
Chapter 10
Implementation of Hadamard Matrices
for Image Processing

Leonid Mironovsky and Valery Slaev

Abstract The image quality influences the accuracy of obtained results. In the
chapter, the application of the strip-method for noise-immune storage and trans-
mission of images is analyzed. At the same time, before transmitting the matrix
transformation of an original image has to be done, when the image fragments are
mixed up and superimposed each other. The transformed image is transmitted over
a communication channel, where it is distorted with a pulse noise, the latter being,
for example, a possible reason for a complete loss of separate image fragments.
After the signal transmission to the receiving end, an inverse transformation is
performed. During this transformation, the reconstruction of the image takes place.
If it is possible to provide a uniform distribution of the pulse noise over the whole
area, which the image occupies without any changes of its energy, then a noticeable
decrease of noise amplitude will take place and an acceptable quality of all frag-
ments of the image are reconstructed. The tasks of the chapter are the consideration
the versions of the two-sided strip-transformation of images and the choice of
optimal transformation matrices. A great attention has been paid to the imple-
mentation of Hadamard matrices and matrices close to them such as Hadamard-
Mersenne, Hadamard-Fermat, and Hadamard-Euler matrices.
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10.1 Introduction

Many problems of information transforming and data studying are connected with
the images processing and transmitting. For example, it is possible to name the
remote sensing of the Earth surface by satellites, rentgenography and its application
in medicine, investigations of biological and chemical processes, among others. The
accuracy of the obtained results depends from the quality of images.

In this chapter, the application of the strip-method [1–3] for storage and noise-
immune transmission of images is analyzed [4]. At the same time, before trans-
mitting the matrix transformation of an original image is fulfilled, when the image
fragments are mixed up and superimposed each other. The transformed image is
transmitted over a communication channel, where it is distorted by pulse noises, the
latter being for example a possible reason for a complete loss of separate image
fragments. After the signal transmission to the receiving end, an inverse transfor-
mation is performed. During this transformation, the reconstruction of the image
takes place. If it is possible to provide a uniform distribution of the pulse noise over
the whole area, which the image occupies without any changes of its energy, then a
noticeable decrease of noise amplitude will take place and the acceptable quality of
all fragments of the reconstructed image is achieved.

Section 10.2 provides the related work. Strip-method of image transformation is
developed in Sect. 10.3. The Hadamard matrices and matrices closed to them are
represented in Sect. 10.4. Conclusion is situated in Sect. 10.5.

10.2 Related Work

It is reasonable that the strip-method is merely one of the methods used for
increasing the accuracy of signal and image transmission over communication
channels. A great number of publications are devoted to issues of raising the noise-
resistance of information transmission systems [3, 5–8], and others. It is also
necessary to mention some works in the adjacent fields of activities such as the
works in the cluster systems of message transmission and linear predistortion of
signals, which were maden by Russian researches Ageyev, Babanov, Lebedev,
Marigodov, Suslonov, Tsibakov, Yaroslavsky, and others; the works connecting
with the method of redundant variables; the works in the linear transformation and
block coding of signals and images, which were done by American researches
Costas, Lang, Leith, Pierce, Upatnieks [9–17], and others. Thus, the noise control
based on introduction of pre-distortions at the stage of signal transmission and on
optimal processing at the stage of signal reception is widely used in information
transmission systems.

However, the majority of works deal with the pre-distortion methods and the
correction by using a root-mean-square criterion, whereas the methods satisfying
the requirements for optimizing the information transmission systems with the help
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of a minimax criterion have been developed to a significantly lesser degree.
Therefore, it would be more useful to develop and study new methods for blanking
the pulse interference, which are supported by using the minimax criterion and
modern computer processing for images.

10.3 Strip-Method of Image Transformation

In this section, the basis of two-dimensional strip-transformation (Sect. 10.3.1) and
the choice of optimal transformation matrices (Sect. 10.3.2) will be discussed.

10.3.1 Two-Dimensional Strip-Transformation

The first stage of the strip-method for the transformation of one-dimensional signals
consists in a “cutting” the original signal into n strips with equal duration and a
forming from them the n-dimensional vector X. At the second stage, this vector is
fallen under the isometric transformation by its multiplying on the orthogonal
matrix A of the dimension n × n

Y ¼ AX:

In the same way, the first stage of the strip-transformation of two-dimensional
signals (images) consists in dividing the original image P into N rectangular
fragments similar in size as it is shown in Fig. 10.1. Let the number of horizontal
and vertical stripes, into which the image is conditionally “cut”, be denoted as
m and n; then N = mn. Further, a linear combination of the fragments is made. At
that, there are two approaches such as the vector and the matrix ones [18, 19].

m

n

x

y

P=

Fig. 10.1 The image
presentation as the block-
matrix P
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According to the first (vector) approach, the obtained fragments are used to form
an N-dimensional block-vector X that as in the one-dimensional case undergoes the
isometric transformation by multiplying it on the orthogonal matrix A of the
dimension N × N: Y = AX. Let this version, entirely the same as in the one-
dimensional case, be denoted as the one-sided strip-transformation. Its main weak-
ness is too high dimensionality of the matrix A and corresponding calculation costs.

According to the second (matrix) approach, the original image divided into
fragments, is considered as a block-matrix X of the dimension m × n. Here three
versions of isometric transformation of this matrix with the purpose to “mix” its
fragments are possible [20]:

• The multiplication by the orthogonal m × m matrix B on the left (the left-sided
matrix transformation)

Z1 ¼ BX:

• The multiplication by the orthogonal n × n matrix A on the right (the right-sided
matrix transformation)

Z2 ¼ XA:

• The simultaneous multiplication by the matrix B on the left and by the matrix
A on the right (the two-sided or bilateral matrix transformation)

Z3 ¼ BXA:

All versions listed above are shown in Fig. 10.2. It illustrates a chain of trans-
formations of the original image P, which results into an image being transmitted
over the communication channel.

The first and the last versions of transformation are of the main interest, since
they provide the most complete “mixing” of the image fragments. Each fragment of
the transformed image contains information about all N = mn fragments of the
original image P. In other two versions Z1 = BX and Z2 = XA only horizontal or
only vertical stripes into which the original image has been “cut” are linear
combined.

Therefore, only two versions of transformation will be considered below:

• The one-sided strip-transformation provided by Eq. 10.1, where X is the block-
vector of the dimension mn × 1, A is the orthogonal matrix of the order mn.

Y ¼ AX ð10:1Þ

• The two-sided strip-transformation by Eq. 10.2, where X is the block-matrix of
the dimension m × n, B and A are the orthogonal matrices of the orders m and n.
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Z ¼ BXA ð10:2Þ

Correspondingly, the inverse transformations, when the image is reconstructed at
the receiving end of the communication channel, are described by Eq. 10.3 for the
one-sided transformation and Eq. 10.4 for the two-sided transformation.

X ¼ A�1Y ð10:3Þ

X ¼ A�1ZB�1 ð10:4Þ

Let these two versions be described in more details.
The image transmission with using the one-sided strip-transformation. Let an

original and reconstructed images be denoted as P and P′, and a straight and an
inverse operators, realizing fragmentation and defragmentation of the image, as S1
and S10 ¼ S1�1.

In the communication channel to the vector Y = AX, a pulse noise signal Δ is
added. As a result, at the output of the channel we get an image-vector Y′ = Y + Δ.
At the receiving end, the inverse one-sided strip-transformation is performed aimed
at obtaining a vector X′. This transformation is described by Eq. 10.5.

X0 ¼ A�1Y0 ¼ A�1ðYþ DÞ ¼ A�1Yþ A�1D ¼ Xþ A�1D ð10:5Þ

Original image P

X X

AX BX XA BXA

Dividing into fragments (fragmentation)

Vector of the dimension mn 1 Matrix of the dimension m n

Joining of fragments (defragmentation)

Transformed image

Y Z1
Z2 Z3

Χ Χ

Fig. 10.2 The strip-transformation of two-dimensional signals
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The obtained vector X′ is represented in the form of the sum of the vector X and
noise vector Δ, which have experienced the inverse transformation. At the last stage
the vector X′ is transformed into the matrix m × n, describing the reconstructed
image P with a noise Δ′ = A−1Δ added to it.

As it has already been shown, the main disadvantage of the one-sided strip-
transformation is too large dimension of the matrix A equal to mn × mn (the number
of entries of this matrix is equal to the squared number of fragments, into which the
image is divided). The matrices B and A used in the two-sided strip-transformation
have significantly smaller dimensions (at m = n a total number of their elements is
equal to the doubled number of image fragments). This facilitates their formation
and storage.

The image transmission with using of the two-sided transformation. The image
Z = BXA obtained as a result of the two-sided strip-transformation of the original
image P is transmitted through the communication channel. A pulse noise signal Δ
(a block-matrix of the dimension m × n) is added to the image transmitted into the
channel. As a result at the output of the channel we have an image Z′ = Z + Δ. At
the receiving end the image Z′ is affected by the inverse two-sided transformation
for getting a matrix of a resulting image P′. It is described by Eq. 10.6.

P0 ¼ A�1Z0B�1 ¼ A�1 Zþ Dð ÞB�1 ¼ A�1ZB�1 þ A�1DB�1 ¼ Pþ A�1DB�1

ð10:6Þ

In accordance with Eq. 10.6, the recipient will see the original image P with the
noise added to it in the channel and changed by the inverse two-sided transfor-
mation. To make this method more appropriate in practice, matrices A and B have
the equal sizes that simplify calculations and save memory. Then Eq. 10.2 takes the
form of Eq. 10.7, where A is an orthonormal matrix.

