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Foreword

The mathematics underlying computer vision can be traced back to the work of
A. Rosenfeld on the digital topology,1 G. Matheron2 on decidability through reg-
ionals, and J. Serra3 on mathematical morphology. Digital topology begins with the
separation of the pixels in a digital image into subsets called segments and studying
the basic properties of the subsets such as adjacency and connectedness. It was
G. Matheron who suggested regionals as a basis for decideability and called
attention to the importance of a hit-or-miss topology in the study of closed compact
subsets in a bounded region in R

2. And it was J. Serra who suggested using hit-or-
miss topology4 as a basis for mathematical morphology. In practice, we start with a
small set called a structuring element Ah, used to probe the parts of a binary image.
A probe is used to check whether Ah hits a subset B (the intersection Ah ∩ B is not
empty) in an image viewed as a hyperspace (collection of closed subsets of a
topological space) or whether Ah misses B (Ah ∩ B is empty).

Digital topology has its roots in the work by Archimedes and Apollonius in
defining the locations of points in a plane by their distances from two straight lines
and later by R. Descartes in defining nonnegative coordinates in the plane. Negative
coordinates were introduced by I. Newton. The set theoretic view of digital images
can be traced back to the work by H. Poincaré on the similarities between point-sets
in a physical continuum5 and by F. Hausdorff on topological spaces,6 focusing on
open and closed sets and on metrizable spaces (spaces that are homeomorphic to
metric spaces). It was Hausdorff who pointed out that every point has a least one
neighborhood.7

1 see [1].
2 see, e.g., [2].
3 see, e.g., [3].
4 For a detailed view of hit-or-miss topology, see [4].
5 see, e.g., [5].
6 see, e.g., [6].
7 For a detailed view of various types of neighborhoods in digital images, see [7].
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Appropriately, this book begins with an introduction to morphological image
analysis for computer vision applications by Yu.V. Vizilter, Yu.P. Pyt’ev, A.I.
Chulichkov, and L.M. Mestetskiy. These authors focus on skeleton-based contin-
uous binary morphology, a morphological pattern spectrum, and what is known as
Pyt’ev morphology. The notion of a skeleton (middle set of points) of a closed
region in the Euclidean plane is a locus of centers of maximum empty circles. This
leads to a very interesting presentation of what is known as a discrete morpho-
logical pattern spectrum.8 The Pyt’ev morphology is based on vector algebra and
functional analysis, whereas the Serra morphology is based on nonlinear set-the-
oretic (complete lattice) models.
The central motifs in this book are threefold.

1. Mathematical morphology
Morphological spectral patterns and Pyt’ev morphology (Yu.V. Vizilter, Yu.P.
Pyt’ev, A.I. Chulichkov and L.M. Mestetskiy, Chap. 2), fuzzy morphological
contour basis for image segmentation (V.L. Fox,M.Milanova, S. Al-Ali, Chap. 8).

2. Image correspondence
Structural image similarity based on spectral criteria (Y.S. Radchenko, A.V.
Bulygin, Chap. 3), digital image correlation (R. Kountchev, R. Kountcheva,
Chap. 4), recognition of digital images with geometric transforms (V. Lutsiv,
Chap. 5).

3. Image-Based Signal analysis
Energy and phase-energy spectra in analysing interframe differences in video
signals (A. Bogoslovsky, I. Zhigulina, Chap. 6), cooperative measurement using
multiple visual motion sensors (S. Gepshtein, I. Tyukin, Chap. 7), digital video
stabilization via motion vector separation using fuzzy set theory (M. Favorskaya,
L.C. Jain, V. Buryachenko, Chap. 9), Strip-method of image transformation that
entails cutting a 1-dimensional signal into n strips, forming an n-dimensional
vector, mixing and superimposing image fragments on each other using a
Hadamard matrices and variations of such matrices (L. Mironovsky, V. Slaev,
Chap. 10), and criteria useful in estimating the efficiency of telecommunication
systems (A.A.Borisenko,V.V.Kalashnikov,A.E.Goryachev,N.I.Kalashnykova,
Chap. 11).

This book ably demonstrates the utility of the basic mathematical framework
provided by morphology (and its underlying attention to aspects of set theoretic
topology and the basic geometric structures found in digital images) as well as the
utility of a variety of approaches in image correspondence detection and image-
based signal analysis. The interplay of these concepts is cogently demonstrated by
the contributors to this volume.

8 In this book, see, e.g., Fig. 2.14, page 30.
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I strongly recommend this book as a concise and very original introduction to the
mathematical foundations of image analysis and the practical application of the
mathematics across a broad spectrum in the study of digital images.

June 2014 James F. Peters
Department of Electrical and Computer Engineering

University of Manitoba
Winnipeg, MB, Canada

and

Faculty of Arts and Sciences
Department of Mathematics

Adıyaman University
Adıyaman, Turkey
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Preface

The research book is focused on the recent advances in computer vision method-
ologies and technical solutions using conventional and intelligent paradigms. The
contemporary solutions based on advanced mathematical achievements emphasize
more information and visual monitoring in natural and human environment. The
real challenge of designing such observation models are to make them close to
realistic visualization and interpretation of events in our world.

The book presents some of the research results from some of the most
respectable researchers in the field of computer vision stressing on mathematical
theory. Of the 11 chapters, the first chapter presents a brief introduction of the
chapters presented in the book. Chapter 2 is on the Morphological Image Analysis
for Computer Vision Applications. Chapter 3 presents techniques for Detecting the
Structural Changes in Computer Vision. Chapter 4 is on Hierarchical Adaptive KL-
based Transform: Algorithms and Applications. Chapter 5 is on Automatic Esti-
mation for Parameters of Image Projective Transforms Based on Object-invariant
Cores. Chapter 6 is on the Analysis of Energy for Image and Video Sequence
Processing. Chapter 7 is on Optimal Measurement of Visual Motion Across Spatial
and Temporal Scales. Chapter 8 presents the Analysis of Scene Using Morpho-
logical Mathematics and Fuzzy Logic. Chapter 9 is on Digital Video Stabilization
in Static and Dynamic Scenes. Chapter 10 presents the Implementation of Had-
amard Matrices for Image Processing. The final chapter is on A Generalized Cri-
terion of Efficiency for Telecommunication Systems.

The book is directed to the Ph.D. students, professors, researchers and software
developers working in the areas of digital video processing and computer vision
technologies.

We wish to express our gratitude to the authors and reviewers for their contri-
bution. The assistance given by the Springer-Verlag and team is acknowledged.

Russia Margarita N. Favorskaya
Australia Lakhmi C. Jain
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Chapter 1
Development of Mathematical Theory
in Computer Vision

Margarita N. Favorskaya and Lakhmi C. Jain

Abstract This chapter presents a brief description of chapters devoted to the
theoretical development of computer vision. Original investigations in mathemat-
ical morphology, estimations of structural changes, the hierarchical adaptive
Karhunen-Loeve and projective transforms, among others, provide the great con-
tribution in mathematical foundations of computer vision. Each theoretical chapter
involves practical implementations, which demonstrate the merit of proposed
methods in practice.

Keywords Computer vision � Image processing � Videos processing

1.1 Introduction

In the past decades, computer vision techniques have progressed significantly and
are widely used in many implementations of control systems. Great advances have
been made in image filtering, segmentation, pattern recognition‚ and events
understanding. However, the excellent mathematical models and methods cannot be
directly applied in many practical situations. The majority of efforts focus on
designing the efficient and real-time methods to analyze images and video data on
various levels of processing. The contemporary solutions based on advanced
mathematical achievements emphasize on more information and visual monitoring
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in natural and human environment. The goal of current investigations is designing
such observation models, which are close to realistic visualization and interpretation
of events in our world.

1.2 Chapters Included in the Book

The main purpose of this research book is to present a sample of research results on
recent advances in computer vision. This book includes eleven chapters on the
“Mathematical Theory” aspect of the computer vision.

Chapter 2 introduces the morphological framework as a very wide theoretical
platform for creation of mid-level image analysis tools for specialized computer
vision applications. It utilizes the structural image modeling and decides some
image filtering, segmentation‚ and comparison problems. Mathematical Morphol-
ogy (MM) by Serra [1] and Matheron [2] is still the most well-known version of
MM until these days. Another morphological approach proposed by Pyt’ev is based
on geometrical and algebraic reasoning. In the framework of Pyt’ev morphology,
images are considered as piecewise-constant 2D functions [3]. The tessellation of
image frame by a set of non-intersected connected regions with constant intensities
determines the “shape” of the image. The main idea of this approach is the pro-
jection of one image onto the shape of other image. The detection of morphological
changing is performed by comparison of image and its projection to the reference
image. Such morphological tools are invariant relative to image intensity transforms
and stable relative to noise. The idempotent operators such as morphological filters
or projectors are introduced using a concept of figure filling by structured elements.
In other version, morphological filters are based on merging of grayscale image
connected regions (“flat” zones). The continuous binary morphology is based on
computational geometry and provides very fast tool for computation of continuous
figure skeletons using approximation of 2D binary image by region border poly-
gons and calculation of Voronoi diagram for segments these polygons [4]. A
skeletal representation of the figure is formed as its skeleton and the radial function
determined in skeleton points. The projective morphology is a generalized frame-
work based on Serra’s MM and Pyt’ev’s Morphological Analysis. It combines the
ideas of both morphological approaches and allows construction of some new
morphological systems and operators based on different image decompositions and
transforms and/or criterions (energy functions). Criterion-based projective mor-
phological filters are implemented using numeric optimization techniques (linear
programming, dynamic programming, graph cutting, and so on) [5]. The mor-
phological spectrum as a multi-scale morphological shape analysis tool based on
“granulometry” also contains in this chapter.

Chapter 3 discusses the criteria of Mean Structural Similarity Index Measure
(MSSIM) and the developed Mean Nonparametric Structural Similarity Index
Measure (MNSSIM), as well as the spectral algorithm for detecting structural
changes in a frame, which have been used to good effect in video codec analysis [6].
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These criteria provide the estimations for structural (texture) variations of images.
The growing popularity of these criteria is proved by their quite appropriate com-
pliance with the human vision system [7]. The detection of variations in the image
segment structure is based on spectral and correlation analysis of space-time fields.
At present, the quasi-optimum heuristic algorithms applying variations of field
correlation features, non-invariance of spectrum in various bases (in relation to a
segment movement and change of their texture features) exist. The different esti-
mation methods and algorithms for images presented by numbered blocks as well as
the criteria and metrics being a basis to detect these differences are investigated. In
this chapter, the reader can find practical examples using of pixel and spectral
algorithms in image analysis.

Chapter 4 investigates a novel approach to process a single image or sequences
of frames through the Hierarchical Adaptive Karhunen-Loeve (KL)-based Trans-
form (HA-KLT). This approach is suitable for image block coding and for inter-
frame processing of correlated frames in groups [8]. The basic aim of a new
transform is to achieve a decorrelation of the image blocks, respectively of all
frames in the processed group. This is realized by a multiple applying of the HA-
KLT. After each level of the hierarchical transform, all sub-blocks (respectively
groups) are rearranged so, that the components with highest correlation, which are
obtained in the preceding level, would be placed in a new sub-blocks of the current
level. The kernel of the multi-level transform is the Adaptive KL Transform
(AKLT). The AKLT with a transform matrix of size 2 × 2 and 3 × 3 is used for the
processing of the image sub-blocks and the pixels with same position in the sub-
groups of frames respectively. The algebraic method for the calculation of the
elements of the AKLT transform matrix of size 2 × 2 and 3 × 3 is presented in this
chapter. The 2D and 3D HA-KLT algorithms for the blocks of a single image and
for inter-frame processing of sequences (groups) of frames are also developed [9].
The computational complexity of these algorithms is compared with the “classic”
KLT. On the one hand, the proposed approach ensures a higher accuracy of color
segmentation in all cases, when a distribution of color vectors is not Gaussian. This
is achieved by using a polynomial kernel for the color space expansion, after which
the HA-KLT is applied to the expanded color vectors. In result, a decorrelation of
the transformed vectors and an information concentration in their first components
are achieved. On the other hand, this permits to reduce a number of components of
the transformed vectors, retaining the first two only. In a new 2D space, the color
vectors clusterization in respect to RGB space is enhanced, and they can be clas-
sified with high accuracy by using the support vector machine algorithm or other
similar methods [10]. The HA-KLT method is a basis for the creation of novel
efficient algorithms for a fusion of 3D images in face recognition task, an objects
tracing in videos, a compression with movement compensation and without visual
quality loss of TV and multi-view visual information, medical and multispectral
images, etc [11].

Chapter 5 provides the design of object-invariant cores, which correspond to all
types of spatially compact object images (previously segmented from a back-
ground), under the affine and projective transformations caused by an image
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projection through the spherical (or almost spherical) lenses being the traditional
parts of photo- and video-cameras [12]. The object-invariant core is synthesized by
means of truncating the high-frequency harmonics in a spatial image spectrum.
These rejected high-frequency harmonics present the object peculiarities, while the
rest (extremely low-frequency) harmonics contain the information about spatial
image transformations. It is shown that such object-independent core is mathe-
matically described by elliptic paraboloid (quadratic parabola in 1D image pro-
jection). All parameters of affine geometric transformation (except a rotation and a
mirror-like reflection) are measured analytically from this object invariant core. The
parameters of rotation and mirror-like reflection are calculated from the cyclic
narrow-band harmonic cores of image projection on the angular coordinate in a
polar system. While the 6-parametric affine transformation is entirely linear, the full
projective transformation contains additionally a nonlinear part described by two
additional parameters. Due to this nonlinearity, the specific parameters of projective
transformation cannot be measured analytically. A novel iterative optimization
procedure is proposed to measure all parameters of projective transformation [13].
It is proposed to measure the missing parameters of projective transformation by a
displacement of object-invariant core under the test transformations. The conver-
gence of iterative measurement procedure is rigorously proven. At the end of the
chapter, the examples of practical applications for automatic measurement of all
projective transformation parameters are presented.

Chapter 6 presents a way of energy analysis for image and video sequence
processing as a preliminary processing in vision systems [14]. Usually the object
movements are determined by the analysis of an Inter-Frame Difference (IFD) in
video signals. It is the simplest universal method. However, it doesn’t exhaust
opportunities for intelligent processing, especially in extremely low luminance. The
IFD of energy spectrums and phase-energy spectrums are considered as an alter-
native analysis. The phase-energy spectrum is a product of partial derivatives in
spatial phase-frequency spectrum over their spatial frequencies. It provides the
detailed information about motion in finite frames [15]. The modeling of the IFD of
frequency responses shows the necessity of analysis for pixels located near the
moving boundaries. A processing of such pixels intensities increases a probability
of movement’s detection. Also distortions of moving object’s shape, movement’s
characteristics, and a quantity of moving objects are possible to define based on the
analysis of the IFD types. The phase-energy spectrums are used for edges analysis,
if any movement is detected in a scene. The analysis of the energy spectrums is
applied to design the effective 2D filters. The changes of the energetic indexes in
static images determine the efficiency function on a whole set of impulse responses
of the filter. The function of efficiency has a positively certain quadratic form with
the coefficients of energy spectrum decomposition into the 2D Fourier series over
the cosines. The analysis of stationary points by using this function of efficiency
allows to synthesize the optimum and the quasi-optimum 2D filters. The proposed
way of energy analysis provides some novel possibilities, for example, the detection
of objects with extremely small contrast image.
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Chapter 7 studies on how visual motion can be estimated at the lowest overall
uncertainty of measurement across the entire range of useful sensor sizes (in artificial
systems) [16] or the entire range of receptive fields (in biological systems). In other
words, the following is an attempt to develop an economic normative theory of
motion-sensitive systems. Such norms are derived for efficient design of systems,
and then the norms are compared with facts of biological vision. This approach from
the first principles of measurement and parsimony helps to understand the forces that
shape the characteristics of biological vision. These characteristics include the
spatiotemporal contrast sensitivity function, the adaptive transformations of this
function caused by stimulus change, and also some characteristics of the higher-level
perceptual processes such as perceptual organization [17]. In the following, the
minimax strategy is implemented by assuming the maximal (worst-case) uncertainty
of measurement on the sensors that span the entire range of the useful spatial and
temporal scales. This strategy is used in two ways. First, the consequences of
Gabor’s uncertainty relation are investigated by assuming that the uncertainty of
measurement is as high as possible. Second, the outcomes of measurement on
different sensors are anticipated by adding their component uncertainties.

Chapter 8 presents the segmentation of natural images as a challenging task in
image processing. Many methods have been proposed in the literature regarding
algorithms for segmentation of such images [18]. Many of algorithms are complex
in nature and inefficient in practice with unaltered images. In order to efficiently use
the algorithms it is beneficial to pre-process the natural images. However, natural
images often involve subjects and background that are not easily quantified with
crisp pre-processing parameters. A partial solution to the problem of segmenting
complex images is to use features that discriminate in the active contour algorithms
[19]. These feature descriptions range from curvature to the orientation of level sets
and usually result in better segmentation. An unfortunate side effect of using feature
discriminates is that the complexity of the algorithm greatly increases resulting in
even higher computational cost and difficulty in implementing the method. The goal
is to develop a morphological level set active contour segmentation method that can
robustly and efficiently segment multiphase textural images of high complexity
[20]. To do this the usage of region statistics inside and outside the contour,
membership functions from fuzzy logic methodology, and a Gaussian kernel
function are required. In this chapter, a number of existing methods for shape
feature extraction and representation are presented. At the end, application exam-
ples for using object shape representation in application for object recognition and
human activity recognition are show.

Chapter 9 is devoted to digital video stabilization oriented on removal of
intentional motions from video sequences caused by camera vibrations under strong
wind in static scenes, by motion of robots unstable platforms in dynamic scenes, or
jitters during a human hand-held shooting [21]. The analysis of dynamic scenes is
required in advanced intelligent methods and directly depends from a problem
statement. Several sequential stages connect with the choice of anchor frame, local
and global motion estimations, and the jitters compensation algorithm. The choice
of anchor frame into static scenes may be random with duration 1 s or 24 frames. In
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the case of dynamic scene, the additional problem of scenes’ separation should be
solved for receiving a ‘good’ anchor frame. Most existing methods and algorithms
do not work in real time. For investigation purposes, a non-real time approach is
developed, however practical applications need in fast and reliable solutions.
Several strategies are used for Local Motion Vectors (LMVs) building based on the
keypoint detectors and block-matching algorithm [22]. The application of fuzzy
logic operators improves the separation results between the unwanted motion and
the real motion of rigid objects. For dynamic scenes, the kurtosis estimations are
calculated and tracking curves are built in the case of small vibrations, and frame
interpolation is applied, if vibrations have large values. The fuzzy model based on
triangular, trapezoidal, and S-shape memberships partitions the LMVs concerning
them to an unwanted camera motion and objects motion into a scene. The output of
fuzzy logic model indicates a final reliability of matching quality by using the
Takagi-Sugeno-Kang model. Such zero-order fuzzy model generates the quality
index (a value in the range [0, 1]). The quality of the points matching is classified
into four categories: excellent, good, medium‚ and bad. Therefore‚ fuzzy logic is
used for improvement of local and global motion estimations and determines the
novelty of approach. The similar procedure is applied for estimation of Global
Motion Vectors (GMVs). The corrective algorithm compensates the unwanted
motion into frames. Thereby‚ the scene is aligned. For restoration of current frame,
pixels are shifted on a value of Accumulated Motion Vector (AMV) of unwanted
motion. However, the sizes of stabilized frames became less relatively the original
video sequence and the restoration of “missing” frame edges is required.

Chapter 10 examines the problems of transforming information and studying
data connected with processing and transmitting images. The strip-method for
storage and noise-immune transmission of images is studied [23]. Before trans-
mission, the matrix transformations of an original image are executed, during which
the image fragments are mixed and superimposed on each other. The transformed
image is transmitted over a communication channel, where it is distorted with a
pulse noise, the latter being for example a possible reason for a complete loss of
separate image fragments. In the process of receiving a signal at the receiving end‚
an inverse transformation is performed. At the end of this transformation, the
reconstruction of the image takes place. If it is possible to provide a uniform
distribution of the pulse noise over the whole area the image occupies (without any
changes of its energy), then a noticeable decrease of noise amplitude will take place
and an acceptable quality of all fragments of the image reconstructed. In this
chapter, many tasks are considered such as versions of the two-sided strip-trans-
formation of images, choice of optimal transformation matrices, investigation of
root images of the strip-transformation, and illustration of capabilities of the method
suggested using particular examples. In order to get the maximum decrease of the
pulse noise amplitude‚ it is necessary to achieve a uniform distribution of the noise
over the image by applying the inverse transformation at the receiving end of the
communication channel. This will allow information about distorted or “lost”
fragments to be reconstructed. Now a problem of determining the type of the
transformation matrices A and B arises. The solution of this problem will provide
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the possibility to minimize the noise amplitude in the reconstructed image. A well-
known solution of this problem is related to the cases of n‚ which can be divided by
four, i.e. the so-called normalized Hadamard matrices [24]. The less-known solu-
tion for even n, not divisible by four, consists in so-called C-matrices (Conference-
matrices). Such matrices have a zero diagonal and their remaining elements are
equal to ±1.

Chapter 11 provides a discussion about the generalized criterion of efficiency for
telecommunication systems [25]. Besides the partial criteria, there exists also a need
in developing generalized ones allowing to compare various telecommunication
systems and to choose the most efficient ones among them. To this end, the gen-
eralized criteria should consider and incorporate the partial ones, establish certain
relationships between them, and hence possess the highest possible objectivity.
Such criteria should be rather simple, easily computable, and provide the way to
compare the telecommunication systems within a definite numerical scale, that is,
they should be normalized [26]. The chapter develops a generalized criterion to
estimate the efficiency of telecommunication systems that can be applied to eco-
nomics information systems, too. The criterion combines evaluation of such special
properties as the information quantity, noise immunity, the data transmission speed,
and the transmission cost. In contrast to other criteria, the proposed one is non-
dimensional and normalized, thus estimating a telecommunication system by means
of real number between 0 and 1. The design of the developed criterion based upon
the concept of conditional entropy is rather simple. It allows one to calculate the
system’s characteristic value with sufficient accuracy for practice, thus comparing
various telecommunication systems to transfer the economic information. The
generalized criterion is composed as a product of some partial criteria, which
permits one to estimate the telecommunication systems not only as a whole, but
also with respect to their partial characteristics, such as their productivity, reli-
ability, and transmission cost.

1.3 Conclusion

The chapter has provided a briefly description of ten chapters with original math-
ematical investigations in computer vision techniques applied in advanced control
systems. All included chapters involve the recent achievements in mathematical
morphological theory, advanced criteria for structural similarity and the efficiency
for telecommunication systems, the analysis of energy spectrums, complicated
image transforms such as hierarchical adaptive Karhunen-Loeve transform and
projective transform, optimal measurement of visual motion based on perception
theory, intelligent methods for digital video stabilization, approaches for trans-
mitting images based on Hadamard matrices Each chapter of the book explores
experimental results, illustrating its use and applicability.
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Chapter 2
Morphological Image Analysis
for Computer Vision Applications

Y.V. Vizilter, Y.P. Pyt’ev, A.I. Chulichkov and L.M. Mestetskiy

Abstract Some original and novel morphological concepts and tools are presented
in this chapter as well as required amount of mathematical morphological basics.
The continuous binary morphology based on a computational geometry is presented
as a very fast approach to shape representation via real-time computation of figures’
skeletons. A skeletal representation of the figure is formed as a skeleton graph, and
the radial function is determined in skeleton points. The proposed morphological
spectrum is the multi-scale morphological shape description and analysis tools
based on granulometry. It is shown how the tasks of change detection and shape
matching in images can be solved using a morphological image analysis. The
projective morphology as a generalized framework based on the mathematical
morphology and the morphological image analysis provides fast and efficient
solutions of morphological segmentation problem in complex images.
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2.1 Introduction

The morphological framework is very wide theoretical platform for creation of mid-
level image analysis tools for specialized computer vision applications. It utilizes
the structural image modeling and is useful for some image filtering, segmentation
and comparison problems. The foundation of Mathematical Morphology (MM) by
Serra and Matheron was in 1960 [1], and this original version of MM with struc-
turing elements, erosion/dilation operators, and monotonous opening/closing filters
is still the most well-known version of MM until nowadays. However, the current
morphological framework contains more ideas and tools than the initial MM. Some
of them are just unknown for computer vision developers and engineers. The
purpose of this chapter is to provide a brief sketch of some novel morphological
techniques useful for different practical applications. The chapter contains the
following issues:

• Basics of mathematical morphology.
• Skeleton-based continuous binary morphology.
• Morphological pattern spectrum: concepts and computation.
• Morphological image analysis (Pyt’ev morphology).
• Projective morphologies, morphological segmentation, and complexity analysis.

The MM is the most well-known morphological technique based on a set theory
and (later) a lattice theory. The idempotent operators (morphological filters or
projectors) are introduced using concept of figure filling by structuring elements. In
other version, the morphological filters are based on merging of grayscale image
connected regions (flat zones). A brief description of basic MM notions and con-
cepts is required for understanding of following techniques.

The continuous binary morphology is a skeleton-based approach for description
and analysis of figure shapes proposed and developed by Mestetskiy. It is based on
a computational geometry and provides very fast tool for real-time computation of
continuous figure skeletons using approximation of 2D binary image by region
border polygons and calculation of Voronoi diagram to segment these polygons. A
skeletal representation of the figure is formed as a skeleton graph, and the radial
function is determined in skeleton points. The computational efficiency of such
approach is based on the fact that skeleton-based continuous binary morphology
uses the finite and relatively small number of analytical structuring elements for
representation of binary image shape. Each analytical structuring element is con-
nected with one edge of continuous skeleton.

A morphological spectrum is a multi-scale morphological shape description and
analysis tool based on granulometry—a set of filters with different grades. Each of
filters provides the details of certain size and shape to pass. The original “Pattern
spectrum” proposed by Maragos is based on the Serra MM filters and describes the
distribution of local figure thickness. Many modifications and generalizations of
this idea are known and utilized now. In this chapter, the fast algorithm for pattern

10 Y.V. Vizilter et al.



spectrum calculation using the continuous binary skeletons is described. Such
implementation allows to apply the morphological spectra in the real-time machine
vision systems.

The Morphological Image Analysis (MIA) proposed by Pyt’ev is well-known in
Russia since 1970. It is based on geometrical and algebraic reasoning. In the
framework of Pyt’ev morphology, images are considered as piecewise-constant 2D
functions. The tessellation of image frame by a set of the non-intersected connected
regions with constant intensities determines the “shape” of the image. From
mathematical point of view, any shape is a hyperplane in a linear space of images.
The crucial idea of this approach is the projection of one image onto the shape of
other image. Here a morphological image comparison is performed using the
normalized morphological correlation coefficients. The morphological change
detection is performed by a comparison of an image and its projection to the
reference image. Such morphological tools are invariant relative to transforms of
image intensity and stable relative to noise. In this chapter, a morphological shape
matching technique is described that generalizes a morphological approach to
shape-to-shape comparison.

A projective morphology is a generalized framework based on the Serra math-
ematical morphology, the Pavel shape theory, and the Pyt’ev morphological anal-
ysis. It combines ideas of these morphological approaches and allows to construct
some new morphological systems and operators based on different image decom-
positions and transforms and/or criterions (energy functions). The criterion-based
projective morphological filters are implemented using numeric optimization
techniques (linear programming, dynamic programming, graph cutting, and so on).
The use of morphological shape complexity as a criterion for shape regularization
provides tools for shape complexity analysis those are more general than tools
based on the MM granulometry concept. In particular, the definitions of the mor-
phological filters and the morphological spectra by complexity are given.

Thus, some original and modern morphological concepts and tools are presented
in this chapter as well as required amount of morphological basics. From one hand,
this material allows to learn of modern morphology techniques without any pre-
vious background in the MM. From the other hand, some tools and techniques
those are applicable for real-time technical vision systems, especially for vision
systems of moving vehicles and other controlled real-time technical devices with
video cameras or several imaging sensors, are selected and presented.

The chapter is organized as follows. The basics of mathematical morphology
are discussed in Sect. 2.2. The skeleton-based continuous binary morphology is
described in Sect. 2.3. The concept and computation of morphological spectrum
are represented in Sect. 2.4. The morphological image analysis (Pyt’ev mor-
phology) is given in Sect. 2.5. Section 2.6 describes the projective morphologies,
a morphological segmentation and a complexity analysis. Conclusion is situated
in Sect. 2.7.
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2.2 Basics of Mathematical Morphology

The MM is a well-known theoretical framework for image processing and shape
analysis. It was originally developed for binary image processing, and classically
stated in the set-theoretical terms. Then the MM was extended to grayscale images,
color images, graphs, among others. At present, the description of the MM in terms
of complete lattices is the widest MM theoretical formalism.

The MM was originally developed by Serra [1] in 1964 and Matheron [2] in
1975. In 1960–1970, the set of popular MM operators was proposed including Hit-
or-miss transform, dilation, erosion, opening, closing, granulometry, thinning,
skeletonization, ultimate erosion, etc. In 1970–1980, some novel MM operators
like morphological gradients, top-hat transform, and the watershed were proposed.
In 1986, the MM generalization based on complete lattices was proposed by Serra.
In 1990–2000, some further theoretical advancement was developed including the
concepts of connection and leveling.

The basic MM concepts and operations in order to explore the interconnections
betweenwell-knownmorphological tools and some novel morphological concepts and
ideas are briefly introduced in Sect. 2.2.1. A binary morphology and a grayscale
mathematical morphology based on structuring elements are introduced in Sects. 2.2.2
and 2.2.3, respectively. The mathematical morphology as a lattice-theoretic scheme is
discussed in Sect. 2.2.4. The novel morphological concept based on connected filters is
given in Sect. 2.2.5. A building of morphological skeleton is presented in Sect. 2.2.6.

2.2.1 Mathematical Morphology as a Set-Theoretic Scheme

In a set-theoretic terms [1] the MM operations are defined for any Euclidean space
EN equipped by the set-theoric inclusion (⊂), union ([), and intersection (\). Any
operator (transform) of this space W: EN → EN is called:

• The increasing, if it preserves the inclusion (X⊂ Y)⇒ (W(X)⊂W(Y)), X, Y⊂ EN.
• The dilation, if it preserves the union W([Xi) = \W(Xi), 8 Xi ⊂ EN.
• The erosion, if it preserves the intersection W(\Xi) = \(W(Xi)), 8 Xi ⊂ EN.
• The extensive, if W(X) ⊇ X, and anti-extensive, if W(X) ⊆ X.
• The idempotent (or algebraic projector), if (W(W(X)) = W(X)).

All inclusion-preserving operators are called the morphological operators. Well-
known Matheron theorem states that any morphological operator can be represented
as a union of erosions or as an intersection of dilations. Due to this theorem, the
erosion and the dilation are called the basic morphological operators.

The idempotent morphological operators are called the morphological filters:

• The anti-extensive morphological filter is called the opening.
• The extensive morphological filter is called the closing.

Let us consider the original implementation of these terms and notions.
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2.2.2 Binary Mathematical Morphology Based
on Structuring Elements

The classic implementation of the formal scheme applying to binary image pro-
cessing is given in [1]. It is called the binary mathematical morphology. In the
framework of this MM, a binary image is considered as a set of non-zero points of
the plane P = R2.

Let us define the translation of the set X ⊂ P by the vector z 2 P as the
transformation Xz = {y|y = x + z, x 2 X}, where the points of the plane are summed
as vectors (coordinates are added component-wise). Let X, B ⊂ P, where b 2 B is a
Structuring Element (SE). The operation represented by Eq. 2.1 is called the
Minkowski addition.

X � B ¼ fxþ bjx 2 X; b 2 Bg ¼ [fBxjx 2 Xg ¼ [fXbjb 2 Bg ð2:1Þ

The operation provided by Eq. 2.2 is called the Minkowski subtraction.

X � B ¼ fz 2 PjBz � Xg ð2:2Þ

In the framework of MM these operations (Eqs. 2.1–2.2) are called the dilatation
and the erosion of an image X with structuring element B. The dilatation and the
erosion are the basic MM operations (see Fig. 2.1). If a structuring element B has a
central symmetry relative to the origin of P, then the erosion of binary image
corresponds to dilation of figure background (set-theoretic completion) and vice
versa (Eq. 2.3).

X � B ¼ ðXC � BÞC; X � B ¼ ðXC � BÞC ð2:3Þ

The combined operation “dilation after erosion” is called the opening of X by
B (Eq. 2.4).

X � B ¼ ðX � BÞ � B ð2:4Þ

It has a clear geometrical meaning–the union of all structuring elements of shape
B completely included in figure X: be the following expression:

X � B ¼ fBzjBz � Xg:

The combined operation “erosion after dilation” is called closing of X by
B (Eq. 2.5).

X � B ¼ ðX � BÞHB ð2:5Þ

If a structuring element B has a central symmetry relative to the origin of P, then
the opening of binary image corresponds to closing of figure background and vice
versa as it shown in Eq. 2.6.
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X � B ¼ ðXC � BÞC; X � B ¼ XC � B� �C ð2:6Þ

If a structuring element B is fixed, then such opening and closing operators are
idempotent (projectors) and inclusion-preserving. These operators are called the
morphological filters of binary images based on the SEs.

These basic operations and filters of MM were proposed for providing the
mathematically founded tools for solution of different practical shape analysis
problems. For example, the task for detail extraction of figure based on the expected
size and shape can be solved in a way demonstrated in Fig. 2.2.

2.2.3 Grayscale Mathematical Morphology Based
on Structuring Elements

In the framework of grayscale morphology [3–6] the image f(x, y) and a grayscale
structuring element k(u, v) are usually represented as the nonnegative two-dimen-
sional functions determined on the plane P = R2 or some square frame F ⊆ P. In the
simplest way, the grayscale erosion and the grayscale dilation can be determined by
Eqs. 2.7–2.8, respectively.

f x; yð Þ � k u; vð Þ ¼ max
ðu;vÞ

f x� u; y� vð Þ þ k u; vð Þf g ð2:7Þ

f x; yð Þ � k u; vð Þ ¼ min
ðu;vÞ

f xþ u; yþ vð Þ � k u; vð Þf g ð2:8Þ

The grayscale morphological filters–grayscale opening and grayscale closing are
defined as the combinations of grayscale erosion and grayscale dilation provided by
Eqs. 2.9–2.10.

Fig. 2.1 Basic operators and filters of binary MM based on SE
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f � k ¼ ðf � kÞ � k; ð2:9Þ

f � k ¼ ðf � kÞHk ð2:10Þ

The following systematic formulation of grayscale morphology can be given in
terms of “image umbra” [3]. Let the set of image f values in frame F be denoted as
E. Then umbra of f is a set of 3D points U(f) ⊂ F × E lying “under the f”:

Uðf Þ ¼ fðx; yÞ 2 F 	 Ejy
 f ðxÞg:

The top surface of the set A ⊆ F × E is a set T(A): F → E defined as follows:

T ½A�ðxÞ ¼ maxfyjðx; yÞ 2 Ag:

Based on these notions, one can define the grayscale morphological operations
in usual set-theoretic way as described above binary MM operators, but for 3D
(F × E) space point sets. Let F, K ⊆ E2, f: F → E, k: K → E. Then

• The dilation of f by k SE is f ⊕ k = T[U(f) ⊕ U(k)].
• The erosion of f by k SE is f ⊖ k = T[U(f) ⊖ U(k)].

These definitions preserve the set-theoretic background, but in computational
sense they are equivalent to previous ones given in terms of min and max opera-
tions on pixels of grayscale images.

Another useful way for definition and computation of grayscale morphological
operators is based on the notion of grayscale image level sets. This approach was
proposed in [7]. For simplicity, let us consider the case of “flat” structuring element
with two levels of intensity k(u, v) ∈ {0, −∞} that corresponds to binary SE
b(u, v) = {(u, v)|k(u, v) = 0}, but for general case of grayscale SE such construction
can be defined too.

Fig. 2.2 The detail extraction
using basic morphological
operations
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Let the level image or a slice of grayscale image f(x, y) at intensity level l be a
binary image fl(x, y) = {1: f(x, y) ≥ l; 0: f(x, y) < l}. As it was proved in [7], in the
case of “flat” SE all operators of Serra grayscale morphology can be represented as
a combination of corresponding binary morphological operators applied to each
level of level set as it shown in Eqs. 2.11–2.14.

f x; yð Þ � k u; vð Þ ¼ max
l2E

fl	 ðfl x; yð Þ � b u; vð ÞÞg ð2:11Þ

f x; yð Þ � k u; vð Þ ¼ max
l2E

fl	 ðfl x; yð Þ � b u; vð ÞÞg ð2:12Þ

f x; yð Þ � k u; vð Þ ¼ max
l2E

fl	 ðfl x; yð Þ � b u; vð ÞÞg ð2:13Þ

f x; yð Þ � k u; vð Þ ¼ max
l2E

fl	 ðfl x; yð Þ � b u; vð ÞÞg ð2:14Þ

If a digital image has a fixed and relatively small number of discrete gray levels
(E = 0, …, N − 1), then this approach based on level sets provides the computa-
tionally efficient implementation of grayscale morphological operators. Figure 2.3
demonstrates the grayscale morphological operations and morphological detail
extraction via corresponding background normalization (difference of source image
and morphological filter).

Fig. 2.3 An example of grayscale morphological operators: a the source image, b the erosion,
c the opening, d the background normalization by the opening (bright details are extracted), e the
dilation, f the connected closing, g the background normalization by the closing (dark details are
extracted)
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2.2.4 Mathematical Morphology as a Lattice-Theoretic
Scheme

A complete lattice [8] (L, ≤) is a set L with partial order relation (≤) such that any
subset of this set have the least element (infimum symbolized by ∧) and the greatest
element (supremum symbolized by ∨) with respect to this relation. The least ele-
ment of lattice is denoted as ;. The supremum of lattice U is called the “universe”
of this lattice. Let us note that any pair of elements should have the infimum and
supremum. For example, if lattice L is a set of subsets of some set S and ordering
relation (≤) is a set-theoretic inclusion (⊆), then for any A, B ∈ S (Eq. 2.15).

A ^ B ¼ A \ B A _ B ¼ A [ B ð2:15Þ

Let L = ({Xi}, ≤). The dilation is an operator δ: L → L and the erosion is an
operator ε: L → L [3] provided by Eqs. 2.16–2.17, respectively [9].

_
i
d Xið Þ ¼ dð_

i
XiÞ d Øð Þ ¼ Ø ð2:16Þ

î
eðXiÞ ¼ eð

î
XiÞ eðUÞ ¼ U ð2:17Þ

For every dilation δ, there is one erosion ε such that

X
 eðYÞ , dðXÞ
 Y for allX; Y 2 L

and vice versa: every erosion have the dilation satisfying the above condition.
Moreover, if δ and ε satisfy this condition, then they must be the dilation and
erosion. Such pairs of connected operations are called the adjunctions. For every
adjunction (ε, δ), the morphological opening and the morphological closing are
defined by Eqs. 2.18–2.19, respectively.

c:L ! L:c ¼ de ð2:18Þ

/:L ! L:/ ¼ ed ð2:19Þ

2.2.5 Morphologies Based on Connected Filters

The connected filters are the connectivity preserving morphological filters [8, 10,
11]. The image domain (frame) can be partitioned into the disjoint sets based on
connected components (in the binary case) or the connected zones of constant grey/
color levels (in the greyscale/color case). A connected filter works by merging the
disjoint sets in the partition and assigning new grey levels or colors to them. This
means that no new edges are introduced by the connected filters. A connected
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filtering operates with image regions rather than pixels. Obviously, such filtering
depends on a definition of connectivity (8 or 4 neighbors for pixel).

The grayscale connected operators act by merging of flat zones (regions of
constant intensity). A partition is a set of nonoverlapping, nonvoid regions that fills
the entire space. Let P is the partition of the frame, P(n) is a region of P that
contains pixel n. A partial order relationship of complexity among partitions can be
defined as follows: P1 is finer than P2 (P1 ⊆ P2), if ∀n: P1(n) ⊆ P2(n).

The set of flat zones of image f is a partition of space Pf. A grayscale operator ψ
is connected, if the partition of flat zones of its input f is always finer than the
partition of flat zones of its output ψ(f), that is Pf ⊆ Pψ(f), ∀f.

The connected filters bridge the gap between filtering and segmentation.
Figure 2.4 demonstrates an image and itsfiltered versionwith corresponding partition.
This example illustrates the simplification of the image shape by the connected filter.

There are three types of connected filters:

• The filters by reconstruction perform the reconstruction of connected regions
(flat zones) after their processing by some ant-extensive operator, for example,
some SE erosion.

• The area filters delete regions (flat zones) with area lower than some threshold.
• The attribute filters delete regions (flat zones) with some region attributes (area,

perimeter, diameter, inertia moment, etc.) non-satisfying the predefined rules
(for example, lower or higher than some threshold). The area filters and filters by
reconstruction are the particular cases of attribute filters.

The connected and the SE based filters complement each other in the shape
analysis applications providing different tools for morphological image transfor-
mation and object selection. Such transformation means the modification of image
connectivity and shape. The selection presumes an elimination or an extraction
(using the background normalization scheme) of image elements with given shape,
size, and contrast sign. These properties of filters are contradictive, and should be
separated. Connected filters provide the solution of this problem. An example of
morphological corner detection via combination of opening and connected opening
is shown in Fig. 2.5. Figure 2.6 provides an example of grayscale connected
morphological filters—opening and closing by reconstruction [12].

2.2.6 Morphological Skeleton

A morphological skeleton is a compact description of 2D figure shape that can be
obtained by some sequence of morphological operations and provides the possi-
bility for reconstruction of described shape using some other sequence of mor-
phological operations. The morphological formula for the skeleton of a continuous
binary image was proposed in [1, 13]. For discrete case this formula is implemented
as follows. Let {nB}, n = 0, 1, …, be a sequence of shapes based on some
structuring element B, nB = B ⊕ ··· ⊕ B (n times), and OB = {o}, where o is the
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origin of 2D image plane, n is a size of the structuring element nB. A discrete
skeleton S(X) of a discrete binary image X ⊂ Z2 (Fig. 2.7a, b) is the union of
the skeleton subsets {Sn(X)}, n = 0,1, …, N provided by Eq. 2.20.

SnðXÞ ¼ ðX � nBÞ � ðX � nBÞ � B ð2:20Þ

The reconstruction of original shape X from the skeleton is performed by
Eq. 2.21 while the partial reconstruction corresponds to the opening of original
shape is represented by Eq. 2.22.

X ¼
[
n

ðSnðXÞ � nBÞ ð2:21Þ

[
n�m

ðSnðXÞ � nBÞ ¼ X � mB ð2:22Þ

In the next Sect. 2.3, another approach for definition and computation of con-
tinuous skeletons based on concept of medial axes as a set of centers of maximal
inscribed balls (discs) will be considered.

Fig. 2.4 The simplification of image by the connected filter: a the source grayscale image, b the
image filtered by connected version, c corresponding frame partition

Fig. 2.5 An example of morphological corner detection: a the source image, b the result of
connected opening by SE and reconstruction, c the result of SE opening, d the result of the corner
extraction operator (background normalization—difference between connected opening and SE
opening)

2 Morphological Image Analysis for Computer Vision Applications 19



2.3 Skeleton-Based Continuous Binary Morphology

This section is devoted to skeleton-based continuous binary morphology. The main
concepts for the skeleton of binary images are presented in Sect. 2.3.1. The con-
tinuous representation of raster image boundary is discussed in Sect. 2.3.2. A
polygonal figure skeleton based on the Delaunay graph is described in Sect. 2.3.3.
Section 2.3.4 provides the novel skeleton-based continuous binary morphologies.

Fig. 2.6 An example of grayscale connected morphology operators: a the source image, b the
erosion, c the connected opening, d the background normalization by the connected opening, e the
dilation, f the connected closing, g the background normalization by the connected closing

Fig. 2.7 The discrete approach of skeleton building: a the discrete binary image, b the discrete
skeleton, c the continuous binary image, d the continuous skeleton and inscribed circles
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2.3.1 Skeleton of Binary Image Versus Binary Image
of Skeleton

The skeleton (or medial axis representation) is a powerful and widely used tool for
image shape analysis [14]. The concept of the skeleton (the middle set of points)
was introduced and investigated by Blum [15]. The skeleton of a closed region in
Euclidean plane is a locus of centers of maximum empty circles in this region. The
circle is considered to be empty, if all its internal points are internal points of the
region. One can formulate two approaches to extend the concept of the skeleton to
discrete images.

The first approach, which is the most popular, will be called discrete. It consists
in a morphological transformation of the original image (Fig. 2.7a) and a con-
struction of a new image (Fig. 2.7b), which can be regarded as a skeleton. In this
new bitmap, a medial axis is represented by discrete lines one pixel width. One can
say that the resulting image is a digital image of the skeleton. The discrete approach
is implemented in different ways: based on distance maps, thinning, Voronoi dia-
grams of boundary points [16, 17]. The main advantage of the discrete approach is
the simplicity of the algorithm and a graphic visualization of the skeleton in the
source raster format (Fig. 2.7a, b).

Another approach, which is called continuous, is based on the approximation of
a discrete object by the geometrical figure in terms of a continuous geometry
(Fig. 2.7c) and the construction of the skeleton for this figure (Fig. 2.7d). The
resulting skeleton is considered as a continuous skeleton of discrete objects.

A continuous approach has its advantages. The main advantage of the approach is
the continuous medial representation of the object’s shape [17] as a geometrical graph
with a radial function, which determines the width of the object. The radial function
sets at each point of the geometrical graph radius of the inscribed circle are centered at
this point. A continuous medial representation allows the use of graph theory and
computational geometry algorithms for image shape analysis and recognition.

A comparative analysis shows the advantages of continuous skeleton compared
to discrete one. These advantages are mathematical rigor, information content, and
computational efficiency. This section is based on the studies described in papers
and books [18–23] and provides the full implementation of the continuous approach
to the skeleton construction for binary raster images of any complexity. Here an
original method for continuous skeleton representation as a planar graph, whose
edges are segments of straight lines and quadratic parabolas, is represented. The
concept of continuous skeleton for raster binary image is developed to use the
correct and elegant model of Voronoi diagram of line segments and polygonal
figures to obtain the skeleton of a discrete object.

The proposed idea consists of three parts (Fig. 2.8):

• The approximation of binary image (Fig. 2.8a) by a polygonal figure (Fig. 2.8b).
• The computation of Voronoi diagram of obtained set of figures by methods of

computational geometry (Fig. 2.8c).
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• The obtaining of the skeleton from the Voronoi diagram in a convenient format
for further analysis (Fig. 2.8d).

The choice of a polygonal figure for the approximation is explained by the fact
that the skeleton of a polygonal figure is a fairly simple structure and can be
obtained from the Voronoi diagram of this figure. The implementation of this
approach required solving of several computational problems addressed below.

2.3.2 Continuous Representation of Raster Image Boundary

Let the object points of binary image be black, and the background points be white.
Let us define an adjacency structure on a set of pixels as follows. For a black pair of
pixels, the neighborhood of 8-adjacency and, for a white pair and black-white pair,
the neighborhood of 4-adjacency are defined. A set of one-colored pixels is called
connected, if, for each pair of pixels into it, there is a path from one pixel to another
consisting of sequentially neighboring pixels of the same color. The maximal
connected set of pixels of one color is called a connected component. The discrete
figures are the connected black-colored components.

Let us call a pair of 4-adjacent black-white points as a boundary pair, and a
segment connecting these points as a boundary segment. Two components, to
which points of a boundary pair belong, are called adjacent, and the boundary pair
is called a dividing for these components. A set of all dividing boundary pairs for
two adjacent components let us call a boundary corridor. Each discrete figure
defines one or more boundary corridors.

There is a minimal length path among all closed paths lying in a boundary
corridor. This path is a closed polyline called a separating Minimal Perimeter
Polygon (MPP). The set of all MPP of a discrete figure defines a polygonal figure
(polygon with polygonal holes). Thus, we have defined the polygonal figures with
minimal perimeters, which approximate the discrete figures in a binary image. The
set of approximating polygonal figures exists and unique for any binary image.

The line scanning of image rows is used for tracing of all contours. Such tracing
consists of detection the first boundary pair and sequential finding the next
boundary pairs until the returning to start position. A process ends, when a line
scanning of image rows is completed, and all contours are extracted.

Fig. 2.8 The continuous approach: a the source binary image, b the polygonal approximation,
c the medial representation of the polygon, d the resultant skeleton after pruning
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The sequence of contour points forms an ordered list called a tracing track. All
vertices of MPP are points of a tracing track. Let us call such point a corner.
Figure 2.9 illustrates the process of the MPP constructing. Figure 2.9a shows the
first corner point and a part of the tracing track. Figure 2.9b presents the sequential
steps of coverage sector correction from starting position (left image) until the next
corner is obtained (right image). Figure 2.9c shows the final obtained MPP.

2.3.3 Polygonal Figure Skeleton

The Voronoi diagram and the Delaunay graph of polygonal figure. Let P ∈ R2 be a
multiple-connected polygonal domain and S(P) be a set of all sites of P
(S(P) consists of all vertices and sides of P called vertex-sites and segment-sites,
respectively). The medial axis M(P) is a subset of Voronoi diagram VD(P) of the
site set of P. This is the feature most algorithms computing medial axis of a
polygonal figure rely on.

The concept of the Voronoi diagram for line segments is commonly used for a
skeleton construction of a polygonal figure [24, 25]. The polygonal figure boundary
is a union of linear segments and vertices, which are considered as the Voronoi
sites. The Voronoi diagram of these sites is generated, and the skeleton is extracted
as a subset of the diagram. The skeleton of a polygonal figure with n sides can be
obtained from the Voronoi diagram taking O(n) time. By-turn, there are known the
effective O(nlogn) algorithms to construct the Voronoi diagram for the general set
of linear segments [26, 27] as well as for the sides of a simple polygon [28] or
multiple-connected polygonal figures [22].

Fig. 2.9 Detection of next corner point for the minimal perimeter polygon: a the initial corner
point, b the obtaining of next corner point by sequential steps for the correction of the coverage
sector, c the minimal perimeter polygon
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A polygonal figure skeleton looks like a planar graph with edges consisting of
line segments and parabolas [29, 30]. Skeleton vertices are convex vertices of a
polygonal figure (one degree vertices) and also points—centers of inscribed circles
tangent to figure boundary in three or more points (three and more degree vertices).
The radial function is defined in each skeleton point as the radius of inscribed circle
centered in this point It is especially necessary to note that the polygonal figure
skeleton always exists and is unique.

The construction of skeleton based on the Delaunay graph. The main idea of the
algorithm is based on constructing the Delaunay graph of figure sites and an
adjacency tree of figure boundary contours (Fig. 2.10).

Let P be a multiple-connected polygonal domain. Two sites of P are adjacent, if
they are adjoining to each other (vertex-site and segment-site of a common side) or
there exists a disk inscribed in P and touching both sites (in other words, if their
Voronoi cells have non-empty intersection). The Delaunay graph DG(P) of P is a
graph (S, ES), where S is a set of sites of P and ES ⊆ S × S contains all pairs of
adjacent sites from S. Similarly, the Delaunay graph of a subset S′ of S is defined as
a graph (S′, ES′), where S′ ⊆ S and ES′ ⊆ S′ × S′ contains all pairs of adjacent sites
from S′.

The Delaunay graph of P is a dual structure for the Voronoi diagram of P. The
duality of DG(P) and VD(P) is that there a bijection between their structure ele-
ments exists: every VD(P) vertex with its incident edges and incident faces is
assigned to DG(P) face with its incident edges and incident vertices. Given DG
(P) constructed, the VD(P) can be obtained in O(n) time.

The algorithm to transform the Delaunay graph to the corresponding Voronoi
diagram is described in [31]. Actually, under the non-degeneracy assumption that
no point in the plane is equidistant to more than three sites of P, the Delaunay graph
is the triangulation of a set of the sites of P (possibly, with non-straight edges).

Fig. 2.10 A polygonal domain site set: a the Voronoi diagram, b the Delaunay graph (circles
denote vertex-sites and squares denote segment-sites)
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The algorithm to compute the Delaunay graph of a simple polygon involves the
steps mentioned below:

1. The generating initial elementary chains of sites and constructing their Delaunay
graphs.

2. The iterative pairwise merge of Delaunay graphs of chains. At each iteration the
following operations are performed as follows:

• The clearing Delaunay graphs in every pair so that the Delaunay condition is
satisfied for every edge relative to the union of sites from both graphs in the
pair. At this stage some edges can be eliminated in every pair of the Dela-
unay graphs.

• The “sewing” of the Delaunay graphs in every pair so that the Delaunay
condition is satisfied for every new inserted edge relative to the union of sites
from both graphs in the pair. At this stage, every pair of the Delaunay graphs
is “sewed” and new Delaunay graphs are formed.

The computational complexity of the algorithm is O(nlogn). This algorithm is
similar to one proposed in [29] for merging Delaunay triangulations.

A skeleton of multiple-connected polygonal figure. Fast algorithms for con-
structing skeleton of simple polygon with n vertices through Voronoi diagram have
a computational complexity O(nlogn) in the worst case [28]. The known general-
izations to the case of a polygonal figure with holes [32–34] have computational
complexity O(kn + nlogn), where k is a quantity of polygonal holes, n is a general
number of vertices. Such computational complexity leads to high costs in time. For
example, in the problem of construction of an external skeleton for segmentation of
the text document image [18] values k and n have an order 103 and 105, respec-
tively. At the same time, the efficient algorithms for Voronoi diagram construction
of linear segment set [26, 27] do not use specific features of segment set of
polygonal figure boundary owing to their universality. In particular, these algo-
rithms build Voronoi partitioning not only inside, but also outside of a polygonal
figure, and this is a superfluous work.

This solution is based on concept definition for adjacency of polygonal figure
boundary contours and on construction of so-called adjacency tree of these con-
tours. Two boundary polygons are adjacent, if the circle inscribed into a figure and
contacted both of these polygons exists. The given relation of contour adjacency
defines a graph of contour adjacency. It is obvious that this graph is connected.
Each spanning set of it (the minimal connected spanning subgraph) is a tree. Such
tree is called a boundary adjacency tree of a polygonal figure. The boundary
adjacency tree gives the chance to reduce a problem of a polygonal figure skelet-
onization to a problem of a simple polygon skeletonization. Let us transform chains
of side of polygons by “cutting-in” them into one another. As a result the polygonal
figure conditionally transforms to “polygon”. In details, this process was described
in [18]. The O(nlogn) sweepline algorithm for finding a boundary adjacency tree
and a figure skeleton construction on its basis is described ibidem.
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A skeletal base of polygonal figure. Small irregularities in figure boundary lead
to occurrence of skeleton branches unessential for analysis of image form. A
problem of skeleton regularization consists in removing these branches and leaving
only fundamental part of a skeleton, which characterizes properties of the form.
This fundamental part looks like a skeleton subgraph. Let us call it a skeletal base.
A transformation of a skeleton to a skeletal base consists in removing of unessential
vertices and edges. This process is called a “pruning”.

Let C be a polygonal figure with the boundary ∂C, the skeleton S, and the
skeleton radial function ρ(s), s ∈ S. The skeleton is a planar graph S = (P, E) with
the set of vertices P and edges E. A skeleton vertex with one incident edge is a
terminal, and with two or more edges is an internal. An edge incident to terminal
vertex is also called terminal. An edge incident to two internal vertices is called
linking. The linking edges can be included in one or more cycles, and in this case
they are called cyclic.

A pruning is an iterative removal of “unessential” terminal vertices and skeleton
edges. Essential edges remain in a skeletal base. A pruning preserves a skeleton
connectivity and all cycles. Let S′ = (P′, E′) be some connected subgraph of
skeleton S = (P, E) such that P′ ⊆ P, E′ ⊆ E, and there are no cyclic edges of
skeleton S among edges from the set E\E′ (Fig. 2.11). Such graph S′ is called a
truncated subgraph of S. Consider the set of points formed by union of all inscribed
circles centered in points of truncated subgraph S′, which radiuses are equal ρ(s),
s ∈ S′. This set of points forms the closed region, which is called a silhouette of
subgraph S′. The important property of a truncated subgraph silhouette is the
topological equivalence to figure C. In particular, it is a connected set.

A skeletal base of figure C is the minimal truncated subgraph S′ of its skeleton
S with ε-silhouette VS′ satisfying a condition H(C, VS′) ≤ ε, where ε > 0 is regu-
larizing parameter and H(C, VS′) is the Hausdorff distance between a figure C and a
silhouette VS′. For each value of parameter ε the skeletal base always exists and is
unique as well as its ε-silhouette. One can call the skeletal base as a continuous
skeleton of a discrete figure (Fig. 2.12). A computational complexity of algorithm
depends linearly on a number of skeleton vertices, i.e. it is equal O(n) at the worst
case, where n is a quantity of polygonal figure vertices.

2.3.4 Skeleton-Based Continuous Binary Morphologies

Let us consider the MM with disk structuring element D(r) of size r. Continuous
binary opening requires the infinite number of disks for shape reconstruction

P � D rð Þ ¼ [D rð Þ�PD rð Þ:

That is why the continuous MM filters are usually out of consideration.
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On the other hand, considering the notion of continuous skeleton, Eq. 2.23 for
continuous MM opening can be obtained, where D(p, t) is an empty disk of size
t with center p, S(P) is a skeleton of figure P.

P � D rð Þ ¼ [p2S Pð ÞfD p; tð Þ:t� r; D p; tð Þ � Pg ð2:23Þ

If a figure P is polygonal, then its skeleton consists of finite number of line and
parabolic segments. This allows representing the figure as a union of finite number
of ANalytical struCTure ELements (anxels) (Fig. 2.13). Let each ith edge of
skeleton S(P) is denoted as Si. The silhouette of Si (a union of all empty disks
centered on Si) let us call the ith anxel of figure P and denote it as Pi. Thus, an anxel
representation of figure P takes the form of Eq. 2.24, where n is a number of
skeleton edges.

P ¼ [i¼1;...;nPi ð2:24Þ

Therefore, the opening of P can be represented by Eq. 2.25.

P � D rð Þ ¼ [i¼1;...;n [p2Si fD p; tð Þ:t� r; D p; tð Þ � Pig ¼ [i¼1;...;nPi � D rð Þ
ð2:25Þ

The opening of each anxel can be calculated analytically: a silhouette of
r-opened anxel Pi will be empty (if all radial function values on Si are less than r) or
bordered by parts of its initial border and possibly parts of circles of size r.

Fig. 2.11 A construction of skeletal subgraph silhouette: a the initial image, b the skeleton, c the
truncated subgraph of skeleton, d the silhouette of the subgraph

Fig. 2.12 The skeletal base construction: a the initial image, b the polygonal figure and its
skeleton, c–e the skeleton subgraphs and their silhouettes
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Let us note that a mapping of figure P to its ε-silhouette described above also
satisfies the properties of morphological filter (opening), and such ε-opening can be
described in analogous way using the anxel figure representation as a process of
ε-exclusion and ε-cutting of terminal anxels. In both cases of anxel-based mor-
phologies, a corresponding continuos closing is implemented via continuous
opening of a figure background. Thus, the anxel representation of polygonal figures
allows to define different continuous binary morphologies with different continuous
filters based on selection and/or transformation of figure or background anxels.

In the next Sect. 2.4 the applicability of this approach for efficient calculation of
morphological pattern spectrum will be demonstrated.

2.4 Morphological Spectrum: Concept and Computation

A morphological spectrum is one of special tools from the reach morphological
toolbox. The original Pattern Spectrum (PS) was proposed by Maragos [35] based
on the MM filters with SE [1]. It describes the distribution of local figure thickness.
Later some modifications and implementations were proposed. All modifications
and generalizations of the PS one can refer as the morphological spectra. The
morphological spectra are the sensitive and stable descriptors of image shape
especially useful for texture analysis, object selection, tunning of morphological
filtering and segmentation parameters [11, 36, 37]. However, for many years this
morphological tool was not so popular because of its very expensive computational
implementation. In this section, let us discuss a computationally efficient approach
to morphological spectra calculation based on thickness map concept, continuous
skeletal representation [38], and level decomposition of morphological filters [39].
This approach provides a possibility to use the morphological spectra in real-time
vision applications.

Fig. 2.13 A skeleton of
polygonal figure and
analytical structure elements
(anxels)
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The pattern spectrum and morphological spectra are discussed in Sect. 2.4.1. The
thickness map and morphological spectrum are located in Sect. 2.4.2. Section 2.4.3
contains a calculation of binary morphological spectra based on continuous skeletal
representation while as well as a calculation of grayscale morphological spectra is
given in Sect. 2.4.4.

2.4.1 Pattern Spectrum and Morphological Spectra

Let B is a figure (compact and convex point set) of the plane P including the origin.
Then the figure rB of shape B and size r is defined as follows

rB ¼ frb ¼ rx; ryð Þjb ¼ x; yð Þ 2 Bg; r� 0:

The morphological PS (PSX) of figure X ⊆ P with structuring element B [35] is
defined by Eqs. 2.26–2.27, where S(X) is an area of figure X. Equations 2.26–2.27
specify the spectrum for positive and negative parts of the r axis, respectively.

PSX r;Bð Þ ¼ �oS X � rBð Þ=or r� 0 ð2:26Þ

PSX �r;Bð Þ ¼ oSðX � rBÞ=or r[ 0 ð2:27Þ

The Discrete Morphological Pattern Spectrum (DMPS) of X [35] is defined by
Eqs. 2.28–2.29, where ri ¼ iDr; i 2 Z;Dr is a sampling step of the scale r.

PSX;B;Dr rið Þ ¼ � S X � riBð Þ � S X � riþ1Bð Þ
ri � riþ1

r� 0 ð2:28Þ

PSX;B;Dr rið Þ ¼ S X � ð�riBÞð Þ � S X � ð�riþ1BÞð Þ
riþ1 � ri

r\0 ð2:29Þ

The special test image filled by disks of different size is shown in Fig. 2.14. If
B = D is a disk SE, then S(X ◦ rB) will be the step function of r with steps at each
size of disks presented in the image, and the amplitude of the step is equal to the
sum of areas of disks with this size. Hence, positive part of discrete pattern spec-
trum contains peaks corresponding to these steps with the same amplitude.

As noted in [35], the PS conveys four useful types of information about X. A
boundary roughness of X relative B determines peaks in the lower size part of the
PS. The long capes or bulky protruding parts in X consisting of patterns rB produce
isolated impulses in the positive part of the PS at r scale value. The B-shapeness of
X is a maximal degree of rB in X measured by ratio PSX(r, B)/S(X). The left part of
the spectrum (r is negative) demonstrates the significant isolated impulses, if cor-
responding gulfs or holes are in X.
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From theoretical point of view, the PS with all its modifications and general-
izations (morphological spectra) are based on granulometries—the sets of mor-
phological filters of different grades, each allowing details (grains) of certain size
classes to pass. Let {γk}, k = 0, 1, … be a set opening operators ∀X γ0(X) = X,
γk+1(X) ⊆ γk(X). For example, γk(X) = X ◦ rk B. A granulometry function Gk(X) is a
cardinality (area, volume, etc.) of the pattern γk(X): Gk(X) = |γk(X)|. The PS or size
distribution of X will be a sequence of differences, produced by sequential sub-
traction of granulometry function values provided by Eq. 2.30.

PSXðk; cÞ ¼ Gk Xð Þ � Gkþ1 Xð Þ ð2:30Þ

Another generalized scheme was proposed by Matheron in terms of sieving by
series of sieves with decreasing the sizes of holes. The filtering of X through kth
sieve Ψk(X) returns the subset of X sub-elements with sizes not greater than k.

The sieving operators {Ψk(X)}, k = 0, 1, … have the following properties:

• The anti-extensive: each sieve reduces the amount of grains, i.e. Ψk(X) ⊆ X.
• The increasing: a sieving preserves the inclusion, i.e. X ⊆ Y ⇒ Ψk(X) ⊆ Ψk(Y).
• The stable: a passing through two sieves is determined by the smallest hole size,

i.e. Ψk Ψm(X) = ΨmΨk (X) = Ψmax(k,m) (X).

Such sequences of operators are the base of granulometry.
From practical point of view, there are two main classes of morphological

spectra: based on filters with SEs and based on the connected filters. The first class
contains the original PS [35], the spatial morphological shape-size PS proposed by
Wilkinson [40], and some other. The second class includes the size pattern spectra,
the shape pattern spectra, the binned 2D shape-size PS [41], and so on.

The morphological spectra based on the SEs are robust and have invariant shape-
size descriptors but they are very computationally expensive because they require
one opening operation per bin of the spectrum. Therefore, the efforts for
improvement of such technique were put to the creation of fast SE filters

Fig. 2.14 A positive part of morphological spectrum with disk SE and corresponding steps of
opening with increasing disk size providing changes in opened figure area
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computation algorithms [42–50]. The best result was obtained by Urbach and
Wilkinson [50]. They have proposed the efficient 2D grayscale morphological
transformation with arbitrary “flat” SEs. This algorithm is based on decomposition
of SE into “chords”. However, even the use of this fast algorithm provides the SE
spectrum computation time about s per image in the best case.

The morphological spectra based on the connected filters may use the attribute
openings taking in account both width (thickness) and any other attributes of flat
zones. Some of these spectra (with simplest filtering of flat zones by area) even can
be implemented for real–time processing. Unfortunately, such spectra do not
contain the information about local thickness that characterizes the original PS.
Therefore, for real-time implementation the computational approach of the SE
morphological spectra calculation, which does not require one opening for each bin,
ought to be designed.

2.4.2 Thickness Map and Morphological Spectrum with Disk
Structuring Elements

The PS describes the distribution of local figure thickness. This fact points the
alternative way for calculation based on the notion of thickness map. Let a rect-
angular frame K completely contains figure X: X ⊆ K. A binary image consists of
figure X and its background XC(K) = K\X and described by Eq. 2.31.

fX x; yð Þ ¼ 1 if p ¼ x; yð Þ 2 X
0 if p ¼ x; yð Þ 2 XCðKÞ

�
ð2:31Þ

The thickness map tX,B(x, y) of continuous binary image fX with structuring
element B is a real-valued 2D function defined on the frame K. In this map, all
points of the figure have positive values equal to the maximal size of inscribed disk
centered in this point. The background values are negative with magnitude equal to
the maximal size of disk centered in this point, and they are inscribed to a figure
completion. A relation between thickness map and Serra MM filters is provided by
Eq. 2.32.

X � rB ¼ x; yð Þ:tX;B x; yð Þ� r
� �

X � rB ¼ x; yð Þ:tX;B x; yð Þ� � r
� � ð2:32Þ

Let us define the function

vX;Bðx; y; rÞ ¼ 1: tX;Bðx; yÞ� r
0 otherwise

�
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and introduce a following measure

lX;BðrÞ ¼ vX;Bðx; y; rÞ
�� ��

L1
¼
Z Z

vX;Bðx; y; rÞdxdy

lX;BðrÞ ¼
X � rBk kL1 : r� 0

X � ð�rÞBk kL1 : r\0

�

Therefore, the PS according to Eqs. 2.26–2.27 is a distribution density function
of thickness map determined by Eq. 2.33.

PSX;BðrÞ ¼ �olX;BðrÞ=or ð2:33Þ

In similar way, one can show that a discrete morphological PS (Eqs. 2.28–2.29)
is equal to histogram of discrete thickness map. Let us additionally note that the
positive part of the thickness map (Fig. 2.15) and the positive part of the mor-
phological PS remain unchanged, when a figure is shifted or rotated in frame.

Thus, if a thickness map is built, then one opening or closing operation for each
bin of the spectrum is not required: just to collect the histogram of a thickness map
is needed. However, some computationally efficient algorithm to calculate the
thickness map ought to be designed.

2.4.3 Calculation of Binary Morphological Spectra Based
on Continuous Skeletal Representation

The crucial idea of fast thickness map computation is derived from the fact that the
centers of all empty discs (inscribed in figure and background) belong to the fig-
ure’s skeleton. Thus, the information required for thickness map computation is
already stored in a skeletal representation—skeleton and radial function. In this
section, the continuous binary morphology given by Mestetskiy [38] and briefly
represented in previous sections will be described. This approach provides the

Fig. 2.15 Example of
thickness map: a a binary
figure X, b a positive part of
thickness map for a figure X
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real-time algorithm for computation of skeletal representation based on the use of
generalized Voronoi diagrams [51].

The thickness map forming algorithm is based on the voting of skeleton points
into the two-dimensional discrete accumulator array with the same size as binary
image to be processed [52–55]. Each continuous skeleton edge is rasterized using the
Brezenham algorithm [56], and then each discrete edge point votes for all discrete
accumulator cells (pixels) covered by empty disk centered in this point. The purpose
of voting is to determine the maximal size (radius) of covering empty disk for each
pixel of binary image. The histogram of accumulated maximal thickness values is
called the Discrete-Continuous Morphological Pattern Spectrum (DCMPS) [55] due
to discrete accumulation based on continuous skeleton. Figure 2.16 demonstrates the
binary image of a figure, the positive part of its thickness map, the positive part of
DCMPS, and the selected parts of figure with minimal width (local thickness) cor-
responding to peaks in a spectrum.

The experiments with software implementation of this algorithm have demon-
strated the computational time for binary pattern spectrum calculation less than
10 ms for 640 × 480 binary image on PC configuration CPU Core i5-2320,
3.0 GHz, RAM 2 GB. Therefore, this algorithm can be applied for real-time
implementations.

2.4.4 Calculation of Grayscale Morphological Spectra

In the grayscale morphology with image f(x, y) and structuring element k(u, v) the
grayscale spectrum PSf is defined by Eqs. 2.34–2.35 [35], where r is the size of SE
rk(x, y) and norm ||f|| is a volume of umbra U(f).

PSf r; kð Þ ¼ �o f � rkj jj j=or r� 0 ð2:34Þ

PSf �r; kð Þ ¼ ojjf � rkjj=or r[ 0 ð2:35Þ

The use of a level decomposition for the morphological operators allows fast
calculation of morphological spectrum for grayscale images and filters with “flat”
SEs. Let us consider the discrete N-level two-dimensional function
f(x, y) ∈ {0, 1, …, N − 1} reconstructable from N binary level sets as it is shown in
Eq. 2.36.

f x; yð Þ ¼
X

l¼0;...;N�1

fl x; yð Þf g ¼ max
l¼0;...;N�1

fl	 fl x; yð Þg ð2:36Þ

The “flat” SE has two levels of intensity k(u, v) ∈ {0, −∞} and corresponds to
binary SE b(u, v) = {1 if k(u, v) = 0, 0 if k(u, v) < 0}. As shown in [39], the filters of
Serra grayscale morphology with “flat” SE may be presented as a combination of
corresponding binary MM filters applying to image levels (Eqs. 2.37–2.38)
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f x; yð Þ � b u; vð Þ ¼
X

l¼0;...;N

ffl x; yð Þ � b u; vð Þg ¼ max
l¼0;...;N

fl	 fl x; yð Þ � b u; vð Þg

ð2:37Þ

f x; yð Þ � b u; vð Þ ¼
X

l¼0;...;N

ffl x; yð Þ � b u; vð Þg ¼ max
l¼0;...;N

fl	 fl x; yð Þ � b u; vð Þg

ð2:38Þ

Therefore, a grayscale spectrum can be calculated as a sum of level spectra by
Eqs. 2.39–2.40.

PSf r; kð Þ ¼
X

l¼0;...;N�1

PSfl r; kð Þ ð2:39Þ

PSf �r; kð Þ ¼
X

l¼0;...;N�1

PSfl �r; kð Þ ð2:40Þ

Fig. 2.16 Illustration of DCMPS: a the binary image of polygonal figure, b the positive part of
thickness map, c the positive part of DCMPS, d the selected parts of figure with minimal width
(local thickness) corresponding to essential peaks in a spectrum (results of opening with relevant
disk size)
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Thus, the calculation of PS with “flat” disk SE for N-level grayscale image will
be N times longer than the computation of the DCMPS for each its binary level
image. However, if an approximate spectrum calculation is admissible, the speed of
computations can be significantly increased through the use of lower number of
binary levels for approximation of the grayscale image. A number n of required
approximation levels is determined by a number of significant histogram modes.

Our level selection technique is based on the multimodal generalization of the
Otsu bimodal separability criterion. Let us consider the (n + 1)-dimensional vector
t = (t0, …, tn), where t0 = 0, tn = 255, t1, …, tn−1 are free variables corresponding to
the thresholds between the histogram modes. If a number of the histogram modes is
unknown, then the task of histogram segmentation is, generally speaking, incorrect
and requires the regularization [55]. The optimal segmentation corresponds to
solution of optimization problem defined by Eq. 2.41, where DISP(ti, ti+1) is a value
of the dispersion of the image histogram fragment on the interval (ti, ti+1), α is a
regularization parameter.

X
i¼0;...;n

DISPðti; tiþ1Þ þ an ! minðn; t1; . . .; tn�1Þ ð2:41Þ

This problem is solved by the Dynamic Programming (DP) [53]. After that, the
approximate morphological spectrum of grayscale image is formed via fast com-
puting and summing of n binary level spectra [53–57]. The negative part of the
spectrum (Eq. 2.40) can be calculated using the same algorithm applied to the
inverted image (background).

2.5 Morphological Image Analysis (Pyt’ev Morphology)

The basic ideas of Morphological Image Analysis (MIA) are proposed and
developed by Pyt’ev since 1960–1970 [58–64]. Further development and gener-
alization of this morphological technique was performed by Pyt’ev, Chulichkov,
Kalinin, Loginov, Smolovik, Falomkin, Zhivotnikov, Antonjuk, Zheltov, Vizilter,
Rubis, and other researchers of Russian morphological school [65–81].

Let us note that the MIA was proposed approximately at the same time indepen-
dently and had the proper evolution in parallel way relative to well-known MM
proposed by Serra and Matheron [1, 2]. Both terms “morphology” and “morpho-
logical analysis” historically belong to both approaches, and they will make some
confusion in this chapter. Therefore, for separating MIA from MM, let us refer the
MM as the Serra morphology and the MIA as the Pyt’ev morphology (with great
respect to all other authors of MM and MIA concepts and results). Unfortunately,
basic and some further papers onMIAwere published in Russian only, and due to this
the Pyt’evmorphology is not so known and popular in theworld, but its difference and
similarity to the MM are worthy to become a subject of the most fixed consideration.
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From practical point of view, the Pyt’ev morphology is basically a technique for
invariant and robust image comparison and model-based matching (a template
matching in the simplest case). In contrary, the Serra MM is basically a technique
for image transforming (a filtering). However, the difference is not only in basic
tasks of image analysis. Different classes of objects inspired these morphological
approaches in their early days. The Serra morphology was initially developed for
binary images of planar figures and then generalized for grayscale and color images.
The Pyt’ev morphology was initially developed for comparison of grayscale and
color images of 3D scenes. Different target objects produce different concepts of
image shape.

From the theoretical point of view, the MIA is another algebraic approach to
image shape description and analysis. The Serra morphology is based on non-linear
set-theoretic (complete lattice) models. The Pyt’ev morphology is based on vector
algebra and functional analysis. Therefore, the monotonous properties (extensive or
ant-extensive) of Serra morphological filters (projectors) are not satisfied for Pyt’ev
morphological filters (projectors). The Pyt’ev shapes are the rigorous mathematical
objects with clear geometrical sense—the hyperplanes in an image space. The Serra
shape models have no such interpretation. Due to this, the Pyt’ev morphological
correlation coefficient or geometrical correlation coefficients (proposed by Vizilter,
Rubis, and Zheltov in the framework of the MIA) have no analogies in the Serra
MM. On the other hand, in the Serra MM based on connected filters there are many
coincident terms to Pyt’ev notions of shape, shape complexity, and so on. It is
important that formally vector algebra and set-theory (Boolean algebra) are the
particular cases of the lattice theory. It is important that idempotent operators
(projectors) play the central role in both mentioned morphologies. Thus, one can
presume some deep unity of these morphological approaches. It was expressed in
the formalism of projective morphology in section below.

Now let us start the brief consideration of Pyt’ev morphological ideas. The main
purpose of all MIA techniques is the independence of image analysis results on the
conditions of image registration. The invariant image properties determine the
concept of the image shape. More generally, one can speak about the shape of any
data or signal registered by some sensor.

In morphological analysis, it is supposed that any registered signal contains both
“important information” about the source signal and the “secondary information”
forced by conditions of registration. For example, let us try to explore some 3D
scene by means of analysis of its 2D image. An image content depends both on the
objects in the scene and the conditions and technique of image acquisition (lighting,
weather, season, camera presets, etc.). For the task of 3D scene analysis the
information about scene illumination or image acquisition parameters will be
“secondary” information. The part of visible information presented in all images of
this scene and determined basically by the content of the scene is called a shape of
images in this scene. This information should not change, if conditions of scene
registration are modified. Therefore, one can speak about the shape of one image, if
this image contains the complete “important information” relevant to all images of
this fixed scene view.
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In order to define the rigorous mathematical notion of image shape, it is required
to determine the transformation of the image corresponding to the changes of image
acquisition conditions. The invariant of this transformation will be the shape of
image. Based on this shape formalization, one can propose the invariant morpho-
logical methods for solution of different practical problems of data comparison,
matching, recognition, classification, and estimation of sensor parameters for each
proper type of signals or data [65, 68, 69].

A model of image shape invariant for transforms is described in Sect. 2.5.1.
Scene recognition based on image shape is discussed in Sect. 2.5.2. Section 2.5.3
provides a detection of scene change based on image shape. A scene recognition
based on the shape of noisy image is situated in Sect. 2.5.4. A morphological shape
matching is given in Sect. 2.5.5.

2.5.1 Image Shape as an Invariant of Image Transforms

Let image f be a function of two variables (x, y). A domain for definition of this
function is called a field of view X, and the value f(x, y) is called the intensity or
color of the image at the point (x, y) ∈ X.

For defining the shape of the image, it is need to determine a model of image
changing in variations conditions of registration. Let us suppose, for example, that
changes in these conditions lead to intensity changes only and are described by
Eq. 2.42, where F(·) is the unknown function of pixel-wise intensity transform.

g x; yð Þ ¼ F f x; yð Þð Þ ð2:42Þ

Let F be the class of admissible transformations of the image f, and one can
believe that if F(·) ∈ F, then image g = F(f) will be the other realizable image of this
scene corresponding to some certain conditions of registration.

For example, let us suppose that scene objects are the polyhedra with optically
homogeneous flat sides. If they are illuminated by the uniform beam of light, then
the image of this scene will be the piecewise-constant function in Eq. 2.43.

f ðx; yÞ ¼
XN
i¼1

fivFi
ðx; yÞ ð2:43Þ

Here

vFi
ðx; yÞ ¼ 1 if ðx; yÞ 2 AFi

0 if ðx; yÞ 62 AFi

�

is the indicator function of AFi, i = 1, …, N, and the regions AFi, i = 1, …, N, with
constant intensity form the tessellation of the field of view X:
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AFi \ AFj ¼ [; i 6¼ j; i; j ¼ 1; . . .;N;
[N
i¼1

AFi ¼ X:

The differences in images of cube captured with different lighting conditions are
shown in Fig. 2.17. Figure 2.18 illustrates a mathematical model of cube image and
its shape represented as a tessellation of a field of view.

