffiffiffi
2
N

r ffiffiffiffiffiffiffi
0:5

p
cosðpk ðnþ 0:5Þ

N

� �
k ¼ 0
k 6¼ 0

� �
k ¼ 0. . .N � 1

n ¼ 0 � � �N � 1
ð3:48Þ

Matrix U is square and orthogonal U�1 ¼ UT .
Integer cosine (pseudo-cosine) transform.
Standard H.264 applies a pseudo-cosine transform for blocks transformations.

For 4 × 4 block, the DCT matrix is determined by Eq. 3.49, where k; n ¼ 0. . .3.
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U ¼
ffiffiffi
1
2

r
�

ffiffiffiffiffiffi
1=2

q
cosðð2�nþ 1Þ�k�p

2�4 Þ

2
4

3
5

¼ 1
2
�

1 1 1 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

2
p

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1ffiffi

2
p

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1ffiffi

2
p

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

2
p

q
1 �1 �1 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1ffiffi
2

p
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

2
p

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

2
p

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1ffiffi

2
p

q

2
66664

3
77775

ð3:49Þ

It is proposed to use integer matrix H [6] instead of matrix U, Eq. 3.50.

H ¼ 1
2
�

1 1 1 1
2 1 �1 �2
1 �1 �1 1
1 �2 2 �1

2
664

3
775 ð3:50Þ

On the one hand, such replacement speeds up the integer operations of digital
signal transform. On the other hand, this breaks a transform orthogonality. Such
break should be compensated by the extra transforms in further steps.

The Hadamard system for Walsh functions.
The Walsh-Hadamard discrete basis is appropriate for computing. It is based on

the Hadamard matrix. The matrix is calculated by the recurrent scheme,
Eqs. 3.51–3.52.

A2n ¼ A2ðn�1Þ A2ðn�1Þ

A2ðn�1Þ �A2ðn�1Þ

� �
ð3:51Þ

A1 ¼ 1 A2 ¼ 1 1
1 �1

� �
A4 ¼ A2 A2

A2 �A2

� �
¼

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

0
BB@

1
CCA

ð3:52Þ

Any line (column) of the Hadamard matrix is a discrete sample of the Walsh
function of any order. The Hadamard matrix structure results in that only signal
sample summation and subtraction operations are performed during the orthogonal
transform. However, a convergence rate of series by the Walsh-Hadamard basis is
less than the DCT provides. Besides, the spectrums are often non-monotonous,
when this basis is applied.

Discrete Chebyshev GDCT.
The above mentioned discrete orthogonal transforms apply a uniform signal

sample grid. However, a sample grid with a special non-uniformity allows to get the
fast converged generalized Fourier series. The discrete Chebyshev transform called
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Generalized DCT (GDCT) [9–12] belongs to this type of transforms. It is a par-
ticular case of transforms in the orthogonal polynomials.

To calculate integrals in the orthogonal polynomial transforms, it is proposed to
use a Gaussian type quadrature formula with the highest algebraic accuracy [20]
expressed by Eq. 3.53, where zi are nulls of orthogonal polynomial pNðzÞ with
weight qðzÞ, ki are the Christoffel numbers.

Z
f ðzÞqðzÞdz ¼

XN
i¼1

kif ðziÞ ð3:53Þ

Knots and weights zif g; kif g are clearly defined by the form of polynomial
pNðzÞ. In general, Eq. 3.53 expands in orthogonal polynomial system. A particular
case of Eq. 3.53, when the Chebyshev polynomials are used, is called the Gauss-
Chebyshev (Meller) formula [20] presented in a view of Eq. 3.54 form, where
zi ¼ cos pðiþ 0:5Þ=Nð Þ are nulls of Chebyshev polynomial TNðzÞ ¼ 0,
ki ¼ p=N ¼ const.

Z
f ðzÞffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p dz ¼ p
N

XN�1

i¼0

f ðziÞ ð3:54Þ

For the Chebyshev polynomials, the direct and the reverse transforms (Eq. 3.22)
can be applied (Eq. 3.54) (one-dimensional variant for normalized interval
z 2 �1; 1½ �). Then Eqs. 3.55–3.56 will be received [9, 11], where gm ¼ 1 with
m[ 0 and gm ¼ ffiffiffiffiffiffiffi

0:5
p

with m = 0.