Z ¼ AXA ð10:7Þ

The Eq. 10.6 will simplify in a following manner (Eq. 10.8).

P0 ¼ Pþ ATDAT ð10:8Þ

For further simplifying of the transformation, it is useful to apply a symmetrical
matrix A. In this case the inverse transformation will coincide with the straight one
and the need to store and calculate separately the inverse matrix will disappear. The
noise at the output of the system will be determined by the formula D0 ¼ ADA.

Mathematical formalism. In Eqs. 10.2–10.8 and other formulae of this part of the
chapter, the multiplication of usual numeric matrices A and B by the block matrices
X, Y, Z, the elements of which are the image fragments, is performed. At the same
time the following rules are used.
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Summation of blocks (fragments). Separate blocks (fragments) of image matrices
are summed up by adding the corresponding block elements. This operation is
similar to summation of two matrices of the same sizes.

Multiplication of a fragment by a number. The operation is performed by
multiplying each fragment pixel by a number. At the same time the brightness of
the fragment changes as a whole. The operation is similar to the multiplication of
the matrix by a number.

Multiplication of the block matrix by the numeric matrix. Such a multiplication is
performed in the same way as it is done in multiplying the numeric matrices
according to the rule “a row by a column” taking into account the manner of two
first operations.

Example. Loss of a unit (a single noise). Let the test image given in Fig. 10.3 be
analyzed. The original image has definite boundaries and is characterized by the
presence of both large objects and small details. Let a message (Fig. 10.3) be
divided into 8 × 8 = 64 units, which are in series transmitted over a communication
channel. By a single noise they imply a distortion or loss of one from 64 units. An
example of such a noise is shown in Fig. 10.4.

Now let the two-sided transformation of the original image with the orthonor-
malized Hadamard matrix of the 8th order be done (this is done before the trans-
mission). The image obtained without transformation is shown in Fig. 10.4, and the
image obtained with the strip-transformation is shown in Fig. 10.5.

An analysis of the image shows that without strip-transformation this image loses
its scenario (Fig. 10.4). When using the strip-transformation with the Hadamard
matrices of the 8th order (Fig. 10.5) the image is obtained without any significant

Fig. 10.3 Original image

10 Implementation of Hadamard Matrices for Image Processing 317



distortions. Having estimated the images obtained by the subjective way, it is pos-
sible to note that the quality of the obtained image is quite acceptable.

Image scaling. In practice an image transmitted is represented in the form of a
matrix consisted from separate pixels (brightness values). As a rule, the number of
luminance range is taken as 256, that corresponds to eight binary digits.

Fig. 10.4 The image with the
loss of one unit without
strip-transformation

Fig. 10.5 The image
obtained using the strip-
transformation with the
Hadamard matrix of the 8th
order
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After two-sided strip-transformation the image can transgress the bounds of a
digit plane, and it is necessary to return it into acceptable bounds by means of
dividing the image value by a definite scale parameter.

The most unfavorable case is typical for a purely white image. As a consequence
of the strip-transformation with the Hadamard matrix of the n order all elements of
such image become zero (black) ones apart from one element, the value of which
will exceed the permissible range by n times.

It is obvious that the introduction of too great scale parameter can adversely
affect the quality of the image restored. Therefore, a problem of choosing a minimal
value of this scale parameter arises. It is possible to indicate the following versions
of solving the problem. The simplest one of them is to use a fixed scale parameter
n at the transmitting point and the coefficient 1/n at the receiving end. Shortcomings
of this version are evident. A more flexible way may consist in introduction of an
adaptive scale parameter that is specially calculated for each image and transmitted
with it over a communication channel.

It is also possible to use a threshold filter (an amplitude detector) for limiting
maximum values of the signal transmitted. With all this going on, it is possible to
decrease the contrast of the image being received. For example, a white-black
image of the “chess-board” type can turn into a black-grey one. The presence of
prior statistical information concerning properties of the images transmitted can also
help to solve the problem of scale operation.

The above is related to the case of white and black images. Technically such
images are represented in the form of a matrix that consists from a number of pixels
(brightness values). Just this matrix is subjected to fragmentation in the process of
the strip-transformation. As to the color images, the situation is somewhat more
complicated. One of the standard methods for presenting the color images is the
application of three-layered matrix Red–Green–Blue. In this case, each of the three
layers of the image matrix is exposed to the strip-transformation action.

10.3.2 Choice of Optimal Transformation Matrices

As a consequence of dividing the original image into fragments, shown in Fig. 10.1,
a block-matrix containing m × n blocks is obtained. The entries of this matrix are
rectangular and have dimensions x × y. All fragments of this matrix are of the same
dimensions. In those cases, when the number of pixels in a row or column of the
original image matrix cannot be divided by m or n, giving an integer, it is necessary
to add pixels from the right or from the bottom of the image. They should not
distort the image or excessively contrast it.

The separation of the image into fragments permits to decrease significantly the
calculation costs. The larger fragments mean the smaller dimension of the trans-
formation matrix A. The image fragment dimension should be chosen on the basis
of an expected duration of the pulse noise, i.e. the linear dimensions of the distorted
image segment. The best version will be the choice of fragment dimension equal to
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maximal noise duration. This will allow the noise to be distributed over the image at
the output of the system in the most uniform way. The chosen fragment dimension
will determine the dimensions of the transformation matrix.

To attenuate the amplitude of pulse noise as much as possible, it is necessary to
secure the uniform distribution of the noise over the image by applying the inverse
transformation at the receiving end of the communication channel. This makes it
possible to reconstruct information about distorted and “lost” fragments. Moreover,
this arises a need to determine the type of a transformation matrix A that will
minimize the noise amplitude in the reconstructed image.

In case of the one-sided strip transformation, the level of noise Δ′ in the
reconstructed image is determined by Eq. 10.5. If the matrix A is symmetrical and
orthogonal, then Eq. 10.9 will take place.

D0 ¼ AD ð10:9Þ

Similar equation can be derived from Eq. 10.8 for the two-sided transformation
in a view of Eq. 10.10.

D0 ¼ ADA ð10:10Þ

Let us assume that the noise in the communication channel distorts only one
fragment of the image (a single noise pulse). This means that only one of the block-
vector components, Δi from Eq. 10.9 or that of the block-matrix, Δi from Eq. 10.10
can be non-zero.

In both cases the noise level Δ′ in the signal reconstructed will be determined by
a maximal entry module of the orthogonal matrix A. Indeed, if in Eq. 10.9 we
assume that Δ1 = 1, Δ2 = ⋯ = ΔN = 0, then Δ′ = A1, where A1 is the first column of
the matrix A. Thus, the noise amplitude Δ′ will be equal to the maximal entry
module of the first column of the matrix A (and in the general case to the whole
matrix A).

In a similar manner, assuming, for example, that in Eq. 10.10 Δ11 = 1, and the
remaining components are Δij = 0, the following equations will be obtained:

D0 ¼ A1 � AT
1 ¼ a1i � a1j

� �n
1:

Therefore, the maximal entry of the matrix Δ′ will be equal to aM
2 , where aM is

the maximal entry module of the first column of the matrix A. At an arbitrary
position of the non-zero entry in the matrix Δ, the maximal entry module aM of the
matrix A will be obtained.

Since the aim set is to attenuate to the limit the noise amplitude, then in both
cases it is required to search such class of orthogonal matrices, the one the maximal
entry module of which is minimal. The well-known decision of this task relates to
the cases n, which are divided by four. Such matrices are the normalized Hadamard
matrices. The less known decision for even n, which are not divided by four, is
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represented by so called Conference-matrices (C-matrices). They have a zero
diagonal and their rest entries are equal to ±1.

The Hadamard matrices provide an ideally uniform distribution of a single noise
pulse over the whole image area, decreasing its amplitude by n times (at m ≠ n byffiffiffiffiffiffi
mn

p
times). The C-matrices providing the noise attenuation by (n − 1) times are

only a little inferior to them. For odd n, the general solution of the problem is
unknown for the authors. As a result of long term searches, the orthogonal matrices
for n = 3, 5, 7, 9, 11, optimal in this sense, have been found. More detailed
information about these and other matrices, closed to the Hadamard matrices, are
given in the Sect. 10.4.

10.4 Hadamard Matrices and Matrices Closed to Them

The strip-method bases itself on isometric transformations of signals and images
with the help of orthogonal matrices. One of the main requirements for these
matrices is the most complete “mixing” of fragments of an original signal or image
in the case of the straight transformation, as well as a uniform distribution of a pulse
noise along the time duration of a reconstructed signal, or over the area of a
reconstructed image at the inverse transformation.

In respect to mathematics, this means that the orthogonal matrices with entries
closed in absolute value should be used. The classical representatives of such
matrices are the Hadamard matrices. Moreover, the subject to a technical problem
to be solved some additional requirements such as the matrices symmetry, the cycle
structure (Toeplitz or Hankel matrices) can be set up.