In this case, the class of transforms F is specified as a class of all (Borel)
functions {F(·): R1 → R1}. In result of transformation from Eq. 2.42, all sets
(regions) of image points with equal intensity on the image f will have the equal
intensity on the image g. Therefore, all f image regions of constant intensity (“flat
zones” in the Serra MM terms) will preserve their (geometric) shape. However, in
some certain special cases, some regions of the field of view X tessellation, which
have different intensity on the image f, will merge into one region with constant
intensity on the image g. Then the shape of the image g will be simpler than the
shape of the image f.

In the described case (polyhedra world with uniform lighting), the invariant of
transformations of class F is a tessellation {AFi}i=1, …, N itself. It can be called the
shape of the image f. Let us denote the set of all possible images of scene obtained
at various registration conditions as follows

Vf ¼ g ¼ Fðf Þ;F 2 Ff g:

This set can be equivalently considered as a shape of image f.
If Vf is a convex and closed set in the Euclidean space of all images, then there is

the one-to-one correspondence between the set Vf and the operator of projection
onto this set Pf . This operator can be easily calculated and also called the shape of
image f. Obviously, the set of images Vf is invariant with respect to this Pyt’ev
morphological projector and defined by Eq. 2.44.

Pf :Pf Vf ¼ Vf ð2:44Þ

Fig. 2.17 Images of polyhedral world (cube) captured with different lighting conditions
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Corresponding to Eq. 2.43, an image shape (in this mathematical world) is the
linear cover of indicators of regions with equal intensity. From a geometrical point
of view, this set of images Vf is a linear subspace (hyperplane) of the Euclidean
space of all images. Therefore, a projection of any image g onto the Vf is defined as
an orthogonal projection of an image g on this linear subspace.

Constructively, the image projection of g on the set Vf is determined as a solution
of the problem of finding best (closest) image in the set Vf to the given image g

g� Pf g
�� ��2¼ inf g� qk k2 qj 2 Vf

n o
:

For piecewise-constant image f, this problem can be solved in explicit form

Pf g ¼
XN
i¼1

ðg; vFi
Þ

vFi

�� ��2 vFi
:

Let us consider another example. If F is the class of monotonously increasing
functions, than the shape of the image f is a convex cone in Euclidean space of all
images. The ordering of values of the intensity of piecewise-constant images is
preserved in such monotonous intensity transform model:

f ðx; yÞ ¼
XN
i¼1

fivFi
ðx; yÞ; f1\f2\ � � �\fN )

Fðf Þ ¼
XN
i¼1

FðfiÞvFi
;Fðf1Þ\Fðf2Þ\ � � �\FðfNÞ:

Local maxima and minima of image intensity are preserved in this shape model.
Let us briefly consider some image analysis problems, which can be solved using
the Pyt’ev morphology.

Fig. 2.18 Mathematical model of cube image: a a visual model, b a shape of cube as a tessellation
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2.5.2 Scene Recognition Based on Image Shape

Let image f correspond to scene S registered from some fixed viewpoint by some
fixed camera geometry. The inclusion g ∈ Vf implies that an image g can be an
image of the same scene S registered from the same viewpoint with the same
camera geometry. The inclusion of g ∈ Vf is equivalent to the equality g = Pf g. This
simple condition can be easily and quickly verified.

For any ε ≥ 0, the image v is “ε-similar” to shape of image f, if condition in
Eq. 2.45 is executed.

v� Pf ðvÞ
�� ��
 e vk k ð2:45Þ

Therefore, the Morphological Correlation Coefficient (MCC) proposed by
Pyt’ev has a view of Eq. 2.46.

Km ¼ Pf v
�� ��

vk k ð2:46Þ

TheMCC is normalized (0≤Km≤ 1) andKm = 1 corresponds to shape equivalence
by Eq. 2.47, while Km = 0 corresponds to shape independence by Eq. 2.48, where
Пv andПf are the orthogonal projections of v and f, respectively, onto the set of “flat”
images with constant intensity in all points in the field of view X.

Km v; fð Þ ¼ 1 , v 2 Vf , v ¼ Pf v ð2:47Þ

Pv� Pf v
�� �� ¼ 0; Pf � Pvfk k ¼ 0 ð2:48Þ

The coefficient of morphological correlation does not depend on the brightness
transform F(f(x,y)): Km(F(f), f) = 1. Moreover, if shape of the image v is simpler
than shape of the image f, then Km(v, f) = 1.

Let us compare this morphological correlation with usual Normalized Correla-
tion (NC) between two images presented in Eq. 2.49.

Ku ¼ f ; vð Þ
fk k vk k ð2:49Þ

This NC coefficient is a similarity measure between images taking its values in
interval [−1,1] and invariant relative to class of linear transforms of image intensity:
if v(x, y) = a v(x, y) + b, then |Ku(v, f)| = 1.

A linear transform L is a particular case of arbitrary intensity transform F. Hence,
the MCC has greater “invariance power” than the NC: if Ku = 1, then Km = 1, but if
Km = 1, then Ku should not be equal to 1. Moreover, as it was demonstrated in [74],
the MCC is always not less than absolute value of the NC: Km ≥ |Ku|. Figure 2.19
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illustrates this relation geometrically. The NC is a cosine of angle between v and f in
the vector image space. The MCC is a cosine of angle between v and Vf, i.e. between
v and Pf v. The images are pictured as vectors, and a shape is pictured as a plane (Fig.
2.19). The second angle is always not smaller than the first one, so the MCC is
always not less than the NC, and they are equal, if and only if f/||f|| = Pf v/||Pf v||.

Another difference between the MCC and the NC is that the MCC is not
symmetrical relative to v and f: in general case Km(v, f) ≠ Km(f, v). In particular, if a
shape of the image v is simpler than a shape of the image f, than Km(v, f) = 1, but
Km(f, v) < 1. The reason of this asymmetry is that the MCC estimates not the
similarity between images v and f or between shapes Vv and Vf, but the similarity
between image v and shape Vf. So, {Km(v, f) = Km(v, Vf)} ≠ {Km(f, v) = Km(f, Vv)}.

2.5.3 Scene Change Detection Based on Image Shape

Let g and f be the images of the same scene S with some small changes in this scene
(some small elements in the scene are added or deleted). If Pf is a projector onto the
set of images Vf, then by definition, Pf g is the best approximation of the image g by
images from Vf, and hence, g − Pf g is a “morphological difference” of the image
g from the shape of image f. This difference is invariant to the conditions of image
registration. Thus, the image g − Pf g points to scene changes corresponding to the
changes in image g relative to the shape of image f.

The MIA technique is close to the concept of “background normalization” in the
MM: the detail extraction uses the difference between initial image and image
filtered by morphological filter (projector). Figure 2.20 illustrates this technique for
scene change detection in different lighting conditions.

Fig. 2.19 Geometrical
relation between normalized
correlation and morphological
correlation, α = arccos Ku,
β = arccos Km
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2.5.4 Scene Recognition Based on the Shape of Noisy Image

Let f be the image of scene Sf . Let us consider the registration of corrupted image ξ
of some unknown scene: ξ = g + ν. Here v is the “noise image”—a model of image
corruption by additive noise, and uncorrupted hidden image g is unobservable.

It is required to determine, whether it is possible to consider this image as an
image of the scene Sf. For solving this problem in morphological way, let us define
the morphological noise-to-signal ratio for image ξ and shape Vf by Eq. 2.50, where
Пξ is the orthogonal projection of ξ onto the set of “flat” images with constant
intensity in all points of the field of view X.

tðnÞ ¼ n� Pf n
�� ��2
Pn� Pf n
�� ��2 ð2:50Þ

Consequently, Пξ is a constant image filled by the average value of intensity of
the image ξ. The shorter the distance from ξ to Vf, and more difference of Pf from the
constant, the smaller the ratio t(ξ). The numerator of this ratio contains the squared
norm of difference from image ξ to closest image from the set Vf. If ξ ∉ Vf, then
this difference can be explained only by the presence of noise. The denominator

Fig. 2.20 Morphological change detection: a the image f determining the shape of scene, b the
image g with small change in scene content (small bead at the legs of the dog) and strong changes
in lighting conditions, c a simple difference of f and g (all pixels have changes, so scene changes
and intensity changes can not be separated), d a morphological difference g − Pf g demonstrates
the position of new object (small bead) as an only one bright area
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is the squared norm of the component of image ξ, which is comparable in shape with
an image f, and differs from the constant. For decision making about the scene
recognition based on images distorted by noise, one needs to specify the threshold
value for noise-to-signal ratio.

This brief overview presents the MIA as it was basically proposed. Next para-
graphs will be devoted to description of modern generalizations of the MIA, but one
needs to note that the MIA approach itself is still under development and able to
generate some essentially new ideas. For example, in [82] the new MIA concepts of
morphological oblique projectors and relative shapes are proposed by Pyt’ev for the
morphological analysis of classes of images and for comparative analysis of their
shapes as invariants (under image acquisition conditions). These concepts are used
to characterize morphological dependences. More specifically, the relative shapes
are characterized by the morphological independence index, and the absolute
shapes, by the morphological connection index. New methods based on the con-
structs of relative shapes of image classes and on the oblique projection technique
are described in [82] applying to the comparative analysis of absolute and relative
shapes of image classes, the morphological filtration of images, the identification of
images, the determination of unknown objects in scene images, and other problems.

2.5.5 Morphological Shape Matching

This subsection addresses the problem of image matching “just by shape” with no
dependence on the concrete pixel values. For example, one can compare images of
one scene captured at different seasons, time of day, weather and lighting condi-
tions, spectral ranges, etc.

The most popular technique for such image shape comparison utilizes the
Mutual Information (MI) measure based on probabilistic reasoning and information
theory [83]. A mutual information I(A, B) estimates the dependence of two random
variables A and B by measuring the distance between the joint distribution pAB(a, b)
and the distribution of complete independence pA(a)pB(b) provided by
Eqs. 2.51–2.53, where H(A) is an entropy of A, H(B) is an entropy of B, H(A, B) is
their joint entropy.

I A;Bð Þ ¼ H Að Þ þ H Bð Þ�H A;Bð Þ ð2:51Þ

H Að Þ ¼ �
X
a

pA að ÞlogpA að Þ H Bð Þ ¼ �
X
b

pB bð ÞlogpB bð Þ ð2:52Þ

H A;Bð Þ ¼ �
X
a

X
b

pAB a; bð Þlog pAB a; bð Þ ð2:53Þ

For two image intensity values a and b of a pair of corresponding pixels in two
images, required empirical estimations for the joint and marginal distributions can
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be obtained by normalization of the joint (2D) and marginal (1D) histograms of
compared image fragments. Maximal I(A, B) value corresponds to the best geo-
metrical matching of image fragments.

Such MI approach provides the robust tool for matching of images with different
intensities based on their joint 2D histograms. But these histograms cannot explain
the geometrical idea of image “shape” in some evident form. Such mathematical
“shape” formalism is given in evident form in the morphological approach to image
comparison proposed by Pyt’ev [62].

The Pyt’ev morphological comparison of images f(x, y) and g(x, y) is performed
using the MCC KM(g, Vf) and KM(f, Vg). This comparison is invariant relative to
intensity transforms. However, the Pyt’ev MCC estimates the closeness of image to
the shape of other image, but not the similarity of two shapes. Morphological tools
for shape matching were proposed by Vizilter, Rubis, and Zheltov [84, 85]. The
original Pyt’ev morphological approach was generalized for obtaining the pure
“geometry-to-geometry” shape matching technique. In [85], the transform distance
for geometrical difference evaluation of shapes named Geometrical Difference
Index (GDI) was proposed and normalized similarity measure of image shapes
based on GDI was defined. These new morphological tools were experimentally
compared with the Pyt’ev MCC and the MI applying to multispectral image
matching problem.

In [81], the geometrical shape comparison approach was developed based on
Pyt’ev’s morphological image analysis. Let f(x, y) form Vf is a piecewise-constant
2D function described above. Image g(x, y) from Vg is an analogous 2D function
with m as a number of tessellation regions {AG1, …, AGm}, g = (g1, …,gm) is a
vector of intensity values, χGj(x, y) ∈ {0, 1} is a support function of jth region.

For briefness in this subsection, let us use the following notation: F = Vf and
G = Vg for shapes, Fi = AFi and Gj = AGj for tessellation regions, fG = Pg f and
gF = Pf g for projections. Let us also introduce following additional set of
“S-variables”: S is an area of the whole frame Ω, Si = ||χFi(x, y)||

2 is an area of
tessellation region Fi, Sj = ||χGj(x, y)||2 is an area of tessellation region Gj,
Sij = (χFi(x, y), χGj(x, y)) is an area of intersection Fi ∩ Gj. With account of these
S-variables, one can receive the equations mentioned below.

jj f jj2 ¼
X

i¼1;...;n

f 2i Si jj fGjj2 ¼
X

j¼1;...;m

f 2GjSj

fGj ¼
X

i¼1;...;n

fiSij

 !
=Sj j ¼ 1; . . .;m

Let us add the following assumptions about the distributions of probability
densities for intensity values f1, …, fn:

1. If p(f1, ···, fn) = p(f1)…p(fn), then values f1, …, fn are independent in general.
2. If p(f1) = ⋯ = p(fn), then values f1,…,fn are equally distributed.
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3. If ∀i = 1, .., n: p(fi) = p(−fi), then values f1,…,fn are distributed symmetrically to
0.

Then the expectation hfii ¼ 0; i ¼ 1; . . .; n and the covariance has the form of
Eq. 2.54, where σ is a dispersion of probability distribution p(fi).

fifkh i ¼ r2 if i ¼ k
0 otherwise

�
ð2:54Þ

Thus, the mean square of norm for image f of shape F has a form of Eq. 2.55.

fk k2
D E

¼
Xn
i¼1

f 2i
� 	

Si ¼
Xn
i¼1

r2Si ¼ r2
Xn
i¼1

Si ¼ r2S ð2:55Þ

The mean square of projection norm for image f ∈ F and fixed shape G has a
form of Eq. 2.56.

hjjfGjj2i ¼
Xm
j¼1

f 2Gj
D E

Sj ¼
Xm
j¼1

Xn
i¼1

fiSij

 !2

S2j

* +

Sj ¼
Xm
j¼1

Xn
i¼1

r2S2ij

 !

Sj ¼ r2

Xm
j¼1

Xn
i¼1

S2ij


Sj

ð2:56Þ

Let us define the Mean Square Effective Morphological Correlation Coefficient
(MSEMCC) for shapes F = Vf and G = Vg provided by Eq. 2.57.

K2
MðF;GÞ ¼

hjjfGjj2i
hjjf jj2i ð2:57Þ

After evident substitutions, the MSEMCC takes the compact form by Eq. 2.58,
where KΩ(Fi, Gj) = Sij/S is a normalized influence coefficient for pair of regions Fi

and Gj, KM
2 (Gj, Fi) = Sij/Sj is a square of normalized morphological correlation for

this pair of regions.

K2
MðF;GÞ ¼

Xm
j¼1

Xn
i¼1

Sij
S
Sij
Sj

¼
Xm
j¼1

Xn
i¼1

KXðFi;GjÞK2
MðGj;FiÞ ð2:58Þ

In [85], the special transform distance for geometrical difference evaluation of
shapes named GDI was proposed and some normalized similarity measures of
image shapes based on the GDI were presented. The GDI metrics for two image
shapes F and G are defined by Eqs. 2.59–2.61.
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dHðF;GÞ ¼
Xm
j¼1

Xn
i¼1

pijdHðGj;FiÞ ð2:59Þ

dHðGj;FiÞ ¼ pi þ pj � 2pij ð2:60Þ

pij ¼ Sij=S; pi ¼ Si=S; pj ¼ Sj=S ð2:61Þ

Most useful the GDI-based similarity measure proposed in [85] is a Centered
Metrical Similarity Coefficient (CMSC), which is based on comparison with
assumption about F and G shapes independence. In this case dHInd(·) has a view
below.

dHIndðF;GÞ ¼
Xm
j¼1

Xn
i¼1

pipj pi þ pj � 2pipj
� �

Therefore, the CMSC is defined by Eq. 2.62.

KCHSðF;GÞ ¼ dHIndðF;GÞ � dHðF;GÞj j
dHIndðF;GÞ ð2:62Þ

The CMSC has the following properties:

1. KCHS(F, G) ∈ [0, 1].
2. KCHS(F, G) = 1 ⇔ F = G.
3. KCHS(F, G) = KCHS(G, F).
4. ∀i,j: pij = pi pj ⇒ KCHS(F, G) = 0.

For comparison of geometrical correlation techniques and corresponding simi-
larity measures, the MI criterion and the Pyt’ev’s MCC were calculated over a set of
real images including remote sensing and multispectral images [TeleVision (TV)
and InfraRed (IR)] [86]. In all experiments, both the Pyt’ev MCC and geometrical
correlation measures (Eqs. 2.58, 2.62) provide matching characteristics (signal-to-
noise ratio and elevation of main peak in a correlation field) close to mutual
information characteristics (a little bit worse or better). In the case of small TV
fragments and noisy IR images, the characteristics of the CMSC (Eq. 2.62) were
better than Pyt’ev’s morphological coefficient and mutual information characteris-
tics. Figures 2.21 and 2.22 demonstrate the example of such TV-IR matching test
and corresponding correlation fields. From the computational viewpoint, the geo-
metrical correlation outperforms the mutual information in calculation speed about
20 %.

Thus, the morphological techniques for change detection and scene recognition
are invariant relative to conditions of image registration.
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2.6 Projective Morphologies, Morphological Segmentation
and Complexity Analysis

The projective morphology approach was developed based on the Serra MM [1],
the Pavel shape theory [87], and the Pyt’ev MIA [62]. It presumes structural image
modeling with regularization constrains. This section describes the image seg-
mentation problem from the morphological point of view and introduces the cri-
terion-based morphological filters (projectors) and morphological spectra based on
regularization and analysis of shape complexity [79, 80, 84, 88]. The corresponding
morphological tools have been successfully applied for different practical computer
vision tasks [89–95].

Section 2.6.1 provides the projective morphologies based on morphological
decompositions. The image segmentation in the framework of projective mor-
phology is represented in Sect. 2.6.2. The shape regularization and morphological
filters are discussed in Sect. 2.6.3. The morphological complexity and filters and
spectra by complexity are introduced in Sect. 2.6.4.

2.6.1 Projective Morphologies Based on Morphological
Decompositions

The projective space of patterns (images) is as an algebraic system ‹Ψ, Ω, · , V, μ,
Pr, E›, where Ψ is a set of scalars including 0 and 1, Ω is the set of patterns with

Fig. 2.21 Example of TV-IR matching: a a TV etalon, b a segmented TV fragment, c test IR
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Fig. 2.22 Correlation fields for TV-IR matching: a the mutual information MI(F,G), b the square
of centered Pyt’ev MCC K2

M (f − f0,G), c the square of MSEMCC K2
M (F,G), d the square of CMSC

KCHS(F,G)
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“zero pattern” ;, ‘·’ is the multiplicative group operation of multiplication of scalars
Ψ × Ψ→ Ψ and a scalar by pattern multiplication Ψ × Ω→ Ω, ‘V’ ∈ {‘+’, ‘×’, ‘∪’,
‘∩’, ‘∨’, ‘∧’, ‘min’, ‘max’, …} is the additive Abel semi-group of scalars fusion
Ψ × Ψ → Ψ and patterns fusion Ω × Ω → Ω, μ is the norm of the pattern Ω → R
(μ(A) = ||A||, ||;|| = 0), set of basic patterns (primitives) E = {E1, …, En} is the basis
of the morphological pattern decomposition. Let E denote the corresponding
morphological subspace E ⊆ Ω generated by the algebraic closure of basis E rela-
tive to‘·,V’-combination.

The operator of linear projection of pattern onto the pattern has a form of
Eq. 2.63, where r(A, B) ∈ Ψ is the coefficient of linear dependence of pattern
A relative to pattern B.

Pr A;Bð Þ ¼ r A;Bð Þ � B:X ! B � X ð2:63Þ

The projection of pattern onto subspace

Pr A;Eð Þ :X ! E � X;Pr A;Eð Þ ¼ Pr Pr A;Eð Þ;Eð Þ

is the idempotent operator satisfying the decomposition condition Eq. 2.64, where a
(A, E) = hr A;Ekð Þik¼1;...;n is the vector of morphological decomposition of pattern
A in basis E.

Pr A;Eð Þ ¼ Vk¼1;...;nPr A;Ekð Þ ¼ Vk¼1;...;nr A;Ekð Þ � Ek ð2:64Þ

The morphological decomposition is a mapping defined by Eq. 2.65.

decEðAÞ ¼ hr A;E1ð Þ; . . .; r A;Enð Þi:X ! Wn ð2:65Þ

2.6.2 Image Segmentation in the Framework
of Projective Morphology

Let the morphological descriptor of pattern A ∈ Ω be a data structure of the form of
Eq. 2.66, where E ¼ hE1; . . .;Eni 2 Xn is a basis of decomposition, n = dim(E) is
the dimension of E, d(A, Ei) is the descriptor of decomposition element.

d A;Eð Þ ¼ hn; d A;E1ð Þ; . . .; d A;Enð Þi ð2:66Þ

The descriptor size v(d) is a memory size required for storing of descriptor
d (Eq. 2.66). The basis X of decomposition is complete on Ω if ∀A ∈ Ω: Pr
(A, X) = A. Then for any A ∈ Ω its descriptor d(A, X) is a complete descriptor. Any
subbasis Y ¼ hY1; . . .; Ymi: Y ⊆ X, dim(Y) ≤ dim(X) determines a subdescriptor d
(A, Y). The set Θ(X) = {d(A, Y): A ∈ Ω, Y ⊆ X} is a set of all subdescriptors based
on X.
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In the framework of shape theory [87], the morphological segmentation operator
can be stated as a mapping of pattern from Ω to subdescriptor from Θ(X) provided
by Eq. 2.67.

es:X ! H Xð Þ ð2:67Þ

The operator of morphological reconstruction is defined in a following view

ds:H Xð Þ ! X:

Therefore, their combinations will be the morphological filter, and algebraic
projector is computed by Eq. 2.68.

PrðA;H Xð ÞÞ ¼ ws A ¼ dsesA ws:X ! X w2
s ¼ ws ð2:68Þ

Let us define a segmentation criterion or shape cost function with regularization
parameter α in the form of Eq. 2.69, containing a penalty both for the descriptor size
ν (complexity criterion) and for deviation of projected pattern from the initial
pattern J (reconstruction criterion).

U A;Yð Þ ¼ J A;Pr A;Yð Þð Þ þ a	 m d A;Yð Þð Þ ! minðfY:Y � XÞ ð2:69Þ

The optimal morphological segmentation finds an optimal subbasis Y (Eq. 2.70).

eU A;Xð Þ ¼ argminYU A;Yð Þ ð2:70Þ

Then the pattern A as its projection on this subbasis is reconstructed by Eq. 2.71.

wU A;Xð Þ ¼ PrðA; eU A;Xð ÞÞ ð2:71Þ

In particular, the segmentation without losses provides the exact reconstruction
by Eq. 2.72.

em A;Xð Þ ¼ argminYfm d A;Yð Þð Þ:Y � X Pr A;Yð Þ ¼ Agwm A;Xð Þ ¼ A ð2:72Þ

The segmentation without losses presumes the construction of optimal basis via
elimination of zero-coefficient primitives and grouping of equal-coefficient primi-
tives. Each morphological system has the special constraints on grouping.

Example 1 Let initial complete decomposition X be a pixel tessellation (Eq. 2.73),
where φ(i, j, x, y) is an indicator function of pixel (x, y), aij = f(i, j).

f x; yð Þ ¼ Rijaiju i; j; x; yð Þ ð2:73Þ

The segmentation scheme without losses is based on grouping of neighbor pixels
with equal values. This scheme automatically generates the Pyt’ev morphological
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shape [62] as an orthogonal projective decomposition of the form of Eq. 2.74,
where χi ∈ {0, 1} is an indicator function of ith connected region with intensity ai.

f x; yð Þ ¼
X

i¼1;...;n

ai � vi x; yð Þ ð2:74Þ

Example 2 A granulometry based on the binary Serra MM with disk SE provides a
monotonous projective decomposition with operation ‘V’ = ‘∪’ and complete basis
of binary structuring elements D(x, y, R). In this case, the segmentation scheme
without losses is based on following rule for grouping of structuring elements: the
greater disks absorb the smaller ones that completely belong to them. Thus, the
segmentation provides a minimal set of inscribed disks recovering the pattern A. In
other words, this segmentation scheme automatically generates a morphological
shape descriptor based on a skelitonization technique.

2.6.3 Shape Regularization and Morphological Filters
by Regularization

If optimal segmentation εФ(A, X) may return the subbasis Y such that Pr(A, Y) ≠ A,
then such scheme is called the segmentation with losses or shape regularization. If
the operator of shape regularization ψФ(A, X) is idempotent (projector), then it is a
morphological filter by regularization. For some certain forms of regularization
criterion the projectivity of segmentation operator can be proved. The first type of
projective segmentation is a minimal distance regularization provided by Eq. 2.75,
where a distance ρ(A, B) = ||A – B|| satisfies the metrics properties by Eq. 2.76.

U A;Yð Þ ¼ A�Pr A;Yð Þj jj j þ a	 m d A;Yð Þð Þ ! minðY:Y � XÞ ð2:75Þ

8A; B; C 2 X:q A;Bð Þ� 0; q A;Að Þ ¼ 0; q A;Bð Þ þ qðB;CÞ
 q A;Cð Þ ð2:76Þ

Additionally assume that for any basis E Eq. 2.77 is executed.

8A 2 X:B ¼ Pr A;Eð Þ , B 2 E 8C 2 E: A�Bj jj j 
 jjA�Cjj ð2:77Þ

As it was proved in [96], the operators ψФ(A, X) satisfying Eqs. 2.75 and 2.77
are idempotent and called the minimal distance projectors (in particular, the Pyt’ev
projector from Example 1). Thus, one can speak about a class of morphological
systems hX; a; m; qi based on a distance ρ, a basis X, a weight parameter α, and a
descriptor size ν(d(Y)).

Example 3 The minimal L1-distance segmentation of 2D functions using Dynamic
Programming technique (DP-segmentation) requires the description of 2D image
structure by some non-circular graph (tree). Such projective segmentation scheme
based on level set trees is described in [97] (see Fig. 2.23).
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The second type of projective segmentation is a monotonous regularization
provided by Eq. 2.78 or Eq. 2.79, where A ≤ B ⇔ ∀x, y: A(x, y) ≤ B(x, y).

8A;X:wU A;Xð Þ ¼ PrðA; eU A;Xð ÞÞ
A ð2:78Þ

8A;X:wU A;Xð Þ ¼ PrðA; eU A;Xð ÞÞ�A ð2:79Þ

As it was proved in [96], for any convex criterion J operators ψФ(A, X) satisfy-
ing Eqs. 2.78–2.79 are idempotent and called the regularization opening and the
regularization closing, respectively. Therefore, one can speak about morphological
systems <X, α, ν, J> based on an initial basis X, a weight parameter α, a descriptor
size ν(d(Y)), and a reconstruction cost J(Pr(A, Y)).

Example 4 The monotonous segmentation of 1D и 2D functions using the DP
technique is similar to one in Example 3 with account of Eq. 2.78 for DP-opening
and Eq. 2.79 for DP-closing. Note, that filters in Examples 3 and 4 are the con-
nected filters of the Serra MM.

The DP is not the only effective programming techniques for solution of mor-
phological segmentation tasks. Very efficient solutions can be obtained using the
linear programming, the graph cut technique [98–103] and the Hough-like trans-
forms (see Example 5) (Fig. 2.24)

Example 5 A morphological segmentation based on the Hough transform [88] is
proposed in [104]. It includes the following steps:

Step 1: The application of the Hough Transform (HT).
Step 2: The binarization of the Hough accumulator with fixed threshold value t.
Step 3: The deletion all dots of source dot pattern, which are not on detected as

straight lines.

Such procedure defines the Hough-projector (the Hough-opening MM filter).
The optimal segmentation problem is reduced to search of optimal segmentation
parameter topt = t(α). This approach can be easily expanded to any generalization or
modification of the HT. For example, the Recurrent Hough Transform (RHT) in a

Fig. 2.23 The projective DP-segmentation of grayscale image by level set tree with L1-distance
criterion and regularization parameter α producing different number of support regions n: a α = 0,
n = 1,395, b α = 1,000, n = 102, c α = 10,000, n = 23, d α = 1,000,000, n = 2

2 Morphological Image Analysis for Computer Vision Applications 51



sliding window produces the morphological RHT-opening [104]. The examples of
the Hough-opening and the RHT-opening are shown in Fig. 2.25.

2.6.4 Morphological Complexity, Filters, and Spectra
by Complexity

The morphological regularization can be generalized in terms of the morphological
complexity proposed by Pyt’ev. Let us consider two projectors φ1 and φ2 and
corresponding to Pyt’ev shapes (sets of stable elements of projectors). If a shape M1

contains shape M2 (i.e. filter φ1 preserves all patterns filtered by φ2), then the shape
M1 has less (not greater) morphological complexity than shape M2

M1 ¼ fu1A:A 2 Xg; M2 ¼ fu2A:A 2 Xg: M2 � M1 ) u1u2 ¼ u2:

Usually one can speak and think about the structural complexity of patterns: the
greater numbers of elements is used in a model of shape, the more complex model
is formed. But such complexity definition requires some structural description (for
example, in terms of morphological decompositions). In contrast, morphological
complexity definition does not require any structural description. It operates just

Fig. 2.24 Projective monotonous DP-opening of grayscale image by level set tree with
regularization parameter α producing different number of support regions n: a α = 0, n = 1,584,
b α = 1,000, n = 120, c α = 10,000, n = 24, d α = 100,000, n = 8

Fig. 2.25 Examples of Hough and RHT-opening: a the initial binary image, b the Hough
accumulator, c the Hough-opening (global linear structures are detected), d the RHT accumulator,
e the RHT-opening (local linear structures are extracted)

52 Y.V. Vizilter et al.



with projectors and corresponding stable sets but can be easily interpreted in any
certain morphological system. For example, if one frame tessellation is a partition
of other frame tessellation, it will be relatively more complex both in structural (a
number of elements corresponds to a region) and in morphological sense (based on
comparison of Pyt’ev projectors). In the case of the Serra MM with disk SE
opening, the smaller size of disk corresponds to more complex shape than opening
with greater size of disk in both senses: larger number of small disks required for
reconstruction and opening with smaller disk preserves results of opening with
greater disk.

Thus, one can define the morphological complexity regularization criterion in
the most general form (free of structural morphological decomposition terms)
provided by Eq. 2.80, where A, L ⊆ Ω are original and reconstructed patterns
correspondingly, J(A, L) is a precision of reconstruction, Q(L) is a complexity of
reconstruction, α ≥ 0 is a parameter of morphological complexity of the operator
ψα, regulating a compromise between J and Q.

FaðA; LÞ ¼ JðA; LÞ þ aQðLÞ ð2:80Þ

The corresponding morphological filter by complexity is defined by Eq. 2.81.

waA ¼ argminL2XFa A; Lð Þ ð2:81Þ

In general, J(A, L) can be any function of L that is monotonously growing with
complexity Q(L). The corresponding morphological spectrum by complexity is
defined as a derivative of J by complexity parameter α in Eq. 2.82.

PSðA; aÞ ¼ oJðA;waAÞ=oa ð2:82Þ

Such definitions are more general than definitions of morphological filters and
spectra based on granulometry sieving or any other structural models considered in
the MM. Thus, the notions of morphological filters by complexity and morpho-
logical spectra by complexity proposed in [105] provide the most general mor-
phological tool for shape analysis based on shape complexity.

2.7 Conclusion

Some original and modern morphological concepts and tools were presented in this
chapter as well as required amount of morphological basics. The morphological
techniques, which are applicable for real-time technical vision systems, were
selected and presented. The continuous skeleton is described by the strict mathe-
matical model. A computation time of continuous skeletonization algorithm out-
performs the best samples of discrete skeletonization algorithms by a factor of ten
or even hundred. If a figure is polygonal, then continuous skeletonization represents
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it as a union of finite number of ANalytical struCTure ELements (anxels). Such
anxel representation allows to define different continuous binary morphologies
based on selection and/or transformation of figure or background anxels. The
effective approach to the calculation of morphological pattern spectra of binary and
grayscale images with the disk structuring elements is described. It is based on the
continuous skeletal representation, the thickness map concept and the level
decomposition of morphological spectra.

Morphological image analysis (Pyt’ev morphology) is described. The Pyt’ev
morphology is developed for matching and comparison of grayscale and color
images of 3D scenes. It is based on vector algebra and functional analysis. The
Pyt’ev shapes are the hyperplanes in an image space. Morphological techniques for
change detection and scene recognition based on image-to-shape and shape-to-
shape similarity estimation are described. These techniques are invariant relative to
conditions of image registration.

The projective morphology is described as a generalized framework based on the
Serra morphology, the Pavel shape theory, and the Pyt’ev morphological analysis.
The projective morphology combines ideas of these morphological approaches and
allows to construct some new morphological systems and operators based on dif-
ferent image decompositions, transforms, and criterions (energy functions). The
morphological shape complexity as a criterion for shape regularization is the basis
of tools for shape complexity analysis.
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Chapter 3
Methods for Detecting of Structural
Changes in Computer Vision Systems

Yury S. Radchenko and Aleksey V. Bulygin

Abstract The automation of experimental investigations based on video recording
and different artificial vision applications often require that changes in a sequence of
frames be detected without the observer’s assistance. Variations in brightness,
color, and size of an object are easily detectable using energy criteria. Nevertheless,
some problems demand the use of algorithms capable of responding to small scale
and texture changes of images. These problems can be solved by applying the
criteria of Mean Structural Similarity Index Measure (MSSIM) and the developed
Mean Nonparametric Structural Similarity Index Measure (MNSSIM), as well as
the spectral algorithm for detecting structural changes in a frame, which have been
used to good effect in video codec analysis. The profitable features of these criteria
are their computational simplicity and their conformance to the human visual
system. The criteria have not only a sensitivity for difference of comparing frames,
but also have high stability of Gaussian and non-Guassian (impulse) noises. This
chapter describes the MSSIM, the own developed MNSSIM algorithms, and the
spectral criterion, which provides the experimental confirmation of operating
characteristics and features. The use of these criteria in automatic detection of
changes in video captured scientific research scenes, the detection of motion or
variable fragments in video frames in the intelligent video systems, and the
application in video coding systems are discussed.
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3.1 Introduction

The automation of scientific researches based on video recording, smart vision, and
video coding applications require that changes in a sequence of frames be detected
without observer’s assistance. Variations in object brightness, color, and size are
easily detectable by Mean-Square Error (MSE) and Peak Signal to Noise Ratio
(PSNR) energy criteria [1]. However, a number of tasks require algorithms that
react on structural (texture) variations of images. Generally, an image region with
variable structure is formless.

Another problem of vision systems is a variation of observation conditions and
also interference. The problem solution is based on the use of high robust and
interference-immunity decision making algorithms. The detection of variations in
the image segment structure is based on spectral and correlation analysis of spatial-
temporal domain. At present, the quasi-optimum heuristic algorithms applying
variations of correlation features exist. However, they are non-invariant to spectrum
in various bases in relation to a segment movement and change of texture features.

The structural differences of images can be determined by various techniques.
Figure 3.1 shows the criteria and the metrics being a basis to detect these differences.
The authors analyzed difference estimation methods and algorithms for images
presented by the numbered blocks.

The MSSIM criterion [2–4] and its modification MNSSIM [5] are the tri-criterion
functionals that respond to the changes of brightness, contrast, and correlation
features of image. Therefore, the MSSIM, the MNSSIM, and other modifications are
the energy criteria for detecting image variations. They are sensitive to texture
variations as well. The growing popularity of these criteria is proved by their quite
appropriate compliance with the human vision system.

The image as a whole or its separate blocks can be expanded in a generalized
Fourier series by using the system of orthogonal functions ukmðx; yÞ. The following
methods can be emphasized among a multitude of orthogonal basis: the Discrete
Cosine Transform (DCT) [1] and its integer variant called pseudo-cosine transform
[6], Walsh-Hadamard transform [1], wavelet transform [7, 8]. In the researches
[9–12], the class of discrete polynomial transforms and easily version discrete
Chebyshev transform or the Generalized DCT (GDCT) were proposed. The GDCT
has a number of special properties that allow the efficient image processing.

The current research has proved that the spectral algorithms can be a base to
implement the image structural variation detectors, which are robust to the change
of observation conditions and interference. Let us notice that the MNSSIM algo-
rithms and spectral algorithms are quite simple in computation.

The next Sect. 3.2 covers examples of using the MSSIM and the MNSSIM.
Section 3.3 provides the description of spectral criteria of structural image simi-
larity. Spectral field variation detection is discussed in Sect. 3.4. Experimental
confirmation of structural similarity criteria is situated in Sect. 3.5. Conclusion is
drawn in Sect. 3.6.
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3.2 Pixel Structural Similarity Criteria

The task of detection and estimation for the structural similarity of two images
having uncertain structures is a crucial issue in computer vision. The random
images or frames of video sequence can be analyzed. This task cannot be for-
malized in full and has not yet been solved unambiguously. Objective structural
similarity criteria may be classified in the following manner: single factor criteria,
multi-factor criteria, and integral criteria being a combination of single factor and
multi-factor criteria.

One of the simplest single factor criteria is a deviation of MSE. The MSE is
determined by Eq. 3.1 for a separate image brightness or color component, where
X; Y are images under a comparison (X ¼ xij

� �
, Y ¼ yij

� �
, i ¼ 1. . .n, j ¼ 1. . .m).

MSEðX; YÞ ¼
Pn;m

i¼1;j¼1 ðxij � yijÞ2
n � m ð3:1Þ

This criterion cannot be applied to human vision system. According to the MSE
criterion, the images differ from each other, if the brightness reduces by 5 % only
(the human vision system does not recognize this while the brightness options of
different computer screens vary much more). At the same time, the images with the
pronounced color variation of separate point, mild stripes, or frequency distortion
resulting in a sharpness loss will be recognized as “almost unchanged”.

The widely used nowadays PSNR for a separate brightness or color component
of an image is expressed by Eq. 3.2, whereMAXI is the maximum value assumed by
the image component element.

Methods for image 
difference detection

Differences 
of spectra

3 5

2

Correlation 
differences

1

Information 
differences

6

4

Pixel
differences

Fig. 3.1 Methods and algorithms for structural image difference detection, where 1 are algorithms
based on MSSIM, MNSSIM1, and MNSSIM2 structural criteria, 2 are algorithms based on
difference of generalized orthogonal basis spectra, 3 are algorithms based on difference of
correlation features of moving video sequence fragments, 4 are spectral algorithms for texture
anisotropy detection and estimation, 5 is a spectral algorithm for moving object detection, 6 are
algorithms based on the Kullback and the Bhattacharyya information metrics

3 Methods for Detecting of Structural Changes … 61



PSNRðX; YÞ ¼ 10 � log MAX2
I

MSE

� �
¼ 10 � log10

2552 � n � mPn;m
i¼1;j¼1 ðxij � yijÞ2

ð3:2Þ

For an RGB image, each component R, G, or B occupies 8 bits and, hence,
MAXI= 2

8− 1 = 255 for this image. This measure is appropriate due to the logarithmic
scale. It has the same drawbacks that root-mean-square deviation does [1, 13].

In a number of cases, the criterion should assume a variation of all image colors.
The total PSNR for a full color RGB image PSNRRGB is calculated based on the
summed squared error of the components provided by Eq. 3.3, where the maximum
value is max S2R ¼ 3 � 2552 � n2 � m (n� n is a number of pixels in a block, for the
sake of simplicity the blocks are assumed to be square), v is a number of blocks,

g ¼ 1. . .m is a number of the current block, ðx gð Þ
i; j ; y

gð Þ
i; j ÞR;G;B are brightness of R, G,

B components of pixels of blocks of images under comparison.

S2R ¼
Xm
g¼1

f
Xn
i; j¼1

x gð Þ
i; j � y gð Þ

i; j

� �2

R
þ

Xn
i; j¼1

x gð Þ
i; j � y gð Þ

i; j

� �2

G
þ

Xn
i; j¼1

x gð Þ
i; j � y gð Þ

i; j

� �2

B
g ð3:3Þ

Hence, Eq. 3.3 can be re-written as Eq. 3.4.

PSNRRGB ¼ 10 � lg maxS2R
�
S2R

� �
¼ 10 � lg 3 � 2552 � n2 � m

S2R

� �
ð3:4Þ

The PSNR can be calculated for images in the YUV color format and other
formats by equations similar to Eqs. 3.3–3.4. The combined criterion PSNRRGB

provides the image similarity performance, which is more relevant for human
vision. However, Eqs. 3.1–3.4 are slightly sensitive to texture image changes.

At the moment one of the criteria closest to the subjective perception of the
recovered image quality, if the MSSIM [2–4, 14] characterizes a similarity of X and
Y images by brightness, contrast, and structure, i.e. it is tri-factor. It appears as
Eq. 3.5, where Xg; Yg are the images compared in a block having number
g ¼ 1. . .m, v is a number of blocks.

MSSIM ¼ 1
m
�
Xm
g¼1

SSIMðXg; YgÞ ð3:5Þ

The SSIM criterion is a block criterion. This means that it is applied not to the
whole image at once but to its separate parts—equal blocks of the image, and later
this value is averaged by all computed blocks producing the resulting MSSIM value
for the whole image. In the general case, the SSIM(X, Y) value for each block is
calculated by Eq. 3.6, where lðx; yÞis a brightness comparison functional, cðx; yÞ is a
contrast comparison functional, sðx; yÞ is a structure comparison functional, a, b, c
are the control coefficients.

62 Y.S. Radchenko and A.V. Bulygin



SSIMðX; YÞ ¼ lðx; yÞacðx; yÞbsðx; yÞc ð3:6Þ

In accordance with control coefficients α = β = γ = 1 [4], the comparison
functionals in the blocks are calculated by Eq. 3.7.

lðx; yÞ ¼ 2lxly þ C1

l2x þ l2y þ C1
cðx; yÞ ¼ 2rxry þ C2

r2
x þ r2

y þ C2
sðx; yÞ ¼ rxy þ C3

rxry þ C3
ð3:7Þ

Here variables have the following meanings:
– μX, μY are the sample mean for image blocks Xη and Yη, respectively,

lX ¼ 1
N2 �

XN�1

i; j¼0

xij lY ¼ 1
N2 �

XN�1

i; j¼0

yij:

– σX
2, σY

2 are sample variance for image blocks Xη and Yη, respectively,

r2
X ¼ 1

N2 �
XN�1

i; j¼0

ðxij � lXÞ2 r2
Y ¼ 1

N2 �
XN�1

i; j¼0

ðyij � lY Þ2:

– rXY is a moment of correlation between image blocks Xη and Yη

rXY ¼ 1
N2 �

XN�1

i; j¼0

ðxij � lXÞðyij � lYÞ:

Within constant C3, a functional sðx; yÞ coincides with the Pearson’s sample
correlation coefficient. C1, C2, C3 are small constants preventing incorrect behavior
of the criterion when the moments are cleared. In accordance with [2–4] one can
assume C1 ¼ 0:01Lð Þ2;C2 ¼ 0:03Lð Þ2;C3 ¼ 0:5C2; L is image bit width.

The MSSIM criterion assumes values from −1 to 1. The value of 1 is obtained
only in the case, when one and the same image is compared. This means that closer
an image compared to the original image, closer the criterion value to 1.

A selection of functional sðx; yÞ in Eq. 3.7 as a measure of structural difference is
mostly justified, when the comparing vectors have the values with multivariate
Gaussian distribution. Therefore, the MSSIM criterion perfectly distinguishes tex-
tures in a form of Gaussian noise. When the laws of distortion distribution are
unknown (non-Gaussian), it is reasonable to apply estimates of the respective
structural characteristics based on nonparametric statistics [15]. To estimate mean
brightness, it is efficient to use a samplemedianwith higher stability as comparedwith
the sample mean and one of the rank correlation coefficients instead of the Pearson’s
correlation coefficient. Two modifications of the structural similarity criterion based
on the nonparametric MNSSIM1 and MNSSIM2 was proposed in [5, 7].
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For MNSSIM1, the functionals below (Eq. 3.8) are suggested instead of Eq. 3.7

lðx; yÞ ¼ 2mxmy þ C1

m2
x þ m2

y þ C1
cðx; yÞ ¼ 2rmxrmy þ C2

rm2
x þ rm2

y þ C2
sðx; yÞ ¼ Rsðx; yÞ; ð3:8Þ

where mx ¼ medianað~xÞ and my ¼ medianað~yÞ are medians of the brightness vec-

tors in image blocks x and y, respectively, rm2
x ¼ mediana ð~x� mxÞ2

h i
and rm2

y ¼
mediana ð~y� myÞ2

h i
are medians of the squared vector difference of brightness and

the median, Rs(x, y) is Spearman’s rank correlation coefficient [15]. The Rs values
change from −1 to 1, while Rs = 0 means the absence of correlation.

The functionals (Eq. 3.9) are used in the MNSSIM2.

lðx; yÞ ¼ 2mxmy þ C1

m2
x þ m2

y þ C1
cðx; yÞ ¼ 2rxry þ C2

r2
x þ r2

y þ C2
sðx; yÞ ¼ Rsðx; yÞ ð3:9Þ

In other words, a contrast comparison functional cðx; yÞ should remain the same
as for the MSSIM (Eq. 3.7). The structure comparison functional sðx; yÞ and
brightness comparison functional lðx; yÞ should be used as those used in the
MNSSIM1 (Eq. 3.8). Constants C1 and C2 from Eqs. 3.8–3.9 are identical to those
used to calculate the MSSIM [2, 4]. The MNSSIM2 criterion is computationally
simpler than the MNSSIM1.

Therefore, the MNSSIM1 and the MNSSIM2 criteria are the tri-factor criteria
that use the nonparametric estimations of random field parameters. Nonparametric
criteria of the MNSSIM1 and the MNSSIM2 structural similarities are practically
identical to the MSSIM criterion at the presence of Gaussian distortion. However, if
a point interference or other non-Gaussian statistics interference or a block dis-
tortion take place, then the MNSSIM1 and the MNSSIM2 metrics are better for
human subjective vision than the estimation by the MSSIM.

3.3 Spectral Criteria of Structural Image Similarity

The image in a block can be expanded into a generalized Fourier series by the system
of continuous ukmðx; yÞ or discrete orthogonal functions ukmði; jÞ [10–12, 17–19].

Let us examine the main types and features of orthogonal transforms for con-
tinuous arguments. A sequence of functions ukðzÞf g, k ¼ 0; 1; . . .1 is called
orthonormal against qðzÞprovided by Eq. 3.10, where dmn is a Kronecker symbol,
z has no dimension value.

ðum;unÞ ¼
Z

umðzÞunðzÞ qðzÞdz ¼ dmn ð3:10Þ
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For weight function qðzÞ, ratios qðzÞ� 0 and 0� R b
a qðzÞdz\1 exist. The

system of functions ukðzÞf g, wkðzÞf g, k ¼ 0; 1; . . .; k0 is called bi-orthogonal
against weight qðzÞ (Eq. 3.11).

ðum;wnÞ ¼
Z

umðzÞwnðzÞqðzÞdz ¼ dmn ð3:11Þ

The full and closed set of functions ukðzÞf g is of great interest.
In the following Sects. 3.3.1 and 3.3.2, the polynomial transform and the discrete

transforms are discussed, respectively.

3.3.1 Polynomial Transforms

An important class of functions ukðzÞf g with the properties of orthogonality,
completeness and closure is orthogonal polynomials pkðzÞ satisfying the Eq. 3.12,
where dm is a norm of polynomial pmðzÞ.

Zb

a

qðzÞpmðzÞpkðzÞdz ¼ dmdkm ð3:12Þ

To expand the signals, one can apply the following conventional orthogonal
polynomials [11, 20, 21]:

• The Hermitian polynomials HmðzÞ, Eq. 3.13.

qðzÞ ¼ expð�z2Þ pmðzÞ ¼ HmðzÞ �1\z\1 ð3:13Þ

• The Laguerre polynomials, Eq. 3.14.

qðzÞ ¼ za expð�zÞ pm ¼ LamðzÞ 0� z\1 ð3:14Þ

• The Jacobi polynomials pmðzÞ ¼ Pða;bÞ
m ðzÞ , Eq. 3.15.

qðzÞ ¼ ð1� zÞað1þ zÞb a[ � 1 b[ � 1 � 1� z� 1 pmðzÞ ¼ Pða;bÞ
m ðzÞ
ð3:15Þ
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The Jacobi polynomials form a wide group of orthogonal polynomials. The
important particular cases of Jacobi polynomials are:

• The Legendre polynomials

PnðzÞ ða ¼ b ¼ 0Þ qðzÞ ¼ 1:

• The Chebyshev polynomials of the 1st and 2nd types provided by Eq. 3.16.

TnðzÞ ða ¼ b ¼ �1=2Þ qðzÞ ¼ ð1� z2Þ�1=2

UnðzÞ ða ¼ b ¼ 1=2Þ qðzÞ ¼ ð1� z2Þ1=2
ð3:16Þ

For practical use, the most convenient Jacobi polynomials are the polynomials of
Legendre and Chebyshev of the 1st and 2nd types.

The Chebyshev polynomials of the 1st type have a number of useful properties
so that their use to expand the signals is very attractive. The Chebyshev polynomial
of the 1st type TmðzÞ associated with weight function qðzÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
can be

determined variously. One of the most appropriate means has a view of Eq. 3.17.

TmðzÞ ¼ cosðm � arccosðzÞÞ ð3:17Þ

For the Chebyshev polynomials Tmð�zÞ ¼ ð�1Þm � TmðzÞ. According to
Tmþ1ðzÞ ¼ 2 � z � TmðzÞ � Tm�1ðzÞ, one can get Eq. 3.18.

T0ðzÞ ¼ 1 T1ðzÞ ¼ z T2ðzÞ ¼ 2z2 � 1 T3ðzÞ ¼ 4z3 � 3z
T4ðzÞ ¼ 8z4 � 8z2 þ 1

ð3:18Þ

The orthogonality condition of functions Tm(z) is provided by Eq. 3.18.

Z1

�1

TmðzÞTkðzÞffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p dz ¼
0 k 6¼ m
p k ¼ m ¼ 0
p
2 k ¼ m 6¼ 0

8<
: ð3:19Þ

Nulls of the Chebyshev polynomials are easily determined from Eq. 3.17, which
can be re-written as Eq. 3.20.

TmðzÞ ¼ cosðm � arccosðzÞÞ ¼ 0 ð3:20Þ
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Based on the above equations, one can get Eq. 3.21.

zk ¼ cos
2k þ 1
2m

p k ¼ 0; 1; 2; . . .;m� 1 ð3:21Þ

Expansion of function f ðzÞ in the Chebyshev polynomials of the 1st type has a

form of Eq. 3.22, where dm ¼ p=2 m 6¼ 0
p m ¼ 0



is a norm of the Chebyshev

polynomials.

Cm ¼ 1
dm

Z1

�1

f ðzÞTmðzÞffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p dz

f ðzÞ ¼
X1
m¼0

CmTmðzÞ
ð3:22Þ

The expansion in the Chebyshev polynomials of the 1st type TmðzÞ is the most
converged among all possible expansions in degrees zk, k ¼ 0; 1; . . .1.

The above relations are generalized for a 2D case. Let X be a region of the 2D
Euclidian space and z ¼ ðz1; z2Þ be a point in this space. The basis of function
orthonormality can be defined by scalar product (Eq. 3.23).Z

X

qðzÞukmðzÞwr nðzÞdz ¼ dkrdmn ð3:23Þ

The system of functions ukmðzÞ, wr;nðzÞ is bi-orthogonal. The system of functions
ukmðzÞ;wr nðzÞf g depends on the form of weight function qðzÞ and geometry of

region X. Then for function f ðzÞ with the finite norm and weight qðzÞ, there are
possible two equal presentations by Eqs. 3.24–3.25.

Ckm ¼
Z
X

qðzÞf ðzÞukmðzÞdz f ðzÞ ¼
X
k;m

CkmwkmðzÞ ð3:24Þ

Br n ¼
Z
X

qðzÞf ðzÞwr nðzÞdz f ðzÞ ¼
X
r;n

Br nur nðzÞ ð3:25Þ

It should be noted, that a bi-orthogonality is a typical feature of multi-dimensional
expansions.

Processing implementation is greatly simplified, when functions ukmðx; yÞ ¼
ukðxÞumðyÞ are factorized. For a signal f ðx; y; sÞ, a pair of transforms is performed
by Eq. 3.26, where (x, y) is a non-normalized coordinates of field’s point, s is a
vector parameter of shift, rotation and other affine transformations.
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f ðx; y; sÞ ¼
X
m

X
k

CmkðsÞumðxÞukðyÞ CmkðsÞ ¼
Z Z

X

f ðx; y; sÞumðxÞukðyÞdxdy

ð3:26Þ

If ax; ay denote a typical size of sub-region X, z1 ¼ x=ax; z2 ¼ y=ay, then
Eq. 3.26 can be re-written by Eq. 3.27, where dm is a norm of orthogonal pmðzÞ
polynomials with weight qðzÞ.

f ðx; yÞ ¼
X
m;k

Cmkpmðx=axÞpkðy=ayÞ ð3:27Þ

Cmk ¼ ðdmdkÞ�1
ZZ

X
f ðaxz1; ayz2Þqðz1Þpmðz1Þqðz2Þpkðz2Þdz1dz2

¼ ðdmdkÞ�1
Z

qðz1Þpmðz1Þdz1
Z

f ðaxz1; ayz2Þqðz2Þpkðz2Þdz2
ð3:28Þ

It is obvious from Eqs. 3.27–3.28, that the spectral coefficients are determined by
a sequential integration of x, y coordinates that is greatly simplify the computation.

3.3.2 Discrete Transforms

Let us analyze a generality and a difference of continuous and discrete transforms
(Table 3.1). Here /kðnÞf g; n ¼ 0. . .N � 1 is a complex basis of orthonormal
vectors. In the general case, it is necessary to use a bi-orthogonal basis

~ukðnÞf g; ~wkðnÞ
n o

to expand a signal.

Let us consider a vector-matrix transform notation. Let vector F be a column of
signal samples, as show in Eq. 3.29.

F ¼
f ð0Þ
:

f ðN � 1Þ

0
@

1
A ð3:29Þ

The transform matrix can be written by Eq. 3.30.

U ¼
u0ð0Þ u0ð1Þ . . . u0ðN � 1Þ
u1ð0Þ u1ð1Þ . . . u1ðN � 1Þ
. . . . . . . . . . . .
uN�1ð0Þ uN�1ð1Þ . . . uN�1ðN � 1Þ

0
BB@

1
CCA ð3:30Þ

A pair of signal-to-spectrum transform in the matrix form has a view of Eq. 3.31.
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C ¼ UF F ¼ U�1C ) UTC ð3:31Þ

If U�1 ¼ UT ; det Uð Þ ¼ �1, then U is an orthogonal matrix and any two lines
of it are orthogonal vectors. For a bi-orthogonal matrix transforms, Eq. 3.32 can be
written.

C ¼ UF F ¼ WC WU ¼ 1 ð3:32Þ

Let us consider a discrete variant of 2D transform. In this case the function is
setup on a 2D discrete point grid, Eq. 3.33.

f ðx; yÞ ) f ði; jÞ i; j ¼ 0. . .N � 1 ð3:33Þ

The samples form a square matrix F ¼ f ði; jÞ½ �. The same grid could be uniform
or it can be formed non-uniformly by a special law.

A pair of transforms of a signal matrix to a spectral matrix is determined by
Eq. 3.34.

Ckm ¼
X
i; j

f ði; jÞu	
kmði; jÞ f ði; jÞ ¼

X
k;m

Ckmukmði; jÞ ð3:34Þ

If the discrete basis functions are factorized, then Eq. 3.35 is accomplished.

ukmði; jÞ ¼ ukðiÞumðjÞ ð3:35Þ

Expansion and synthesis are reduced to serial operations in i and j. This oper-
ation is of the form below in the matrix form, Eq. 3.36.

C ¼ UFUT F ¼ U�1CðU�1ÞT ð3:36Þ

Table 3.1 The difference of continuous and discrete transforms

Continuous signal Discrete signal

x 2 0;T½ � x ¼ xn ¼ nDT , n ¼ 0. . .N � 1

f ðxÞ f ðnÞ ¼ f ðxnÞ
ukðxÞ ~uk ¼ ukð0Þukð1Þ ukð2Þ . . .ukðN � 1Þð Þ
uk ;umð Þ ¼ R

T
ukðxÞu	

kðxÞdx ¼ dkm ð~uk ;~umÞ ¼
PN�1

n¼0
ukðnÞu	

mðnÞ ¼ dkm

Ck ¼
Z
T

f ðxÞu	
kðxÞdx

f ðxÞ ¼
X1
k¼0

CkukðxÞ

Ck ¼
XN�1

n¼0

f ðnÞu	
kðnÞ

f ðnÞ ¼
X1
k¼0

CkukðnÞ
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Let us consider the Discrete Fourier Transform (DFT). The basis orthogonal
functions [1, 18, 19] have the form of Eq. 3.37.

~ukðnÞ ¼ exp j2p
kn
N

� �
¼ Wkn W ¼ exp j

2p
N

� �
n ¼ 0. . .N � 1

k ¼ 0. . .N � 1
ð3:37Þ

The orthogonality condition and the functions’ norm are defined by Eq. 3.38.

XN�1

n¼0

WknW	ln ¼ 0 k 6¼ l
N k ¼ l



ð3:38Þ

Then the pair of transforms with non-symmetric normalizing coefficients is
computed by Eq. 3.39.

Ck ¼ 1
N

XN�1

n¼0

f ðnÞWkn f ðnÞ ¼
XN�1

k¼0

CkW
�kn ð3:39Þ

For the DFT, there are other variants of normalizing coefficients before the sum
up, for example, the expressions from Eq. 3.40.

Ck ¼
XN�1

n¼0

f ðnÞWkn f ðnÞ ¼ 1
N

XN�1

k¼0

CkW
�kn ð3:40Þ

When the DFT is applied, it is essential that a discrete signal f ðnÞ is considered to
be periodically extended with the period of N, while spectrum Ck is also discrete and
periodic with the period of N. Therefore, a condition is imposed on border frequency
Dfm of continuous signal f ðtÞ and sampling step T: DfmT � 0:5. The DFT with
reduced number of operations is called Fast Fourier Transform (FFT) [1, 17, 22].
If a signal f ðnÞ is true, then Eq. 3.41 is executed.

Ckj j ¼ CN�kj j argðCkÞ ¼ � arg ðCN�kÞ ð3:41Þ

Therefore, the FFT for such signal calculates only a half of spectral coefficients.
Let us consider the Discrete Cosine Transform (DCT) in two cases—one-

dimensional and two-dimensional DCT.
One-dimensional DCT.
A non-normalized basis functions [1, 18, 19] are determined by Eq. 3.42, where

n ¼ 0. . .N � 1.

~ukðnÞ ¼ cos pk
2nþ 1
2N

� �
¼ cos pk

nþ 0:5
N

� �
ð3:42Þ
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The parameter N may be both even and odd. However, the transform with even
N [1] is often used in practice. The orthogonality condition for these functions is
provided by Eq. 3.43.

XN�1

n¼0

~ukðnÞ~ulðnÞ ¼
N k ¼ l ¼ 0
N=2 k ¼ l 6¼ 0
0 k 6¼ l

8<
: ð3:43Þ

During the calculation of a signal spectrum, the orthonormal basis functions is
applied as it shown in Eq. 3.44.

ukðnÞ ¼
ffiffiffiffi
2
N

r
� gk � cos pk

nþ 0:5
N

� �
gk ¼

ffiffiffiffiffiffiffi
0:5

p
k ¼ 0

1 k 6¼ 0



ð3:44Þ

In this case, the direct and the reverse DCTs are expressed by Eqs. 3.45–3.46.

Ck ¼
ffiffiffiffi
2
N

r
� gk

XN�1

n¼0

f ðnÞ cos pk
nþ 0:5

N

� �
ð3:45Þ

f ðnÞ ¼
ffiffiffiffi
2
N

r XN�1

k¼0

gkCk cos pk
nþ 0:5

N

� �
ð3:46Þ

Two-Dimensional DCT.
The transforms with symmetric normalization of direct and reverse transform

matrices have a view of Eq. 3.47, where F ¼ f ði; jÞ½ � is a source block and
C = [Ckm] is its spectrum.

C ¼ UFUT F ¼ UTCU ð3:47Þ

The matrices of the direct U and reverse DCT coincide, Eq. 3.48.

U ¼ ukðnÞ½ � ¼
ffiffiffiffi
2
N

r ffiffiffiffiffiffiffi
0:5

p
cosðpk ðnþ 0:5Þ

N

� �
k ¼ 0
k 6¼ 0

� �
k ¼ 0. . .N � 1

n ¼ 0 � � �N � 1
ð3:48Þ

Matrix U is square and orthogonal U�1 ¼ UT .
Integer cosine (pseudo-cosine) transform.
Standard H.264 applies a pseudo-cosine transform for blocks transformations.

For 4 × 4 block, the DCT matrix is determined by Eq. 3.49, where k; n ¼ 0. . .3.
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U ¼
ffiffiffi
1
2

r
�

ffiffiffiffiffiffi
1=2

q
cosðð2�nþ 1Þ�k�p

2�4 Þ

2
4

3
5

¼ 1
2
�

1 1 1 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

2
p

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1ffiffi

2
p

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1ffiffi

2
p

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

2
p

q
1 �1 �1 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1ffiffi
2

p
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

2
p

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

2
p

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1ffiffi

2
p

q

2
66664

3
77775

ð3:49Þ

It is proposed to use integer matrix H [6] instead of matrix U, Eq. 3.50.

H ¼ 1
2
�

1 1 1 1
2 1 �1 �2
1 �1 �1 1
1 �2 2 �1

2
664

3
775 ð3:50Þ

On the one hand, such replacement speeds up the integer operations of digital
signal transform. On the other hand, this breaks a transform orthogonality. Such
break should be compensated by the extra transforms in further steps.

The Hadamard system for Walsh functions.
The Walsh-Hadamard discrete basis is appropriate for computing. It is based on

the Hadamard matrix. The matrix is calculated by the recurrent scheme,
Eqs. 3.51–3.52.

A2n ¼ A2ðn�1Þ A2ðn�1Þ

A2ðn�1Þ �A2ðn�1Þ

� �
ð3:51Þ

A1 ¼ 1 A2 ¼ 1 1
1 �1

� �
A4 ¼ A2 A2

A2 �A2

� �
¼

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

0
BB@

1
CCA

ð3:52Þ

Any line (column) of the Hadamard matrix is a discrete sample of the Walsh
function of any order. The Hadamard matrix structure results in that only signal
sample summation and subtraction operations are performed during the orthogonal
transform. However, a convergence rate of series by the Walsh-Hadamard basis is
less than the DCT provides. Besides, the spectrums are often non-monotonous,
when this basis is applied.

Discrete Chebyshev GDCT.
The above mentioned discrete orthogonal transforms apply a uniform signal

sample grid. However, a sample grid with a special non-uniformity allows to get the
fast converged generalized Fourier series. The discrete Chebyshev transform called
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Generalized DCT (GDCT) [9–12] belongs to this type of transforms. It is a par-
ticular case of transforms in the orthogonal polynomials.

To calculate integrals in the orthogonal polynomial transforms, it is proposed to
use a Gaussian type quadrature formula with the highest algebraic accuracy [20]
expressed by Eq. 3.53, where zi are nulls of orthogonal polynomial pNðzÞ with
weight qðzÞ, ki are the Christoffel numbers.

Z
f ðzÞqðzÞdz ¼

XN
i¼1

kif ðziÞ ð3:53Þ

Knots and weights zif g; kif g are clearly defined by the form of polynomial
pNðzÞ. In general, Eq. 3.53 expands in orthogonal polynomial system. A particular
case of Eq. 3.53, when the Chebyshev polynomials are used, is called the Gauss-
Chebyshev (Meller) formula [20] presented in a view of Eq. 3.54 form, where
zi ¼ cos pðiþ 0:5Þ=Nð Þ are nulls of Chebyshev polynomial TNðzÞ ¼ 0,
ki ¼ p=N ¼ const.

Z
f ðzÞffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p dz ¼ p
N

XN�1

i¼0

f ðziÞ ð3:54Þ

For the Chebyshev polynomials, the direct and the reverse transforms (Eq. 3.22)
can be applied (Eq. 3.54) (one-dimensional variant for normalized interval
z 2 �1; 1½ �). Then Eqs. 3.55–3.56 will be received [9, 11], where gm ¼ 1 with
m[ 0 and gm ¼ ffiffiffiffiffiffiffi

0:5
p

with m = 0.

Cm ¼ gm �
ffiffiffiffi
2
N

r XN�1

i¼0

f ðziÞ � cosðpm iþ 0:5
N

Þ ð3:55Þ

YMðzÞ ¼
ffiffiffiffi
2
N

r XM�1

m¼0

gm � Cm � cosðm � arccosðzÞÞ ð3:56Þ

In accordance with Eqs. 3.55–3.56, the sample points and the Chebyshev
samples zi ¼ cos pðiþ 0:5Þ=Nð Þ of signal f ðzÞ are taken non-uniformly (Fig. 3.2). A
synthesis (recovery) of signal YðzÞ by M spectral components is performed in
random point z 2 ½�1; 1�, but not within a discrete set of sample points as this is
done in the DCT. During recovery, any sample grid can be used, for example,
uniform zn ¼ 2n=ðL� 1Þ � 1, n ¼ 0. . .L� 1, if L 6¼ N. The recovered image is a
subject to geometric scaling to downwards the size and upwards the size as well.

In the case of 2D GDCT N × N, the Chebyshev samples of the image are taken
within the sample block of N1 × N1 points (pixels) by Eq. 3.57.
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xi ¼ 0:5ðN1� 1Þ � 1þ cos pðiþ 0:5Þ=Nð Þð Þ
yj ¼ 0:5 � ðN1� 1Þ � ð1þ cosðp � ðjþ 0:5Þ=NÞÞ

i; j ¼ 0. . .N � 1

ð3:57Þ

This matrix is transformed to spectral coefficient matrix C ofM ×M size with the
use of direct transform rectangular matrix of M × N size. In the case of reverse
transform, a rectangular matrix of L × M size can be applied. That means that a
recovered block R ¼ rij

 �
(i, j = 1 … L) size is L × L. The Chebyshev samples can

be obtained by using linear interpolation by the nearest pixels [20, 23].
The direct and the reverse Chebyshev transforms (GDCT) in the matrix form are

defined by the operations Eq. 3.58, i.e. the transform Eq. 3.36 falls into the
bi-orthogonal transform class.

C ¼ UFUT F ¼ WTCW ð3:58Þ

The matrix U is a direct transform matrix (Eq. 3.59).

U ¼
ffiffiffiffi
2
N

r
�

ffiffiffiffiffiffiffi
0:5

p

cos p ðiþ 0:5Þ�m
N

� �" #
: m ¼ 0. . .M � 1 i ¼ 0. . .N � 1 ð3:59Þ

The matrix W is a reverse transform matrix (Eq. 3.60).

W ¼
ffiffiffiffi
2
N

r
�

ffiffiffiffiffiffiffi
0:5

p
cosðm � arccos 2�n

L�1 � 1
� �Þ

� �
: m ¼ 0. . .M � 1 n ¼ 0. . .L� 1 ð3:60Þ

It is obvious from Eqs. 3.59–3.60, that in the general case the GDCT matrices U
and W are rectangular. The direct GDCT matrix coincides with the direct DCT

Fig. 3.2 The Chebyshev block sampling: a N1=N ¼ 8=6, b N1=N ¼ 12=8
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matrix (Eq. 3.48) with M = N. The reverse transforms differ from each other. It
should be noted that in the DCT, the transform matrices are square and have the size
of (N × N = M × M) as opposed to the GDCT, where M does not equal N in the
general case [11, 12]. The GDCT is much close to the ideal de-correlation Karh-
unen-Loeve [1, 19] transform among all analyzed orthogonal transforms.

3.4 Spectral Image Variation Detection

Let a field f ðiÞðr; tiÞ being fragment uðrÞIXðrÞdðt � tiÞ of a space-time signal
(dynamic image) at discrete time moment ti, i = 0, 1,… be observed in a sub-region
r ¼ ðx; yÞ 2 X (a block of any frame). Here, IXðrÞis a sub-region indication func-
tion. Additionally let us assume that the white Gaussian noise gðx; yÞ 
 gðrÞ is
available into an image. After comparing a separate block of the (i–1)th and ith
frames, one can hypothesize (Eq. 3.61).

H0 : nðrÞ ¼ f1ðrÞ þ gðrÞ f1ðrÞ ¼ fðiÞðrÞ ¼ fði�1ÞðrÞ
H1 : nðrÞ ¼ f2ðrÞ þ gðrÞ f2ðrÞ ¼ fðiÞðrÞ 6¼ f

ði�1Þ
1 ðrÞ

ð3:61Þ

Basing on observation of nðrÞ, it is necessary to accept or reject the main
hypothesis about a block image invariance. If two images are compared rather than
video sequence frames are observed, then f1ðrÞ is an unvaried texture in frames and
f2ðrÞ is a texture different from f1ðrÞ.

After checking the sophisticated hypotheses, signal f1ðrÞ; f2ðrÞ are formed, and
a structure uncertainty arises. Generally, the processing of the unknown form signal
cannot be solved without the use of some additional factors. One of the most
convenient ways to solve the a priori uncertainty is a signal parameterization. In this
case, a signal form uncertainty transforms to a parametric uncertainty, which
resolving ways are well designed [13, 19]. The convenient signal parameterization
method has its presentation in the form of generalized Fourier series by any
orthonormal basis ukm [1, 10, 17, 19].

For different hypotheses, the signals can be presented by Eq. 3.62, where
gk;m

� � ¼ 0; Dðgk;mÞ ¼ N0
2 � ukmk k2.

f1ðrÞ ¼
X
k;m

Cð1Þ
kmukmðrÞ f2ðrÞ ¼

X
k;m

Cð2Þ
kmukmðrÞ

nðrÞ ¼
X
k;m

XkmukmðrÞ gðrÞ ¼
X
k;m

gkmukmðrÞ
ð3:62Þ

The spectral coefficients for expansion of Cð2Þ
k;m are assumed to be unknown. The

coefficients Cð1Þ
k;m are reference and defined.

Therefore, the hypotheses in a spectral definition are checked by Eq. 3.63.
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H0 : Xkm ¼ Cð1Þ
km þ gkm

H1 : Xkm ¼ Cð2Þ
km þ gkm

ð3:63Þ

Section 3.4.1 provides the optimal detection algorithm and quasi-optimal algo-
rithms are discussed in Sect. 3.4.2.

3.4.1 Optimal Detection Algorithm

The maximum likelihood algorithm [17, 24] is an asymptotically optimum rule for
hypothesis check provided by Eq. 3.64, where L(·) is a log likelihood ratio func-
tional determined by Eq. 3.65.

max
Cð2Þ

LðX Cð2Þ�� Þ\[ h0 ð3:64Þ

LðX Cð2Þ�� Þ ¼ ln
W Xk;m f2ðrjCð2ÞÞ�� �
W Xk;m f1ðrjCð1ÞÞj �

" #
ð3:65Þ

According to Eq. 3.64 it is required to determine the absolute maximum of log
likelihood ratio functional by an unknown vector of parameters Cð2Þ and make a
non-randomized decision in favor of the respective hypothesis.

Now our selected spectral signal form parameterization (Eq. 3.62) is taken into
account. To solve the hypothesis, let us check task by Eq. 3.66.

L X Cð2Þ��� �
¼ 1=N0ð Þ 2

X
k;m

Xkm Cð1Þ
km � Cð2Þ

km

� �
�
X
k;m

Cð1Þ
km

� �2
� Cð2Þ

km

� �2
� �( )

ð3:66Þ

The followingmaximization byCð2Þ
k;m the decision rule [17] is obtained by Eq. 3.67.

ð1=N0Þ
X
k;m

Xk;m � Cð1Þ
k;m

� �2 \
[ h0 ð3:67Þ

3.4.2 Quasi-optimal Algorithms

Due to the fact that N0 determines the interference power and typically is unknown
in practice, the normalized statistics can be used, They may be written in the general
form [17] by Eq. 3.68.
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D0 ¼
P

k;m ðXk;m � Cð1Þ
k;mÞ2

ðCð1Þ
0;0Þ2

or DE ¼
P

k;m ðXk;m � Cð1Þ
k;mÞ2P

k;m ðCð1Þ
k;mÞ2

ð3:68Þ

As Cð1Þ
00 is proportional to mean image brightness in the frame block andP

Cð1Þ
km

� �2
is a block energy, the statistics D0;DE are stable to block brightness

variation, i.e. to observation conditions. Taking into account Eq. 3.68, the decision
rule (Eq. 3.64) is written by Eq. 3.69.

D0

c1
[
\
c0

h0 or DE

c1
[
\
c0

hE ð3:69Þ

The number of summable summands and order of their selection in statistics
D0;DE can be setup from peculiarities of a certain task.

3.5 Experimental Research of Structural Similarity
Algorithms

Let us consider the applications of structural similarity algorithms for image
analysis (Sect. 3.5.1), the experimental research of spectral statistics (Sect. 3.5.2),
and the experimental research of MSSIM and MNSSIM1(2) criteria (Sect. 3.5.3).

3.5.1 Practical Using of Pixel and Spectral Algorithms
in Image Analysis

The MSSIM, MNSSIM1, and two structural similarity criteria, the D0;DE spectral
criteria were experimentally studied. Such performance as sensitivity to texture
variation, interference tolerance, robustness to observation conditions and decision
making threshold selection were tested [16].

In our research for detection of substance phase transitions, when heating, the
75-frames from video sequence were selected. It was taken by Infinity 1-3C digital
camera during an experiment on heating cesium chloride (CsCl) sample within the
temperature range of (250; 710)°C. (Each frame represents the substance at a certain
temperature and temperature variation differs from frame to frame).

Two phase transitions take place in the CsCl sample into this temperature range.
The sample surface texture changes sharply (stepwise), and, hence, a texture of
successive frames corresponding to this transition also changes abruptly. Figure 3.3
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presents the images with small visual differences in the texture of some regions
(blocks), which correspond to the first effect, polymorphous transformation of the
substance (i.e., transition from one solid state to another followed by reconstructive
re-arrangement of the crystal mosaic structure or “grains” in the image).

Figure 3.4 presents the images with noticeable visual differences, which corre-
spond to the second observed effect, substance melting (transition from the solid
state to the liquid one followed by crystal fracture and disappearance of grains in
the image).

At the phase of transition moments, this image structure should have a step. The
MSSIM index, its modification MNSSIM1(2) and spectral metric for detecting
changes in video sequence D0 were used.

Figure 3.5 shows the MSSIM(T), the MNSSIM1(T) and the MNSSIM2(T) plots.
Figure 3.6 demonstrates the D0(T) plot. All these dependences have two clearly

Fig. 3.3 Fragment of video sequence corresponding to the phase transition (polymorphous
transformation) of the CsCl sample at temperatures: a 462.8 °C; b 468.4 °C

Fig. 3.4 Fragment of video sequence corresponding to the phase transition (melting) of the CsCl
sample at temperatures: a 642.7 °C; b 645.2 °C
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discernible peaks (extrema) corresponding to the phase transitions temperatures. It
is the left jump that has an important physical meaning, since it represents a phase
transition (significant changes appeared); and the right jump means that the changes
ceased. The fluctuations (small peaks) are explained by the random changes in
frame brightness as well as random changes of the substance structure. The
oscillations (see MSSIM(T), MNSSIM1(T), MNSSIM2(T) plot) after the second
high peak at 645.2 °C temperature can be attributed to the fact that, upon melting,
the changes still proceed on the surface of the substance under observation, thus
reflecting on the image texture. It is obvious from Fig. 3.5, that for the given video
sequence, the MSSIM, the MNSSIM1, and the MNSSIM2 dependences are similar.
Therefore, the MNSSIM1 and the MNSSIM2 plots are almost identical. However,
if the analyzed video sequence is subjected to some distortion factors (e.g., pulse
noise) during a video recording and an artificial improvement of images, then the
MNSSIM1 and the MNSSIM2 criteria seem to be more preferable.

Peak values of the MSSIM, the MNSSIM1, theMNSSIM2 and D0, their mean
values before the peaks (to estimate jumps) and temperatures of the peaks are
provided in Tables 3.2 and 3.3.

The temperature values detected by the analysis of the sharp jumps in the
MSSIM(T) the MNSSIM1(T), the MNSSIM2(T), and the D0(T) dependences,
correlate well with data from literature sources [16] T1 = 469 °C, T2 = 645 °C.

Figures 3.5 and 3.6 also result that the MSSIM criterion and its MNSSIM1(2)
modification are inferior to spectral criterion the D0 in the scale of jumps. In the
peaks, the MSSIM and the MNSSIM1(2) curves change several-fold, whereas
the D0 curve changes several tens of times. This feature of the spectral criterion can
be useful in automatic detection of process change moment. Even such a low
automatically set threshold as 6 ÷ 8 min (D0) ensures that fluctuations of the image
brightness and color not followed by texture changes will not belong to useful
effects. Due to higher fluctuations of the MSSIM, the MNSSIM1 and the MNS-
SIM2 criteria, a threshold selection requires the additional data analysis by the
researcher.

0,2

0,3

0,4

0,5

0,6

0,7

200,0 300,0 400,0 500,0 600,0 700,0 T, o C

MSSIM

MNSSIM1(T) MNSSIM2(T)
MSSIM(T)

Fig. 3.5 The plots of MSSIM
(T), MNSSIM1(T),
MNSSIM2(T)

3 Methods for Detecting of Structural Changes … 79



3.5.2 Experimental Research of Spectral Statistics D0 and DE

To estimate the algorithm provided by Eq. 3.68, the experiments with real dynamic
fields were done [17]. During experiment, values of statistics D0 and DE (Eq. 3.68)
for block of brightness components of two diverted video sequence frames were
calculated. Blocks characterizing by such change types as practically unvaried,
weakly, or strongly varied were selected as blocks for analysis. Figure 3.7 shows an
example of a frame from the analyzed dynamic sequence. The distinctive blocks,
where statistics values were computed and differences were detected, are marked
with boxes. The GDCT discrete transform is used.