Cm ¼ gm �
ffiffiffiffi
2
N

r XN�1

i¼0

f ðziÞ � cosðpm iþ 0:5
N

Þ ð3:55Þ

YMðzÞ ¼
ffiffiffiffi
2
N

r XM�1

m¼0

gm � Cm � cosðm � arccosðzÞÞ ð3:56Þ

In accordance with Eqs. 3.55–3.56, the sample points and the Chebyshev
samples zi ¼ cos pðiþ 0:5Þ=Nð Þ of signal f ðzÞ are taken non-uniformly (Fig. 3.2). A
synthesis (recovery) of signal YðzÞ by M spectral components is performed in
random point z 2 ½�1; 1�, but not within a discrete set of sample points as this is
done in the DCT. During recovery, any sample grid can be used, for example,
uniform zn ¼ 2n=ðL� 1Þ � 1, n ¼ 0. . .L� 1, if L 6¼ N. The recovered image is a
subject to geometric scaling to downwards the size and upwards the size as well.

In the case of 2D GDCT N × N, the Chebyshev samples of the image are taken
within the sample block of N1 × N1 points (pixels) by Eq. 3.57.
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xi ¼ 0:5ðN1� 1Þ � 1þ cos pðiþ 0:5Þ=Nð Þð Þ
yj ¼ 0:5 � ðN1� 1Þ � ð1þ cosðp � ðjþ 0:5Þ=NÞÞ

i; j ¼ 0. . .N � 1

ð3:57Þ

This matrix is transformed to spectral coefficient matrix C ofM ×M size with the
use of direct transform rectangular matrix of M × N size. In the case of reverse
transform, a rectangular matrix of L × M size can be applied. That means that a
recovered block R ¼ rij

 �
(i, j = 1 … L) size is L × L. The Chebyshev samples can

be obtained by using linear interpolation by the nearest pixels [20, 23].
The direct and the reverse Chebyshev transforms (GDCT) in the matrix form are

defined by the operations Eq. 3.58, i.e. the transform Eq. 3.36 falls into the
bi-orthogonal transform class.

C ¼ UFUT F ¼ WTCW ð3:58Þ

The matrix U is a direct transform matrix (Eq. 3.59).

U ¼
ffiffiffiffi
2
N

r
�

ffiffiffiffiffiffiffi
0:5

p

cos p ðiþ 0:5Þ�m
N

� �" #
: m ¼ 0. . .M � 1 i ¼ 0. . .N � 1 ð3:59Þ

The matrix W is a reverse transform matrix (Eq. 3.60).

W ¼
ffiffiffiffi
2
N

r
�

ffiffiffiffiffiffiffi
0:5

p
cosðm � arccos 2�n

L�1 � 1
� �Þ

� �
: m ¼ 0. . .M � 1 n ¼ 0. . .L� 1 ð3:60Þ

It is obvious from Eqs. 3.59–3.60, that in the general case the GDCT matrices U
and W are rectangular. The direct GDCT matrix coincides with the direct DCT

Fig. 3.2 The Chebyshev block sampling: a N1=N ¼ 8=6, b N1=N ¼ 12=8
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matrix (Eq. 3.48) with M = N. The reverse transforms differ from each other. It
should be noted that in the DCT, the transform matrices are square and have the size
of (N × N = M × M) as opposed to the GDCT, where M does not equal N in the
general case [11, 12]. The GDCT is much close to the ideal de-correlation Karh-
unen-Loeve [1, 19] transform among all analyzed orthogonal transforms.

3.4 Spectral Image Variation Detection

Let a field f ðiÞðr; tiÞ being fragment uðrÞIXðrÞdðt � tiÞ of a space-time signal
(dynamic image) at discrete time moment ti, i = 0, 1,… be observed in a sub-region
r ¼ ðx; yÞ 2 X (a block of any frame). Here, IXðrÞis a sub-region indication func-
tion. Additionally let us assume that the white Gaussian noise gðx; yÞ 
 gðrÞ is
available into an image. After comparing a separate block of the (i–1)th and ith
frames, one can hypothesize (Eq. 3.61).