Below the description and specific form of matrices, completely or partially
meeting, are presented. First, there are the Hadamard and C-matrices, which provide
the utmost degree “mixing” of signal and image fragments. Unfortunately, these
matrices are far from being present in all cases. Therefore, the problem to find the
orthogonal matrices similar to them with respect to their characteristics arises.
Among the versions worthy of notice, there are matrices based on orthogonal sys-
tems of functions (trigonometric functions and polynomials), two-level D-matrices
(matrices containing elements of only two types, e.g. ±a, ±b) and minimax matrices
(M-matrices). Second, a generalization of Hadamard matrices for odd n, since their
maximum modulo entries are minimal as compared to all other orthogonal matrices
of the odd order, is considered.

The Hadamard matrices, the shortened Hadamard matrices, and the Conference
matrices are represented in Sects. 10.4.1–10.4.3, respectively. Section 10.4.4 pro-
vides the optimal orthogonal matrices of the odd order (M-matrices). Two-, three-,
and many-levels M-matrices are discussed in Sect. 10.4.5.
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10.4.1 Hadamard Matrices

The Hadamard matrices are widely used in the theory of coding (codes correcting
errors), theory of planning multifactor experiments (orthogonal block-diagrams),
and other fields of mathematics. Below the definition of these matrices and
description of their main properties are given [3, 21–25].

Definition 1 A Hadamard matrix of order n is such n × n matrix A with entries +1
or −1, for which AAT = nI, where I is the identity matrix.

It is evident that the Hadamard matrix is a non-singular matrix and its rows in
pairs are orthogonal. The transposition of rows or columns and multiplication them
by −1 again yield a Hadamard matrix. These operations allow any matrix to be
transformed into one of a “normalized” form, when in the first column and row all
elements are equal to +1. Dividing the Hadamard matrix by

ffiffiffi
n

p
; an orthogonal

matrix A0 ¼ A=
ffiffiffi
n

p
; is obtained that meets the condition A0A0

T = I. The simplest
Hadamard matrix has the form

A ¼ 1 1
1 �1

� �
:

It is orthogonal: ATA ¼ 2I and symmetrical.
After dividing this matrix by

ffiffiffi
2

p
it becomes orthonormal

A0 ¼ 1ffiffiffi
2

p 1 1
1 �1

� �
:

It is easy to make sure that if M and N are the Hadamard matrices of orders
m and n, respectively, then their Kronecker product, i.e. the matrix M ⊗ N, is the
Hadamard matrix of order m · n. For example, if A is the Hadamard matrix of the
second order, then as a result of the Kronecker product A⊗ A the Hadamard matrix
of the 4th order is obtained

1 1
1 �1

� �
� 1 1

1 �1

� �
¼

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

2
664

3
775 :

It is known that there are no Hadamard matrices of the odd order [26]. To
provide the existence of Hadamard matrices of the even order n > 2, it is necessary
to have n divisible by 4. It should be noted that thereby nothing but the required
condition has been proved. From this condition it does not follow that at n divisible
by 4 the Hadamard matrix has to exist. The hypothesis, according to which this
condition is sufficient, also has not yet proved. In the geometry language the
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question concerning the existence of the Hadamard matrix of order n = 4k is
equivalent to the question concerning the possibility to inscribe a regular hyper-
symplex into a (4k − 1)-dimensional cube.

To obtain the Hadamard matrices in practice, it is possible to use the command
hadamard of the MATLAB packet. It allows the Hadamard matrices to be built for
the cases, when n, n/12 or n/20 are powers of 2. Unfortunately, such n as 28, 36, 44,
52, 56, 60, and others, which are divisible by 4, do not refer to these cases, though
for them the Hadamard matrices have been found long ago. A list of all known
Hadamard matrices, which has been composed by Sloan, can be found at the site
http://neilsloane.com/hadamard/. In the Sloan’s library there are given all Hadamard
matrices for n = 28 and at least by one matrix for all n values divisible by 4, right up
to n = 256. They have names of the type: had.1.txt, had.2.txt, had.4.txt, had.8.txt,
…, 256.syl.txt, and are arranged in the form of text files containing arrays of
signs + and −, corresponding to positive and negative entries of the Hadamard
matrices. Contents of several files of such a type are given in Table 10.1.

The system of notation is clear from the first column, where both versions of a
system for recording the Hadamard matrix of order 4, are shown.

Let us notice that the Hadamard matrices of order 2, 4, 8, and 12 are single
(accurate to the isomorphism). At n = 16, there are some various Hadamard
matrices. In the Sloan’s library they are denoted as: had.16.0, had.16.hed, had.16.
syl, had.16.twin, had.16.1, had.16.2, had.16.3, had.16.4. Three non-equivalent
Hadamard matrices for n = 20 are denoted as had.20.pal, had.20.will, had.20.
toncheviv. Further, in the library there are given 60 matrices of order 24 and 487
matrices of order 28, as well as the examples of Hadamard matrices for number to
256 inclusive for each n divisible by 4.

In the process of designing them, there were used methods proposed by Paley,
Placket-Burman, Sylvester, Tourin, and Williamson. Certain information about
these methods can be found in the digest [27], the authors of which constructed the

Table 10.1 Examples of Hadamard matrices txt-files

+ + + +
+ − + −
+ + − −
+ − − +

++++++++
+− +− +−+−
++ −− ++ −−
+−−++ − − +
++++− − − −
+−+ −− +− +
++− − − ++
+−− +− ++ −

+ −− − − − −−−−−−
++−+−−−+++−+
+++−+−−−+++−
+−++−+−−−+++
++−++−+−−−++
+++−++−+−−−+
++++−++−+−−−
+−+++−++−+−
+−+++−++−+−
+−−−+++−++−+
++−−−+++−++−
+−+−−−+++−++

++++++++++++++++
+ −+−+ − + − + −+−+−+−
++ − − ++ −−++−−++ − −
+ − ++ − − ++ − − ++− +
++++− − − ++++ − - − −
+− + −+− ++ − + − − + − +
++ − − − ++++ − − − − ++
+− + −++ − + − − + − ++ −
++++++++ − − − − − − −−
+ − + − + − +− − + −+− + −+
++ − − ++− − − − ++− − ++
+− − ++ − − + −++ − − ++ −
++++− − − − − − - − ++++
+− + − − + −+− + − ++ − + −
++ − − − − ++− − ++++ − −
+−− + −++ − − ++ − + − − +

1 1 1 1
1−1 1−1
1 1−1−1
1−1−1 1
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Hadamard matrix of order 428. The greatest order, for which Hadamard matrix is
presently known, is 668.

Not all Hadamard matrices represented in Table 10.1 are symmetrical. In
Table 10.2 there are given versions of the matrices, which are symmetrical relative
to the main or side diagonals and in a number of cases are more convenient for
being used in the strip-method. The Hadamard matrix is named regular, if every
row and every column contain the same number of “1”. Such matrices have the
maximum number of “1” entries (among all possible Hadamard matrices of a given
order). For example, the 1st row of Table 10.1 contains a regular Hadamard matrix
of order 4.

10.4.2 Shortened Hadamard Matrices

With a permutation of rows, columns and a multiplication of them by –1, it is
possible to provide their symmetrical form with positive entries in the first row and
the first column. Discarding this row and column, a shortened (reduced) matrix of
order n–1 will be obtained. This matrix will no longer be orthogonal but becomes the
circular one. All its rows are obtained with a cyclic shift of the first. This property is

Table 10.2 Symmetrical Hadamard matrices

n = 4 �1 1 1 1
1 �1 1 1
1 1 �1 1
1 1 1 �1

2
664

3
775

n = 8 1 1 1 1 1 1 1 1
1 �1 �1 1 �1 1 1 �1
1 �1 �1 �1 1 �1 1 1
1 1 �1 �1 �1 1 �1 1
1 1 1 �1 �1 �1 1 �1
1 �1 1 1 �1 �1 �1 1
1 1 �1 1 1 �1 �1 �1
1 �1 1 �1 1 1 �1 �1

2
66666666664

3
77777777775

n = 12 1 1 1
1 �1 1
1 �1 �1

1 1 1
�1 1 1
1 �1 1

1 1 1
1 �1 �1
1 1 �1

1 1 1
�1 1 �1
�1 �1 1

1 1 �1
1 �1 1
1 �1 �1

�1 1 �1
�1 �1 1
1 �1 �1

1 1 1
�1 1 1
1 �1 1

�1 �1 �1
1 �1 �1
1 1 �1

1 �1 �1
1 1 �1
1 1 1

�1 1 �1
�1 �1 1
�1 �1 �1

�1 1 �1
�1 �1 1
1 �1 �1

1 1 1
�1 1 1
1 �1 1

1 1 1
1 �1 1
1 1 �1

1 �1 �1
1 1 �1
1 1 1

�1 1 �1
�1 �1 1
�1 �1 �1

�1 1 �1
�1 �1 1
1 �1 �1

2
666666666666666664

3
777777777777777775
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useful in processing signals with the strip-method since it provides “smoothness” of
the signal transmitted [3].

Let some properties of the shortened Hadamard matrices be analyzed. At n = 4,
taking as a basis the matrix from the first column of Table 10.1, the following
Hadamard matrix of the third order will be obtained

�A3 ¼
�1 1 �1
1 �1 �1
�1 �1 1

2
4

3
5 �A�1

3 ¼ � 1
2

1 0 1
0 1 1
1 1 0

2
4

3
5:

In the case given the inverse matrix, also one can find itself circulante.
Let us consider the eigenvalues λi and eigenvectors Hi of the matrix �A3

k1 ¼ �1 k2 ¼ �2 k3 ¼ 2

H1 ¼
1
1
1

2
4

3
5 H2 ¼

1
�1
0

2
4

3
5 H3 ¼

1
1
�2

2
4

3
5:

The first vector corresponds to two-multiple noise that in filtration with the strip-
method remains unchanged; however other two-multiple noises can increase.