Figure 3.7 shows a frame of video sequence with varied blocks (marked in
boxes) for different thresholds: The results are tuned for hE = 0.01 and hE = 0.04

Fig. 3.6 The plot of D0(T)

Table 3.3 Peak values

Peak
no

MSSIM mean
value before peak

MNSSIM1 mean
value before peak

MNSSIM2 mean
value before peak

D0 mean value
before peak, 10−3

1 peak 0.686 0.642 0.644 1

2 peak 0.668 0.626 0.628 1

Table 3.2 Values before the peaks

Peak
no

Peak
temperture, °C

MSSIM
peak value

MNSSIM1
peak value

MNSSIM2
peak value

D0, 10
−3

peak value

1 peak 468.4 0.526 0.489 0.496 12

2 peak 645.2 0.296 0.259 0.261 70
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(Fig. 3.7a, b, respectively.) Four different blocks were analyzed and average sta-
tistics were calculated for each variation type. The obtained statistics D0 and DE for
the brightness component for the image (Fig. 3.7) are presented in Table 3.4.

The given results prove that for blocks with low changes, metrics D0 and DE are
quite close. Their difference from metrics for varied (flexible) blocks is 2–3 orders.
This allows to select easily the threshold separating flexible and inactive blocks. It
should be noted that metric D0 change range is 1.7–2 times more than that metric
DE. Higher change range of statistics D0 proves its preference. Thresholds h0 and
hE are connected with the following relation:

h0 ¼ hE

P
k;m C 1ð Þ

k;m

� �2

C 1ð Þ
0;0

� �2

Table 3.5 presents the hE thresholds averaged by frames, calculated thresholds
�h0, and percentage of varied block.

It is evident from Table 3.5, that 10-fold threshold change results in number of
blocks varied in less than 3 times. This phenomenon proves a non-criticality
of threshold selection, which separates flexible and inactive blocks being a result of
the above described test.

The possibility for use of decision rules (Eq. 3.68) with the truncated spectrum
was analyzed in different video sequences. Our analysis demonstrated that detection

Fig. 3.7 Image frames with varied blocks obtained by the full spectrum: a hE = 0.01, b hE = 0.04

Table 3.4 Brightness component’s statistics for the image (Fig. 3.7)

Average statistics Flexible fragments Inactive fragments

Eyes Lips Hair Cheeks Forehead

D0 · 10
3

158.90878 74.04290 39.61026 0.82546 0.11304

DE · 103 91.14991 62.19916 25.68643 0.81213 0.11298

3 Methods for Detecting of Structural Changes … 81



can be performed by the truncated spectrum and even by one spectral component
(mean block brightness). Figure 3.8 shows an example of video sequence frames
with varied blocks defined by metrics DE with the full spectrum (N = 64) (see
Fig. 3.8a) and one spectral component (N = 1) (see Fig. 3.8b). A threshold value
was hE = 0.01 for both figures.

Table 3.6 provides the percentage of the changed blocks detecting by the whole
spectrum (D(N), %) and by one spectral component (D(1), %) as well as by a
relative (DD=DN) detection error by one spectral component.

Here, DD
D Nð Þ ¼ D Nð Þ�D 1ð Þ

D Nð Þ . It is evident from the Table 3.6 that the maximum rel-

ative error of variation detection by one spectral component does not exceed 0.16.
Therefore, the block changes can be satisfactorily detected by one spectral com-
ponent. Test performed with test video sequences “Container”, “Foreman”, and
“Suzie” demonstrated the similar results.

The spectral video sequence block variation detection algorithm has been used to
implement the MGDCT video coding concept [25]. Our proposed concept applies
the DCT/GDCT orthogonal transforms in a video codec structure.

To decrease a video codec bit-rate, the algorithm (Eq. 3.68, 3.69) was used to
detect the reliable inter-frame video sequence variations. Figures 3.9–3.10 show
video frames with marked blocks that have varied because of moving objects.
Figure 3.9 applied “Container” video sequence, and Fig. 3.10 presents a frame of a
remote video monitoring system. The detectors apply the GDCT transform.

Fig. 3.8 Image frames with varied blocks obtained by full and truncated spectrum: a full
spectrum, b truncated spectrum

Table 3.5 Thresholds averaged by frame and percentage of block varied

Parameter Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

hE 0.005 0.010 0.020 0.025 0.030 0.040 0.050
�h0 0.011 0.021 0.042 0.053 0.064 0.085 0.106

Varied
blocks, %

60.56 50.74 38.52 33.15 30.00 26.11 21.11
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Combining the Chebyshev sampling and spectral detection allows to reduce
information processing in 4–8 times depending on frame variations.

3.5.3 Experimental Research of MSSIM and MNSSIM1(2)
Criteria

Notwithstanding that the MSSIM structural similarity criterion is one of the criteria
closest to the human vision system; it has drawbacks of certain types. For example,
in the case of image blur, pulse noise, or blocking, the MSSIM criterion provides
values that are not quite similar with vision system. The MNSSIM 1(2) criteria have
not such effects [5]. Let us investigate the MSSIM, MNSSIM1(2) criteria under
various artifacts.

The MSSIM, MNSSIM1(2) criteria at pulse interference.
The image called “Lena” was used to test impact of pulse interference on the

MSSIM, the MNSSIM1, and the MNSSIM2 criteria. Figure 3.11 shows images
disturbed by pulse noise of “pepper” and “salt/pepper” types with probability
p = 0.05, and the MSSIM, the MNSSIM1, and the MNSSIM2 criteria values
corresponding to them.

A pulse noise was setup by two characteristics: an intensity determined by noise
probability in pixel p and a noise type with three variants such as “salt”, “pepper”,
and “salt/pepper”. The mathematical model of pulse noise for different noise peaks
is determined as follows. Let X ¼ xij

 �
be a non-distorted image and Y ¼ yij

 �
be a

distorted image. For the “pepper” type noise pulse, the model is setup by Eq. 3.70.

yij ¼ 0 : prob:p
xij : prob:1� p


 �
ð3:70Þ

For the “salt” type noise pulse, the model is setup by Eq. 3.71.

yij ¼ 255 : prob:p
xij : prob:1� p


 �
ð3:71Þ

For the “salt/pepper” type noise pulse, the model is setup by Eqs. 3.72–3.73.

Table 3.6 Percentage of changed blocks

hE 0.005 0.01 0.02 0.025 0.03 0.04 0.05

D(N), % 60.56 50.74 38.52 33.15 30.00 26.11 21.11

D(1), % 56.67 47.96 39.63 36.11 31.85 27.78 24.44

ΔD/DN 0.0642 0.0547 −0.0288 −0.0894 −0.0617 −0.0638 −0.1579
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f0 ¼ 0; prob:0:5 : noise``pepper00

255; prob:0:5 : noise``salt00


 �
ð3:72Þ

yij ¼ f0 : prob:p
xij : prob:1� p


 �
ð3:73Þ

Figure 3.12 shows a behavior of criteria depending on probability of pulse
interference p. Plots from Fig. 3.12а, b confirm that the MSSIM criterion greatly
reduces the image quality at low interference intensity. The MNSSIM1 and the
MNSSIM2 matrices demonstrate values more identical to human vision system and
close to each other (a human vision filters the low interference intensity). At higher
interference intensity, the MSSIM criterion passes to the “saturation” mode.

Fig. 3.10 Spectral variation
detection in the video
monitoring system

Fig. 3.9 Spectral variation
detection in “Container” test
sequence
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The MNSSIM1(2) criteria values within region of high p values almost reduce,
when this parameter increases

The MSSIM and the MNSSIM1(2) criteria at quasi-Gaussian noise.
Let us clarify the term of quasi-Gaussian interference in a digital image. Each of

color components RGB takes on a value from 0 to 28 − 1 = 255 at integer 8-bit
signal level presentation. Therefore, each color RGB component at quasi-Gaussian

Fig. 3.11 “Lena” image: a “pepper” noise with p = 0.05, MSSIM = 0.371, MNSSIM1 = 0.899,
MNSSIM2 = 0.902, b “salt/pepper” noise with p = 0.05, MSSIM = 0.315, MNSSIM1 = 0.899,
MNSSIM2 = 0.898

Fig. 3.12 The MSSIM,
MNSSIM1 and MNSSIM2
values versus pulse noise
intensity and noise type:
a “salt” type of pulse noise,
b “salt/pepper” type of pulse
noise
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interference is formed by Eq. 3.74, where ηij ∈ N(0, 1) is the independent Gaussian
values with zero mean and unit variance for each image pixel, r0 � 1 is a nor-
malizing factor that control noise variance, [z] is an integral part of number z.

yij¼ xij þ r0 � gij � 25
 �þ 27 ð3:74Þ

Coefficient 25 = 32 and deviation 27 = 128 are selected so that resulting values
with probability p = 0.995 are within the interval 0� yij � 255. If a resulting value
is beyond this interval, i.e. yij\0 or yij [ 255, then a rounding is performed to
yij ¼ 0 or yij ¼ 255, respectively.

The images from database of Laboratory for Image and Video Engineering [26]
were used as test images. Subjective quality values of Difference Mean Opinion
Score (DMOS) values for images from this database were also obtained. For images
noisy with Gaussian noise, the MSSIM, the MNSSIM1, and the MNSSIM2 criteria
values as well as the rank Spearman correlation coefficients between these criteria
values and DMOS values were calculated.

The rank Spearman correlation coefficients between the MSSIM, the MNSSIM1,
and the MNSSIM2 criteria and DMOS values are computed as follows. The cal-
culated values of the MSSIM, the MNSSIM1, and the MNSSIM2 criteria are
assigned with ranks, and ranks are also set to respective DMOS values. Then the
Spearman correlation coefficient is calculated. A number of elements in sequence n
equals 49 for all quality criteria and their respective DMOS values. For each of the
MSSIM, the MNSSIM1, and the MNSSIM2 quality criteria, the obtained correla-
tion coefficients were checked. Test results of image “Parrots” are provided by
Table 3.7.

It is evident from Table 3.7, that the MSSIM criterion values and variation range
are higher than those of the MNSSIM1 and the MNSSIM2 criteria at quasi-
Gaussian noise. This is explained by the fact that the MSSIM criteria structure is
more suitable for images with Gaussian statistics. All criteria are strongly correlated
with DMOS.

With strong image block distortion or blue, the MSSIM criterion produces an
overestimate. At the same time the MNSSIM1 and the MNSSIM2 criteria have low
values, thus corresponding to low visual quality of the distorted images. Figure 3.13
presents an image with block distortion and high JPEG algorithm compression.

Table 3.7 Correlation results for image “Parrots”

r0 DMOS MSSIM MNSSIM1 MNSSIM2

1.000 68.72 0.027 0.012 0.017

0.129 47.03 0.252 0.152 0.208

0.063 38.93 0.518 0.314 0.359

0.031 28.50 0.788 0.520 0.541

Spearman correlation
coefficient

−0.955 −0.929 −0.921
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Possibilities of use of structural similarity criteria to detect changes of actions.
During research, an issue concerning the ability of structural similarity criteria to
track the contextual similarity of images was investigated. To solve this task, the
MSSIM, theMNSSIM1, and the MNSSIM2 criteria were applied to different images.
It was discovered that, when comparing absolutely different images with the same
spatial sizes the MSSIM criteria gives unreasonably high values, whereas the
MNSSIM1 and the MNSSIM2 criteria values are practically equal to 0. Figure 3.14
shows an example of images compared by the MSSIM, the MNSSIM1, and the
MNSSIM2 criteria values. The obtained data proves that the non-parametric modi-
fications are more relevant to the name of structural similarity criterion.

Comparison of pixel and spectral image analysis algorithms.
Multiple tests with real images and video sequences were made by the authors to
discover the features and the abilities provided by the above described algorithms.
The following intermediate conclusion can be performed:

1. The MSSIM and the MNSSIM1(2) structural similarity criteria are efficient to
detect changes in frame and video sequence fragments, when images are pro-
cessed without compression.

2. The non-parametric the MNSSIM1(2) criteria require more operations as
compared with the MSSIM and the spectral algorithm. However, their values
are more compatible with human perception.

3. Among all analyzed algorithms, the MNSSIM1(2) has the highest immunity to
pulse and other non-Gaussian interference.

4. The MNSSIM1(2) non-parametric criteria could be applied to determine
change in a video sequence scene and to detect external frames added to a video
sequence.

Fig. 3.13 “Lena” image
recovered after JPEG
compression.
MSSIM = 0.634,
MNSSIM1 = 0.073,
MNSSIM2 = 0.079
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5. The algorithms for spectral structural variation detection obtained by maximum
likelihood method are optimal with Gaussian interference.

6. The quasi-optimal detection algorithms applying statistics are similar to the
optimal ones by their characteristics. They are not sensitive for threshold
selection and image type. The spectral algorithms are more sensitive to change
of an image type as compared to the MSSIM and the MNSSIM1(2).

7. The difference in statistics values with or without texture variations are tens/
hundreds times in case of spectral algorithms and several times in the case of
the MSSIM and the MNSSIM1(2) algorithms.

8. As for computation expenses, the spectral and pixel algorithms are approxi-
mately similar. They can operate in the real-time mode.

9. The spectral algorithms are very efficient in real-time operation, especially
when they are embedded to video codecs. It has been found that these algo-
rithms can operate in the truncated spectrum width with a few components.

10. A promising spectral basis is the discrete Chebyshev transform (GDCT). The
GDCT spectrum is the most fast decreasing for orthogonal transforms.

11. A combining of the Chebyshev sampling and a spectral detection allows to
reduce information processing in 4–8 times depending on a frame variation
nature.

12. To solve a certain task, the proposed algorithms should be selected by their
resource consumption, computation automation degree, and image distortions.

Fig. 3.14 Comparison of two images with MSSIM = 0.339, MNSSIM1 = −0.004,
MNSSIM2 = −0.006
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3.6 Conclusion

The chapter covers the use of the MSSIM, the MNSSIM1, and the MNSSIM2
criteria and the spectral algorithms D0 and DE to detect changes in a video sequence
or to compare textures of various images. The developed MNSSIM1(2) criteria and
the spectral algorithms D0 and DE can be used in artificial vision systems, in many
other scopes connecting with variations of texture, spectral and correlation
parameters of recorded signals. To meet a certain challenge, the selection of the
proposed algorithm should be determined by the required resource intensity, an
automation degree, and availability of image distortions. The proposed algorithms
are used to design novel video codecs and intelligent video record systems. To
conclude one can emphasize that evolution of basic PSNR, the MSSIM criteria and
the spectral criteria, etc. is proceeding in [27–31].
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Chapter 4
Hierarchical Adaptive KL-Based
Transform: Algorithms and Applications

Roumen Kountchev and Roumiana Kountcheva

Abstract In this research, a novel approach for processing of single images and
image sequences by using the Hierarchical Adaptive Karhunen-Loeve (KL)-based
Transform (HA-KLT) is presented This approach is also suitable for block image
coding, and for intra-frame processing of groups of correlated images. The main
objective of the new transform is to achieve a high decorrelation of the image
blocks (resp., images in the processed groups) as a result of the multi-level pro-
cessing through adaptive KL transform of the sub-blocks (resp., sub-groups), on
which the corresponding blocks (groups) are divided. After the execution of each
hierarchical transform level, the sub-blocks (sub-groups) are rearranged in corre-
spondence to their mutual correlation, starting from these, with maximum corre-
lation. The kernel of the multi-level transform is the Adaptive KL Transform
(AKLT), whose transform matrix could be a size 2 × 2 or 3 × 3. In the work, the
algebraic method is presented, which calculates the elements of the AKLT matrix of
size 2 × 2 and 3 × 3. Here the algorithms for 2D HA-KLT and 3D HA-KLT are also
given in detail for the blocks of a single image and for the inter-frame processing of
groups of images. The evaluations of the computational complexity of these
algorithms are obtained, compared to that of the famous KLT. The basic advantages
of the new approach for image processing through HA-KLT are a lower compu-
tational complexity and the parallel recursive calculations with small number of
hierarchical levels, which opens the ability for real-time coding of video sequences.
The HA-KLT algorithms are a basis for the creation of new efficient methods for
compression of groups of correlated images and single images without visual loss,
compression with motion compensation for TV and multi-view images, compres-
sion of medical and multispectral images, image fusion, face recognition in the
reduced features’ space, object tracking in video sequences, among others.
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compression

4.1 Introduction

The Karhunen-Loeve Transform (KLT), known also as Hotelling transform or
Principal Component Analysis (PCA), is an object of large number of investiga-
tions presented in many scientific monographs [1–8] and papers [9–18]. This
transform is related to the class of linear statistical orthogonal transforms for groups
of vectors, obtained, for example, from the pixels of one image or from a group of
matrix images. The KLT has significant role in the analysis and processing of
digital images, and also in the systems for computer science and pattern recogni-
tion. It has a wide variety of application areas: for the creation of optimal models in
the image color space [9], the compression of signals and groups of correlated
images [2–7, 10, 11], the creation of the recognized objects descriptors in the
reduced features’ space [14–16], image fusion [17] and segmentation [18], image
steganography [19], etc.

The KLT has some significant properties:

• It is an optimal orthogonal transform for a group of vectors, because as a result
of the transform, the maximum part of their energy is concentrated in a mini-
mum number of their components.

• After reduction of the low-energy components of the transformed vectors, the
corresponding restored vectors have minimum Mean Square Error (MSE).

• The components of the transformed vectors are not correlated. In particular, in
case that the probability distribution of the vectors is Gaussian, after the KLT
their components become decorrelated and independent.

The Independent Components Analysis (ICA) [20] is very close to the KLT in
respect of their calculation complexity and properties.

Analysis of the image transform methods based on the KLT is presented in
Sect. 4.2. The Hierarchical Adaptive Karhunen-Loeve based Transform (HA-KLT)
for a group of images is developed in Sect. 4.3. Section 4.4 provides the analytical
definition of the adaptive KLT matrix of size 2 × 2 and 3 × 3. The HA-KLT
applications for sequences of motion-compensated TV frames are discussed in
Sect. 4.5. Section 4.6 includes the evaluations of the computational complexity of
the two-level HA-KLT 3 × 3 for a group of images, and experimental results for
group of consecutive images are located in Sect. 4.7. Section 4.8 involves the
principle of the HA-KLT for single image. Section 4.9 provides the algorithm for
recursive 2D HA-KLT, and evaluation of the computational complexity of 2D HA-
KLT is drawn in Sect. 4.10. The experimental results for single images are situated
in Sect. 4.11. Conclusion is located in Sect. 4.12.
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4.2 Analysis of the Image Transform Methods Based
on the KLT

One of the basic problems, which limit the use of the KLT, is due to its high
computational complexity, which grows up together with the number of the vec-
tors’ components. Various approaches are offered to overcome this problem. One of
them is based on the KLT calculation through iterative methods, which do not
require the definition of the characteristic polynomial of the vectors’ covariance
matrix (the first approach). In this case, the KLT is executed in two consecutive
stages. In the first stage, the original image matrix is transformed into a three-
diagonal form through QR decomposition [21, 22], and after that—into a bi-
diagonal, by using the Householder’s transforms [23]. In the second stage, on the
bi-diagonal matrix are applied iterative methods, for which the iterations are
stopped, after the needed accuracy is achieved. The iterative KLT calculation
through the methods of Jacobi and Givens [24, 25] is based on the execution of a
sequence of orthogonal transforms with rotational matrixes of size 2 × 2.

One well-known approach is based on the KLT calculation by using neural
networks [26] as a type of generalized hebbian or multilayer perceptron networks
(the second approach). They both use iterative learning algorithms, for which the
number of needed operations can reach several hundreds. The third approach is
based on an algorithm, known as sequential Karhunen-Loeve Transform/Singular
Value Decomposition (KLT/SVD) [27]. The basic idea is as follows: the image
matrix is divided into blocks of small size, and on each the KLT based on the QR
decomposition is applied. In the start of the processing, the KLT is calculated for
the first block (for example, the upper left), and after that the iterative KLT cal-
culations for each of the next blocks, using the transform matrix and already cal-
culated for the preceding block, are used. In the iterative process, the KLT
components with very small eigen values are neglected. The fourth approach based
on the recursive calculation of the covariance matrix of the vectors, its eigen values,
and eigen vectors is presented in [28, 29]. In the paper [30], a hierarchical recursive
block processing of matrices is introduced.

The next fifth approach is based on the so-called Distributed KLT [31, 32],
where each vector is divided into sub-vectors and on each a partial KLT is applied.
Then the global iterative approximation of the KLT through conditional KLT,
based on side information, is executed. This approach was further developed in
[33], where one algorithm for adaptive two-stage KLT, combined with JPEG2000,
and aimed at the compression of hyper-spectral (HS) images is offered. A similar
algorithm for enhanced search is the Integer Sub-optimal KLT (Int SKLT) [34],
which uses the lifting factorization of matrices. This algorithm is basic for the idea
of KLT, executed through a multilevel strategy, also called “divide-and-conquer”
(D&C) [35, 36]. In correspondence with this idea, the KLT for a long sequence of
images is executed after dividing it into smaller groups, for which the corre-
sponding KLT have lower computational complexity. By applying the KLT on
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each group, a local decorrelation is obtained only. For this reason, the eigen images
for the first half of each group in the first decomposition level are used as an input
for the next (second) level of the multi-level transform, etc. In the case, when the
KLT group contains two components only, the corresponding multilevel transform
is called the Pair-wise Orthogonal Transform (POT) [37].

The experimental results obtained for this transform, when used for HS images,
show that it is more efficient than the Wavelet Transform (WT) in respect of rate-
distortion performance, computational cost, component scalability, and memory
requirements. Another approach is based on the Iterative Thresholding Sparse PCA
(ITSPCA) [38] algorithm, aimed at the reduction of the features’ space dimension
with minimum dispersion loss. A fast calculation algorithm (Fast KLT) is known
for the particular case, when the images are represented through the first order
Markov model [39]. In correspondence with the algorithm for the PCA randomi-
zation [40], a certain number of rows (or columns) of the covariance matrix are
selected on the basis of an accidental choice, and on the basis of this approximation,
the computational complexity of the KLT is reduced. In the works [41–43], hybrid
methods for compression of multi-component images through the KLT combined
with SVD, wavelets, adaptive mixture of principal components model, and
JPEG2000 are presented.

The analysis of the famous KLT methods shows that:

• In case of iterative calculations, the number of iterations depends on the
covariance matrix of the vectors. In many cases, this number is very high, which
makes the real-time KLT calculation extremely difficult.

• In case that the method for multilevel D&C is used, the eigen images from the
second half of each group are not transformed in the next levels and as a result,
they are not completely decorrelated. Something more—the selection of the
length of each group of images is not optimized.

In this research, a novel approach for decorrelation of groups (sequences) of
correlated images by using a transform based on the HA-KLT [44, 45] is offered.
This approach permits to reduce the computational complexity, and to use a parallel
processing for all sub-groups of images obtained after dividing the initial sequence
into smaller parts in correspondence with their mutual correlation. The same
approach is generalized for the block coding of single images [46].

The image processing through the KLT could be executed in various directions:
it could be applied on a group of images or on a single image only. In the first case,
the KLT is used for inter-frame (3D) processing of the group, and in the second
case,—for intra-frame image processing, which could be also 1D or 2D.

The Karhunen-Loeve Transform for inter-frame (3D) processing of a group of
correlated images is investigated in Sect. 4.2.1, and the Karhunen-Loeve transform
for intra-frame (2D) processing of single images is presented in Sect. 4.2.2.
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4.2.1 Karhunen-Loeve Transform for Inter-frame (3D)
Processing of a Group of Correlated Images

The way used to define the vectors ~Xs ¼ ½x1s; x2s; . . .; xRs�T ; s = 1, 2, …, S (S = N2)
for a group of R correlated images [Xr] (for r = 1, 2, …, R), each of size N × N is
shown in Fig. 4.1. In this case, the components of the vector ~Xs comprise the pixels
with same spatial position in each of the images from the processed group [Xr].
Through applying the KLT on these vectors, the transformed vectors
~Ys ¼ ½y1s; y2s; . . .; yRs�T , which represent the group of the decorrelated images, are
obtained. They are represented by the group of matrices [EIr] of size N × N called
“eigen” (or “principal”) images. To reduce the information surplus in the group
[EIr], the first k “eigen” images only are retained, which contain the basic part of the
energy of the whole group, and the remaining (R − k) are cut-off (set to be equal to
zero).

The direct/inverse KLT is applied on the vectors ~Xs, resp. ~Ys; is defined by
Eq. 4.1, where ½U�T ¼ ½~U1; ~U2; . . .; ~UR� is the transposed KLT matrix of size R × R.

~Ys ¼ ½U�ð~Xs �~lÞ ~Xs ¼ ½U�T~Ys þ~l ð4:1Þ

The transposed KLT matrix contains the eigen vectors ~Ur ¼ ½U1r;U2r; . . .;URr�T
for r = 1, 2, …, R of the covariance matrix [KX] of the vectors ~Xs. The last matrix is

of size R × R and is defined by Eq. 4.2, where ~l ¼ Eð~XsÞ ¼ ð1=SÞPS
s¼1

~Xs ¼
½l1; l2; . . .lR�T is the mean vector of length R, E(·) is the meaning operator.

½KX � ¼ ð1=SÞ
XS
s¼1

~Xs~X
T
s �~l~lT ð4:2Þ

Each of the orthonormalized eigen vectors ~Ur of the covariance matrix [KX] is
the solution of the linear system of (R + 1) Eq. 4.3, where λr are the eigen vectors of
[KX].

½KX �U
*

r ¼ kr~Ur jj~Urjj2 ¼ U2
1r þ U2

2r þ � � � þ U2
Rr ¼ 1 ð4:3Þ

Each eigen value λr of the matrix [KX] is the root of its’ characteristic equation
(a polynomial of degree R) provided by Eq. 4.4, where [I] is a singular matrix of
size R × R.

det ½KX � � kr½I�j j ¼ 0 ð4:4Þ

Since [KX] is a symmetrical matrix towards the main diagonal, its eigen values λr
are real numbers [47], whose sequential numbers are defined by Eq. 4.5.
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k1 � k2 � k3 � � � � � kR ð4:5Þ

The algorithm for inter-frame (3D) processing of a group of R correlated images
through KLT comprises the following basic steps:

• Calculation of the covariance matrix [KX] in correspondence with Eq. 4.2 on the
basis of the vectors ~Xs.

• Calculation of all roots λr of the characteristic Eq. 4.4, numbered in accordance
with Eq. 4.5.

• Solving the system of Eq. 4.3 for each eigen value λr and definition of the
components of the corresponding eigen vector ~Ur ¼ ½U1r;U2r; . . .;URr�T for
r = 1,2,…,R. When all vectors ~Ur are calculated, is built the KLT matrix
½U�T ¼ ½~U1; ~U2; . . .; ~UR� of size R × R.

• The direct KLT is applied on each vector ~Xs ¼ ½x1s; x2s; . . .; xRs�T for
s = 1, 2, …, S, and, as a result, the group of eigen images [EIr] for
r = 1, 2, …, R in accordance with Eq. 4.1 is obtained.

• The first k < R eigen images [EIr] for r = 1, 2, …, k are retained and is executed

the inverse KLT on the vectors ~̂Ys in correspondence with Eq. 4.1. On the basis

of the so obtained vectors ~̂Xs is restored the whole group of images ½X̂r� for
r = 1, 2, …, R.

Let us assume that the components of the vectors ~Xs and ~Ys have same
dimension. Then the Compression Ratio (CR) for the group of R images of size
N × N obtained in result of the use of KLT, is defined by Eq. 4.6, where R (1 + R) is
the global number of the components [Φ] of the matrix and of the vector~l, needed

for the execution of the inverse KLT on the vectors ~̂Ys.
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Fig. 4.1 Direct and inverse KLT for a group of R = 4 images, each of size N × N pixels. The
number of the retained eigen images is k = 3, and the number of the 4-dimensional vectors for each
group of images is S = N2
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CRðkÞ ¼ N2R
N2k þ Rð1þ RÞ ¼

R
k þ ðR=N2Þð1þ RÞ ð4:6Þ

Since practically R << N2 from Eq. 4.6 it follows.

CR kð Þ � R=k for k ¼ 1; 2; . . .;R� 1 ð4:7Þ

For small values of k, the compression ratio is high, but then also grows up the
MSE of the approximation e2, which for the KLT is minimum in respect of other
famous linear transforms [11]. This error is defined in accordance with Eq. 4.8,
where σr

2(y) represents the variance of the components yrs of the transformed vectors
~Ys.

e2ðkÞ ¼
XR
r¼kþ1

kr ¼
XR
r¼kþ1

r2r ðyÞ ð4:8Þ

For example, if k = R/2 from Eqs. 4.7 to 4.8, then Eq. 4.9 is obtained.

CRðR
2
Þ � 2 e2ðR

2
Þ ¼

XR
r¼ðR=2Þþ1

kr ð4:9Þ

If k = R − 1, then CR ≈ 1 and e2 � 0: In this case, there is no compression and no
information loss. Then for the group of eigen images [EIr] for r = 1, 2, …, R, could
be used only algorithms for the lossless compression. The main problem of the
described algorithm for 3D KLT is the high computational cost, which grows up
together with the number of images R in the group.

4.2.2 Karhunen-Loeve Transform for Intra-frame (2D)
Processing of Single Images

For every single image, represented by the matrix [X] of size N × N, could be
applied 2D KLT on blocks of size R × R for R << N, and usually N/R is set to be
integer. The implementation of the 2D-KLT is simplified, executing it as two 1D
KLTs. For this, the 2D KLT is calculated in two consecutive steps. In the first step,
the 1D KLT is applied on the horizontally oriented vectors ~Xs ¼ ½x1s; x2s; . . .; xRs�T ,
for s = 1, 2, …, S = N2/R, which are contained in each image block [X] in corre-
spondence with Fig. 4.2. From the transformed vectors ~Ys ¼ ½y1s; y2s; . . .; yRs�T , the
matrix [Y] of size N × N is built. In the second step, the 1D KLT is applied on the
vertically oriented vectors of the blocks of the matrix [Y].
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The calculation of the 1D KLT in each step is executed in correspondence with
Eqs. 4.1–4.5 for S = N2/R. In the first step, the direct 1D KLT is applied in
horizontal direction (1D KLTx), Eq. 4.10, where ~lx ¼ Eð~XsÞ is an R-dimensional
mean vector, [Φx] is a matrix of size R × R, which contains the eigen vectors ~Ur;x of
the covariance matrix [KX]. This matrix is defined by Eq. 4.10.

~Ys ¼ ½Ux�ð~Xs �~lxÞ ð4:10Þ

The vectors ~Ys ¼ ½y1s; y2s; . . .; yRs�T build the matrix [Y] of size N × N, which is
divided again into blocks of size R × R. In the second step on the vertically oriented
vectors of each block is applied the direct 1D KLT in vertical direction (1D KLTv),
Eq. 4.11, where ~lv ¼ Eð~YsÞ is an R-dimensional mean vector, [Φv] is a matrix of
size R × R built from the eigen vectors ~Ur;v of the covariance matrix [KY].

~Zs ¼ ½Uv�ð~Ys �~lvÞ ð4:11Þ

The covariance matrix [KY] is defined by Eq. 4.12.

½KY � ¼ ð1=SÞ
XS
s¼1

~Ys~Y
T
s �~lv~l

T
v for S ¼ N2=R ð4:12Þ

The vectors ~Zs ¼ ½z1s; z2s; . . .; zRs�T build the matrix [Z] of size N × N, which
contains blocks of size R × R. The energy of the elements of each block is con-
centrated in a small number only, placed in the upper left corner of the block.

When k < R2 high-energy coefficients from each block are retained, the image
½X̂� could be restored after inverse 2D KLT based on the inverse 1D KLT (executed
in two steps in vertical and horizontal directions) with minimum MSE. The com-
pression ratio for the image [X] after using the block 2D KLT is defined by

NxN NxN

RxR

1D KLTx 1D KLTv

RxR

[X]

[Y]

[Z]

NxN

Fig. 4.2 Two-step transform through the direct 1D KLT of the vectors for each block of size
R × R: first step is in a horizontal direction, second step is in a vertical direction
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Eq. 4.13, where 2R (1 + R) is the global number of the components of the matrices
[Φx] and [Φv] of vectors~lx; ~lv; needed for the execution of the two-step inverse 1D
KLT in horizontal and vertical directions.

CR ¼ N2

kN2=R2 þ 2RðRþ 1Þ ¼
R2

k þ ½2R3ðRþ 1Þ�=N2 ð4:13Þ

Practically R2 << N2, and as a result from Eq. 4.13 it follows.

CR kð Þ � R2=k for k ¼ 1; 2; . . .;R2 ð4:14Þ

The basic difficulties in the use of the 2D KLT for image processing are men-
tioned below:

• The higher computational complexity of the KLT compared to that of the
determined orthogonal transforms of the kind Discrete Fourier Transform
(DFT), Discrete Cosine Transform (DCT), Hadamard Transform, etc.

• In general, there is no “fast” KLT algorithm (there is such only for the class of
images, which can be represented as a first order Markov process [39]).

4.3 Hierarchical Adaptive Karhunen-Loeve Based
Transform for a Group of Images

In this research, a novel method for decorrelation of groups (sequences) of corre-
lated images [44, 45] is proposed, which reduces the computational complexity of
the transform and permits a parallel processing of the sub-groups of images
obtained after dividing the original sequence into smaller parts (Sect. 4.3.1). The
novel approach called as the HA-KLT and based on sub-groups of three images or
two images is investigated in Sects. 4.3.2 and 4.3.3, respectively.

4.3.1 Determination of the Length of the Group of Images,
Processed with the Hierarchical Adaptive KLT

It is assumed that a sequence of P images will be processed. For this, the sequence
is divided into groups, which contain R < P correlated images each. Prior to
execution of the HA-KLT for each group, it is necessary to select the optimal group
length R, which is defined on the basis of the cross-correlation between the images
[X1] and [Xu] in the sequence P, all of them of same size (N × N).

4 Hierarchical Adaptive KL-Based Transform … 99



• The normalized cross-correlation coefficient ρ1,u, where (0 ≤ ρ1,u ≤ 1) for the
couple of images [X1] and [Xu] (u = 1, 2,…, P), is defined by Eq. 4.15 [47],
where S = N × N is the number of pixels in the images[Xu], �x1 ¼ Eðx1s Þ;
�xu ¼ Eðxus Þ, xs1, xs

u are the values of the pixels with same spatial position in the
images [Xl] and [Xu].

q1;u ¼
PS

s¼1 ðx1s � �x1Þ � ðxus � �xuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPS
s¼1 ðx1s � �x1Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPS
s¼1 ðxus � �xuÞ2

q for u ¼ 1; 2; . . .;P ð4:15Þ

• The number of images R in the group is defined by Eq. 4.16, where δ is a preset
threshold with a small value (0 ≤ δ << 1), experimentally defined. In case, that
the so obtained value for R does not satisfy the condition R/2 or R/3 to be integer
number, a new value is calculated for the number of images in the “extended”
group Re = R + mint, where Re/2 or Re/3 is integer. However, the number of
added images mint should be minimal.

q1;u u ¼ Rð Þ�� ��� d for u ¼ 1; 2; . . .;P ð4:16Þ

An example for mint = 1 (group extension with one interpolated image “int”,
colored in green) is shown in Fig. 4.3. The “extended” images could be defined in
various ways, for example, by using zero interpolation (in this case the last Rth
image in the group substitutes each interpolated image) or through linear interpo-
lation (the pixels of each interpolated image are calculated through weighted mean
of the corresponding pixels with same spatial position in the images R and (R + 1).
For mint = 0, Re = R, and the group is not extended. One example for the definition
of Re for R = 4, 5, …, 16 and changing number of images in the sub-groups (two or
three) in each hierarchical level of the HA-KLT is given in Table 4.1.

Group of  Images 1 → R

Sequence of P Images

-- -- R-1 R+2 2R1 R-2 N--2 IntR

mint=1 (zero interpolation)

Extended Group of Images 1 → Re=R+mint Group of Images 2 → R 

R+1

Fig. 4.3 One example for setting the number of images Re in the extended group on the basis of
the cross-correlation coefficient value
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4.3.2 Hierarchical Adaptive KLT Based on Sub-groups
of Three Images

Let on the basis of the already done correlation analysis, the sequence P is divided
on Groups Of Pictures (GOP) with length R = 9. Then, each GOP is divided into 3
sub-groups, each containing three images. In this case the HA-KLT algorithm with
n = 2 hierarchical levels is shown in Fig. 4.4.

In the first HA-KLT hierarchical level each group of three images is processed
by the AKLT with a transform matrix of size 3 × 3. As a result, three eigen images
from one sub-group (colored in yellow, blue, and green, respectively) are obtained.
All nine eigen images are then rearranged so that in the first group to be placed the
images, colored in yellow color only, which are on first place in their initial sub-
group; in the next new sub-group—only the eigen images, colored in blue, which
were on second place in their initial group, etc.

In the next (second) hierarchical HA-KLT level, the AKLT with a new transform
matrix of size 3 × 3 calculated on the basis of the eigen images in the new sub-
groups is applied on each three eigen images from all new sub-groups of the
processed GOP. In result, three new eigen images for each sub-group (colored in
yellow, blue, and green again) are obtained. After that a new rearrangement of the
so obtained nine eigen images in the way, already explained for the first HA-KLT
level, follows. The new group of 9 images is decorrelated, and the main part of its
energy is concentrated in the first image, a small part is in the second image, and the

Table 4.1 Setting the number of images in the group, the hierarchical levels, and the number of
interpolated images for sub-groups of two or three images

R Number of
hierarchical
levels, n

Number of sub-groups
with two images in one
level

Number of sub-groups
with three images in one
level

mint Re

4 2 2 – 0 4

5 3 3 – 1 6

6 3 3 – 0 6

7 3 4 – 1 8

8 3 4 – 0 8

9 2 – 3 0 9

10 3 – 4 2 12

11 3 – 4 1 12

12 3 – 4 0 12

13 3 – 5 2 15

14 3 – 5 1 15

15 3 – 5 0 15

16 4 8 – 0 16

4 Hierarchical Adaptive KL-Based Transform … 101



remaining 7 images contain a negligible part of the global group energy only. In this
way, a possibility for efficient compression of the processed GOP and its successful
restoration after inverse transform is created, because the HA-KLT is a reversible.
For the restoration of the processed GOP, it is needed additional information about
the transform matrix of each three images in all hierarchical levels. For the HA-
KLT processing of a GOP of R = 9 images, the global number of transform matrices
of size 3 × 3 is 6, and they contain 54 elements in total. In case, that the elements of
each transform matrix are represented through 3 Euler rotation angles, their number
is reduced down to 18.

GOP1 for R= 9 

Input 
Images

3 4 7 10 P1 6 8 952

AH-KLT 
Level 1

311 122 133 111 P111 322222 233 333211

AKLT-12 AKLT-22 AKLT-32

Reordering for level 2 in GOP1

31 12 13 11 P11 3222 23 33

13 21 31 11 P11 2322 32 33

21

12

AKLT-11 AKLT-21 AKLT-31

Reordering for level 1 in GOP1

AH-KLT
Level 2

211 222 133 111 N111 322311 233 333122

4=222 7=1336=322 P1=111 5=3112=122

Output 
Images

3=211 10=1118=233 9=333

GOP2

Fig. 4.4 Processing of a group of R = 9 images through two-level hierarchical adaptive KLT 3 × 3
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4.3.3 Hierarchical Adaptive KLT Based on Sub-groups
of Two Images

In this case, let us assumed that a sequence P divided on the basis of the correlation
analysis into GOPs of length R = 8 is processed. Then each GOP is divided into
sub-groups of two images each. In this case, the HA-KLT algorithm with n = 3
hierarchical levels is shown in Fig. 4.5. In the first hierarchical level of the HA-
KLT, the AKLT with a transform matrix of size 2 × 2 is applied on each sub-group
of two images [48]. As a result, two eigen images for each sub-group colored in
yellow and blue, respectively, are obtained. After the rearrangement of all eight
eigen images, only the first images from the first two initial sub-groups (yellow) are
placed in the first new sub-group, and in the next new sub-group—only the second
images from the first sub-groups (blue), etc. In the next hierarchical levels of the
HA-KLT, the processing of the couples of eigen images from each sub-group of the
GOP is executed in similar way through the AKLT with a matrix of size 2 × 2,
calculated on the basis of the two eigen images in the corresponding new sub-
group. The group of 8 images obtained in the third hierarchical level is decorrelated,
and the main part of its energy is concentrated in the first image; much smaller part
is in the second, and the remaining 6 images contain a negligible part of the group
energy only. In this way, an opportunity to achieve efficient compression of cor-
related GOPs and full restoration through inverse HA-KLT is created. For the GOP
restoration, additional information about the transform matrix for each couple of
images in all hierarchical levels is needed: in total these 12 matrices of size 2 × 2 for
a GOP of R = 8 images. In this case, the global number of the elements in the
transform matrices is 48, and after their representation through corresponding
rotational angles, it is reduced to 12. The comparison with the algorithm, shown in
Fig. 4.4, proves that the required additional information is smaller, but the number
of hierarchical levels is increased by one.

4.4 Analytical Definition of the AKLT Matrix of Size 2 × 2
and 3 × 3

For the KLT matrices of small size (2 × 2 and 3 × 3), the exact analytical solution
for the calculation of their elements exists. The obtained results for the calculation
of the elements of the transform AKLT matrices of size 3 × 3 and 2 × 2 used for the
processing of the sub-groups of images in accordance with the algorithms and
shown in Figs. 4.4 and 4.5.

The algebraic method for calculation of the AKLT matrix of size 3 × 3 is
developed in Sect. 4.4.1. The evaluation of the decorrelation of the images trans-
formed through HA-KLT 3 × 3 is represented in Sect. 4.4.2. Section 4.4.3 provides
the algebraic method for determination of the AKLT matrix of size 2 × 2.
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GOP1   R=8 

Input 
Images

3 4 7 10 P1 6 8 952

AKLT
Level 1

122 222 142 212 P112 232132 242 112212

AKLT-12 AKLT-22 AKLT-32

Reordering for level 2 in GOP1

121 221 141 211 P111 231131 241 111

211 221 231 121 P111 141131 241 111

211

121

AKLT-11 AKLT-21 AKLT-41

Reordering for level 1 in GOP1

AKLT
Level 2

212 222 232 122 P112 142132 242 112122

4=132 7=2426=232 P1=112 5=2222=212

Output 
Images

3=122 10=2128=142 9=112

GOP2

AKLT-31 AKLT-11

Reordering for l. 1 in GOP2

AKLT-42 AKLT-12

122 222 142 212 P112 232132 242 112212

AKLT-13 AKLT-23 AKLT-33

AKLT
Level 3

AKLT-43 AKLT-13

Reordering for l. 2 in GOP2

Fig. 4.5 Processing of a group of R = 8 images through three-level hierarchical adaptive KLT
2 × 2
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4.4.1 Algebraic Method for Calculation of the AKLT Matrix
of Size 3 × 3

For better explanation, here the structure of a sub-group of three images is shown in
Fig. 4.6. From the three images of S pixels each, the vectors ~Cs ¼ C1s;C2s;C3s½ �T
for s = 1, 2, …, S are obtained. The vectors ~Cs are transformed into vectors
~Ls ¼ ½L1s; L2s; L3s�T through direct AKLT using the matrix [Φ] of size 3 × 3 [48] by
Eq. 4.17.

L1s
L2s
L3s

2
4

3
5 ¼

U11 U21 U31

U12 U22 U32

U13 U23 U33

2
4

3
5 ðC1s � �C1Þ

ðC2s � �C2Þ
ðC3s � �C3Þ

2
4

3
5 for s ¼ 1; 2; . . .; S ð4:17Þ

The elements Φij and C1;C2;C3 are defined by Eqs. 4.18–4.28.

U1m ¼ Am=Pm U2m ¼ Bm=Pm U3m ¼ Dm=Pm form ¼ 1; 2; 3 ð4:18Þ

Am ¼ ðk3 � kmÞ½k5ðk2 � kmÞ � k4k6� Bm ¼ ðk3 � kmÞ½k6ðk1 � kmÞ � k4k5�
ð4:19Þ

Dm ¼ k6 2k4k5 � k6 k1 � kmð Þ½ � � k25 k2 � kmð Þ Pm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
m þ B2

m þ D2
m

q
ð4:20Þ

�C1 ¼ EðC1sÞ �C2 ¼ EðC2sÞ �C3 ¼ EðC3sÞ ð4:21Þ

k1 ¼ EðC2
1sÞ � ð�C1Þ2 k2 ¼ EðC2

2sÞ � ð�C2Þ2 k3 ¼ EðC2
3sÞ � ð�C3Þ2 ð4:22Þ

k4 ¼ EðC1sC2sÞ � ð�C1Þð�C2Þ k6 ¼ EðC2sC3sÞ � ð�C2Þð�C3Þ ð4:23Þ

k5 ¼ EðC1sC3sÞ � ð�C1Þð�C3Þ ð4:24Þ

k1 ¼ 2

ffiffiffiffiffiffi
pj j
3

r
cos

u
3

� �
� a
3

k2 ¼ �2

ffiffiffiffiffiffi
pj j
3

r
cos

uþ p
3

� �
� a
3

k3 ¼ �2

ffiffiffiffiffiffi
pj j
3

r
cos

u� p
3

� �
� a
3

ð4:25Þ

q ¼ 2ða=3Þ3 � ðabÞ=3þ c p ¼ �ða2=3Þ þ b

u ¼ arccos �q=2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðjpj=3Þ3
q� � ð4:26Þ

a ¼ �ðk1 þ k2 þ k3Þ b ¼ k1k2 þ k1k3 þ k2k3 � ðk24 þ k25 þ k26Þ ð4:27Þ
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c ¼ k1k
2
6 þ k2k

2
5 þ k3k

2
4 � ðk1k2k3 þ 2k4k5k6Þ ð4:28Þ

Using the inverse AKLT, the vectors ~Ls are transformed into vectors ~Cs

(Eq 4.29).

C1s

C2s

C3s

2
4

3
5 ¼

U11 U12 U13

U21 U22 U23

U31 U32 U33

2
4

3
5 L1s

L2s
L3s

2
4

3
5þ

�C1
�C2
�C3

2
4

3
5 for s ¼ 1; 2; . . .; S ð4:29Þ

The matrix of the inverse AKLT is provided by Eq. 4.30.

U11 U12 U13

U21 U22 U23

U31 U32 U33

2
4

3
5 ¼ U½ ��1¼ U½ �T ð4:30Þ

For the restoration of vectors ~Cs ¼ ½C1s;C2s;C3s�T through inverse AKLT are
needed not only the vectors ~Ls ¼ ½L1s; L2s; L3s�T , but also the elements Φij of the
matrix [Φ] and the values of �C1; �C2; �C3 as well. The total number of these elements
could be reduced representing the matrix [Φ] as the product of the matrices[Φ1(α)],
[Φ2(β)], [Φ3(γ)] and the rotation around the coordinate axes for each transformed
vector in Euler angles α, β and γ, respectively (Eq 4.31), where [Φ1(α)], [Φ2(β)],
[Φ3(γ)] are calculated by Eq. 4.32.

U½ � ¼
U11 U21 U31

U12 U22 U32

U13 U23 U33

2
4

3
5 ¼ U1ðaÞ½ � U2ðbÞ½ � U3ðcÞ½ � ¼ Uða; b; cÞ½ � ð4:31Þ

[C1] [C2] [C3]

C11 C21 C31

C12 C22 C32

C13

C14

C23 C33

C24 C34

1C
2C

3C
4C

Fig. 4.6 A sub-group of
three images from the
processed GOP
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U1ðaÞ½ � ¼
cos a � sin a 0

sin a cos a 0

0 0 1

2
64

3
75

U2ðbÞ½ � ¼
cos b 0 � sinb

0 1 0

sin b 0 cos b

2
64

3
75

U3ðcÞ½ � ¼
cos c � sin c 0

sin c cos c 0

0 0 1

2
64

3
75

ð4:32Þ

In this case the elements of the matrix [Φ] are represented by the relations
included in Eq. 4.33.

U11 ¼ cos a cos b cos c� sin a sin c U21 ¼ � cos a cos b sin c� sin a cos c

U31 ¼ � cos a sin b

U12 ¼ sin a cos b cos cþ cos a sin c U22 ¼ � sin a cos b sin cþ cos a cos c

U32 ¼ � sin a sin b

U13 ¼ sin b cos c U23 ¼ � sin b sin c U33 ¼ cos b

ð4:33Þ

The matrix of the inverse AKLT is defined by Eq. 4.34.

U½ ��1¼ U3ð�cÞ½ � U2ð�bÞ½ � U1ð�aÞ½ � ð4:34Þ

For the calculation of the elements of the inverse matrix [Φ]−1, it is enough to
know the values of the three rotation angles α, β and γ defined by Eq. 4.35.

a ¼ � arcsin U32

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� U2

33

q	 

b ¼ arccos U33ð Þ

c ¼ arccos U13

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� U2

33

q	 
 ð4:35Þ

In result, the number of the needed values for the calculation of the matrix [Φ]−1

is reduced from 9 down to 3, i.e. 3 times reduction. The elements L1s, L2s, L3s for
s = 1, 2, …, S comprise the pixels of the first, second, and third eigen image in the
sub-group of images with elements C1s, C2s, C3s.
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4.4.2 Evaluation of the Decorrelation of the Images
Transformed Through HA-KLT 3 × 3

For the first level of HA-KLT 3 × 3, the corresponding covariance matrices of size
3 × 3 for each group of vectors ~Cs;p for p = 1, 2, 3 and s = 1, 2, …, S, are computed
by Eqs. 4.36–4.38, respectively (here λ1

1,p, λ1
1,p, λ1

1,p are the corresponding eigen
values of the covariance matrices ½K1;p

L �), where ½KC1;p � is defined by Eq. 4.39.

½K1;1
L � ¼ ½U1

1�½KC1;1 �½U1
1�t ¼

k1;11 0 0
0 k1;12 0
0 0 k1;13

2
64

3
75 ð4:36Þ

½K1;2
L � ¼ ½U1

2�½KC1;2 �½U1
2�t ¼

k1;21 0 0
0 k1;22 0
0 0 k1;23

2
64

3
75 ð4:37Þ

½K1;3
L � ¼ ½U1

3�½KC1;3 �½U1
3�t ¼

k1;31 0 0
0 k1;32 0
0 0 k1;33

2
64

3
75 ð4:38Þ

½KC1;p � ¼
1
S

XS
s¼1

~Cs;p~C
t
s;p � ~mc;p~m

t
c;p

¼
k11ðpÞ k12ðpÞ k13ðpÞ
k21ðpÞ k22ðpÞ k23ðpÞ
k31ðpÞ k32ðpÞ k33ðpÞ

2
64

3
75 for p ¼ 1; 2; 3

ð4:39Þ

The covariance matrix of size 9 × 9 of the 9-component vectors ~Cs in the group
of initial images GOP in the first level of the HA-KLT 3 × 3 is represented by
Eq. 4.40, where ½K1

Lk ;Lp � is the cross-correlation matrix of size 3 × 3 of the

3-component vectors ~L1sk and ~L1sp from the groups k and p in the first level of
HA-KLT 3 × 3 after rearrangement of the calculated eigen images and is computed
by Eq. 4.41.
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½K1
L� ¼

1
S

XS
s¼1

~Cs~C
t
s � ~mc~m

t
c

¼

k1;11 0 0

0 k1;12 0

0 0 k1;13

2
64

3
75 ½K1

L1;L2 � ½K1
L1;L3 �

½K1
L1;L2 �

k1;21 0 0

0 k1;22 0

0 0 k1;23

2
64

3
75 ½K1

L2;L3 �

½K1
L1;L3 � ½K1

L2;L3 �
k1;31 0 0

0 k1;32 0

0 0 k1;33

2
64

3
75

2
6666666666666666664

3
7777777777777777775

ð4:40Þ

½K1
Lk ;Lp � ¼ Ef~L1sk � ð~L1spÞTg � Ef~L1skgEfð~L1spÞTg for k; p ¼ 1; 2; 3; k 6¼ p ð4:41Þ

For the second level of the HA-KLT 3 × 3 the covariance matrices of size 3 × 3
for each group of rearranged vectors, obtained after the first HA-KLT level is
executed, are calculated by Eq. 4.42.

½K2;1
L � ¼

k2;11 0 0

0 k2;12 0

0 0 k2;13

2
64

3
75 ½K2;2

L � ¼
k2;21 0 0

0 k2;22 0

0 0 k2;23

2
64

3
75

½K2;3
L � ¼

k2;31 0 0

0 k2;32 0

0 0 k2;33

2
64

3
75

ð4:42Þ

The covariance matrix of size 9 × 9 of the 9-component vectors for the GOP in
the second transform level is represented by Eq. 4.43, where ½K2

Lk ;Lp � is the mutual

cross-correlation matrix of size 3 × 3 for the 3-component vectors~L2sk and~L
2
sp from

the groups k and p in the second level of HA-KLT 3 × 3 after the rearrangement of
the obtained eigen images and is computed by Eq. 4.44.
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½K2
L� ¼

k2;11 0 0
0 k2;12 0
0 0 k2;13

2
64

3
75 ½K2

L1;L2 � ½K2
L1;L3 �

½K2
L1;L2 �

k2;21 0 0
0 k2;22 0
0 0 k2;23

2
64

3
75 ½K2

L2;L3 �

½K2
L1;L3 � ½K2

L2;L3 �
k2;31 0 0
0 k2;32 0
0 0 k2;33

2
64

3
75

2
6666666666666664

3
7777777777777775

ð4:43Þ

½K2
Lk ;Lp � ¼ Ef~L2sk �~L2spgT � Ef~L2skgEf~L2spgT for k; p ¼ 1; 2; 3; k 6¼ p ð4:44Þ

On the basis of the so obtained matrix ½K2
L�, it could be evaluated the decorre-

lation degree of the corresponding eigen images in the processed GOP.
When the full decorrelation of these images is achieved, the matrix ½K2

L� is
diagonal, for which is necessary to be satisfied the condition from Eq. 4.45.

½K2
Lk ;Lp � ¼ Ef~L2sk � ð~L2spÞTg � Ef~L2skgEfð~L2spÞTg ¼ ½0� for k; p ¼ 1; 2; 3; k 6¼ p ð4:45Þ

The limitation of the number of HA-KLT 3 × 3 levels could be done even
without achieving the full decorrelation in the processed group of images, if
Eq. 4.46, where δ is a pre-selected threshold with a small value, is satisfied.

jEf~L2k � ð~L2pÞTg � Ef~L2kgEfð~L2pÞTgj� d ð4:46Þ

4.4.3 Algebraic Method for Determination of the AKLT Matrix
of Size 2 × 2

From each two digital images of S pixels each, shown in Fig. 4.7, the vectors
~Cs ¼ C1s;C2s½ �t for s = 1, 2, …, S are defined.

Each vector ~Cs is transformed into the corresponding vectors ~Ls ¼ L1s; L2s½ �T
through direct AKLT, using the matrix [Φ] of size 2 × 2 by Eq. 4.47, where
~mc ¼ ½�C1; �C2�T is the mean vector with components �C1 ¼ EðC1sÞ and �C2 ¼ EðC2sÞ.

L1s
L2s

� �
¼ U11 U21

U12 U22

� � ðC1s � �C1Þ
ðC2s � �C2Þ

� �
ð4:47Þ

Through the inverse AKLT, the vectors ~Ls (s = 1, 2, …, S) are transformed into
the vectors ~Cs provided by Eq. 4.48.
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C1s

C2s

� �
¼ U11 U12

U21 U22

� �
L1s
L2s

� �
þ �C1

�C2

� �
ð4:48Þ

The elements Φij of matrix [Φ] are computed by Eq. 4.49 with parameters
defined in Eqs. 4.50–4.51.

½U� ¼ U11 U21

U12 U22

� �
¼ cos h sin h

� sin h cos h

� �
ð4:49Þ

h ¼ arctg
U21

U11

	 

¼ arctg

2k3

k1 � k2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 � k2Þ2 þ 4k23

q
0
B@

1
CA ¼ arctg

b
aþ c

	 


ð4:50Þ

k1 ¼ EðC2
1sÞ � ð�C1Þ2 k2 ¼ EðC2

2sÞ � ð�C2Þ2 k3 ¼ EðC1sC2sÞ � ð�C1Þ ð �C2Þ
a ¼ k1 � k2 b ¼ 2k3 c2 ¼ a2 þ b2

ð4:51Þ

The eigen values of the covariance matrix of the vectors ~Cs are calculated by
Eq. 4.52.

k1 ¼ 1
2

ðk1 þ k2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 � k2Þ2 þ 4k23

q� �

k2 ¼ 1
2

ðk1 þ k2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 � k2Þ2 þ 4k23

q� � ð4:52Þ

[C1] [C2] 

C11 C21

C12 C22

C13

C14

C23

C24

1C
2C

3C
4C

Fig. 4.7 A sub-group of two
images from the original GOP
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4.5 HA-KLT Applications for Sequences
of Motion-Compensated TV Frames

The AKLT transform with a 3 × 3 matrix could be used to enhance the video
compression efficiency in accordance with the standards MPEG-1/2/4 and H.26x.
For this, from each GOP/frames in the TV video sequence should be extracted the
P frames only, which are motion compensated.

Practically, the number of frames in one GOP is usually 12, and correspond-
ingly, the number of P-frames is 3. On each sub-group of frames P1, P2, P3 could be
applied the direct AKLT with a matrix of size 3 × 3, in result of which are obtained
the frames L1, L2, L3 in the sub-group, which substitute the corresponding P-frames
in the GOP. In the first frame L1 is concentrated the main part of the energy in the
three P-frames, which permits to increase the compression after entropy coding for
the frames L1, L2, L3. In the decoding part, the inverse AKLT with a matrix of size
3 × 3 is executed on the frames L1, L2, L3, and, as a result, the frames P1, P2, P3 are
restored. The direct transform of the frames in the original sequence is shown in
Fig. 4.8.

The vectors ~Cs ¼ ½C1s;C2s;C3s�T for s = 1, 2,…, S, calculated from frames P1,P2,
P3, extracted from the processed GOP for the first 4 pixels: ~C1 ¼ ½C11;C21;C31�T ;
~C2 ¼ ½C12;C22;C32�T ; ~C3 ¼ ½C13;C23;C33�T ; ~C4 ¼ ½C14;C24;C34�T are represented
in Fig. 4.9.

For the example from Fig. 4.9, the pixels C12, C13, C14 in the frame P1 are on the
surface of a moving object (or of the moving background, if a moving TV camera is
used). In this case, it is necessary to define the position of these pixels in the next
frames P2 and P3 by using one of the Motion Compensation (MC) algorithms [3, 4].
As a result, the movement vector for every pixel (or for a block of pixels), on the
basis of which is defined the position of the pixel (block) in the next frame, is
calculated. In case that the vectors ~Cs ¼ ½C1s;C2s;C3s�T for the sub-group of frames
P1, P2, P3 are defined, the applying of the MC and the efficiency of the AKLT in
respect of the decorrelation in the image sub-group is significantly enhanced.
Together with this, the ability to get higher compression ratio is increased, if this
information is losslessly coded. The described approach for enhancement of the
compression efficiency for TV video sequences, obtained in accordance with the
standards of the kind MPEG-1/2/4, H.26x, could be generalized for all frames in
same GOP. For this, the similar three-level HA-KLT shown in Fig. 4.4 could be
applied on the sequence of 12 frames in the GOP. In result, it is opened the ability
to get a higher compression ratio of a TV video sequence than that the obtained one
with the approach shown in Fig. 4.9, where the hierarchical transform is not used.
This new approach will be further investigated in theory and experimentally.
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4.6 Evaluation of the Computational Complexity
of the Two-Level HA-KLT 3 × 3 for a Group of Images

The computational complexity of the two-level HA-KLT algorithm based on 3 × 3
matrices is compared with that of the KLT algorithm with a matrix of size 9 × 9,
because the two-level HA-KLT is equivalent to the KLT with a 9-component
vector. For this, both algorithms are compared in respect to the number of opera-
tions O (additions and multiplications) [49] needed for the calculation of the fol-
lowing components:

• The covariance matrices [KC]—in total 6 for the first algorithm, each of size
3 × 3, and one matrix [KC] of size 9 × 9—for the second algorithm.

• The eigen values and eigen vectors of the corresponding matrices [KC].

[P1] [P2] [P3]

C11 C21 C31
1C

3C

4C

Vector without
Motion 
Compensation 

Vector with
Motion 
Compensation 

Motion Vector 

C12

C13
C14

C22

C24

C23

C34

2CC32

C33

Moving 
Object 

Fig. 4.9 Sub-group of three
P-images from the original
GOP

GOPout

I B BB B B B B BPP P

P1 P2 P3

GOPin

Motion compensated 
predicted frames

Adaptive KLT
with matrix 3x3 

L1 L2 L3I B B BB B B B B

Extraction of 
predicted frames

Fig. 4.8 APCA transform for a sub-group of MC P-frames extracted from the GOP
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• The eigen images of each obtained GOP by using both algorithms.

On the basis of the computational complexity analysis given in [44] for the
AKLT with a matrix of size 3 × 3 and for the KLT with a matrix of size R × R, it
follows that for the HA-KLT with matrices of size 3 × 3 and for the KLT with a
matrix of size 9 × 9 we have:

• The number of operations needed for the calculation of the elements kij for all 6
matrices [KC] of size 3 × 3 (for the HA-KLT) and for one matrix [KC] of size
9 × 9 (for the KLT), is determined by Eqs. 4.53–4.54.

OkðRÞjR¼3¼ 3RðRþ 1Þ½RðR� 1Þ þ 2ðRþ 2Þ� ¼ 576 ð4:53Þ

OkðRÞjR¼9¼ ð1=2ÞRðRþ 1Þ½RðR� 1Þ þ 2ðRþ 2Þ� ¼ 4;230 ð4:54Þ

• The number of operations needed for the calculation of the eigen values of the
HA-KLT matrices [KC] and of the KLT matrix [KC], when the QR decompo-
sition and the Householder transform of (R − 1) steps were used [50], is cal-
culated in Eqs. 4.55–4.56.

OvalðRÞjR¼3¼ 282 ð4:55Þ

OvalðRÞjR¼9¼ ðR� 1Þð4
3
R2 þ 17

6
Rþ 7Þ ¼ 1;124 ð4:56Þ

• The number of operations needed for the calculation of the eigen vectors of the
matrices [KC] for the HA-KLT and for the matrix [KC] of KLT, in case that
iterative algorithm with four iterations is used, is defined by Eqs. 4.57–4.58.

OvecðRÞjR¼3¼ 275 ð4:57Þ

OvecðRÞjR¼9¼ R½2Rð4Rþ 5Þ � 1� ¼ 6;633 ð4:58Þ

• The number of operations needed for the calculation of a group of nine eigen
images (each of S pixels) and obtained in result of the direct HA-KLT and the
KLT for zero mean vectors, is provided by Eqs. 4.59–4.60.

OHA�KLTðRÞjR¼3¼ 6SRð2R� 1Þ ¼ 90S ð4:59Þ

OKLTðRÞjR¼9¼ SRð2NR � 1Þ ¼ 153S ð4:60Þ

Then the Total number of Operations (TO), needed for the HA-KLT and for the
KLT, is computed by Eqs. 4.61–4.62.

114 R. Kountchev and R. Kountcheva



TO1ð3Þ ¼ ½Okð3Þ þ Ovalð3Þ þ Ovecð3Þ þ OHA�KLTð3Þ� ¼ 1;133þ 90S ð4:61Þ

TO2ð9Þ ¼ ½Okð9Þ þ Ovalð9Þ þ Ovecð9Þ þ OKLTð9Þ� ¼ 11;996þ 153S ð4:62Þ

The reduction of the total number of operations needed for the HA-KLT and
compared to that of the KLT, could be evaluated using the coefficient
η(S) (Eq 4.63).

gðSÞ ¼ TO2ð9Þ
TO1ð3Þ ¼

11;996þ 153S
1;133þ 90S

ð4:63Þ

For example, for S = 100 η(100) = 2.96, for S = 1,000 gð1;000Þ ¼ 1:81, and for
S = 1,000 gð1Þ ! 1:7, respectively. Hence, TO1(S) is at least 1.7 times smaller
than TO2(S) for each value of S (in average, about 2 times). For higher values of
N (the number of images in one group) in the range from 9 up to 16 and for larger
values of S, the coefficient η(S) increases from 1.7 up to 2.1.

Thememory volume needed for the KLT execution on a group of R images each of
S pixels is R2 + RS + R = R(R + S + 1) in accordance with [37]. For the execution of the
HA-KLT based on sub-groups of three images and combined with recursive calcu-
lation of the hierarchical levels, the needed memory is 3[(R/3)2 + (R/3)S + (R/3)] = R
[R/3 + S + 1]. From this follows, that the HA-KLT does not need more memory than
the KLT. Something more—in fact, there is a small reduction of the needed memory,
as it could be seen from the relations, given above.

4.7 Experimental Results for Group of Consecutive Images

On the basis of the two-levels HA-KLT algorithm, shown in Fig. 4.4, various
experiments were executed with sequences of medical Computer Tomography (CT)
images of size 512 × 512 pixels, 8 bpp. In case, that the model of the exponential
approximation of the function ρ0,u = f(u) is assumed [51], which in accordance with
Eq. 4.15 represents the normalized cross-correlation coefficient of the images in the
group u, then the optimum group length R is defined by the so-called “range of
statistical dependence”, for which ρ0,u goes down to δ = 1/e = 0.37, compared to its
maximum value ρ0,0 = 1. The averaged relation ρ0,u = f(u) obtained experimentally
for the examined test sequence of CT medical images is shown in Fig. 4.10.

In this case from Eq. 4.16 it follows, that the group length is R = 9. In accordance
with this, the test sequence was divided into groups (Set 1, …, Set 7), containing
R = 9 consecutive CT images each. As an example, one of the groups—Set 3,
which contains CT image 1, 2, …, 9, is shown in Fig. 4.11. The eigen images
obtained after applying the two-level HA-KLT on the test group from Set 3 are
shown in Fig. 4.12.
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As it could be seen from Fig. 4.12, the main part of the energy of all nine images
is concentrated in the first eigen image, and the energy of each next eigen image is
decreased quickly. This is confirmed by the data shown in Table 4.2, for the power

Coefficient ρ

ρ

0,u= f(u) 

0, 0δ = 0.37

u=N-1 u
10 20 30

Fig. 4.10 Setting the group length R = 9, through comparing the value of the coefficient ρ0,u and
the threshold δ = ρ0,0/e = 0.37

Image 1 Image 2 Image 3

Image 1 Image 2 Image 3

Image 1 Image 2 Image 3

Fig. 4.11 Group of R = 9 consecutive CT images from Set 3
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distribution of the pixels of the eigen images from Set 3 after the first and second
HA-KLT level, before and after their rearrangement (Fig. 4.4).

In Table 4.2, the power distribution of all eigen images in Set 3 before and after
each operation, and the relative mean power distribution are represented. On the
basis of the data given in Table 4.2, the corresponding graphics shown in Figs. 4.13,
4.14, and 4.15, which represent the power distribution of all nine eigen images, are
built.

The mean and the relative mean power distribution of the pixels from all nine
eigen images in Set 1,…, Set 7 are given in Table 4.3. The data in the last column
show, that in the first three eigen images are concentrated 95.7 % of the total mean
power of all nine images in the GOP. From Table 4.3, it follows that the mean
power of the first eigen image for all sets is more than 250 times larger than that of

Fig. 4.12 Eigen images obtained for Set 3 after performing two-levels HA-KLT
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Table 4.2 Power distribution of all eigen images from Set 3, before and after each operation

Eigen
image

Level 1 (not
arranged)

Level 1
(arranged)

Level 2 (not
arranged)

Level 2
(arranged)

Relative
mean

1 18,170 18,170 53,041 53,041 220

2 715 18,056 686 1,100 5

3 341 18,029 316 686 3

4 18,056 715 1,100 710 3

5 748 389 710 316 1

6 389 694 305 305 1

7 18,029 341 523 523 2

8 694 389 326 326 1

9 394 394 242 242 1

Fig. 4.13 Power distribution
for Set 3, level 1: a not
arranged, b arranged
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each of the next eight eigen images. The experimental results were obtained with
the software implementation of HA-KLT in Visual C and Windows environment.

The values for the pixels of the eigen images obtained in result of the direct two-
level HA-KLT were calculated with full accuracy, and after corresponding
rounding they were transformed into 8-bit numbers. If on the 8 bpp eigen images is
applied the inverse two-level HA-KLT, then the quality of corresponding restored

Fig. 4.14 Power distribution
for Set 3, level 2: a not
arranged, b arranged

Fig. 4.15 Relative mean
power distribution for Set 3,
level 2 (arranged)
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images in the GOP evaluated by their Peak Signal-to-Noise Ratio (PSNR)
is ≥ 45 dB. This was confirmed by the results from Fig. 4.16 obtained for the eigen
images in Set 3 of Fig. 4.11 after the inverse HA-KLT in correspondence with the
algorithm and shown in Fig. 4.4. Hence, the sequence of 9 images could be restored
with retained visual quality. This result illustrates the ability for efficient com-
pression of a sequence of CT images, when the HA-KLT is used.

The results for the compression ratio of the test CT images (Set 1, …, Set 7),
obtained through two-level HA-KLT combined with arithmetic coding and through
JPEG with 100 % quality of the restored images are compared by plots in Fig. 4.17.
The results show higher compression ratio of the new method for same quality of
the restored images.

The basic qualities of the new HA-KLT for image sequences are following:

1. The lower computational complexity than KLT for the whole GOP due to the
lower complexity of the AKLT compared to the case, for which for the cal-
culation of the KLT matrix are used numerical methods [50].

2. The structure of the HA-KLT algorithm is suitable for parallel implementations,
which is of high importance for all applications aimed at real time processing of
image sequences.

Fig. 4.16 Evaluation of the quality (PSNR in dB) of the restored images from Set 3 after the
inverse two-levels HA-KLT executed on the eigen images from Fig. 4.11

Fig. 4.17 Evaluation of the compression ratio for sequences of CT images Set 1, …, Set 7
processed with two-level HA-KLT and JPEG with the highest quality
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3. The HA-KLT could be combined with the Branched Inverse Pyramid Decom-
position (BIPD) [52] with nonlinear pre-processing and post-processing based
on the pixel-by-pixel Adaptive Histogram Matching (AHM) transform for
achievement of efficient compression.

4. The HA-KLT could be also used for efficient lossless compression of image
sequences in the case, when the number of eigen images in the group is not
reduced.

5. There is also a possibility for further development of the HA-KLT algorithms
through use of Integer KLT for lossless coding of image sequences by analogy
with [53–54] in compression of video sequences from stationary TV camera,
compression of multi-view images, image fusion, face recognition, etc.

4.8 Principle of the Hierarchical Adaptive KL-Based
Transform for Single Image

The kernel of the HA-KLT for single images is the AKLT, which is one-dimen-
sional. It is related to halftone images, divided into blocks of size 2 × 2 (for n = 1).
In this case, from each row of the matrix image [C] of size N × N (N = 2p) the
number S = N2/2 = 22p−1 of two-component vectors ~Cs ¼ ½C1s;C2s�T ,
s = 1, 2, …, S could be defined. For example, from the image [C] of size 4 × 4
shown in Fig. 4.18 the S = 8 horizontally oriented vectors are obtained: ~C1 ¼
½C11;C21�T ; ~C2 ¼ ½C12;C22�T ;…, ~C8 ¼ ½C18;C28�T : Each vector is transformed into
the corresponding vectors~Ls ¼ ½L1s; L2s�T through AKLT with a matrix [Φ], of size
2 × 2 (AKLT 2 × 2). To apply the 2D-KLT on a halftone image, its matrix is
divided into blocks, for which is twice executed the 1D-KLT (first, on the rows and
after that on the columns of the transformed blocks).

The basic difficulty in the execution of the 1D-KLT on each row or column for a
block of large size is related to the high computational complexity of the transform
matrix. To solve this problem, in [46] it is offered the 2D HA-KLT for halftone
images based on the AKLT 2 × 2. The principle of this transform is as follows: all
blocks (each of size 2n × 2n) of the matrix image [C] of size N × N are transformed

(a) (b)

Fig. 4.18 An example matrix image of size 4 × 4, which contains eight vectors: a before
transform, b after the AKLT with a 2 × 2 matrix
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sequentially (by their rows and columns) in n consecutive steps by using KL
matrices of size 2 × 2. For this, from each row of the processed block a vector of 2n

components is obtained. The number of all vectors obtained from one block is 2n,
and from all blocks it is 2n × (N2/2n). The components of each vector are divided
into 2n−1 groups, from which are obtained 2-component vectors or N2/2n vectors in
total. On the vectors from each group the adaptive KLT with a matrix of size 2 × 2
(AKLT 2 × 2) is applied. The transformed 2n components of each vector, which
correspond to one row of the block, are rearranged so that their neighboring
components have maximum mutual correlation. On all rearranged vectors of 2n

components each, the next step of the n-step transform is applied in similar way,
and etc. When all n steps on the rows are finished, it is executed again on the
columns of such transformed blocks. Each AKLT 2 × 2 starts with the verification
of the condition β ≠ 0 (in accordance with Eq. 4.51). In case that it is not satisfied,
the next steps of the hierarchical transform in the selected direction (x or y) are not
executed. In result, a spatial decorrelation of the elements of the transformed blocks
is achieved. The original image [C] is restored applying the inverse 2D HA-KLT on
the matrix of size N × N by using all transformed blocks.

To illustrate the principle described above, it is shown an example for 2D
HA-KLT of the image [C] of size 4 × 4 pixels (p = 2) in Fig. 4.19. In this case, in
the first stage of the transform it is necessary to apply the AKLT 2 × 2 two times
sequentially on all two-component vectors oriented horizontally and then (in the
second stage)—on all transformed vectors oriented vertically. After each
AKLT 2 × 2, one half of the columns or rows should be rearranged.

Fig. 4.19 2D HA-KLT for a block of size 4 × 4
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The rearrangement with a group of four arrows oriented horizontally or vertically is
shown in Fig. 4.18.

Each arrow shows the position of a given column or a row, before and after the
rearrangement. In Fig. 4.19, the figures of the 8 two-component vectors, on which
the AKLT 2 × 2 for each level is applied, are also shown. The first two components
of each transformed vector are marked with two numbers, which indicate the
number of the component and this vector, respectively. The wide arrows show the
transform directions of the matrix [C] for each level of the 2D HA-KLT. In result of
the execution of all levels of HA-KLT on the rows and columns, the final trans-
formed matrix [L] is obtained. The algorithm for the inverse 2D HA-KLT is exe-
cuted in accordance with Fig. 4.19, but in this case all arrows should be in inverse
directions.

For the example from Fig. 4.18, the direct 2D HA-KLT for the block [C] of size
4 × 4 executes the following steps below:

Step 1. From the elements of the matrix [C] shown in Fig. 4.18, all horizontally
oriented two-component vectors ~Cs ¼ ½C1s;C2s�T , s = 1, 2, …, 8 are
defined.

Step 2. In the first level, the direct AKLTx2 × 2 is applied on all vectors ~Cs by
Eq. 4.64, where Φjt

1x, �C1, �C2, are defined through vectors ~Cs on the basis of
the Eqs. 4.50–4.51.

L1x1s
L1x2s

� �
¼ U1x

11 U1x
21

U1x
12 U1x

22

� � ðC1s � �C1Þ
ðC2s � �C2Þ

� �
ð4:64Þ

In result of the execution of Eq. 4.64, the matrix [Lx
1] is obtained.

Step 3. Half of the columns of the matrix [Lx
1] are rearranged, and in result the

matrix [Lx
1R] is obtained. The relation between these two matrices is pre-

sented by Eq. 4.65 or Eq. 4.66, where [Px] is a matrix of size 4 × 4 used for
the rearrangement of the columns of [Lx

1].

L1Rx
11 L1Rx

12 L1Rx
13 L1Rx

14

L1Rx
21 L1Rx

22 L1Rx
23 L1Rx

24

L1Rx
31 L1Rx

32 L1Rx
33 L1Rx

34

L1Rx
41 L1Rx

42 L1Rx
43 L1Rx

44

2
6664

3
7775 ¼

L1x11 L1x21 L1x15 L1x25
Lx
12 L1x22 L1x16 L1x26

L1x13 L1x23 L1x17 L1x27
L1x14 L1x24 L1x18 L1x28

2
6664

3
7775

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

2
664

3
775

ð4:65Þ

½L1Rx � ¼ ½L1x �½Px� ð4:66Þ

In this case, the rearrangement is executed as a place exchange for columns
2 and 3 of [Lx

1].
From the matrix [Lx

1R], the vectors ~L1Rsx ¼ ½L1Rx
1s ; L1Rx

2s �T , s = 1, 2, …, 8 (see
Fig. 4.18) are defined, whose components are calculated by Eqs. 4.67–4.68.
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L1Rx
1s ¼ L1x1s for s ¼ 1; 2; 3; 4 L1Rx

2s ¼ L1x1s for s ¼ 5; 6; 7; 8 ð4:67Þ

L1Rx
1ðsþ4Þ ¼ L1x2s for s ¼ 1; 2; 3; 4 L1Rx

1ðs�4Þ ¼ L1x2s for s ¼ 5; 6; 7; 8

ð4:68Þ

Step 4. In the second level, the direct AKLTx2 × 2 is applied again on each of the
rearranged vectors~L1Rx

s , as shown in Eq. 4.69, where Φjt
2x, �L1Rx

1 and �L1Rx
2 are

defined through the vectors ~L1Rx
s on the basis of Eqs. 4.50–4.51.

L2x1s
L2x2s

� �
¼ U2x

11 U2x
21

U2x
12 U2x

22

� � ðL1Rx
1s � �L1Rx

1 Þ
ðL1Rx

2s � �L1Rx
1 Þ

� �
for s ¼ 1; 2; . . .; 8 ð4:69Þ

Step 5. The columns of such obtained matrix [Lx
2] are rearranged in accordance

with [Px] (Eq 4.70).

½L2Rx � ¼ ½L2x �½Px� ð4:70Þ

In result the second rearranged matrix is obtained by Eq. 4.71.

½L2Rx � ¼
L2x11 L2x15 L2x21 L2x25
L2x12 L2x16 L2x22 L2x26
L2x13 L2x17 L2x23 L2x27
L2x14 L2x18 L2x24 L2x28

2
6664

3
7775 ð4:71Þ

Step 6. From the elements of the matrix [L2Rx ], the vectors ~Fs ¼ ½F1s;F2s�T ,
s = 1, 2,…, 8 are defined. They are shown in Fig. 4.19, whose components
are calculated by Eqs. 4.72–4.73.