H0 : nðrÞ ¼ f1ðrÞ þ gðrÞ f1ðrÞ ¼ fðiÞðrÞ ¼ fði�1ÞðrÞ
H1 : nðrÞ ¼ f2ðrÞ þ gðrÞ f2ðrÞ ¼ fðiÞðrÞ 6¼ f

ði�1Þ
1 ðrÞ

ð3:61Þ

Basing on observation of nðrÞ, it is necessary to accept or reject the main
hypothesis about a block image invariance. If two images are compared rather than
video sequence frames are observed, then f1ðrÞ is an unvaried texture in frames and
f2ðrÞ is a texture different from f1ðrÞ.

After checking the sophisticated hypotheses, signal f1ðrÞ; f2ðrÞ are formed, and
a structure uncertainty arises. Generally, the processing of the unknown form signal
cannot be solved without the use of some additional factors. One of the most
convenient ways to solve the a priori uncertainty is a signal parameterization. In this
case, a signal form uncertainty transforms to a parametric uncertainty, which
resolving ways are well designed [13, 19]. The convenient signal parameterization
method has its presentation in the form of generalized Fourier series by any
orthonormal basis ukm [1, 10, 17, 19].

For different hypotheses, the signals can be presented by Eq. 3.62, where
gk;m

� � ¼ 0; Dðgk;mÞ ¼ N0
2 � ukmk k2.

f1ðrÞ ¼
X
k;m

Cð1Þ
kmukmðrÞ f2ðrÞ ¼

X
k;m

Cð2Þ
kmukmðrÞ

nðrÞ ¼
X
k;m

XkmukmðrÞ gðrÞ ¼
X
k;m

gkmukmðrÞ
ð3:62Þ

The spectral coefficients for expansion of Cð2Þ
k;m are assumed to be unknown. The

coefficients Cð1Þ
k;m are reference and defined.

Therefore, the hypotheses in a spectral definition are checked by Eq. 3.63.
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H0 : Xkm ¼ Cð1Þ
km þ gkm

H1 : Xkm ¼ Cð2Þ
km þ gkm

ð3:63Þ

Section 3.4.1 provides the optimal detection algorithm and quasi-optimal algo-
rithms are discussed in Sect. 3.4.2.

3.4.1 Optimal Detection Algorithm

The maximum likelihood algorithm [17, 24] is an asymptotically optimum rule for
hypothesis check provided by Eq. 3.64, where L(·) is a log likelihood ratio func-
tional determined by Eq. 3.65.

max
Cð2Þ

LðX Cð2Þ�� Þ\[ h0 ð3:64Þ

LðX Cð2Þ�� Þ ¼ ln
W Xk;m f2ðrjCð2ÞÞ�� �
W Xk;m f1ðrjCð1ÞÞj �

" #
ð3:65Þ

According to Eq. 3.64 it is required to determine the absolute maximum of log
likelihood ratio functional by an unknown vector of parameters Cð2Þ and make a
non-randomized decision in favor of the respective hypothesis.

Now our selected spectral signal form parameterization (Eq. 3.62) is taken into
account. To solve the hypothesis, let us check task by Eq. 3.66.

L X Cð2Þ��� �
¼ 1=N0ð Þ 2

X
k;m

Xkm Cð1Þ
km � Cð2Þ

km

� �
�
X
k;m

Cð1Þ
km

� �2
� Cð2Þ

km

� �2
� �( )

ð3:66Þ

The followingmaximization byCð2Þ
k;m the decision rule [17] is obtained by Eq. 3.67.

ð1=N0Þ
X
k;m

Xk;m � Cð1Þ
k;m

� �2 \
[ h0 ð3:67Þ

3.4.2 Quasi-optimal Algorithms

Due to the fact that N0 determines the interference power and typically is unknown
in practice, the normalized statistics can be used, They may be written in the general
form [17] by Eq. 3.68.
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D0 ¼
P

k;m ðXk;m � Cð1Þ
k;mÞ2

ðCð1Þ
0;0Þ2

or DE ¼
P

k;m ðXk;m � Cð1Þ
k;mÞ2P

k;m ðCð1Þ
k;mÞ2

ð3:68Þ

As Cð1Þ
00 is proportional to mean image brightness in the frame block andP

Cð1Þ
km

� �2
is a block energy, the statistics D0;DE are stable to block brightness

variation, i.e. to observation conditions. Taking into account Eq. 3.68, the decision
rule (Eq. 3.64) is written by Eq. 3.69.