For n = 8 we obtain the following shortened Hadamard matrix of the seventh
order and the one inverse to it.

The eigenvalues of the matrix �A7 have the form −1, −2, 2. In general case, the
eigenvalues of the shortened Hadamard matrix obtained from the Hadamard matrix
of order n are divided into three groups: one of them is always equal to −1, a half of
the rest ones is equal to

ffiffiffi
n

p
, and another half is equal to � ffiffiffi

n
p

.

�A7 �A
�1
7

�1 �1 1 �1 1 1 �1
�1 �1 �1 1 �1 1 1
1 �1 �1 �1 1 �1 1
1 1 �1 �1 �1 1 �1

�1 1 1 �1 �1 �1 1
1 �1 1 1 �1 �1 �1

�1 1 �1 1 1 �1 �1

2
666666664

3
777777775

1
4

�1 �1 0 0 �1 0 �1
�1 �1 �1 0 0 �1 0
0 �1 �1 �1 0 0 �1

�1 0 �1 �1 �1 0 0
0 �1 0 �1 �1 �1 0
0 0 �1 0 �1 �1 �1

�1 0 0 �1 0 �1 �1

2
666666664

3
777777775

10.4.3 Conference Matrices

Definition 2 The name Conference-matrix (C-matrix) is given to any matrix C of
order n with zero on the main diagonal and +1 and −1 on the rest places satisfying
the condition CTC = (n − 1)I.
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Thus, rows (and columns) of C-matrices are orthogonal in pairs. The simplest
C-matrices have the form as Eq. 10.11.

0 1
1 0

� �
0 1
�1 0

� � 0 1 1 1
1 0 �1 1
�1 1 0 �1
�1 �1 1 0

2
664

3
775

0 1 1 1 1 1
1 0 1 �1 �1 1
1 1 0 1 �1 �1
1 �1 1 0 1 �1
1 �1 �1 1 0 1
1 1 �1 �1 1 0

2
6666664

3
7777775

ð10:11Þ

The first and third of them are symmetrical, the second and fourth are skew-
symmetrical. The skew-symmetric C-matrices as well as the Hadamard matrices
exist only at n = 2 and n, divisible by 4. From the point of view of the strip-method,
they in all respects are inferior to the Hadamard matrices, and therefore will not be
considered below.

The symmetrical C-matrices of order n can exist only in the case, when n − 2 is
divisible by 4, and n − 1 can be presented in the form of a sum of squares of two
integer numbers. For example, at n = 2, 6, 10, 14, 18 they exist and for n = 22 do
not, since number 21 is not presented by a sum of two squares. For n = 26, 30 the
C-matrices exist since equalities 25 = 32 + 42, 29 = 22 + 52 have a place. For n = 34,
as well as for n = 22, a negative answer is obtained. For n = 38, 42, 46 the answer
will also be negative.

Let us consider two problems, where we meet the C-matrices.
Conference arrangement problem. Let us suppose that n directors of some

company have decided to arrange a conference by telephone in such a way as to
provide any director with the possibility to speak to every one of his colleagues and
the rest ones could listen to their discussion. The construction of such a conference-
communications is equivalent to construction of a C-matrix.

Problem of weighing. What is the best scheme of weighing, if it needs to weigh
n objects at n procedures of weighing?

The strategy of weighing is described by the C-matrix given by its entries cij:

cij = 1, if in weighing i the object j is located on the left pan;
cij = −1, if in weighing i the object j is on the right pan;
cij = 0, if in weighing i the object j does not take part.

For n divisible by 4, the best scheme of weighing is given with the Hadamard
matrix and for even n, which are not divided by 4, is provided by the symmetrical
C-matrix.

The normalized matrices, the order of which differs from the Hadamard ones on
2, are of the extreme quality similar to that the Hadamard matrices possess: their
entry maximal in absolute value is minimal (for the class of orthogonal matrices).
Further we will denote the entry maximal in absolute value as α. The value of this
entry for the C-matrices equals a ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
, i.e. it is only a little inferior to the
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Hadamard matrices which have a ¼ 1=
ffiffiffi
n

p
. For example, for n = 6 the difference is

less than 10 %.
These formulae taken together describe an accurate bottom boundary of the

entry, maximal in absolute value, of the orthogonal matrices of the even order: the
first one for n, which are not divisible by 4, in particular for 6, 10, 14, 18, 26;
the second one for n divisible by 4, in particular for 4, 8, 12, 16, 20. In Table 10.3,
the C-matrices for n = 10, 14, 18; cases for n = 2, 6, had been considered above
(in Table 10.2) are shown.

The matrix C18 (as C14 too) have the symmetrical form with a zero diagonal.
Moreover, there is an analogue matrix X18, having two zero diagonals disposed
cross-wise.

Table 10.3 C-matrices for n = 10, 14, 18

C10 C14
0    -1     1     1    -1     1    -1    -1    -1    -1
-1     0    -1     1     1    -1     1    -1    -1    -1
1    -1     0    -1     1    -1    -1     1    -1    -1
1     1 -1     0    -1    -1    -1    -1     1    -1
-1     1     1    -1     0    -1    -1    -1    -1     1
1    -1    -1    -1    -1     0     1    -1    -1     1
-1     1    -1    -1    -1     1     0     1    -1    -1
-1    -1     1    -1    -1    -1     1     0     1    -1
-1    -1    -1     1    -1    -1    -1     1     0     1
-1    -1    -1    -1     1     1    -1    -1     1     0

0  1  1   1   1   1  1   1  1   1   1   1  1  1
1  0  -1  -1  -1  1  1  -1  1  -1  1  -1  1  1
1  -1  0  1  -1  -1  -1  1 -1  1  1  -1  1  1
1  -1  1  0  1  -1  1  -1  -1  -1  1  1  -1  1
1  -1  -1  1  0  -1  1  1  1  -1  -1  1  1  -1
1  1  -1  -1  -1  0  1  1  -1  1  1  1  -1  -1
1  1  -1  1  1  1  0  1  -1  -1  -1  -1  -1  1
1  -1  1  -1  1  1  1  0  -1  1  -1  -1  1  -1
1  1  -1  -1  1  -1  -1  -1  0  1  -1  1  1  1
1  -1  1  -1  -1  1  -1  1  1  0  -1  1  -1  1
1  1  1  1  -1  1  -1  -1  -1  -1  0  1  1  -1
1  -1  -1  1  1  1  -1  -1  1  1  1  0  -1  -1
1  1  1  -1  1  -1  -1  1  1  -1  1  -1  0  -1
1  1  1  1  -1  -1  1 -1  1  1  -1  -1  -1  0

18 X18
0  1  1  1  1   1  1   1  1   1   1  1   1  1   1   1   1   1
1  0  1  1  1  -1  1  -1  1  -1  1  1  -1  1  -1  -1  -1  -1
1  1  0  1  1  1  -1  1  -1  -1  1  -1  -1  -1  -1  1  1  -1
1  1  1  0  -1  1  1  1 -1  -1  -1  -1  -1  1  1  -1  -1  1
1  1  1  -1  0  1  1  -1  1  1  -1  -1  1  -1  -1  1  -1  -1
1  -1  1  1  1  0  -1  -1  1  -1  -1  -1  1  -1  1  -1  1  1
1  1  -1  1  1  -1  0  1  -1  1  -1  1  1  -1  -1  -1  -1  1
1  -1  1  1  -1  -1  1  0  -1  1  -1  1  -1  -1  1  1  1  -1
1  1  -1  -1  1  1  -1  -1  0  1  -1  1  -1  1  1  -1  1  -1
1  -1  -1  -1  1  -1  1  1  1  0  -1  -1  -1  1  -1  1  1  1
1  1  1  -1  -1  -1  -1  -1  -1  -1  0  1  1  1  -1  1  1  1
1  1  -1  -1  -1  -1  1  1  1  -1  1  0  1  -1 1  -1  1  -1
1  -1  -1  -1  1  1  1  -1  -1  -1  1  1  0  -1  1  1  -1  1
1  1  -1  1  -1  -1  -1  -1  1  1  1  -1  -1  0  1  1  -1  1
1  -1  -1  1  -1  1  -1  1  1  -1  -1  1  1  1  0  1  -1  -1
1  -1  1  -1  1  -1  -1  1  -1  1  1  -1  1  1  1  0  -1  -1
1  -1  1  -1  -1  1  -1  1  1  1  1  1  -1  -1  -1  -1  0  1
1  -1  -1  1  -1  1  1  -1  -1  1  1  -1  1  1  -1  -1  1  0