~F1 ¼ ½L211; L212�T ~F2 ¼ ½L215; L216�T ~F5 ¼ ½L213; L214�T ~F6 ¼ ½L217; L218�T
ð4:72Þ

~F3 ¼ ½L221; L222�T ~F4 ¼ ½L225; L266�T ~F7 ¼ ½L223; L224�T ~F8 ¼ ½L227; L228�T
ð4:73Þ

The execution of steps 7–10 shown in Fig. 4.19 requires on level 1 to be applied
the direct AKLTy2 × 2 on each vertically oriented vector ~Fs ¼ ½F1s;F2s�T ,
s = 1, 2, …, 8 and rearrangement of the rows of the obtained matrix [Ly

1], and in

level 2—the same transform on the rearranged vectors ~L1Rsy ¼ ½L1Ry

1s ; L1Ry

2s �T ,
s = 1, 2, …, 8 with second rearrangement of the rows of the matrix [L2y ], so that to
obtain the matrix [L]. In this case, the matrix used for the rearrangement of the rows
is [Py] = [Px]

T, and the rearrangement is executed in correspondence with Eq. 4.74.
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LiRy
h i

¼ Py
� �

Liy
h i

for i ¼ 1; 2 ð4:74Þ

The rearrangement is executed by exchanging the places of rows 2 and 3 of the
matrix [Ly].

4.9 Algorithm for Recursive 2D Hierarchical Adaptive
KLT

To simplify the implementation of the 2D HA-KLT algorithm shown in Fig. 4.19,
here let us suppose that it will to be executed recursively in correspondence with the
example, shown in Fig. 4.20. Two approaches exist for the implementation of the
recursive transform, recursion in direction y only or recursion first in horizontal
direction and after that—in vertical direction. In the first case (shown in Fig. 4.20
with red arrows), the matrix [L2Rx ] is transposed after the finalized step 6. As a result,
the vectors ~Fs ¼ ½F1s;F2s�T are oriented in horizontal direction (in similar way as
for ~Cs ¼ ½C1s;C2s�T . After that, on ~FT

s ¼ ½F1s;F2s� same operations are executed as
these, given in steps 2–5 for the vectors ~Cs ¼ ½C1s;C2s�T . In similar way, the
recursive inverse 2D HA-KLT in direction y is executed, but with inverse direction
of the calculations in each step. In the second case (recursion in both directions
x and y indicated with blue arrows), it is necessary to transpose the obtained
intermediate matrix between both recursive cycles for x and y.

initial 
block

AKLTx

level 1
Rx 1 AKLTx

level 2

Rx 2

AKLTy

level 1

2D transformed  
block

11 215C 15 25

12 22 16 26

13 23 17 27

14 24 18 28

]C[ 1C

2C

3C

4C

7C

8C

6C

11 21 15 25

12 22 16

13 23 17 27

14 24 18 28

26

R1
x1L

]L[ 1
x ]L[ R1

x

R1
x2L
R1
x3L
R1
x4L
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x5L

R1
x6L

R1
x7L
R1
x8L
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y ]L[ T2

y ]L[
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x
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x ]L[
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1F
T
2F
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3F
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4F

T
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T
7F
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8F

transposed  
block 

returned 
block

AKLTy

level 2

y recursion  and transposition 

Ry 1

Ry 2rearrangement 

x recursion , transposition and y recursion 

Fig. 4.20 Recursive calculation of the 2D HA-KLT for a block of size 4 × 4 through the
processing with 1D AKLT 2 × 2 on the columns and rows
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Fig. 4.21 Block diagram of the algorithm for recursive 2D HA-KLT
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In the general case, the recursive direct AKLT 2 × 2 on the rearranged vectors
~LRskðiÞ ¼ ½LR1skðiÞ; LR2skðiÞ�T in the group k obtained for the iteration i (transform
level) in direction x or y is defined by Eq. 4.75, where the matrix [Φk(i)] in iteration
i (for i = 2, 3, …, n) is defined on the basis of the vectors~LRskðiÞ ¼ ½LR1skðiÞ; LR2skðiÞ�T
from the group k = 1, 2, …, 2n−1.

L1skðiþ 1Þ
L2skðiþ 1Þ

� �
¼ Uk

11ðiÞ Uk
21ðiÞ

Uk
12ðiÞ Uk

22ðiÞ
� �

LR1skðiÞ �~LR1kðiÞ
LR2skðiÞ �~LR2kðiÞ

� �
for s ¼ 1; 2; . . .; S

ð4:75Þ

In the first iteration only (i = 1) the corresponding matrix [Φk
x(1)] in direction x is

defined on the basis of the vectors ~Csk ¼ C1sk;C2sk½ �T , and the matrix [Φk
y(1)] in

direction y—on the basis of the vectors ~Ft
sk ¼ ½F1sk; F2sk�. In this case, for

s = 1, 2, …, S, Eq. 4.59 is changed as follows in Eqs. 4.76–4.77.

Lx1skð1Þ
Lx2skð1Þ

� �
¼ Ukx

11ð1Þ Ukx
21ð1Þ

Ukx
12ð1Þ Ukx

22ð1Þ
� �

ðC1sk � ~C1kÞ
ðC2sk � ~C2kÞ

� �
� in direction x ð4:76Þ

Fy
1skð1Þ

Fy
2skð1Þ

� �
¼ Uky

11ð1Þ Uky
21ð1Þ

Uky
12ð1Þ Uky

22ð1Þ

" #
ðF1sk �~F1kÞ
ðF2sk �~F2kÞ

� �
�in direction y ð4:77Þ

The block diagram of the algorithm for recursive 2D HA-KLT is shown in
Fig. 4.21. The preferred type of the recursive calculation of the algorithm depends
on the structure used for the implementation: hardware, software, or firmware.

4.10 Evaluation of the Computational Complexity of 2D
HA-KLT

The computational complexity of the 2D HA-KLT algorithm could be evaluated in
respect of that, needed for the 2D-KLT with a transform matrix with N × N ele-
ments, for N = 2n. Both algorithms should be compared in respect of the number of
operations O (additions and multiplications) needed for the calculation of the
covariance matrix [KC] of size N × N, its eigen values and vectors, and the elements
of the transformed matrix [L]. Let us estimate the computational complexity of the
2D HA-KLT algorithm as following below:

1. The total number of operations needed for the calculation of all elements of the
[KC] matrix is computed by Eq. 4.78.
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OkovðNÞ ¼ ð1=2ÞNðN þ 1Þ½NðN � 1Þ þ 2ðN þ 2Þ� ð4:78Þ

In particular, for N/2 matrices [KC] of size 2 × 2 (N = 2) one can obtain the result
from Eq. 4.79.

OkovðNÞ ¼ ðN=2Þð3N2 þ 5N þ 12Þ ð4:79Þ

2. The eigen values of [KC] of size N × N could be calculated using the QR
decomposition and the Householder transform with (N − 1) steps [50]. In this
case, the corresponding number of operations Oval is defined by Eq. 4.80 [48].

OvalðNÞ ¼ ð1=6ÞðN � 1Þð8N2 þ 17N þ 42Þ ð4:80Þ

In case that for the calculation of the components Ujt of the eigen vector ~Ut of
[KC] the iterative algorithm is used [47], Eq. 4.81 will be received, where Φjt

(l)

and Φjt
(l+1) are the values of the component (j, t) in the iterations (l) and (l + 1),

kjp is the elements of the matrix [KC], djp is single operator, and L is the general
number of needed operations.

Uðlþ1Þ
jt ¼ UðlÞ

j t � ð1=kjjÞ½
XN
p¼1

ðkj p � ktdj pÞUðlÞ
p t �

for j ¼ 1; 2; . . .;N and l ¼ 0; 1; 2; . . .; L

ð4:81Þ

From Eq. 4.81 it follows that the number of operations needed for the calcu-
lation of the eigen vector~Ut is 2L N (N + 1). Then the total number of operations
needed to calculate all N eigen vectors is determined by Eq. 4.82.

OvecðNÞ ¼ N½2NðLN þ Lþ 1Þ � 1� ð4:82Þ

In particular, for L = 4, Eq. 4.83 is obtained.

OvecðNÞ ¼ N½2Nð4N þ 5Þ � 1� ð4:83Þ

To calculate the eigen vectors of all N/2 matrices [KC] of size 2 × 2 on the basis
of Eqs. 4.49–4.51 are needed Ovec(N) = 9 N/2 operations in total.

3. To apply the direct KLT on each N-component vector obtained for an image of
size N × N are needed N (2 N − 1) operations in total. As it was explained
before, this transform should be executed N times on all rows of the image. The
total number of needed operations is defined by Eq. 4.84.

OKLTðNÞ ¼ N2ð2N � 1Þ ð4:84Þ

Then for the execution of the direct 2D-KLT on a block of size N × N, the
number of operations is calculated by Eq. 4.85.
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O2DKLTðNÞ ¼ 2N2ð2N � 1Þ ð4:85Þ

To execute the direct HA-KLT on the N-component vector (for N = 2n) are
needed n = lg2N levels for the direct AKLT 2 × 2 on N/2 groups of 2-component
vectors. In this case, the total number of operations is provided by Eq. 4.86 and
for the 2D HA-KLT it is O2DAKLT(N) = 6 N lg2N, respectively.

OAKLTð2Þ ¼ 6nðN=2Þ ¼ 3N lg2 N ð4:86Þ

4. The total number of operations O1(N) for the divisible 2D-KLT is determined by
Eq. 4.87.

O1ðNÞ ¼ ð1=3Þ½3NðN3 � 3Þ þ 2N2ð37N þ 42Þ � 2� ð4:87Þ

The computational complexity in this case is ≈O1(N
4).

5. The total number of operations O2(N) for the divisible AM 2D-KLT is defined
by Eq. 4.88 and the corresponding computational complexity is ≈O2(N

3).

O2ðNÞ ¼ 2 ½OkovðNÞ þ Ovecð2NÞ þ OAKLTðNÞ� ¼ Nð3N2 þ 5N þ lg2 N þ 21Þ
ð4:88Þ

6. The reduction of the total number of operations needed for the 2D HA-KLT
compared to that of the 2D-KLT could be defined by Eq. 4.89 by using the
coefficient η.

gðNÞ ¼ O1ðNÞ
O2ðNÞ ¼

3NðN3 � 3Þ þ 2N2ð37N þ 42Þ � 2
3Nð3N2 þ 5N þ lg2 N þ 21Þ ð4:89Þ

For a transform matrix of size N = 4, 8, 16, η(N) = 5.6; 8.9; 12.4 is obtained. In
the general case, the reduction of the computational complexity of the 2D HA-KLT
algorithm compared to that of the 2D-KLT is approximately N times.

Fig. 4.22 CT images from a
group of ten images: a the
first image, b the tenth image
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4.11 Experimental Results for Single Images

The proposed algorithm was tested on a group of ten halftone CT images each of
size 512 × 512 pixels, 16 bpp (depending on the medical device, in practice the
images with 8, 10, 12 and 16 bpp are used). The first and the last CT image from
this group are shown in Fig. 4.22a, b. There is no specific change in the proposed
algorithm performance for all these types of images.
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Fig. 4.23 Direct three-level 1D HA-KLT, for the vectors ~Cs ¼ C1s;C2s½ �T , s = 1, 2, 3, 4
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For the experiments, all images were divided into blocks of size 8 × 8 pixels, and
the eight vectors corresponding to a row of pixels in the block of 8 components
were calculated. All eight vectors (block by block) were stored in a matrix of
32,768 rows and 8 columns going through the blocks in a progressive scan to the
end of the image. Then over the resulting matrix the direct 3-level 2D HA-KLT was
applied as shown in Fig. 4.23. Here, with L and H are marked the first (low-
frequency) components with high power and the second (high frequency) com-
ponents with low power obtained by the calculation of the AKLT 2 × 2,
respectively.

For comparison, the classic 2D-KLT was also performed. The execution times
were calculated for each CT image, being processed by both algorithms. The test
environment was IBM

®

PC
®

compatible computer with P4 processor, running at

Table 4.4 The covariance ratio and the execution times for three-level 2D HA-KLT, versus the
full separable 2D-KLT for blocks of size 8 × 8 pixels

Image Level 0 Level 1 Level 2 2D-KLT

CovR Execution
time, s

CovR Execution
time, s

CovR Execution
time, s

Execution
time, s

1 0.28 0.0076 16.25 0.0142 68.07 0.0195 0.1624

2 0.17 0.0066 9.94 0.0122 40.99 0.0177 0.1558

3 0.23 0.0057 12.94 0.0126 55.67 0.0176 0.1654

4 0.31 0.0051 17.42 0.0097 74.98 0.0149 0.1471

5 0.25 0.0047 13.96 0.0095 62.31 0.0140 0.1585

6 0.27 0.0055 15.73 0.0102 66.42 0.0152 0.1529

7 0.19 0.0048 10.97 0.0095 46.55 0.0151 0.1353

8 0.29 0.0057 17.10 0.0100 69.99 0.0150 0.1553

9 0.30 0.0060 17.41 0.0137 72.79 0.0194 0.1496

10 0.22 0.0049 13.01 0.0103 54.09 0.0157 0.1350

Fig. 4.24 Evaluation of the execution time for the 2D HA-KLT: a average covariance ratio of the
HA-KLT for levels 0, 1, 2, b average execution time for 2D HA-KLT and 2D-KLT
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2 GHz with 2 GB of RAM under MS
®

Windows
®

XP
®

SP3 (32 bit) and Matlab
R2009A. One more aspect of the experiments was to estimate the decorrelation
achieved for the proposed algorithm in each level of the 2D HA-KLT. For this, a
new parameter CovR was introduced, called Covariance Ratio, which actually
represents the ratio between the sum of the squared values of all diagonal elements
in the covariance matrix and the sum of the squared values of the non-diagonal
elements (Eq 4.90).

CovR ¼
X8
i¼1

X8
j¼1

k2ijði¼jÞ

,X8
i¼1

X8
j¼1

k2ijði6¼jÞ ð4:90Þ

For the classic 2D-KLT algorithm this ratio is obviously infinity for any image.
The experimental results in Table 4.4 are given for all 10 test images. The graphic
representation of the numerical results from Table 4.4 is shown in Fig. 4.24.

There is a significant difference among the decorrelation degrees from the level 0
up to the level 2 by a factor of a hundred units. It is obvious that, if higher
decorrelation is needed and thus—a higher compression, then all three levels should
be used. In contrast to the general 2D-KLT, the achieved execution time is lower by
a factor of 10, which is in consent with the theoretically derived reduction of the
computational complexity by 8.9 times. Some deviation from the predicted values
and the experimental results could be noticed due to the rearrangement of the vector
components in each level, which were not included in the expressions.

The proposed new algorithm for 2D transform of halftone images has the fol-
lowing basic advantages:

1. The significant decorrelation of the elements of the transformed image blocks of
size 2n × 2n is achieved.

2. The computational complexity of the 2D HA-KLT for an image block of size
2n × 2n compared to that of the conventional 2D-KLT is reduced ≈2n times.

3. The 2D HA-KLT algorithm is executed in n consecutive levels, which permits
parallel and recursive calculation. This makes the offered algorithm quite suit-
able for hardware implementation and opens the possibility for real-time pro-
cessing of video sequences.

The 2D HA-KLT algorithm could be also generalized for inter-block image
decorrelation. For this, it is necessary to arrange the elements of same position in
each block transformed with 2D HA-KLT in corresponding 2D matrices. After their
division into smaller blocks, each could be processed with the 2D HA-KLT again,
etc. In result of this recursive processing, it is possible to achieve a decorrelation of
the image elements. The block size should cover the maximum correlation range for
the image pixels in horizontal and vertical directions. This algorithm could be also
used for the achievement of spatial decorrelation of color images. In this case, it is
executed separately for each color component matrix.
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4.12 Conclusion

In this research, one general approach for decorrelation of groups of images and of
the blocks of single images, which are processed by using the new hierarchical
transform based on the AKLT, is presented. The new algorithms for processing of
single images and groups of related images through HA-KLT could be combined as
follows: each group of images is decorrelated through inter-image HA-KLT and
then on each of the retained eigen images is applied the intra-frame HA-KLT. As a
result, the compression efficiency for the processed group of images is significantly
enhanced. One more important application of the HA-KLT is to achieve a reduction
of the features space through combining different kernels for nonlinear transform
without increasing the pattern recognition error.
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Chapter 5
Automatic Estimation for Parameters
of Image Projective Transforms Based
on Object-Invariant Cores

Vadim Lutsiv

Abstract A lot of efforts were addressed to developing the affine-invariant image
descriptions. At the same time, development of projective-invariant sets of features
still remains the open problem. An opposite approach to automatic recognition of
images with geometric transforms is proposed in this chapter. The images are
transformed to object-invariant form, in which all generic-specific features are
suppressed while the parameters of geometric transform are still preserved. Then the
parameters of geometric transform of image are estimated by means of comparison
of its object-invariant description with a template form common for all classes of
objects. The estimated geometric transforms can be then compensated, and the
image can be recognized by any pattern recognition techniques. The presented
theoretical development is also proven by computer simulation, and the reached
theoretical results are compared with the ones reached by other authors. Several
examples of practical application of developed theory are also presented.

Keywords Image recognition � Affine transform � Projective transform �
Transformation parameters � Object-invariant core

5.1 Introduction

The geometric transforms of images are well-known problem in computer vision.
The Affine Transform (AT) and Projective Transform (PT) can result from image
projection through the spherical (or almost spherical) lenses being the traditional
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parts of photo- and video-cameras. A lot of efforts were addressed to developing the
affine-invariant image descriptions. Very simple and weak solutions based on
invariance to rotations and scaling (see, e.g. [1, 2]) were initially proposed in the
seventieths of the last century. The methods based on translation invariance of
Fourier spectrum and peculiarities of polar coordinate system [3–5] (the Fourier-
Mellin transform among them) turned out to be much more sensitive and powerful,
as well as the methods based on invariant moments [6] enabling an invariance to
transformations, belonging to the similarity group. The invariant descriptions of
object borders by chain codes [7] and signatures [8] also should be mentioned. The
challenging solutions (enabling invariance to translations, rotations, and scaling)
were reached with the use of histograms of inner distances [9] and histograms of
directions of gradients being the basic tool of the famous methods Scale-Invariant
Feature Transform (SIFT) [10], Affine-SIFT (ASIFT) [11], and Speeded-Up Robust
Feature (SURF) [12]. However, actually, the invariance to translations and scaling
was reached there by searching for key-points through different positions and
scales. It is interesting to mention also the paper [13], in which the advantages of
SIFT and SURF key-points were combined with the rotation and scale invariance
reached by Fourier-Mellin transform. The most successful modern algorithm of
Viola and Jones [14] and matching methods based on histograms of oriented gra-
dients [15, 16] also search for solutions through different positions and scales. The
powerful algorithm of discriminatively trained part based models [16] also applies
latently a type of structural analysis by means of decomposition of image into
several structural components. The other structural methods (see, e.g. in [17–19])
estimate the parameters of affine or projective transforms by means of joint analysis
of spatial positions of detected contour structural elements, and then the estimations
of transforms are used in image matching hypotheses.

However, an opposite approach can be applied for automatic recognition of
images with geometric transforms. The images may be transformed to an object-
invariant form, in which all generic-specific features are suppressed while the
parameters of geometric transform are still preserved. Then, the parameters of
geometric transform can be estimated by means of comparison of object-invariant
description with a template form common for all classes of objects. Thus, the
geometric transform of image can be estimated and compensated, and then the
image can be recognized by any pattern recognition techniques.

The author of this chapter succeeded in designing of object-invariant cores that
correspond to images of all types of spatially compact (having restricted definitional
domain) objects separated from background [20, 21]. The object-invariant core is
synthesized by means of truncating the high-frequency harmonic components of
spatial spectrum of image. These rejected high-frequency components present the
object peculiarities, while the rest (extremely low-frequency) components still
contain the information about image spatial transforms. It is shown [20, 21] that
such object-invariant core is mathematically described by elliptic paraboloid
(quadratic parabola in the 1D image projections). It is also shown in [20, 21] that
the spatial spectra of mentioned above object-invariant cores (elliptic paraboloids,
1D parabolas, and harmonic functions) are orthogonal to the rest part of image
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spectrum. Thus, if any image is convolved (or subjected to operation of correlation)
with the templates of mentioned above narrow-band shapes (paraboloids, parabolas,
harmonic functions), such templates will interact only with the corresponding to
them object-invariant cores, contained in image. Thus, the parameters of image
geometric transform can be estimated from such correlation functions as it is
described in detail in the sections below.

For estimation of different parameters of AT, it is presented as a sequence of
simpler transformations in Sect. 5.2. It is shown in Sects. 5.3–5.5, how all
parameters of AT (except the rotation and specular reflection) can be determined
analytically from the properties of the proposed object-invariant core. The param-
eters of rotation and specular reflection are analytically calculated from the cyclic
narrow-band harmonic cores of image projection on the angular coordinate of polar
coordinate system as it is presented in Sect. 5.6.

While the 6-parametric AT is entirely linear, the full PT contains additionally a
nonlinear part described by two additional parameters. Due to this nonlinearity, the
specific parameters of PT can not be determined analytically. A novel iterative
optimization procedure is proposed in Sect. 5.7 for estimating all parameters of PT.
The idea of this procedure is borrowed from the living vision systems, in which the
surface inclination is detected from recession of texture elements (texels) [22]. It is
shown in Sect. 5.7, how the missing parameters of PT can be estimated from
displacement of object-invariant core of image under a test projective transform.
The convergence of such iterative estimation procedure is rigorously proven.

The software simulation results proving the correctness of proposed theoretical
development are presented in Sect. 5.8 showing also several examples of practical
application of developed theory. The similar theoretic results reached independently
by other authors are discussed in Sect. 5.9. The materials of this chapter are finally
summarized in Sect. 5.10 of Conclusion.

5.2 Projective Transform as a Sequence of Simpler
Geometric Transformations

The plain PT is described by the following formulae (Eq. 5.1) linking the pixel
coordinates ~X ¼ x; yð ÞT in initial image with coordinates ~X 0 ¼ x0; y0ð ÞT in trans-
formed image, where a1, …, a6 are the parameters of AT that is a partial case of PT
corresponding to zero parameters a7 and a8.

x0 ¼ a1xþ a2yþ a5ð Þ= a7xþ a8yþ 1ð Þ
y0 ¼ a3xþ a4yþ a6ð Þ= a7xþ a8yþ 1ð Þ ð5:1Þ

Let us present AT in a form more convenient for analysis.
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Theorem 1 Any plain AT can be presented as the following sequence of simple
plain geometric transformations:

• An image rotation by angle φ with respect to coordinate origin (Eq. 5.2):

x0 ¼ xcosðuÞ � ysinðuÞ y0 ¼ xsinðuÞ þ ycosðuÞ: ð5:2Þ

• A spatially isotropic M-fold scaling of image (Eq. 5.3):

x0 ¼ Mx y0 ¼ My: ð5:3Þ

• A spatially anisotropic scaling of image (μ-fold expanding or shrinking of image in
the directionΘ and optional specular reflection corresponding to μ< 0) (Eq. 5.4):

x0 ¼ l ½x cos ð�HÞ � y sin ð�HÞ� cos ðHÞ � ½x sin ð�HÞ þ y cos ð�HÞ� sin ðHÞ
y0 ¼ ½x sin ð�HÞ þ y cos ð�HÞ� cos ðHÞ þ l½x cos ð�HÞ � y sin ð�HÞ� sin ðHÞ:

ð5:4Þ

• The translations along two coordinate axes (Eq. 5.5):

x0 ¼ xþ a5 y0 ¼ yþ a6: ð5:5Þ

The proof of this theorem is not difficult, and the author presented it in [20].
It can be easily seen that the image rotation (Eq. 5.2) and the isotropic scaling

(Eq. 5.3) do not change the position of image centroid (center of mass), if it has the
zero coordinates. The anisotropic scaling of image along the abscissa axis (it cor-
responds to Θ = 0 in Eq. 5.4) or along the ordinate axis also do not change the
centroid coordinates, if they are zero. Thus, the anisotropic scaling (Eq. 5.4)
composed of rotations and scaling along the abscissa axis also does not displace
image centroid situated at coordinate origin.

Let us present the AT in a matrix form A as a sequence of described above
simple geometric transforms (Eq. 5.6), where a1, …, a6 are the parameters of AT,
the matrices A1, A2 correspond to translations of image centroid along the abscissa
and ordinate axes, the matrix A3 corresponds to anisotropic scaling, the matrix A4

describes the specular reflection with respect to a straight line passing through
coordinate origin, the matrix A5 corresponds to isotropic scaling, the matrix A6

describes image rotation with respect to coordinate origin.

A ¼
a1 a2 a5
a3 a4 a6
0 0 1

0
@

1
A ¼ A1A2A3A4A5A6 ð5:6Þ

The sequential order of simple transforms presented in Eq. 5.6 can be changed.
However, this is just this order that enables step by step determining the parameters
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of these transforms and compensating them beginning from A1 and finishing by A6

because in the case of such compensation order, each next operation of compen-
sation does not disturb the results of previous operations of compensation in this
sequence. The transforms A1 and A2 are mutually orthogonal (i.e. compensation of
centroid displacement along the ordinate axis does not disturb the compensation of
displacement along the abscissa axis, and vice versa). Thus, these two transforms
may be swapped in Eq. 5.6. As it was shown above, the transforms A3–A6 do not
displace image centroid from coordinate origin. Thus, the zero abscissa and ordinate
of centroid are worth to be considered as its template position, and compensation of
centroid displacement from coordinate origin should be the first step of compen-
sation of AT. Similarly, the transforms A5 and A6 of isotropic scaling and rotation
may be swapped. The transform A3 of anisotropic scaling changes both the radial
and azimuthal polar coordinates of points. As it can be seen from Eq. 5.4, it changes
the ratios of radial coordinates of the points having differing azimuthal coordinates.
At the same time, the transforms A5 and A6 do not change the ratios of radial
coordinates of points, thus the compensation of A3 should precede the compensa-
tions of A5 and A6. The transform A4 of specular reflection may be swapped with
isotropic scaling A5. The transform A4 may be determined and compensated
simultaneously with the compensation of transformA3 (in fact, transformA4 is a part
of transform A3) as well as with the compensation of rotation A6.

5.3 Determining the Parameters of Image Translation

As it was mentioned in Sect. 5.1, the parameters of geometric transforms can be
estimated by inspecting the properties of object-invariant image core proposed in
[20, 21]. For determining the image translations, let us prove the following lemma.

Lemma 1 Let us consider a correlation function of image with template elliptic
paraboloid, the correlation function is calculatedby the parameter of theirmutual shift.
If the correlation function reaches its extremum, then the coordinates of image centroid
coincide with the vertex coordinates of elliptic paraboloid at the point of extremum.

Proof Let the longer axis of elliptic section of elliptic paraboloid be parallel to
abscissa axis. This assumption does not restrict the generality of task because the
cases of any arbitrary orientation of elliptic paraboloid can be boiled down to this
orientation by simple rotation of coordinate system. According to the proposed
assumption, let us describe the paraboloid by Eq. 5.7, where a and b are the
paraboloid vertex coordinates along the abscissa and ordinate axes, respectively, C is
an arbitrary constant, M is a ratio of lengths of axes of elliptic section of paraboloid.

F(x; y) ¼ [M(x� a)]2 þ (y� b)2 þ C ð5:7Þ
h
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Let T(x, y) be a brightness of pixel having coordinates {x, y}. The correlation
function of brightness T(x, y) and paraboloid (Eq. 5.7) by the parameter τ = –a of
shift along the abscissa axis is monotone convex (concave) [20], thus it may have a
single extremum. This correlation function is represented by Eq. 5.8, where Ω is the
definitional domain of function T(x, y) describing the brightness of image points.

f ðsÞ ¼
ZZ

X
Tðx; yÞFðxþ s; yÞdxdy ð5:8Þ

Here and further, the complex conjugation will be skipped in operation of
correlation because the both operands of correlation have real values. Then, taking
in account Eq. 5.7, the extremum of Eq. 5.8 can be found from the following
expression:

o
os

f ðsÞ ¼
ZZ

X
Tðx; yÞ o

os
Fðxþ s; yÞdxdy ¼

ZZ
X
Tðx; yÞ2M2ðx� aÞdxdy ¼ 0:

Therefore, keeping in mind the well known formulae (Eq. 5.9) for coordinates xc
and yc of centroid, it can be concluded that the image centroid has abscissa x = a,
i.e. the abscissa of centroid coincides with the abscissa of vertex of paraboloid, if
the correlation function (Eq. 5.8) reached its extremum.

xc ¼

ZZ
X

x � Tðx; yÞdxdy
RR
X
Tðx; yÞdxdy yc ¼

RR
X
y � Tðx; yÞdxdyRR
X
Tðx; yÞdxdy ð5:9Þ

In a similar way, by differentiation of correlation function by the parameter of
shift of paraboloid (Eq. 5.7) along the ordinate axis, it could be shown that the
ordinate of centroid coincides with the ordinate of vertex of paraboloid, if the
correlation function reached its extremum. Thus, the Lemma 1 is proven.

The object-invariant core (Eq. 5.7) used as one of operands of correlation
function can be referred to as a weighting function of centroid detector or simply as
a centroid detector, and in the task of detection it is worth to set M = 1.

As it was mentioned above, the object-invariant parabolic core of image has a
spectral range entirely separated from the rest spatial spectrum of image, and
according to decomposition (Eq. 5.6), the affine transforms of image cause the
rotations, an isotropic scaling, an anisotropic scaling of image spectrum, and the
linear changes in the phases of spectral components. This is also true for the spectral
components corresponding to the object-invariant parabolic core of image. Thus,
the object-invariant image core is also subjected to AT. Let us consider the
paraboloid of revolution having zero vertex coordinates as object-invariant core of
image in its template state. Then, any AT applied to image will result in expanding
(shrinking) of the core in respective direction (the core will become the elliptic
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paraboloid) and in displacement of its vertex. The paraboloid of revolution will
remain the paraboloid of revolution under any isotropic scaling, rotation, and
specular reflection. Thus, it can be easily seen that the direction of axis of elliptic
section of elliptic paraboloid contained in imagewill correspond to the parameterΘ of
direction of anisotropic scaling of image while the ratio of lengths of axes of elliptic
section will correspond to the coefficient μ of anisotropic scaling as it is shown in
Eq. 5.4. It will be shown in the next section that if an image is transformed into such
state that the elliptic paraboloid contained in it became the paraboloid of revolution
with zero vertex coordinates, then such transformation really compensates the
transformsA1,A2, andA3 of image translations and anisotropic scaling. It will enable
the analytical derivation of formulae for determining the parameters of anisotropic
scaling. Thus, the elliptic paraboloid (Eq. 5.7) (the object-invariant core of image)
remains the elliptic paraboloid under any AT while the parameters of transformed
core bear the information on the parameters of AT, to which an image was subjected.

5.4 Determining the Direction and Value of Anisotropic
Scaling of Image

The next simple transform to be estimated and compensated according to Eq. 5.6 is
the anisotropic image scaling A3. This transform has two parameters: the direction Θ
and ratio μ of scaling. In the plain polar coordinate system, this transform can be
described by Eqs. 5.10–5.11, where the polar coordinates r1 and φ1 of points of
transformed image are expressed in the terms of coordinates r and φ of initial image.

r21 ¼ r2 l2cos2ðu�HÞ þ sin2 u�Hð Þ� � ð5:10Þ

u1 ¼ arccos l cosðu�HÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 cos2ðu�HÞ þ sin2ðu�HÞ

q� �
þH ð5:11Þ

Let the paraboloid of revolution with zero vertex coordinates be the object-
invariant core of image in its template state. Then, as it was discussed in the previous
section, the paraboloid of revolution becomes an elliptic paraboloid as a result of
transform A3. According to the technique applied in Sect. 5.3, let us determine the
parameters Θ and μ of anisotropic scaling with respect to template state of image on
the base of analysis of correlation function of image with a weighting function of the
shape of elliptic paraboloid. Such weighting function presented in a plain polar
coordinate system with the coordinates r and φ will be described by Eq. 5.12, where
ψ is the direction of one of axes of elliptic section of paraboloid, M is the elongation
ratio of this section, and C1 is an arbitrary constant that will be further skipped.
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Fðr;u;w;MÞ ¼ ½Mr cosðu� wÞ�2 þ ½r sinðu� wÞ�2 þ C1 ð5:12Þ

The operands of correlation function (the image under analysis and the
weighting function of the form of elliptic paraboloid) should be described in a
common coordinate system, thus the following mathematical manipulations will be
accomplished. The Eq. 5.12 describes a paraboloid of revolution M-fold expanded
(or shrunk) in the direction ψ. Thus, when the correlation function is calculated, the
brightness of image pointsmay be “weighted” not by the values of template weighting
function (Eq. 5.12) but by the values of paraboloid of revolution, the points coordi-
nates of which started corresponding (as a result of mentioned above shrinking) to the
points coordinates of transformed (distorted) image under analysis. In such case,
the squared radius r22 of the points of paraboloid of revolution will be expressed in
terms of coordinates of transformed image T(r1, φ1) by the following formula:

r22 ¼ r21 M2cos2ðu1 � wÞ þ sin2 u1 � wð Þ� �
:

The last formula can be transformed to Eq. 5.13 keeping in mind Eqs. 5.10 and
5.11:

r22 ¼ r2½l2 cos2ðu�HÞ þ sin2ðu�HÞ�½M2 cos2ðu1 � wÞ þ sin2ðu1 � wÞ�

¼ r2½l2 cos2ðu�HÞ þ sin2ðu�HÞ�fM2½cosðH� wÞ l cosðu�HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 cos2ðu�HÞ þ sin2ðu�HÞ

q
� sinðH� wÞ sinðu�HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 cos2ðu�HÞ þ sin2ðu�HÞ
q �2

þ ½sinðH� wÞ l cosðu�HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 cos2ðu�HÞ þ sin2ðu�HÞ

q
þ cosðH� wÞ sinðu�HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 cos2ðu�HÞ þ sin2ðu�HÞ
q �2g

¼ r2½M2l2 cos2ðw�HÞ cos2ðu�HÞ þM2 sin2ðw�HÞ sin2ðu�HÞ
þ 2M2l cosðw�HÞ sinðw�HÞ cosðu�HÞ sinðu�HÞ þ sin2ðw�HÞl2 cos2ðu�HÞ
þ cos2ðw�HÞ sin2ðu�HÞ � 2 sinðw�HÞl cosðu�HÞ sinðu�HÞ cosðw�HÞ�:

ð5:13Þ

The Eq. 5.13 can now be transformed to Eq. 5.14:
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r22 ¼ r2fM
2

4
l2½1þ cosð2w� 2HÞ�½1þ cosð2u� 2HÞ� þM2

4
½1� cosð2w� 2HÞ�

� ½1� cosð2u� 2HÞ� þM2

2
l sinð2w� 2HÞ sinð2u� 2HÞ þ l2

4
½1� cosð2w� 2HÞ�

� ½1þ cosð2u� 2HÞ� þ 1
4
½1þ cosð2w� 2HÞ�½1� cosð2u� 2HÞ�

� l
2
sinð2w� 2HÞ sinð2u� 2HÞg

¼ r2

4
fM2l2 1þ cos½2ðw�HÞ� þ cos½2ðu�HÞ� þ cos½2ðw�HÞ� cos½2ðu�HÞ�h i

þ M2 1� cos½2ðw�HÞ� � cos½2ðu�HÞ� þ cos½2ðw�HÞ� cos½2ðu�HÞ�h i
þ 2M2l sin½2ðw�HÞ� sin½2ðu�HÞ� þ l2 1� cos½2ðw�HÞ�h
þ cos½2ðu�HÞ� � cos½2ðu�HÞ� cos½2ðw�HÞ�i þ 1þ cos½2ðw�HÞ�h � cos½2ðu�HÞ�
� cos½2ðw�HÞ� cos½2ðu�HÞ�i � 2l sin½2ðw�HÞ� sin½2ðu�HÞ�g: ð5:14Þ

The following replacements were applied for passing from Eqs. 5.13 to 5.14:

2sin að Þcos að Þ ¼ sin 2að Þ
cos2 að Þ ¼ 2cos2 að Þ�1

� �
=2þ 1=2 ¼ cos 2að Þ þ 1½ �=2

sin2 að Þ ¼ 1�cos2 að Þ ¼ 1�cos 2að Þ½ �=2:

Let us substitute into Eq. 5.14 the following formulae:

sin að Þsin bð Þ ¼ cos a� bð Þ�cos aþ bð Þ½ �=2
cos að Þcos bð Þ ¼ cos a� bð Þ þ cos aþ bð Þ½ �=2:

Then, Eq. 5.14 is transformed to Eq. 5.15:

r22 ¼
r2

4
fcos½2ðw�HÞ�ðM2l2 �M2 � l2 þ 1Þ þ cos½2ðu�HÞ�

� ½M2l2 �M2 þ l2 þ 1� þ ðM2l2 þM2 þ l2 þ 1Þ þ 1
2

cos½2ðw� uÞ�h
þ cos½2ðwþ u� 2HÞ�iðM2l2 þM2 � l2 � 1Þ þ cos½h 2ðw� uÞ�
� cos½2ðwþ u� 2HÞ�iðM2l� lÞg

¼ r2

8
f2 cos½2ðw�HÞ�ðl2 � 1ÞðM2 � 1Þ þ 2 cos½2ðu�HÞ�

� ðl2 � 1ÞðM2 þ 1Þ þ 2ðl2 þ 1ÞðM2 þ 1Þ þ cos½2ðw� uÞ�ðlþ 1Þ2ðM2 � 1Þ
þ cos½2ðwþ u� 2HÞ�ðl� 1Þ2ðM2 � 1Þg :

ð5:15Þ

Let us consider the correlation function of transformed image and weighting
function shown in Eq. 5.12, where Ω is the definitional domain of image, and the
coordinates r1 and φ1 are defined in Eqs. 5.10 and 5.11:
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f ðw�HÞ ¼
ZZ

X
Tðr1;u1ÞFðr;u;w;MÞdrdu: ð5:16Þ

Let us keep in mind that F(r2) = r2, and let us use in Eq. 5.16 T(r, φ) instead of
T(r1, φ1) because the weighting function F was recalculated to the coordinate
system of not transformed (not distorted) image. Then, Eq. 5.16 is presented in the
form shown in Eq. 5.17:

f ðw�HÞ ¼
ZZ

X
Tðr;uÞr2 fM

2 � 1
8

cos½2ðu� wÞ�ðlþ 1Þ2

þ M2 � 1
8

cos½2ð2H� w� uÞ�ðl� 1Þ2

þ ðl2 � 1ÞðM2 þ 1Þ
4

cos½2ðu�HÞ�

þ cos½2ðH� wÞ�½M
2 � 1
4

ðl2 � 1Þ�

þ ðM2 þ 1Þ
4

ðl2 þ 1Þg drdu:

ð5:17Þ

Five summands in the curly brackets in Eq. 5.17 can be considered as five
independent definite integrals. The fifth summand describes a constant term of
correlation function. The third summand does not depend on ψ, thus it also does not
depend on ψ − Θ. Therefore, only the first, second and fourth summands in Eq. 5.17
are informative because only they specify nontrivial mode of correlation function
f(ψ – Θ). It can be easily seen that these summands contain only second harmonic
component with respect to angle ψ. The direction of anisotropic scaling can be
defined accurate within nπ (where n is arbitrary integer value), which also corre-
sponds to second harmonic component. Thus, it may be supposed that the
parameters of harmonic summands of f(ψ − Θ) in Eq. 5.17 are unambiguously
connected with the direction Θ of anisotropic scaling of image T(r, φ). The
parameters of harmonic summands of f(ψ − Θ) may be also connected with the
angular position ψ of template weighting function shown in Eq. 5.12, which also is
defined accurate within nπ. And the parameters of these harmonic summands also
can depend on the ratio μ of anisotropic scaling and on the parameter M of template
weighting function. Let us assume that using the anisotropic scaling with param-
eters Θ and μ, the image can be transformed to such form that the correlation
function (Eq. 5.17) of this image with the template weighting function of the shape
of elliptic paraboloid would not contain any variable components. Let us consider
this state of image as its template form with respect to the transform of anisotropic
scaling. Then, Θ and 1/µ (or Θ + π/2 and µ) will be the parameters of distortion A3

of image under analysis (see in Eq. 5.6). For checking the correctness of this
assumption, let us prove the following theorem:

146 V. Lutsiv



Theorem 2 Let us consider an arbitrary image having zero centroid coordinates
(the parabolic core of which has zero vertex coordinates), and the points of this
image have nonnegative (or nonpositive) brightness. Let us consider also the
weighting function of the shape of elliptic paraboloid having zero coordinates of
vertex and unlimited definitional domain. Then, there exists an anisotropic scaling
transform that brings the image in such state that the correlation function of the
image with the elliptic paraboloid by the parameter of their mutual rotation with
respect to coordinate origin is constant. The direction Θ and ratio μ of such
anisotropic scaling can be calculated uniquely and are defined by Eqs. 5.18–5.19,
where T(r, φ) describes the brightness of image points in polar coordinate system, Ω
is the definitional domain of image, {r, φ} are the radius and azimuth of image point.

l ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 þB2
p .

Dþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þB2

p
r

ð5:18Þ

H ¼ 0:5 tan�1 C=Bð Þ þ pn ð5:19Þ

B ¼
ZZ

X
Tðr;uÞr2 cosð2uÞdrdu

C ¼
ZZ

X
Tðr;uÞr2 sinð2uÞdrdu

D ¼
ZZ

X
Tðr;uÞr2drdu

The proof of this theorem is rather cumbersome, thus it is not shown here,
however it can be found in [20]. Thus, according to Theorem 2, the parameters of
anisotropic scaling A3 are also determined in analytical form, and A3 can be
compensated. Now it is possible pass to determining the parameters of transfor-
mations A4, A5, и A6 of specular reflection, isotropic scaling, and rotation.

5.5 Determining the Parameters of Isotropic Scaling
of Image

The transforms A5 and A6A4 are the normal divisors of the group of similarities that
is a subgroup of the group of plain AT. The transform A5 of isotropic scaling does
not depend on angular coordinates of image points and does not influence the
results of transforms A6 and A4, thus the parameter M of transform

A5 ¼ M 0
0 M

� �
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can be determined based on image projection upon a subspace invariant to rotation
and specular reflection (upon the radius of polar coordinate system [23]). The 1D
projections of images upon the radius also have an object-invariant core–the qua-
dratic parabola (corresponding to cylindrical paraboloid being a partial case of
Eq. 5.7). The M-fold isotropic scaling of image causes the M-fold scaling of posi-
tion of each point of its projection upon the radius, thus the coordinate of centroid
of projection also is M-fold scaled. The position of centroid can be found using the
technique presented above in the Sect. 5.3–by searching for extremum of correla-
tion function of image projection and template weighting function. In this case, the
weighting function is a function of a single argument, it is a quadratic parabola. The
Eq. 5.9 calculating the Cartesian coordinates of centroid can be presented as a
function of single argument. Then, the coefficient M of isotropic scaling of image
can be determined using Eq. 5.20, where T(r, φ) is the brightness of point of image
having zero centroid coordinates in the polar coordinate system, Ω is the defini-
tional domain of image in this coordinate system, {r, φ} are the radius and azimuth
of image point in this coordinate system.

M ¼

RR
X
r � Tðr;uÞdrdu= RR

X
Tðr;uÞdrdu

G
ð5:20Þ

In this case, the coefficient of isotropic scaling is determined by calculating the
centroid displacement ratio with respect to its template position G for image pro-
jection upon the radius of polar coordinate system.

Thus, the coefficient M of isotropic scaling A5 also is determined in analytical
form, and it is possible to pass to determining the parameters of rotation A6 and
specular reflection A4.

5.6 Determining the Parameters of Rotation and Specular
Reflection

The rotation A6 of image with respect to coordinate origin and the specular reflection
A4 with respect to a straight line passing through the coordinate origin in Cartesian
coordinate system do not change the radial coordinates of image points in polar
coordinate system. Thus, the parameters of A6 and A4 also can be determined using
an image projection upon a subspace invariant to radial coordinate changes–upon a
circle, i.e. upon the azimuthal coordinate of polar coordinate system. However, the
azimuthal coordinate varies cyclically, thus the 1D object-invariant parabolic tem-
plate functions having unlimited definitional domain cannot be applied in this case.
The narrow-band cyclic weighting functions and cyclic object-invariant image cores
should be analyzed. The harmonic components of Fourier spectrum calculated
for azimuthal projection of image are the good examples of such cyclic cores.
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In particular, the angular position of image projection upon a circle is unambigu-
ously defined by the phase of first component of Fourier spectrum of this projection.
If the first harmonic component is insufficiently strong, the angular position of
projection is unambiguously defined by the phases of any two spectral components
having aliquant numbers. This property of projection of image upon a circle is a base
of several well known methods of determining of image rotation, see e.g. in [24].
Besides, the analysis of several such harmonic components enables also detection of
image specular reflection with respect to straight line passing through coordinate
origin [24]. It can be easily understood (see, e.g. in [20]) that this technique of
determining the parameters of rotation and specular reflection also corresponds to
the image analysis technique based on inspection of correlation function of pattern
under analysis with object-invariant templates (just this technique was applied in
previous sections). Really, the Fourier transform can be considered as result of
analysis of correlation function of template sinusoids with a pattern being inspected.

As an example of practical implementation of this technique, let us consider a
method of determining the parameters of rotation and specular reflection on the
base of analysis of three neighboring Fourier harmonic components that was pro-
posed in [20]. Let the observed phase φk of kth spectral component of image
projection on a circle be described by Eq. 5.21, where ik is the number of not
observable full cycles of kth harmonic component (ik = 0, 1, …, k − 1), ε is the
parameter of specular reflection (ε = −1, if the specular reflection really occurred,
otherwise ε = 1), ψk is the phase of kth harmonic component in the projection of
image having template orientation, φ is the unknown rotation angle of image being
recognized.

uk þ 2p ik ¼ ewk þ ku ð5:21Þ

The similar formulae (Eqs. 5.22–5.23) can be given for two spectral components
having neighboring numbers with conditions (Eqs. 5.24–5.25).

un þ 2p in ¼ ewn þ nu ð5:22Þ

um þ 2p im ¼ ewm þ mu ð5:23Þ

k � m ¼ 1 ð5:24Þ

k � n ¼ �1 ð5:25Þ

Here and in the further steps of analysis, it is supposed (without loss of gen-
erality) that the reflection is accomplished with respect to a straight line having zero
inclination angle. Let us subtract Eqs. 5.22 and 5.23 from Eq. 5.21. It will result in
the simultaneous linear equations that can be easily solved with respect to φ and ε as
it is shown in Eqs. 5.26–5.27.
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u ¼ uk � um � eðwk � wmÞ ð5:26Þ

e ¼ ð2uk � un � umÞ=ð2wk � wn � wmÞ ð5:27Þ

The following substitutions were applied for getting the solution: k − m = 1,
k − n = −1, 2π(ik − in) = 0, 2π(ik − im) = 0. The last two substitutions are correct
because it may be considered that the rotation angle u 2 ½0; 2pÞ; thus the difference
of numbers of not observable full cycles is zero for the harmonic components
having neighboring numbers.

One can encounter the cases, when strong enough harmonic components, satis-
fying the demands shown in Eqs. 5.24–5.25 do not exist in the spectrum of image
projection upon the circle. Some different solutions are possible in such cases [24],
however the method of determining the parameters of rotation and reflection
described above worked satisfactory in numerous practical experiments.

Thus, the described in this section method of determining the parameters of
rotation and reflection also proceeds within the frameworks of general technique
proposed in this chapter. It is based on analysis of narrow-band object-invariant
cores contained in images. A method of estimating the parameters of rotation and
reflection based on image core of parabolic form also was proposed. The interested
readers can find this information in [25].

5.7 Iterative Compensation and Estimation of Full
Projective Transform

Let us pass to analysis of the rest part of PT. This part has not yet been considered,
and it corresponds to denominators of Eq. 5.1. The plain PT is described by the
mathematical expressions Eqs. 5.28–5.29 connecting the coordinate vectors ~X ¼
x; yð ÞT of initial images with coordinate vectors ~X 0 ¼ x0; y0ð ÞTof transformed ima-
ges, where a1, …, a6 are the parameters of AT described in Eq. 5.1, while the
parameters a7 and a8 describe the nonlinear part of PT.

x0 ¼ a1xþ a2yþ a3
a7xþ a8yþ 1

¼ a1xþ a2yþ a3
~X �~Pþ 1

ð5:28Þ

y0 ¼ a4xþ a5yþ a6
a7xþ a8yþ 1

¼ a4xþ a5yþ a6
~X �~Pþ 1

ð5:29Þ

It can be seen in Eqs. 5.28–5.29 that the denominator of formulae of PT can be
expressed in terms of scalar product ~X �~P of the vector of Cartesian coordinates of
image point and vector ~P ¼ a7; a8ð ÞT of parameters. Here and in the text presented
below, the transform corresponding to denominators of Eqs. 5.28 and 5.29 will be
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mentioned as Nonlinear part of Projective Transform (NPT) because this is a part of
transform that differs the full PT from linear AT.

The PT is nonlinear with respect to parameters of its denominator, thus the
vector ~P of its parameters could not be determined in analytical form as it was done
for the parameters of AT. And moreover, the NPT causes the displacements of
image centroid and disturbs the results of image normalization with respect to other
parts of AT, while the AT substantially influences the results of NPT, if the last one
follows the AT. Thus, it turned out to be impossible to separate the procedures of
determining and compensation of AT and NPT (as it was done above for the simple
parts of AT). The problems of determining the parameters of AT and NPT should
be solved in a complex way keeping in mind their interaction.

The problem is solved based on iterative optimization of solution in the space of
parameters a7 and a8. The solution method proposed in this chapter exploits the
specific property of NPT: in contrast to AT, the PT causes rearrangement of image
points with respect to image centroid. It can be easily shown analytically in the
following way. Let us present Eq. 5.28 in the form shown in Eq. 5.30, where α

corresponds to the numerator of Eq. 5.28, j � j means absolute value, b ¼ ~X �~P:

x0 ¼ a= 1þ sign bð Þ � bj jð Þ ð5:30Þ

Let (for definiteness) the vector ~P be antiparallel to abscissa axis, i.e. its scalar
product with the unit vector of abscissa axis is negative. Let the image centroid has
zero coordinates. If β ≠ 0, the points x′ = α/(1 − |β|) are situated to the right from the
ordinate axis and the points x′ = α/(1 + |β|) are situated to the left from the ordinate
axis. Using simple mathematical manipulations, it is easy to show that
α/(1 + |β|) − α/1 < 0, α/(1 − |β|) − α/1 > 0, and |α/(1 + |β|) − α/1| < |α/(1 − |β|) − α/1|.
Therefore, the negative abscissas of image points will decrease in absolute value,
and the positive abscissas of points will increase in their absolute values as a result
of NPT corresponding to assumed direction of ~P. This will cause a displacement of
centroid to the domain of positive abscissas. The changes of positive abscissas are
larger in absolute values than the changes of negative abscissas. The larger are the
positive abscissas of points, the faster is their movement resulting from this NPT,
and the stronger is “rarefying” of their coordinates. At the same time, the larger are
the absolute values of negative abscissas, the stronger is “concentration” of absolute
values of coordinates. Thus, when the centroid displacement resulting from such
NPT is compensated, there will become more image points to the left of ordinate
axis (this part of image becomes more “massive”), but these points will have in
average smaller absolute values of abscissas than the abscissas of points to the right
of ordinate axis. Such reasoning would be also correct for any other direction of
vector ~P of parameters of NPT because all such cases may be reduced to the
considered partial situation by means of rotation of coordinate system.

Let us consider an arbitrary image having zero centroid coordinates. Let us divide
the image into two semi-images by an arbitrary straight line passing through coor-
dinate origin. The semi-images can be considered as two halves of dipole having the
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masses M1 and M2 located at centroids of semi-images being at the distances L1 and
L2 from coordinate origin. The dipole is balanced with respect to centroid of the
whole image, however it is asymmetric, i.e.M1L1 =M2L2, butM1 ≠M2 and L1 ≠ L2.
Let L2 > L1, and let the ratio L2/L1 be maximum in the direction Θ. Then, the image
can be presented as a dipole oriented along the direction Θ, and this dipole may be
described with a vector~L having the length L2/L1 and directed along the longer arm
L2 of dipole. Let the case corresponding to Eq. 5.31 be the template state of image
(with respect to NPT)

M1 ¼ M2 L1 ¼ L2: ð5:31Þ

In such state, the dipole is symmetric and balanced with respect to image cen-
troid for any direction of straight line dividing the image into two semi-images, i.e.
jj~Ljj ¼ 1 for any direction Θ of dipole arms. A circle centered at coordinate origin
can be an example of template image.

As it was shown above, if any NPT having the vector ~P of parameters a7 ≠ 0
and/or a8 ≠ 0 was applied to image of circle, then it rearranges the circle points with
respect to its centroid, thus the condition presented in Eq. 5.31 will be violated, and
the centroid of image will be displaced. The rotation of vector ~P will cause the
rotation of direction of centroid displacement, but the value of displacement will
remain constant. Thus, if some time in the past, an image of circle centered with
respect to coordinate origin was subjected to NPT with parameters ~P; and its
centroid was brought again to coordinate origin, then the present image of trans-
formed circle will correspond to asymmetric dipole for which jj~Ljj[ 1. Now, let us
apply to this transformed image of circle an additional “testing NPT” with rotating
vector ~Pt of parameters. In such case, different directions of ~Pt will cause different
absolute values of displacement of centroid of image. The “velocity” of displace-
ment will be maximum for some direction Φ = Φmax of vector~Pt, and in the case of
image of circle, Φmax corresponds to the direction of vector~P of parameters of NPT
applied to the circle in the past. For understanding of this statement, remember that
the circle is absolutely symmetric, thus the image of circle subjected to NPT may be
considered as dipole of the same length for any direction of vector ~P. Now, let us
prove the following lemma.

Lemma 2 Let us consider a case, when some NPT having the vector ~Pt of
parameters is applied to an asymmetric dipole with zero coordinates of centroid
(the dipole is balanced with respect to coordinate origin), and the direction of ~Pt is
antiparallel to the direction Θ of dipole. Then, the displacement of centroid of
dipole subjected to such NPT will be larger in absolute value than the displacement
corresponding to the case, when the direction of ~Pt is parallel to the direction Θ of
dipole.

The proof of Lemma 2 is presented in Appendix 1.
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It can be seen from the proof of Lemma 2 that the more is the coefficient N of
asymmetry of dipole,–the more is the difference of centroid displacements corre-
sponding to oppositely directed vectors ~Pt of NPT parameters.

The statements presented above are correct for image of circle, however the real
images have more complicated spatial distributions of brightness of pixels that are
asymmetric in general case. For showing the correctness of results of Lemma 2 for
arbitrary real pictures, let us assume that there was an arbitrary image having
initially a template state satisfying the condition presented in Eq. 5.31, and this
image was subjected to some NPT. Then the centroid of this image was brought to
coordinate origin, thus this image became an asymmetric dipole balanced with
respect to coordinate origin and oriented along the abscissa axis. The right arm of
dipole has the length L2, and it is N times longer than the left arm (M1 = NM2,
L2 = NL1, N > 1). It would be logical to try to prove a supposition that such arbitrary
image could be presented as a set of balanced asymmetric dipoles oriented along the
abscissa axis. A particular case of such proof was considered in [26], where each
arm of each dipole was composed of a single pixel or of a single subpixel, and
where for each dipole, the conditions M1 = NM2, L2 = NL1 were satisfied for a
constant (through the whole set of dipoles) N > 1. It should be explained that, in
[26] as well as in the proofs presented below, a pixel is sometimes presented (for
the needs of proving) as a kind of material body having the mass equal numerically
to pixel brightness (energy). This body is considered as aggregation of subpixels
each having the same coordinates equal to coordinates of this pixel, while the sum
of individual masses of these subpixels is the mass of the whole body (equal to
energy of pixel). Thus, in the text below the parts of such aggregation corre-
sponding to “subpixels energy” are referred to as “subpixels” or “subpixels”.
However, the restricted partial case of proof considered in [26] is not good for
arbitrary images. In more general case, an arbitrary image can be presented as a set
of balanced dipoles having constant ratio N of arm lengths, and it can be done in
two following ways:

• The right arm of dipole is composed of a single pixel or of a subpixel situated to
the right of ordinate axis (at the right) and having abscissa L and mass
(brightness) M. The left arm of dipole is composed of a single pixel or of a
subpixel or it is composed of several pixels or subpixels situated to the left of
ordinate axis (at the left). The centroid of this multitude of pixels or subpixels
has the abscissa l while the mass m of this multitude is localized at the point of
centroid.

• The left arm of dipole is composed of a single pixel or of a subpixel situated to
the left of ordinate axis (at the left) and having abscissa l and mass (brightness)
m. The right arm of dipole is composed of a single pixel or of a subpixel or it is
composed of several pixels or subpixels situated to the right of ordinate axis (at
the right). The centroid of this multitude of pixels or subpixels has the abscissa
L while the mass M of this multitude is localized at the point of centroid.
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The Algorithm 1 presented below shows a possible way of such decomposition
for the image under consideration.

Algorithm 1

1. Choosing a pixel or subpixel (pixel–for simplicity of further consideration) not
considered and not marked yet with special flag at the left. The pixel has the
moment μl = m · l with respect to ordinate axis, where m and l are the mass
(brightness) and abscissa of this pixel, respectively. If such pixel was not found,
passing to the item 9, otherwise passing to the item 2.

2. Searching for a not considered yet pixel at the right (let the pixel found has the
abscissa L, mass M, and moment μr = M · L with respect to ordinate axis, where
M ≥ m/N, L = –N · l). If such pixel was found, passing to the item 3, otherwise
passing to the item 5.

3. Equipoising the pixel taken at the left according to item 1 (it has the moment
μl = m · l) by a pixel or subpixel found at the right according to item 2 (it has the
moment μr

a = −m · l = −μl).
4. If M = m/N, the pixel chosen at the left according to item 1 and pixel chosen at

the right according to item 2 entirely equipoise each other and are excluded
from further consideration. If M > m/N, a part of mass M1 = m/N of the pixel
chosen at the right is excluded from further consideration together with the
pixel chosen at the left. The non-equipoised part of mass M2 = M − M1 of
the pixel chosen at the right is considered as a pixel remaining for further
consideration. The entire image remains balanced with respect to ordinate axis
and may be considered as a new dipole having the same ratio mc/Mc = N of
masses and same ratio of arm lengths (Lc = −N · lc). Passing to the item 1.

5. If no unconsidered yet pixels having abscissa L = −N · l were found according
to item 2 because there were no such pixels with non-zero mass in image, then
it means that the pixel chosen at the left according to item 1 or its subpixel can
not be equipoised immediately by a single pixel or by a subpixel at the right
having abscissa L = −N · l. For resolving this problem, marking all pixels
having abscissa l with a special flag and passing to the item 1, otherwise,
passing to the item 6.

6. Choosing an unconsidered yet pixel having abscissa L = −N · l at the right (let
this pixel have the mass M and moment μr = M · L with respect to ordinate
axis). Such pixel will be found according to item 5. Passing to the item 7.

7. Equipoising the pixel taken at the right according to item 6 and having the
moment μr = M · L by a subpixel found at the left according to item 1 having
the moment μl

a = −μr = −M · L.
8. The pixel chosen at the right according to item 6 is excluded from further

consideration. The subpixel chosen at the left according to item 1 and having
the mass m1 = M · N is excluded from further consideration, and only a non-
equipoised subpixel of this pixel having the mass m2 = m − m1 is further
considered. The whole image remains balanced with respect to ordinate axis
and may be considered as a dipole having the mass ratio mc/Mc = N and arm
lengths ratio |Lc/lc | = N. Passing to the item 1.
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9. If no unconsidered pixels and no pixels not marked with special flag remain in
the image, then passing to the item 29. Otherwise, the multitude of marked
pixels non-equipoised yet in the items 1–8 composes asymmetric dipole bal-
anced with respect to ordinate axis. The pixels having positive abscissas
compose the right arm of dipole. The length Lc of right arm corresponds to
centroid of the multitude of pixels having positive abscissas and aggregate mass
Mc. The pixels having negative abscissas compose the left arm of dipole. The
length −lc of left arm corresponds to centroid of the multitude of pixels having
negative abscissas and aggregate mass mc. Lc = −N · lc, Mc = mc/N. For
continuing the procedure of mutual equipoising of remaining pixels with
respect to ordinate axis, passing to the item 10.

10. Choosing an unconsidered yet pixel at the left having minimum in absolute
value negative abscissa. Let it has abscissa l, massm, and moment μl

0 =m · lwith
respect to ordinate axis. If such pixel was not found, it means that all pixels had
been already considered and mutually equipoised; then passing to the item 29.
Otherwise, there should also remain some pixels at the right that could equipoise
the pixel found at the left.

11. If l ≠ lc (|N · l| ≠ Lc), then passing to the item 12. If l = lc (|N · l| = Lc), then the
abscissa of pixel chosen at the left according to item 10 is equal to the abscissa
lc of centroid of multitude of pixels situated to the left of ordinate axis. Thus,
according to the item 9, the chosen pixel can be equipoised by the multitude of
all unconsidered pixels or subpixels situated at the right, the mass of equipo-
ising subpixel of ith pixel at the right isMi

a =Mi · m/mc, whereMi is the mass of
ith pixel at the right. The centroid of the multitude of pixels at the right has the
abscissa Lc = −N · lc = −N · l. After such equipoising, the pixel chosen at the
left according to item 10 and having the mass m and abscissa l is excluded from
further consideration. The pixels or subpixels at the right having the masses Mi

a

are excluded from further consideration. The remaining subpixels at the right
having the masses Mi

b = Mi − Mi
a are left for further consideration. The whole

image remains balanced with respect to ordinate axis and may be considered as
a dipole having the ratio mc/Mc = N of changed masses and arm lengths ratio
|Lc/lc| = N. Passing to the item 10.

12. Searching for an unconsidered pixel at the right having minimum abscissa
L1 < |N · l|. Let the pixel found have the mass M1, moment μr1

0 = M1 · L1 with
respect to ordinate axis, and moment μr1

L = M1 · (L1 − L) with respect to the
straight line parallel to ordinate axis and crossing the abscissa axis at the point
L = |N · l|. If such pixel was not found, then it means that a pixel at the right
having abscissa L1 > |N · l| exists, that could be used for equipoising the pixel
chosen at the left according to item 10 (the case L1 = |N · l| was considered in
the items 1–8). Passing to the item 20 for analyzing such situation, otherwise
passing to the item 13.

13. Searching for a not considered yet pixel at the right having abscissa L2 > |N · l|,
let it have the mass M2, moment μr2

0 = M2 · L2 with respect to ordinate axis, and
moment μr2

L = M2 · (L2 − L) with respect to the straight line parallel to ordinate
axis and crossing the abscissa axis at the point L = |N · l|. Such pixel should be
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found according to the following reasons. Let the multitude of unconsidered
pixels at the left have the abscissa lc of centroid and aggregate mass mc. This
multitude is equipoised by the multitude of not considered yet pixels at the right
having the centroid abscissa Lc = –mc · lc/Mc = −N · lc, where Mc is
the aggregate mass of pixels at the right. The pixel chosen at the left
according to item 10 has the minimum in absolute value negative abscissa l,
|l| < |lc| (the case l = lc was considered in the item 11), and a pixel having
abscissa L1 < |N · l| < |N · lc| = Lc was chosen according to item 12 for
equipoising it. Thus a pixel having abscissa L2 > Lc = |N · lc| > |N · l| exists in
the multitude of unconsidered pixels at the right.

14. If |μr2
L | > |μr1

L |, the following sequence of operations is accomplished: choosing
the subpixel having the mass M2

a =M1 · (L − L1)/(L2 − L) belonging to the pixel
having the mass M2 found according to item 13, while the subpixel having the
mass M2

b = M2 − M2
a belonging to this pixel is left for further consideration;

choosing as a whole the pixel having the massM1
a =M1 found according to item

12; passing to the item 17.
15. If |μr2

L | < |μr1
L |, the following sequence of operations is accomplished: choosing

the subpixel having the mass M1
a =M2 · (L2 − L)/(L − L1) belonging to the pixel

having the mass M1 found according to item 12, while the subpixel having the
mass M1

b = M1 − M1
a belonging to this pixel is left for further consideration;

choosing as a whole the pixel having the massM2
a =M2 found according to item

13; passing to the item 17.
16. If |μr2

L | = |μr1
L |, choosing as a whole the both pixels having the masses M1

a = M1

and M2
a = M2 found according to items 12 and 13, respectively, and passing to

the item 17.
17. If the condition M1

a · L1 + M2
a · L2 = −m · l is satisfied for the pixel having the

mass m chosen according to item 10 and for the pixels or subpixels having the
masses M1

a, M2
a chosen according to items 14, 15, 16, then the following is

accomplished: these pixels or subpixels are considered as mutually equipoised
and excluded from further consideration (the whole image remains balanced
with respect to ordinate axis and may be considered as a dipole having the ratio
mc/Mc = N of changed masses and ratio |Lc/lc| = N of changed lengths of arms);
passing to the item 10.

18. If the condition M1
a · L1 + M2

a · L2 < −m · l is satisfied for the pixel having the
mass m chosen according to item 10 and for the pixels or subpixels having the
masses M1

a, M2
a chosen according to items 14, 15, 16, then the following is

accomplished: the subpixel of mass m at the left having the mass
ma = (M1

a · L1 + M2
a · L2)/|l| is equipoised by the pixels or subpixels having the

masses M1
a, M2

a at the right; the mutually equipoised in this way pixels and
subpixels are excluded from further consideration (the whole image remains
balanced with respect to ordinate axis and may be considered as a dipole having
the ratio mc/Mc = N of changed masses and ratio |Lc/ lc| = N of changed lengths
of arms); the subpixel of mass mb = m − ma of the pixel at the left remains for
further consideration; passing to the item 10.
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19. If the condition M1
a · L1 + M2

a · L2 > −m · l is satisfied for the pixel having the
mass m chosen according to item 10 and for the pixels or subpixels having the
masses M1

a, M2
a chosen according to items 14, 15, 16, then the following is

accomplished: the pixel at the left having the mass m is equipoised by the
subpixels at the right having the masses M1

c = k · M1
a and M2

c = k · M2
a, where

k = −m · l/(M1
a · L1 + M2

a · L2); the equipoised pixel at the left having the mass
m is excluded from further consideration; the subpixels at the right having the
masses M1

c and M2
c are excluded from further consideration (the whole image

remains balanced with respect to ordinate axis and may be considered as a
dipole having the ratio mc/Mc = N of changed masses and ratio |Lc/lc| = N of
changed lengths of arms); the subpixels at the right having the masses
M1

d = M1
a − M1

c and M2
d = M2

a − M2
c remain for further consideration (the

subpixels at the right having the masses M1
b and M2

b that were left for further
consideration according to items 14 and 15 also should not be forgotten);
passing to the item 10.

20. Searching for a not considered pixel at the right having minimum abscissa
L2 > −N · l. Such pixel exists because no pixels having abscissas satisfying the
condition L1 ≤ −N · l were found according to item 12, while at least one pixel
should be found at the right for equipoising the pixel chosen at the left
according to item 10. Let the pixel found at the right have the mass M2 and
moment μr

0 = L2 · M2 with respect to ordinate axis. The pixel having abscissa
l chosen at the left according to item 10 will have the moment μl

L2 = (l + L2/
N) · m with respect to the straight line parallel to ordinate axis and crossing the
abscissa axis at the point −L2/N.

21. Let the multitude of unconsidered yet pixels at the left have the centroid
abscissa lc and aggregate mass mc. This multitude at the left is equipoised by
the multitude of unconsidered pixels at the right having the centroid abscissa
Lc = −mc · lc/Mc = −N · lc, where Mc is the aggregate mass of multitude of
pixels at the right. If L2 ≠ |N · lc|, passing to the item 22. Otherwise, L2 =
|N · lc|, which means that the abscissa of pixel found at the right according to
item 20 is N-fold larger in absolute value than the abscissa of centroid of the
whole multitude of not considered yet pixels at the left. As the multitude of
pixels at the left is equipoised by the multitude of pixels at the right, the
abscissa L2 is equal to the centroid abscissa of unconsidered pixels at the right,
i.e. L2 = Lc. Thus, for equipoising the pixel having abscissa L2 that was found at
the right according to item 20, the subpixels of every (ith) pixel are chosen
at the left having the masses mi

a = mi · M2/Mc, where mi is the mass of ith pixel
at the left, Mc is the aggregate mass of all unconsidered yet pixels at the right.
After such juxtaposing, the pixel chosen at the right according to item 20
having the mass M2 and abscissa L2 is considered to be equipoised and is
excluded from further consideration. The subpixels at the left having the masses
mi
a are equipoised and excluded from further consideration. The whole image

remains balanced with respect to ordinate axis and may be considered as a
dipole having the ratio mc/Mc = N of changed masses and ratio |Lc/lc| = N of
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changed lengths of arms. The subpixels at the left having the masses
mi
b = mi − mi

a remain for further consideration. Passing to the item 10.
22. Searching for an unconsidered pixel at the left having abscissa l2 < −L2/N

(|l2| > L2/N). Let the pixel found have the mass m2, and let its moment with
respect to ordinate axis be μl2

0 = m2 · l2, and its moment with respect to a straight
line parallel to ordinate axis and crossing the abscissa axis at the point −L2/N be
μl2
L2 = m2 · (l2 + L2/N). Such pixel should exist according to the following

reason. Let the multitude of unconsidered pixels at the left have the centroid
abscissa lc and aggregate mass mc. This multitude at the left is equipoised by
the multitude of unconsidered pixels at the right having the centroid abscissa
Lc = −mc · lc/Mc = −N · lc, where Mc is the aggregate mass of unconsidered
pixels at the right. The pixel chosen at the right according to item 20 has the
minimum (among all pixels at the right) positive abscissa L2 < Lc = −N · lc
(the case of L2 = Lc = −N · lc was considered in the item 21), and a pixel having
the mass m and abscissa l (|l| < L2/N < Lc/N = |lc|) was chosen according to item
10 for equipoising it. Thus, a pixel having abscissa |l2| > |lc| = Lc/N > L2/N (i.e.
l2 < lc = –Lc/N < −L2/N) should exist in the multitude of unconsidered pixels at
the left.

23. If |μl2
L2| > |μl

L2|, then accomplishing the following sequence of operations:
choosing a subpixel of mass m2

a = m · |l + L2/N|/|l2 + L2/N| of the pixel having
the mass m2 found according to item 22, while the subpixel having the mass
m2
b = m2 − m2

a of this pixel is left for further consideration; taking as a whole the
pixel of mass ma = m chosen according to item 10; passing to the item 26.

24. If |μl2
L2| < |μl

L2|, then accomplishing the following sequence of operations: taking
the subpixel having the mass ma = m2 · |l2 + L2/N|/|l + L2/N| of the pixel of mass
m chosen according to item 10, while the subpixel having the mass
mb = m − ma of this pixel is left for further consideration; taking as a whole the
pixel of mass m2

a = m2 found according to item 22; passing to the item 26.
25. If |μl2

L2| = |μl
L2|, then accomplishing the following sequence of operations: taking

as a whole the both pixels having the masses ma = m and m2
a = m2 found

according to items 10 и 22; passing to the item 26.
26. If the condition ma · l + m2

a · l2 = −M2 · L2 is satisfied for the pixel of the mass
M2 found according to item 20 and for the pixels or subpixels having the
masses ma and m2

a chosen at the left according to items 23, 24, 25, then the
following sequence of operations is accomplished: these pixels and subpixels
are considered as mutually equipoised and removed from further consideration
(the whole image remains balanced with respect to ordinate axis and may be
considered as a dipole having the ratio mc/Mc = N of changed masses and ratio
|Lc/lc| = N of changed lengths of arms); passing to the item 10.

27. If the condition M2 � L2 [ jma � lþ ma
2 � l2j is satisfied for the pixel of the mass

M2 found according to item 20 and for the pixels or subpixels having the
masses ma and m2

a chosen at the left according to items 23, 24, 25, then the
following sequence of operations is accomplished: equipoising the subpixel of
mass Ma

2 ¼ jma � lþ ma
2 � l2j=L2 of the pixel of mass M2 at the right by the
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pixels or subpixels at the left having the masses ma and ma
2 and excluding these

mutually equipoised pixels and subpixels from further consideration (the whole
image remains balanced with respect to ordinate axis and may be considered as
a dipole having the ratio mc/ Mc = N of changed masses and ratio |Lc/lc| = N of
changed lengths of arms); the subpixel of the mass Mb

2 ¼ M2 �Ma
2 at the right

is left for further consideration; passing to the item 10.
28. If the condition M2 � L2\jma � lþ ma

2 � l2j is satisfied for the pixel of the mass
M2 found according to item 20 and for the pixels or subpixels having the
masses ma and ma

2 chosen at the left according to items 23, 24, 25, then the
following sequence of operations is accomplished: equipoising the pixel having
the mass M2 at the right by the subpixels at the left having the masses
mc = k · ma and mc

2 ¼ k � ma
2, where k ¼ M2 � L2=jma � lþ ma

2 � l2j; the mutually
equipoised pixel of mass M2 at the right and subpixels having the masses mc

and mc
2 at the left are excluded from further consideration (the whole image

remains balanced with respect to ordinate axis and may be considered as a
dipole having the ratio mc/Mc = N of changed masses and ratio |Lc/lc| = N of
changed lengths of arms); the subpixels having the masses md = ma

– mc and
md

2 ¼ ma
2 � mc

2 at the left remain for further consideration (also the subpixels at
the left having the masses mb and mb

2 left remain for further consideration
according to items 23 and 24); passing to the item 10.

29. The end of the algorithm. Every pixel or subpixel at the left of ordinate axis was
equipoised by a single pixel or by several pixels or subpixels at the right of
ordinate axis. Every non-equipoised pixel or subpixel at the right of ordinate
axis was equipoised by a single pixel or several pixels or subpixels at the left of
ordinate axis.

The Algorithm 1 described above enables presenting any image having zero
centroid coordinates as a multitude of simple dipoles balanced with respect to one
and the same straight line passing through the coordinate origin, and all these
dipoles have the same ratio N of arm lengths. However, one of the arms of such
dipoles may not composed of a single pixel or subpixel, but of several pixels or
subpixels having differing coordinates. The presented above proof of Lemma 2 is
not valid in such case because it stipulated that the mass of each arm of dipole was
concentrated in a single pixel. The Lemma 2 concluded that there is a difference of
displacements of centroid of asymmetric dipole resulting from oppositely directed
NPT. Let us show, what conditions should be satisfied for keeping valid the con-
clusions of Lemma 2 for the following more complex cases of dipole composition
considered in Algorithm 1:

• The right arm of dipole is composed of a single pixel or of a subpixel situated to
the right of ordinate axis (at the right) and having abscissa L and mass
(brightness) M. The left arm of dipole is composed of a single pixel or of a
subpixel or it is composed of several pixels or subpixels situated to the left of
ordinate axis (at the left), and the centroid of this multitude of pixels or
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subpixels at the left has the abscissa l while the mass m of this multitude is
localized at the point of centroid.

• The left arm of dipole is composed of a single pixel or of a subpixel situated to
the left of ordinate axis (at the left) and having abscissa l and mass (brightness)
m. The right arm of dipole is composed of a single pixel or of a subpixel or it is
composed of several pixels or subpixels situated to the right of ordinate axis (at
the right), and the centroid of this multitude of pixels or subpixels at the right
has the abscissa L while the mass M of this multitude is localized at the point of
centroid.

Keeping in mind these two dipole configurations, two versions of conditions will
be considered that should be satisfied for correctness of the following statement: if
an NPT described with vector ~Pt of parameters is applied to asymmetric dipole,
then the absolute value of displacement of centroid of asymmetric dipole in the
case, when the direction of~Pt is antiparallel to the direction of dipole is larger, than
in the case, when the direction of ~Pt is parallel to direction of dipole (where
direction of dipole is the direction of its longer arm). This consideration will be
accomplished in the form of proofs of two lemmas presented below. For conve-
nience of description, a particular case will be considered corresponding to dipole
lying on abscissa axis, which could be extended to any general case by simple
conversion of coordinate system.

Lemma 3 Let a dipole lying on abscissa axis exist and be balanced with respect to
ordinate axis. Let the left (shorter) arm of this dipole correspond to a single pixel or
subpixel lying to the left of ordinate axis (at the left) and having the absolute value l
of abscissa and mass (brightness) m. Let the right arm of dipole be N-fold longer
than the left arm (N > 1) and correspond to a multitude of two pixels or subpixels at
the right having the differing masses M1 and M2 and abscissas L1 and L2
(L2 > L>L1), while the centroid of these pixels at the right has the abscissa L = N · l
and aggregate mass M = m/N concentrated at centroid. Then, there exists an
arbitrarily small in absolute value vector~Pt of parameters of NPT formed according
to Eqs. 5.28–5.29, oriented along the abscissa axis and having the following
properties: if~Pt is parallel to abscissa axis, then the displacement of dipole centroid
caused by such NPT is smaller in absolute value than the centroid displacement
caused by NPT corresponding to vector ~Pt antiparallel to abscissa axis.

The proof of Lemma 3 is presented in Appendix 2.

Lemma 4 Let a dipole lying on abscissa axis exist and be balanced with respect to
ordinate axis. Let the left (shorter) arm of this dipole correspond to a multitude of
two pixels or subpixels situated to the left of ordinate axis (at the left) and having the
masses (brightness) M1 and M2 and the abscissas differing in the absolute values L1
and L2 (L2 > L > L1). The centroid of multitude of pixels at the left has the abscissa L
and mass M = M1 + M2 concentrated at the point of centroid. Let the right arm of
dipole be 1/N times longer than the left arm (0 < N < 1). The right arm corresponds
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to a single pixel or subpixel situated to the right of ordinate axis (at the right) and
having the abscissa l = L/N and mass m = M · N. Then, an arbitrarily small in
absolute value vector~Pt of parameters of NPT formed according to Eqs. 5.28–5.29,
oriented along the abscissa axis and having the following properties, exists: if ~Pt is
parallel to abscissa axis (is directed along the longer arm of dipole, is parallel to
dipole), then the displacement of dipole centroid caused by such NPT is smaller in
absolute value than the centroid displacement caused by NPT corresponding to
vector ~Pt antiparallel to abscissa axis (antiparallel to dipole).

The proof of Lemma 4 is presented in Appendix 3.

Remark The Lemmas 3 and 4 consider the dipoles, one arm of which is composed
of a single pixel or its subpixel, while the other arm is composed of two pixels or
their subpixels. However, a quite different case is considered in the items 11 and 21
of Algorithm 1: a single pixel F or its subpixel situated in one semi plane with
respect to ordinate axis is balanced with a multitude f ¼ fi; i ¼ 1. . .nf g of subpixels
situated in the opposite semi plane, and the size of this multitude is larger than 2 in
general case. However, it can be easily shown (see e.g. in [26]) that the multitude
f can be presented as a set of pairs ff 0k ; f 0l ; k ¼ 1. . .n; l ¼ 1. . .n; k 6¼ lg of subpixels
or their sub-parts balanced along the abscissa axis with respect to the point of
centroid of this multitude. Then, each pair ff 0k ; f 0l g situated in one semi plane can be
balanced (with respect to the ordinate axis) with some subpixel F0

kl of pixel F or
of subpixel F situated in the other semi plane. Thus, the Lemmas 3 and 4 will also
provide the correctness of the items 11 and 21 of Algorithm 1.