D0

c1
[
\
c0

h0 or DE

c1
[
\
c0

hE ð3:69Þ

The number of summable summands and order of their selection in statistics
D0;DE can be setup from peculiarities of a certain task.

3.5 Experimental Research of Structural Similarity
Algorithms

Let us consider the applications of structural similarity algorithms for image
analysis (Sect. 3.5.1), the experimental research of spectral statistics (Sect. 3.5.2),
and the experimental research of MSSIM and MNSSIM1(2) criteria (Sect. 3.5.3).

3.5.1 Practical Using of Pixel and Spectral Algorithms
in Image Analysis

The MSSIM, MNSSIM1, and two structural similarity criteria, the D0;DE spectral
criteria were experimentally studied. Such performance as sensitivity to texture
variation, interference tolerance, robustness to observation conditions and decision
making threshold selection were tested [16].

In our research for detection of substance phase transitions, when heating, the
75-frames from video sequence were selected. It was taken by Infinity 1-3C digital
camera during an experiment on heating cesium chloride (CsCl) sample within the
temperature range of (250; 710)°C. (Each frame represents the substance at a certain
temperature and temperature variation differs from frame to frame).

Two phase transitions take place in the CsCl sample into this temperature range.
The sample surface texture changes sharply (stepwise), and, hence, a texture of
successive frames corresponding to this transition also changes abruptly. Figure 3.3
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presents the images with small visual differences in the texture of some regions
(blocks), which correspond to the first effect, polymorphous transformation of the
substance (i.e., transition from one solid state to another followed by reconstructive
re-arrangement of the crystal mosaic structure or “grains” in the image).

Figure 3.4 presents the images with noticeable visual differences, which corre-
spond to the second observed effect, substance melting (transition from the solid
state to the liquid one followed by crystal fracture and disappearance of grains in
the image).

At the phase of transition moments, this image structure should have a step. The
MSSIM index, its modification MNSSIM1(2) and spectral metric for detecting
changes in video sequence D0 were used.

Figure 3.5 shows the MSSIM(T), the MNSSIM1(T) and the MNSSIM2(T) plots.
Figure 3.6 demonstrates the D0(T) plot. All these dependences have two clearly

Fig. 3.3 Fragment of video sequence corresponding to the phase transition (polymorphous
transformation) of the CsCl sample at temperatures: a 462.8 °C; b 468.4 °C

Fig. 3.4 Fragment of video sequence corresponding to the phase transition (melting) of the CsCl
sample at temperatures: a 642.7 °C; b 645.2 °C
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discernible peaks (extrema) corresponding to the phase transitions temperatures. It
is the left jump that has an important physical meaning, since it represents a phase
transition (significant changes appeared); and the right jump means that the changes
ceased. The fluctuations (small peaks) are explained by the random changes in
frame brightness as well as random changes of the substance structure. The
oscillations (see MSSIM(T), MNSSIM1(T), MNSSIM2(T) plot) after the second
high peak at 645.2 °C temperature can be attributed to the fact that, upon melting,
the changes still proceed on the surface of the substance under observation, thus
reflecting on the image texture. It is obvious from Fig. 3.5, that for the given video
sequence, the MSSIM, the MNSSIM1, and the MNSSIM2 dependences are similar.
Therefore, the MNSSIM1 and the MNSSIM2 plots are almost identical. However,
if the analyzed video sequence is subjected to some distortion factors (e.g., pulse
noise) during a video recording and an artificial improvement of images, then the
MNSSIM1 and the MNSSIM2 criteria seem to be more preferable.

Peak values of the MSSIM, the MNSSIM1, theMNSSIM2 and D0, their mean
values before the peaks (to estimate jumps) and temperatures of the peaks are
provided in Tables 3.2 and 3.3.