0  1  1  1  1  1   1  1  1  1  1   1  1  1  1  1  1  0
1  0  1  1 -1  1 -1  1 -1 -1  1 -1 -1 -1  1  1  0  1
1  1  0 -1 -1  1  1 -1 -1 -1 -1  1  1 -1  1  0  1 -1
1  1  1  0 -1 -1  1  1 -1  1 -1 -1  1  1  0 -1 -1  1
1  1  1 -1  0 -1 -1 -1  1 -1  1  1  1  0 -1  1 -1  1
1 -1  1  1 -1  0 -1 -1 -1  1  1  1  0  1 -1 -1  1 -1
1  1 -1  1 -1 -1  0  1  1 -1 -1  0 -1  1 -1  1  1 -1
1  1 -1  1 1  1 -1 -1  0  0 -1  1 -1  1  1 -1 -1  1
1 -1 -1 -1 -1  1 -1  0  1  1  0 -1  1  1  1  1 -1 -1
1 -1  1 -1  1  1  1 -1  0  0 -1 -1 -1  1 -1  1  1  1
1  1  1 -1  1 -1 -1  0  1  1  0 -1 -1 -1  1 -1  1 -1
1 -1  1  1  1  1  0  1  1 -1 -1  0  1 -1 -1 -1 -1 -1
1 1 -1  1  1  0  1 -1 -1  1  1 -1  0 -1 -1  1 -1 -1
1 -1 -1  1  0 -1  1 -1  1 -1  1 -1  1  0  1 -1  1  1
1 -1 -1  0  1 -1 -1  1 -1  1 -1  1  1 -1  0  1  1  1
1 -1  0 -1  1 -1  1  1 -1 -1  1  1 -1  1  1  0 -1 -1
1  0 -1 -1 -1  1  1  1  1  1  1  1 -1 -1 -1 -1  0  1

0  1 -1 -1  1  1 -1  1 -1 -1  1 -1 1  1 -1 -1  1   0

C
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It is quite close to the optimal one. The value of its maximum element after
normalization is equal to a ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p ¼ 0:25 (for the matrix C18,

a ¼ 1
� ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p ¼ 0:2425).

The Hadamard matrices and C-matrices are closely connected. In particular, it is
possible to construct Hadamard matrices from C-matrices [28].

Suppose C is a symmetric C-matrix of order m. Then the matrix

A ¼ Cþ Im C� Im
C� Im �C� Im

� �

is a Hadamard matrix of order 2m.
This matrix is rather close to the optimal one; after normalization the value of its

maximal entry is equal to a ¼ 1
� ffiffiffiffiffiffiffiffiffiffiffi

n� 2
p ¼ 0:25 (for the matrix C18,

a ¼ 1
� ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p ¼ 0:2425). Moreover, if C is antisymmetric C-matrix, then I + C is

a Hadamard matrix of order m.
In the aggregate the Hadamard matrices and C-matrices give the solution of the

orthogonal Procrustean problem (the problem to find orthogonal matrices with an
entry minimal in absolute value) almost for all even n, with the exception of several
values such as n = 22 and n = 34.

The situation for odd n is too much worse. Here only a few optimal matrices for
small values of n are known. Information about them is given below.

10.4.4 Optimal Orthogonal Matrices
of the Odd Order (M-Matrices)

Let us name the matrices providing a solution of the orthogonal Procrustean
problem for odd n minimax, or simply M-matrices. Their main property is the
minimality of the value α, i.e. the values of the entry maximal in absolute value on
the class of all orthogonal matrices of a given dimension. Here it is possible to
indicate three problems [29]:

Problem 1 Search of particular M-matrices for various numbers n.

Problem 2 Determination of an accurate bottom boundary α* for the value of
maximal entries of M-matrices α depending on n: α ≥ α* = f(n).

Problem 3 Determination of the number k of entry levels in the M-matrix for
different n.

Therefore, the Hadamard matrices can be called one-level since all their entries
are equal in absolute value. The C-matrices are two-level, modulus of their entries is
equal to 0 or 1. For an odd n, the M-matrices appear to be the k-level ones;
k depending on n [30, 31].
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It should be expected that the solution of all three problems set will depend on
what remainder is, when the odd number n is divided by 4 (1 or 3). Correspond-
ingly, a set of M-matrices breaks up into two subsets that differ in bottom
boundaries, number of levels k and type of matrices.

Let us move to description of particular M-matrices for n = 3, 5, 7, 9, 11.
Searching for these matrices is performed by numerical and symbolic modelling in
the MATLAB and MAPLE packets with the help of specially developed software.
As a result we have managed to determine an analytic type of entries of the optimal
matrices M3, M5, M7, M9, as well as to find the matrix M11 in the numerical form,
having preliminary obtained a system of non-linear algebraic equations for deter-
mining its entries. A more detailed procedure of searching is explained below by an
example of the matrix M11.

For the case n = 3, the optimal matrix providing the solution of the orthogonal
Procrustean problem, is provided by Eq. 10.12.

M3 ¼ 1
3

�1 2 2
2 �1 2
2 2 �1

2
4

3
5 ð10:12Þ

This matrix is orthogonal and symmetrical, the value of its maximal entry is
equal to α = 2/3. The matrix contains entries of two types, i.e. it has two levels. For
n = 5 the optimal matrix occurs to be of three levels (Eq. 10.13)

M3 ¼ 1
11

�2 3 6 6 6
3 6 �6 6 �2
6 �6 �3 2 6
6 6 2 �6 3
6 �2 6 3 �6

2
66664

3
77775: ð10:13Þ

It is also orthogonal and symmetrical, the value of its maximal entry α = 6/11.
Distribution of the absolute value of its entries by levels is shown in Fig. 10.6.

0 5 10 15 20 25
2

2.5

3

3.5

4

4.5

5

5.5

6Fig. 10.6 Distribution of the
matrix M5 entries by levels
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From its 25 entries, 15 ones are on the upper level, the rest ones by 5 are on the
remaining two levels. Thus, the entries of the upper levels amounts to 60 % of
the total number (67 % for the matrix M3 and 100 % for the Hadamard matrices).

In investigating the case n = 7, there were found two matrices: the five-level

matrix M7 of the value a ¼ 5þ7
ffiffi
7

p
53 � 0:444 and two-level matrix N7 of the value

a ¼ 2þ3
ffiffi
2

p
14 � 0:446. The structures of these matrices are the following:

M7 ¼

½a; �d; c; a; �a; �a; �a�
½�d; c; a; a; a; a; �a�
½c; a; �d; a; �a a; a�
½a; a; a; �c b; �b; b�
½�a; a; �a; b; c; �a; �d�
½�a; a; a; �b; �a; �d; �e�
½�a; �a; a; b; �d; �e; a�;

N7 ¼

½a; a; a; a; b; b; �b�
½a; �b; �b; a; �a; b; a�
½a; �b; a; �b; b; �a; a�
½a; a; �b; �b; �a; �a; �b�
½b; �a; b; �a; �b; a; �a�
½b; b; �a; �a; �b; a; b�
½�b; a; a; �b �a; b; a�:

Unlike the preceding cases, the entries of these matrices are irrational.
For the matrix M7 they contain

ffiffiffi
7

p
: a ¼ 3þ 3

ffiffiffi
7

p
; b ¼ 9;

c ¼ 5� ffiffiffi
7

p
; d ¼ �6þ 3

ffiffiffi
7

p
; e ¼ 4þ ffiffiffi

7
p

:

In normalizing all of them should be divided by 22þ ffiffiffi
7

p
. Entries of the matrix

N7 contain
ffiffiffi
2

p
: a ¼ 2þ ffiffiffi

2
p

; b ¼ 2. In normalizing all of them should be divided
by 2þ 4

ffiffiffi
2

p
. Let us show both of these matrices in detailed writing (without any

normalization) (Eq. 10.14).

M7 ¼

3þ 3
ffiffiffi
7

p
; 6� 3

ffiffiffi
7

p
; 5� ffiffiffi

7
p

; 3þ 3
ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
6� 3

ffiffiffi
7

p
; 5� ffiffiffi

7
p

; 3þ 3
ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
5� ffiffiffi

7
p

; 3þ 3
ffiffiffi
7

p
; 6� 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
;

3þ 3
ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; �5þ ffiffiffi

7
p

; 9; �9; 9
�3� 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
; �9; 4þ ffiffiffi

7
p

; �3� 3
ffiffiffi
7

p
; 6� 3

ffiffiffi
7

p
�3� 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; �9; �3� 3

ffiffiffi
7

p
; 6� 3

ffiffiffi
7

p
; �4� ffiffiffi

7
p

�3� 3
ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; 9; 6� 3

ffiffiffi
7

p
; �4� ffiffiffi

7
p

; 3þ 3
ffiffiffi
7

p

2
666666664

3
777777775

ð10:14Þ
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N7 ¼

2þ ffiffiffi
2

p
2þ ffiffiffi

2
p

2þ ffiffiffi
2

p
2þ ffiffiffi

2
p

2 2 �2
2þ ffiffiffi

2
p �2 �2 2þ ffiffiffi

2
p �2� ffiffiffi

2
p

2 2þ ffiffiffi
2

p
2þ ffiffiffi

2
p �2 2þ ffiffiffi

2
p �2 2 �2� ffiffiffi

2
p

2þ ffiffiffi
2

p
2þ ffiffiffi

2
p

2þ ffiffiffi
2

p �2 �2 �2� ffiffiffi
2

p �2� ffiffiffi
2

p �2
2 �2� ffiffiffi

2
p

2 �2� ffiffiffi
2

p �2 2þ ffiffiffi
2

p �2� ffiffiffi
2

p
2 2 �2� ffiffiffi

2
p �2� ffiffiffi

2
p

2þ ffiffiffi
2

p
2þ ffiffiffi

2
p

2
�2 2þ ffiffiffi

2
p

2þ ffiffiffi
2

p �2 �2� ffiffiffi
2

p
2 2þ ffiffiffi

2
p

2
666666664

3
777777775

Distribution of the entry modulus for the normalized matrix M7 level by level,
which has been obtained in MATLAB with the help of the command “plot(sort(abs
(M7(:))),‘*’)”, is shown in Fig. 10.7.