It was proven in the Lemmas 2, 3, 4 that if some testing NPT was applied to a
symmetric dipole deformed initially by some other NPT, then the dipole centroid
displacement caused by testing NPT was larger in the case, when the testing and
initial NPTs were parallel, as compared with the case, when these two transforms
were antiparallel. The proving was accomplished for the case, when the “masses” of
each of arms of dipole were concentrated in one or two image points. Here and in
the further discussion, the direction of vector ~P of parameters of the NPT is also
referred to as the direction of this NPT. According to Eqs. 5.28–5.29, the dipole
displacements orthogonal to direction of NPT do not influence the presented above
results. It should be only provided that the dipole centroid would not be displaced
with respect to coordinate origin along the direction of dipole.

Let us consider an arbitrary 2D image having zero coordinates of centroid, and let
us present this image as a multitude of balanced asymmetric simple dipoles. Let
these dipoles have the same ratios of arm lengths in the direction of vector ~Pt of
parameters of testing NPT, and let the centroids of dipoles be not displaced with
respect to coordinate origin in the direction parallel or antiparallel to ~Pt as it was
shown in the Algorithm 1. Then, the proofs of Lemmas 2, 3, 4 will be true for every
simple dipole composing the image and for the whole image, if this image has
restricted definitional domain and zero abscissa of centroid. In the general case of
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arbitrary 2D image, the direction of asymmetric balanced dipole corresponding to it
may not coincide with the direction of abscissa axis. However, according to the
Lemma 2, the more is the asymmetry of dipole in the direction of testing NPT,–the
more will be the difference of dipole centroid displacement velocities in the direc-
tions parallel and antiparallel to testing NPT. It is correct for any dipoles considered
in the Lemmas 2, 3, 4, thus it will be correct for the whole images composed of such
dipoles. Therefore, by means of rotating the vector~Pt of parameters of testing NPT,
the direction of~Pt corresponding to maximum difference of displacement velocities
can be found, and this direction will coincide with the direction of image dipole
having maximum coefficient N of asymmetry.

At the beginning of this section, it was demonstrated using Eqs. 5.28–5.29 that
any NPT results in rearrangement of image points with respect to the point of its
centroid. If an initial image corresponded to symmetric balanced dipole, i.e. if the
condition presented in Eq. 5.31 was satisfied, then this condition would be violated
as a result of any NPT applied to image. Then, the transformed image would
correspond to an asymmetric dipole the direction of which (the direction corre-
sponding to the maximum value of coefficient N of its asymmetry) would not in
general case coincide with the direction of vector ~P of parameters of this NPT.
However, it can be concluded from Eqs. 5.28–5.29 that the direction of displace-
ment of pixels as well as the direction of maximum image “sparseness” occurring as
a result of NPT always have nonpositive projection on the vector~P of parameters of
this NPT. This enables formulating the Lemma 5, the proof of which would create a
base for proving the convergence of iterative procedure of compensation of the
NPT described below with the Algorithm 2.

Lemma 5 Let us consider an image having restricted definitional domain. This
image corresponded initially to a symmetric dipole, but it started corresponding to
an asymmetric dipole as a result of some NPT (having vector of parameters~P), and
the dipole is now balanced with respect to the origin of coordinates. Then, such
NPT (described with vector of parameters ~Pt of nonzero length) exists that will
partially compensate the initial NPT (having parameters ~P) of this image. This
vector ~Pt corresponding to compensating transform is parallel to the dipole of
image and is directed towards its longer arm.

The proof of this lemma is presented below in the Appendix 4. It is also shown
there that the procedure of compensation of NPT of image by sequential application
of compensating transforms having such vectors ~Pt of parameters converges.
Besides, it is explained in Appendix 4 that for enhancing of convergence, it is worth
to determine in each iteration and compensate the constituent part A3 of AP of
image. The iterative procedure of compensation of NPT is formalized below in the
Algorithm 2.
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Algorithm 2

1. Determining and compensating the shifts A1 and A2 of image centroid with
respect to the origin of coordinates and the anisotropic scaling A3 of image as it
was described above in the Sects. 5.3 and 5.4.

2. Choosing the direction of vector~Pt of parameters of small compensating NPT (it
is such direction of NPT that image centroid displacement ΔC1 caused by NPT
corresponding to ~Pt differs maximally in its module from the displacement ΔC2

corresponding to oppositely directed vector of NPT parameters). Estimating the
values of ΔC1 and ΔC2, corresponding to chosen vector ~Pt.

3. Finishing the execution of algorithm, if DC1j j � DC2j jj j\\ DC1j j and
DC1j j � DC2j jj j\\ DC2j j. Otherwise, accomplishing a partially compensating

NPT corresponding to the chosen vector ~Pt of parameters and passing to the
point 1 of the algorithm (the designation | · | corresponds here to absolute value).

After finishing of iterative compensating Algorithm 2, it is possible to calculate
the parameters of initial PT of inspected image by means of sequential summation
of vectors of compensating transforms applied at each iteration, as it is also shown
in Appendix 4.

It is not difficult to see that the parameters a7 and a8 of PT were also estimated
on the base of analysis of object-independent kernel of image (see in Eq. 5.7).

5.8 Experimental Results

The described above Algorithm 2 was implemented in a software model and suc-
cessfully tested for compensation of the NPT of diversified images. Two examples
of normalization of images with respect to NPT and conjugated with it anisotropic
scaling are shown in Figs. 5.1–5.2. It can be seen in Fig. 5.1 that a distorted by NPT
square is brought to its template (symmetric) state as a result of such compensation.
Figure 5.2 shows an arbitrary figure that had initially a normalized form and then
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Fig. 5.1 Compensation of
projective transform: chain
line with squares—initial
image, dashed line—distorted
image, solid line—result of
compensation of the NPT
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was distorted by two differing NPT. As a result of proposed iterative compensation,
the distorted figure is brought in the both cases to the same shape accurate within
isotropic scaling and rotation with respect to coordinate origin.

An example process for convergence of iterative algorithm of NPT compensa-
tion is presented in Fig. 5.3. Looking at this figure, it is interesting to note that there
was a type of stable symmetric bifurcation and trifurcation in the directions of

Fig. 5.2 Compensation of projective transform: chain line with squares—initial image, dashed
line—distorted image, solid line—result of compensation of the NPT, chain line with circles—
result of compensation of other NPT (a distorted image is not shown for this case)
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Fig. 5.3 Directions of maximum difference of displacements of image centroid at different
iterations of compensation of its NPT
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remaining error vector of NPT compensation: the remaining error vector accom-
plishes a kind of circulation around a target point. A graph of functional depen-
dency of the centroid displacement values for a real nonnormalized image on the
direction of testing NPT is shown in Fig. 5.4. It can be seen in Fig. 5.4 that initially
(for long vectors of parameters of noncompensated NPT) this functional depen-
dency has one period per full rotation cycle of vector of transformation parameters,
and there are points of maximum and minimum displacement corresponding to
opposite directions of vector of parameters. This case corresponds to the solid line
of graph and to the left scale ruler at ordinate axis in Fig. 5.4. The graph depicted in
Fig. 5.4 with dashed line corresponds to final iterations of compensation. The scale
of this graph along the ordinate axis is described by the right ruler. A real trifur-
cation is seen in this case: the centroid displacement has three maxima separated by
2π/3 per one rotation cycle of vector of transformation parameters. This second

Fig. 5.4 Values of displacement of image centroid for different directions of vector of parameters
of testing NPT: solid line—at initial iterations of compensation of NPT (left scale ruler); dashed
line—at final iterations of compensation of NPT (right scale ruler)

Fig. 5.5 Examples of objects automatically recognized at manufacturing plants using the
procedures of estimation and compensation of projective transforms proposed above
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graph shows much smaller magnitude of variation of centroid displacement cor-
responding to negligibly small residual uncompensated NPT. The described above
experimental results proof the efficiency of proposed transformation estimation
technique.

Fig. 5.6 Attention zones simulated using the proposed object-invariant image cores: a an image
of 3D scene, b a locally incorrect result of image segmentation using traditional tools, c the
attention zones built based on brightness features

Fig. 5.7 Attention zones simulated using the proposed object-invariant image cores: a, b a pair of
aerial photographs, c, d the attention zones built for these aerial photographs based on brightness
features
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Finally, it is interesting to note that a similar “method” of image analysis is
applied in human vision, in which the changes of surface inclination and related to
them NPT are determined from local velocity of texels recession [22].

As it could be forecasted, the proposed technique of image normalization turned
out to be rather efficient just in the tasks of automatic recognition of images sub-
jected to projective transforms. However, special observation conditions should be
provided in such cases: the visible images of objects should be considered as almost
plane, and the task of separation of object from background should be solved
sufficiently reliably. Such conditions can be rather efficiently ensured at manufac-
turing plants [20, 25]. A pair of images of such entirely plain and non-plain objects
that can be efficiently dealt with is shown in Fig. 5.5. The problem of separation of
object from background using the technique of attention zones is discussed below.

The technique of object-invariant cores turned out to be so universal that it was
successfully applied for texture cells description and texture recognition [27–30],
for simulation of attention zones in human vision [31, 32], and even for detection of
contour structural elements [25, 30], but these could be the themes of other
research. The examples of elliptic attention zones detected and described using the
proposed above parabolic object-invariant weighting functions are shown in
Fig. 5.6 (for image of 3D object) and Fig. 5.7 (for aerial photographs). The depicted
sizes of attention zones are specially decreased for avoiding their mutual screening.
It can be seen in Fig. 5.6 that application of technique of such attention zones solves
the problem of separation of undesirably fused adjoining image regions having
similar values of brightness, color, or texture features. The technique based on
attention zones was applied in [25, 30] for more efficient synthesis of multilevel
hierarchical image structural descriptions, and the problem of separation of object
from background in real images was also rather successfully solved there using the
attention zones technique.

5.9 Similar Results Reached by Other Authors

It is interesting to note that the formulae for determining of parameters of aniso-
tropic scaling could also be derived in other ways. In particular, Bradski gives in
[33] a formula for determining the directions of axes of ellipse approximating a
separated from background image. Bradski gives also the formulae for the length
and width of approximated in such way image and refers to Freeman et al. [34] for
more details of development of these formulae. The details of development of the
formula for direction of ellipse axes are presented by Jähne in [35] (it is the 6th
edition of his famous book on digital image processing, but the similar information
could be also found earlier, e.g. in the 4th edition). The mentioned formulae for
orientation, length, and width of approximating ellipse were developed using the
technique of central moments. If the formulae for calculation of moments would be
substituted into the formulae proposed in [33] by Bradski, then the Eqs. 5.18–5.19
developed in this chapter for the value and direction of anisotropic scaling could be
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easily obtained by simple mathematical manipulations. Thus, the other researchers
also independently succeeded in getting the formulae similar to those developed in
this chapter for determining some parameters of the AT.

A fundamentally different method of estimating the parameters of anisotropic
scaling of local image areas proposed by Baumberg [36] also should be mentioned.
In contrast to the methods of determining the parameters of image shape presented
in [33–35] and in this chapter, Baumberg estimates the parameters of anisotropic
scaling of image based on the anisotropy of texture. Baumberg considers that image
is normalized with respect to spatially anisotropic scaling, if its texture has statis-
tical parameters isotropic with respect to direction in image plane. This approach
could be accepted. However, it is not difficult to present real examples, in which the
texture has isotropic parameters while an object having such texture (e.g. an elliptic
object) is elongated in some direction. Thus, the method of estimating the
parameters of anisotropic scaling proposed in [36] could be supposed to have
restricted area of use.

5.10 Conclusion

The materials presented above demonstrate convincingly how the images of
compact objects separated from background can be transformed to an object-
invariant form, in which all generic-specific features are suppressed while the
parameters of geometric transform are still preserved. Then, the parameters of
projective transform can be estimated by means of comparison of such object-
invariant description with a template form common for all classes of objects. Thus,
the geometric transforms of images can be estimated based on object-invariant
image cores and compensated, and then the image can be recognized by any pattern
recognition techniques.

Acknowledgments This work was partially financially supported by the Government of Russian
Federation, Grant 074-U01.

Appendices

Appendix 1. Proof of Lemma 2

Let us consider (for definiteness) the case, when the vector~L of dipole coincides in
its direction with the abscissa axis, then the vector ~P of NPT parameters applied in
the past has the direction exactly opposite to direction of abscissa axis. Consider-
ation of this particular case will not violate the generality of consideration because
any other cases may be reduced to this one by rotation of coordinate system. Let M1
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be the mass (brightness) of left arm of dipole, let L1 be the absolute value of
abscissa of the left arm, let M2 be the mass of right arm, and let L2 be the absolute
value of its abscissa. Then, M1 = N M2, L2 = N L1, N > 1. Let us apply to this dipole
an additional “testing NPT” having the vector ~Pt of parameters parallel to ~P
(antiparallel to abscissa axis). Let us designate Pt ¼ jj~Ptjj. Then, as a result of the
additional NPT, the lengths of dipole arms will get the transformed values L01 and
L02, that, according to Eqs. 5.28–5.29, are calculated using Eq. 5.32.

L01 ¼ L1= 1þ L1Ptð Þ L02 ¼ L2= 1� L2Ptð Þ ð5:32Þ

The increments DL1 and DL2 of coordinates of the dipole halves are then cal-
culated by Eqs. 5.33–5.34.

DL1 ¼ L1 � L1=ð1þ L1PtÞ ¼ L21Pt=ð1þ L1PtÞ ð5:33Þ

DL2 ¼ L2=ð1� L2PtÞ � L2 ¼ L22Pt=ð1� L2PtÞ ð5:34Þ

Keeping in mind Eqs. 5.33–5.34, the absolute value DC1 of displacement of
abscissa of dipole centroid can be described with Eq. 5.35 that was derived using
the substitutions M1 = N M2 and L2 = N L1.

DC1 ¼ DL1M1 þ DL2M2

M1 þM2
¼ NM2L21Ptð1þ NÞ

ð1þ L1PtÞð1� NL1PtÞðM1 þM2Þ ð5:35Þ

The Eq. 5.36 showing the absolute value DC2 of displacement of abscissa of
centroid corresponding to opposite direction of vector~Pt was derived in similar way.

DC2 ¼ NM2L21Ptð1þ NÞ
ð1� L1PtÞð1þ NL1PtÞðM1 þM2Þ ð5:36Þ

Let us compare in Eq. 5.37 the absolute values DC1 and DC2 of displacements of
centroid corresponding to oppositely directed vectors ~Pt (the symbol * means the
inequality of unknown sign).

NM2L21Ptð1þ NÞ
ð1þ L1PtÞð1� NL1PtÞðM1 þM2Þ �

NM2L21Ptð1þ NÞ
ð1� L1PtÞð1þ NL1PtÞðM1 þM2Þ ð5:37Þ

Let us assume 1 − N L1 Pt > 0 and 1 − L1 Pt > 0, which is needed for ensuring
that the points of dipole would not move to infinity. Then, not violating the sign of
inequality, Eq. 5.37 is reduced to Eq. 5.38, which gives N* 1 after simple standard
mathematical manipulation.
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1�L1Ptð Þ 1þ NL1Ptð Þ� 1þ L1Ptð Þ 1�NL1Ptð Þ ð5:38Þ

However, it was assumed above that N > 1, thus the displacement of dipole
centroid in the case, when the direction of~Pt is antiparallel to the direction of dipole
(parallel to direction of ~P), is larger in absolute value than the displacement corre-
sponding to the case, when the direction of~Pt is parallel to direction of dipole (when
the testing NPT partially compensates the initial NPT). Thus, Lemma 2 is proven.

Appendix 2. Proof of Lemma 3

As it was described in the condition of Lemma 3, there exists a dipole lying on
abscissa axis, and it is balanced with respect to ordinate axis; the left (shorter) arm
of this dipole corresponds to a single pixel or subpixel lying to the left of ordinate
axis (at the left) and having the absolute value l of abscissa and mass (brightness)
m. The right arm of dipole is N-fold longer than the left arm (N > 1) and corre-
sponds to a multitude of two pixels or subpixels at the right having the differing
massesM1 andM2 and abscissas L1 and L2 (L2 > L > L1), while the centroid of these
pixels at the right has the abscissa L = N · l and aggregate mass M = m/N con-
centrated at coordinate of centroid. Now, let some NPT be described with a vector
~Pt of parameters that is antiparallel to abscissa axis (antiparallel to dipole), and let’s
designate ~Pt

		 		 ¼ P; then the abscissas of pixels composing the dipole will be
incremented as a result of such NPT by Eqs. 5.39–5.41.

Dl ¼ l� l= 1þ l � Pð Þ ð5:39Þ

DL1 ¼ L1= 1�L1 � Pð Þ � L1 ð5:40Þ

DL2 ¼ L2= 1�L2 � Pð Þ�L2 ð5:41Þ

The increment of abscissa C1 of dipole centroid caused by such NPT is described
by Eq. 5.42.

DC1 ¼ Dl � mþ DL1 �M1 þ DL2 �M2ð Þ= mþM1 þM2ð Þ ð5:42Þ

If the vector ~Pt is parallel to abscissa axis (parallel to dipole), then the absolute
values of increments of abscissas of dipole pixels resulting from such NPT will be
described by Eqs. 5.43–5.45.

Dl0 ¼ l= 1�l � Pð Þ � l ð5:43Þ

DL01 ¼ L1 � L1= 1þ L1 � Pð Þ ð5:44Þ
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DL02 ¼ L2�L2= 1þ L2 � Pð Þ ð5:45Þ

The absolute value of increment of abscissa C2 of dipole centroid caused by such
NPT will be described by Eq. 5.46.

DC2 ¼ Dl0 � mþ DL01 �M1 þ DL02 �M2

 �

= mþM1 þM2ð Þ ð5:46Þ

For proving this lemma, it is necessary to compare the absolute values ΔC1 and
ΔC2 of increments of abscissa of dipole centroid described by Eqs. 5.42 and 5.46.
These formulae have equal nonnegative denominators, thus it would be sufficient to
consider the relation of numerators ΔĈ1 and ΔĈ2 of Eqs. 5.42 and 5.46. According
to Eqs. 5.39–5.42, one can receive Eq. 5.47.

DĈ1 ¼m � l�m � l= 1þ l � Pð Þ þM1 � L1= 1�L1 � Pð Þ
�M1 � L1 þM2 � L2= 1�L2 � Pð Þ�M2 � L2

ð5:47Þ

Transforming Eq. 5.47 to common denominator and collecting the terms in the
numerator and denominator of fraction will result in Eq. 5.48.

DĈ1 ¼
l2 þ l � L1 þ l � L2 � l � L1 � L2 � P� 1

N � L1 � L2 � 1
N � l � L1 � L2 � P

ð1þ l � P� L1 � P� l � L1 � P2 � L2 � P� l � L2 � P2 þ L1 � L2 � P2 þ l � L1 � L2 � P3Þ=ðP � mÞ
ð5:48Þ

The replacements shown in Eqs. 5.49–5.51 were applied in deducing of
Eq. 5.48.

L1 �M1 þ L2 �M2 ¼ L �M ð5:49Þ

L �M ¼ l � m ð5:50Þ

M1 þM2 ¼ M ¼ m=N ð5:51Þ

According to Eqs. 5.43–5.46, Eq. 5.52 can be obtained.

DĈ2 ¼m � l= 1� l � Pð Þ�m � lþM1 � L1
�M1 � L1= 1þ L1 � Pð Þ þM2 � L2�M2 � L2= 1þ L2 � Pð Þ ð5:52Þ

Transforming Eq. 5.52 to common denominator and collecting the terms in the
numerator and denominator of fraction will result in Eq. 5.53.

DĈ2 ¼
l2 þ l � L1 þ l � L2 þ l � L1 � L2 � P� 1

N � L1 � L2 þ 1
N � l � L1 � L2 � P

ð1� l � Pþ L1 � P� l � L1 � P2 þ L2 � P� l � L2 � P2 þ L1 � L2 � P2 � l � L1 � L2 � P3Þ=ðP � mÞ
ð5:53Þ
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The replacements presented in Eqs. 5.49–5.51 also were applied in deducing of
Eq. 5.53. Let us analyze the inequality shown in Eq. 5.54.

DĈ1 �DĈ2 ð5:54Þ

Here, the symbol * of unknown inequality connects the absolute values of
centroid displacements calculated according to Eqs. 5.39–5.46 for the nonlinear
projective transforms corresponding to vectors ~Pt of parameters antiparallel (at the
left) and parallel (at the right) to abscissa axis respectively. Let us replace ΔĈ1 and
ΔĈ2 in Eq. 5.54 with their values shown in Eqs. 5.48 and 5.53. Then, the both sides
of resulting inequality are divided by positive factor P · m and transformed to
common denominator by means of multiplying them by the denominators of
Eqs. 5.48 and 5.53. The denominators of fractions in Eqs. 5.39–5.41, 5.43–5.45,
5.47, and 5.52 are positive (they may not approach zero, which would result in
infinity in transformed values), thus the denominators of Eqs. 5.48 and 5.53 are also
positive. Thus, the mentioned above transformation to common denominator fol-
lowed by omitting of equal denominators of the both sides of inequality will not
change the sign of inequality shown in Eq. 5.54 and will transform it to the form
mentioned below:

l � L1 � L2 � P� l3 � Pþ l � L21 � P� 1
N
L21 � L2 � Pþ 1

N
l2 � L21 � L2 � P3

þ l � L22 � P� 1
N
L1 � L22 � Pþ 1

N
l2 � L1 � L22 � P3 � l � L21 � L22 � P3 � l3 � L1 � L2 � P3

� � l � L1 � L2 � Pþ l3 � P� l � L21 � Pþ 1
N
L21 � L2 � P� 1

N
l2 � L21 � L2 � P3

� l � L22 � Pþ 1
N
L1 � L22 � P� 1

N
l2 � L1 � L22 � P3 þ l � L21 � L22 � P3 þ l3 � L1 � L2 � P3:

Finally, collecting the terms and dividing by positive P will result in Eq. 5.55.

l � L1 � L2 þ l � L21 þ l � L22 þ
1
N
l2 � L1 � L22 � P2 þ 1

N
l2 � L21 � L2 � P2

� l3 þ 1
N
L21 � L2 þ

1
N
L1 � L22 þ l � L21 � L22 � P2 þ l3 � L1 � L2 � P2

ð5:55Þ

Let us choose P << 1. This would enable neglecting the terms containing P2 in
Eq. 5.55, which corresponds in general to the described in this material strategy of
iterative compensation of NPT by means of applying the testing-compensating
projective transforms having small in absolute value vectors of parameters. Then
Eq. 5.55 will be transformed to Eq. 5.56.

l � L1 � L2 þ l � L21 þ l � L22 � l3 þ 1
N
L21 � L2 þ

1
N
L1 � L22 ð5:56Þ
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First, let us consider the partial case shown in Eq. 5.57 also satisfying the
conditions of Lemma 3.

L2 [ L ¼ N � l[ L1 � l ð5:57Þ

Let us fix l = 1. This will not violate the generality of proof because it is possible
to pass to arbitrary permitted values of l by simple scaling of coordinate system.
This results in Eq. 5.58.

L2 [ L ¼ N � 1[ L1 � 1 ð5:58Þ

Thus, Eq. 5.56 will be transformed to Eq. 5.59.

L1 � L2 þ L21 þ L22 � 1þ 1
N
L21 � L2 þ

1
N
L1 � L22 ð5:59Þ

Let us compare the respective terms of the left and right parts of inequality
presented in Eq. 5.59:

L1 � L2 [ ð1=NÞL21 � L2 ¼ ðL1=NÞL1 � L2 ð5:60Þ

because L1/N < 1 according to Eq. 5.58;

L21 � 1 ð5:61Þ

because L1 ≥ 1 according to Eq. 5.58;

L22 [ ð1=NÞ � L1 � L22 ¼ ðL1=NÞ � L22 ð5:62Þ

because L1/N < 1 according to Eq. 5.58.
Thus, according to Eqs. 5.60–5.62 and the assumption presented in Eq. 5.57,

such value P << 1 for norm of vector ~Pt of NPT parameters exists that the left part
of Eq. 5.56 would be larger than its right part. In other words, according to Eq. 5.54
the centroid displacement corresponding to vector ~Pt antiparallel to abscissa axis
will be larger in absolute value than the displacement corresponding to vector ~Pt

parallel to abscissa axis. Thus the Lemma 3 is proven for the particular case
specified in Eq. 5.57.

Let us consider now the alternative case, when the assumption presented in
Eq. 5.57 is not true. This corresponds to Eq. 5.63.

L1\l ð5:63Þ

Let us fix L1 = 1, which will give Eq. 5.64.
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l[ 1 ð5:64Þ

This will not violate the generality of proof because it is possible to pass to
arbitrary permitted values of L1 by simple scaling of coordinate system. Then,
Eq. 5.56 will get the form of Eq. 5.65.

l � L2 þ lþ l � L22 � l3 þ 1
N
L2 þ 1

N
L22 ð5:65Þ

Collecting the terms in Eq. 5.65 and dividing the both parts of Eq. 5.65 by
positive (l − 1/N) will give Eq. 5.66. The term (l − 1/N) is positive because l > 1
according to Eq. 5.64 and N > 1 according to conditions of lemma.

L22 þ L2 þ ðl� l3Þ=ðl� 1=NÞ� 0 ð5:66Þ

The last term in the left part of Eq. 5.66 can be divided into two fractions, which
will give Eq. 5.67.

L22 þ L2 þ 1� ðl3 � 1=NÞ=ðl� 1=NÞ� 0 ð5:67Þ

Let’s transform the last term of sum in the left part of Eq. 5.67 using the rule
x3 � a3 ¼ x� að Þ � x2 þ axþ a2ð Þ in the following way:

� l3 � 1=N
l� 1=N

¼ � l3 � 1�
N3

l� 1=N
�
1�
N3 � 1=N
l� 1=N

¼ � l2 þ l=N þ 1�
N2

 �
� 1� N2

l � N3 � N2 :

Finally, this will result in the following Inequality (Eq. 5.68).

L22 þ L2 þ 1
� �� l2 þ l=N þ 1�

N2

 �
þ N2 � 1
l � N3 � N2 � 0 ð5:68Þ

According to conditions of lemma, N > 1 and L2 > L = l · N > l, while l > 1
according to Eq. 5.64. Thus the last fraction in the left part of Eq. 5.68 is positive,
and the contents of round brackets and square brackets in the left part of Eq. 5.68
are positive as well. Thus, Eq. 5.68 can be recorded in the form:

L22 þ L2 þ 1
� �� l2 þ l=N þ 1�

N2

 �
þ N2 � 1
l � N3 � N2 [ 0:

Keeping in mind Eq. 5.54, it allows claiming (also in the case of alternative
assumption presented in Eq. 5.63) that the centroid displacement related to vector~Pt

antiparallel to abscissa axis is larger in absolute value than the displacement related
to ~Pt parallel to abscissa axis. Therefore, Lemma 3 is proven in general.
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Appendix 3. Proof of Lemma 4

It is easy to see that the conditions of this lemma correspond to the conditions of
Lemma 3 proven above, but the following was changed:

1. The dipole arm composed of two pixels is situated now in the domain of
negative abscissas, and the arm composed of a single pixel is situated in the
domain of positive abscissas.

2. The dipole arm composed of two pixels became shorter than the dipole arm
composed of a single pixel because the value of N became smaller than 1.

It follows from these changes that the dipole orientation with respect to the
direction of vector ~Pt (of parameters of NPT) considered in Lemma 3 is not
changed. Thus, if the vector ~Pt is antiparallel to abscissa axis, then such NPT will
decrease the absolute values of abscissas of the pair of pixels situated to the left of
ordinate axis, and it will increase the abscissa of pixel situated to the right of
ordinate axis as it was considered in the materials related to Lemma 3. The absolute
value ΔC2 of displacement of dipole centroid described by Eqs. 5.43–5.46 in the
materials of Lemma 3 corresponds to this NPT. Thus, it should be proven that the
absolute value ΔC1 of centroid displacement related to oppositely directed vector~Pt

of NPT parameters would be smaller than ΔC2. The value of ΔC1 is described by
Eqs. 5.39–5.42 in the materials of Lemma 3. In other words, it should be proven
that Eq. 5.69 is correct.

DC1\DC2 ð5:69Þ

Thus, according to the materials of proof of Lemma 3, it should be proven here
that ΔĈ1 < ΔĈ2, because the values ΔĈ1 and ΔĈ2 were derived from ΔC1 and ΔC2 in
Eqs. 5.48 and 5.53 using multiplication by positive values of denominators of
respective fractions. Therefore, the sign of inequality presented in Eq. 5.69 should
not be changed.

In the proof of Lemma 3, the inequality presented in Eq. 5.54 (ΔĈ1 * ΔĈ2) was
transformed to the form shown in Eq. 5.56, and no multiplication or dividing by
negative values was applied in the course of such transformation, thus the sign of
inequality also was not changed. For convenience of further analysis, the inequality
presented in Eq. 5.56 is repeated below in Eq. 5.70. Let us consider Eq. 5.70within the
frameworks of this proof: the symbol * should be replaced here by the symbol <.

l � L1 � L2 þ l � L21 þ l � L22 � l3 þ 1
N
L21 � L2 þ

1
N
L1 � L22 ð5:70Þ

According to conditions of lemma being proven, Eqs. 5.71–5.72 should be
correct.
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L2 [ L[ L1 ð5:71Þ

l ¼ L=N[ L N\1 ð5:72Þ

Thus, L1 has the smallest in absolute value abscissa as compared with the
abscissas of other pixels composing dipole. Let us fix L1 = 1. This will not violate
generality of proof because it is possible to pass to other values of L1 by simple
scaling of coordinate system. Then Eq. 5.70 will get the following form shown in
Eq. 5.73.

l � L2 þ lþ l � L22 � l3 þ 1
N
L2 þ 1

N
L22 ð5:73Þ

Let us divide the both parts of Eq. 5.73 by the positive l L2
2, which will result in

Eq. 5.74.

1
L2

þ 1
L22

þ 1� l2

L22
þ 1
N � L2 � lþ

1
N � l ð5:74Þ

Comparison of respective terms of the left and right parts of Eq. 5.74 will give
Eqs. 5.75–5.77:

1=L2\1= N � lð Þ ð5:75Þ

because N � l ¼ L\L2 according to Eqs. 5.71 and 5.72;

1=L22\1=ðN � L2 � lÞ ð5:76Þ

because N � l ¼ L\L2 according to Eqs. 5.71 and 5.72;

1	 l2=L22; ð5:77Þ

if

L2 	 l: ð5:78Þ

According to Eqs. 5.75–5.77, the respective terms of right part of Eq. 5.74 are
larger than the respective parts of its left part, thus Eq. 5.74 can now be recorded in
the following form:

1
L2

þ 1
L22

þ 1\
l2

L22
þ 1
N � L2 � lþ

1
N � l :

This means that ΔĈ1 < ΔĈ2 in Eq. 5.54, and ΔC1 < ΔC2, where ΔC1 and ΔC2 are
calculated according to Eqs. 5.42 and 5.46.
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Thus, the demanded inequality presented in Eq. 5.69 is proven. Therefore, there
exists an arbitrarily small in absolute value vector ~Pt of NPT parameters formed
according to Eqs. 5.28 and 5.29, oriented along the abscissa axis, and having the
following properties: if ~Pt is parallel to abscissa axis, then the displacement of
dipole centroid caused by such NPT is smaller in absolute value than the centroid
displacement caused by the NPT corresponding to vector ~Pt antiparallel to abscissa
axis. Therefore, Lemma 4 is proven.

Remark The correctness of Lemmas 3 and 4 guarantees, that using the Algorithm 1,
the image of any object having restricted definitional domain and separated from
background can be presented as a set of dipoles balanced with respect to image
centroid and having the same ratios of arm lengths. This would ensure the con-
vergence of iterative procedure for NPT compensation of image of such object
described above in Algorithm 2. However, Lemma 4 was proven using the
assumption (presented in Eq. 5.78) stipulating that the module of abscissa of none
of pixels composing the shorter arm of dipole may exceed the module of abscissa of
the pixel corresponding to longer arm of dipole. For solving this problem, the use of
such assumption could be introduced into respective part of Algorithm 1 by
choosing for mutual balancing only those pixels, for which L2 ≤ l. Such pairs of
pixels could be easily found, if the ratio N of lengths of dipole arms would sub-
stantially exceed 1, i.e. if the length of vector of parameters of still not compensated
NPT would be much larger than 1. The cases of violation of assumption presented in
Eq. 5.78, in which L2 > l could be considered as outliers corresponding to pixels
situated outside the borders of compact image object having restricted definitional
domain. However, when the value of N approaches 1 (i.e. in the case of almost entire
compensation of the NPT), the assumption presented in Eq. 5.78 becomes awkward
for ever larger and larger numbers of pixels. This results in increase of errors of
estimation of direction of vector ~Pt of parameters of partially compensating NPT
applied in the iterative compensating procedure presented in Algorithm 2. Finally,
for some small lengths of vector~P of parameters of still non-compensated NPT, the
further convergence of iterative compensating procedure becomes impossible. It was
also confirmed by the results of computer simulation described above in Sect. 5.8. At
some steps of iterative compensation, the length of vector ~P of parameters of still
non-compensated NPT stopped shortening. However, in this case, the remaining
length of ~P and the applied lengths of compensating vector ~Pt had already become
commensurable. The software modeling described above showed that the value of
non-compensated NPT was so small that the displacements of image centroid cor-
responding to such lengths of ~P and ~Pt were three orders smaller than the values of
coordinates of image pixels (three orders smaller than geometric sizes of image of
object). In such case, the absolute difference of displacement of centroid caused by
partially compensating NPT (described by~Pt) and displacement caused by the NPT
with oppositely directed vector of parameters was six orders smaller than image size.
It suggests that the real errors of estimation of parameters and compensation of NPT
caused by use of assumption presented in Eq. 5.78 can be negligibly small.
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Appendix 4. Proof of Lemma 5

First, let us consider how should be built a vector of parameters of total PT being
the result of a series of sequentially executed projective transforms. Let ~P1, ~P2, ~P3

be the vectors of parameters of three NPT, and let A and B be the matrices of two
AT. Then, the sense of Eqs. 5.28–5.29 can be expressed by a single Eq. 5.79.

~X 0 ¼ A~X

 �

= ~X �~Pþ 1

 � ð5:79Þ

If the affine component of PT is zero, the transform described by Eq. 5.79 is
reduced to NPT described in Eq. 5.80.

~X 0 ¼ ~X= ~X �~Pþ 1

 � ð5:80Þ

A composite PT resulting from sequential execution of first NPT (described by
vector ~P1 of parameters), the AT (described by matrix A), and second NPT
(described by vector ~P2 of parameters) can be expressed by Eq. 5.81.

~X 0 ¼ A~X

 �

= ~X �~P1 þ 1

 �� �

= A~X

 �

= ~X �~P1 þ 1

 � �~P2 þ 1

� � ¼ B~X

 �

= ~X �~P3 þ 1

 �

ð5:81Þ

Simple transformation of Eq. 5.81 shows that the matrix B of affine component
of resulting composite PT is equal to the matrix A of initial AT, while the vector~P3

of parameters of resulting composite NPT can be calculated by Eq. 5.82.

z

b

d

a

c

efg

Fig. 5.8 Different variants of summation of vectors ~P and ~Pt of parameters of initial and
compensating NPT: ~a is a vector of parameters of initial NPT, z is a circle of radius ~ak k
circumscribed by rotating vector ~a, ~b;~d;~f are different positions of vector of parameters of NPT
compensating (infinitely short vector~b orthogonal to vector~a and lying on the circle z; long vector
~d orthogonal to vector~a and thus not laying on the circle z),~c;~e;~g are vectors of composite NPT
resulting from summation of vector ~a with vectors ~b;~d;~f of parameters of compensating NPT
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~P3 ¼ A~P2 þ~P1 ð5:82Þ

If the matrix A of affine transform would be neglected, it would be seen from
Eq. 5.82 that the vector of parameters of resulting composite NPT is a sum of
vectors of parameters of two sequentially executed NPT.

A result of execution of compensating NPT is shown in Fig. 5.8 for the cases,
when the vector ~Pt of parameters of compensating NPT has nonpositive projection
upon the vector ~P of parameters of initial NPT. It can be seen that the vector of
parameters of resulting composite NPT becomes shorter, if the vector of parameters
of compensating NPT lies iside the circle z. The closer is the vector ~Pt to normal of
vector ~P, the shorter should be ~Pt for ensuring correctness of inequality
~Pþ~Pt

		 		\ ~P
		 		. If the vectors ~P и ~Pt are orthogonal, the inequality

~Pþ~Pt

		 		\ ~P
		 		 is satisfied when ~Pt

		 		 ! 0.
As it can be concluded from the Eqs. 5.28–5.29, it is theoretically possible that

the direction of dipole could be almost orthogonal to vector ~P. It could happen, if
the image size along vector ~P would be much smaller then the size in the direction
orthogonal to ~P. However, the vectors ~Pt and ~P are never orthogonal, and the
projection of ~Pt upon ~P is nonpositive. Therefore, a sufficiently short (but not
infinitely short) vector ~Pt can be found, for which ~Pþ~Pt

		 		\ ~P
		 		. Thus, if a

compensating NPT having the vector of parameters ~Pt chosen in the way described
above was applied, the resulting composite NPT would have vector of parameters
shorter than vector~P corresponding to initial NPT, which means that the initial NPT
would be partially compensated. Therefore, Lemma 5 is proven.

At the same time, if~Pt would be almost orthogonal to~P, the velocity of decrease
of ~Pþ~Pt

		 		 and the convergence of the whole iterative algorithm of NPT com-
pensation would be very low. For avoiding such situations, it is recommended to
compensate substantial elongation of object image in any direction at each iteration
of NPT compensation. Only then, the direction of compensating vector ~Pt may be
estimated. Such compensation of elongation does not contradict the rules of
developed above procedure of PT compensation because the compensation of
elongation is an integral part of AT compensation described above in
Sects. 5.3–5.6. Besides, the direction of dipole and related to it direction of vector
~Pt are estimated after such compensation of AP, thus the compensation of AP will
not disturb the correctness of estimating the direction of vector ~Pt of parameters of
compensating NPT. Execution of compensating NPT results in redistribution of
pixels with respect to image centroid, which makes the dipole of image more
symmetric. On the contrary, the compensating AT does not result in redistribution
of pixels with respect to centroid, thus it cannot result in increase of asymmetry of
dipole. Therefore, the AT executed at each iteration of Algorithm 2 may be
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neglected as it was proposed above in the course of deducing of Eq. 5.82. The
partial compensation of initial NPT at each iteration ensures the convergence of
iterative compensation of NPT of image described by Algorithm 2 in Sect. 5.7.

References

1. Shapiro LG, Stockman GC (2001) Computer vision. Prentice Hall, Upper Saddle River
2. Haralick RM (1974) A measure of circularity of digital figures. IEEE Trans Syst Man Cybern

SMC-4:394–396
3. Casasent DP, Barnard E (1990) Adaptive clustering optical neural net. Appl Opt 29

(17):2603–2615
4. Casasent D, Psaltis D (1978) Deformation-invariant, space-variant optical pattern recognition.

Prog Opt XVI:291–356
5. Qin-sheng C, Defrise M, Deconinck F (1994) Symmetric phase-only matched filtering of

Fourier-Mellin transforms for image registration and recognition. IEEE Trans Pattern Anal
Mach Intell 16(12):1156–1167

6. Maitra S (1979) Moment invariants. Proc IEEE 67(4):697–699
7. Freeman H (1974) Computer processing of line drawing images. Comput Surv 6:57–97
8. Gonzalez RC, Woods RE (2002) Digital image processing. Prentice Hall, Upper Saddle River
9. Ling H, Jacobs D (2007) Shape classification using the inner distance. IEEE Trans Pattern

Anal Mach Intell 29(2):286–299
10. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis

60(2):91–110
11. Morel JM, Yu G (2009) ASIFT: a new framework for fully affine invariant image comparison.

SIAM J Imaging Sci 2(2):438–469
12. Murillo AS, Guerrero JJ, Sagüés C (2007) SURF features for efficient robot localization with

omnidirectional images. In: IEEE international conference on robotics and automation,
pp 3901–3907

13. Averkin AV, Potapov AS, Lutsev VR (2010) Construction of systems of local invariant image
indicators based on the Fourier-Mellin transform. J Opt Technol 77(1):28–32

14. Viola P, Jones MJ (2001) Rapid object detection using a boosted cascade of simple features.
In: Proceedings of IEEE computer vision and pattern recognition conference, pp I-501–I-518

15. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE
conference on computer vision and pattern recognition, pp 886–893

16. Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with
discriminatively trained part based models. IEEE Trans Pattern Anal Mach Intell 32
(9):1627–1645

17. Lutsiv VR, Malyshev IA, Pepelka VA, Potapov AS (2002) The target independent algorithms
for description and structural matching of aerospace photographs. SPIE Proc 4741:351–362

18. Lutsiv VR, Malyshev IA, Potapov AS (2003) Hierarchical structural matching algorithms for
registration of aerospace images. SPIE Proc 5238:164–175

19. Lutsiv V, Potapov A, Novikova T, Lapina N (2005) Hierarchical 3D structural matching in the
aerospace photographs and indoor scenes. SPIE Proc 5807:455–466

20. Lutsiv V (1985) Methods and tools of control of industrial equipment on the base of video-
information. Ph.D. thesis, Institute of Aircraft Instrumentation (in Russian)

21. Lutsiv V, Malyshev I (2013) Image structural analysis in the tasks of automatic navigation of
unmanned vehicles and inspection of earth surface. Proc SPIE 8897. doi:10.1117/12.2028840

180 V. Lutsiv

http://dx.doi.org/10.1117/12.2028840


22. Marr D (1982) Vision: a computational investigation into the human representation and
processing of visual information. W.H. Freeman and Co., New York

23. Erosh IL (1984) The tasks of pattern recognition in robot systems. In: Problems and prospects
of optical image processing methods. Physic-technical Institute of Soviet Academy of
Sciences (in Russian), pp 75–78

24. Erosh IL (1981) Application of Krestenson transform for determination of object position
parameters from plain projections. Eng Cybern 3:46–52 (in Russian)

25. Lutsiv V (2012) An object-independent approach to image structural analysis. DPhil thesis,
Saint Petersburg University of Aerospace Instrumentation, Russia (in Russian)

26. Lutsiv V (2009) Method of iteratively compensating projective image distortions. J Opt
Technol 76(7):417–422

27. Lutciv VR, Dolinov DS, Zherebko AK, Novikova TA (1997) Using artificial neural networks
in image processing problems. J Opt Technol 64(2):112–118

28. Lutsiv V, Malyshev I, Novikova T (2004) Hierarchical approaches to analysis of natural
textures. SPIE Proc 5426:144–154

29. Lutsiv VR (2007) The application of generalized reference functions in natural and artificial
visual systems. J Opt Technol 74(11):759–763

30. Lutsiv VR (2008) Object-independent approach to the structural analysis of images. J Opt
Technol 75(11):708–714

31. Lutsiv VR (2007) Modelling the attention zones in problems involving the automatic
decomposition and structural analysis of images. J Opt Technol 74(4):274–281

32. Lutsiv VR, Novikova TA (2008) Modeling attention zones on the basis of an analysis of local
features of the image texture. J Opt Technol 75(7):449–456

33. Bradski R (1998) Computer vision face tracking for use in perceptual user interface. Intel
Technology J Q2’98:706–740

34. Freeman WT, Tanaka K, Ohta J, Kyuma K (1996) Computer vision for computer games. In:
2nd International conference on automatic face and gesture recognition, pp 100–105

35. Jähne B (2005) Digital image processing. Springer, Berlin-Heidelberg
36. Baumberg A (2000) Reliable feature matching across widely separated views. In: IEEE

conference on computer vision and pattern recognition, vol 1, pp 774–781

5 Automatic Estimation for Parameters of Image Projective … 181



Chapter 6
A Way of Energy Analysis for Image
and Video Sequence Processing

Andrei Bogoslovsky and Irina Zhigulina

Abstract Usually the object movements are determined by the analysis of inter-
frame difference in video signals. It is the simplest universal method. However, it
does not provide the intelligent processing, especially in the case of extremely low
luminance. The interframe differences of energy and phase-energy spectrums are
considered as an alternative way. The phase-energy spectrum is a product of partial
derivatives in spatial phase-frequency spectrum over their spatial frequencies. It
provides the detailed information about motion in finite frames. Moreover, the edges
in an image have a significant role. The modeling of interframe differences of
frequency responses is based on the analysis of pixels locating near the “moving”
boundaries. This increases a probability of movement’s detection. A distortion of
moving object’s shape, movement’s characteristics, and a quantity of moving
objects are defined from the analysis of types of interframe differences. The inter-
frame differences of frequency responses always lead to the best results than the
differences of video signals in spatial domain. The changes of the energetic indexes
in static images determine the efficiency function as a dependence of output and
input energies of 2D filter. This function is defined on a whole set of impulse
responses of a filter. The efficiency function is a positively certain quadratic form
with certain coefficients. These coefficients are obtained as a result of energy
spectrum decomposition of input frame into 2D Fourier series over the cosines. The
analysis of stationary points and also their efficiency function allow to synthesize the
optimum and the quasi-optimum 2D filters. The proposed way of energy analysis
provides some novel possibilities, for example, a detection of visual objects with
extremely small contrast.
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6.1 Introduction

A biological sense of vision including a human vision is characterized by most
impressive results. A vision system processes and perceives a huge array of real-
time information [1–7]. However, the system’s dimensions, the mass and energy
consumption are such that its owner as a mobile being can solve a great number of
other problems. A human vision system is not revealed yet to a full degree for a
time being [8, 9]. Its operational efficiency is ensured both by training and by the
fact that a brain is a part of body, i.e. the brain also uses other sensory organs while
viewing and perceiving the real life scenes [10]. One of the determining factors is
the operation arrangement of a visual system, and, first of all, the hierarchical
pattern of processing. This pattern is such that an initial processing is performed on
eye retina, and the ready product of such processing is received by a visual cortex.
A hierarchical pattern of processing may be considered as a general computational
resource for optimization.

Unfortunately, computer vision of modern control, navigation and safety systems
is yet long way off by its performance from a biological sense of vision. Probably,
one of such reasons is a hierarchy unavailability of computer vision. A preliminary
data processing stage is not singled out from the general computer vision system
[11–15]. However, if the preliminary data processing system is available, it usually
solves the auxiliary problems serving for image quality improvement, that is, noise
impact reduction, spatial profiteering, etc. At the same time, an eye retina identifies
additionally the basic spatial and temporal features of visual objects. Such identi-
fying has to perform a great number of arithmetical and logical operations with
nonnegative signals by means of multiple layers of different cell types, these layers
being mutually associated by many spatial connections. Thus, a preliminary data
processing in the biological sense of vision is intelligent one, and an eye retina is
considered to be a brain outside part [16, 17]. Apart from hierarchy and intelligence,
the biological sense of vision has a feature common for all living systems: any
process is repeatedly duplicated by various methods [18–20].

Video sequences can be represented as a set of static images (frames), which are
processed by a quasioptimal spatial filtering. On the other hand, these sequences
provide addition information about frame-to-frame differences. These algorithms
can be applied as a preliminary processing of images. Moreover, they can shed light
on a retina operation conception [21–25].

An analysis of the most important universal feature, i.e. signal energy, lies at the
basis of all such algorithms. During filtering of static images, the energy ratio of 2D
output-input signals is maximized, and for definition of movement and location
characteristics, either the energy spectra differences of two frames’ lines and col-
umns, either their phase-energetic spectra differences are analyzed [26–30].

Due to small-scale shifts between frames, a movement existence in the image
can be judged by the energy spectrum. Sometimes information of phases from an
energy spectrum has not been examined [31–33]. However, this statement is correct
only in case, when image finiteness in spatial domain does not taken into account.

184 A. Bogoslovsky and I. Zhigulina



The problem statement is located in Sect. 6.2. The frequency response is discussed
in Sect. 6.3 while as the frequency responses difference model is represented in
Sect. 6.4. The following sections provide the special cases (Sect. 6.5), the Frequency
Responses of InterFrame Differences (FR-IFD) application (Sect. 6.6), the image
energy at discrete spatial filter output (Sect. 6.3), and input signal matrix (Sect. 6.8).
Section 6.9 addresses the average squared error minimization. The quasioptimal
spatial filtering is studied in Sect. 6.10. Section 6.11 contains the canonical form of
output energy functional. Conclusion is drawn in Sect. 6.12.

6.2 Problem Statement

Let us introduce a function f xð Þ ¼ A cos xxxþ u0ð Þ presented in Fig. 6.1. Let us
consider energy E of finite by a spatial coordinate of cosine curve determined by
Eq. 6.1, where sinc 2xxM ¼ sin2xxM

2xxM
.

E ¼
ZM
�M

f 2 xð Þ dx ¼ A2M 1þ sinc 2xxM � cos 2u0ð Þ ð6:1Þ

From Eq. 6.1, it follows that energy of a cosine curve’s finite section depends
essentially on initial phase u0. Figure 6.2 shows the

E
A2M normed energy dependence

on 2xxM normed spatial frequency at various values of u0 initial phase. It can be
seen that this dependence most intensely becomes apparent at lower frequencies.
However, this dependence is available at any and all frequencies except the fol-
lowing ones 2xxM ¼ kp, k ¼ �1; �2; . . .. The energy of a cosine curve’s finite
section remains constant, if u0 ¼ � p

4 þ pk
2 .

A lens system of video camera as well as an eye pupil is a window, through which
an image finite by spatial coordinates is formed. If an object being observed is
moving, then during its movement through an image field every spatial cosine curve,
that forms object’s image spectrum, gains an additional phase incursion [35, 36]. If
two different frames are viewed, then such an incursion can be interpreted as a
change of all spectral components’ initial phases. Consequently, by measuring

Fig. 6.1 Finite section of
spatial cosine curve
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energy difference of two frames or, to be more accurate, the difference of energy
spectra according to spatial frequencies forming these spectra, the moving objects
can be detected as well as their motion characteristics are determined. This can be
performed, even if image energy of object movement remains constant as, for
example, in Fig. 6.3, where the background intensity a and the object brightness b
remain invariable as well as object dimensions.

6.3 Frequency Response

In references dealing with images processing, it is customary to place the origin of
coordinates in a frame upper left corner as shown in Fig. 6.4a. Due to traditional TV
scanning, a frame processing is usually performed by spatial signal processing with
respect to time, the signal being formed with scanning “from left to right” and from
“top to bottom”. However, the spatial coordinates are not causal in contrast with
temporal coordinate. Aside from that nowadays examples of signal spatial processing
without time base are known (e.g. charge-coupled devices operating in an undirected
charge transfer mode [34]). Therefore, in this research a more natural system of
coordinates was used as shown in Fig. 6.4b. The origin of coordinates is placed in a
frame center, x and y are integral-valued coordinates, x 2 �M;M½ �; y 2 �N;N½ �.

Fig. 6.2 The normed energy dependence from the normed spatial frequency at various values of
initial phase

Fig. 6.3 Scheme of object motion: a a moving object in the first frame, b a moving object in the
second frame
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The position measurement of moving object can be divided (factored). Thus, for
example, only lines are enough to be considered.

Let only one moving object be in an image. Let us describe a f mð Þ video signal
of any picture line by an applicative model. Then in the first frame (see Fig. 6.5)
Eq. 6.2 will be executed, where ak and bk are signals describing a static object and a
moving object, respectively.

f1 mð Þ ¼
Xl�1

k¼�M

akd k � mð Þ þ
Xr
k¼l

bkd k � mð Þ þ
XM
k¼rþ1

akd k � mð Þ

d k � mð Þ ¼
1 k ¼ m

0 k 6¼ m

( ð6:2Þ

In the next frame, Eq. 6.3 will be fulfilled, where i is a number of pixels, on
which the object has moved.

f2 mð Þ ¼
Xl�1þi

k¼�M

akd k � mð Þ þ
Xrþi

k¼ lþi

bkd k � mð Þ þ
XM

k¼ rþ 1þ i

akd k � mð Þ ð6:3Þ

From this point of view, let us always consider that i[ 0 and a motion direction
should be marked with a «+» sign before i that means a motion to the right, and
a «–» sign means a motion to the left.

Let us write down a line energy spectrum S uxð Þ as Eq. 6.4 [34], where ux 2
�p; p½ � is a normed spatial frequency, S pð Þ is a line energy characteristic.

S uxð Þ ¼
X2M
p¼0

S pð Þ cos pux ð6:4Þ

Apart from the energy spectrum, let us apply a function determined by Eq. 6.5,
where U uxð Þ is a line image phase spectrum.

Fig. 6.4 The coordinate systems: a usually used in the image processing, b the natural coordinate
system applied for 2D spatial signals
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I uxð Þ ¼ dU uxð Þ
dux

S uxð Þ ð6:5Þ

A function I uxð Þ contains information both of line image phase features and of
its energy. Therefore, let us call it a phase-energetic line spectrum.

The next Eq. 6.6 is also correct, where I pð Þ is a phase-energetic line feature.

I uxð Þ ¼
X2M
p¼0

I pð Þ cos pux ð6:6Þ

Let us also call S pð Þ and I pð Þ as the line frequency responses.
For analisis of video sequence, the formulae records at p ¼ 0 and p 6¼ 0 are not

necessary to be distinguished. Therefore, in future let us apply the modified fre-
quency responses and determine them by Eqs. 6.7–6.8, where ck is a video discrete
signal value in a pixel with number k.

Sm pð Þ ¼
XM�p

k¼�M

ckckþp ð6:7Þ

Im pð Þ ¼
XM�p

k¼�M

2k þ pð Þ ckckþp ð6:8Þ

It is necessary to analyze the FR-IFDs for motion estimation in an image, which
are calculated by Eqs. 6.9–6.10, where a single character stroke «´» corresponds to
a previous frame and a double character stroke «˝» corresponds to a next one.

DSm pð Þ ¼ S00m pð Þ � S0m pð Þ ð6:9Þ

DIm pð Þ ¼ I 00m pð Þ � I 0m pð Þ ð6:10Þ

6.4 Frequency Responses Difference Model

Let us discuss the possibility for estimation of motion direction in an image by
using frequency responses. For definiteness, let an object be located on the right of
the image center and it has moved between frames to the center as it is schemat-
ically shown in Fig. 6.6.

Fig. 6.5 Picture line
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An object contrast respect to a background may be characterized by DL ¼
bl � al�1 and DR ¼ br � arþ1 values or by D ¼ b� a value, where b and a are
averaged on some neighboring pixels of the object and the background,
respectively.

Let us consider that video signals of background pixels and mutually corre-
sponding object pixels between frames have changed insufficiently and also that
i\r � l. Let us also consider that the condition (Eq. 6.11) is executed.

p[ r � lþ i ð6:11Þ

The analysis shows that in this case a size of changing p from 0 to 2M naturally
is divided into 10 sub-ranges. Let us consider them in the order of p increasing.
Figure 6.7 shows the plots of DIM pð Þ and DSM pð Þ (a and b are constants).

Consider the following cases.

1. If p ¼ 0, then ar�n and bl�1�n values naturally correspond to the second frame
in Eqs. 6.12–6.13, respectively.

Fig. 6.6 The same line of two frames containing a moving object

Fig. 6.7 The plots of frame differences frequency responses corresponding to Fig. 6.6
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DIM 0ð Þ ¼ 2
Xi�1

n¼0

DR n� rð Þ ar�n þ br�nð Þ þ DL l� 1� nð Þ al�1�n þ bl�1�nð Þ

ð6:12Þ

DSM 0ð Þ ¼ �DR

Xi�1

n¼0

ar�n þ br�nð Þ þ DL

Xi�1

n¼0

al�1�n þ bl�1�nð Þ ð6:13Þ

At constant luminance, an object moving through background is described by
expressions DSM 0ð Þ ¼ 0 and DIM 0ð Þ ¼ �2i � D � aþ bð Þ � r � lþ 1ð Þ 6¼ 0, i.e.
the value is proportional to movement i, D object contrast and increased respect
to an object length by one pixel.
For any p, a frequency responses difference can be described as Eqs. 6.14–6.15,
where parameters Ik and Sk are calculated by Eq. 6.16.

DIM pð Þ ¼ DL � I3 þ I4ð Þ � DR � I1 þ I2ð Þ ð6:14Þ

DSM pð Þ ¼ DL � S3 þ S4ð Þ � DR � S1 þ S2ð Þ ð6:15Þ

Ik ¼
Xuk
n¼0

2vk þ �1ð Þkp
� �

avk Sk ¼
Xuk
n¼0

avk k ¼ 1; 4 ð6:16Þ

2. With regard to next phases 1� p�M � r � 1 at 1� p� r � lþ i here and in
next three sub-ranges special cases, the additional analysis is required. At
r � lþ i\p�M � r � 1, Eqs. 6.14–6.15 are correct, where variables accept
values from Eq. 6.17.

u1 ¼ u2 ¼ u3 ¼ u4 ¼ i� 1
v1 ¼ r þ p� n
v2 ¼ r � p� n
v3 ¼ l� 1þ p� n
v4 ¼ l� 1� p� n

8>>>><
>>>>:

ð6:17Þ

As the limits of sums in Eqs. 6.14–6.15 are equal, and in expressions for I1 � I4
a phase number p enters with the opposite signs, values DSM pð Þ and DIM pð Þ
show small dependence on p. Also, among other factors, when a and b are
constants (see Fig. 6.7), DSM pð Þ ¼ 0 and DIM pð Þ ¼ �4i � a � D � r � lþ 1ð Þ.

3. A near pulse front of the FR-IFD is formed at M � r� p�M � r þ i� 1. To
find the FR-IFD, it is necessary to assume that u1 ¼ M � p� r þ i� 1 and
v1 ¼ M � n, remaining uk and vk values are the same as in the previous case.
Edge duration is marked by i pixels, i.e. it equals the object movement.

4. A near pulse peak of the FR-IFD is observed at M � r þ i� p�M � l. In this
connection, it should be assumed in Eqs. 6.14–6.15 that I1 ¼ S1 ¼ 0, uk and vk
values are determined by Eq. 6.17. As limits of summing in Eq. 6.16 are equal,
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DSM pð Þ will have small dependence on a value p, and DIM pð Þ will increase
together with p increase.

5. At M � lþ 1� p�M � lþ i, a near pulse edge of the FR-IFD may be esti-
mated. In this connection I1 ¼ S1 ¼ 0, u3 ¼ M � p� lþ i, v3 ¼ M � n. A
pulse fall time coincides with a pulse rise time.

6. A pulse-to-pulse area is located at M � lþ iþ 1� p�M þ l� i� 1. In
Eqs. 6.14–6.15, it is necessary to consider that I1 ¼ I3 ¼ 0 and S1 ¼ S3 ¼ 0.
Also for u2; u4; v2; v4 values, Eq. 6.17 is correct.

7. A remote pulse front of the FR-IFD corresponds to M þ l� i� p�M þ l� 1.
A dissimilarity from the previous case consists only in the expression for
u4 ¼ M þ l� 1� p.

8. A remote pulse peak of the FR-IFD is characterized by M þ l� p�M þ r � i
phases numbers. In Eqs. 6.14–6.15 for the given and next sub-ranges, only I2
and S2 values are remained. In this case, u2 ¼ i� 1.

9. A remote pulse edge of the FR-IFD is described byM þ r � iþ 1� p�M þ r,
u2 ¼ M þ r � p phases numbers.

10. At p� pmax ¼ M þ r þ 1, DSM ¼ DIM ¼ 0 is executed.

The essential singularity of the proposed model is that it links video signal
values corresponding to a stationary background with features inherent in a moving
object. At the same time, the number of video signal values of the background is a
relatively few; it varies from 1 to 4i depending on a sub-range. In this connection, it
can be possible “to consider” various sites of dependences by changing some values
of video signal. For example, a change of value in pixel numbered as �Mð Þ brings
the influence on a pulse front and remote pulse edge of the FR-IFD.

Figure 6.8 shows other possible variants of moving object location.

Fig. 6.8 Other object
possible movements:
a motion to the right, M > 0,
b motion to the right, M < 0,
c motion to the left, M < 0
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The respective models can be obtained from the considered model by a way for
applying of exchange rules situated in Table 6.1.

For example, in the case of situation, represented in Fig. 6.8a, DSM pð Þ takes the
form DSM pð Þ ¼ �DL

PM�l�p

n¼0
alþpþn, and a remote pulse edge will be observed under

the assumption that M � l� iþ 1� p�M � l.

6.5 Special Cases

Such cases arise at violation of condition from Eq. 6.11, i.e. when p� r � lþ i. As
experience shows, the special cases are essential for the FR-IFD applying. Such
cases can be realized in sub-ranges of 2–5 by p changing in the spatial and fre-
quency domains of the close pulse and close phase forming, respectively. In this
case, the FR-IFD forms the maximal number of video signal values.

The following special cases are possible:

1. p� i (It is realized at r�M � i� 1 in the second sub-range, also at r�M � i in
the third sub-range).

2. p� r � l� i (at r�M � r � lð Þ þ i� 1 in the second sub-range, at r�M �
r � lð Þ þ i in the third sub-range, at r�M � r � lð Þ þ 2i in the fourth sub-range).

3. p� r � l (at r�M � r � lð Þ � 1 in the second sub-range, at r�M � r � lð Þ in
the third sub-range, at r�M � r � lð Þ þ i in the fourth sub-range).

4. p� r � lþ i (at r�M � r � lð Þ � i� 1 in the second sub-range, at r�M �
r � lð Þ � i in the third sub-range, at r�M � r � lð Þ in the fourth sub-range, at
r�M � iþ 1 in the fifth sub-range).

In any case, the FR-IFDs are determined by Eqs. 6.18–6.19, where I1; I4, S1; S4
are estimated by Eq. 6.16, values Ia bð Þ

2 ; Ia bð Þ
3 , Sa bð Þ

2 ; Sa bð Þ
3 are also determined by

Eq. 6.16, if a is a superscript. If b is a superscript, then the Impulse Response (IR)
counts of video signal a corresponding to the background should be exchanged for
IR counts of video signal b corresponding to the object (Eq. 6.16).

DIM pð Þ ¼ I1 þ Ia bð Þ
2 þ Ia bð Þ

3 þ I4 þ I 01 2ð Þ ð6:18Þ

DSM pð Þ ¼ S1 þ Sa bð Þ
2 þ Sa bð Þ

3 þ S4 þ S01 2ð Þ ð6:19Þ

Table 6.1 Rules for obtaining models in other movement cases

Figure number Substitutions in the model corresponding to Fig. 6.6

Figure 6.8a r ! r þ i; l ! lþ i; D ! �D

Figure 6.8b r $ �l; l ! �rð Þ; DR $ DL; ck ! c�k

Figure 6.8c r � i $ �l; l� i ! �rð Þ; DR $ DL; ck ! c�k ; D ! �D
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Variables I 01; I
0
2; S

0
1; and S02 are calculated in a following way:

I
0
1 ¼

Xi�1�p

n¼0

2r � p� 2nð Þ ar�p�nar�n
� �00� br�p�nbr�n

� �0h i

�
Xi�1�p

n¼0

2l� 2� p� 2nð Þ al�1�p�nal�1�n
� �00� bl�1�p�nbl�1�n

� �0h i

I
0
2 z1; z2ð Þ ¼

Xz1
n¼0

2z2 þ pð Þ bz2az2þp
� �00� az2bz2þp

� �0h i

S
0
1 ¼

Xi�1�p

n¼0

ar�p�nar�n
� �00� br�p�nbr�n

� �0h i
�
Xi�1�p

n¼0

al�1�p�nal�1�n
� �00� bl�1�p�nbl�1�n

� �0h i

S
0
2 z1; z2ð Þ ¼

Xz1
n¼0

bz2az2þp
� �00� az2bz2þp

� �0h i
:

Case 1 can be realized only as 2nd and 3rd sub-ranges (accordingly items 2.1
and 3.1 in Table 6.2). In this connection:

I
0
1 2ð Þ ¼ I

0
1 S

0
1 2ð Þ ¼ S

0
1 Ia bð Þ

2 ¼ Ib2 Ia bð Þ
3 ¼ Ib3 Sa bð Þ

2 ¼ Sb2 Sa bð Þ
3 ¼ Sb3

u2 ¼ u3 ¼ u4 ¼ p� 1 v2 ¼ r � i� n v3 ¼ l� 1þ p� n v4 ¼ l� i� 1� n:

All special cases for the phase-energetic frequency response are shown in
Table 6.2.

6.6 FR-IFD Application

The FR-IFDs are very sensitive to changing of video signal values. The numerical
estimates can be obtained on the basis of the given above model. Figure 6.9 shows
the changing of energy responses’ interframe differences at nullification of pixels
under −19 and 0 numbers, and Fig. 6.10 shows changing of phase-energy
responses’ frame-to-frame differences at nullification of pixels under −1 and 1
numbers. Nullification is performed only in the second frame. Numerical values of
parameters are: M ¼ 27, l ¼ 6, r ¼ 14, i ¼ 3, a ¼ 123, b ¼ 133.

Let us presume that a value changing of video signal occurred in the second
frame in a pixel numbereds: c00s1 ¼ c00s þ Dcs. Then Eqs. 6.20–6.21 can be obtained
using Eqs. 6.7–6.10.

DSM1 pð Þ ¼ DSM pð Þ þ Dcs � c00s�p þ c00sþp

� �
ð6:20Þ

DIM1 pð Þ ¼ DIM pð Þ þ 2sDcs � c00s�p þ c00sþp

� �
� pDcs � c00s�p � c00sþp

� �
ð6:21Þ
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From Eqs. 6.20–6.21 and Figs. 6.9–6.10, it follows that a component Dcs
contributes to the FR-IFD at whatever p value, moreover, this contribution sub-
stantially depends both on s number and on Dcs omponent amount, as well as on p
size of changing.

At nullification of s-pixel Eqs. 6.22–6.23 follow from Eqs. 6.20–6.21.

DSM1 pð Þ ¼ DSM pð Þ � c0s � c00s�p þ c00sþp

� �
ð6:22Þ

DIM1 pð Þ ¼ DIM pð Þ � 2sc0s � c00s�p þ c00sþp

� �
þ pc00s � c00s�p � c00sþp

� �
ð6:23Þ

A nullification of pixels at image edges (as well as addition of new zero-order
pixels) allows to pick out several moving objects and to determine their motion
parameters [34].

Fig. 6.9 Energy responses of
interframe differences: a reset
pixel numbered (−19), b reset
pixel numbered 0
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During processing of images distorted by additive noise (that is typical, for
example, for uttermost low illuminance conditions in real scenes), the FR-IFD
estimations begin to fail. This appears a necessity to decrease a resolving power at
image edges in order to reduce a noise impact. To achieve this, the edge pixels need
to be zeroed in increments at regular intervals. The best results are obtained, if the
same line of the first frame is zeroed by the length of k1 and k1 þ k2 pixels, and
frequency responses and their difference are found. Then a corresponding second
frame line should undergo the same operations, and after that the difference of
differences (or the second difference) should be found [34]. At k1 and k2 defined
values, the so-called extreme double differences are formed allowing a separation of
moving objects from a noise.

Fig. 6.10 Phase-energetic
responses of interframe
differences: a reset pixel
numbered (−1), b reset pixel
numbered 1
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The moving objects appearing within eyeshot are most dangerous or interesting
for living beings. However, an eye retina has decreased resolving power just at the
periphery. This allows to presume that the biological systems apply the algorithms
for movement detection similar to the above-mentioned.

6.7 Image Energy at Discrete Spatial Filter Output

The tasks of visual objects sharpening into cluttered background (image enhance-
ment) and a noise reduction (contrast decay) are usually solved by the signals
filtering. The projects of visual objects may be interpreted as the small-size patterns
of fixed form with contours that can also be considered as the small-size elements,
and other structures occupying a lesser part of an image. All they are characterized
by a low energy respect to other image components with larger size. Therefore, it is
desirable to increase a relative energy of small-size objects’ projects by a filtering.

As a rule, the large-size structures, namely spots of brightness, atmospheric
formations, shadowing, etc. cause a noise that impair the images’ analysis process.
The noise-causing structures may be the regular texture structures like sea distur-
bance, urban development, forest areas, etc., which can be described in terms of
narrow-band spatial process. Still in any case, it is desirable to reduce the respect
energy of noise image signals.

Thus, a relative change of image signals energy can serve as an index of filtering
efficiency for image signals. This index should connect the characteristics of input
and output signals with filter parameters.

A signal spectrum by the Discrete Filter (DF) output will have a view of
Eq. 6.24, where _Sinput ux;uy

� �
and _Soutput ux;uy

� �
are an input and output image

spectra, respectively; _H ux;uy

� �
is the DF gain; ux;uy 2 �p; p½ � are the normed

spatial frequencies.

_Soutput ux;uy

� � ¼ _H ux;uy

� � � _Sinput ux;uy

� � ð6:24Þ

Let us perform the complex conjugation operation from Eq. 6.24 as Eq. 6.25.

_S�output ux;uy

� � ¼ _H� ux;uy

� � � _S�input ux;uy

� � ð6:25Þ

After multiplication the corresponding parts of Eqs. 6.24–6.25, Eq. 6.26 is
obtained, where ~Sinput ux;uy

� �
и ~Soutput ux;uy

� �
are energy spectra of input and

output image signals, respectively.

~Soutput ux;uy

� � ¼ _H ux;uy

� ��� ��2�~Sinput ux;uy

� � ð6:26Þ
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The energy of processed image signal will be obtained, if ~Soutpu ux;uy

� �
energy

spectrum is integrated by all arguments from Eq. 6.27.

E ¼
Zp
�p

Zp
�p

_H ux;uy

� ��� ��2�~Sinput ux;uy

� �
duxduy ð6:27Þ

For the DF gain squared absolute value, Eq. 6.28 can be obtained [34], where a�;�
are the elements of impulse response of the DF with aperture aþ bþ 1ð Þ	
cþ d þ 1ð Þ, a; b; c; d are nonnegative integers (b and d can be equal to zero).

_H ux;uy

� �j2 ¼ 2
Xb

l¼�a�i

Xd
m¼�c�j

X0
i¼� aþbð Þ

X0
j¼� cþdð Þ

alþi;mþj � al;m � cos iux þ juy

� �
iþj6¼0

þ 2
Xb

l¼�a�i

Xd�j

m¼�c

X�1

i¼� aþbð Þ

X�i

j¼1

alþi;mþj � al;m � cos iux þ juy

� �

þ 2
Xbþi

l¼�a

Xd
m¼�cþj

X�1

i¼� aþbð Þ

Xcþd

j¼�iþ1

al�i;m�j � al;m � cos iux þ juy

� �þXb
l¼�a

Xd
m¼�c

a2l;m

ð6:28Þ

From Eq. 6.28, it follows that the DF squared amplitude frequency spatial
characteristics form the weighted cosine curves of all possible arguments. There-
fore, Eq. 6.27 should be transcribed as Eq. 6.29.

E ¼
X
l;m;i;j

alþi;mþjal;m

Zp
�p

Zp
�p

cos iux þ juy

� � � ~Sinput ux;uy

� �
duxduy ð6:29Þ

A dual integral in Eq. 6.29 can be considered as an expanding i; jð Þ-coefficient of
~Sinput ux;uy

� �
function in a bivariate Fourier cosine transformation

ai;j ¼
Zp
�p

Zp
�p

cos iux þ juy

� � � ~Sinput ux;uy

� �
duxduy:
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Taking into account Eq. 6.28, Eq. 6.30 is obtained.

Eoutput ¼ 2
Xb

l¼�a�i

Xd
m¼�c�j

X0
i¼� aþbð Þ

X0
j¼� cþdð Þ

alþi;mþj � al;m � ai;j
iþj6¼0

þ 2
Xb

l¼�a�i

Xd�j

m¼�c

X�1

i¼� aþbð Þ

X�i

j¼1

alþi;mþjal;mai;j

þ 2
Xbþi

l¼�a

Xd
m¼�cþj

X�1

i¼� aþbð Þ

Xcþd

j¼�iþ1

al�i;m�j � al;m � ai;j þ
Xb
l¼�a

Xd
m¼�c

a2l;mEinput

ð6:30Þ

Thus, the energy of output signal is determined by a bivariate Fourier cosine
transformation of energy spectrum cosines for input signal and ai;j coefficients.

Let us norm Eq. 6.30 dividing by the input signal energy:

Einput ¼
Zp
�p

Zp
�p

~Sinput ux;uy

� �
duxduy

and obtain Eq. 6.31, where si;j ¼ ai;j
Einput

, obviously that s0; 0 ¼ 1.

e ¼ Eoutput

Einput

¼ 2
Xb

l¼�a�i

Xd
m¼�c�j

X0
i¼� aþbð Þ

X0
j¼� cþdð Þ

alþi;mþj � al;m � si;j
iþj 6¼0

þ 2
Xb

l¼�a�i

Xd�j

m¼�c

X�1

i¼� aþbð Þ

X�i

j¼1

alþi;mþj � al;m � si;j

þ 2
Xbþi

l¼�a

Xd
m¼�cþj

X�1

i¼� aþbð Þ

Xcþd

j¼�iþ1

al�i;m�j � al;m � si;j þ
Xb
l¼�a

Xd
m¼�c

a2l;m

ð6:31Þ

It can be shown [34], that Eq. 6.32 is executed, i.e. the expansion coefficients of
energy spectrum of video signal into the double Fourier series relative to the cosines
coincide with values of autocorrelation function K k; lð Þ normed by energy video
signal of input image.

sk;l ¼ 1
Einput

� K k; lð Þ ð6:32Þ
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In other words, the expansion coefficients coincide with values of input image
autocorrelation coefficient. Equation 6.31 can be considered as a functional defined
by a set of impulse responses of the DF.

6.8 Input Signal Matrix

In general, an energy spectrum has central inversion, that is si;j ¼ s�i;�j. Let us
apply only si;j coefficients, for which i is a non-positive. If i ¼ 0, then j is a non-
positive. Therefore, the rule can be obtained (Eq. 6.33).

si;j ¼
si;j if i\0
s0;� jj j if i ¼ 0
s�i;�j if i[ 0

8<
: ð6:33Þ

For all si;j coefficients should make aþ bþ 1ð Þ cþ d þ 1ð Þ þ aþ bð Þ cþ dð Þ.
A system for finding critical points of e can be found from Eq. 6.31 as Eq. 6.34,

where e0i;j is a derivative of e according to ai;j; i 2 �a; b½ �, j 2 �c; d½ �.

e0i;j ¼ 2
Xaþb

l¼0

Xcþd

m¼0

siþa�l;jþc�m � a�aþl;�cþm ¼ 0 ð6:34Þ

It is a system of aþ bþ 1ð Þ cþ d þ 1ð Þ linear homogeneous equations. For its
non-trivial solution, it is necessary and enough to have a system singular matrix
composed of si;j coefficients.

Let us call this matrix an input signal matrix and indicate it by a S symbol. This
matrix is a square symmetric matrix having ½ aþ bþ 1ð Þ cþ d þ 1ð Þ � order. Fig-
ure 6.11 shows a system S-matrix for a ¼ b ¼ c ¼ d ¼ 1 [34]. In addition, the
indices of all si;j elements are changed in accordance with rule (Eq. 6.33).

The S-matrix has a block structure, i.e. it consists of square matrices of a
cþ d þ 1ð Þ size. In Fig. 6.11, these blocks are marked out by the dot lines. In
Fig. 6.12, an input signal matrix for a ¼ 2 and b ¼ 1 is shown as an example,
where A; B; C; D are also square matrices of cþ d þ 1ð Þ order, “T” means
conjugation.

Figure 6.13 shows S-matrix for the DF 3	 4ð Þ, in which a ¼ b ¼ d ¼ 1 and
c ¼ 2. Blocks of cþ d þ 1ð Þ ¼ 4 order are marked out by a dot line.

The order of ai;j and e0i;j (Figs. 6.11 and 6.13) is suitable, when a filter aperture is
known. But if a filter aperture shall have to be installed, then another sequence order
beginning from a0;0 and e

0
0;0 is desirable. In this case, the increase of filter aperture

changes for the S-matrix occur only in one direction.
One of possible variants is suggested in Fig. 6.14, and the S-matrix fragment is

shown in Fig. 6.15. During the increase of filter aperture, new columns will be
added from the right and new lines from below.
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Fig. 6.11 S-matrix with a filter aperture (3 × 3)

Fig. 6.12 Block structure of the S-matrix of (c + d + 1) order

Fig. 6.13 S-matrix with a filter aperture (4 × 4)
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Such S-matrix construction results in other symmetry types’ origination. For
example, in Fig. 6.15a the sub-determinants of the even order periodically repeating
along matrix main diagonal are marked out, and Fig. 6.15b shows the sub-
determinants of the odd order. The repeating of sub-determinants order is unin-
terruptedly increased, and every previous sub-determinant is “inserted” in the
following one.

The general recommendations can hardly be given by extremum of the e finding.
This is related to that a quadric form matrix (for second-order differential) coincides
with an input signal matrix, i.e. with the matrix for first differential; and all dif-
ferentials higher than those of second-order are identically zero. Therefore, in every
particular case the additional research is required.

6.9 Average Squared Error Minimization

During a preliminary processing of images, the essential task of certain class objects
finding on a random background appears. For this purpose, it is desirable to weaken
a video signal of image background respect to a video signal corresponding to an
object of interest as greatly as possible.

Let us determine, what elements of the IR in a linear DF must be, minimizing
mean-square difference of a filter output video signal and an object video signal. As
an qi;j image model, let us set an applicative model determined by Eq. 6.35, where
gi;j is a video signal of object; fi;j is a video signal of background.

qi;j ¼ ri;jgi;j þ 1� ri;j
� �

fi;j ri;j ¼ 1 if i; jð Þ 2 object
0 if i; jð Þ 2 background

�
ð6:35Þ

Fig. 6.14 One possible
sequence for elements of the
IR
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At that, a squared error will be as follows as Eq. 6.36.

D2 ¼
XN
i¼�N

XM
j¼�M

ri;jgi;j �
Xb
l¼�a

Xd
m¼�c

qiþl;jþmal;m

 !2

ð6:36Þ

Let us insert Eq. 6.35 into Eq. 6.36, square it and find a mathematical expec-
tation. Then Eq. 6.37 will be received, where Eg is an object video signal energy,
Kg l;mð Þ are values of object autocorrelation function, Kg;f l;mð Þ are values of

Fig. 6.15 Symmetry of S-matrix: a sub-determinants of the even order, b sub-determinants of the
odd order
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object/background intercorrelation function, Kinput l� k;m� pð Þ are values of
autocorrelation function for input video signal.

l D2� � ¼ Eg � 2
Xb
l¼�a

Xd
m¼�c

Kg l;mð Þ al;m � 2
Xb
l¼�a

Xd
m¼�c

Kg;f l;mð Þ al;m

þ
Xb
l¼�a

Xd
m¼�c

Xb
k¼�a

Xd
p¼�c

Kinput l� k;m� pð Þ al;mak;p
ð6:37Þ

Values of functions Kg l;mð Þ и Kg;f l;mð Þ are obtained by corresponding image
areas, as it follows from Eq. 6.37.