The temperature values detected by the analysis of the sharp jumps in the
MSSIM(T) the MNSSIM1(T), the MNSSIM2(T), and the D0(T) dependences,
correlate well with data from literature sources [16] T1 = 469 °C, T2 = 645 °C.

Figures 3.5 and 3.6 also result that the MSSIM criterion and its MNSSIM1(2)
modification are inferior to spectral criterion the D0 in the scale of jumps. In the
peaks, the MSSIM and the MNSSIM1(2) curves change several-fold, whereas
the D0 curve changes several tens of times. This feature of the spectral criterion can
be useful in automatic detection of process change moment. Even such a low
automatically set threshold as 6 ÷ 8 min (D0) ensures that fluctuations of the image
brightness and color not followed by texture changes will not belong to useful
effects. Due to higher fluctuations of the MSSIM, the MNSSIM1 and the MNS-
SIM2 criteria, a threshold selection requires the additional data analysis by the
researcher.

0,2

0,3

0,4

0,5

0,6

0,7

200,0 300,0 400,0 500,0 600,0 700,0 T, o C

MSSIM

MNSSIM1(T) MNSSIM2(T)
MSSIM(T)

Fig. 3.5 The plots of MSSIM
(T), MNSSIM1(T),
MNSSIM2(T)
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3.5.2 Experimental Research of Spectral Statistics D0 and DE

To estimate the algorithm provided by Eq. 3.68, the experiments with real dynamic
fields were done [17]. During experiment, values of statistics D0 and DE (Eq. 3.68)
for block of brightness components of two diverted video sequence frames were
calculated. Blocks characterizing by such change types as practically unvaried,
weakly, or strongly varied were selected as blocks for analysis. Figure 3.7 shows an
example of a frame from the analyzed dynamic sequence. The distinctive blocks,
where statistics values were computed and differences were detected, are marked
with boxes. The GDCT discrete transform is used.

Figure 3.7 shows a frame of video sequence with varied blocks (marked in
boxes) for different thresholds: The results are tuned for hE = 0.01 and hE = 0.04

Fig. 3.6 The plot of D0(T)

Table 3.3 Peak values

Peak
no

MSSIM mean
value before peak

MNSSIM1 mean
value before peak

MNSSIM2 mean
value before peak

D0 mean value
before peak, 10−3

1 peak 0.686 0.642 0.644 1

2 peak 0.668 0.626 0.628 1

Table 3.2 Values before the peaks

Peak
no

Peak
temperture, °C

MSSIM
peak value

MNSSIM1
peak value

MNSSIM2
peak value

D0, 10
−3

peak value

1 peak 468.4 0.526 0.489 0.496 12

2 peak 645.2 0.296 0.259 0.261 70
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(Fig. 3.7a, b, respectively.) Four different blocks were analyzed and average sta-
tistics were calculated for each variation type. The obtained statistics D0 and DE for
the brightness component for the image (Fig. 3.7) are presented in Table 3.4.

The given results prove that for blocks with low changes, metrics D0 and DE are
quite close. Their difference from metrics for varied (flexible) blocks is 2–3 orders.
This allows to select easily the threshold separating flexible and inactive blocks. It
should be noted that metric D0 change range is 1.7–2 times more than that metric
DE. Higher change range of statistics D0 proves its preference. Thresholds h0 and
hE are connected with the following relation:

h0 ¼ hE

P
k;m C 1ð Þ

k;m

� �2

C 1ð Þ
0;0

� �2

Table 3.5 presents the hE thresholds averaged by frames, calculated thresholds
�h0, and percentage of varied block.

It is evident from Table 3.5, that 10-fold threshold change results in number of
blocks varied in less than 3 times. This phenomenon proves a non-criticality
of threshold selection, which separates flexible and inactive blocks being a result of
the above described test.

The possibility for use of decision rules (Eq. 3.68) with the truncated spectrum
was analyzed in different video sequences. Our analysis demonstrated that detection

Fig. 3.7 Image frames with varied blocks obtained by the full spectrum: a hE = 0.01, b hE = 0.04

Table 3.4 Brightness component’s statistics for the image (Fig. 3.7)

Average statistics Flexible fragments Inactive fragments

Eyes Lips Hair Cheeks Forehead

D0 · 10
3

158.90878 74.04290 39.61026 0.82546 0.11304

DE · 103 91.14991 62.19916 25.68643 0.81213 0.11298
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can be performed by the truncated spectrum and even by one spectral component
(mean block brightness). Figure 3.8 shows an example of video sequence frames
with varied blocks defined by metrics DE with the full spectrum (N = 64) (see
Fig. 3.8a) and one spectral component (N = 1) (see Fig. 3.8b). A threshold value
was hE = 0.01 for both figures.