From this figure, it is seen that the bottom level contains 6 entries. The next ones
contain 4, 3, and 6 entries, respectively. The most numerous upper level contains 30
entries, which amounts to about 61 % (approximately as much as in the case with
the matrix M5).

For n = 9 the best from found matrices has four levels and the value

a ¼ 3þ ffiffi
3

p
12 ¼ 0:3943:

M9 ¼

½d; b; b; b; b; b; b; b; b�
½b; a; a; a; �a; �a; �c; �c; �c�
½b; a; �c; �a; �c; a; a; �c; �a�
½b; a; �a; �c; a; �c; �a; �c; a�
½b; �a; �c; a; a; �c; a; �a; �c�
½b; �a; a; �c; �c; a; �c; �a; a�
½b; �c; a; �a; a; �c; �c; a; �a�
½b; �c; �c; �c; �a; �a; a; a; a�
½b; �c; �a; a; �c; a; �a; a; �c�;
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12a ¼ 3þ ffiffiffi
3

p
; a ¼ 0:3943;

6b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

ffiffiffi
3

p � 6
p

; b ¼ 0:3493;
4c ¼ ffiffiffi

3
p � 1; c ¼ 0:1830;

3d ¼ 2
ffiffiffi
3

p � 3; d ¼ 0:1547;

Maximal entry
3þ ffiffiffi

3
p

12
¼ 0:394337:

Its structure and entries are the following. Here we deal with an irrationality of
the type “a root from a root” arising from the solution of a biquadratic equation.
Distribution of modulus of the matrix M9 entries on levels is shown in Fig. 10.8.

From Fig. 10.8, it is seen that on the bottom level there is one entry, on the next
two levels there are 34 and 16 entries, respectively. On the upper level, there are 40
entries, which amounts to 49 % of their total number. Unfortunately, n = 9 is
the final case, when it has been managed to get explicit expressions for entries of
the M-matrix.

For n = 11 the best orthogonal matrix founded in MATLAB, has a six-level
structure

M11 ¼

�b a f a a d c e a �a �a
�d f a �a e �a b c �a �a a
�a �e �c a d �a a �a f a b
a �d a b a a �f �a �e �c a
a a e a �b �a a �d �a �f �c
a �a a �d a �e a f c b �a
�f b d �c �a a a �a a e a
e a a a f �c �a a b d a
a a �a �f c a d b �a a e
a �c �b e �a �f a a a �a d
�c �a a a �a b e a �d a �f

2
66666666666666664

3
77777777777777775

:
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The numerical values of its entries are as follows: a = 0.34295283,
b = 0.33572291, c = 0.30893818, d = 0.2439851, e = 0.15671878, f = 0.045364966.
Their distribution over the levels is shown in Fig. 10.9.

The index α = 0.3429 is equal to the value of the entry a. Let us notice that a
percentage of entries maximal in absolute value amounts to 6/11 ≈ 54.5 %, which
accurately coincides with the value of the index α for the matrix M5.

Equally with the search of optimal matrices of the odd order, there is a similar task
with regard to those matrices of the even order, for which there are no C-matrices.
First of all this refers to the orders n = 22, n = 34, and n = 66. Let us give the best
result obtained for n = 22. The two level matrix M22 has the following form:

M22 ¼
0 1 1 �1 �1 1 �1 1 �1 1 1 0 1 1 �1 1 1 1 1 1 �1 �1

1 0 1 1 �1 �1 1 �1 1 �1 1 �1 0 1 1 �1 1 1 1 1 1 �1

1 1 0 1 1 �1 �1 1 �1 1 �1 �1 �1 0 1 1 �1 1 1 1 1 1

�1 1 1 0 1 1 �1 �1 1 �1 1 1 �1 �1 0 1 1 �1 1 1 1 1

1 �1 1 1 0 1 1 �1 �1 1 �1 1 1 �1 �1 0 1 1 �1 1 1 1

�1 1 �1 1 1 0 1 1 �1 �1 1 1 1 1 �1 �1 0 1 1 �1 1 1

1 �1 1 �1 1 1 0 1 1 �1 �1 1 1 1 1 �1 �1 0 1 1 �1 1

�1 1 �1 1 �1 1 1 0 1 1 �1 1 1 1 1 1 �1 �1 0 1 1 �1

�1 �1 1 �1 1 �1 1 1 0 1 1 �1 1 1 1 1 1 �1 �1 0 1 1

1 �1 �1 1 �1 1 �1 1 1 0 1 1 �1 1 1 1 1 1 �1 �1 0 1

1 1 �1 �1 1 �1 1 �1 1 1 0 1 1 �1 1 1 1 1 1 �1 �1 0

0 �1 �1 1 1 1 1 1 �1 1 1 0 �1 �1 1 �1 1 �1 1 1 �1 �1

1 0 �1 �1 1 1 1 1 1 �1 1 �1 0 �1 �1 1 �1 1 �1 1 1 �1

1 1 0 �1 �1 1 1 1 1 1 �1 �1 �1 0 �1 �1 1 �1 1 �1 1 1

�1 1 1 0 �1 �1 1 1 1 1 1 1 �1 �1 0 �1 �1 1 �1 1 �1 1

1 �1 1 1 0 �1 �1 1 1 1 1 1 1 �1 �1 0 �1 �1 1 �1 1 �1

1 1 �1 1 1 0 �1 �1 1 1 1 �1 1 1 �1 �1 0 �1 �1 1 �1 1

1 1 1 �1 1 1 0 �1 �1 1 1 1 �1 1 1 �1 �1 0 �1 �1 1 �1

1 1 1 1 �1 1 1 0 �1 �1 1 �1 1 �1 1 1 �1 �1 0 �1 �1 1

1 1 1 1 1 �1 1 1 0 �1 �1 1 �1 1 �1 1 1 �1 �1 0 �1 �1

�1 1 1 1 1 1 �1 1 1 0 �1 �1 1 �1 1 �1 1 1 �1 �1 0 �1

�1 �1 1 1 1 1 1 �1 1 1 0 �1 �1 1 �1 �1 1 1 �1 �1 0

The distribution of modules of its elements over the levels is shown in
Fig. 10.10.

The index of this matrix α = 0.2236, which is worse than estimate 0.2182 for the
non-existent C-matrix only by 0.0054. This index is a little worse, i.e. only by
0.0033, than the index α = 0.2269 for six level matrix M22, obtained in [32, 33].
Similar two level matrices exist and for cases n = 34 and n = 66.

10.4.5 Two-, Three-, and Many-Levels M-Matrices

The Hadamard matrices have many remarkable properties marking them out on a
set of orthogonal matrices. Unfortunately, at n > 2 there exist no Hadamard
matrices, if n is odd or becomes odd after dividing by 2. In such cases there is a
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problem of searching some orthogonal matrices that due to their properties are close
to Hadamard matrices. On mathematical statement of this problem it is necessary to
indicate, what properties of Hadamard matrices should be saved in particular.
According to the author’s opinion three versions of setting the problem are the most
natural ones:

1. An orthogonal matrix of a given order n, for which the highest possible
(maximal) absolute value element is minimal (the minimax problem) has to be
found.

2. An orthogonal matrix of a given order n, for which the minimum absolute value
element is maximal (the maximin problem) has to be found.
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3. An orthogonal matrix of a given order n, for which the difference between the
maximal module and minimal module elements is minimal (the problem con-
cerning the matrices with a minimal swing of elements).

In all versions, the cases connected with logical design of arraying indicated
matrices, finding specific matrices with properties given, and analyzing the
asymptote at a large n originate. It should be noted that from the theoretical point of
view all three problems are equally substantial. At the same time the first problem
seems to be of the greatest practical interest since it well agrees with the standard
criterion signal-to-noise ratio traditionally used in the communication theory. It is
interesting that in all three cases the optimal orthogonal matrices have a property,
due to which their elements are able to group by a value, i.e., their elements are
divided into a small number of groups (levels) with equal absolute values. At the
same time, for optimal minimax matrices (problem 1) it is typical that the group of
elements, which are maximal by their absolute values, is the most numerous one.
On the contrary, for optimal maximin matrices (problem 2) the group of elements
that are minimal by their absolute values is the most numerous one. In problem 3, it
is possible to expect a more symmetrical pattern of the level-wise element
distribution.

Let the orthogonal matrices be called the r-level ones, if the absolute values of
their elements possess precisely r values. For example, the Hadamard matrices are
single-level ones, the unitary matrix and permutation matrices are two-level ones.

From the point of view of tasks of processing images and signals, encoding,
masking, constructing noise combating codes, the integer-valued two-level
orthogonal matrices and ones obtained from them by the way of multiplication by a
constant, are of a particular interest.

It is possible to outline a number of classes of such matrices.
The C-matrices. Such matrices are orthogonal with elements ±1 and zero main

diagonal.
The D-matrices. Matrices of such a type are orthogonal of the following form:

Dn ¼ 1
n

2� n 2 2 � � � 2
2 2� n 2 � � � 2
� � � � � � � � � � � � � � �
2 2 2 � � � 2� n

2
664

3
775:

In particular, at n = 3, 4, 5 they look like as mentioned below:
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D3 ¼ 1
3

�1 2 2

2 �1 2

2 2 �1

2
64

3
75 ¼ M3 ; D4 ¼ 1

2

�1 1 1 1

1 �1 1 1

1 1 �1 1

1 1 1 �1

2
6664

3
7775 ;

D5 ¼ 1
5

�3 2 2 2 2

2 �3 2 2 2

2 2 �3 2 2

2 2 2 �3 2

2 2 2 2 �3

2
6666664

3
7777775
:

Let us note that the matrix D3 coincides with the optimal matrix M3, and the
matrix D4 with the Hadamard matrix A4.