Let us find the critical points by differentiation of Eq. 6.37 respect to ai; j and
then obtain Eq. 6.38.

�Kg i; jð Þ � Kg;f i; jð Þ þ
Xb
l¼�a

Xd
m¼�c

Kinput i� l; j� mð Þ � al;m ¼ 0 ð6:38Þ

Let us divide both parts of Eq. 6.38 by Einput, then Eq. 6.39 will be received,
where R0 represents an autocorrelation coefficient, a stroke (′) in the right part of
Eq. 6.39 means that it has been obtained by a way for normalization of input signal
energy and not of corresponding energy.

Xb
l¼�a

Xd
m¼�c

Rinput i� l; j� mð Þ � al;m ¼ R0
g i; jð Þ þ R0

g;f i; jð Þ ð6:39Þ

Let us consider that R0
g i; jð Þ þ R0

g; f i; jð Þ can be exchanged with R0
g; f i; jð Þ, if it is

to be found throughout the whole image area. Thus, Eq. 6.40 has a view:

Xb
l¼�a

Xd
m¼�c

Rinput i� l; j� mð Þ al;m ¼ R0
g;f i; jð Þ: ð6:40Þ

The solution of system (Eq. 6.40) is the elements al;m of the IR for optimal
DF that minimizes an average squared error. In this connection, the Wiener-Hopf
filtering is performed.

It follows from Eq. 6.32 that Eq. 6.40 can be transcribed as a system of Eq. 6.41,
where s0i;j are values of intercorrelation coefficients of object and input image.

Xb
l¼�a

Xd
m¼�c

si�l;j�mal;m ¼ s0i;j ð6:41Þ
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Compare Eqs. 6.41 and 6.34. The left part of Eq. 6.41 is a system for Eq. 6.34
functional critical points. If the elements of the IR being determined from Eq. 6.41,
then the DF is optimal for highlighting of a pre-defined object, and suppression of
the rest image video signal.

6.10 Quasi-Optimal Spatial Filtering

An input image determines the finding elements of the IR for optimal filter by
means of Eq. 6.41, si;j. A more complicated task is to find values of object and
image intercorrelation coefficient s0i;j. A joint correlation function with some object
called “standard” is usually applied, the standard having the form similar to an
object form in a source image. In this connection, a processing result will depend on
a “standard” position on an image field.

If the second addend is to be ignored in the right part of Eq. 6.39, then such
filtering can be called quasi-optimal. In this case at determining elements of the IR
for a quasioptimal DF, the system of Eqs. 6.42 will be obtained, where soi;j are
values of standard autocorrelation functions normed by input image energy.

Xb
l¼�a

Xd
m¼�c

si�l;j�mal;m ¼ soi;j ð6:42Þ

Let us call such filtering as “Wiener-Hopf-type filtering”.
Let us consider vector determined by Eq. 6.43.

HT ¼ a�a;�c a�a;�cþ1 . . . ab;d�1 ab;d
� � ð6:43Þ

Dimensionality of HT is determined by number of ai;j. A vector STo ¼
so�a;�c so�a;�cþ1 . . . sob;d�1 sob;d
� �

corresponds to the found characteristics of the

standard.
An average squared error for quasi-optimal filtering can be obtained by Eq. 6.44

similar to Eq. 6.37, where Estd: is a standard energy, eEinput is an energy of pro-
cessed image, HT � So

� �
is a matrix composition.

l D2� � ¼ Estd: þ eEinput � 2Einput HT � So
� � ð6:44Þ

In that case, a quasioptimal filtering efficiency can be estimated by Eq. 6.45,
where n ¼ Estd:

Einput
.
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g ¼ Eetalon

l D2� � ¼ n

nþ e� 2 HT � So
� � ¼ n

n� e
ð6:45Þ

Let us consider application of algorithm (Eq. 6.42) for solving the task of
highlighting a sizable object of certain orientation. Let us highlight the image of a
match (Fig. 6.16), its orientation is shown in Fig. 6.16b. In Fig. 6.16c, d, the results
of image processing by a filter with 11	 11ð Þ aperture before and after threshold
value applying are shown. Figure 6.16d indicates the possibility of highlighting an
object of interest. Therefore, the algorithm (Eq. 6.42) applying conjointly with
nonlinear processing allows the pre-defined objects highlighting in the first stage of
prefiltering.

Fig. 6.16 Example of image processing: a an original image, b an image of the chosen object,
c the application of a filter aperture (11 × 11) before threshold processing, d the application of a
filter aperture (11 × 11) after threshold processing
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The following techniques can be recommended for a quasioptimal DF aperture
selection. The system (Eq. 6.42) can be written in the matrix form (Eq. 6.46).

S �H ¼ So ð6:46Þ

A relative energy of a processed image will be in the form of Eq. 6.47.

e ¼ HT � S �H ð6:47Þ

The solution for Eq. 6.46 looks like Eq. 6.48.

H ¼ S�1 � So ð6:48Þ

Let us insert Eq. 6.48 into Eq. 6.47 and after transformation the following
correlation is obtained (Eq. 6.49).

e ¼ STo �H ð6:49Þ

Finally from Eqs. 6.48 and 6.49, Eq. 6.50 is obtained.

e ¼ STo � S�1 � So ð6:50Þ

Equation 6.50 allows to define a processing quality at various filter apertures
applying for an image. By the e function, the filter aperture ensuring the best
possible processing can be selected. Then by means of Eq. 6.48, it can be
synthesized.

6.11 Canonical Form of Output Energy Functional

The e function (Eq. 6.31) is a quadratic form and can be transcribed as Eq. 6.47.
From the context of e definition as a relation of processed and input images
energies, it follows that this quadratic form is positively definite quadratic or
positively semidefinite one. If it becomes positively semidefinite in the case, when
the S-matrix order is equal to k, then for matrices of lesser degree this quadratic
form appears to be positively definite.

Consider that the S-matrix of n-order is nondegenerate, i.e. the corresponding
quadratic form appears to be positively definite. So according to the Jacobi algo-
rithm, on condition that all principal sub-determinants of the S-matrix are not equal
to zero, Eq. 6.51 can be obtained in this connection with Eq. 6.52, where aiþj are
elements of IR for the DF, D0

i are principal sub-determinants of the S-matrix,
D0
0 ¼ 1, D j

i are subsidiary sub-determinants, for which the last column of the
principal sub-determinant is necessary to be substituted by a corresponding part of
i; jð Þ column of the S-matrix.
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e ¼
Xn
i¼1

D0
i�1

D0
i

A2
i ð6:51Þ

Ai ¼ 1

D0
i�1

Xn�i

j¼0

D j
i aiþj ð6:52Þ

According to Sylvester’s criterion, all principal subdeterminants of the S-matrix
are in this case positive quantities.

From Eqs. 6.51 and 6.52, Eq. 6.53 follows.

e ¼
Xn�1

i¼1

D0
i�1

D0
i

A2
i þ

D0
n

D0
n�1

an ð6:53Þ

Equation 6.53 is a quadratic form; its matrix is shown in Eq. 6.54.
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Let us assume that n is a number, at which the S-matrix is degenerate. In that
case Do

n ¼ 0.
It can be shown that Eq. 6.55 is satisfied in critical points of the e function.

Ai ¼ 0 i ¼ 1; n ð6:55Þ

Therefore, a processing efficiency in critical points is equal to zero, i.e. a
complete rejection of corresponding input image is performed.

The Eq. 6.55 criterion can be applied for estimation of synthesized filter
response to confirm of the required processing quality. In this connection, it is more
suitable to apply the converted expressions Eqs. 6.51–6.52 in the form of Eq. 6.56,
where Ai and Ai are determined from Eq. 6.57.

e ¼
Xn
i¼1

D0
i

D0
i�1

A
2
i ð6:56Þ

Ai ¼
D0
i�1

D0
i

Ai ¼
Xn�i

j¼0

D j
i

D0
i

aiþj ð6:57Þ

208 A. Bogoslovsky and I. Zhigulina



In this case, also for all critical points Ai ¼ 0, however in other points Ai value is
much greater than Ai.

Thus, d ið Þ ¼ D0
i

D0
i�1

relations of principal sub-determinants are located on S-matrix

diagonal, the S-matrix being brought to a diagonal form. The principal sub-
determinants define a matrix grade and, consequently, a discrete filter response. For
S-matrix determination, the matrix entries are normed for signal energy. Therefore,
after the subtraction of constant component from an image and the definition of
consequent S-matrix coefficients the result does not depend from an object contrast
[34].

6.12 Conclusion

The proposed way of energy analysis is an alternative approach to the analysis of
image and video sequences. The distinctive feature of the considered methods is the
accounting of edge effects. A separation of movement and calculation of its char-
acteristics are based on this statement. The analysis of values changing in an image
signal at the object edges leads to improvement a performance of motion detection
and movement’s characteristics. Also criteria for efficiency of image processing are
received. The offered approaches can promote the understanding mechanisms of
operation in the highly developed vision such as a human vision.
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Chapter 7
Optimal Measurement of Visual Motion
Across Spatial and Temporal Scales

Sergei Gepshtein and Ivan Tyukin

Abstract Sensory systems use limited resources to mediate the perception of a
great variety of objects and events. Here a normative framework is presented for
exploring how the problem of efficient allocation of resources can be solved in
visual perception. Starting with a basic property of every measurement, captured by
Gabor’s uncertainty relation about the location and frequency content of signals,
prescriptions are developed for optimal allocation of sensors for reliable perception
of visual motion. This study reveals that a large-scale characteristic of human vision
(the spatiotemporal contrast sensitivity function) is similar to the optimal pre-
scription, and it suggests that some previously puzzling phenomena of visual
sensitivity, adaptation, and perceptual organization have simple principled
explanations.
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7.1 Introduction

Biological sensory systems collect information from a vast range of spatial and
temporal scales. For example, human vision can discern modulations of luminance
that span nearly seven octaves of spatial and temporal frequencies, while many
properties of optical stimulation (such as the speed and direction of motion) are
analyzed within every step of the scale.

The large amount of information is encoded and transformed for the sake of
specific visual tasks using limited resources. In biological systems, the resources
are the large but finite number of neural cells. The cells are specialized: each is
sensitive to a small subset of optical signals, presenting sensory systems with the
problem of allocation of limited resources. This chapter is concerned with how this
problem is solved by biological vision. How are the specialized cells distributed
across the great number of potential optical signals in the environments that are
diverse and variable?

The extensive history of vision science suggests that any attempt of vision theory
should begin with an analysis of the tasks performed by visual systems. Following
Aristotle, one may begin with the definition of vision as “knowing what is where by
looking” [1]. The following argument concerns the basic visual tasks captured by
this definition. The “what” and “where” of visual perception are associated with two
characteristics of optical signals: their frequency content and locations, in space and
time. The last statement implicates at least five dimensions of optical signals (which
will become clear in a moment).

The basic visual tasks are bound by first principles of measurement. To see that,
consider a measurement device (a “sensor” or “cell”) that integrates its inputs over
some spatiotemporal interval. An individual device of an arbitrary size will be more
suited for measuring the location or the frequency content of the signal, reflected in
the uncertainties of measurement. The uncertainties associated with the location and
the frequency content are related by a simple law formalized by Gabor [2], who
showed that the two uncertainties trade off across scales. As the scale changes, one
uncertainty rises and the other falls.

Assuming that the visual systems in question are interested in both the locations
and frequency content of optical signals (“stimuli”), the tradeoff of uncertainties
will attain a desired (“optimal”) balance of uncertainties at some intermediate scale.
The notion of the optimal tradeoff of uncertainty has received considerable attention
in studies of biological vision. This is because the “receptive fields” of single neural
cells early in the visual pathways appear to approximate one or another form of the
optimal tradeoff [3–10].

Here the tradeoff of uncertainties is formulated in a manner that is helpful for
investigating its consequences outside of the optimum: across many scales, and for
cell populations rather than for single cells. Then the question is posed of how the
scales of multiple sensory cells should be selected for simultaneously minimizing
the uncertainty of measurement for all the cells, on several stimulus dimensions.
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This article concentrates on how visual motion can be estimated at the lowest
overall uncertainty of measurement across the entire range of useful sensor sizes
(in artificial systems) or the entire range of receptive fields (in biological systems).
In other words, the following is an attempt to develop an economic normative
theory of motion-sensitive systems. Norms are derived for efficient design of such
systems, and then the norms are compared with facts of biological vision.

This approach from first principles of measurement and parsimony helps to
understand the forces that shape the characteristics of biological vision, but which
had appeared intractable or controversial using previous methods. These charac-
teristics include the spatiotemporal contrast sensitivity function, adaptive transfor-
mations of this function caused by stimulus change, and also some characteristics of
the higher-level perceptual processes, such as perceptual organization.

The chapter has the following structure. The uncertainty relation in one
dimension is presented in Sect. 7.2, generalized to two dimensions (of space and
time) in Sect. 7.3. The optimal conditions for motion measurement in view of the
uncertainly are explored in Sect. 7.4. Efficient allocation of sensors according to the
optimal conditions is described in Sect. 7.5. Conclusions are situated in Sect. 7.6.

7.2 Gabor’s Uncertainty Relation in One Dimension

The outcomes of measuring the location and the frequency content of any signal by
a single sensory device are not independent of one another. The measurement of
location assigns the signal to interval Dx on some dimension of interest x. The
smaller the interval the lower the uncertainty about signal location. The uncertainty
is often described in terms of the precision of measurements, quantified by the
dispersion of the measurement interval or, even simpler, by the size of the interval,
Dx. The smaller the interval, the lower the uncertainty about location, and the higher
the precision of measurement.

The measurement of frequency content evaluates how the signal varies over x,
i.e., the measurement is best described on the dimension of frequency of signal
variation, fx. The measurement of frequency content is equivalent to localizing the
signal on fx: assigning the signal to some interval Dfx. Again, the smaller the
interval, the lower the uncertainty of measurement and the higher the precision.1

The product of uncertainties about the location and frequency content of the
signal is bounded “from below” [2, 11–13]. The product cannot be smaller than
some positive constant Cx:

UxUf �Cx; ð7:1Þ

1 For brevity, here “frequency content” will sometimes be shortened to “content.”
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where Ux and Uf are the uncertainties about the location and frequency content of
the signal, respectively, measured on the intervals Dx and Dfx.

Equation 7.1 means that any measurement has a limit at UxUf ¼ Cx. At the limit,
decreasing one uncertainty is accompanied by increasing the other. For simplicity,
let us quantify the measurement uncertainty by the size of the measurement interval.
Gabor’s uncertainty relation may therefore be written as

DxDfx �Cx; ð7:2Þ

and its limiting condition as

DxDfx ¼ Cx: ð7:3Þ

Let us consider the consequences of the uncertainty relation for sensory mea-
surement, first for single sensors (Sect. 7.2.1) and then for sensor populations
(Sect. 7.2.2), which afford several benefits (Sect. 7.2.3).

7.2.1 Single Sensors

First, consider how the uncertainty relation constrains the measurements by a single
measuring device: a “sensor.” Figure 7.1 illustrates three spatial sensors of different
sizes. In Fig. 7.1a, the measurement intervals of the sensors are defined on two
spatial dimensions. For simplicity, let us consider just one spatial dimension, x, so
the interval of measurement (“sensor size”) is Dx.

The limiting effect of the uncertainty relation for such sensors has a convenient
graphic representation called “information diagram” (Fig. 7.1b). Let the two mul-
tiplicative terms of Eq. 7.3 be represented by the two sides of a rectangle in
coordinate plane (x, fx). Then Cx is the rectangle area. Such rectangles are called
“information cells” or “logons.” Three logons, of different shapes but of the same
area Cx, are shown in Fig. 7.1b, representing the three sensors:

• The logon of the smallest sensor (smallest Dx, left) is thin and tall, indicating
that the sensor has a high precision on x and a low precision on fx.

• The logon of the largest sensor (right) is thick and short, indicating a low
precision on x and a high precision on fx.

• The above sensors are specialized for measuring either the location or frequency
content of signals. The medium-size sensor (middle) offers a compromise: its
uncertainties are not as low as the lowest uncertainties (but not as high as the
highest uncertainties) of the specialized sensors. In this respect, the medium-size
sensor trades one kind of uncertainty for another.

The medium-size sensors are most useful for jointly measuring the locations and
frequency content of signals.
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The ranking of sensors can be formalized using an additive model of uncertainty
(Fig. 7.1c). The motivation for such an additive model is presented in Appendix 1.
Let us assume that visual systems have no access to complete prior information
about the statistics of measured signals (such as the joint probability density
functions for the spatial and temporal locations of stimuli and their frequency
content). Instead, the systems can reliably estimate only the means and variances of
the measured quantities.

Accordingly, the overall uncertainty in Fig. 7.1c has the following compo-
nents. The increasing function represents the uncertainty about signal location:
Ux ¼ Dx. The decreasing function represents the uncertainty about signal content:

(c)

(b)

(a)

yc
ne

u
qerflaita

pS
f x

Measurement interval x

yt
niatrec

n
U Uf

U = U + Uj x f

Ux

Location x

Fig. 7.1 Components of
measurement uncertainty.
a The image is sampled by
three sensors of different
sizes. b The three sensors are
associated with Gabor’s
logons: three rectangles that
have the same areas but
different shapes, according to
the limiting condition of the
uncertainty relation in Eq. 7.3.
c Functions Ux and Uf

represent the uncertainties
about the location and content
of the measured signal (the
horizontal and vertical extents
of the logons in b,
respectively), and function Uj

represents the joint
uncertainty about signal
location and content
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Uf ¼ Dfx ¼ Cx=Dx (from Eq. 7.3). The joint uncertainty of measuring signal
location and content is represented by the non-monotonic function Uj:

Uj ¼ kxUx þ kf Uf ¼ kxDxþ kf
1
Dx

; ð7:4Þ

where kx and kf are positive coefficients reflecting how important the components
of uncertainty are relative to one another.

The additive model of Eq. 7.4 implies a worst-case estimate of the overall
uncertainty (explained just below in terms of the minimax principle). The additive
components are weighted, while the weights are playing several roles. They bring
the components of uncertainty to the same units, allowing for different magnitude of
Cx, and representing the fact that the relative importance of the components
depends on the task at hand.2

The joint uncertainty function (Uj in Fig. 7.1c) has its minimum at an inter-
mediate value of Dx. This is a point of equilibrium of uncertainties, in that a sensor
of this size implements a perfect balance of uncertainties about the location and
frequency content of the signal [14]. If measurements are made in the interest of
high precision, and if the location and the frequency content of the signal are
equally important, then a sensor of this size is the best choice for jointly measuring
the location and the frequency content of the signal.

The Minimax Principle
What is the best way to allocated resources in order to reduce the chance of gross
errors of measurement. One approach to solving this problem is using the minimax
strategy devised in game theory for modeling choice behavior [15, 16]. Generally,
the minimax strategy is used for estimating the maximal expected loss for every
choice and then pursuing the choices for which the expected maximal loss is
minimal. In the present case, the choice is between the sensors that deliver infor-
mation with variable uncertainty.

In the following, the minimax strategy is implemented by assuming the maximal
(worst-case) uncertainty of measurement across the sensors spanning the entire
range of the useful spatial and temporal scales. This strategy is used in two ways.
First, the consequences of Gabor’s uncertainty relation are investigated under the
assumption that the uncertainty of measurement is as high as possible (i.e., using
the limiting case of uncertainty relation; Eq. 7.3). Second, the outcomes of mea-
surement on different sensors are anticipated by adding their component uncer-
tainties, i.e., using the joint uncertainty function of Eq. 7.4. (Advantages of the
additive model are explained in Appendix 1.) Suppose that sensor preferences are
ranked according to the expected maximal uncertainty: the lower the uncertainty,
the higher the preference.

2 Different criteria of measurement and sensor shapes correspond to different magnitudes of Cx.

216 S. Gepshtein and I. Tyukin



7.2.2 Sensor Populations

Real sensory systems have at their disposal large but limited numbers of sensors.
Since every sensor is useful for measuring only some aspects of the stimulus,
sensory systems must solve an economic problem: they must distribute their sensors
in the interest of perception of many different stimuli. Let us consider this problem
using some simple arrangements of sensors.

First, consider a population of identical sensors in which the measurement
intervals do not overlap. Figure 7.2a contains three examples of such sensors, using

Fig. 7.2 Allocation of multiple sensors. a Information diagrams for a population of four sensors,
using sensors of the same size within each population, and of different sizes across the populations.
b Uncertainty functions. The red curve is the joint uncertainty function introduced in Fig. 7.1, with
the markers indicating special conditions of measurement: the lowest joint uncertainty (the circle)
and the equivalent joint uncertainty (the squares), anticipating the optimal sets and the equivalence
classes of measurement in the higher-dimensional systems illustrated in Figs. 7.3 and 7.4.
c Preference functions. The solid curve is a function of allocation preference (here reciprocal to the
uncertainty function in b: an optimal distribution of sensors, expected to shift (dashed curve) in
response to change in stimulus usefulness
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the information diagram introduced in Fig. 7.1. Each of the three diagrams in
Fig. 7.2a portrays four sensors, identical to one another except they are tuned to
different intervals on x (which can be space or time). Each panel also contains a
representation of a narrow-band signal: the yellow circle, the same across the three
panels of Fig. 7.2a. The different arrangements of sensors imply different resolu-
tions of the system for measuring the location and frequency content of the
stimulus.

• The population of small sensors (small Dx on the left of Fig. 7.2a) is most
suitable for measuring signal location: the test signal is assigned to the rightmost
quarter on the range of interest in x. In contrast, measurement of frequency
content is poor: signals presented anywhere within the vertical extent of the
sensor (i.e., within the large interval on fx) will all lead to the same response.
This system has a good location resolution and poor frequency resolution.

• The population of large sensors (large Dx on the right of Fig. 7.2a) is most
suitable for measuring frequency content. The test signal is assigned to a small
interval on fx. Here, measurement of location is poor. This system has a good
frequency resolution and poor location resolution.

• The population of medium-size sensors can obtain useful information about
both locations and frequency content of signals. It has a better frequency res-
olution than the population of small sensors, and a better location resolution than
the population of large sensors.

Consequences of the different sensor sizes are summarized by the joint uncer-
tainty function in Fig. 7.2b. (For non-overlapping sensors, the function has the same
shape as in Fig. 7.1c). The figure makes it clear that the sensors or sensor popu-
lations with very different properties can be equivalent in terms of their joint
uncertainty. For example, the two filled squares in Fig. 7.2b mark the uncertainties
of two different sensor populations: one contains only small sensors and the other
contains only large sensors.

The populations of sensors, in which the measurement intervals overlap, are
more versatile than the populations of non-overlapping sensors. For example, the
sensors with large overlapping intervals can be used to emulate measurements by
the sensors with smaller intervals (Appendix 2), reducing the uncertainty of
stimulus localization. Similarly, groups of overlapping sensors with small mea-
surement intervals can emulate the measurements by sensors with larger intervals,
reducing the uncertainty of identification. Overall, a population of the overlapping
sensors can afford lower uncertainties across the entire range of measurement
intervals, represented in Fig. 7.2b by the dotted curve: a lower-envelope uncer-
tainty function. Still, the new uncertainty function has the same shape as the
previous function (represented by the solid line) because of the limited total
number of the sensors.
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7.2.3 Cooperative Measurement

To illustrate the benefits of measurement using multiple sensors, suppose that the
stimulation was uniform and one could vary the number of sensors in the popu-
lation at will, starting with a system that has only a few sensors, toward a system
that has an unlimited number of sensors.

• A system equipped with very limited resources, and seeking to measure both the
location and the frequency content of signals, will have to be unmitigatedly
frugal. It will use only the sensors of medium size, because only such sensors
offer useful (if limited) information about both properties of signals.

• A system enjoying unlimited resources will be able to afford many specialized
sensors or groups of such sensors (represented by the different information
diagrams in Fig. 7.2a).

• A moderately wealthy system: a realistic middle ground between the extremes
outlined above will be able to escape the straits of Gabor’s uncertainty relation
using different specialized sensors and thus measuring the location and content
of signals with high precision.

As one considers systems with different numbers of sensors, from small to large,
one expects to find an increasing ability of the system to afford the large and small
measurement intervals. As the number of sensors increases, their allocation will
expand in two directions, up and down on the dimension of sensor scale: from using
only the medium-size sensors in the poor system, to using also the small and large
sensors in the wealthier systems. This allocation policy is illustrated in Fig. 7.2c.
The preference function in Fig. 7.2c indicates that, as the more useful sensors are
expected to grow in number, the distribution of sensors will form a smooth function
across the scales. As mentioned, the sensitivity of the system is expected to follow a
function monotonically related to the preference function.

Increasing the number of sensors selective to the same stimulus condition is
expected to improve sensory performance, manifested in lower sensory thresholds.
One reason for such improvement in biological sensory systems is the fact that
integrating information across multiple sensors will help to reduce the detrimental
effect of the noisy fluctuations of neural activity, in particular when the noises are
uncorrelated.

The preference function in Fig. 7.2c is exceedingly simple: it merely mirrors the
joint uncertainty function of Fig. 7.2b. This example helps to illustrate some special
conditions of the uncertainty of measurement and to anticipate their consequences
for sensory performance. First, the minimum of uncertainty corresponds to
the maximum of allocation preference, where the highest sensitivity is expected.
Second, equal uncertainties correspond to equal allocation preferences, where equal
sensitivities are expected. Allocation policies are considered again in Sects. 7.4 and
7.5, where the relationship is studied between a normative prescription for resource
allocation and a characteristic of performance in biological vision.
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7.3 Gabor’s Uncertainty in Space-Time

Let us consider how Gabor’s uncertainty generalizes to two dimensions. A two-
dimensional spatiotemporal uncertainty function is introduced in Sect. 7.3.1, and
the equivalence classes of uncertainty are derived in Sect. 7.3.2. The interaction
between the spatial and temporal dimensions of uncertainty is discussed in
Sect. 7.3.3.

7.3.1 Uncertainty in Two Dimensions

Consider a more complex case, where signals vary on two dimensions: space
and time. Here, the measurement uncertainty has four components, illustrated in
Fig. 7.3a. The bottom of Fig. 7.3a is a graph of the spatial and temporal sensor sizes
ðT; SÞ ¼ ðDt;DsÞ. Every point in this graph corresponds to a “condition of mea-
surement” associated with the four properties of sensors.3 By Gabor’s uncertainty
relation, spatial and temporal intervals ðDt;DsÞ are associated with, respectively, the
spatial and temporal frequency intervals ðDft;DfsÞ.

The four-fold dependency is explained on the side panels of the figure using
Gabor’s logons, each associated with a sensor labeled by a numbered disc. For
example, in sensor 7 the spatial and temporal intervals are small, indicating a good
precision of spatial and temporal localization (i.e., concerning “where” and “when”
the stimuli occurs). But the spatial and temporal frequency intervals are large,
indicating a low precision in measuring spatial and temporal frequency content
(a low capacity to serve the “what” task of stimulus identification). This pattern is
reversed in sensor 3, where the precision of localization is low but the precision of
identification is high.

As in the previous example (Fig. 7.1b, c), here the one-dimensional uncertainties
are summarized using joint uncertainty functions: the red curves on the side panels
of Fig. 7.3b. Each function has the form of Eq. 7.4, applied separately to spatial:

US ¼ k1Sþ k2=S

and temporal:

UT ¼ k3T þ k4=T

3 Here the sensors are characterized by intervals following the standard notion that biological
motion sensors are maximally activated when the stimulus travels some distance Ds over some
temporal interval Dt [17].
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dimensions, where S ¼ Ds and T ¼ Dt. Next, spatial and temporal uncertainties are
combined for every spatiotemporal condition:

UST ¼ UT þ US

to obtain a bivariate spatiotemporal uncertainty function:

UST ¼ k1Sþ k2
S
þ k3T þ k4

T
ð7:5Þ

represented in Fig. 7.3b by a surface.
The spatiotemporal uncertainty function in Fig. 7.3b has a unique minimum, of

which the projection on graph ðT; SÞ is marked by the red dot: the point of perfect
balance of the four components of measurement uncertainty. Among the conditions

Fig. 7.3 Components of
measurement uncertainty in
space-time. a Spatial and
temporal information
diagrams of spatiotemporal
measurements. The numbered
discs each represents a sensor
of particular spatial and
temporal extent, S ¼ Ds and
T ¼ Dt. The rectangles on
side panels are the spatial and
temporal logons associated
with the sensors. b The
surface represents the joint
uncertainty about signal
location and frequency
content of signals across
sensors of different spatial and
temporal size. The contours in
the bottom plane (S, T) are
sets of equivalent uncertainty
(reproduced for further
consideration in Fig. 7.4).
Panel A is adopted from [18]
and panel B from [19]
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of imperfect balance of uncertainties, consider the conditions of an equally
imperfect balance. These are the equivalence classes of measurement uncertainty,
represented by the level curves of the surface. The concentric contours on the
bottom of Fig. 7.3b are the projections of some of the level curves.

7.3.2 Equivalence Classes of Uncertainty

Contours of equal measurement uncertainty are reproduced in Fig. 7.4 from the
bottom of Fig. 7.3b. The pairs of connected circles indicate that the slopes of
equivalence contours vary across the conditions of measurement. This fact has
several interesting implications for the perception of visual motion.

First, if the equivalent conditions of motion perception were consistent with the
equivalent conditions of uncertainty, then some lawful changes in the perception of
motion would be expected for stimuli that activate sensors in different parts of the
sensor space. This prediction was confirmed in studies of apparent motion, which is
the experience of motion from discontinuous displays, where the sequential views
of the moving objects (the “corresponding image parts”) are separated by spatial (r)
and temporal (s) distances. Perceptual strength of apparent motion in such displays
was conserved: sometimes by changing r and s in the same direction (both
increasing or both decreasing), which is the regime of space-time coupling [22], and
sometimes by trading off one distance for another: the regime of space-time tradeoff
[23]. Gepshtein and Kubovy [20] found that the two regimes of apparent motion
were special cases of a lawful pattern: one regime yielded to another as a function
of speed, consistent with the predictions illustrated in Fig. 7.4.

Fig. 7.4 Equivalence classes of uncertainty. The contours represent equal measurement
uncertainty (reproduced from the bottom panel of Fig. 7.3b and the red circle represents the
minimum of uncertainty. The pairs of connected circles labeled “space-time coupling” and “space-
time tradeoff” indicate why some studies of apparent motion discovered different regimes of
motion perception in different stimuli [20, 21]
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Second, the regime of space-time coupling undermines one of the cornerstones
of the literature on visual perceptual organization: the proximity principle of per-
ceptual grouping [24, 25]. The principle is an experimental observations from the
early days of the Gestalt movement, capturing the common observation that the
strength of grouping between image parts depends on their distance: the shorter
the distance the stronger the grouping. In space-time, the principle would hold, if
the strength of grouping had not changed, when increasing one distance (r or s)
was accompanied by decreasing the other distance (s or r): the regime of tradeoff
[26]. The fact that the strength of grouping is maintained by increasing both r and
s, or by decreasing both r and s, is inconsistent with the proximity principle [21].

7.3.3 Spatiotemporal Interaction: Speed

Now let us consider the interaction of the spatial and temporal dimensions of
measurement. A key aspect of this interaction is the speed of stimulus variation: the
rate of temporal change of stimulus intensity across spatial location. The dimension
of speed has been playing a central role in the theoretical and empirical studies of
visual perception [17, 27, 28]. Not only is the perception of speed crucial for the
survival of mobile animals, but it also constitutes a rich source of auxiliary infor-
mation for parsing the optical stimulation [29, 30].

What is more, speed appears to play the role of a control parameter in the
organization of visual sensitivity. The shape of a large-scale characteristic of visual
sensitivity (measured using continuous stimuli) is invariant with respect to speed
[31, 32]. And a characteristic of the strength of perceived motion in discontinuous
stimuli (giving rise to “apparent motion”) collapse onto a single function, when
plotted against speed [20].

From the present normative perspective, the considerations of speed measure-
ment (combined with the foregoing considerations of measuring the location and
frequency content) of visual stimuli have two pervasive consequences, which are
reviewed in some detail next. First, in a system optimized for the measurement of
speed, the expected distribution of the quality of measurement has an invariant
shape, distinct from the shape of such a distribution conceived before one has taken
into account the measurement of speed (Fig. 7.4). Second, the dynamics of visual
measurement, and not only its static organization, will depend on the manner of
interaction of the spatial and temporal aspects of measurement.

In Figs. 7.3 and 7.4, a distribution of the expected uncertainty of measurement
was derived from a local constraint on measurement. The local constraint was
defined separately for the spatial and temporal intervals of the sensor. The con-
siderations of speed measurement add another constraint, which has to do with the
relationship between the spatial and temporal intervals.
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The ability to measure speed by a sensor defined by spatial and temporal
intervals depends on the extent of these intervals. As it is shown in Fig. 7.5a,
different ratios of the spatial extent to the temporal extent make the sensor differ-
ently suitable for measuring different magnitudes of speed.

This argument is one consequence of the Law of The Minimum [33], illustrated
in Fig. 7.5b using Liebig’s barrel. A broken barrel with the staves of different
lengths can hold as much content as the shortest stave allows. Using the staves of
different lengths is wasteful because a barrel with all staves as short as the shortest
stave would do just as well. In other words, the barrel’s capacity is limited by the
shortest stave.

Similarly, a sensor’s capacity for measuring the speed is limited by the extent of
its spatial and temporal intervals. The capacity is not used fully, if the spatial and
temporal projections of vector v are larger or smaller than the spatial and temporal
extents allow (v1 and v3 in Fig. 7.5b). Just as the extra length of the long staves is
wasted in the Liebig’s barrel, the spatial extent of the sensor is wasted in mea-
surement of v1 and the temporal extent is wasted in measurement of v3. Let us
therefore start with the assumption that the sensor defined by the intervals S and T is
best suited for measuring speed v ¼ S=T .

7.4 Optimal Conditions for Motion Measurement

Several special conditions of motion measurements — the minima of uncertainty
and the shape of the optimal set of measurement — are introduced, respectively, in
Sects. 7.4.1 and 7.4.2.

Fig. 7.5 Economic measurement of speed. a The rectangle represents a sensor defined by spatial
and temporal intervals (S and T). From considerations of parsimony, the sensor is more suitable for
measurement of speed v2 ¼ S=T than v1 or v3 since no part of S or T is wasted in measurement of
v2. b Liebig’s barrel. The shortest stave determines barrel’s capacity. Parts of longer staves are
wasted since they do not affect the capacity
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7.4.1 Minima of Uncertainty

The optimal conditions of measurement are expected, where the measurement
uncertainty is the lowest. Using a shorthand notation for the spatial and temporal
partial derivatives of UST in Eq. 7.4, oUS ¼ oUST=oS and oUT ¼ oUST=oT , the
minimum of measurement uncertainty is the solution of

oUT dT þ oUSdS ¼ 0: ð7:6Þ

The optimal condition for the entire space of sensors, disregarding individual
speeds, is marked as the red point in Fig. 7.4. To find the minima for specific speeds
vi, let us rewrite Eq. 7.6 such that speed appears in the equation as an explicit term.
By dividing each side of Eq. 7.6 by dT , and using the fact that vi ¼ dS=dT , Eq. 7.6
becomes

oUSvi þ oUT ¼ 0: ð7:7Þ

The solution of Eq. 7.7 is a set of optimal conditions of measurement across
speeds. To illustrate the solution graphically, consider the vector form of Eq. 7.7,
i.e., the scalar product

gðT ;SÞ; vðT ;SÞ
D E

¼ 0; ð7:8Þ

where the first term is the gradient of measurement uncertainty function

gðT ;SÞ ¼ ðouT ; ouSÞ ð7:9Þ

and the second term is the speed

vðT ;SÞ ¼ ðT; vTÞ ð7:10Þ

for sensors with parameters ðT ; SÞ. For now, assume that the speed, to which a
sensor is tuned is the ratio of spatial to temporal intervals (v ¼ S=T) that define the
logon of the sensor. (Normative considerations of speed tuning are reviewed in
Sect. 7.3.3.)

The two terms of Eq. 7.8 are shown in Fig. 7.6: separately in panels A-B and
together in panel C. The blue curve in panel C represents the set of conditions
where vectors v and g are orthogonal to one another, satisfying Eq. 7.8. This curve
is the “optimal set” for measuring speed while minimizing the uncertainty about
signal location and content.
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7.4.2 The Shape of Optimal Set

The solution of Eq. 7.8 was derived for speed defined at every point in the space of
intervals (T,S): the blue arrows in Fig. 7.6b. This picture is an abstraction that
disregards the fact that measurements are performed while the sensors integrate
stimulation over sensor extent. The solution of Eq. 7.8 that takes this fact into
account is described in Fig. 7.7. The integration reduces differences between the
directions of adjacent speed vectors (panel B), and so the condition of orthogonality
of g and v is satisfied at locations other than in Fig. 7.6.

The red curve Fig. 7.7c is the “integral” optimal set for measuring speed. This
figure presents an extreme case, where speeds are integrated across the entire range
of stimulation, as if every sensor had access to the expected speed of stimulation
across the entire range of stimulus speed:

ve ¼
Z1
0

pðvÞvdv; ð7:11Þ

where pðvÞ is the distribution of speed in the stimulation. At this extreme, every v is
co-directional with the expected speed.

In comparison to the local optimal set (the blue curve in Fig. 7.7c), many points
of the integral optimal set (the red curve) are shifted away from the origin of the
parameter space. The shift is small in the area of expected speed ve (the black line in
Fig. 7.8), yet the shift increases away from the expected speed, such that the integral
optimal set has the shape of a hyperbola.

The position of the optimal set in the parameter space depends on the prevailing
speed of stimulation [19], as Fig. 7.8 illustrates. This dependence is expected to be
more pronounced in cases where the integration by receptive fields is large.

Fig. 7.6 Graphical solution of Eq. 7.8 without integration of speed. a Local gradients of
measurement uncertainty g. b Speeds v, to which the different sensors are tuned. c Optimal
conditions (blue curve) arise, where g and v are orthogonal to one another (Eq. 7.8). The yellow
circles are two examples of locations, where the requirement of orthogonality is satisfied. (Arrow
lengths are normalized to avoid clutter.)
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To summarize, the above argument has been concerned with how speed inte-
gration affects the optimal conditions for speed measurement. At one extreme, with
no integration, the set of optimal conditions could have any shape. At the other
extreme, with the scope of integration maximally large, the optimal set is a
hyperbola. In between, the larger the scope of integration, the more the optimal set
resembles a hyperbola. The position of this hyperbola in the parameter space
depends on the prevalent speed of stimulation.

This argument has two significant implications. First, the distribution of
resources in the visual system is predicted to have an invariant shape, which is
consistent with results of measurements in biological vision (Fig. 7.9) using a
variety of psychophysical tasks and stimuli [27, 34–36]. Second, it implies that
changes in statistics of stimulation will have a predictable effect on allocation of
resources, helping the systems adapt to the variable stimulation, a theme developed
in the next section.

Fig. 7.7 Graphical solution of Eq. 7.8 with integration of speed. a Local gradient of measurement
uncertainty g as in Fig. 7.6a. b Speeds v integrated across multiple speeds. c Now the optimal
conditions (red curve) arise at locations different from those in Fig. 7.6 (the blue curve is a copy
from Fig. 7.6c)

Fig. 7.8 Effect of expected stimulus speed. The red and blue curves are the optimal sets derived in
Figs. 7.6 and 7.7, now shown in logarithmic coordinates to emphasize that the “integral” optimal
set (red) has the invariant shape of a rectangular hyperbola, whereas the “local” optimal set (blue)
does not. From a to c, the expected stimulus speed (Eq. 7.11) decreases, represented by the black
lines. The position of the integral optimal set changes accordingly
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7.5 Sensor Allocation

In this section, let us consider adaptive allocation of sensors: its norms (Sect. 7.5.1)
and mechanisms (Sect. 7.5.2).

7.5.1 Adaptive Allocation

Allocation of sensors is likely to depend on several factors that determine sensor
usefulness, such as sensory tasks and properties of stimulation. For example, when
the organism needs to identify rather than localize the stimulus, large sensors are
more useful than small ones. Allocation of sensors by their usefulness is therefore
expected to shift, for example as shown in Fig. 7.2c.

Such shifts of allocation are expected also because the environment is highly
variable. To insure that sensors are not allocated to stimuli that are absent or
useless, biological systems must monitor their environment and the needs of
measurement. As the environment or needs change, the same stimuli become more
or less useful. The system must be able to reallocate its resources: change properties
of sensors such as to better measure useful stimuli.

Because of the large but limited pool of sensors at their disposal, real sensory
systems occupy a middle ground between the extremes of sensor “wealth.” Such
systems can afford some specialization but they cannot be wasteful. They are
therefore subject to Gabor’s uncertainty relation, but they can alleviate conse-
quences of the uncertainty relation, selectively and to some extent, by allocating
sensors to some important classes of stimuli. Allocation preferences of such sys-
tems is expected to look like that in Fig. 7.2c, yet generalized to multiple stimulus
dimensions.

To summarize, the above analysis suggests that sensory systems are shaped by
constraints of measurement and the economic constraint of limited resources. This
is because the sensors of different sizes are ordered according to their usefulness in
terms of Gabor’s uncertainty relation. These considerations are simple preceding
in the one-dimensional analysis undertaken so far. In the more complex case
considered in the next section, this approach leads to nontrivial conclusions. In
particular, this approach helps to explain several puzzling phenomena in perception
of motion and in motion adaptation.

The preceding analysis has led to a prescription for how receptive fields of
different spatial and temporal extents ought to be distributed across the full range of
visual stimuli. By this prescription, changes in usefulness of stimuli are expected to
cause changes in receptive field allocation. Now consider some specific predictions
of how the reallocation of resources is expected to bring about systematic changes
in spatiotemporal visual sensitivity. Because the overall amount of resources in the
system is limited, an improvement of visual performance (such as a higher sensi-
tivity) at some conditions will be accompanied by a deterioration of performance
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(a lower sensitivity) at other conditions, leading to counterintuitive patterns of
sensitivity change.

Let us assume should be allocated to the equally useful stimuli, when certain
speeds become more prevalent or more important for perception than other speeds
period. Then, the visual system is expected to allocate more resources to the more
important speeds. For example, Fig. 7.10a, b contains maps of spatiotemporal
sensitivity computed for two environments, with high and low prevailing speeds.
Figure 7.10c is a summary of differences between the sensitivity maps. The pre-
dicted changes form well-defined foci of increased performance and large areas of
decreased performance. Gepshtein et al. [37] used intensive psychophysical
methods [38] to measure the entire spatiotemporal contrast sensitivity function in
different statistical “contexts” of stimulation. They found that sensitivity changes
were consistent with the predictions illustrated in Fig. 7.10.

Fig. 7.9 Human spatiotemporal contrast sensitivity function, shown as a surface in a and a
contour plot in b. Conditions of maximal sensitivity across speeds form the thick curve labeled
“max.” The maximal sensitivity set has the shape predicted by the normative theory: the red curve
in Fig. 7.7. The mapping from measurement intervals to stimulus frequencies is explained in
[19, 27]. Both panels are adopted from [31]
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Fig. 7.10 Predictions for adaptive reallocation of sensors. a, b Sensitivity maps predicted for two
stimulus contexts: dominated by high speed in a and low speed in b. The color stands for normalized
sensitivity. c Sensitivity changes computed as 100� a=b; where a and b are map entries in a and b,
respectively. Here, the color stands for sensitivity change: gain in red and loss in blue
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These results suggest a simple resolution to some long-standing puzzles in the
literature on motion adaptation. In the early theories, adaptation was viewed as a
manifestation of neural fatigue. Later theories were more pragmatic, assuming that
sensory adaptation is the organism’s attempt to adjust to the changing environment
[39–42]. But evidence supporting this view has been scarce and inconsistent. For
example, some studies showed that perceptual performance improved at the
adapting conditions, but other studies reported the opposite [43, 44]. Even more
surprising were systematic changes of performance for stimuli very different from
the adapting ones [44]. According to the present analysis, such local gains and
losses of sensitivity are expected in a visual system that seeks to allocate its limited
resources in face of uncertain and variable stimulation (Fig. 7.10). Indeed, the
pattern of gains and losses of sensitivity manifests an optimal adaptive behavior.

This example illustrates that in a sensory system with scarce resources, opti-
mization of performance will lead to a reduction of sensitivity to some stimuli. This
phenomenon is not unique to sensory adaptation [45]. For example, demanding
tasks may cause impairment of visual performance for some stimuli, as a conse-
quence of the task-driven reallocation of visual resources [46, 47].

7.5.2 Mechanism of Adaptive Allocation

From the above it follows that the shape of the spatiotemporal sensitivity function,
and also transformations of this function, can be understood by studying the
uncertainties implicit to visual measurement. This idea received further support
from simulations of a visual system equipped with thousands of independent
(uncoupled) sensors, each having a spatiotemporal receptive field [48, 49].

In these studies, spatiotemporal signals were sampled from known statistical
distributions. Receptive fields parameters were first distributed at random. They
were then updated according to a generic rule of synaptic plasticity [50–53]. The
changes of receptive fields amounted to small random steps in the parameter space,
modeled as stochastic fluctuations of the spatial and temporal extents of the
receptive fields. Step length was proportional to the (local) uncertainty of mea-
surement by individual receptive fields. The steps were small, where the uncertainty
was low, and the receptive fields changed little. Where the uncertainty was high, the
steps were larger, so the receptive fields tended to escape the high-uncertainty
regions. This stochastic behavior led to a “drift” of receptive fields in the direction
of low uncertainty of measurement [49], predicted by standard stochastic methods
[54], as if the system sought stimuli that could be measured reliably (cf. [55]).

Remarkably, the independent stochastic changes of receptive fields (their
uncoupled “stochastic tuning”) steered the system toward the distribution of
receptive field parameters predicted by the normative theory described in Sect. 7.4,
and leading to the distribution of sensitivity observed in human vision (Fig. 7.9).
When the distribution of stimuli changed, mimicking a change of sensory environ-
ment, the system was able to spontaneously discover an arrangement of sensors
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optimal for the new environment, in agreement with the predictions illustrated in
Fig. 7.10 [56]. This is an example of how efficient allocation of resources can emerge
in sensory systems by way of self-organization, enabling a highly adaptive sensory
behavior in face of the variable (and sometimes unpredictable) environment.

7.6 Conclusions

A study of allocation of limited resources for motion sensing across multiple spatial
and temporal scales revealed that the optimal allocation entails a shape of the
distribution of sensitivity similar to that found in human visual perception. The
similarity suggested that several previously puzzling phenomena of visual sensi-
tivity, adaptation, and perceptual organization have simple principled explanations.
Experimental studies of human vision have confirmed the predictions for sensory
adaptation. Since the optimal allocation is readily implemented in self-organizing
neural networks by means of unsupervised leaning and stochastic optimization, the
present approach offers a framework for neuromorphic design of multiscale sensory
systems capable of automated efficient tuning to the varying optical environment.
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Appendices

Appendix 1. Additivity of Uncertainty

For the sake of simplicity, the following derivations concern the stimuli that can be
modeled by integrable functions I : R ! R of one variable x. Generalizations to
functions of more than one variable are straightforward. Consider two quantities:

• Stimulus location on x, where x can be space or time, and the “location”
indicates respectively “where” or “when” the stimulus has occurred.

• Stimulus content on fx, where fx can be spatial or temporal frequency of stimulus
modulation.

Suppose a sensory system is equipped with many measuring devices (“sensors”),
each used to estimate both stimulus location and frequency content from “image”
(or “input”) IðxÞ. Assume that the outcome of measurement is a random variable
with probability density function pðx; f Þ. Let
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pxðxÞ ¼ R
pðx; f Þdf ;

pf ðf Þ ¼ R
pðx; f Þdx ð7:12Þ

be the (marginal) means of pðx; f Þ on dimensions x and fx (abbreviated as f ).
It is sometimes assumed that sensory systems “know” pðx; f Þ, which is not true in

general. Generally, one can only know (or guess) some properties of pðx; f Þ, such as its
mean and variance. Reducing the chance of gross error due to the incomplete infor-
mation about pðx; f Þ is accomplished by a conservative strategy: finding the minima
on the function of maximal uncertainty, i.e., using a minimax approach [15, 16].

The minimax approach is implemented in two steps. The first step is to find such
pxðxÞ and pf ðf Þ, for which measurement uncertainty is maximal. (The uncertainty is
characterized conservatively, in terms of variance alone [2]). The second step is to
find the condition(s), at which the function of maximal uncertainty has the smallest
value: the minimax point(s).

Maximal uncertainty is evaluated using the well-established definition of entropy
[58] (cf. [59, 60]):

HðX;FÞ ¼ �
Z

pðx; f Þ log pðx; f Þ dxdf :

According to the independence bound on entropy (Theorem 2.6.6 in [61]),

HðX;FÞ�HðXÞ þ HðFÞ ¼ H�ðX;FÞ; ð7:13Þ

where

HðXÞ ¼ � R
pxðxÞ log pxðxÞ dx;

HðFÞ ¼ � R
pf ðf Þ log pf ðf Þ df :

Therefore, the uncertainty of measurement cannot exceed

H�ðX;FÞ ¼ � R
pxðxÞ log pxðxÞ dx

� R
pf ðf Þ log pf ðf Þ df : ð7:14Þ

Eq. 7.14 is the “envelope” of maximal measurement uncertainty: a “worst-case”
estimate.

By the Boltzmann theorem on maximum-entropy probability distributions [61],
the maximal entropy of probability densities with fixed means and variances is
attained, when the functions are Gaussian. Then, the maximal entropy is a sum of
their variances [61] and

pxðxÞ ¼ 1

rx
ffiffiffiffiffiffi
2p

p e�x2=2r2x ;

pf ðf Þ ¼ 1

rf
ffiffiffiffiffiffi
2p

p e�f 2=2r2f ;
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where rx and rf are the standard deviations. Then maximal entropy is

H ¼ r2x þ r2f : ð7:15Þ

That is, when pðx; f Þ is unknown, and all one knows about marginal distributions
pxðxÞ and pf ðf Þ is their means and variances, the maximal uncertainty of mea-
surement is the sum of variances of the estimates of x and f . The following minimax
step is to find the conditions of measurement, at which the sum of variances is the
smallest.

Appendix 2. Improving Resolution by Multiple Sampling

How does an increased allocation of resources to a specific condition of mea-
surement affect the (spatial or temporal) resolution at that condition? Consider setW
of sampling functions

wðsrþ dÞ; r 2 R; r[ 0; d 2 R;

where r is a scaling parameter and d is a translation parameter. For a broad class of
functions wð�Þ, any element of W can be obtained by addition of weighted and
shifted wðsÞ. The following argument proves that any function from a sufficiently
broad class that includes wðsrþ dÞ can be represented by a weighted sum of
translated replicas of wðsÞ.

Let w�ðsÞ be a continuous function that can be expressed as a sum of a con-
verging series of harmonic functions:

w�ðsÞ ¼
X
i

ai cosðxisÞ þ bi sinðxisÞ:

For example, Gaussian sampling functions of arbitrary widths can be expressed
as a sum of cosð�Þ and sinð�Þ. Let us show that, if jwðsÞj is Riemann-integrable, i.e.,
if

�1\
Z1
�1

wðsÞjds\1

and its Fourier transform bw does not vanish for all x 2 R: bwðxÞ 6¼ 0 (i.e., its
spectrum has no “holes”), then the following expansion of w� is possible:

w�ðsÞ ¼
X
i

ciwðsþ diÞ þ eðsÞ; ð7:16Þ
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where eðsÞ is a residual that can be arbitrarily small. This goal is attained by proving
identities

cosðx0sÞ ¼ P
i
ci;1wðsþ di;1Þ þ e1ðsÞ;

sinðx0sÞ ¼ P
i
ci;2wðsþ di;2Þ þ e2ðsÞ; ð7:17Þ

where ci;1, ci;2 and di;1, di;2 are real numbers, while e1ðsÞ and e2ðsÞ are arbitrarily
small residuals.

First, write the Fourier transform of wðsÞ as

bwðxÞ ¼ Z1
�1

wðsÞe�ixsds

and multiply both sides of the above expression by eix0t:

eix0tbwðxÞ ¼ eix0t
Z1
�1

wðsÞe�ixsds ¼
Z1
�1

wðsÞe�iðxs�x0tÞds: ð7:18Þ

Change the integration variable:

x ¼ xs� x0t ) dx ¼ xds; s ¼ xþ x0t
x

;

such that Eq. 7.18 transforms into

eix0tbwðxÞ ¼ 1
x

Z1
�1

w
xþ x0t

x

� �
e�ixdx:

Notice that bwðxÞ ¼ aðxÞ þ ibðxÞ. Hence

eix0tbwðxÞ ¼ eix0tðaðxÞ þ ibðxÞÞ ¼ ðcosðx0tÞ þ i sinðx0tÞÞðaðxÞ þ ibðxÞÞ

and

eix0tbwðxÞ ¼ ðcosðx0tÞaðxÞ � sinðx0tÞbðxÞÞ þ iðcosðx0tÞbðxÞ þ sinðx0tÞaðxÞÞ:
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Since bwðxÞ 6¼ 0 is assumed for all x 2 R, then aðxÞ þ ibðxÞ 6¼ 0. In
other words, either aðxÞ 6¼ 0 or bðxÞ 6¼ 0 should hold. For example, suppose that
aðxÞ 6¼ 0: Then

Re eix0tbwðxÞ� �
þ bðxÞ
aðxÞ Im eix0tbwðxÞ� �

¼ cosðx0tÞ a2ðxÞ þ b2ðxÞ
aðxÞ

� �
:

Therefore,

cosðx0tÞ ¼ aðxÞ
a2ðxÞþb2ðxÞ

� �
Re 1

x

R1
�1

w xþx0t
x

� �
e�ixdx

� �

þ bðxÞ
a2ðxÞþb2ðxÞ

� �
Im 1

x

R1
�1

w xþx0t
x

� �
e�ixdx

� �
:

ð7:19Þ

Because function wðsÞ is Riemann-integrable, the integrals in Eq. 7.19 can be
approximated as

Re
1
x

Z1
�1

w
xþ x0t

x

� �
e�ixdx

0
@

1
A ¼ D

x

XN
k¼1

w
xk þ x0t

x

� �
cosðxkÞ þ �e1ðt;NÞ

x
;

ð7:20Þ

Im
1
x

Z1
�1

w
xþ x0t

x

� �
e�ixdx

0
@

1
A ¼ D

x

XN
p¼1

w
xp þ x0t

x

� �
sinðxpÞ þ �e2ðt;NÞ

x
;

ð7:21Þ

where xk and xp are some elements of R.
From Eqs. 7.19–7.21 it follows that

cosðx0tÞ ¼
X2N
j¼1

cj;1w
x0t
x

þ dj;1
� �

þ e1ðt;NÞ:

Given that bwðxÞ 6¼ 0 for all x and letting x ¼ x0, it follows that

cosðx0tÞ ¼
X2N
j¼1

cj;1w tþ dj;1
� �þ e1ðt;NÞ; ð7:22Þ
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where

�e1ðt;NÞ
x0

aðx0Þ
a2ðx0Þ þ b2ðx0Þ þ

�e2ðt;NÞ
x0

bðx0Þ
a2ðx0Þ þ b2ðx0Þ ð7:23Þ

An analogue of Eq. 7.22 for sinðx0tÞ follows from sinðx0tÞ ¼ cosðx0tþ p=2Þ.
This completes the proof of Eq. 7.17 and hence of Eq. 7.16.
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Chapter 8
Scene Analysis Using Morphological
Mathematics and Fuzzy Logic

Victoria Lynn Fox, Mariofanna Milanova and Salim Al-Ali

Abstract Owing to compound textural features, intensity inhomogeneity, image
layers, and variations of statistics inherent, the segmenting of complicated images
into areas of similarity for scene analysis is a challenging task. In this work, a
morphological active contour is developed to increase efficiency of current active
contour schemes and a fuzzy clustering energy is incorporated into the active contour
algorithm to increase accuracy and flexibility. Finally, to aid in the segmentation of
figures for scene analysis, a visual attention is incorporated into the fuzzy clustering.
The savings in computational efficiency garnered from using a morphological curve
evolution rather than a partial differential equation and corresponding Euler-
Lagrange equations combined with the expert knowledge garnered from a visual
attention fuzzy logic scheme translates into a highly accurate and efficient segmen-
tation method for scene analysis.
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8.1 Introduction

While the statistics of large data sets of images follow certain regularities, statistics
of singular images are found to be capable of a large variance in statistical analysis
[1]. Therefore, the applications, which work with individual images, must seek to
exploit the variability of the image while acknowledging the established statistical
properties of natural images as a group. As an example, consider the spatial structure
of a natural image, which is often irregular with contours produced by different
boundaries, markings, and shadows. These boundaries can sometimes be determined
by exploiting luminance and contrast within the given natural scene. In a survey of
natural image statistics, Geisler [2] notes, in general, natural images, i.e. images with
significant local covariance, tend to have large variations in local luminance and
contrast with a low correlation in their average joint distribution. However, global
statistics have shown that strong features tend to cluster in natural images and, thus,
ignoring global information in light of only local information often results in poor
segmentation results, when considering natural images [3]. Therefore, the segmen-
tation protocols seeking to exploit luminance and contrast in a natural image must
consider both local and global statistics, which leads to an increase in computational
cost in segmentation algorithms. It bears mentioning that the statistics involving
luminance and contrast are of only one group of statistical models for natural images.
To effectively segment natural images, one must also consider other statistical
information, such as textural information given by entropy and homogeneity, depth
given by the scene scale of the image or levels of color saturation in a multispectral
image. With each additional feature space, the complexity of a given algorithm
grows. Therefore, it is very important for the mechanism of an image segmentation
method to be as efficient as possible with low computational cost while minimizing
error.

While the last two decades have seen a large variety of image segmentation
methods with many able to produce reasonable segmentations on images with
moderate complexity, see [1, 2, 4] and their references as examples of effective
segmentation techniques, computational efficiency is still a concern, when seg-
menting a complex image. Many state-of-the-art methods can become impractically
time-consuming or are limited in the types or size of images that can be processed.
Often, feature vectors are sacrificed in order to increase computational speed
resulting in a lower level of accuracy in general for the algorithm [3]. The proposed
method presented in this work is a computational low-cost segmentation method
that effectively segments a variety of complex images. This method makes use of
mathematical morphology, fuzzy logic clustering, and visual attention, all of which
are incorporated into a hybrid, level set active contour method.

The chapter is organized as the follows. Background material is presented in
Sect. 8.2. The proposed method is developed in Sect. 8.3. Conclusion is situated in
Sect. 8.4.
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8.2 Background Material

Let us consider briefly the background materials including segmentation methods
(Sect. 8.2.1), the basics of morphological mathematics (Sect. 8.2.2), application of
fuzzy logic in imaging (Sect. 8.2.3), and visual attention issues (Sect. 8.2.4).

8.2.1 Segmentation Methods

The objective of segmentation is to partition an image into regions. With the
assumption that every section in an image is sufficiently homogenous, edge-based
segmentation determines the transition between two sections on the basis of dis-
continuities alone. When this assumption is not valid, a region-based segmentation
usually provides a more realistic segmentation product.

In order to detect meaningful discontinuities between sections, most edge-
detection techniques employ the use of first- and second-derivatives. The first-order
derivative of choice is the gradient vector of an image I(x, y) given as Eq. 8.1,
which is obtained by the partial derivatives at every pixel location.

rI ¼ gx
gy

� �
¼ oI=ox

oI=oy

� �
:X ! <2 ð8:1Þ

To determine the presence of edges, the magnitude of the gradient vector is
computed with Eq. 8.2.

rIj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2x þ g2y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oI=oxð Þ2þ oI=oyð Þ2

q
: X ! < ð8:2Þ

Since it is zero in areas of constant intensity and its values are related to the
degree of intensity change in areas of variable intensity. The Laplacian of an image
function I(x, y) is the sum of the second-order derivatives, defined by Eq. 8.3.

r2I ¼ o2I
ox2

þ o2I
dy2

: X ! < ð8:3Þ

While the Laplacian is seldom used by itself for edge detection due to its
sensitivity to noise, it is powerful, when used in combination with other edge-
detection techniques. The edge detection by gradient operations generally performs
well only in images with defined intensity transitions and relatively low noise.
However, computationally, the gradient operator methods have a relatively lower
cost than other segmentation methods because the computation can be performed
with a local filtering operation [5].
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While the edge-based segmentation focuses on discontinuities in intensity levels,
the region-based techniques find the regions directly. The basic formulation of
region-based segmentation with R representing a region in the image can be given
with a series of conditions. The first condition states that every pixel must be
assigned a region while the second condition requires that points in a region be
connected (e.g., 4- or 8-connected) and the third condition indicates the regions
must be disjoint. The fourth condition states that pixels in a segmented region must
share some predefined common features while the fifth condition indicates that
adjacent regions are different in the sense of the predefined feature spaces [6].

The region growing is a technique that merges regions of interest into a larger
region of interest. The pixel aggregation is an example of a region growing tech-
nique. In pixel aggregation, an initial set of seed points grows regions from the
seeds by joining neighboring pixels, if they satisfy given criteria. In its most basic
form, segmentation starts with two initial seeds, and then the region grows, if
neighboring pixels satisfy the following criteria: |I(x, y) − I(seed)| < τ, in which τ is
some predefined threshold. The selection of initial seeds is often based on the nature
of applications or images. If a priori information is not obtainable, then the clus-
tering techniques must be used to determine the pixels that can be used as seeds.
Despite the simple nature of the algorithm, there are several problematic areas in the
implementation of region growing: descriptors of region properties alone can yield
misleading results, if connectivity is not taken into consideration.

The statistical estimation is another common approach in a region-based seg-
mentation [7]. When considering the statistical segmentation of images, authors
generally suppose the existence of two random fields: the field of “classes” and the
field of “measurements.” With this method, two sections are considered to be
homogenous and accordingly merged, if they have common parameter values
within a given threshold. In application, the parameters of a section cannot be
directly observed; rather they can only be inferred from the observed data. This
inference, if often made using Bayes’s rule and the conditional probability density
function pðIðx; yÞjhmÞ, which presets the conditional probability statistic derived
from the data (Iðx; yÞÞ, will be observed, given that section m has the parameter
values of hm. In typical statistical region merging algorithms [8], stochastic esti-
mates in the parameter space are obtained for different sections, and merging
decisions are based on the similarity of these parameters.

Unfortunately, there is a limitation of most estimation-based segmentation
methods in that they do not explicitly represent the uncertainty in the estimated
parameter values and, therefore, are prone to error, when the parameter estimates
are poor. To counteract this limitation, a Bayesian probability of homogeneity uses
all of the information contained in the statistical image model rather than just
estimating parameter values. The probability of homogeneity is based on the ability
to formulate a prior probability density function on the parameter space, and
measures the uniformity by taking the expectation of the data likelihood over a
posterior parameter space.
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In general, the region-based methods yield more reasonable segmentations than
edge-based algorithms, when an image has relatively large noise and/or requires the
use of local properties combined with global properties. However, the complexity
and computational cost of region-based methods can be large, particularly when
considering methods based upon partial differential equations, e.g. active contour
methods. Active contours are the energy-based segmentation methods that seek to
guide partitioning of an image via the minimization of a cost functional.

The first efforts in formulating the boundary detection problem as an energy
minimization problem resulted in the energy-minimizing splines guided by external
constraint forces that pull the splines towards objects of interest [9]. These splines
were dubbed snakes by their creators, Kass, Witkin, and Terzopoulos, because the
contours appeared to slither across an image as it moved toward local minima. In
the classical formulation, the boundary detection consisted of matching a deform-
able model to an image by means of energy minimization. Representing the
position of a snake parametrically by C sð Þ ¼ x sð Þ; y sð Þ: 0� s� Lð Þ:< ! X; where
L denotes the length of the contour C, s is the arc length, and Ω represents the entire
domain of an image I(x, y), the energy functional can be written as Eq. 8.4, where
Eint and Eext represent the internal energy and external energy functions.

E Cð Þ ¼ Eint þ Eext ð8:4Þ

The internal energy function determines the smooth shape (regularity) of the
contour. A common choice for the internal energy is a functional given by Eq. 8.5,
where C sð Þ � C nð Þ ¼ fðx nð Þ; yðnÞÞ: 0� n�N; s ¼ 0þ nDsg and L ¼ NDs.

Eint ¼
ZL
0

a C0ðsÞj j2þb C00ðsÞj j2ds �
XN
0

a C0ðnÞj j2 þ b C00ðnÞj j2Ds ð8:5Þ

Here α controls the tension of the contour and β controls the rigidity of the
contour. The external energy term determines the criteria of contour evolution
depending on the image I(x, y) and can be defined as Eq. 8.6, where Eimg(x, y)
denotes a scalar function defined on the image plane, so the local minimum of Eimg

attracts the snakes to edges.

Eext ¼
ZL

0

Eimg C sð Þð Þds �
XN
n¼0

Eimg C nð Þð ÞDs ð8:6Þ

The edge attraction function, Eimg, was originally presented as a combination of
three separate functionals: Eimg ¼ wlineEline þ wedgeEedge þ wtermEterm: Since the
presentation of the original algorithm, there have been many other functionals
suggested for Eimg and one common example is a function of image gradient, given
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by Eq. 8.7, which incorporates a Gaussian smoothing filter, Gσ, with standard
deviation σ and a suitably chosen constant λ.

Eimg x; yð Þ ¼ 1
k rGr � I x; yð Þj j :X ! < ð8:7Þ

In order to solve the geometric contour problem, one must find the contour C
that minimizes the total energy term E within the given set of weights, α, β, and λ.

In order to achieve an accurate location of edges, the classical snake algorithm
must be initialized sufficiently near the edge or object of interest. Estimating a
correct position of an initial contour without prior knowledge is a challenging
problem. Also, classical geometric contours are only able to separate a region into
two sub-regions and cannot, subsequently split into multiple boundaries or merge
from multiple initial contours. In order to correct this deficiency, Hamilton-Jacobi
formulations [5] were applied to active contours and resulted in the creation of
geodesic active contours.

The level set function / x; yð Þ was proposed by Oshar and Sethian [5] as a
formulation to implement active contours. Oshar and Sethian represented a contour
implicitly via a two-dimensional Lipschitz-continuous function / x; yð Þ:X ! <
defined on the image plane. On a particular level, usually the zero level, the level set
function is defined as a contour, such as Eq. 8.8, where Ω denotes the entire image
plane.

C ¼ x; yð Þ:/ x; yð Þ ¼ 0f g; 8ðx; yÞ 2 X ð8:8Þ

As the level set function increases from the initial stage, the corresponding set of
contours, C, moves toward the exterior.

By using the zero level, the contour can be defined as the border between a
positive area and negative area. Thus, the contour can be identified by checking the
sign of /ðx; yÞ. Using the zero level, the level set is usually represented by Eq. 8.9.

/ x; yð Þ ¼
\0 x; yð Þ inside C
¼ 0 x; yð Þ on C
[ 0 x; yð Þ outside C

8<
: ð8:9Þ

The initial level set function /0 x; yð Þ:X ! < is usually given as a signed dis-
tance from the initial contour such as in Eq. 8.10 in a way that ±D(a, b) denotes a
signed distance between a and b and Nx;y C0ð Þ denotes the nearest neighbor pixel on
the initial contours C ¼ Cðt ¼ 0Þ from (x, y).

/0 x; yð Þ ¼ / x; yð Þ: t ¼ 0f g ¼ �D x; yð Þ;Nx:y C0ð Þ� �
; 8 x; yð Þ 2 X ð8:10Þ

The deformation of the contour is generally represented as a Partial Differential
Equation (PDE). The initial proposal for a formulation of contour evolution using
the magnitude of the gradient, given by Osher and Sethian [5], states by Eq. 8.11,
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where v denotes a constant speed term to push or pull the contour and jð�Þ : X ! <
denotes the mean curvature of the level set function ϕ(x, y) given by Eq. 8.12.

o/ðx; yÞ
ot

¼ r/ x; yð Þj j vþ ej / x; yð Þð Þð Þ ð8:11Þ

jð/ðx; yÞÞ ¼ div
r/
r/k k

� �
¼ /xx/

2
y � 2/x/y/xy þ /yy/

2
x

ð/2
x þ /2

yÞ3=2
ð8:12Þ

The curvature term is used to control the regularity of the contour as the internal
energy term does in the classic snake model while ɛ controls the balance between
the smoothness and the robustness of the evolution.

Chan and Vese [10] proposed a new form of contour evolution that is very
popular in current research methods, the active contour without the edges method.
The length of the contour Cj j can be approximated by a function of ϕ(x, y) such as in
Eq. 8.13, where Heð�Þ denotes the regularized form of the unit step function,
Hð�Þ:X ! < given by Eq. 8.14 and deð�Þ denotes the derivative of Heð�Þ.

Cj j � Le / x; yð Þð Þ ¼
Z

rHe / x; yð Þð Þj jdxdy ¼
Z

de / x; yð Þð Þ r/ðx; yÞj jdxdy
ð8:13Þ

H x; yð Þ ¼ 1 if / x; yð Þ� 0
0 if / x; yð Þ\0

	
8 x; yð Þ 2 X ð8:14Þ

Since Heð�Þ produces either a 0 or 1 depending on the sign of the input, deð�Þ
produces nonzero results only on the contour of Eq. 8.13, where ϕ(x, y) = 0. The
associated Euler-Lagrange equation [11] obtained byminimizing Leð�Þwith respect to
ϕ and parameterizing the descent directions by an artificial time t is given by Eq. 8.15.

o/ðx; yÞ
ot

¼ de / x; yð Þð Þj / x; yð Þð Þ ð8:15Þ

The contour evolution motivated by this equation can be interpreted as the
motion by mean curvature minimizing the length of the contour. Therefore,
Eq. 8.12 is considered as the motion motivation by partial differential equation,
while Eq. 8.15 is considered as the motion motivated by energy minimization.

A convenient characteristic of level-set contours is that the contour can split or
merge as the topology of the level set function changes. As a result, level set
methods can detect more than one boundary simultaneously and several initial
contours can be placed. The computational cost of level set methods, however, is
high because computation should be done on the same dimension as the image
plane. Yet, due to the convenience and flexibility of level set methods, they are a
practical method to use in the research of segmenting multi-region images.
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8.2.2 Morphological Mathematics

First introduced by Matheron [12] and Serra [13], the mathematical morphology
views an image as a set of geometric structures then transforms it with the use of a
smaller geometrically defined set, commonly referred to as a structuring element.
The structuring element is translated over the image set and with the use of basic set
operations (i.e. union and intersection), the fundamental operations of dilation and
erosion are obtained.

For a binary image, entries consisting of 0 represent background information and
entries consisting of 1 represent foreground entries. In a binary erosion, A	B, in
which A is eroded by the structuring element B, consists of all points, for which the
translation of B over A fits inside of A. In other words, it is the set operation
A	B ¼ fxjBx 
 Ag. A binary dilation is the dual operation to erosion and is defined
by the set complementation of erosion. The dilation of a set A by structuring element
B is given by A � B ¼ ½Ac	 �Bð Þ�c. To dilate A by B, B is rotated around the origin
to create ð�BÞ, the complement of A is eroded by ð�BÞ, and then the complement of
the erosion is taken. To illustrate with a sample binary image matrix, let the binary
image be represented by A and the structuring element is represented by B as given
by the matrix in Eq. 8.16. The erosion of A by B is given by the matrix in Eq. 8.17
while the dilation of A by B is given by the matrix in Eq. 8.18.

A ¼

0 1 0 1 0
1 1 1 0 1
1 1 0 0 1
1 0 1 1 0
0 0 1 1 0

2
66664

3
77775 B ¼ 1 1

1 0

� �
ð8:16Þ

A	B ¼

0 0 0 0 0
1 1 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 1 0 0

2
66664

3
77775 ð8:17Þ

A � B ¼

0 1 1 1 1
1 1 1 1 1
1 1 1 0 1
1 1 1 1 1
1 0 1 1 1

2
66664

3
77775 ð8:18Þ

From erosion and dilation, the morphological operations of opening and closing
can be defined. A morphological opening on a binary image is defined as
A}B ¼ A	Bð Þ � B, where the image A is eroded by B, and then the result of the
erosion is dilated by B. Using the sets defined in Eq. 8.16, A}B has the results
represented in Fig. 8.1.
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The morphological closing on a binary image is defined as A B ¼ ðA� BÞ	B.
Using the sets defined in Eq. 8.16, A B results in the matrix and image repre-
sentation in Fig. 8.2.

For a binary structuring element B, the locations, where B is equal to zero, are
referred to as neutral elements since they do not affect the image during the mor-
phological operation. For gray-scale morphology, the morphological operations
transform the gray-scale image into a binary data set with an extra dimension
representing the gray-level. Since the gray-scale level of an image is bound to a
finite domain of [0, m], the neutral elements of a gray-scale structuring element are
the elements with values of m [14]. This is due to the nature of the definition of
gray-scale morphology operators, in which they are used as the invariants to the
maximum and minimum operators.

In continuous gray-scale morphology, images are viewed as functions mapping a
grid to R[ ð�1;1Þ. Since gray-scale images are restricted to integer values
between some range of values (i.e. 0–255 for 8 bit), it is necessary to restrict
the discrete gray-scale morphology mapping to the integer range imbedded in the
image format. With these preliminaries stated, the erosion and dilation of an gray-

scale image, AðxÞ, by a structuring element BðxÞ, can be defined as ðA	BÞðxÞ ¼
inf
y 2 B

A yð Þ � B y� xð Þ½ � and A� Bð Þ xð Þ ¼ sup
y 2 B

A yð Þ � B y� xð Þ½ �, respectively.

8.2.3 Fuzzy Logic

Fuzzy logic is composed of multi-logic systems that have been developed in
opposition to the classical logic, which uses an “on/off” switch in its assessment of
membership. In fuzzy logic sets, the membership is determined by values assigned

(a) (b)

Fig. 8.1 Example of morphological opening on a binary set. a A matrix form of A}B. b An
image representation of A}B

(a) (b)

Fig. 8.2 Example of morphological closing on a binary set. a A matrix form of A B. b An
image representation of A B
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to linguistic expressions and human decisions. The use of fuzzy logic in imaging is
primarily in the practice of image clarity and identification of objects [15]. It is a
modification of this second usage, i.e. identification of objects, where segmentation
has begun to use fuzzy logic.

A linguistic variable is a term used in our natural language to describe some
concept that usually has vague or ill-defined values. For example, if researcher tried
to describe the frequency heights of an image in the frequency domain, the lin-
guistic variable would be “height” and the typical values would be “low”, “med-
ium”, and “high” and would define our clustering. The fuzzy expert system process
is composed of four steps:

1. Fuzzification—convert the data to fuzzy sets via membership functions.
2. Inference—perform all fuzzy logical operations and apply an implication

method.
3. Composition—apply an aggregation method for fuzzy sets acquired in the

inference step.
4. Defuzzification—convert the final fuzzy conclusion back to raw data to obtain

final weights.

It is important to note that fuzzy logic is not logic that is fuzzy; rather it is the
logic of fuzziness. While the linguistic variable may be filled with ambiguity, the
output of the defuzzification is a value that will guide the image segmentation.

There are several fuzzy membership functions to help cluster the values of the
linguistic variable. In choosing the linguistic variables and terms for the fuzzy logic
model, it is important to be directed by the following guidelines [16]:

1. The features should carry enough information about the image and should not
require any domain-specific knowledge for their extraction.

2. They should be easy to compute in order for the approach to be feasible for a
large image collection.

3. They should relate well with the human perceptual characteristics since users
will finally determine the suitability of the retrieved images.

8.2.4 Visual Attention

In 1964, Neisser [17] presented a popular model, in which human vision consists of
pre-attentive and attentive stages. The pre-attentive stage focuses on local spatial
discontinuity, while in the attentive stage, relationships between these discontinu-
ities are created and clustering takes place. In the pre-attentive stage, the principles
of proximity, simplest form, and continuity factor into the decision, of where the
spatial discontinuities take place. The attention stage additionally takes note of
similarity features (e.g. color, luminosity, texture) and shape to aid in the process.

In computational vision, the numerous approaches to the attention model of
scene analysis can be categorized as two methodologies: bottom-up and top-down.
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In bottom-up attention, dissimilarities attract the attention of the vision model. In
the top-down methodology, the viewer searches for a specific feature and the
expected objects receive the attention [18]. Through both of these methodologies, a
saliency map can be created to aid in the segmentation of the visual scene. In
general, bottom-up attention models are based upon feature detection (e.g. orien-
tation, shape, texture) that is easily estimated by a computer while top-down models
are more subjective and increase computational complexity in that they depend on
contextual clues, objectives, and expert knowledge of the viewer. In an effort to
reduce computational cost, the method presented here will make use of the bottom-
up saliency model known as Context-Aware Saliency [19, 20].

Context-Aware Saliency Detection (CASD) makes use of the principles of
Gestalt vision psychology in its formulation. Particularly, the model makes use of
following information:

1. Local, pre-attentive features such as color, texture, and contrast.
2. Global attentiveness, which identify features that deviate from the norm.
3. Perceptual organization rules such as a visual scene containing at least one

center of gravity.
4. High-level factors such as distance priors or shape priors.

Using the local-global feature fusion and perceptual organization rules, the
CASD detects the salient objects along with the regions of the image around the
salient object in order to lend context to the salient region. The local, pre-attentive
features give distinctive areas a high saliency and homogenous regions a low
saliency score. Frequently occurring features are classified as part of the ground and
rare features are classified as part of the figure per global attentiveness. Perceptual
organization groups salient pixels that are in close proximity to each other and
discounts salient pixels that are not connected. Finally, a center prior contributes to
the determination, of which of the salient pixels have the highest fixation levels.
Thus, the CASD makes use of the similarity and proximity principles of Gestalt
psychology with exceptionally low computational cost. In particular, the method
evaluates pixels in patches in order to evaluate the context of each pixel. Consid-
ering a single patch pi of scale s at each pixel, a single pixel i is salient, when the
patch containing the pixel is unique with respect to all other patches in the image.
This capability of incorporating context patches with the salient object gives the
CASD model the flexibility needed for scene analysis.

8.3 Proposed Method

The proposed method is based on morphological operations (Sect. 8.3.1), hybrid
morphological contour (Sect. 8.3.2), and representation of fuzzy morphological
contour with visual attention (Sect. 8.3.3).
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8.3.1 Morphological Mean Curvature

In the image processing application of level set active contours, the curve, C:Rþ �
0; 1½ � ! R

2; is represented implicitly as a level set of an embedding function. If we
set u:Rþ � R

2 ! R as an implicit representation of our contour, it will become
C tð Þ ¼ fðx; yÞju t; x; yð Þð Þ ¼ 0g. During the contour evolution, infinitesimal change
of the contour is controlled by differential operators. In other words, a differential
operator D guides the contour evolution with the partial differential equation C tð Þ ¼
D Cð Þ: In partial differential equation formulations of active contours, the smoothing
force regularly takes the form of mean curvature motion and acts as a regularization
term.