Table 3.6 provides the percentage of the changed blocks detecting by the whole
spectrum (D(N), %) and by one spectral component (D(1), %) as well as by a
relative (DD=DN) detection error by one spectral component.

Here, DD
D Nð Þ ¼ D Nð Þ�D 1ð Þ

D Nð Þ . It is evident from the Table 3.6 that the maximum rel-

ative error of variation detection by one spectral component does not exceed 0.16.
Therefore, the block changes can be satisfactorily detected by one spectral com-
ponent. Test performed with test video sequences “Container”, “Foreman”, and
“Suzie” demonstrated the similar results.

The spectral video sequence block variation detection algorithm has been used to
implement the MGDCT video coding concept [25]. Our proposed concept applies
the DCT/GDCT orthogonal transforms in a video codec structure.

To decrease a video codec bit-rate, the algorithm (Eq. 3.68, 3.69) was used to
detect the reliable inter-frame video sequence variations. Figures 3.9–3.10 show
video frames with marked blocks that have varied because of moving objects.
Figure 3.9 applied “Container” video sequence, and Fig. 3.10 presents a frame of a
remote video monitoring system. The detectors apply the GDCT transform.

Fig. 3.8 Image frames with varied blocks obtained by full and truncated spectrum: a full
spectrum, b truncated spectrum

Table 3.5 Thresholds averaged by frame and percentage of block varied

Parameter Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

hE 0.005 0.010 0.020 0.025 0.030 0.040 0.050
�h0 0.011 0.021 0.042 0.053 0.064 0.085 0.106

Varied
blocks, %

60.56 50.74 38.52 33.15 30.00 26.11 21.11
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Combining the Chebyshev sampling and spectral detection allows to reduce
information processing in 4–8 times depending on frame variations.

3.5.3 Experimental Research of MSSIM and MNSSIM1(2)
Criteria

Notwithstanding that the MSSIM structural similarity criterion is one of the criteria
closest to the human vision system; it has drawbacks of certain types. For example,
in the case of image blur, pulse noise, or blocking, the MSSIM criterion provides
values that are not quite similar with vision system. The MNSSIM 1(2) criteria have
not such effects [5]. Let us investigate the MSSIM, MNSSIM1(2) criteria under
various artifacts.

The MSSIM, MNSSIM1(2) criteria at pulse interference.
The image called “Lena” was used to test impact of pulse interference on the

MSSIM, the MNSSIM1, and the MNSSIM2 criteria. Figure 3.11 shows images
disturbed by pulse noise of “pepper” and “salt/pepper” types with probability
p = 0.05, and the MSSIM, the MNSSIM1, and the MNSSIM2 criteria values
corresponding to them.

A pulse noise was setup by two characteristics: an intensity determined by noise
probability in pixel p and a noise type with three variants such as “salt”, “pepper”,
and “salt/pepper”. The mathematical model of pulse noise for different noise peaks
is determined as follows. Let X ¼ xij

 �
be a non-distorted image and Y ¼ yij

 �
be a

distorted image. For the “pepper” type noise pulse, the model is setup by Eq. 3.70.

yij ¼ 0 : prob:p
xij : prob:1� p


 �
ð3:70Þ

For the “salt” type noise pulse, the model is setup by Eq. 3.71.

yij ¼ 255 : prob:p
xij : prob:1� p


 �
ð3:71Þ

For the “salt/pepper” type noise pulse, the model is setup by Eqs. 3.72–3.73.