At n = 6, 8 the D-matrices have a view:

D6 ¼ 1
3

�2 1 1 1 1 1
1 �2 1 1 1 1
1 1 �2 1 1 1
1 1 1 �2 1 1
1 1 1 1 �2 1
1 1 1 1 1 �2

2
6666664

3
7777775

D8 ¼ 1
4

�3 1 1 1 1 1 1 1
1 �3 1 1 1 1 1 1
� � � � � � � � � � � � � � � � � � � � � � � �
1 1 1 1 1 1 �3 1
1 1 1 1 1 1 1 �3

2
66664

3
77775:

The using of the D-matrices of higher orders is not efficient, since by a value of
the maximum element a ¼ 2

n � 1 they significantly worse than the optimal
M-matrices. At the same time the above indicated D-matrices can be used as
“building blocks” for constructing other two-level and three-level matrices.

Let us note that the matrix D4 is a particular case of the family of two-level
matrices having the form

a �b �b b
b a b b
b �b a �b
�b �b b a

2
664

3
775 ;

which are orthogonal at any a, b. Particularly the versions [a, b] = [1 2], [1 3],
[2 3] are possible.
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The composed orthogonal matrices. One of the methods applied for constructing
the two-level orthogonal matrices is based on application of the Kronecker product
of single-level and two-level matrices. For example, when analyzing the Kronecker

product of the matrix
a b
b �a

� �
and Hadamard matrix

1 1
1 �1

� �
, one get a family

of two-level matrices of the 4th order.

At n = 6, multiplying the matrix D3 on the Hadamard matrix A2 =
1 1
1 �1

� �
and

on unitary matrix I2 =
1 0
0 1

� �
, one get two two-level matrices of the 6th order:

D3 � A2 ¼ D3 D3

D3 �D3

� �
¼

�1 2 2 �1 2 2
2 �1 2 2 �1 2
2 2 �1 2 2 �1
�1 2 2 1 �2 �2
2 �1 2 �2 1 �2
2 2 �1 �2 �2 1

2
6666664

3
7777775
;

a ¼
ffiffiffi
3

p
=2 ¼ 0:4714;

D3 � I ¼ D3 0
0 D3

� �
¼

1 2 2 0 0 0
2 1 �2 0 0 0
�2 2 �1 0 0 0
0 0 0 1 2 �2
0 0 0 2 1 2
0 0 0 �2 2 1

2
6666664

3
7777775
;

a ¼ 2=3 ¼ 0:6667:

Let us note that at the Kronecker multiplication of orthogonal matrices
A = A1 ⊗ A2 their indices are multiplied: α = α1α2 The unitary matrix I has the
index α = 1, therefore at A2 = I we get α = α1. Provided A2 is the Hadamard matrix
then the result index is equal to a ¼ a1=

ffiffiffi
n

p
:

The Kronecker product of the matrix D5 and Hadamard matrix
1 1
1 �1

� �
gives

the two-level matrix of the 10th order with the index α = 0:3
ffiffiffi
2

p ¼ 0:4242 (the
matrix C10 has the similar index α = 1/3).
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C10 ¼
2 �3 2 �2 �2 2 2 2 3 �2

2 2 �2 3 2 2 2 �2 2 �3

2 2 �2 �2 2 2 �3 3 2 2

�2 �2 �2 2 2 �2 3 3 2 2

3 �2 3 2 2 �2 �2 �2 2 2

�2 �2 2 2 3 3 �2 2 �2 �2

3 �2 �3 2 �2 �2 �2 2 �2 �2

�2 �2 �2 2 �3 3 �2 �2 2 2

2 2 2 3 �2 2 2 2 �2 3

�2 3 2 2 �2 �2 �2 2 3 �2:

The distribution of the matrix C10 entries over the levels is shown in Fig. 10.11
(n = 10, 2 levels). Each of its line has 8 twins and 2 triplets.

Let us consider some other examples of two-level matrices. At n = 13, there is a
matrix consisting of zeros and units, which has the index α = 1/3 and contains 4
zeros in each of its lines

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3Fig. 10.11 Distribution of
the matrix C10 entries by
levels

338 L. Mironovsky and V. Slaev



C13 ¼
0 �1 1 1 �1 0 �1 �1 �1 �1 0 �1 0

�1 �1 0 0 1 �1 0 �1 �1 1 1 1 0

�1 0 1 �1 �1 1 �1 0 1 0 1 1 0

0 0 �1 �1 0 �1 0 �1 1 �1 1 �1 1

0 �1 �1 0 �1 1 1 �1 0 0 �1 1 1

1 �1 1 �1 1 1 0 0 0 1 0 �1 1

�1 0 �1 0 1 1 �1 1 �1 �1 0 0 1

�1 1 0 �1 0 1 1 �1 �1 0 0 �1 �1

�1 �1 1 �1 0 �1 1 1 0 �1 �1 0 0

0 1 0 �1 �1 �1 �1 0 �1 1 �1 0 1

1 1 1 0 0 0 1 0 �1 �1 1 1 1

�1 1 1 1 1 0 0 �1 1 0 �1 0 1

1 0 0 �1 1 0 �1 �1 0 �1 �1 1 �1:

The distribution of the matrix C13 entries over the levels is shown in Fig. 10.12
(n = 13, 2 levels, α = 1/3).

At n = 15 there is a matrix, each line of which contains 7 twins and 8 triplets.

C15 ¼
3 2 2 �3 3 �3 �2 2 2 �2 3 �3 �3 �3 2

�2 �3 �3 �3 3 2 3 2 2 3 �2 �3 �3 2 2

2 �2 3 �2 �3 �2 �3 3 �2 2 �3 �2 3 3 3

2 3 3 3 2 �2 2 �2 3 2 �3 3 �2 3 3

2 �2 3 �2 2 3 2 3 3 �3 2 3 3 3 �2

3 2 2 �3 �2 2 3 �3 2 3 2 �3 2 �3 �3

�3 3 �2 �2 2 �2 �3 �2 3 �3 �3 �2 3 3 �2

2 3 �2 3 2 3 2 3 �2 �3 �3 �2 3 �2 3

3 �3 �3 2 3 �3 �2 2 2 3 �2 2 2 �3 �3

�3 3 3 �2 2 3 �3 3 �2 2 �3 3 �2 �2 �2

3 2 �3 �3 �2 �3 3 2 �3 �2 �2 2 �3 2 �3

�3 3 �2 �2 �3 �2 2 3 3 2 2 3 3 �2 3

3 2 �3 �3 3 2 �2 �3 �3 3 3 2 2 2 2

�2 2 2 2 3 �3 3 2 �3 3 3 �3 2 2 �3

2 3 �2 3 �3 3 �3 3 3 2 2 �2 �2 3 �2:
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The distribution of the matrix C15 entries over the levels is shown in Fig. 10.13
(n = 15, 2 levels, α = 0.3).

Moreover, at n = 15 there is the matrix C15 (the variant) that contains 7 twins and
8 units in each of its lines:

C15: ¼
2 2 2 �2 1 2 �1 1 �1 �1 �1 �1 2 �1 2

1 2 �1 �2 �2 2 2 1 �1 2 �1 2 �1 �1 �1

1 �1 2 1 �2 2 �1 �2 2 �1 �1 2 2 �1 �1

�1 �2 1 �1 �1 1 1 �1 �2 �2 �2 �2 �2 1 �2

1 �1 2 �2 1 �1 2 �2 2 2 �1 �1 �1 �1 2

�2 2 2 1 �2 �1 2 1 2 �1 2 �1 �1 �1 �1

�2 �1 �1 1 1 2 2 �2 �1 2 2 �1 2 �1 �1

2 1 1 2 2 1 1 2 1 1 �2 �2 1 1 �2

�1 �2 1 �1 2 1 �2 2 1 1 1 1 �2 �2 �2

�2 �1 �1 �2 1 �1 2 1 2 �1 �1 2 2 2 �1

2 �2 �2 �1 �1 1 1 2 1 �2 1 �2 1 �2 1

�1 1 �2 �1 �1 �2 �2 �1 1 1 �2 �2 1 �2 �2

�1 �2 1 2 �1 �2 1 2 �2 1 �2 1 1 �2 1

�2 �1 �1 1 �2 2 �1 1 2 2 �1 �1 �1 2 2

1 �1 2 �2 �2 �1 �1 1 �1 2 2 �1 2 2 �1

The distribution of the matrix C15 (the variant) entries over the levels as it is shown
in Fig. 10.14 (n = 15, 2 levels, α = 1/3).

Similar matrices with elements consisting of two adjacent integer numbers exist
at n = 22k − 1, i.e. at n = 3, 15, 63, 255,… At a given k there exist two matrices, one
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with elements k − 1 and k, the other with elements k and k + 1. In particular, at
n = 63 (k = 3) such matrices will have elements which have modules equal to 3 and
4; 4 and 5.