The underlying principal of mean curvature motion is the evolution of a simple
closed curve, whose points move in the direction of the normal with specified
velocity. Rewriting D Cð Þ ¼ F � N ; where N is the normal to the contour and F is
a scalar field, one can determine the velocity of evolution at each point on the
contour. In level set implementations, the evolution of u(x, y) is ou

ot ¼ ruj j � F and
will equal Eq. 8.19, when F is the divergence of the normalized gradient (i.e.
Euclidean curvature of C) and gives the curvature of the implicit curve at each point.

ou
ot

¼ ruj jdiv ru
ruj j

� �
ð8:19Þ

The parameter u(x, y) must be discretized in image processing in order to be
applied to the grid of image information, which is usually expressed as pixels in two
dimensional applications. The discretization of the differential operator is not
always a trivial task and results in one of the losses of efficiency in many image
processing contour applications. As a result, the search for a low-cost estimator of
mean curvature motion is an area of active research.

One of the more significant contributions to the topic is provided by [21], in
which it is proven the two-dimensional mean curvature term can be replaced by the
mean of two morphological operators for a single iteration of the method. To
morphologically approximate mean curvature, we let B represent line segments of
set length then define the morphological continuous line operators as mentioned in
Eqs. 8.20–8.21.

Ahuð Þ xð Þ ¼ sup
B 2 B

inf
y 2 xþ hB

u yð Þ ð8:20Þ

J huð Þ xð Þ ¼ inf
B 2 B

sup
y 2 xþ hB

u yð Þ ð8:21Þ

Using these operators, let us then define the mean operator as Eq. 8.22, in which
the scheme in [21] relates the mean operator with the mean curvature motion by
Eq. 8.23.
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F huð Þ xð Þ ¼ Ahuð Þ xð Þ þ J huð Þ xð Þ
2

ð8:22Þ

F huð Þ xð Þ ¼ u xð Þ þ 1
4
h2 ruj jdiv ru

ruj j
� �

xð Þ þ O h3
� � ð8:23Þ

Using a small h and subtracting u(x) from each side of (Eq. 8.23), results in the
infinitesimal generator of the F h operator will be the following:

lim
h!0þ

h�1 F ffiffiffiffi
4h

p u

 �

xð Þ � u xð Þ
h i

¼ ruj jdiv ru
ruj j

� �
xð Þ: ð8:24Þ

From Eq. 8.24 one can solve the mean curvature motion by means of the F h

operator. However, since the F h operator generates new level set values after a
single iteration, it ceases to be morphological. In [22] and [23], Alarez et al. modify
the Catte, Dibos, and Koepfler scheme with the use of operator composition, which
states that given any two operators P1

h and P2
h, we have, for a small h, Eq. 8.25.

P2
h=2 � P1

h=2u � P2
huþ P1

hu
2

ð8:25Þ

From this, Alarez et al. show that the non-morphological operator F ffiffiffiffi
4h

p can be
approximated by the morphological operator represented in Eq. 8.26 with a base of
B2 and is equivalent to Eq. 8.11.

A ffiffi
h

p � J ffiffi
h

p � A ffiffi
h

p uþ J ffiffi
h

p u

2
ð8:26Þ

8.3.2 A Hybrid Morphological Contour

Some authors lay out the format for a hybrid morphological contour [24, 25]. This
section is a brief review of the algorithm for the contour extraction. While the
combination of an edge based and region based active contour, commonly referred
to as a hybrid contour, results in increased computational complexity in order to
mitigate the shortcomings of either method alone, the hybrid morphological contour
has a low complexity and circumventing a method’s shortcoming does not sig-
nificantly add to the computational cost.

In the hybrid method, the coupling of the strong edge term and region statistics
creates a symbiotic relationship. When the edge term is low, the curve is attracted
toward the region of interest. However, when the curve is far away from an edge,
the region statistics take control of the curve evolution and the contour resists
becoming a stationary model. Using the Active Contour without Edges presented as
a basis for the active contour (Eq. 8.27) with the region statistics are used by the
third and fourth terms.
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F c1; c2; Cð Þ ¼ l Length of Cð Þ þ p Area in Cð Þ
þ k1

Z
inC

u� c1j j2dxþ k1

Z
out C

u� c2j j2dx ð8:27Þ

Parameters λ1 and λ2 weight the importance of the regions inside and outside the
curve, respectively, while c1 and c2 are the average intensity levels inside and
outside the contour. In the hybrid morphological active contour, the third and fourth
terms of Eq. 8.27 are incorporated directly into the algorithm.

The first term of the Active Contour without Edges is replaced with the mor-
phological mean curvature evolution described in Eq. 8.25 while the second term
becomes the edge-based portion of the hybrid method. In edge based methods,
the contour flow is often represented with the formulation given in Eq. 8.28, where
g(I)|∇u|v is the balloon force, ∇g(I)∇u is the edge attraction force, and

g Ið Þ ruj jdiv ru
ruj j


 �
is mean curvature motion.

ou
ot

¼ g Ið Þ ruj jvþrg Ið Þruþ g Ið Þ ruj jdiv ru
ruj j

� �
ð8:28Þ

The parameter g(I) represents an edge image attractor usually obtained from an
edge detector, u denotes the contour, and v is an inflation (or deflation) constant.
Focusing on the balloon force, g(I) could be obtained from any edge detector
appropriate for the image. Traditionally, one would use an edge detector, which is
low in the edges of the image such as Eq. 8.29.

g Ið Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a rGr � Ij jp ð8:29Þ

In the hybrid morphological active contour method, morphological operations of
dilation and erosion are used to approximate the balloon force. The dilation of a
function is defined as Dhuð Þ xð Þ ¼ supy2hBuðx� yÞ while erosion is defined by
Ehuð Þ xð Þ ¼ infy2hBuðx� yÞ. The radius of the operator is denoted by h and B is a
disk structuring element of radius one. The function ud:Rþ � R

2 ! R, where
ud t; xð Þ ¼ Dtuo xð Þ is the solution to Eq. 8.30 for the initial condition ud 0; xð Þ ¼
uo xð Þ [26].

oud
ot

¼ rudj j ð8:30Þ

As a result, Dh is the infinitesimal generator of Eq. 8.9. Using a comparable
rational, we have the function ud:Rþ � R

2 ! R, where ue t; xð Þ ¼ Etuo xð Þ is the
solution to Eq. 8.31.
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oue
ot

¼ � ruej j ð8:31Þ

Using the morphological operators Dh and Eh, one can now solve level set
evolution PDEs. In the balloon force term, g(I) manages the balloon force in
individual sections of the curve. The smaller g(I) becomes, the closer the curve is to
the edge. With the use of a threshold, factor g(I) can be discretized into the mor-
phological formulation. The product |∇u|v leads to the PDES in Eqs. 8.30 and 8.31.
If v is positive, the PDE becomes the dilation PDE. Likewise, if v is negative, then
the erosion PDE is used.

In the Active Contour without Edges, the internal and external forces are
combined through addition of the terms. Our hybrid morphological active contour
combines them by iteratively interchanging their discretized formulations. In every
iteration, first the balloon force with the edge attraction energy will be applied, then
the region force is applied, and at last the mean curvature motion over the
embedded level set function u is computed. Given the contour evolution at itera-
tion, un : R2 ! 0; 1f g, unþ1 is defined using the steps of the algorithm mentioned
below (Eq. 8.32).

Algorithm (1)
Step 1

unþ1
balloon xið Þ ¼

ðDduÞ xið Þ if g Ið Þ xið Þ[ 0 and v[ 0
ðEduÞ xið Þ if g Ið Þ xið Þ[ 0 and v\0
unballoon otherwise:

8<
:

Step 2

unþ1
region ¼

1 if runþ1
balloon

�� ��½ k1 I � c1ð Þ2�k2 I � c2ð Þ2

 i

xið Þ\0

0 if runþ1
balloon

�� ��½ k1 I � c1ð Þ2�k2 I � c2ð Þ2

 i

xið Þ[ 0

unþ1
ballonðxiÞ otherwise

8>><
>>: ð8:32Þ

c1 ¼
R
X I � HðuÞdxR

inside C dx
and c2 ¼

R
X I � 1� H uð Þð ÞdxR

inside C dx

Step 3

unþ1 ¼ ðAd � J dunþ1
regionÞðxiÞ if gðIÞðxÞ[ 0

unþ1
regionðxiÞ otherwise

(

The experimental results presented in [24] and [25] clearly show the efficiency
and robustness of the hybrid morphological active contour.
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8.3.3 A Fuzzy Morphological Contour with Visual Attention

A fuzzy morphological approach for contour with visual attention supposes the
analysis of fuzzy energy, building of visual attention model, and creation of
combined algorithm.

In [27], Krindis and Chatzis introduced a new type of energy to drive active
contours during the segmentation process. This energy, referred to as fuzzy energy,
was derived from using a fuzzy logic clustering method and then employs the
membership values and weights into the active contour formulation. Specifically,
the following functionals are incorporated into a regional active contour model
provided by Eq. 8.33, where Ω is the image domain and C is an evolving curve such
that C ⊂ Ω.

F1 Cð Þ þ F2 Cð Þ ¼
Z
X

u x; yð Þ½ �m I x; yð Þ � c1j j2dxdyþ
Z
X
½1

� u x; yð Þ�m I x; yð Þ � c2j j2dxdy
ð8:33Þ

An image I(x, y) is clustered into two regions by a fuzzy clustering algorithm,
where u(x, y) represents the membership values of a pixel for each region and m is
a weighting exponent on each fuzzy membership. The model is formulated in a
pseudo-level set due to the fact that membership values of u(x, y) = [0, 1]. The
pseudo-level set is a set of Lipschitz similar function u: I ! R presented in Eq. 8.34
and maintains the ideology of using membership values to define u(x, y).

C ¼ fðx; yÞ 2 I: u x; yð Þ ¼ 0:5g
Cinside ¼ fðx; yÞ 2 I: u x; yð Þ[ 0:5g
Coutside ¼ fðx; yÞ 2 I: u x; yð Þ\0:5g

8<
: ð8:34Þ

Unfortunately, while the Fuzzy Energy based Active Contour proves to be
computationally efficient, it suffers in its inability to robustly segment textural or
multispectral images. However, the flexibility provided by fuzzy energy can be
translated into the hybrid morphological active contour by changing the region-
based step of the algorithm and morphing the level set into the pseudo-level set of
Eq 8.34. The region step will take the form of Eq. 8.35, where c1 represents the
average inside the contour and c2 is the average outside the contour.

unþ1
region ¼

1

1þ k1 I�c1ð Þ2ðxÞ
k2 I�c2ð Þ2ðxÞ


 � 1
m�1

ð8:35Þ

c1 ¼
R
X I � ðuÞmdxR

XðuÞmdx
c2 ¼

R
X I � 1� uð ÞmdxR

X 1� uð Þmdx
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The parameter m represents the fuzzy weighting exponent defined in the fuzzy
rules for the clustering.

The visual attention model is incorporated into the hybrid morphological active
contour in two ways. First, the saliency of an image is calculated and then trans-
formed into an edge image to help define the boundary of the salient object (see
Fig. 8.3) giving the algorithm the image created by g(I) from Eq. 8.28. Second, the
visual attention result is compared to the fuzzy clustering results, and the fuzzy
clustering result, which most closely matches the saliency image, is used as the
basis for the fuzzy energy (see Fig. 8.4).

The algorithm incorporating fuzzy energy and visual attention into the hybrid
morphological active contour is given below, where the membership values from
the fuzzy clustering most similar to the saliency image give u0.

Algorithm (2)

pixel is
on C if I : u0 x; yð Þ ¼ 0:5
inside C if I : u0ðx; yÞ[ 0:5
outside C if I : u0 x; yð Þ\0:5

8<
:

The Algorithm 2 includes the following steps.
Step 1

unþ1
balloon xð Þ ¼

ðDduÞ xð Þ if g Ið Þ xð Þ[ 0 and v[ 0
ðEduÞ xð Þ if g Ið Þ xð Þ[ 0 and v\0
unballoon otherwise:

8<
:

Fig. 8.3 Example of boundary extraction. a An original image courtesy of Caltech [28]. b A
saliency map generated by CASD. c Edges from saliency map

Fig. 8.4 Examples of fuzzy clustering result with three classes. a Class 1 membership map. b
Class 2 membership map. c Class 3 membership map

8 Scene Analysis Using Morphological Mathematics and Fuzzy Logic 255



The parameter g(I) is an edge attractor image calculated using Eq. 8.28 on the
saliency image.

Step 2

unþ1
region ¼

1

1þ k1 I�c1ð Þ2ðxÞ
k2 I�c2ð Þ2ðxÞ


 � 1
m�1

Fig. 8.5 Segmentation results of fuzzy morphological active contour with visual attention. a An
original image. b Segmentation result. c An original image. d Segmentation result
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where c1 ¼
R
X
I�ðuballoonÞmdxR
X
ðuballonÞmdx

, c2 ¼
R
X
I� 1�uballoonð ÞmdxR
X
1�uballoonð Þmdx , and m is the fuzzy energy mem-

bership weighting exponent.
Step 3

unþ1 ¼ ðAd � J dunþ1
regionÞðxiÞ if gðIÞðxÞ[ 0

unþ1
regionðxiÞ otherwise

(

The images in the experiment are taken from the computational vision dataset at
Caltech [28], GrabCut [29], and the Berkley Segmentation Dataset and Benchmark
[30]. The images are chosen at random and are grayscale or RGB. The images have
illumination artifacts, shadows, texture, the multiple objects to segment, intensity
inhomogeneity, and noise, i.e. typical image artifacts that make segmentation of
visual scenes a nontrivial task. Figure 8.5 demonstrates a random sampling of the
results.

The comparison of the fuzzy c-means clustering to the saliency image is con-
ducted automatically and uses similarity cues to make the selection, of which result
to use. The membership function values of each pixel in the chosen clustering result
are then used to create the level set function. This results in the use of fuzzy energy
in the active contour and prompts a change in the calculations of the level set during
the region competition portion of the method. As demonstrated with the sample
image results, the algorithm successfully segments salient figures in interior and
exterior environments. It also successfully segmented foreground figures in areas of
high texture. These results lend themselves to the effective segmentation of static
images for scene analysis.

8.4 Conclusion

The images segmented in this work represent just the tip of the possible image types
this method has the potential to segment. It would be trivial to extend the work to a
true multispectral algorithm as well as incorporating more texture cues into the
fuzzy membership rules. The extension of the algorithm to video sequences would
also be a simple matter of changing the image parameters to video and incorpo-
rating a comparison module for each frame of videos. The use of a saliency model
to compare clustering results leading into the membership values for the contour
evolution helps ensure the method will segment a salient object as defined by
human vision research. As a final point, the savings in computational efficiency
garnered from using a morphological curve evolution rather than a partial differ-
ential equation and corresponding Euler-Lagrange equations translates into a highly
accurate and efficient segmentation method.
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Chapter 9
Digital Video Stabilization in Static
and Dynamic Scenes

Margarita N. Favorskaya, Lakhmi C. Jain
and Vladimir Buryachenko

Abstract The digital video stabilization is oriented on the removal of unintentional
motions from video sequences caused by camera vibrations under external condi-
tions, motion of robots stabilized platforms in a rugged landscape, a sea, oceans, or
jitters during a non-professional hand-held shooting. The approaches for digital
video stabilization in static and dynamic scenes are similar. However, objectively
the analysis of dynamic scenes is needed in advanced intelligent methods. Several
sequential stages include the choice of the key frames, the local and global motion
estimations, the jitters compensation algorithm, the inpainting of frames boundaries,
and the blurred frames restoration, for which the novel methods and algorithms
were developed. The proposed application of fuzzy logic operators improves the
separation results between the unwanted motion and the real motion of rigid
objects. The corrective algorithm compensates the unwanted motion in frames;
thereby the scene is aligned. The quality of stabilization in test video sequences was
estimated by Peak Signal to Noise Ratio (PSNR) and Interframe Transformation
Fidelity (ITF) metrics. During experiments, the PSNR and ITF estimations were
received for six video sequences received from the static camera and eight video
sequences received from the moving camera. The ITF estimations increase up on
3–4 dB or 15–20 % relative to the original video sequences.
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9.1 Introduction

The unintentional video camera motions are usual artifacts in non-professional
hand-held shooting, surveillance tasks, or shooting by cameras, which are main-
tained on the mobile moving platforms in outdoor environment. As a result, the
processing of non-stabilized original video sequence by the well-known conven-
tional filters will not provide good segmentation, recognition, and surveillance of
moving objects in static and dynamic scenes [1]. Also such technique is wide
applied in video encoding tasks [2]. In this chapter, the novel methods of Digital
Video Stabilization (DVS) for video surveillance task are developed for the static
and dynamic scenes. The DVS algorithms as pseudo real-time and unreal-time
applications are represented, depending from criteria of accuracy/computer speed.
The novelty consists in the application of Takagi-Sugeno-Kang (TSK) model for
improvement the motion vectors clustering, the decision procedure of key frames
choice, and the reconstruction procedure of frame boundaries in static scenes and
texture tiles from neighbor frames in dynamic scenes. Some often cases of objects
surveillance are studied.

All variety of methods for videos stabilization techniques can be classified as
mechanical, optical, electronic, and digital approaches. Historically, the mechanical
stabilization based on a feedback from vibration sensors (gyros, accelerometers,
etc.) were the first applied in video cameras [3]. Various control techniques are used
for the stabilized platforms. Conventional design methods, modern synthesis tools
such as linear quadratic regulator or linear quadratic Gaussian with loop transfer
recovery, and fuzzy control systems can be used for these purposes [4]. The scope
of such devices is wide but sometimes it is required the additional video stabil-
ization, when a magnitude of vibrations has large values.

The optical image stabilization manipulates the images before their getting to the
Charge-Coupled Device (CCD). The optical devices use prisms or lens of a moving
assembly for tuning of light length way through camera lens systems. Vibrations
occur the shifting of the lens group on a plane perpendicular to the optical axis in
both horizontal and vertical directions. Two vibration-detecting sensors are used to
detect the angle and speed of movement [3]. Usually for these purposes, the
additional knowledge about physical motion of camera is required. Also the optical
stabilization is not suitable for small sizes mobile cameras. Thus, the DVS became
the most appropriative decision in modern compact video devices [5].

The electronic stabilization systems detect the camera jitters through their sen-
sors, when the light hits the CCD. This responds by a slightly moving, and the
image remains in the same position on the CCD. Such effect decreases a video
quality because the pseudo-stabilized CCD area becomes smaller. Therefore, a
digital zooming or oversized CCD is required. Electronic stabilization has the
advantage against the optical stabilization by reducing of lens complexity and price.

The DVS approach is achieved by the synthesis of new imagery based on removal
of unintentional motions between key frames and the reconstruction of frame
boundaries after frame stabilization. The complexity of this task connects with a
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separation the motion of objects from the unwanted camera jitters. In the case of static
scenes, the proposed stabilization method does not consider specialties of camera
motion trajectory. Such interpretation permits to edit static scenes faster and exactly
and allows the pseudo real-time applications. However, such approach failures under
the fast or changeable motions, which are often occurred in the dynamic scenes. In
this case, it is needed to choice the criterion – accuracy or computer speed. According
to the chosen criterion, some novel procedures are developed. In the pseudo real-time
applications, the last 25–30 frames are analyzed. In the unreal-time applications, a
whole video sequence is acquired, and then new frames are generated to compensate
the warping between two successive original frames [6]. The most of stabilization
techniques have a deal with the rigid objects. The non-rigid objects possess such
specialties, which do not permit to generalize their processing.

The DVS algorithms ought to be robust to cluttered scene background, moving
objects, and lighting change. One of such fast algorithms uses the feature-histogram
building [7]. Various 2D and 3D stabilization algorithms are presented in [8–10]. A
mosaic-based registration technique was described by Hansen in the pioneer
research [11]. This system was based on a multi-resolution iterative procedure that
estimated the affine motion parameters between levels of image Laplacian pyramid.
The optical flow of local patches was computed by using a cross-correlation scheme.

The chapter is organized as follows. In Sect. 9.2, the problem statement of DVS
for static and dynamic scenes is discussed. The description of the existing
approaches for DVS is provided by Sect. 9.3. The main novel methods and algo-
rithms suitable for static and dynamic scenes stabilization are detailed in Sects. 9.4
and 9.5, respectively. Section 9.6 presents a discussion of experimental results,
involving experiments with stationary and moving video cameras. Conclusion and
future development remarks are given in Sect. 9.7.

9.2 Problem Statement

The processing of video sequence occurs in the spatio-temporal domain. The DVS
task is not the exclusion. Let an original video sequence VSor FRð Þjz, where FR is a
frame, z is a common number of frames, be a non-stabilized video sequence. Its
transformation to the stabilized video sequence VSst FRð Þjz includes the sequential
sub-transformations. For static scenes, they are represented by Eq. 9.1, where the
operator Osf selects a current set of frames FSFRt ...FRtþn for current processing,
t ∈ {0, 1, 2, …, z − 1} is a number of frame, n is a number of selected frames, the
operator Ome estimates an unwanted motion in a scene, the operator Omc com-
pensates an unwanted motion, the operator Omi scales an area of stabilized frames.

VSor FRð Þjz �!
Osf

FSFRt ...FRtþn �!
Ome FSFRt ...FRtþn �!

Omc FSFRt ...FRtþn �!
Omi VSst FRð Þjz

ð9:1Þ
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As a result, the stabilized video sequence VSst FRð Þjz with the same number of
frames will be created. Such fractional processing of frames is actual procedure for
pseudo real-time applications. For non-real time applications in static scene, a finite
set of frames CSFR0...FRz�1 may be used.

For dynamic scenes, Eq. 9.1 is extended by the additional operator Oss, which
divides an original video sequence in the relatively static scenes with non-essential
changing for current video processing. Equation 9.2 provides the transformations
for dynamic scenes, where SSi is a set of scenes, i ∈ {0, 1,…, m − 1} is a number of
scene, m is a total amount of scenes.

VSor FRð Þjz �!
Oss SSFRt ...FRtþn �!

Osf

FSFRt ...FRtþn �!
Ome FSFRt ...FRtþn �!

Omc FSFRt ...FRtþn �!
Omi VSst FRð Þjz

ð9:2Þ

Sometimes the blurred frames or frames with strong jutties appear in a video
sequence. Their interpolation is executed by one of known methods, if the first and
the last frames of the current scene have the appropriative quality for the DVS;
otherwise the frames with high jutties are replaced by the interpolated frames. In
this case Eq. 9.2 is replaced by Eq. 9.3, where Ofi is the operator of frames inter-
polation. Each of Eqs. 9.1–9.3 corresponds to the special task of computer vision.

VSor FRð Þjz �!
Oss SSFRt ...FRtþn �!

Osf

FSFRt ...FRtþn �!
Ome FSFRt ...FRtþn �!

Ofi
VSst FRð Þjz

ð9:3Þ

9.3 Related Work

The DVS methods smooth and compensate the undesired motion of video camera
and then restore frames by algorithms of digital video processing. Usually the DVS
task is divided in three sub-tasks: a motion estimation, a motion compensation, and
a motion inpainting. The motion estimation is a crucial aspect of video stabilization.
A great variability of motion estimation methods, which were actively developed
during last years, can be classified in two main categories [12]: the comparative and
the gradient methods shown in Table 9.1. The dynamic textures are the special class
of objects, usually background, which are characterized by an alternate motion
(a motion of growth or water under a wind). In the DVS task, it is not required to
estimate such motion, only to detect and ignore. The majority objects of interest are
the rigid objects, and the main motion estimation methods are developed for their
segmentation [13]. The non-rigid objects have a gaseous or liquid structure and do
not require the exact estimations of their motion in a scene for the DVS [14]. Let us
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notice that all motion estimation methods are calculated in the spatio-temporal
domain of the original video sequences.

The efficient algorithm of statistical DVS was presented by Shakoor and
Moattari [15]. The algorithm reduces the computational cost of Block-Matching
Algorithm (BMA) by using a mean and a variance of pixels in each analyzed block
with predetermined sizes (usually 16 × 16 pixels). According to such approach, the
best block should not have a uniform area and should belong to a background
without moving objects.

The basic BMA is suitable for motion analysis of rigid objects under the
assumption that shift, rotation, and scale changing between frames are non-sig-
nificant and can be neglected. First, a previous frame is divided on non-crossed
blocks with similar sizes, which are defined by an intensity function It(x, y), where
(x, y) are coordinates, t is a discrete time instant. Second, for each block in the small
neighborhood −Sx < dx < +Sx and −Sy < dy < +Sy, the most similar block in a current
frame It+1(x + dx, y + dy) is searched, which is also divided on the non-crossed
blocks with the same sizes as a previous frame. The similarity is determined by a
minimization of the error functional e(·) according to the applied metric. Usually
three metrics are used such as Sum of Absolute Differences (SAD), Sum of Squared
Differences (SSD), and Mean of Squared Differences (MSD) (Eq. 9.4), where n is a
number of analyzed surrounding blocks.

eSAD dx; dy
� � ¼XN

x¼1

XN
y¼1

Itþ1 x; yð Þ � It xþ dx; yþ dy
� ��� ��

eSSD dx; dy
� � ¼XN

x¼1

XN
y¼1

Itþ1 x; yð Þ � It xþ dx; yþ dy
� �� �2

eMSD dx; dy
� � ¼ 1

n� n

XN
x¼1

XN
y¼1

Itþ1 x; yð Þ � It xþ dx; yþ dy
� �� �2

ð9:4Þ

Table 9.1 Classification of motion estimation methods

Groups of
objects

Comparative methods Gradient methods

Dynamic
textures

Method of spatio-temporal fractal analysis
Analysis based on autoregression
functions

Rigid objects Background subtraction*
Block-matching
algorithm*
Density motion functions*
Motion patterns

Edge points tracking
Feature points tracking
Optical flow
Kurtosis estimations

Non-rigid objects Background subtraction*
Block-matching
algorithm*

Feature points tracking
Optical flow

High speed and less accurate methods are labeled by symbol ‘*’
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To reduce the unnecessary computation, the partial distortion elimination was
introduced in SAD-metric (pSAD) by Shakoor and Moattari [15]. Therefore,
eSAD(dx, dy) is transformed in Eq. 9.5, where k = 1, 2, …, N, k is a kth partial SAD.

epSAD dx; dy
� � ¼Xk

x¼1

XN
y¼1

Itþ1 x; yð Þ � It xþ dx; yþ dy
� ��� �� ð9:5Þ

If an intermediate sum in k rows is larger than the minimum value of matching
distortion, then the following computation is unnecessary. When the best block
from four current estimated blocks is selected, a Local Motion Vector (LMV) is
calculated only for the best block by use a full search strategy. This algorithm gives
the main attention to search a stabilized macro-block in a frame, for which the
LMVs and a Global Motion Vector (GMV) are calculated.

Methods from Table 9.1 include the steps for the LMVs and the GMVs defi-
nition. The GMVs are the basic for scene correction. For the GMVs estimations, a
Speeded–Up Robust Features (SURF) tracking and a discrete Kalman filter were
proposed in the researches [16, 17]. The SURF algorithm is used to obtain the
stable feature points in the neighbor frames for global motion estimation by six
parameters in 2D affine camera model [18]. The matching of SURF descriptors was
done by the nearest neighbor distance ratio method. The Kalman filter estimated the
process state at some time and then obtained the feedback measurements. The
Kalman filter smoothed the estimated accumulated affine transformations by
removing the high frequency components. During the motion compensation stage,
the difference between the smoothed parameters and the estimated ones permitted to
reconstruct the stabilized video sequence.

To account the temporal lighting variations, the generalized optical flow con-
straint under the non-uniform lighting change was used in the research [19]. Instead
of using the traditional optical flow, the generalized optical flow constraint was
applies in a local window of frame. The authors represented their performance of
optical flow by Eq. 9.6, where It−1(x, y) and It(x, y) are intensity functions in a
previous frame (t − 1) and a current frame t, respectively, u and v are velocity vector
components along axes OX and OY, respectively, w is a constant for compensating
the non-uniform lighting change.

oIt�1 x; yð Þ
ox

uþ oIt�1 x; yð Þ
oy

vþ It�1 x; yð Þ � wþ It�1 x; yð Þ � It x; yð Þ ¼ 0 ð9:6Þ

Three parameters (u, v, w) are estimated by the iterative linear least squares
method in a local window. The main idea of such iterative process is to move the
block with the newly estimated motion vector and to compute the updated flow
constraints in a recursive manner. Let us notice that the Lucas and Kanade optical
flow computation method cannot provide the reliable motion estimation in the close
homogeneous regions. Chang et al. [19] suggested the procedure for homogeneous
regions detection by Eq. 9.7, where T is a user-defined threshold.
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X
x;y2Wi;j

oIt�1 x; yð Þ
ox

����
����þ oIt�1 x; yð Þ

oy

����
����

� �
\T ð9:7Þ

Such homogeneous regions are skipped. Thereby, the approach can be called the
sparse optical flow vectors estimation. The camera motion parameters are smoothed
temporally to reduce the motion fluctuations by using a regularization method,
which is considered the cost function for the penalty of data deviations and the cost
function corresponding to the temporal motion smoothness constraint.

One of interesting approaches for fast and accurate global motion estimation is
based on the Levenburg–Marquardt Algorithm (LMA) and several sub-sampling
patterns with their combinations [20]. The LMA is a method based on the gradient
descent for iteratively estimation of parameters of perspective model. The LMA is a
highly expensive computationally method but it was substantially accelerated by
using the sub-set selection methods based on the pixel-sub-sampling patterns. Partly
the pixel sub-sampling patterns are similar to the BMA applied to the gradient
frames.

One of the most popular approaches for motion compensation is based on the
assumption that the GMVs have a high-frequency component, and the application
of the low-pass filtering will free the original video sequence from the unwanted
motion. In this case, the application of a first-order infinite impulse response of a
low-pass filter integrates a differential motion in a scene and smoothes the global
movement trajectory. Also a smoothing algorithm based on the smoothing absolute
frame positions provides a successful stabilization performance [21, 22]. To other
decisions, it may be concerned the application of discrete Fourier transform, Kal-
man filter, fuzzy systems, and fuzzy Kalman systems [23, 24]. Some adaptive filters
with a smoothing factor and the adaptive procedures were proposed to remove the
camera jitters [25, 26].

In the research of Puglisi and Battiato [27], the fast and the accurate block–based
local motion estimator based only a translational motion together with a robust
alignment algorithm using a voting are proposed. The collected information from
the different spatial locations in a frame is applied to compute the GMVs through a
voting strategy. The GMVs are related to a similarity motion model: two transla-
tions, one zoom factor, and one rotation. An integral projection-based error function
is used in a search strategy. Instead of usual intensity function, the authors applied
the gradient of integral projections that provides a high accuracy.

The fuzzy Kalman compensation of the GMVs in the log-polar plane was
proposed by Kyriakoulis and Gasteratos [28]. Due to special features of the log-
polar plane, each GMV was calculated as the average value of the four LMVs. Then
the GMV displacements were imported in the fuzzy Kalman system. The fuzzy
system was tested with several types of the Membership Functions (MFs), the
different aggregation and the defuzzification methods.

For hand-held cameras and third-generation mobile phones, the unwanted motion
is mainly caused by two independent motions: the camera motion (ego-motion) and
the undesired hand jitter (high-frequency motion) [29]. The independent component
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analysis searches the components that are both statistically independent and non-
Gaussian. The authors assume that the estimated LMVs between the consecutive
frames are the time-varying signals xj(t) and are a linear mixture of the ICs si(t). The
relative amplitude of each independent motion vector si at the estimated LMV is
related to the selected frame region and can be defined as a weighting factor aij for
each type of motion. The mixture xj, j = 2 for two frame regions is represented by
Eq. 9.8.

x1 ¼ a11s1 þ a12s2
x2 ¼ a21s1 þ a22s2

ð9:8Þ

Some original approaches can be found in the researches, dedicating to video
stabilization by using a principal component analysis [30], an independent compo-
nent analysis [31], a probabilistic global motion estimation based on Laplacian two-
bit plane matching [32], wavelet transformations [33], a calculation of statistical
functions, mean and variance of pixels in each block of the BMA [15], etc. An
algorithm to estimate the global camera motion with Shift-Invariant Feature Trans-
form (SIFT) features was proposed by Hu et al. [34]. These SIFT features have been
proved to be affine invariant and used to remove the intentional camera motions.

Tanakian et al. [35] proposed the integrated system of the video stabilizer and
the video encoder by using the BMA for the LMVs detection, the histogram
analysis for the GMVs detection, and the low pass filtering for a Smooth Motion
Vector (SMV) obtaining as the intentional motion correction. The authors sug-
gested a low pass filtering to remove a high frequency component of intentional
motion. They approximate the SMVs by the first-order auto-regression function
(Eq. 9.9), where α is a smoothing factor, 0 ≤ α ≤ 1; n is a frame number.

SMVnj j ¼ a SMVn�1j j þ 1� að Þ GMVnj j ð9:9Þ

The authors proposed a rule to chose α value (α = 0.1 or α = 0.95) in dependence
of the GMVs and the SMVs magnitudes in the previous frames. In their following
research, a fuzzy system for tuning of smoothing factor α was suggested according
to noise and camera motion acceleration [36]. The trapezoidal and triangular the
MFs were used for adaptive filtering of horizontal and vertical motion components
between (n − 3), (n − 2), (n − 1), and n frames.

To product the full-frame stabilized video sequence with a good visibility is the
final stage of the DVS. The direct pixel based on the full-frame video stabilization
approach was proposed by Matsushita et al. [37]. This approach uses a technique of
image mosaics by accumulating neighboring frames with natural stitching of
multiple images and a motion deblurring method to reduce the motion blur caused
by the original camera motion. The propagated motion field, based on a pyramidal
version of the Lucas-Kanade optical flow computation, is used to help naturally fill
up the missing image areas even for scene regions that are non-planar and dynamic.
Also in order to sharpen the blurry frames by a novel interpolation-based deblurring
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method was developed. The crucial idea is to transfer the blurry pixels in a current
frame by the corresponding sharper pixels from neighbor frames. This method
works well in most videos except the cases with a large area cover of moving object
and impossibility of correct the GMVs detection.

The method of dual-tree complex wavelet transform for video stabilization was
developed by Pang et al. [38]. This method considers the dependence between the
phase changes of wavelet transform and shift invariant feature displacement in a
spatial domain. The smoothness of motion jitters is achieved by the optimal
Gaussian kernel filtering. This phase-based method is invariant to lighting changes,
but has a high computational cost. Usually the technologies of image warping are
used, which reduce an area of stabilized frame. The motion inpainting of frame
boundaries (the reconstruction of frame boundaries) can be successfully applied for
static scenes. However, this may be impossible in dynamic scenes, when the
reconstruction data are absent in neighbor frames.

Liu et al. [8, 39] proposed a content-preserving warping based on two objectives:
to displace all tracked feature coordinates to their regularized re-projected locations
and, at the same time, to minimize the warping distortion in the content-rich regions
with a minimum computational cost.

A novel method to stabilize video sequences based on a 3D perspective camera
model without recovering the dense depth maps was proposed in the research of
Zhang et al. [40]. By balancing the smoothness and similarity, a video stability was
optimized related to rotation, zooming, and translation components with suitable
weights. Based on a 3D perspective camera model, the depth relative motion
(camera translation) and the depth irrelative motion (camera rotation and zooming)
were separated. The corresponding SIFT features are constrained frame by frame
according to the epipolar geometry theory with application of RANdom SAmple
Consensus (RANSAC) algorithm.

The literature survey shows a great variability of existing stabilization methods.
Often the authors solve the DVS task for a static scene and prefer to use more
simple decisions in order to provide the pseudo real-time applications.

9.4 Video Stabilization in Complex Static Scenes

The DVS in static scenes is a particular case of the DVS in dynamic scenes. The
both approaches have some common procedures and a similar logic of realization
but the differences are also essential, especially on the stage of motion inpainting.
For static scenes, it is required to find vectors of unwanted motion, which are
enough uniform distributed in each original frame and have the similar magnitudes
and directions.

The motion estimation of cluttered background is the task with a high compu-
tational cost. The main goal of the current research was not only to develop the
novel algorithms for separation of motion vectors but also to design the fast
algorithms in order to make the DVS in a static scene as a pseudo real-time
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application. These issues are performed in Sect. 9.4.1. Motion compensation by the
smoothing of global motion in a static scene and camera path estimation is situated
in Sect. 9.4.2. Section 9.4.3 provides the static scene alignment with using two main
techniques: the stabilized frame scaling with the reduced stabilized frame area and
the frame borders restoration with the non-changeable frame sizes.

9.4.1 Motion Estimation in Static Scene

According to the problem statement representing in Sect. 9.2, the motion estimation
in static scenes can be provided by fast comparative methods. The small dis-
placements of objects in a scene between two sequential frames may be roughly
performed as the parallel transitions from frame to frame. Usually a motion of
objects in static scene satisfies the assumption that a motion is described by the
almost continuous function. The proposed modification of the BMA based on a
statistical model of background is concerned to fast realization of the basic BMA.
Let us consider the enhanced statistical model of a background.

The enhanced statistical model of background in a static scene is based on the
following parameters: an average of frames Imed (medium values), a mean value
μ(x, y), and a variance σ2(x, y) for K frames, which are described by the intensity
function It(x, y), where x and y are coordinates of a current pixel, t is a number of
frame at moment t. A mean value μ(x, y) and a variance σ2(x, y) for K frames are
calculated by Eqs. 9.10–9.11, where wt(x, y) are the weighting coefficients.

l x; yð Þ ¼
XK
t¼1

wt x; yð Þ � It x; yð Þ
 !, XK

t¼1

wt x; yð Þ
 !

ð9:10Þ

r2 x; yð Þ ¼ 1
K � 1

XK
t¼1

wt x; yð Þð Þ2� It x; yð Þ � l x; yð Þð Þ2
 !, XK

t¼1

wt x; yð Þ
 !2

ð9:11Þ

Let us notice, that Eq. 9.11 gives a unbiased estimator of variance σ2(x, y) for
small K value, K < 30.

The weighting coefficients are used for minimization of spikes, which are
maximally removed from the average of frames Imed (a noisy compensation) and are
normally distributed. Equation 9.12 provides the estimations for wt(x, y), where
standard deviation σex is calculated from K neighbor frames in a spatial domain.
The use of weighting coefficients wt(x, y) in the statistical model of background
permits to build a robust background model without any training video sequences.
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wt x; yð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

ex

p exp � It x; yð Þ � Imed x; yð Þð Þ2
2r2

ex

 !
ð9:12Þ

The statistical model of background (Eqs. 9.10–9.12) is recalculated periodically
because of lighting or meteorological changes. The enhanced model of background
separates the background and the foreground moving objects. If Eq. 9.13 is exe-
cuted, then this pixel is a foreground pixel, and otherwise. Value λ is equaled to 3
according to the rule of three sigma: all values of normal distributed random
variable lay in the interval ±3σ with not less reliability than 99.7 %.

l x; yð Þ � I x; yð Þj j2 � k2r2 x; yð Þ ð9:13Þ

Such statistical model is especially effective, when a set of sequential frames
without moving objects can be provided. This requirement is ordinary for the
outdoor and the indoor surveillance tasks. The worse results are received, when the
moving objects with a small area (less 5–8 % of frame area) appear in static scene.
The most problematic case connects with the moving object with a large sizes,
when only the probable regions with or without motion are determined.

The background subtraction and the BMA are the main comparative methods of
fast motion estimation. The background subtraction is the simplest motion esti-
mation technique. For each current frame, the intensity values and the color com-
ponents of each pixel are compared with the corresponding values of pixels in an
initial averaged (sampling) frame of video sequence. As a result, the binary masks
of moving foreground objects in a scene will be received. Such method is a noise-
dependent. Therefore, a median filter or the mathematical morphological operators
are applied for binary masks improvement. The filter parameters determine the
sensitivity and the reliability of background subtraction method. The simplicity and
the high computational speed are its main advantages. However, shadows, dynamic
background, lighting change, and camera inaccuracy make this approach the non-
used in practice.

More appropriate decision connects with the BMA application for a set of
sequential frames. Experiments show that 25 frames processing (near 1 s) is a good
decision that provides a delay for receiving of stabilized video sequence in 2–4 s. In
surveillance systems as the urban surveillance or computer vision in the outdoor
environment, such results are satisfied. The hardware realization by CUDA tech-
nology will reduce the processing duration in times.

The proposed procedure for motion estimation includes three steps:

• The local motion estimations by fast BMA modification.
• The accuracy improvement by using the Takagi-Sugeno-Kang model.
• The global motion estimation in a frame.

Let us consider local motion estimation by the BMA. The basic BMA has
various interpretations such as full search, pattern search, and recursive search,
among others [12]. The full search strategy provides the best results with the highest
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computational cost. There are known its modifications such as three step search,
four step search, block based gradient descent search, diamond search algorithm,
adaptive rood pattern search, etc., which were developed to reduce the computa-
tional cost with a non-essential quality loss. All these fast search algorithms are
based on the assumption that a block distortion measure increases monotonically
around the global minimum. However, the search process can be easily trapped in
one of the local minimums, a lot of which are included in any video sequence as
noises, lighting changes, or dynamic textures. To avoid such problem, the Markov
model with three states was proposed by Chen et al. [41] to provide an acceptance
probability of being able to jump out of a local minimum. Also many BMA
modifications were developed for various cases of motion estimation, for example,
a motion estimation in noisy video sequences [42], fast BMA [43], Gaussian
mixture model [44], a motion estimation by using Lie operators [45], a bilinear
deformable BMA [46], a fuzzy logic BMA [47], etc.

A motion vector MV(dx, dy), for which an error functional e according one of
metrics (Eq. 9.4) has the minimum value, is considered as a displacement vector for
the given block. It shows the displacement of the left top corner in the marked block
from a previous frame (t − 1) to a current frame t. The proposed BMA modification
uses the transparent masks for moving objects and the opaque mask for a static
background, which often involves periodical motions of textons. Usually such
motion is not interesting for estimation and ignored. In the case of static scene, all
values of background pixels can be set to a constant value, for example, −1. When a
motion is detected, the transparent mask is put on a visual object. Therefore, the
intensity function describing a moving object will be available for estimation
especially during the overlapping of visual objects. Forcibly maintained to negative
constant values, the opaque background masks permit to reduce BMA calculations
due to only the analysis in a neighbor region. The procedure of basic BMA is
reactivated periodically (with interval 1 s) as an additional search of other moving
objects, appearing in static scene. As a result, a set of the LMVs fields will be built
for the chosen frames; the LMVs field shows the motion vectors between two
neighbor frames. Such LMVs field is enough chaotic, and the following procedure
is to separate of the LVMs as “good” and as “bad” motion vectors.

The field of LMVs includes the motion vectors, which describe an unwanted
cameramotion and objects motion in a scene. For such clustering, a novel fast method
for detection of unwanted camera motion was developed based on Takagi-Sugeno-
Kang (TSK) model. A fuzzy zero-order TSK model is adopted to infer the quality
index: four different output fuzzy sets are defined to describe the quality of the
matching, named as excellent, good, medium, and bad [48]. A zero-order TSKmodel
is very simple, compact, and computationally efficient model, which permits to use
the adaptive techniques. These adaptive techniques customize the MFs in such
manner that the input data are modeled by a fuzzy system in the best way. Also a quite
complex data behavior can be interpreted by using the “IF–THEN” fuzzy rules. In our
experiments, the triangle, trapezoidal, and S-shape MFs to partitioning the LMVs
were used. A view of these MFs is represented in Fig. 9.1, parameters a and b of
S-shape membership are fitted empirically. Our recommendations are to use
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a = 0.5 and b = 1.5 for the non-noisy video sequence and a = 0.75 and b = 1.75 for the
noisy video sequence. The recommended S-shape functions are situated in Fig. 9.2.

The inputs of fuzzy logic model are two error measures: an Euclidean distance
ei between expected and the real LMVs calculated in one of SAD, SSD, or MSD
metrics (magnitude of vectors) E′ = (e1, e2, …, ei, …en) and an angle between these
LMVs ci, C′ = (c1, c2, …, ci, …cn), where i = 1…n. In this research, the similar
approach from [49] to find error deviations di

e and di
c was used. The median values

ME and MC of sets E′ = (e1, e2, …, ei, …en) and C′ = (c1, c2, …, ci, …cn), i = 1…n,
respectively, are provided by Eq. 9.14.

dei ¼ ei=ME dci ¼ ci=MC ð9:14Þ

Values of error deviations di
e and di

c from Eq. 9.14 are mapped in three different
classes of accuracy: high, medium, and low. The lower values of error deviations
are mapped to the best class, and otherwise. If the MFs are overlapped, then better
class of the input fuzzy set is chosen.

The output of fuzzy logic model indicates a final reliability of estimation for a
quality of the matching by using the TSK model. The quality index is a value in the
range [0, 1]. It shows the quality of the LMVs, which are clustered in four classes:
excellent, good, medium, and bad. The “IF–THEN” fuzzy rules defined for two
inputs (error deviations di

e and di
c) are the following:

Fig. 9.1 A view of the MFs in the TSK model: a triangle, b trapezoidal, c S-shape

Fig. 9.2 A view of S-shape MFs: a for the non-noisy video sequence, b for the noisy video
sequence
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• IF (both inputs = “high”) THEN (quality = “excellent”).
• IF ((one input = “high”) AND (other input = “medium”)) THEN

(quality = “good”).
• IF (both inputs = “medium”) THEN (quality = “medium”).
• IF (at least one input = “low”) THEN (quality = “bad”).

Each of these four classes is mapped in a set of the constant values (1.0, 0.75,
0.5, 0.25, 0.0) [48]. During our experiments, the results for noisy video sequences
were received with a set of the constant values (1.0, 0.85, 0.65, 0.4, 0.0). The TSK
models for non-noisy and noisy video sequences with the sets of constant values
(1.0, 0.75, 0.5, 0.25, 0.0) and (1.0, 0.85, 0.65, 0.4, 0.0), respectively, are show in
Fig. 9.3. The TSK model permits to discriminate the LMVs with excellent and good
quality and detect the best LMVs (with excellent and good values of indexes) in
order to improve the final result.

Our following researches permitted to speed the LMVs calculation for both types
of video sequences in the static scenes. Let us introduce the initial procedure, which
will put an invisible grid on each frame adaptively to the frame sizes with 40–60
cells. The sizes of such grid are less than the frame sizes in order to reject the
boundary areas of frame, which are more stressed to artifacts of instability. For five
first frames in a scene, the LMVs estimations and their improvements by TSK
model are calculated for all cells of this grid. For each cell, the information of
reliable LMVs is accumulated under the condition, that 4–16 reliable LMVs are
determined in a cell. According to the scene background, some of such cells are
selected for the following analysis. Therefore, the LMVs of unwanted motion are
calculated only in the selected cells, that permits to avoid the challenges of lighting
change or moving foreground objects and reduce the number of analyzing cells in
1.5–3 times. Figure 9.4 provides such adaptive and fast technique for frame number
69 from video sequence “EllenPage_Juggling.avi”. Figure 9.5 illustrates several
frames from the same video sequence with the imposed grid.

The selected cells include information only about unwanted motion that also
increases an accuracy of the GMV in a frame. Let us consider the technique of the
global motion estimation in static scene. The global motion caused by a camera
movement is estimated for each frame by using a clustering model. On the one

Fig. 9.3 The interpretation of the TSK model: a for the non-noisy video sequence, b for the noisy
video sequence
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hand, the LMVs of background are very similar in magnitudes and directions. On
the other hand, they are essentially different from the motion vectors of foreground
objects. The procedure, classifying the LMVs in two clusters – background and
foreground, has the following steps:

Step 1. The histogram H is built, which includes only valid LMVs with excellent
and good values of indexes (near 30 % from all detected LMVs).

Step 2. The LMVs are clustered by a criterion of the similar magnitudes.
Step 3. The LMV with a maximum magnitude from background motion cluster is

chosen as the GMV for a current frame.

The example of a histogram with valid LMVs is presented in Fig. 9.6.
For the GMV detection, the TSK model can be also applied. The global motion

includes two major components: a real motion (for example, a panning) and an
unwanted motion caused by camera jitters. Usually an unwanted motion corre-
sponds to a high frequency signal. Therefore, the low-frequency filtering can
remove the unwanted motion.

The model, proposed in the research of Kyriakoulis and Gasteratos [28], was
used to create a Smooth Motion Vector (SMV) calculated by Eq. (9.14). The low-
pass filter of the first order requires the low computational cost and can be used in a
real-time application.

(a) (b)

(c) (d)

Fig. 9.4 The adaptive technique for LMVs estimation in static scene, video sequence
“EllenPage_Juggling.avi”: a the initial frame 69; b all calculated LMVs; c the reliable LMVs
based on the TSK model; d the reliable LMVs in the selected cells of imposed grid
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Frame 551

Frame 553

Frame 555

Frame 557

Frame 559

Frame 561

Frame 563

Fig. 9.5 The LMVs estimation in static scene from video sequence “EllenPage_Juggling.avi”: all
calculated LMVs are in the left column; the reliable LMVs based on the TSK model are in the
middle column; the reliable LMVs in the selected cells of imposed grid are in the right column
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9.4.2 Unwanted Motion Compensation

The unwanted motion compensation in static scenes is based on a smoothing of the
GMVs. Any moving rigid object has the following states [50]:

• Appearance. The object is appearing in a scene.
• Mature. The object has been continuously tracked in some interval for approval

that it is a foreground object, not a noise.
• Temporarily unavailable. The object temporarily loses its track because of being

hidden, noised, or exited.
• Occlusion. The object is partially or totally hidden by other objects in a scene.
• Disappearance. The object may either already exit from a scene or be hidden by

background objects such as buildings or trees.
• Reappearance. The object appears again after disappearing. The surveillance is

restarted.
• Out of scene. The object has indeed moved away in a scene and its track

considered terminated.

Only “appearance”, “mature”, “occlusion”, and “reappearance” are considered in
the DVS task. For these purposes, the well-designed techniques are developed,
including shadow compensation, lighting enhancement, and others challenges
[51, 52].

The tuning procedure of a smoothing factor α, based on the analysis of previous
25 frames, was proposed. First, for k-sampling of frames, a global difference GDiffk
is calculated by Eq. 9.15, where |GMVi| is a magnitude of global motion vector in
frame I, k > 25.

GDiffk ¼
Xk

i¼k�25

GMVij j � GMVi�1j jj j ð9:15Þ

Fig. 9.6 The example of a
histogram with valid LMVs
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Second, a value of α is chosen by Eq. 9.16, where αmax = 0.95 and αmin = 0.5 are
maximum and minimum empirical values. In any case, the result from Eq. 9.16 is
rounded to αmax.

ak ¼
GDiffk
GMVmaxj j � amax

amin
if GDiffk\ GMVmaxj j

amax if GDiffk � GMVmaxj j

�
ð9:16Þ

The GMV in a frame is selected from the LMVs with maximum magnitude. It is
easy may be done from a histogram with valid LMVs (Fig. 9.6). The total amount
of LMVs with the similar magnitudes and directions are calculated. The LMV with
the maximum value is considered as the GMV in a current frame.

9.4.3 Static Scene Alignment

In most algorithms for static scene stabilization, a motion inpainting is often con-
sidered as a scene alignment task [27]. At present time, two approaches of scene
alignment are known. They are based on a frame scaling with reduction of frame
sizes and a restoration of frame borders with conservation of frame sizes. For
dynamic scenes, this is more complex task in comparison of static scenes.

For simple static scene, a scene alignment procedure can be simplified by a
forcibly replacement of background from the statistical background model dis-
cussing in Sect. 9.4.1. In this case, only motion of moving objects ought to be
compensated, and static scene alignment does not necessary. To make such
“replaced” static scene more realistic, the procedures for rendering natural dynamic
textures or other artifacts are required.

For each frame after calculation of smooth factor α, a module of smooth motion
vector SMVn is determined using Eq. 9.9. A magnitude of Undesirable Motion
Vector (UMV) UMVn is calculated by Eq. 9.17.

UMVnj j ¼ GMVnj j � SMVnj j ð9:17Þ

In the development of scene alignment method, a direction of vector SMVn is
normalized up to 8 directions with 45° step. For restoration of current frame, pixels
are shifted on a value of Accumulated Motion Vector (AMV) AMVn of unwanted
motion by using Eq. 9.18. The stabilized location in a frame is determined from
previous frames, beginning from a key frame, where m is a number of key frames in
a video sequence.

AMVn ¼
Xn
i¼m

UMVij j ð9:18Þ
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The role of key frame is to represent the homogeneous regions in a following set
of frames. The technique of key frame detection has been widely studied in [53, 54].
For static scenes, it is necessary to find the frames with the significant inter-frame
difference. It means that the important motion changing occurs in a scene. Our
recommendations connect with the limited power of such set, not more 25 frames.
Then the following key frame ought to be chosen. The using of such technique
permits to stabilize a video sequence with scaling. The sizes of such stabilized
frames become less on 10–20 % relative the original video sequence that Fig. 9.7
demonstrates. Experiments show that the application of frame scaling for dynamic
scenes may reduce the stabilized frame area up to 50–60 % that is not acceptable for
the user.

All existing video inpainting algorithms can be broadly classified in two cate-
gories: Partial Differential Equation (PDE)-based methods and Texture Synthesis
(TS)-based methods. The PDE-based image inpainting reconstructs the missing
data spatially by extending the edges and filling the hole with smoothed color
information by a diffusion process. In this case, a temporary nature of video
sequence is ignored, and each frame is considered as an individual image. Such
approach does not reproduce the texture and suffer from the blurred artifacts. This
method is effective for restoring of small scratches or spots in archival footage.

The non-parametric sampling is an important class of TS-based methods, which
uses the spatio-temporal patches extracted from the neighbor frames. The space-
time patches called epitomes are created by a probabilistic learning of large number
space-time patches taken from input video sequence [55].

The simple technique for static background frame borders restoration was applied
in this research. Any static scene can be represented as two layers – foreground and
background layers according to the affine model and as several layers – foreground
and 2–3 background layers according to the perspective model of scene. The
background layer (layers) is delivered by the statistical background model.

(a)

(b)

Fig. 9.7 The scaling resume for frames 540, 555, and 570 from video sequence “EllenPage_Jugg-
ling.avi”: a a non-stabilized video sequence, b the stabilized video sequence by changing of frame
boundaries
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The foreground layer includes moving objects tracking by Kalman filter with fol-
lowing processing by the de-blocking filter with sizes 5 × 5 pixels to smooth the
boundaries of the moving regions.

9.5 Video Stabilization Method in Dynamic Scenes

The analysis of dynamic scenes is the most complex issue in video processing. In
literature, the researches devoting to DVS in dynamic scenes are sparsely repre-
sented. Before motion estimation, compensation, and inpainting, it is required to
separate a video sequence on the relatively static scenes. The DVS task is solved for
each separated scene, and then stabilized fragments ought to be collected in a whole
stabilized video sequence. At this stage, the local smooth estimations of unwanted
camera motion can be applied to smooth transitions between scenes. A valid scene
transition does not require the additional processing. A sharp scene transition is
needed in a future algorithm development or is executed by the user.

Section 9.5.1 provides a scene separation model. The recommended methods for
motion estimation of background and moving objects are discussed in Sect. 9.5.2.
The deblurring methods for the DVS task are proposed in Sect. 9.5.3. The unwanted
motion compensation for dynamic scenes is represented in Sect. 9.5.4. At last,
Sect. 9.5.5 includes the issues of motion inpainting in dynamic scenes by frames
interpolation.

9.5.1 Scene Separation

For accurate DVS in dynamic scenes, a video sequence ought to be cut in separate
relatively static scenes. Then the DVS task is partly added up to the DVS in static
scenes discussed in Sect. 9.4, but with a dynamic background. The continuous
outdoor shooting can be concerned to the complex cases, when the explicit cut of
scenes is impossible, and the user’s help is needed. All methods and algorithms of
scenes cut can be divided in two categories. Methods from the first category use
information from a service recording of video sequence, In other words, labels of
beginning and ending of video scenes are located during a shooting by operator
manually or by a video camera automatically in compliance with turn-on and turn-
off modes of shooting [56].

Methods from the second category are based on the inner information of video
sequence, and usually include two stages. On the first stage, frames histograms,
configuration and number of feature points, color areas location, and other
parameters are estimated [57]. On the second stage, the adaptive threshold values
are determined, according to which a procedure of scenes cut is executed. The
proposed algorithm, using the configuration of feature points, is realized cyclically
from frame to frame and involves three steps:
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Step 1. The calculation of distance from each feature point to the center of frame
j by Eq. 9.19, where xFPi, yFPi are coordinates of feature point i, xcj, ycj are
coordinates of a center point of frame j.

Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xFPij � xcj
� �2þ yFPij � ycj

� �2q
ð9:19Þ

Step 2. The calculation of feature point displacement Dij by using Eq. 9.20, where
THj is a threshold for frame j for each feature point cyclically.

Dij � Dij�1
�� ��\THj ð9:20Þ

Step 3. The calculation a number of feature points, which have large shifts in
frame j by Eq. 9.21, where THav is an average threshold.

f D; THj; j
� � ¼ count THJ [ THavð Þ ð9:21Þ

If the function f(·) from Eq. 9.21 is in a local maximum in a current frame, then
the previous and the following frames are the scene boundaries in video sequence.
Such function displaces three types of dynamic scenes performance: valid transi-
tion, smooth transition, and sharp transition as Fig. 9.8 shows.

The smooth transition is the most complex case for DVS. Our recommendations
connect with the sub-dividing of such transition in several sub-scenes for better
visibility receiving.

Fig. 9.8 Examples of scenes cut depending from a number of feature points, which have large
displacement values
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9.5.2 Deblurring for Visual Objects with Complex Motion

The blur is a usual effect during a hand-held shooting. Unfortunately, the classical
DVS approach based on the smoothness of camera motion leaves the blurriness
artifacts untouched [39]. On the one hand, it is caused by camera jitters or both
camera jitters and motion of objects. Such blur ought to be compensated before
motion estimations, because the tracking of feature points or a motion field building
are not reliable in the blurred frames. On the other hand, it may be assumed that
only small amount of frames in the original video sequence are blurred frames. Such
specialties permit to restore the original video sequence by a deblurring procedure
more successful in comparison with other scopes of video restoration. The common
strategy is to find the blurred frames, create the spatio-temporal blur kernel, and
restore the blurred frames. Let us notice that a deblurring procedure can be applied
only in the unreal-time applications.

The deblurring as a fundamental problem has been extensively studied in image
processing and computer vision [58]. Its causes may be a high speed of moving
objects or a directed high speed of moving camera. The most of existing methods
are based only on the spatial blur kernel. The reasonable way of the classical
approach is based on the single frames deblurring with following generation a
temporal result. Through the non-aligned frames and a temporal coherence, even
the classical multi-frame deblurring approaches are useless [59, 60].

The proposed approach removes the blurs caused only by a hand-held shooting.
If a video sequence contains the blurring objects in a scene, then one of existing
deblurring techniques may be applied, for example, the single image deblurring
[61], the multi-image deblurring [62], the video deblurring by interpolation [37].

Let us suppose that an original video sequence is separated in scenes, and
the following discussion will be concern to a single scene, which includes non-
significant displacement describing by the simplest translation model because of
neighbor frames similarity. For detection a blurred frame, the simple procedure
of neighbor frames subtraction in each pixels with following total sum calculation
of their absolute differences is used. Preliminary, the frames ought to be trans-
formed to YUV-color space, and the brightness component Y is analyzed. A blur
frame is characterized by a higher homogeneity distribution, and experiments show
that such differences between normal and blur frames will be less than between two
non-blurred frames in a non-stabilized video sequence.

A motion blurring due to camera jitters can be modeled as a spatial-temporal
invariant convolution process described by Eq. 9.22, where f is a blurred frame, g is
a non-blurred frame, p is the blur kernel (point spread function), n is the noise, and a
sigh * means the convolution operator.

f ¼ g � pþ n ð9:22Þ

The recovery of frame g from a blurred frame f calls the image deconvolution
problem. Two cases of image deconvolution: a non-blind deconvolution and a blind
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deconvolution (the last one is actual for the DVS task), always varies in the different
frames. In the case of a blind deconvolution, both a blur kernel p and a frame g are
unknown. However, the prior assumptions of a kernel p and a frame g have to be
made. The Gaussian-type optical blurring may be accepted, and also a frame g can
be replaced by an adjacent non-blurred frame. In general, the motion blur kernel is
expressed by Eq. 9.23, where C is a continuous curve of finite length in dimension
R2 denoting a camera trajectory, v(x, y) is a speed function varying along a curve
C. However, the estimation of camera trajectory and the definition of speed function
is not a trivial task.

p ¼ v x; yð Þ Cj ð9:23Þ

In particular case, when the blurred images are caused only by camera jitters, the
simple procedure for blurred images detection is proposed. If small linear dis-
placement in two neighbor frames is known, then the total sum of pixels differences
will have less value between non-blurred and blurred frames or between two
blurred frames in comparison with two non-blurred frames. The experimental
results confirmed such assumption. Two variants of blurred frames restoration are
possible, when a number of blurred frames is 1–2 and more. In the first case, the
source for local blur kernel will be a decreased by the non-blurred frame to avoid
the problems with shifts of boundaries. In the second case, the complex procedure
of frames interpolation is required [63], which will replace the blurred frames by
2–5 interpolated frames. Let us specify the common expression for restoration of a
single blurred frame. First, the local blur kernels are applied for each pixels as
a weighed function fb(j, l) of a patch in a warping frame centered by pixel l. As a
result, the deblur function fd(i, m) will be received in a spatial slicing window Wi,
i = n × n, n = 7–11 pixels centered by pixel m. Equation 9.24 provides the local
patch deblurring, where w(i, m, j, l) is a weight, determined by Eq. 9.25 as a
Gaussian distributed value.

fd i;mð Þ ¼

P
j;lð Þ2Wi;m

w i;m; j; lð Þfb j; lð Þ
P

j;lð Þ2Wi;m

w i;m; j; lð Þ ð9:24Þ

w i;m; j; lð Þ ¼ exp � fb j; lð Þ � fd i;mð Þð Þ2
2r2

Wi;m

 !
ð9:25Þ

Second, the deblurred frame is formed by the local deblurred patches, which can
overlap each others. The more accurate approach connects with a patch-based
texture synthesis [64]. To accelerate the debluring process of overlapped patches, a
sparse regular grid may be built, which also helps to avoid an over-smooth
de-blurring effect caused by averaging of many patches.

Figure 9.7 shows the stabilization result by changing of frame boundaries in
static scene. The similar effect is watched in dynamic scene. The using of
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background model or/and a tile texture reconstruction of frame boundaries [65]
permits to leave frame sizes non-changeable. More offensive problems appear,
when a source of tile texture reconstruction is absent in the original video sequence.
In this case, the texture synthesis using data from neighbor spatial regions can be
applied to interpolate the missing pixels.

9.5.3 Motion Estimation of Background and Foreground

Usually the building of the background model without moving foreground objects
is impossible. The local motion estimation can be done by using a multi-level
motion model in affine or perspective scenes with depth. This is one of the main
issues in the dynamic scene processing. For global motion estimation, a clustering
procedure from Sect. 9.4.1 may be applied with more often re-calculations
according to current camera speed. The motion estimation in a dynamic scene is
implemented by a way including the following steps:

• The motion estimation of background.
• The motion estimation by feature tracking.
• The accurate estimation of moving objects by optical flow

The main idea of preliminary background motion estimation consists in detec-
tion such motion level (levels), which is owned to the background of dynamic scene
with a high probability value. The basic model of multi-level motion is built on the
following assumptions:

• Each pixel in a current frame is characterized by a motion vector, which con-
nects it with a pixel in following frame.

• A set of various parametric motion levels exists. Each of levels uses the own
probability model.

• A motion on each level is determined by a mixture Gaussian model.

In this model, a set of inner similar motion levels ml is determined, which
correspond to the rigid objects situated on the different distances from a moving
camera and regions rf in a frame. Let some motion structure MSi(x, y) in a point
(x, y) of ith current frame corresponds to a level motion lm with θlm parameters. It
means that in following (i + 1) frame, a motion model MSi+1(x, y) will be shifted in
a point ((x, y) + v(x, y, θml)) with an error of measurement Vxy, ml, which has value 1,
if a structure owns to mlth motion level, and otherwise. Let us assume that any
frame has a Gauss noise with standard deviation σ. Equation 9.26 provides a
plausibility function, where θ = (θ1, …, θrf).
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L V ; hð Þ ¼ �
X
xy;ml

Vxy;ml
MSi x; yð Þ �MSiþ1 xþ vx x; y; hmlð Þ; yþ vy x; y; hmlð Þ� �� �2

2r2 þ C

ð9:26Þ

The probabilities of motion values can be represented as the clustering maps of
local motion estimations in each level and are provided by Eq. 9.27, where Vxy,ml

denotes a motion level. Each intensity level determines a motion level, and each
motion level connects with own motion model of affine type usually.

P Vxy;ml ¼ 1jMSi;MSiþ1; h
� � ð9:27Þ

For background estimation, not all from a set of motion levels can be chosen but
only whose, which have better stabilization results; in other words the levels, where
the moving objects are absent. After such pseudo-static levels extraction, a back-
ground motion for the LMVs estimation can be built. For each pixel, a Caussian
distribution P(Ixy,ml | θ) in RGB color space is determined by Eq. 9.28, where
Iml(x, y) is the intensity value of pixel (x, y) on motion level ml, μi is a mean value in
neighborhood, Σi is the covariance matrix, and |Σi| is its determinant. Values μml and
Σml are determined from a set of initial frames in dynamic scene.

P Ixy;ml hj
� � ¼ 1

2pð Þ3=2 P1=2
ml

��� ��� exp � 1
2

Iml x; yð Þ � lmlð ÞT
X�1

ml

Iml x; yð Þ � lmlð Þ
 !

ð9:28Þ

The updating of such background model is not required because a scene is
dynamic, and the background model will recalculated with a high frequency in
comparison with a static scene. In general, the efficiency of background estimation
is determined by a camera speed [66]. More speed value of camera means a less-
successful background motion approximation.

The core of the DVS is the LMVs estimations of objects motions, and more
acceptable decision for dynamic scenes will be a feature tracking approach. Two
main strategies the SIFT and the SURF algorithms were investigated in dynamic
scenes. The SIFT algorithm detects and describes the distinctive features based on
difference of Gaussians of an image at different scales [67]. It detects the robust
features, and builds a key point descriptor (for each feature), which is invariant to
translation, rotation and scale. Such technique provides the accurate interframe key
point matching and includes four steps, as mentioned below:

• The Difference-of-Gaussian (DoG) scale-space construction.
• The stable feature detection.
• The gradient orientation and magnitude assignment.
• The extraction of feature descriptor.
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The first three items can be regarded as the step of feature detection, and the
fourth one as the step of feature description. The SIFT feature is invariant to
translation, scaling, and rotation, while at the same time it quite robust to lighting
change. A number of key points are restricted according to data interpolation,
removal of low-contrast feature points, and feature points with high edge responses,
using a threshold value, affine or 3D projection parameters. The detection of ori-
entation is based on the local image gradient directions. In the neighborhood of
feature point, Eqs. 9.29–9.30 calculate the gradient magnitude M(x, y, σ) and the
orientation θ(x, y, σ), where L(x, y, σ) is a Gaussian-smoothed image at required
scale; σ is a standard deviation; (x, y) is coordinates of pixel [67].

M x; y;rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L xþ 1; y;rð Þ þ L x� 1; y;rð Þð Þ2þ L x; yþ 1;rð Þ þ L x; y� 1;rð Þð Þ2

q
ð9:29Þ

h x; y; rð Þ ¼ arctg
L x; yþ 1; rð Þ þ L x; y� 1; rð Þ
L xþ 1; y; rð Þ þ L x� 1; y; rð Þ ð9:30Þ

Then the orientation histogram with 36 bins (10° on an each bin) is created by
the gradient magnitudes and the Gaussian-weighted circles with σ = 1.5 σ. The
orientations, corresponding to local peaks (more 80 %), are assigned with the
feature points. During a step of descriptor extraction, the local gradient data is used
to create the future point descriptors (a set of 16 histograms aligned in a 4 × 4 grid,
each with 8 orientation bins). Thus, the resulting descriptor contains 128 elements.

However, it is very difficult to achieve the software-based real-time computing
of SIFT features due to its computational complexity. At present, the hardware
architectures are designed. One of such architectures is implemented in a fully
parallel hardware based on Field Programmable Gate Array (FPGA) with the SIFT
feature description by a high-performance fixed-point Digital Signal Processor
(DSP) chip. Such FPGA + DSP hardware module designed by Zhong et al. can be
directly driven by the output of a regular video camera [68]. The system is able to
detect the SIFT features in the images with sizes 320 × 256 pixels within 10 ms and
takes merely about 80 μs per a SIFT feature descriptor.

The SURF descriptor is based on convolutions and uses the Hessian matrix-
based measure for a distribution-based detector [69]. The Hessian matrixes in
continuous and discrete variants are presented in Fig. 9.9.

The Hessian matrix H(P, σ) in a point P is determined by Eq. 9.31, where
Lxx(P, σ), Lxy(P, σ), Lyx(P, σ), and Lyy(P, σ) are convolutions the second derivative
of Gaussian G(P) with a function describing a frame Ip in a point P along OX
direction, diagonal in the first quadrant, OY direction, and diagonal in the second
quadrant respectively.
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H P;rð Þ ¼ Lxx P;rð Þ Lxy P;rð Þ
Lyx P;rð Þ Lyy P;rð Þ
	 


ð9:31Þ

Equation 9.32 calculates the convolution along OX direction.

Lxx P;rð Þ ¼ o2

ox2
G Pð Þ � IP ð9:32Þ

The SURF is based on the Haar wavelet response in the selected direction. It
constructs a square region aligned to it, and extracts the SURF descriptor, which is
invariant to rotation. The Haar wavelets are easy computed by integral images, if
the window location in a point of interest is split up in 4 × 4 sub-regions. An
underlying intensity pattern (first derivatives) of each sub-region is described by
vector VH = (Σdx, Σdy, Σ|dx|, Σ|dy|), where dx and dy are the Haar wavelet responses
in horizontal and vertical directions, | dx | and | dy | are absolute values of corre-
sponding responses. The overall vector will contain 64 elements. The resulting
SURF descriptor is invariant to rotation, scaling, and lighting change. The SURF
detector has a similar performance in comparison with other descriptors being at the
same time faster.

In some applications, the DoGs detector (the Laplacian of Gaussian detector) is
used, which shows the difference between two Gaussian smoothed images. Such
approach is applied for the SIFT detector to build a scale space pyramid by sub-
sampling images and convolving with differently sized kernels. Maxima and
minima values are determined to find the response from the Difference of Gaussian

Fig. 9.9 A view of Hessian matrix: a a continuous variant along OX, b a continuous variant along
OY, c a continuous variant along XY, d a discrete approximation along OX, e a discrete
approximation along OY; f a discrete approximation along XY

Ui-nUi-n-1

Ui+n Ui+n+1

Ui+1

Ui+n-1

Ui-n+1

Ui-1 Ui

Fig. 9.10 A view of FELF detector
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function in the 9-pixel neighborhood on the same scale level, at the scale level
above, and the scale level below. The similar approach is used in a Finite Element
Laplacian Feature (FELF) detector, where second order Gaussian smoothed image
derivatives are used to compute the Hessian matrix [70]. Figure 9.10 provides a
view of such detector.

The following feature points tracking by Lucas-Kanade algorithm [71] is a well-
designed procedure, discussing in literature [12, 72].

The optical flow is a widely distributed method for accurate motion estimation in
video sequences [73, 74]. It builds the motion vectors between two neighbor frames
at time instants t and (t + δt) in every pixel position with coordinates (x, y). The
intensity function I(x, y, t) moves by δx, δy, and δt between two neighbor frames.
Under the assumption that the intensity function, which describes a visual object,
remains constant, the main equation of optical flow for motion estimation in video
sequences, can be written in a view of Eq. 9.33.

I x; y; tð Þ ¼ I xþ dx; yþ dy; t þ dtð Þ ð9:33Þ

On account of the motion is small enough, Eq. 9.33 may be performed by
expanding function I(x, y, t) in a Taylor series by Eq. 9.34, where H.O.T. means
high order terms, which are small enough and ignored.

I xþ dx; yþ dy; t þ dtð Þ ¼ I x; y; tð Þ þ oI
ox

dxþ oI
oy

dyþ oI
ot

dt þ H:O:T: ð9:34Þ

From Eq. 9.34, the Eq. 9.35 follows, where vx and vy are the (x, y) speed
components, δx/δt, δy/δt, δt/δt are the partial derivatives in coordinates (x, y, t).

oI
ox

dxþ oI
oy

dyþ oI
ot

dt ¼ 0

oI
ox

dx
dt

þ oI
oy

dy
dt

þ oI
ot

dt
dt

¼ 0

oI
ox

vx þ oI
oy

vy þ oI
ot

¼ 0

ð9:35Þ

The Eq. 9.35 applied to the gradient of intensity function is represented as
symmetric covariance 3D structure tensor JS [12]. The eigenvalues Λ = {λk}, (k = 1,
2, 3) in neighborhood 3 × 3 pixels are characterized the local intensity displace-
ments along two spatial axes OX and OY in Euclid space and a temporal axis. The
intensity maps λ1(I), λ2(I), λ3(I), based on eigenvalues λ1(x, y, t), λ2(x, y, t),
λ3(x, y, t) of local 3D structure tensor, provide the motion estimations in three
dimensions.

To other known estimations of optical flow, the Bouguet approach [75] and the
Horn-Schunck approach [76] can be mentioned. The Bouguet approach implements
a sparse iterative version of Lucas-Kanade tracking feature points in the pyramids.
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In the classical Horn-Schunck method, the optical flow estimations are performed
as a variational problem, when a vector field is defined as a minimum of certain
energy functional J under the assumption that the frame noise and the optical flow
derivatives have a Gaussian distribution. This functional includes two terms: a data
term provided by the optical flow constraint and a regularity term based on the
gradient of the optical flow. The Eq. 9.36 shows a common view of functional J,
where a weight parameter α shows a smoothness degree in a regularity term, Ω is a
vector field.

J ¼
Z
X

Ixvx þ Iyvy þ It
� �2

dt þ a2 rvxj j2þ rvy
�� ��2� �

ð9:36Þ

The optical flow separates the spatio-temporal set of pixels in a set of “moving”
points and a set of “static” points. For more accurate separation of such sets espe-
cially in noisy (type “salt–pepper”) video sequence, additional procedures can be
recommended based on Lorentzian estimator, Tukey’s bi-weight estimator, German-
McClure estimator, or Leclerc estimator. For Gaussian noisy video sequences, the
improvement can be achieved by applying the higher-order statistics. The optical
flow values are caused by an additive noise, which is often modeled by a Gaussian
distribution (hypothesis H1) or by a true motion in each pixel (hypothesis H0) in
Eq. 9.37, where vk �rð Þ is a flow estimation in a frame k, zk �rð Þ is an additive Gaussian
noise, and uk �rð Þ is the lighting variation caused by true motion [77].

H0 : v
0
k �rð Þ ¼ zk �rð Þ

H1 : v
1
k �rð Þ ¼ uk �rð Þ þ zk �rð Þ ð9:37Þ

The computer cost of pixels separation on moving (active) and static ones is
reduced, if the Gaussianity in the optical flow estimations will be detected. The
classical measure of Gaussianity is the kurtosis, which is equaled to 0 for a
Gaussian random variable. The kurtosis is determined by Eq. 9.38, where y is a
random value, E[·] is an expectation.

kurt yð Þ ¼ E y4
 �� 3 E y2

 �� �2 ð9:38Þ

The kurtosis values for active pixels are significantly higher than those for static
pixels with noise-induced optical flow values. The binary mask, which demon-
strates a pixel activity, can separate pixels on moving and static more accurate that
permits better motion compensation caused by camera jitters.
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9.5.4 Unwanted Motion Compensation

The unwanted motion compensation can be realized by different ways: a smoothing
of the GMVs, camera path estimation, and one of surveillance mode – a frame
retargeting. Let us consider these cases particularly.

The challenge of the GMVs smoothing is closely tried with a key frames
extraction in dynamic scene. The intervals between key frames can have different
values. If key frames are extracted, then the task is transformed for the GMVs
smoothing in static scene, as this was considered in Sect. 9.4.1.

For dynamic scenes, the extraction of key frame is more difficult task in com-
parison to the static scene. The accurate inter-frame differences can be calculated as
the correlation of RGB color channels, color histogram, moments of inertia, or
descriptors based on feature points [78–80]. Also the difference between the current
frame and the follow key frame ought to have a significant value. The mentioned
characteristics have high computational cost, and do not propose a real-time
application. In this research, a way for calculation of feature points was chosen to
detect the key frames in dynamic scene. If a number of feature points is essentially
changed in local regions of frame, then this frame is marked as a key frame.

The procedure of camera path estimation requires a pre-segmentation of back-
ground, feature descriptors extraction, and background objects recognition in
adjacent key frames. The main idea is to find “good” corresponding points and track
their displacements in all frames between key frames. As a result, two envelope
curves from points with high and low ordinate values will be built because of jump
camera jitters. Then the curve with middle ordinate value can be interpolated by
linearization (if an angle of shooting does not change, and only transitions are
available) or by bilinear or bi-cubic functions (if an angle of shooting changes, and
transitions/rotations are available) under the assumption that the ideal trajectory of
camera is a blend curve. Such points compulsory own to background. Several pairs
of such corresponding points can be determined in adjacent key frames to increase a
reliability of camera path estimation.

If displacements between real and interpolated trajectories are calculated for each
frame, then the locations of moving foreground object may be recalculated by the
displacement values under assumption that a motion is defined by the affine motion
model. This approach is enough complex: to find the corresponding points with the
following interpolation is a separate high computational task. It can be simplified, if
the calibrated video camera will be used. However, the camera calibration for
dynamic scenes is too difficult and continuous procedure.

A video retargeting is one of ways for the DVS, when the object of interest is
held in the center of a frame in the stabilized position. Such surveillance can be
realized by some techniques beginning from the feature points tracking to Kalman
filter application. In this section, let us discuss the application of Kalman filter and
particle filter for the DVS tasks. Also the interesting issue connects with the
re-targeting of non-rigid objects.
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The Kalman filter provides a recursive solution to the linear optimal filtering and
applies in static and dynamic environment [81]. Feature evaluation by Kalman filter
during a tracking process is under the following constrains [82]:

• The confidence estimations and discriminative ability of a feature has the
Gaussian distribution.

• Features with higher discriminative ability should have larger confidence esti-
mation, and vice versa.