Table 3.6 Percentage of changed blocks

hE 0.005 0.01 0.02 0.025 0.03 0.04 0.05

D(N), % 60.56 50.74 38.52 33.15 30.00 26.11 21.11

D(1), % 56.67 47.96 39.63 36.11 31.85 27.78 24.44

ΔD/DN 0.0642 0.0547 −0.0288 −0.0894 −0.0617 −0.0638 −0.1579
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f0 ¼ 0; prob:0:5 : noise``pepper00

255; prob:0:5 : noise``salt00


 �
ð3:72Þ

yij ¼ f0 : prob:p
xij : prob:1� p


 �
ð3:73Þ

Figure 3.12 shows a behavior of criteria depending on probability of pulse
interference p. Plots from Fig. 3.12а, b confirm that the MSSIM criterion greatly
reduces the image quality at low interference intensity. The MNSSIM1 and the
MNSSIM2 matrices demonstrate values more identical to human vision system and
close to each other (a human vision filters the low interference intensity). At higher
interference intensity, the MSSIM criterion passes to the “saturation” mode.

Fig. 3.10 Spectral variation
detection in the video
monitoring system

Fig. 3.9 Spectral variation
detection in “Container” test
sequence
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The MNSSIM1(2) criteria values within region of high p values almost reduce,
when this parameter increases

The MSSIM and the MNSSIM1(2) criteria at quasi-Gaussian noise.
Let us clarify the term of quasi-Gaussian interference in a digital image. Each of

color components RGB takes on a value from 0 to 28 − 1 = 255 at integer 8-bit
signal level presentation. Therefore, each color RGB component at quasi-Gaussian

Fig. 3.11 “Lena” image: a “pepper” noise with p = 0.05, MSSIM = 0.371, MNSSIM1 = 0.899,
MNSSIM2 = 0.902, b “salt/pepper” noise with p = 0.05, MSSIM = 0.315, MNSSIM1 = 0.899,
MNSSIM2 = 0.898

Fig. 3.12 The MSSIM,
MNSSIM1 and MNSSIM2
values versus pulse noise
intensity and noise type:
a “salt” type of pulse noise,
b “salt/pepper” type of pulse
noise
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interference is formed by Eq. 3.74, where ηij ∈ N(0, 1) is the independent Gaussian
values with zero mean and unit variance for each image pixel, r0 � 1 is a nor-
malizing factor that control noise variance, [z] is an integral part of number z.

yij¼ xij þ r0 � gij � 25
 �þ 27 ð3:74Þ

Coefficient 25 = 32 and deviation 27 = 128 are selected so that resulting values
with probability p = 0.995 are within the interval 0� yij � 255. If a resulting value
is beyond this interval, i.e. yij\0 or yij [ 255, then a rounding is performed to
yij ¼ 0 or yij ¼ 255, respectively.

The images from database of Laboratory for Image and Video Engineering [26]
were used as test images. Subjective quality values of Difference Mean Opinion
Score (DMOS) values for images from this database were also obtained. For images
noisy with Gaussian noise, the MSSIM, the MNSSIM1, and the MNSSIM2 criteria
values as well as the rank Spearman correlation coefficients between these criteria
values and DMOS values were calculated.

The rank Spearman correlation coefficients between the MSSIM, the MNSSIM1,
and the MNSSIM2 criteria and DMOS values are computed as follows. The cal-
culated values of the MSSIM, the MNSSIM1, and the MNSSIM2 criteria are
assigned with ranks, and ranks are also set to respective DMOS values. Then the
Spearman correlation coefficient is calculated. A number of elements in sequence n
equals 49 for all quality criteria and their respective DMOS values. For each of the
MSSIM, the MNSSIM1, and the MNSSIM2 quality criteria, the obtained correla-
tion coefficients were checked. Test results of image “Parrots” are provided by
Table 3.7.

It is evident from Table 3.7, that the MSSIM criterion values and variation range
are higher than those of the MNSSIM1 and the MNSSIM2 criteria at quasi-
Gaussian noise. This is explained by the fact that the MSSIM criteria structure is
more suitable for images with Gaussian statistics. All criteria are strongly correlated
with DMOS.

With strong image block distortion or blue, the MSSIM criterion produces an
overestimate. At the same time the MNSSIM1 and the MNSSIM2 criteria have low
values, thus corresponding to low visual quality of the distorted images. Figure 3.13
presents an image with block distortion and high JPEG algorithm compression.