With the help of the Kronecker product it is possible to construct three-level
matrices too. When performing the multiplication, it is possible to use the following
orthogonal matrices as the basic ones:

A2 ¼ a b
b �a

� �
A3 ¼

a b c
�c a �b
�b c a

2
4

3
5 A4 ¼

a �b �c d
b a d c
c �d a �b
�d �c b a

2
664

3
775 :
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At the same time a part of elements in these matrices can be made equal to each
other. Below the three-level matrix of the 9th order is shown, which is based on the
optimal matrix M3, the distribution of modules of its elements is illustrated too.

The distribution of the Hadamard-Mersenne matrix M9 entries over the levels is
shown in Fig. 10.15 (n = 9, α = 4/9).

The integer-valued three-level matrix of the 25th order with a unit diagonal can
be obtained with the help of cyclic shift of line:

1 �4 �4 6 �4 6 6 6 6 6 6 6 �4 �4 6 �4 �4 6 �4 6 �4 6 �4 �4 �4:

The Hadamard-Mersenne matrices. The minimax matrices of orthogonal bases
(i.e. M-matrices) with a minimal number of levels depending on a division
remainder r by 4, can be divided into 4 cases:

• The matrices with r = 0: Hadamard matrices (H) [3, 21, 29, 34], containing
matrices of the Sylvester chain.

• The matrices with r = 1: Hadamard-Fermat matrices (F) [35], including orders
from the Fermat chain.

• The matrices with r = 2: Hadamard-Euler matrices (E) [36] (and C-matrices
[28], with exceptions based on Euler criterion).

• The matrices with r = 3: Hadamard-Mersenne matrices (M) [37], including
orders from a chain of Mersenne numbers.

The Hadamard-Mersenne matrices represent a class of two-level matrices of
the odd order, which are close to the Hadamard matrices. The dimensionality of
these matrices is equal to Mersenne numbers 2k − 1, and their elements tend to
values {1, −1}, as the values of a integer-valued argument k increases, as it takes
place with the Hadamard matrices [38].
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The classical method of constructing Hadamard matrices of the order n = 2 is
based on using the iteration formula, where the iteration process begins from the
matrix A1 = 1

A2n ¼ An An

An �An

� �
:

On the analogy, at the start of constructing the Hadamard-Mersenne matrices we
will use a modified Eq. 10.15, where the Mn-matrix contains elements of the form
±a and ±b (without any limitation of the commonness, let us consider that a = 1),
and the matrix M�

n was formed with the help of permutation of the levels a and − b.

M�
n ¼ S2n ¼ Hn Hn

Hn H�
n

� �
ð10:15Þ

The matrix S2n obtained with this formula is symmetrical; its order is even and
less than the order of the next Hadamard-Mersenne matrix M2n+1 by 1. At the
second step the matrix S2n is “bordered” by the way of adding a line and column,
where λ and e are the proper number and eigenvector of the matrix S2n

M2nþ1 ¼ H2nþ1 ¼ �k e0

e S2n

� �
:

If the iteration process is started from

H3 ¼
a �b a
�b a a
a a �b

2
4

3
5;

then the matrix obtained by such a manner will be symmetrical and orthogonal.
The eigenvalue of the matrix S2n will be equal to λ = −a. At the same time half of

the components of the eigenvector consists of –b, and the remaining half consists of

a. It takes place for next values of generating pair: b = a/2 at n = 3 and b ¼ p�
ffiffiffiffi
4p

p
p�4 a,

p = n + 1 on the contrary.
The structure of the Hadamard-Mersenne matrix of the 15th order is shown in

Fig. 10.16, where the white fields are the matrix elements with the value a = 1, and
the black fields are the elements of the matrix with the value b.

Hadamard-Fermat matrices. These matrices represent a class of three-level
matrices of the odd order, close by their properties to the properties of the Had-
amard matrices. The size of these matrices is equal to numbers 22k + 1 and as the
values of integer-valued argument k increase, their elements tend to values {1, −1},
as it takes place with the Hadamard matrices.

Let the Hadamard-Fermat matrix Fn be of the order n and designate by Sn−1 a
symmetrical matrix obtained from the matrix Fn by means of deletion of its first line
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and column. After that, let Eq. 10.15 be modified by replacing it with quadrupli-
cating its order according to rule [39] in Eq. 10.16, where the matrix S�n�1 was
formed by replacing the values of levels a with −b and vice versa.

S4n�4 ¼
S�n�1 Sn�1 Sn�1 Sn�1

Sn�1 S�n�1 Sn�1 Sn�1

Sn�1 Sn�1 S�n�1 Sn�1

Sn�1 Sn�1 Sn�1 S�n�1

0
BB@

1
CCA ð10:16Þ

The matrix S4n−4 obtained according to Eq. 10.16 is symmetrical. Its order is
even and less than the order of the next Hadamard-Fermat matrix F4n−3 by a unit.
To complete the recursive process an additional bordering (addition of a line and
column) is needed. The most important requirement is the orthogonality of the
matrix obtained due to edging.

To find the location of the orthogonal edging, let the method based on the
properties of proper numbers and eigenvectors of block matrices be applied. Matrix
F4n–3 is formed by edging the matrix S4n−4 (Eq. 10.16) in such a way, where λ and
e are the proper number and eigenvector of the matrix S4n−4, respectively,

F4n�3 ¼ �k e0

e S4n�4

� 	
: ð10:17Þ

The matrix obtained in such a way will be symmetrical and orthogonal, if the
iteration process is started from the matrix S4n−4

F5 ¼

a s s s s
s a �b �b �b
s �b a �b �b
s �b �b a �b
s �b �b �b a

0
BBBB@

1
CCCCA :

Fig. 10.16 The structure of
the Hadamard-Mersenne
matrix M15
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The matrix S4 is obtained by deleting its first line and first column (“edging”).
Here a = −λ is the proper number of the matrix S4, taken with an inverse sign; s are
the elements of the corresponding eigenvector, at that b < s < a.

At n = 5, in particular, we have b = s = 2a/3, where in the general case b ¼ n�q
q a,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
np�2

ffiffi
p

pp
2q a, q ¼ pþ ffiffi

p
p
2 , p = n − 1.

The structure of the matrix F5 and matrix F17 constructed according to the
iteration are shown in Figs. 10.17 and 10.18. The intermediate level of the second
matrix corresponds to the elements of the marked vector. Here, the white field is the
matrix element of the form a = 1, the black field is the element of the form −b, the
grey field is the element of “edging” элeмeнт b < s < a.

The Hadamard-Euler matrices. In [40] a class of two-level matrices is named as
the Hadamard-Euler matrices. These matrices are represented by the square
matrices En of the order n, consisting of the numbers ±a and ±b. Such matrices are
constructed on the basis of the formula, where Hn/2 is the two-level Hadamard-
Mersenne matrix of the half odd order, which consists of the numbers {a = 1, −b}
with a recalculation of their level in such a manner as to have b = 1/2 at n = 6, and

in the remaining cases, b ¼ q�
ffiffiffiffi
8q

p
q�8 , q = n + 2

Fig. 10.17 The structure of
the Hadamard-Fermat matrix
F5

Fig. 10.18 The structure of
the Hadamard-Fermat matrix
F17
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En ¼ Hn=2 Hn=2

Hn=2 �Hn=2

� �
:

The Hadamard-Mersenne matrix of the 3rd order has the form:

H3 ¼
a �b a
�b a a
a a �b

2
4

3
5:

The Hadamard-Euler matrix obtained on its basis will be of the 6th order, where
a = 1, b = 0.5

E6 ¼

a �b a a �b a
�b a a �b a a
a a �b a a �b
a �b a �a b �a
�b a a b �a �a
a a �b �a �a b

2
6666664

3
7777775
:

The Hadamard-Euler matrices can be used in a number of cases instead of
C-matrices, e.g., when the last ones do not exist. An important property of the
Hadamard-Mersenne matrices is kept for them, i.e. with an increase of n the modules
of all elements tend to 1. As an example, in Fig. 10.19 the structure of the Hadamard-
Euler of the 30th order is demonstrated.

Fig. 10.19 The structure of
the Hadamard-Euler matrix
E30
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Thus, in asymptotes (at large n) all three described classes of matrices (Hadamard-
Mersenne, Hadamard-Fermat, and Hadamard-Euler) tend to a common limit of the
form of orthogonal matrices with elements ±1.

10.5 Conclusion

This chapter contains the description and analysis of the matrix method of trans-
forming images, which is based on a procedure of the strip-transformation that can
be considered as a finite dimensional analogue of the holographic principle of
image transformation. The main tasks on investigation and implementation of the
strip-method are formulated for increase of immunity with regard to pulse noises
present in communication channels, determination of requirements for strip-trans-
formation operators, development of the strip-method for the case of transmitting,
storage and processing two-dimensional images, and search of optimal matrices of
two-dimensional strip-transformation. In solving these tasks the main requirements
for an operator of transformation are considered. It is shown that the operator
should be linear, isometric, or finite dimensional. This leads to use the matrices,
which have the symmetry of a certain type and have entries equal in absolute value.

The possibility to apply two-dimensional strip-transformation for storage and
noise immune transmission of images is considered. At the same time two-sided
matrix transformations of an original image have been used, in the process of which
image fragments are mixed and superimposed on each other. Great attention is paid
to the implementation of the Hadamard matrices and matrices close to them. They
include Hadamard-Mersenne, Hadamard-Fermat, and Hadamard-Euler matrices.
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