Table 3.7 Correlation results for image “Parrots”

r0 DMOS MSSIM MNSSIM1 MNSSIM2

1.000 68.72 0.027 0.012 0.017

0.129 47.03 0.252 0.152 0.208

0.063 38.93 0.518 0.314 0.359

0.031 28.50 0.788 0.520 0.541

Spearman correlation
coefficient

−0.955 −0.929 −0.921
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Possibilities of use of structural similarity criteria to detect changes of actions.
During research, an issue concerning the ability of structural similarity criteria to
track the contextual similarity of images was investigated. To solve this task, the
MSSIM, theMNSSIM1, and the MNSSIM2 criteria were applied to different images.
It was discovered that, when comparing absolutely different images with the same
spatial sizes the MSSIM criteria gives unreasonably high values, whereas the
MNSSIM1 and the MNSSIM2 criteria values are practically equal to 0. Figure 3.14
shows an example of images compared by the MSSIM, the MNSSIM1, and the
MNSSIM2 criteria values. The obtained data proves that the non-parametric modi-
fications are more relevant to the name of structural similarity criterion.

Comparison of pixel and spectral image analysis algorithms.
Multiple tests with real images and video sequences were made by the authors to
discover the features and the abilities provided by the above described algorithms.
The following intermediate conclusion can be performed:

1. The MSSIM and the MNSSIM1(2) structural similarity criteria are efficient to
detect changes in frame and video sequence fragments, when images are pro-
cessed without compression.

2. The non-parametric the MNSSIM1(2) criteria require more operations as
compared with the MSSIM and the spectral algorithm. However, their values
are more compatible with human perception.

3. Among all analyzed algorithms, the MNSSIM1(2) has the highest immunity to
pulse and other non-Gaussian interference.

4. The MNSSIM1(2) non-parametric criteria could be applied to determine
change in a video sequence scene and to detect external frames added to a video
sequence.

Fig. 3.13 “Lena” image
recovered after JPEG
compression.
MSSIM = 0.634,
MNSSIM1 = 0.073,
MNSSIM2 = 0.079
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5. The algorithms for spectral structural variation detection obtained by maximum
likelihood method are optimal with Gaussian interference.

6. The quasi-optimal detection algorithms applying statistics are similar to the
optimal ones by their characteristics. They are not sensitive for threshold
selection and image type. The spectral algorithms are more sensitive to change
of an image type as compared to the MSSIM and the MNSSIM1(2).

7. The difference in statistics values with or without texture variations are tens/
hundreds times in case of spectral algorithms and several times in the case of
the MSSIM and the MNSSIM1(2) algorithms.

8. As for computation expenses, the spectral and pixel algorithms are approxi-
mately similar. They can operate in the real-time mode.

9. The spectral algorithms are very efficient in real-time operation, especially
when they are embedded to video codecs. It has been found that these algo-
rithms can operate in the truncated spectrum width with a few components.

10. A promising spectral basis is the discrete Chebyshev transform (GDCT). The
GDCT spectrum is the most fast decreasing for orthogonal transforms.

11. A combining of the Chebyshev sampling and a spectral detection allows to
reduce information processing in 4–8 times depending on a frame variation
nature.

12. To solve a certain task, the proposed algorithms should be selected by their
resource consumption, computation automation degree, and image distortions.

Fig. 3.14 Comparison of two images with MSSIM = 0.339, MNSSIM1 = −0.004,
MNSSIM2 = −0.006

88 Y.S. Radchenko and A.V. Bulygin



3.6 Conclusion

The chapter covers the use of the MSSIM, the MNSSIM1, and the MNSSIM2
criteria and the spectral algorithms D0 and DE to detect changes in a video sequence
or to compare textures of various images. The developed MNSSIM1(2) criteria and
the spectral algorithms D0 and DE can be used in artificial vision systems, in many
other scopes connecting with variations of texture, spectral and correlation
parameters of recorded signals. To meet a certain challenge, the selection of the
proposed algorithm should be determined by the required resource intensity, an
automation degree, and availability of image distortions. The proposed algorithms
are used to design novel video codecs and intelligent video record systems. To
conclude one can emphasize that evolution of basic PSNR, the MSSIM criteria and
the spectral criteria, etc. is proceeding in [27–31].
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