First, the state of Kalman filter is represented as the combination of confidence
estimationsWt = {wt(1), wt(2),…, wt(N)} and variation “speed” ΔWt =Wt −Wt−1 of
each feature, where wt(i) is a confidence estimation of ith feature. Second, the
measurements of the filter St = {St(1), St(2), …, St(N)} are provided by a frame in a
time instant t. The predicted equation and the measurement equation of Kalman
filter are calculated by Eq. 9.39, where IN×N is an identity matrix describing a
targeting object, ut is a displacement and vt is a speed, ut and vt are both Gaussian
noised functions.

Wtþ1

tþ1

 !
¼

IN�N IN�N

0 IN�N

 !
Wt

DWt

 !
þ ut

Stð Þ ¼ IN�N 0ð Þ
Wt

DWt

 !
þ vt

8>>>>><
>>>>>:

ð9:39Þ

The particle filter is an estimation algorithm for implementing a recursive
temporal Bayesian filter by Monte Carlo simulations. It represents a posterior state
of moving object by a set of random samples with associated confidence estima-
tions. The feature evaluation by using the particle filter can calculates the confi-
dence estimations or discriminative abilities for non-Gaussian and non-linear
distribution [83]. The core of this procedure is to define such feature set, each
feature in which is seen as a particle. As a result, a weighted sample of particles at
frame t, {(i, wt(i))}, i = 1, 2, …, N, where i denotes the ith feature (particle), is
created. The iterations of this process evaluate the temporal consistency even a
variation of features is a non-linear and a non-Gaussian [84].

The challenges of non-rigid deformations, rotations, appearance, occlusions, and
drifting are known as the template update problem or stability-plasticity dilemma.
However, most of approaches such as robust learning algorithms [85], different
learning paradigm [86], multiple different classifiers [87], or a conservative learning
framework [88] are limited to a bounding-box-based representation.

To avoid of inaccuracy, the segmentation of non-rigid objects can be represented
by the deformable parts model [89] or models obtained via the generalized Hough-
transform [90, 91]. These methods need large amount of labeled training data,
which cannot be provided during a tracking of unknown objects.

In the research of Godec et al. [92], a novel tracking-by-detection approach is
proposed. It is based on the online Hough ferns and a couple of procedures: the
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voting-based detection and back-projection with a rough GrabCut segmentation
[93]. The randomized Hough ferns use simple pixel comparisons as splitting tests
that allows the robustly detection of the non-rigid objects. The voting-based
detection procedure has a valid geometric relation. The back-projection procedure
roughly separates the object from the background pixel-wise. Such approach is very
perspective for non-rigid natural objects and blurred objects segmentation.

The random ferns are such modification of random forest, which is based on
independent flat test structures instead of tree-like structures [94, 95]. For S binary
tests, the best matching class c for a given image sample v is estimated by Eq. 9.40
assuming a uniform prior distribution over all classes.

c ¼ argmax
c

P c vjð Þ ¼ argmax
c

P c x1; x2. . .; xSjð Þ

¼ argmax
c

P x1; x2. . .; xS cjð Þ ð9:40Þ

However, the joint features distribution over all tests cannot be modeled in
practice. The features are grouped in several independent sets xS. If a power of set is
equaled 1, then a well-known Naïve-Bayes formulation is acceptable (Eq. 9.41).

P x1; x2; . . .; xS cjð Þ ¼
YS
c¼1

P xS cjð Þ ð9:41Þ

The Random Ferns is based on a semi-Naïve-Bayes formulation of Eq. 9.41
using larger feature sets and expressed by Eq. 9.42, where ~xm denotes a set test and
M is a number of used groups.

P x1; x2; . . .; xS cjð Þ ¼
YM
m¼1

P ~xm cjð Þ ð9:42Þ

Godec et al. show that Naïve formulation can be used for tracking, if P(xn − c) is
modeled by using histograms instead of binary features [96]. However, binary tests
can be also interpreted as a semi-Naïve formulation. For tracking of unknown
objects, a node optimization is difficult because of the limited training data in
several frames. A special tree-growing scheme was proposed by Saffari et al. [85].
The more complex statistics use the Hough-transform.

9.5.5 Motion Inpainting in Dynamic Scenes

The motion inpainting in dynamic scenes can be considered as the task of missing
data restoration. Many interesting methods are designed for texture reconstruction,
for example, image inpainting by contourlet transform [97], regularized image
restoration [98], etc. More reasonable approach is the information extraction from
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the sharp neighbor frames. In this research, two cases are applied: the frame
boundaries restoration and the frames interpolation between key frames.

Frame boundaries restoration in dynamic scenes includes two cases, when the
missing pixels can be taken from the previous frame and when it is impossible.
First, the assumption is declared that the missing pixels can be founded. A pseudo-
panoramic background may be built from neighbor stabilized frames, and it will be
the source of tile texture reconstruction by a line or a field of textons with following
inpainting of moving foreground objects in the reconstruction area [65]. Second, if
the reconstruction information is absent (very sharp jitters respect to the whole
video sequence or the sequential blurred frames), the decision is accepted about
removal such frames and adding the interpolated frames under the assumption of
smooth camera motion.

For the DVS task, it is enough to apply the simplest linear model of background
and foreground objects motion. In this case, the point coordinates (xn, yn) in
reconstruction frame n are calculated by Eq. 9.43.

xn
yn

	 

¼ n� 1ð Þ � xi � xi�1

yi � yi�1

	 

ð9:43Þ

By using a normalized correlation function, the location of slicing window
11 × 11 or 15 × 15 pixels from stabilized area of a recoverable frame and a pseudo-
panoramic background is determined. Such value shows the background place
suitable for restoration of frame boundaries. Then a field of textons is replaced in a
missing area of frame with corresponding stitching procedures [99, 100]. If a
foreground moving object is in this part of scene, then its image is also restore
according to linear motion model but with the own shifts. Let us notice that the
proposed frame boundaries restoration is out from border of real-time application
because the analysis of sequential frames can be required, and also the work with
texture is usually a durable process.

The task of missing frames interpolation is a separate complex issue in digital
video processing. In the current research, this is an additional aspect of motion
inpainting in dynamic scenes and concerns only to the blurred frames. The goal is to
improve a video sequence, when several sequential frames are blurred very
strongly, and the procedure proposed in Sect. 9.5.2 is a non-useful processing.

In such particular case, the blurred frames are removed. Then very complex and
computer high cost analysis is initiated for such pseudo-static scene. The main idea
is to build the previous and the following trajectories of moving objects in a missing
interval. The procedure is based on interpolation of two data types: background and
foreground. In literature, the main attention gives consideration for interpolation of
moving foreground objects in a scene. Three main approaches, among others, are
used:

• The interpolation based on functions [101–104].
• The interpolation based on autoregressive modeling [105, 106].
• The interpolation using Markov random fields [107–112].

9 Digital Video Stabilization in Static and Dynamic Scenes 293



Objectively, if more blurred frames are in a video sequence, then the results of
interpolation will be worse especially in the dynamic scenes.

9.6 Discussion of Experimental Results

Two main directions of the experimental work were determined: the motion esti-
mations based on the proposed methods (Sect. 9.6.1) and the stabilization esti-
mations (Sect. 9.6.2). Six video sequences received from the static camera and eight
video sequences received from the moving camera were used in this research. The
titles, URL, and snapshots of some investigated static and dynamic scenes are
presented in Tables 9.2 and 9.3, respectively.

All experiments were executed by the designed software tool “DVS Analyzer”,
v. 2.04, which was developed in Laboratory of Image and Videos Processing
(Department of Informatics and Computer Technique, Siberian State Aerospace
University). The software tool “DVS Analyzer” has two modes: the pseudo real-
time stabilization of video sequences, which are broadcasted from the surveillance
cameras (the simplified processing) and the unreal-time stabilization of available
video sequences (the intelligent processing). The architecture of the software tool
includes the extended set of program modules, which can be designed or developed
independently each from others. The Pre-processing Module, the Motion Estima-
tion Module, the Motion Compensation Module, the Motion Inpainting Module, the
Module of Quality Estimation, the Core Module, and the Interface Module are
the main components of the software tool “DVS Analyzer”. Let us briefly discuss
the functionality of each program module.

The Pre-processing Module involves various spatio-temporal filters such as the
auto-contrast filter, the temporal 2D_cleaner filter, and the adaptive Gauss filter,
which are applied to frames representing in color RGB-, HSV-, and YUV-spaces.
Also this module divides a video sequence in the scenes. The Motion Estimation
Module calculates the LMVs by the BMA and feature correspondences. It builds
the GMVs in frames by using of fuzzy TSK model. The Motion Compensation
Module determines the SMVs in each frame based on the GMVs. The Motion
Inpainting Module realizes the frame stabilization by a re-calculating of an original
frame according to the UMVs in scenes. The procedure for restoration of frame
boundaries and the deblurring procedure are executed in this module. The Module
of Quality Estimation provides the quality comparison of original and stabilized
video sequences according to PSNR and ITF metrics. The Core Module controls
and coordinates the work of all other Modules and includes program codec for a
pre-processing and saving of the stabilized video sequences. The Interface Module
displays the received results in file/monitor/printed version.

The software tool “DVS Analyzer”, v. 2.04 was designed in the Rapid Appli-
cation Development Embracadero RAD Studio 2010. Some external software tools
were used: the libraries “Video for Windows” for initial processing and “Alpha-
Controls 2010”, v. 7.3 for enhanced user interface and a video codec “K-Lite Codec
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Pack”, v. 8.0. The experiments were performed on a computer with the following
configuration: CPU Intel Core I5.760, 4 Gb RAM, Nvidia GeForce 460GTX,
Windows 7 64 bit.

Fig. 9.11 Graphics of motion estimation and compensation results in static scenes:
a “SANY0025_xvid.avi”, b “lf_juggle.avi”, c “akiyo.avi”
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9.6.1 Experimental Results for Motion Estimations

The experimental graphics for motion estimation and compensation are represented
in Figs. 9.11 and 9.12 for static and dynamic scenes, respectively.

The motion estimations in static scenes by using the TSK model provide more
accurate estimations of the global motion due to the fact that the motion of

Fig. 9.12 Graphics of motion estimation and compensation results in dynamic scenes:
a “Cat_orig.avi”, b “Gleicher4.avi”, c “Sam_1.avi”
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foreground objects is not considered. Such algorithmic specialty is well demon-
strated in video sequences (“road_cars_krasnoyarsk_synthetic.avi”; “akiyo.avi”,
“Butovo_synthetic.avi”). In original video sequences with static scenes, these dif-
ferences are less and appear only in the GMV estimations. For video sequences
including many small sizes objects (“lf_juggle.avi”, “Butovo_synthetic.avi”), the
algorithm for motion estimations by using the TSK model shows the best results
increasing ITF value up on 3 dB. For the dynamic scenes stabilization, the detection
of the SMVs is the most important step. Such SMVs detection is executed based on
the GMVs in a frame.

The non-contrast regions in frames decrease the quality of stabilization (“El-
lenPage_Juggling.avi”, “Gleicher4.avi”, “Gleicher1.avi”) and show the unpredicted
results. Therefore, the non-contrast regions do not process in the most of frames.
The frames with such “rejected” regions are represented in Fig. 9.13.

If the GMVs are estimated inaccurate, then the quality of following stabilized
video sequence will decrease. The developed algorithm of motion estimation is
non-sensitive to the large moving foreground moving in video sequences “Ellen-
Page_Juggling.avi”, “Sam_1.avi”, “Cat_orig.avi”, “Cleicher3.avi”. The best global
motion estimations were received for video sequence “EllenPage_Juggling.avi” due
to ignoring the fast moving of foreground objects.

9.6.2 Experimental Results for Stabilization Estimations

The objective estimations of the DVS quality were calculated by Mean-Square
Error (MSE) and PSNR metrics between a current frame Icur and a key frame Ikey,
which are expressed in Eqs. 9.44–9.45, where Imax is a maximum of pixel intensity,
m and n are the frame sizes along OX and OY axes.

MSE ¼ 1
m� n

Xm
y¼1

Xn
x¼1

Icur x; yð Þ � Ikey x; yð Þ� �2 ð9:44Þ

Fig. 9.13 The frames with “rejected” regions for motion estimations: a “EllenPage_juggling.avi”,
b “Gleicher1.avi”
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PSNR ¼ 10log10
I2max

MSE

� �
ð9:45Þ

The PSNR metric is useful for estimations between neighbor frames. The quality
of the ITF estimations provides the objective estimation in whole video sequence.

Fig. 9.14 Graphics of stabilization quality in static scenes: a “SANY0025_xvid.avi”, b “lf_jug-
gle.avi”, c “akiyo.avi”
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The ITF of the stabilized video sequence is almost higher than the ITF of the
original video sequence. This parameter is calculated by Eq. 9.46, where Nfr is a
frame amount in a video sequence.

Fig. 9.15 Graphics of stabilization quality in dynamic scenes: a “Cat_orig.avi”, b “Gleicher4.
avi”, c “Sam_1.avi”
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ITF ¼ 1
Nfr

XNfr

k¼0

PSNRk ð9:46Þ

The experimental graphics for stabilization quality are represented in Figs. 9.14
and 9.15 for static and dynamic scenes respectively. As shown from Figs. 9.14 and
9.15, the PSNR estimations of the stabilized video sequences are always higher than
the PSNR estimations of the original video sequences.

Tables 9.4 and 9.5 contain the ITF estimations for all (used in experiments)
whole video sequences with static scenes and dynamic scenes, respectively.

As it seems from Tables 9.4 and 9.5, the video stabilization results are different
for various video sequences because of varied foreground and background content,
moving objects, lighting, noisy, and the shooting condition. The using of the TSK
model provides the increment of the ITF estimations up on 3–4 dB or 15–20 %.

The stabilization and temporal results of “Deshaker”, “WarpStabilizer”, “Video
Stabilization with Robust L1 Optimal Camera Paths”, and our developed “DVS
Analyzer” are situated in Table 9.6.

Table 9.4 ITF estimations for static scenes

Video sequence ITF estimations (dB)

Original Without TSK model With TSK model

road_cars_krasnoyarsk.avi 22.70482 22.80707 25.91258

SANY0025_xvid.avi 20.5389 21.09076 23.79189

lf_juggle.avi 24.30286 24.37177 28.06012

akiyo.avi 35.92952 39.14661 39.53257

EllenPage_Juggling.avi 24.65855 25.23049 28.58255

Butovo_synthetic.avi 22.26415 27.19789 27.20789

Table 9.5 ITF estimations for dynamic scenes

Video sequence ITF estimations (dB)

Original Without TSK model With TSK model

Cat_orig.avi 25.07131 26.47094 28.14086

Gleicher4.avi 19.29703 19.50634 23.18371

Sam_1.avi 19.09737 19.28141 22.20112

Gleicher1.avi 18.86996 19.48223 22.78846

Gleicher2.avi 19.91954 20.36718 24.56673

Gleicher3.avi 16.55214 16.71899 20.12285

new_gleicher.avi 17.28921 17.81638 21.70575

yuna_long_original.avi 17.84131 18.94389 21.46971
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The ITF estimations of the proposed software tool “DVS Analyzer” provides
better results (at average 1–3 dB or 5–15 %) with the lower processing time
relatively the existing software tools.

9.7 Conclusion and Future Development

In this chapter, the intelligent methods for digital video stabilization in static and
dynamic scenes were developed. The extended literature review represents the
state-of-art in the DVS till the present time. In this research, many novel reasonable
methods were proposed and realized including the statistical background model, the
scene separation in video sequences received from the moving camera, the fuzzy
TSK model application, the detection of “good” regions in frames, which contain
only camera jitters, frames boundaries restoration in static and dynamic scenes, etc.
All methods and algorithms were realized by the designed software tool “DVS
Analyzer”, v. 2.04.

For experiments, six video sequences received from the static camera and eight
video sequences received from the moving camera were used. Graphics of the
motion estimation and compensation and the stabilization quality demonstrate the
improvements relative to the original video sequences. The PSNR and ITF metrics
were used to estimate the received results. The stabilized results directly depend
from varied foreground and background content, the moving objects, lighting,
noisy, and the shooting condition for each video sequence. The ITF estimations
increase up on 3–4 dB or 15–20 % relative to the original video sequences. The ITF
estimations of the proposed software tool “DVS Analyzer” provides better results
(at average 1–3 dB or 5–15 %) with the lower processing time relatively the
existing software tools.

Table 9.6 Comparison of stabilization algorithms for static and dynamic scenes

Video sequence Algorithm

Deshaker WarpStabilizer Video Stabiliza-
tion with robust
L1 optimal cam-
era paths

DVS analyzer

ITF
(dB)

Time
(s)

ITF
(dB)

Time
(s)

ITF
(dB)

Time
(s)

ITF
(dB)

Time
(s)

EllenPage_Juggling.
avi

25.61 3.53 26.68 4.53 27.33 3.17 28.58 3.54

Gleicher4.avi 20.33 1.89 19.15 2.78 20.45 1.44 23.18 1.66

Sam_1.avi 20.09 1.22 20.27 2.65 20.58 1.01 22.20 1.23

road_cars_krasnoyarsk 22.31 1.45 21.48 2.15 25.2 1.29 25.91 0.24

SANY0025xvid.avi 23.53 1.33 22.7 1.87 22.74 1.34 23.79 0.17

lf_juggle.avi 26.65 1.22 24.41 1.64 26.15 1.18 28.06 0.15
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The future efforts are connected with the development of advanced motion
inpainting methods and algorithms for the DVS task and also fast realization of
algorithms without the essential accuracy reduction for pseudo real-time
applications.
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Chapter 10
Implementation of Hadamard Matrices
for Image Processing

Leonid Mironovsky and Valery Slaev

Abstract The image quality influences the accuracy of obtained results. In the
chapter, the application of the strip-method for noise-immune storage and trans-
mission of images is analyzed. At the same time, before transmitting the matrix
transformation of an original image has to be done, when the image fragments are
mixed up and superimposed each other. The transformed image is transmitted over
a communication channel, where it is distorted with a pulse noise, the latter being,
for example, a possible reason for a complete loss of separate image fragments.
After the signal transmission to the receiving end, an inverse transformation is
performed. During this transformation, the reconstruction of the image takes place.
If it is possible to provide a uniform distribution of the pulse noise over the whole
area, which the image occupies without any changes of its energy, then a noticeable
decrease of noise amplitude will take place and an acceptable quality of all frag-
ments of the image are reconstructed. The tasks of the chapter are the consideration
the versions of the two-sided strip-transformation of images and the choice of
optimal transformation matrices. A great attention has been paid to the imple-
mentation of Hadamard matrices and matrices close to them such as Hadamard-
Mersenne, Hadamard-Fermat, and Hadamard-Euler matrices.
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10.1 Introduction

Many problems of information transforming and data studying are connected with
the images processing and transmitting. For example, it is possible to name the
remote sensing of the Earth surface by satellites, rentgenography and its application
in medicine, investigations of biological and chemical processes, among others. The
accuracy of the obtained results depends from the quality of images.

In this chapter, the application of the strip-method [1–3] for storage and noise-
immune transmission of images is analyzed [4]. At the same time, before trans-
mitting the matrix transformation of an original image is fulfilled, when the image
fragments are mixed up and superimposed each other. The transformed image is
transmitted over a communication channel, where it is distorted by pulse noises, the
latter being for example a possible reason for a complete loss of separate image
fragments. After the signal transmission to the receiving end, an inverse transfor-
mation is performed. During this transformation, the reconstruction of the image
takes place. If it is possible to provide a uniform distribution of the pulse noise over
the whole area, which the image occupies without any changes of its energy, then a
noticeable decrease of noise amplitude will take place and the acceptable quality of
all fragments of the reconstructed image is achieved.

Section 10.2 provides the related work. Strip-method of image transformation is
developed in Sect. 10.3. The Hadamard matrices and matrices closed to them are
represented in Sect. 10.4. Conclusion is situated in Sect. 10.5.

10.2 Related Work

It is reasonable that the strip-method is merely one of the methods used for
increasing the accuracy of signal and image transmission over communication
channels. A great number of publications are devoted to issues of raising the noise-
resistance of information transmission systems [3, 5–8], and others. It is also
necessary to mention some works in the adjacent fields of activities such as the
works in the cluster systems of message transmission and linear predistortion of
signals, which were maden by Russian researches Ageyev, Babanov, Lebedev,
Marigodov, Suslonov, Tsibakov, Yaroslavsky, and others; the works connecting
with the method of redundant variables; the works in the linear transformation and
block coding of signals and images, which were done by American researches
Costas, Lang, Leith, Pierce, Upatnieks [9–17], and others. Thus, the noise control
based on introduction of pre-distortions at the stage of signal transmission and on
optimal processing at the stage of signal reception is widely used in information
transmission systems.

However, the majority of works deal with the pre-distortion methods and the
correction by using a root-mean-square criterion, whereas the methods satisfying
the requirements for optimizing the information transmission systems with the help
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of a minimax criterion have been developed to a significantly lesser degree.
Therefore, it would be more useful to develop and study new methods for blanking
the pulse interference, which are supported by using the minimax criterion and
modern computer processing for images.

10.3 Strip-Method of Image Transformation

In this section, the basis of two-dimensional strip-transformation (Sect. 10.3.1) and
the choice of optimal transformation matrices (Sect. 10.3.2) will be discussed.

10.3.1 Two-Dimensional Strip-Transformation

The first stage of the strip-method for the transformation of one-dimensional signals
consists in a “cutting” the original signal into n strips with equal duration and a
forming from them the n-dimensional vector X. At the second stage, this vector is
fallen under the isometric transformation by its multiplying on the orthogonal
matrix A of the dimension n × n

Y ¼ AX:

In the same way, the first stage of the strip-transformation of two-dimensional
signals (images) consists in dividing the original image P into N rectangular
fragments similar in size as it is shown in Fig. 10.1. Let the number of horizontal
and vertical stripes, into which the image is conditionally “cut”, be denoted as
m and n; then N = mn. Further, a linear combination of the fragments is made. At
that, there are two approaches such as the vector and the matrix ones [18, 19].

m

n

x

y

P=

Fig. 10.1 The image
presentation as the block-
matrix P
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According to the first (vector) approach, the obtained fragments are used to form
an N-dimensional block-vector X that as in the one-dimensional case undergoes the
isometric transformation by multiplying it on the orthogonal matrix A of the
dimension N × N: Y = AX. Let this version, entirely the same as in the one-
dimensional case, be denoted as the one-sided strip-transformation. Its main weak-
ness is too high dimensionality of the matrix A and corresponding calculation costs.

According to the second (matrix) approach, the original image divided into
fragments, is considered as a block-matrix X of the dimension m × n. Here three
versions of isometric transformation of this matrix with the purpose to “mix” its
fragments are possible [20]:

• The multiplication by the orthogonal m × m matrix B on the left (the left-sided
matrix transformation)

Z1 ¼ BX:

• The multiplication by the orthogonal n × n matrix A on the right (the right-sided
matrix transformation)

Z2 ¼ XA:

• The simultaneous multiplication by the matrix B on the left and by the matrix
A on the right (the two-sided or bilateral matrix transformation)

Z3 ¼ BXA:

All versions listed above are shown in Fig. 10.2. It illustrates a chain of trans-
formations of the original image P, which results into an image being transmitted
over the communication channel.

The first and the last versions of transformation are of the main interest, since
they provide the most complete “mixing” of the image fragments. Each fragment of
the transformed image contains information about all N = mn fragments of the
original image P. In other two versions Z1 = BX and Z2 = XA only horizontal or
only vertical stripes into which the original image has been “cut” are linear
combined.

Therefore, only two versions of transformation will be considered below:

• The one-sided strip-transformation provided by Eq. 10.1, where X is the block-
vector of the dimension mn × 1, A is the orthogonal matrix of the order mn.

Y ¼ AX ð10:1Þ

• The two-sided strip-transformation by Eq. 10.2, where X is the block-matrix of
the dimension m × n, B and A are the orthogonal matrices of the orders m and n.
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Z ¼ BXA ð10:2Þ

Correspondingly, the inverse transformations, when the image is reconstructed at
the receiving end of the communication channel, are described by Eq. 10.3 for the
one-sided transformation and Eq. 10.4 for the two-sided transformation.

X ¼ A�1Y ð10:3Þ

X ¼ A�1ZB�1 ð10:4Þ

Let these two versions be described in more details.
The image transmission with using the one-sided strip-transformation. Let an

original and reconstructed images be denoted as P and P′, and a straight and an
inverse operators, realizing fragmentation and defragmentation of the image, as S1
and S10 ¼ S1�1.

In the communication channel to the vector Y = AX, a pulse noise signal Δ is
added. As a result, at the output of the channel we get an image-vector Y′ = Y + Δ.
At the receiving end, the inverse one-sided strip-transformation is performed aimed
at obtaining a vector X′. This transformation is described by Eq. 10.5.

X0 ¼ A�1Y0 ¼ A�1ðYþ DÞ ¼ A�1Yþ A�1D ¼ Xþ A�1D ð10:5Þ

Original image P

X X

AX BX XA BXA

Dividing into fragments (fragmentation)

Vector of the dimension mn 1 Matrix of the dimension m n

Joining of fragments (defragmentation)

Transformed image

Y Z1
Z2 Z3

Χ Χ

Fig. 10.2 The strip-transformation of two-dimensional signals
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The obtained vector X′ is represented in the form of the sum of the vector X and
noise vector Δ, which have experienced the inverse transformation. At the last stage
the vector X′ is transformed into the matrix m × n, describing the reconstructed
image P with a noise Δ′ = A−1Δ added to it.

As it has already been shown, the main disadvantage of the one-sided strip-
transformation is too large dimension of the matrix A equal to mn × mn (the number
of entries of this matrix is equal to the squared number of fragments, into which the
image is divided). The matrices B and A used in the two-sided strip-transformation
have significantly smaller dimensions (at m = n a total number of their elements is
equal to the doubled number of image fragments). This facilitates their formation
and storage.

The image transmission with using of the two-sided transformation. The image
Z = BXA obtained as a result of the two-sided strip-transformation of the original
image P is transmitted through the communication channel. A pulse noise signal Δ
(a block-matrix of the dimension m × n) is added to the image transmitted into the
channel. As a result at the output of the channel we have an image Z′ = Z + Δ. At
the receiving end the image Z′ is affected by the inverse two-sided transformation
for getting a matrix of a resulting image P′. It is described by Eq. 10.6.

P0 ¼ A�1Z0B�1 ¼ A�1 Zþ Dð ÞB�1 ¼ A�1ZB�1 þ A�1DB�1 ¼ Pþ A�1DB�1

ð10:6Þ

In accordance with Eq. 10.6, the recipient will see the original image P with the
noise added to it in the channel and changed by the inverse two-sided transfor-
mation. To make this method more appropriate in practice, matrices A and B have
the equal sizes that simplify calculations and save memory. Then Eq. 10.2 takes the
form of Eq. 10.7, where A is an orthonormal matrix.

Z ¼ AXA ð10:7Þ

The Eq. 10.6 will simplify in a following manner (Eq. 10.8).

P0 ¼ Pþ ATDAT ð10:8Þ

For further simplifying of the transformation, it is useful to apply a symmetrical
matrix A. In this case the inverse transformation will coincide with the straight one
and the need to store and calculate separately the inverse matrix will disappear. The
noise at the output of the system will be determined by the formula D0 ¼ ADA.

Mathematical formalism. In Eqs. 10.2–10.8 and other formulae of this part of the
chapter, the multiplication of usual numeric matrices A and B by the block matrices
X, Y, Z, the elements of which are the image fragments, is performed. At the same
time the following rules are used.
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Summation of blocks (fragments). Separate blocks (fragments) of image matrices
are summed up by adding the corresponding block elements. This operation is
similar to summation of two matrices of the same sizes.

Multiplication of a fragment by a number. The operation is performed by
multiplying each fragment pixel by a number. At the same time the brightness of
the fragment changes as a whole. The operation is similar to the multiplication of
the matrix by a number.

Multiplication of the block matrix by the numeric matrix. Such a multiplication is
performed in the same way as it is done in multiplying the numeric matrices
according to the rule “a row by a column” taking into account the manner of two
first operations.

Example. Loss of a unit (a single noise). Let the test image given in Fig. 10.3 be
analyzed. The original image has definite boundaries and is characterized by the
presence of both large objects and small details. Let a message (Fig. 10.3) be
divided into 8 × 8 = 64 units, which are in series transmitted over a communication
channel. By a single noise they imply a distortion or loss of one from 64 units. An
example of such a noise is shown in Fig. 10.4.

Now let the two-sided transformation of the original image with the orthonor-
malized Hadamard matrix of the 8th order be done (this is done before the trans-
mission). The image obtained without transformation is shown in Fig. 10.4, and the
image obtained with the strip-transformation is shown in Fig. 10.5.

An analysis of the image shows that without strip-transformation this image loses
its scenario (Fig. 10.4). When using the strip-transformation with the Hadamard
matrices of the 8th order (Fig. 10.5) the image is obtained without any significant

Fig. 10.3 Original image
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distortions. Having estimated the images obtained by the subjective way, it is pos-
sible to note that the quality of the obtained image is quite acceptable.

Image scaling. In practice an image transmitted is represented in the form of a
matrix consisted from separate pixels (brightness values). As a rule, the number of
luminance range is taken as 256, that corresponds to eight binary digits.

Fig. 10.4 The image with the
loss of one unit without
strip-transformation

Fig. 10.5 The image
obtained using the strip-
transformation with the
Hadamard matrix of the 8th
order
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After two-sided strip-transformation the image can transgress the bounds of a
digit plane, and it is necessary to return it into acceptable bounds by means of
dividing the image value by a definite scale parameter.

The most unfavorable case is typical for a purely white image. As a consequence
of the strip-transformation with the Hadamard matrix of the n order all elements of
such image become zero (black) ones apart from one element, the value of which
will exceed the permissible range by n times.

It is obvious that the introduction of too great scale parameter can adversely
affect the quality of the image restored. Therefore, a problem of choosing a minimal
value of this scale parameter arises. It is possible to indicate the following versions
of solving the problem. The simplest one of them is to use a fixed scale parameter
n at the transmitting point and the coefficient 1/n at the receiving end. Shortcomings
of this version are evident. A more flexible way may consist in introduction of an
adaptive scale parameter that is specially calculated for each image and transmitted
with it over a communication channel.

It is also possible to use a threshold filter (an amplitude detector) for limiting
maximum values of the signal transmitted. With all this going on, it is possible to
decrease the contrast of the image being received. For example, a white-black
image of the “chess-board” type can turn into a black-grey one. The presence of
prior statistical information concerning properties of the images transmitted can also
help to solve the problem of scale operation.

The above is related to the case of white and black images. Technically such
images are represented in the form of a matrix that consists from a number of pixels
(brightness values). Just this matrix is subjected to fragmentation in the process of
the strip-transformation. As to the color images, the situation is somewhat more
complicated. One of the standard methods for presenting the color images is the
application of three-layered matrix Red–Green–Blue. In this case, each of the three
layers of the image matrix is exposed to the strip-transformation action.

10.3.2 Choice of Optimal Transformation Matrices

As a consequence of dividing the original image into fragments, shown in Fig. 10.1,
a block-matrix containing m × n blocks is obtained. The entries of this matrix are
rectangular and have dimensions x × y. All fragments of this matrix are of the same
dimensions. In those cases, when the number of pixels in a row or column of the
original image matrix cannot be divided by m or n, giving an integer, it is necessary
to add pixels from the right or from the bottom of the image. They should not
distort the image or excessively contrast it.

The separation of the image into fragments permits to decrease significantly the
calculation costs. The larger fragments mean the smaller dimension of the trans-
formation matrix A. The image fragment dimension should be chosen on the basis
of an expected duration of the pulse noise, i.e. the linear dimensions of the distorted
image segment. The best version will be the choice of fragment dimension equal to
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maximal noise duration. This will allow the noise to be distributed over the image at
the output of the system in the most uniform way. The chosen fragment dimension
will determine the dimensions of the transformation matrix.

To attenuate the amplitude of pulse noise as much as possible, it is necessary to
secure the uniform distribution of the noise over the image by applying the inverse
transformation at the receiving end of the communication channel. This makes it
possible to reconstruct information about distorted and “lost” fragments. Moreover,
this arises a need to determine the type of a transformation matrix A that will
minimize the noise amplitude in the reconstructed image.

In case of the one-sided strip transformation, the level of noise Δ′ in the
reconstructed image is determined by Eq. 10.5. If the matrix A is symmetrical and
orthogonal, then Eq. 10.9 will take place.

D0 ¼ AD ð10:9Þ

Similar equation can be derived from Eq. 10.8 for the two-sided transformation
in a view of Eq. 10.10.

D0 ¼ ADA ð10:10Þ

Let us assume that the noise in the communication channel distorts only one
fragment of the image (a single noise pulse). This means that only one of the block-
vector components, Δi from Eq. 10.9 or that of the block-matrix, Δi from Eq. 10.10
can be non-zero.

In both cases the noise level Δ′ in the signal reconstructed will be determined by
a maximal entry module of the orthogonal matrix A. Indeed, if in Eq. 10.9 we
assume that Δ1 = 1, Δ2 = ⋯ = ΔN = 0, then Δ′ = A1, where A1 is the first column of
the matrix A. Thus, the noise amplitude Δ′ will be equal to the maximal entry
module of the first column of the matrix A (and in the general case to the whole
matrix A).

In a similar manner, assuming, for example, that in Eq. 10.10 Δ11 = 1, and the
remaining components are Δij = 0, the following equations will be obtained:

D0 ¼ A1 � AT
1 ¼ a1i � a1j

� �n
1:

Therefore, the maximal entry of the matrix Δ′ will be equal to aM
2 , where aM is

the maximal entry module of the first column of the matrix A. At an arbitrary
position of the non-zero entry in the matrix Δ, the maximal entry module aM of the
matrix A will be obtained.

Since the aim set is to attenuate to the limit the noise amplitude, then in both
cases it is required to search such class of orthogonal matrices, the one the maximal
entry module of which is minimal. The well-known decision of this task relates to
the cases n, which are divided by four. Such matrices are the normalized Hadamard
matrices. The less known decision for even n, which are not divided by four, is
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represented by so called Conference-matrices (C-matrices). They have a zero
diagonal and their rest entries are equal to ±1.

The Hadamard matrices provide an ideally uniform distribution of a single noise
pulse over the whole image area, decreasing its amplitude by n times (at m ≠ n byffiffiffiffiffiffi
mn

p
times). The C-matrices providing the noise attenuation by (n − 1) times are

only a little inferior to them. For odd n, the general solution of the problem is
unknown for the authors. As a result of long term searches, the orthogonal matrices
for n = 3, 5, 7, 9, 11, optimal in this sense, have been found. More detailed
information about these and other matrices, closed to the Hadamard matrices, are
given in the Sect. 10.4.

10.4 Hadamard Matrices and Matrices Closed to Them

The strip-method bases itself on isometric transformations of signals and images
with the help of orthogonal matrices. One of the main requirements for these
matrices is the most complete “mixing” of fragments of an original signal or image
in the case of the straight transformation, as well as a uniform distribution of a pulse
noise along the time duration of a reconstructed signal, or over the area of a
reconstructed image at the inverse transformation.

In respect to mathematics, this means that the orthogonal matrices with entries
closed in absolute value should be used. The classical representatives of such
matrices are the Hadamard matrices. Moreover, the subject to a technical problem
to be solved some additional requirements such as the matrices symmetry, the cycle
structure (Toeplitz or Hankel matrices) can be set up.

Below the description and specific form of matrices, completely or partially
meeting, are presented. First, there are the Hadamard and C-matrices, which provide
the utmost degree “mixing” of signal and image fragments. Unfortunately, these
matrices are far from being present in all cases. Therefore, the problem to find the
orthogonal matrices similar to them with respect to their characteristics arises.
Among the versions worthy of notice, there are matrices based on orthogonal sys-
tems of functions (trigonometric functions and polynomials), two-level D-matrices
(matrices containing elements of only two types, e.g. ±a, ±b) and minimax matrices
(M-matrices). Second, a generalization of Hadamard matrices for odd n, since their
maximum modulo entries are minimal as compared to all other orthogonal matrices
of the odd order, is considered.

The Hadamard matrices, the shortened Hadamard matrices, and the Conference
matrices are represented in Sects. 10.4.1–10.4.3, respectively. Section 10.4.4 pro-
vides the optimal orthogonal matrices of the odd order (M-matrices). Two-, three-,
and many-levels M-matrices are discussed in Sect. 10.4.5.
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10.4.1 Hadamard Matrices

The Hadamard matrices are widely used in the theory of coding (codes correcting
errors), theory of planning multifactor experiments (orthogonal block-diagrams),
and other fields of mathematics. Below the definition of these matrices and
description of their main properties are given [3, 21–25].

Definition 1 A Hadamard matrix of order n is such n × n matrix A with entries +1
or −1, for which AAT = nI, where I is the identity matrix.

It is evident that the Hadamard matrix is a non-singular matrix and its rows in
pairs are orthogonal. The transposition of rows or columns and multiplication them
by −1 again yield a Hadamard matrix. These operations allow any matrix to be
transformed into one of a “normalized” form, when in the first column and row all
elements are equal to +1. Dividing the Hadamard matrix by

ffiffiffi
n

p
; an orthogonal

matrix A0 ¼ A=
ffiffiffi
n

p
; is obtained that meets the condition A0A0

T = I. The simplest
Hadamard matrix has the form

A ¼ 1 1
1 �1

� �
:

It is orthogonal: ATA ¼ 2I and symmetrical.
After dividing this matrix by

ffiffiffi
2

p
it becomes orthonormal

A0 ¼ 1ffiffiffi
2

p 1 1
1 �1

� �
:

It is easy to make sure that if M and N are the Hadamard matrices of orders
m and n, respectively, then their Kronecker product, i.e. the matrix M ⊗ N, is the
Hadamard matrix of order m · n. For example, if A is the Hadamard matrix of the
second order, then as a result of the Kronecker product A⊗ A the Hadamard matrix
of the 4th order is obtained

1 1
1 �1

� �
� 1 1

1 �1

� �
¼

1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

2
664

3
775 :

It is known that there are no Hadamard matrices of the odd order [26]. To
provide the existence of Hadamard matrices of the even order n > 2, it is necessary
to have n divisible by 4. It should be noted that thereby nothing but the required
condition has been proved. From this condition it does not follow that at n divisible
by 4 the Hadamard matrix has to exist. The hypothesis, according to which this
condition is sufficient, also has not yet proved. In the geometry language the
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question concerning the existence of the Hadamard matrix of order n = 4k is
equivalent to the question concerning the possibility to inscribe a regular hyper-
symplex into a (4k − 1)-dimensional cube.

To obtain the Hadamard matrices in practice, it is possible to use the command
hadamard of the MATLAB packet. It allows the Hadamard matrices to be built for
the cases, when n, n/12 or n/20 are powers of 2. Unfortunately, such n as 28, 36, 44,
52, 56, 60, and others, which are divisible by 4, do not refer to these cases, though
for them the Hadamard matrices have been found long ago. A list of all known
Hadamard matrices, which has been composed by Sloan, can be found at the site
http://neilsloane.com/hadamard/. In the Sloan’s library there are given all Hadamard
matrices for n = 28 and at least by one matrix for all n values divisible by 4, right up
to n = 256. They have names of the type: had.1.txt, had.2.txt, had.4.txt, had.8.txt,
…, 256.syl.txt, and are arranged in the form of text files containing arrays of
signs + and −, corresponding to positive and negative entries of the Hadamard
matrices. Contents of several files of such a type are given in Table 10.1.

The system of notation is clear from the first column, where both versions of a
system for recording the Hadamard matrix of order 4, are shown.

Let us notice that the Hadamard matrices of order 2, 4, 8, and 12 are single
(accurate to the isomorphism). At n = 16, there are some various Hadamard
matrices. In the Sloan’s library they are denoted as: had.16.0, had.16.hed, had.16.
syl, had.16.twin, had.16.1, had.16.2, had.16.3, had.16.4. Three non-equivalent
Hadamard matrices for n = 20 are denoted as had.20.pal, had.20.will, had.20.
toncheviv. Further, in the library there are given 60 matrices of order 24 and 487
matrices of order 28, as well as the examples of Hadamard matrices for number to
256 inclusive for each n divisible by 4.

In the process of designing them, there were used methods proposed by Paley,
Placket-Burman, Sylvester, Tourin, and Williamson. Certain information about
these methods can be found in the digest [27], the authors of which constructed the

Table 10.1 Examples of Hadamard matrices txt-files

+ + + +
+ − + −
+ + − −
+ − − +

++++++++
+− +− +−+−
++ −− ++ −−
+−−++ − − +
++++− − − −
+−+ −− +− +
++− − − ++
+−− +− ++ −

+ −− − − − −−−−−−
++−+−−−+++−+
+++−+−−−+++−
+−++−+−−−+++
++−++−+−−−++
+++−++−+−−−+
++++−++−+−−−
+−+++−++−+−
+−+++−++−+−
+−−−+++−++−+
++−−−+++−++−
+−+−−−+++−++

++++++++++++++++
+ −+−+ − + − + −+−+−+−
++ − − ++ −−++−−++ − −
+ − ++ − − ++ − − ++− +
++++− − − ++++ − - − −
+− + −+− ++ − + − − + − +
++ − − − ++++ − − − − ++
+− + −++ − + − − + − ++ −
++++++++ − − − − − − −−
+ − + − + − +− − + −+− + −+
++ − − ++− − − − ++− − ++
+− − ++ − − + −++ − − ++ −
++++− − − − − − - − ++++
+− + − − + −+− + − ++ − + −
++ − − − − ++− − ++++ − −
+−− + −++ − − ++ − + − − +

1 1 1 1
1−1 1−1
1 1−1−1
1−1−1 1

10 Implementation of Hadamard Matrices for Image Processing 323

http://neilsloane.com/hadamard/


Hadamard matrix of order 428. The greatest order, for which Hadamard matrix is
presently known, is 668.

Not all Hadamard matrices represented in Table 10.1 are symmetrical. In
Table 10.2 there are given versions of the matrices, which are symmetrical relative
to the main or side diagonals and in a number of cases are more convenient for
being used in the strip-method. The Hadamard matrix is named regular, if every
row and every column contain the same number of “1”. Such matrices have the
maximum number of “1” entries (among all possible Hadamard matrices of a given
order). For example, the 1st row of Table 10.1 contains a regular Hadamard matrix
of order 4.

10.4.2 Shortened Hadamard Matrices

With a permutation of rows, columns and a multiplication of them by –1, it is
possible to provide their symmetrical form with positive entries in the first row and
the first column. Discarding this row and column, a shortened (reduced) matrix of
order n–1 will be obtained. This matrix will no longer be orthogonal but becomes the
circular one. All its rows are obtained with a cyclic shift of the first. This property is

Table 10.2 Symmetrical Hadamard matrices

n = 4 �1 1 1 1
1 �1 1 1
1 1 �1 1
1 1 1 �1

2
664

3
775

n = 8 1 1 1 1 1 1 1 1
1 �1 �1 1 �1 1 1 �1
1 �1 �1 �1 1 �1 1 1
1 1 �1 �1 �1 1 �1 1
1 1 1 �1 �1 �1 1 �1
1 �1 1 1 �1 �1 �1 1
1 1 �1 1 1 �1 �1 �1
1 �1 1 �1 1 1 �1 �1

2
66666666664

3
77777777775

n = 12 1 1 1
1 �1 1
1 �1 �1

1 1 1
�1 1 1
1 �1 1

1 1 1
1 �1 �1
1 1 �1

1 1 1
�1 1 �1
�1 �1 1

1 1 �1
1 �1 1
1 �1 �1

�1 1 �1
�1 �1 1
1 �1 �1

1 1 1
�1 1 1
1 �1 1

�1 �1 �1
1 �1 �1
1 1 �1

1 �1 �1
1 1 �1
1 1 1

�1 1 �1
�1 �1 1
�1 �1 �1

�1 1 �1
�1 �1 1
1 �1 �1

1 1 1
�1 1 1
1 �1 1

1 1 1
1 �1 1
1 1 �1

1 �1 �1
1 1 �1
1 1 1

�1 1 �1
�1 �1 1
�1 �1 �1

�1 1 �1
�1 �1 1
1 �1 �1

2
666666666666666664

3
777777777777777775
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useful in processing signals with the strip-method since it provides “smoothness” of
the signal transmitted [3].

Let some properties of the shortened Hadamard matrices be analyzed. At n = 4,
taking as a basis the matrix from the first column of Table 10.1, the following
Hadamard matrix of the third order will be obtained

�A3 ¼
�1 1 �1
1 �1 �1
�1 �1 1

2
4

3
5 �A�1

3 ¼ � 1
2

1 0 1
0 1 1
1 1 0

2
4

3
5:

In the case given the inverse matrix, also one can find itself circulante.
Let us consider the eigenvalues λi and eigenvectors Hi of the matrix �A3

k1 ¼ �1 k2 ¼ �2 k3 ¼ 2

H1 ¼
1
1
1

2
4

3
5 H2 ¼

1
�1
0

2
4

3
5 H3 ¼

1
1
�2

2
4

3
5:

The first vector corresponds to two-multiple noise that in filtration with the strip-
method remains unchanged; however other two-multiple noises can increase.

For n = 8 we obtain the following shortened Hadamard matrix of the seventh
order and the one inverse to it.

The eigenvalues of the matrix �A7 have the form −1, −2, 2. In general case, the
eigenvalues of the shortened Hadamard matrix obtained from the Hadamard matrix
of order n are divided into three groups: one of them is always equal to −1, a half of
the rest ones is equal to

ffiffiffi
n

p
, and another half is equal to � ffiffiffi

n
p

.

�A7 �A
�1
7

�1 �1 1 �1 1 1 �1
�1 �1 �1 1 �1 1 1
1 �1 �1 �1 1 �1 1
1 1 �1 �1 �1 1 �1

�1 1 1 �1 �1 �1 1
1 �1 1 1 �1 �1 �1

�1 1 �1 1 1 �1 �1

2
666666664

3
777777775

1
4

�1 �1 0 0 �1 0 �1
�1 �1 �1 0 0 �1 0
0 �1 �1 �1 0 0 �1

�1 0 �1 �1 �1 0 0
0 �1 0 �1 �1 �1 0
0 0 �1 0 �1 �1 �1

�1 0 0 �1 0 �1 �1

2
666666664

3
777777775

10.4.3 Conference Matrices

Definition 2 The name Conference-matrix (C-matrix) is given to any matrix C of
order n with zero on the main diagonal and +1 and −1 on the rest places satisfying
the condition CTC = (n − 1)I.
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Thus, rows (and columns) of C-matrices are orthogonal in pairs. The simplest
C-matrices have the form as Eq. 10.11.

0 1
1 0

� �
0 1
�1 0

� � 0 1 1 1
1 0 �1 1
�1 1 0 �1
�1 �1 1 0

2
664

3
775

0 1 1 1 1 1
1 0 1 �1 �1 1
1 1 0 1 �1 �1
1 �1 1 0 1 �1
1 �1 �1 1 0 1
1 1 �1 �1 1 0

2
6666664

3
7777775

ð10:11Þ

The first and third of them are symmetrical, the second and fourth are skew-
symmetrical. The skew-symmetric C-matrices as well as the Hadamard matrices
exist only at n = 2 and n, divisible by 4. From the point of view of the strip-method,
they in all respects are inferior to the Hadamard matrices, and therefore will not be
considered below.

The symmetrical C-matrices of order n can exist only in the case, when n − 2 is
divisible by 4, and n − 1 can be presented in the form of a sum of squares of two
integer numbers. For example, at n = 2, 6, 10, 14, 18 they exist and for n = 22 do
not, since number 21 is not presented by a sum of two squares. For n = 26, 30 the
C-matrices exist since equalities 25 = 32 + 42, 29 = 22 + 52 have a place. For n = 34,
as well as for n = 22, a negative answer is obtained. For n = 38, 42, 46 the answer
will also be negative.

Let us consider two problems, where we meet the C-matrices.
Conference arrangement problem. Let us suppose that n directors of some

company have decided to arrange a conference by telephone in such a way as to
provide any director with the possibility to speak to every one of his colleagues and
the rest ones could listen to their discussion. The construction of such a conference-
communications is equivalent to construction of a C-matrix.

Problem of weighing. What is the best scheme of weighing, if it needs to weigh
n objects at n procedures of weighing?

The strategy of weighing is described by the C-matrix given by its entries cij:

cij = 1, if in weighing i the object j is located on the left pan;
cij = −1, if in weighing i the object j is on the right pan;
cij = 0, if in weighing i the object j does not take part.

For n divisible by 4, the best scheme of weighing is given with the Hadamard
matrix and for even n, which are not divided by 4, is provided by the symmetrical
C-matrix.

The normalized matrices, the order of which differs from the Hadamard ones on
2, are of the extreme quality similar to that the Hadamard matrices possess: their
entry maximal in absolute value is minimal (for the class of orthogonal matrices).
Further we will denote the entry maximal in absolute value as α. The value of this
entry for the C-matrices equals a ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
, i.e. it is only a little inferior to the
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Hadamard matrices which have a ¼ 1=
ffiffiffi
n

p
. For example, for n = 6 the difference is

less than 10 %.
These formulae taken together describe an accurate bottom boundary of the

entry, maximal in absolute value, of the orthogonal matrices of the even order: the
first one for n, which are not divisible by 4, in particular for 6, 10, 14, 18, 26;
the second one for n divisible by 4, in particular for 4, 8, 12, 16, 20. In Table 10.3,
the C-matrices for n = 10, 14, 18; cases for n = 2, 6, had been considered above
(in Table 10.2) are shown.

The matrix C18 (as C14 too) have the symmetrical form with a zero diagonal.
Moreover, there is an analogue matrix X18, having two zero diagonals disposed
cross-wise.

Table 10.3 C-matrices for n = 10, 14, 18

C10 C14
0    -1     1     1    -1     1    -1    -1    -1    -1
-1     0    -1     1     1    -1     1    -1    -1    -1
1    -1     0    -1     1    -1    -1     1    -1    -1
1     1 -1     0    -1    -1    -1    -1     1    -1
-1     1     1    -1     0    -1    -1    -1    -1     1
1    -1    -1    -1    -1     0     1    -1    -1     1
-1     1    -1    -1    -1     1     0     1    -1    -1
-1    -1     1    -1    -1    -1     1     0     1    -1
-1    -1    -1     1    -1    -1    -1     1     0     1
-1    -1    -1    -1     1     1    -1    -1     1     0

0  1  1   1   1   1  1   1  1   1   1   1  1  1
1  0  -1  -1  -1  1  1  -1  1  -1  1  -1  1  1
1  -1  0  1  -1  -1  -1  1 -1  1  1  -1  1  1
1  -1  1  0  1  -1  1  -1  -1  -1  1  1  -1  1
1  -1  -1  1  0  -1  1  1  1  -1  -1  1  1  -1
1  1  -1  -1  -1  0  1  1  -1  1  1  1  -1  -1
1  1  -1  1  1  1  0  1  -1  -1  -1  -1  -1  1
1  -1  1  -1  1  1  1  0  -1  1  -1  -1  1  -1
1  1  -1  -1  1  -1  -1  -1  0  1  -1  1  1  1
1  -1  1  -1  -1  1  -1  1  1  0  -1  1  -1  1
1  1  1  1  -1  1  -1  -1  -1  -1  0  1  1  -1
1  -1  -1  1  1  1  -1  -1  1  1  1  0  -1  -1
1  1  1  -1  1  -1  -1  1  1  -1  1  -1  0  -1
1  1  1  1  -1  -1  1 -1  1  1  -1  -1  -1  0

18 X18
0  1  1  1  1   1  1   1  1   1   1  1   1  1   1   1   1   1
1  0  1  1  1  -1  1  -1  1  -1  1  1  -1  1  -1  -1  -1  -1
1  1  0  1  1  1  -1  1  -1  -1  1  -1  -1  -1  -1  1  1  -1
1  1  1  0  -1  1  1  1 -1  -1  -1  -1  -1  1  1  -1  -1  1
1  1  1  -1  0  1  1  -1  1  1  -1  -1  1  -1  -1  1  -1  -1
1  -1  1  1  1  0  -1  -1  1  -1  -1  -1  1  -1  1  -1  1  1
1  1  -1  1  1  -1  0  1  -1  1  -1  1  1  -1  -1  -1  -1  1
1  -1  1  1  -1  -1  1  0  -1  1  -1  1  -1  -1  1  1  1  -1
1  1  -1  -1  1  1  -1  -1  0  1  -1  1  -1  1  1  -1  1  -1
1  -1  -1  -1  1  -1  1  1  1  0  -1  -1  -1  1  -1  1  1  1
1  1  1  -1  -1  -1  -1  -1  -1  -1  0  1  1  1  -1  1  1  1
1  1  -1  -1  -1  -1  1  1  1  -1  1  0  1  -1 1  -1  1  -1
1  -1  -1  -1  1  1  1  -1  -1  -1  1  1  0  -1  1  1  -1  1
1  1  -1  1  -1  -1  -1  -1  1  1  1  -1  -1  0  1  1  -1  1
1  -1  -1  1  -1  1  -1  1  1  -1  -1  1  1  1  0  1  -1  -1
1  -1  1  -1  1  -1  -1  1  -1  1  1  -1  1  1  1  0  -1  -1
1  -1  1  -1  -1  1  -1  1  1  1  1  1  -1  -1  -1  -1  0  1
1  -1  -1  1  -1  1  1  -1  -1  1  1  -1  1  1  -1  -1  1  0

0  1  1  1  1  1   1  1  1  1  1   1  1  1  1  1  1  0
1  0  1  1 -1  1 -1  1 -1 -1  1 -1 -1 -1  1  1  0  1
1  1  0 -1 -1  1  1 -1 -1 -1 -1  1  1 -1  1  0  1 -1
1  1  1  0 -1 -1  1  1 -1  1 -1 -1  1  1  0 -1 -1  1
1  1  1 -1  0 -1 -1 -1  1 -1  1  1  1  0 -1  1 -1  1
1 -1  1  1 -1  0 -1 -1 -1  1  1  1  0  1 -1 -1  1 -1
1  1 -1  1 -1 -1  0  1  1 -1 -1  0 -1  1 -1  1  1 -1
1  1 -1  1 1  1 -1 -1  0  0 -1  1 -1  1  1 -1 -1  1
1 -1 -1 -1 -1  1 -1  0  1  1  0 -1  1  1  1  1 -1 -1
1 -1  1 -1  1  1  1 -1  0  0 -1 -1 -1  1 -1  1  1  1
1  1  1 -1  1 -1 -1  0  1  1  0 -1 -1 -1  1 -1  1 -1
1 -1  1  1  1  1  0  1  1 -1 -1  0  1 -1 -1 -1 -1 -1
1 1 -1  1  1  0  1 -1 -1  1  1 -1  0 -1 -1  1 -1 -1
1 -1 -1  1  0 -1  1 -1  1 -1  1 -1  1  0  1 -1  1  1
1 -1 -1  0  1 -1 -1  1 -1  1 -1  1  1 -1  0  1  1  1
1 -1  0 -1  1 -1  1  1 -1 -1  1  1 -1  1  1  0 -1 -1
1  0 -1 -1 -1  1  1  1  1  1  1  1 -1 -1 -1 -1  0  1

0  1 -1 -1  1  1 -1  1 -1 -1  1 -1 1  1 -1 -1  1   0

C

10 Implementation of Hadamard Matrices for Image Processing 327



It is quite close to the optimal one. The value of its maximum element after
normalization is equal to a ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffi
n� 2

p ¼ 0:25 (for the matrix C18,

a ¼ 1
� ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p ¼ 0:2425).

The Hadamard matrices and C-matrices are closely connected. In particular, it is
possible to construct Hadamard matrices from C-matrices [28].

Suppose C is a symmetric C-matrix of order m. Then the matrix

A ¼ Cþ Im C� Im
C� Im �C� Im

� �

is a Hadamard matrix of order 2m.
This matrix is rather close to the optimal one; after normalization the value of its

maximal entry is equal to a ¼ 1
� ffiffiffiffiffiffiffiffiffiffiffi

n� 2
p ¼ 0:25 (for the matrix C18,

a ¼ 1
� ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p ¼ 0:2425). Moreover, if C is antisymmetric C-matrix, then I + C is

a Hadamard matrix of order m.
In the aggregate the Hadamard matrices and C-matrices give the solution of the

orthogonal Procrustean problem (the problem to find orthogonal matrices with an
entry minimal in absolute value) almost for all even n, with the exception of several
values such as n = 22 and n = 34.

The situation for odd n is too much worse. Here only a few optimal matrices for
small values of n are known. Information about them is given below.

10.4.4 Optimal Orthogonal Matrices
of the Odd Order (M-Matrices)

Let us name the matrices providing a solution of the orthogonal Procrustean
problem for odd n minimax, or simply M-matrices. Their main property is the
minimality of the value α, i.e. the values of the entry maximal in absolute value on
the class of all orthogonal matrices of a given dimension. Here it is possible to
indicate three problems [29]:

Problem 1 Search of particular M-matrices for various numbers n.

Problem 2 Determination of an accurate bottom boundary α* for the value of
maximal entries of M-matrices α depending on n: α ≥ α* = f(n).

Problem 3 Determination of the number k of entry levels in the M-matrix for
different n.

Therefore, the Hadamard matrices can be called one-level since all their entries
are equal in absolute value. The C-matrices are two-level, modulus of their entries is
equal to 0 or 1. For an odd n, the M-matrices appear to be the k-level ones;
k depending on n [30, 31].
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It should be expected that the solution of all three problems set will depend on
what remainder is, when the odd number n is divided by 4 (1 or 3). Correspond-
ingly, a set of M-matrices breaks up into two subsets that differ in bottom
boundaries, number of levels k and type of matrices.

Let us move to description of particular M-matrices for n = 3, 5, 7, 9, 11.
Searching for these matrices is performed by numerical and symbolic modelling in
the MATLAB and MAPLE packets with the help of specially developed software.
As a result we have managed to determine an analytic type of entries of the optimal
matrices M3, M5, M7, M9, as well as to find the matrix M11 in the numerical form,
having preliminary obtained a system of non-linear algebraic equations for deter-
mining its entries. A more detailed procedure of searching is explained below by an
example of the matrix M11.

For the case n = 3, the optimal matrix providing the solution of the orthogonal
Procrustean problem, is provided by Eq. 10.12.

M3 ¼ 1
3

�1 2 2
2 �1 2
2 2 �1

2
4

3
5 ð10:12Þ

This matrix is orthogonal and symmetrical, the value of its maximal entry is
equal to α = 2/3. The matrix contains entries of two types, i.e. it has two levels. For
n = 5 the optimal matrix occurs to be of three levels (Eq. 10.13)

M3 ¼ 1
11

�2 3 6 6 6
3 6 �6 6 �2
6 �6 �3 2 6
6 6 2 �6 3
6 �2 6 3 �6

2
66664

3
77775: ð10:13Þ

It is also orthogonal and symmetrical, the value of its maximal entry α = 6/11.
Distribution of the absolute value of its entries by levels is shown in Fig. 10.6.

0 5 10 15 20 25
2

2.5

3

3.5

4

4.5

5

5.5

6Fig. 10.6 Distribution of the
matrix M5 entries by levels
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From its 25 entries, 15 ones are on the upper level, the rest ones by 5 are on the
remaining two levels. Thus, the entries of the upper levels amounts to 60 % of
the total number (67 % for the matrix M3 and 100 % for the Hadamard matrices).

In investigating the case n = 7, there were found two matrices: the five-level

matrix M7 of the value a ¼ 5þ7
ffiffi
7

p
53 � 0:444 and two-level matrix N7 of the value

a ¼ 2þ3
ffiffi
2

p
14 � 0:446. The structures of these matrices are the following:

M7 ¼

½a; �d; c; a; �a; �a; �a�
½�d; c; a; a; a; a; �a�
½c; a; �d; a; �a a; a�
½a; a; a; �c b; �b; b�
½�a; a; �a; b; c; �a; �d�
½�a; a; a; �b; �a; �d; �e�
½�a; �a; a; b; �d; �e; a�;

N7 ¼

½a; a; a; a; b; b; �b�
½a; �b; �b; a; �a; b; a�
½a; �b; a; �b; b; �a; a�
½a; a; �b; �b; �a; �a; �b�
½b; �a; b; �a; �b; a; �a�
½b; b; �a; �a; �b; a; b�
½�b; a; a; �b �a; b; a�:

Unlike the preceding cases, the entries of these matrices are irrational.
For the matrix M7 they contain

ffiffiffi
7

p
: a ¼ 3þ 3

ffiffiffi
7

p
; b ¼ 9;

c ¼ 5� ffiffiffi
7

p
; d ¼ �6þ 3

ffiffiffi
7

p
; e ¼ 4þ ffiffiffi

7
p

:

In normalizing all of them should be divided by 22þ ffiffiffi
7

p
. Entries of the matrix

N7 contain
ffiffiffi
2

p
: a ¼ 2þ ffiffiffi

2
p

; b ¼ 2. In normalizing all of them should be divided
by 2þ 4

ffiffiffi
2

p
. Let us show both of these matrices in detailed writing (without any

normalization) (Eq. 10.14).

M7 ¼

3þ 3
ffiffiffi
7

p
; 6� 3

ffiffiffi
7

p
; 5� ffiffiffi

7
p

; 3þ 3
ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
6� 3

ffiffiffi
7

p
; 5� ffiffiffi

7
p

; 3þ 3
ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
5� ffiffiffi

7
p

; 3þ 3
ffiffiffi
7

p
; 6� 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
;

3þ 3
ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; �5þ ffiffiffi

7
p

; 9; �9; 9
�3� 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
; �9; 4þ ffiffiffi

7
p

; �3� 3
ffiffiffi
7

p
; 6� 3

ffiffiffi
7

p
�3� 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; �9; �3� 3

ffiffiffi
7

p
; 6� 3

ffiffiffi
7

p
; �4� ffiffiffi

7
p

�3� 3
ffiffiffi
7

p
; �3� 3

ffiffiffi
7

p
; 3þ 3

ffiffiffi
7

p
; 9; 6� 3

ffiffiffi
7

p
; �4� ffiffiffi

7
p

; 3þ 3
ffiffiffi
7

p

2
666666664

3
777777775

ð10:14Þ
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N7 ¼

2þ ffiffiffi
2

p
2þ ffiffiffi

2
p

2þ ffiffiffi
2

p
2þ ffiffiffi

2
p

2 2 �2
2þ ffiffiffi

2
p �2 �2 2þ ffiffiffi

2
p �2� ffiffiffi

2
p

2 2þ ffiffiffi
2

p
2þ ffiffiffi

2
p �2 2þ ffiffiffi

2
p �2 2 �2� ffiffiffi

2
p

2þ ffiffiffi
2

p
2þ ffiffiffi

2
p

2þ ffiffiffi
2

p �2 �2 �2� ffiffiffi
2

p �2� ffiffiffi
2

p �2
2 �2� ffiffiffi

2
p

2 �2� ffiffiffi
2

p �2 2þ ffiffiffi
2

p �2� ffiffiffi
2

p
2 2 �2� ffiffiffi

2
p �2� ffiffiffi

2
p

2þ ffiffiffi
2

p
2þ ffiffiffi

2
p

2
�2 2þ ffiffiffi

2
p

2þ ffiffiffi
2

p �2 �2� ffiffiffi
2

p
2 2þ ffiffiffi

2
p

2
666666664

3
777777775

Distribution of the entry modulus for the normalized matrix M7 level by level,
which has been obtained in MATLAB with the help of the command “plot(sort(abs
(M7(:))),‘*’)”, is shown in Fig. 10.7.

From this figure, it is seen that the bottom level contains 6 entries. The next ones
contain 4, 3, and 6 entries, respectively. The most numerous upper level contains 30
entries, which amounts to about 61 % (approximately as much as in the case with
the matrix M5).

For n = 9 the best from found matrices has four levels and the value

a ¼ 3þ ffiffi
3

p
12 ¼ 0:3943:

M9 ¼

½d; b; b; b; b; b; b; b; b�
½b; a; a; a; �a; �a; �c; �c; �c�
½b; a; �c; �a; �c; a; a; �c; �a�
½b; a; �a; �c; a; �c; �a; �c; a�
½b; �a; �c; a; a; �c; a; �a; �c�
½b; �a; a; �c; �c; a; �c; �a; a�
½b; �c; a; �a; a; �c; �c; a; �a�
½b; �c; �c; �c; �a; �a; a; a; a�
½b; �c; �a; a; �c; a; �a; a; �c�;
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12a ¼ 3þ ffiffiffi
3

p
; a ¼ 0:3943;

6b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

ffiffiffi
3

p � 6
p

; b ¼ 0:3493;
4c ¼ ffiffiffi

3
p � 1; c ¼ 0:1830;

3d ¼ 2
ffiffiffi
3

p � 3; d ¼ 0:1547;

Maximal entry
3þ ffiffiffi

3
p

12
¼ 0:394337:

Its structure and entries are the following. Here we deal with an irrationality of
the type “a root from a root” arising from the solution of a biquadratic equation.
Distribution of modulus of the matrix M9 entries on levels is shown in Fig. 10.8.

From Fig. 10.8, it is seen that on the bottom level there is one entry, on the next
two levels there are 34 and 16 entries, respectively. On the upper level, there are 40
entries, which amounts to 49 % of their total number. Unfortunately, n = 9 is
the final case, when it has been managed to get explicit expressions for entries of
the M-matrix.

For n = 11 the best orthogonal matrix founded in MATLAB, has a six-level
structure

M11 ¼

�b a f a a d c e a �a �a
�d f a �a e �a b c �a �a a
�a �e �c a d �a a �a f a b
a �d a b a a �f �a �e �c a
a a e a �b �a a �d �a �f �c
a �a a �d a �e a f c b �a
�f b d �c �a a a �a a e a
e a a a f �c �a a b d a
a a �a �f c a d b �a a e
a �c �b e �a �f a a a �a d
�c �a a a �a b e a �d a �f

2
66666666666666664

3
77777777777777775

:
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The numerical values of its entries are as follows: a = 0.34295283,
b = 0.33572291, c = 0.30893818, d = 0.2439851, e = 0.15671878, f = 0.045364966.
Their distribution over the levels is shown in Fig. 10.9.

The index α = 0.3429 is equal to the value of the entry a. Let us notice that a
percentage of entries maximal in absolute value amounts to 6/11 ≈ 54.5 %, which
accurately coincides with the value of the index α for the matrix M5.

Equally with the search of optimal matrices of the odd order, there is a similar task
with regard to those matrices of the even order, for which there are no C-matrices.
First of all this refers to the orders n = 22, n = 34, and n = 66. Let us give the best
result obtained for n = 22. The two level matrix M22 has the following form:

M22 ¼
0 1 1 �1 �1 1 �1 1 �1 1 1 0 1 1 �1 1 1 1 1 1 �1 �1

1 0 1 1 �1 �1 1 �1 1 �1 1 �1 0 1 1 �1 1 1 1 1 1 �1

1 1 0 1 1 �1 �1 1 �1 1 �1 �1 �1 0 1 1 �1 1 1 1 1 1

�1 1 1 0 1 1 �1 �1 1 �1 1 1 �1 �1 0 1 1 �1 1 1 1 1

1 �1 1 1 0 1 1 �1 �1 1 �1 1 1 �1 �1 0 1 1 �1 1 1 1

�1 1 �1 1 1 0 1 1 �1 �1 1 1 1 1 �1 �1 0 1 1 �1 1 1

1 �1 1 �1 1 1 0 1 1 �1 �1 1 1 1 1 �1 �1 0 1 1 �1 1

�1 1 �1 1 �1 1 1 0 1 1 �1 1 1 1 1 1 �1 �1 0 1 1 �1

�1 �1 1 �1 1 �1 1 1 0 1 1 �1 1 1 1 1 1 �1 �1 0 1 1

1 �1 �1 1 �1 1 �1 1 1 0 1 1 �1 1 1 1 1 1 �1 �1 0 1

1 1 �1 �1 1 �1 1 �1 1 1 0 1 1 �1 1 1 1 1 1 �1 �1 0

0 �1 �1 1 1 1 1 1 �1 1 1 0 �1 �1 1 �1 1 �1 1 1 �1 �1

1 0 �1 �1 1 1 1 1 1 �1 1 �1 0 �1 �1 1 �1 1 �1 1 1 �1

1 1 0 �1 �1 1 1 1 1 1 �1 �1 �1 0 �1 �1 1 �1 1 �1 1 1

�1 1 1 0 �1 �1 1 1 1 1 1 1 �1 �1 0 �1 �1 1 �1 1 �1 1

1 �1 1 1 0 �1 �1 1 1 1 1 1 1 �1 �1 0 �1 �1 1 �1 1 �1

1 1 �1 1 1 0 �1 �1 1 1 1 �1 1 1 �1 �1 0 �1 �1 1 �1 1

1 1 1 �1 1 1 0 �1 �1 1 1 1 �1 1 1 �1 �1 0 �1 �1 1 �1

1 1 1 1 �1 1 1 0 �1 �1 1 �1 1 �1 1 1 �1 �1 0 �1 �1 1

1 1 1 1 1 �1 1 1 0 �1 �1 1 �1 1 �1 1 1 �1 �1 0 �1 �1

�1 1 1 1 1 1 �1 1 1 0 �1 �1 1 �1 1 �1 1 1 �1 �1 0 �1

�1 �1 1 1 1 1 1 �1 1 1 0 �1 �1 1 �1 �1 1 1 �1 �1 0

The distribution of modules of its elements over the levels is shown in
Fig. 10.10.

The index of this matrix α = 0.2236, which is worse than estimate 0.2182 for the
non-existent C-matrix only by 0.0054. This index is a little worse, i.e. only by
0.0033, than the index α = 0.2269 for six level matrix M22, obtained in [32, 33].
Similar two level matrices exist and for cases n = 34 and n = 66.

10.4.5 Two-, Three-, and Many-Levels M-Matrices

The Hadamard matrices have many remarkable properties marking them out on a
set of orthogonal matrices. Unfortunately, at n > 2 there exist no Hadamard
matrices, if n is odd or becomes odd after dividing by 2. In such cases there is a
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problem of searching some orthogonal matrices that due to their properties are close
to Hadamard matrices. On mathematical statement of this problem it is necessary to
indicate, what properties of Hadamard matrices should be saved in particular.
According to the author’s opinion three versions of setting the problem are the most
natural ones:

1. An orthogonal matrix of a given order n, for which the highest possible
(maximal) absolute value element is minimal (the minimax problem) has to be
found.

2. An orthogonal matrix of a given order n, for which the minimum absolute value
element is maximal (the maximin problem) has to be found.
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3. An orthogonal matrix of a given order n, for which the difference between the
maximal module and minimal module elements is minimal (the problem con-
cerning the matrices with a minimal swing of elements).

In all versions, the cases connected with logical design of arraying indicated
matrices, finding specific matrices with properties given, and analyzing the
asymptote at a large n originate. It should be noted that from the theoretical point of
view all three problems are equally substantial. At the same time the first problem
seems to be of the greatest practical interest since it well agrees with the standard
criterion signal-to-noise ratio traditionally used in the communication theory. It is
interesting that in all three cases the optimal orthogonal matrices have a property,
due to which their elements are able to group by a value, i.e., their elements are
divided into a small number of groups (levels) with equal absolute values. At the
same time, for optimal minimax matrices (problem 1) it is typical that the group of
elements, which are maximal by their absolute values, is the most numerous one.
On the contrary, for optimal maximin matrices (problem 2) the group of elements
that are minimal by their absolute values is the most numerous one. In problem 3, it
is possible to expect a more symmetrical pattern of the level-wise element
distribution.

Let the orthogonal matrices be called the r-level ones, if the absolute values of
their elements possess precisely r values. For example, the Hadamard matrices are
single-level ones, the unitary matrix and permutation matrices are two-level ones.

From the point of view of tasks of processing images and signals, encoding,
masking, constructing noise combating codes, the integer-valued two-level
orthogonal matrices and ones obtained from them by the way of multiplication by a
constant, are of a particular interest.

It is possible to outline a number of classes of such matrices.
The C-matrices. Such matrices are orthogonal with elements ±1 and zero main

diagonal.
The D-matrices. Matrices of such a type are orthogonal of the following form:

Dn ¼ 1
n

2� n 2 2 � � � 2
2 2� n 2 � � � 2
� � � � � � � � � � � � � � �
2 2 2 � � � 2� n

2
664

3
775:

In particular, at n = 3, 4, 5 they look like as mentioned below:
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D3 ¼ 1
3

�1 2 2

2 �1 2

2 2 �1

2
64

3
75 ¼ M3 ; D4 ¼ 1

2

�1 1 1 1

1 �1 1 1

1 1 �1 1

1 1 1 �1

2
6664

3
7775 ;

D5 ¼ 1
5

�3 2 2 2 2

2 �3 2 2 2

2 2 �3 2 2

2 2 2 �3 2

2 2 2 2 �3

2
6666664

3
7777775
:

Let us note that the matrix D3 coincides with the optimal matrix M3, and the
matrix D4 with the Hadamard matrix A4.

At n = 6, 8 the D-matrices have a view:

D6 ¼ 1
3

�2 1 1 1 1 1
1 �2 1 1 1 1
1 1 �2 1 1 1
1 1 1 �2 1 1
1 1 1 1 �2 1
1 1 1 1 1 �2

2
6666664

3
7777775

D8 ¼ 1
4

�3 1 1 1 1 1 1 1
1 �3 1 1 1 1 1 1
� � � � � � � � � � � � � � � � � � � � � � � �
1 1 1 1 1 1 �3 1
1 1 1 1 1 1 1 �3

2
66664

3
77775:

The using of the D-matrices of higher orders is not efficient, since by a value of
the maximum element a ¼ 2

n � 1 they significantly worse than the optimal
M-matrices. At the same time the above indicated D-matrices can be used as
“building blocks” for constructing other two-level and three-level matrices.

Let us note that the matrix D4 is a particular case of the family of two-level
matrices having the form

a �b �b b
b a b b
b �b a �b
�b �b b a

2
664

3
775 ;

which are orthogonal at any a, b. Particularly the versions [a, b] = [1 2], [1 3],
[2 3] are possible.
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The composed orthogonal matrices. One of the methods applied for constructing
the two-level orthogonal matrices is based on application of the Kronecker product
of single-level and two-level matrices. For example, when analyzing the Kronecker

product of the matrix
a b
b �a

� �
and Hadamard matrix

1 1
1 �1

� �
, one get a family

of two-level matrices of the 4th order.

At n = 6, multiplying the matrix D3 on the Hadamard matrix A2 =
1 1
1 �1

� �
and

on unitary matrix I2 =
1 0
0 1

� �
, one get two two-level matrices of the 6th order:

D3 � A2 ¼ D3 D3

D3 �D3

� �
¼

�1 2 2 �1 2 2
2 �1 2 2 �1 2
2 2 �1 2 2 �1
�1 2 2 1 �2 �2
2 �1 2 �2 1 �2
2 2 �1 �2 �2 1

2
6666664

3
7777775
;

a ¼
ffiffiffi
3

p
=2 ¼ 0:4714;

D3 � I ¼ D3 0
0 D3

� �
¼

1 2 2 0 0 0
2 1 �2 0 0 0
�2 2 �1 0 0 0
0 0 0 1 2 �2
0 0 0 2 1 2
0 0 0 �2 2 1

2
6666664

3
7777775
;

a ¼ 2=3 ¼ 0:6667:

Let us note that at the Kronecker multiplication of orthogonal matrices
A = A1 ⊗ A2 their indices are multiplied: α = α1α2 The unitary matrix I has the
index α = 1, therefore at A2 = I we get α = α1. Provided A2 is the Hadamard matrix
then the result index is equal to a ¼ a1=

ffiffiffi
n

p
:

The Kronecker product of the matrix D5 and Hadamard matrix
1 1
1 �1

� �
gives

the two-level matrix of the 10th order with the index α = 0:3
ffiffiffi
2

p ¼ 0:4242 (the
matrix C10 has the similar index α = 1/3).
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C10 ¼
2 �3 2 �2 �2 2 2 2 3 �2

2 2 �2 3 2 2 2 �2 2 �3

2 2 �2 �2 2 2 �3 3 2 2

�2 �2 �2 2 2 �2 3 3 2 2

3 �2 3 2 2 �2 �2 �2 2 2

�2 �2 2 2 3 3 �2 2 �2 �2

3 �2 �3 2 �2 �2 �2 2 �2 �2

�2 �2 �2 2 �3 3 �2 �2 2 2

2 2 2 3 �2 2 2 2 �2 3

�2 3 2 2 �2 �2 �2 2 3 �2:

The distribution of the matrix C10 entries over the levels is shown in Fig. 10.11
(n = 10, 2 levels). Each of its line has 8 twins and 2 triplets.

Let us consider some other examples of two-level matrices. At n = 13, there is a
matrix consisting of zeros and units, which has the index α = 1/3 and contains 4
zeros in each of its lines

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3Fig. 10.11 Distribution of
the matrix C10 entries by
levels

338 L. Mironovsky and V. Slaev



C13 ¼
0 �1 1 1 �1 0 �1 �1 �1 �1 0 �1 0

�1 �1 0 0 1 �1 0 �1 �1 1 1 1 0

�1 0 1 �1 �1 1 �1 0 1 0 1 1 0

0 0 �1 �1 0 �1 0 �1 1 �1 1 �1 1

0 �1 �1 0 �1 1 1 �1 0 0 �1 1 1

1 �1 1 �1 1 1 0 0 0 1 0 �1 1

�1 0 �1 0 1 1 �1 1 �1 �1 0 0 1

�1 1 0 �1 0 1 1 �1 �1 0 0 �1 �1

�1 �1 1 �1 0 �1 1 1 0 �1 �1 0 0

0 1 0 �1 �1 �1 �1 0 �1 1 �1 0 1

1 1 1 0 0 0 1 0 �1 �1 1 1 1

�1 1 1 1 1 0 0 �1 1 0 �1 0 1

1 0 0 �1 1 0 �1 �1 0 �1 �1 1 �1:

The distribution of the matrix C13 entries over the levels is shown in Fig. 10.12
(n = 13, 2 levels, α = 1/3).

At n = 15 there is a matrix, each line of which contains 7 twins and 8 triplets.

C15 ¼
3 2 2 �3 3 �3 �2 2 2 �2 3 �3 �3 �3 2

�2 �3 �3 �3 3 2 3 2 2 3 �2 �3 �3 2 2

2 �2 3 �2 �3 �2 �3 3 �2 2 �3 �2 3 3 3

2 3 3 3 2 �2 2 �2 3 2 �3 3 �2 3 3

2 �2 3 �2 2 3 2 3 3 �3 2 3 3 3 �2

3 2 2 �3 �2 2 3 �3 2 3 2 �3 2 �3 �3

�3 3 �2 �2 2 �2 �3 �2 3 �3 �3 �2 3 3 �2

2 3 �2 3 2 3 2 3 �2 �3 �3 �2 3 �2 3

3 �3 �3 2 3 �3 �2 2 2 3 �2 2 2 �3 �3

�3 3 3 �2 2 3 �3 3 �2 2 �3 3 �2 �2 �2

3 2 �3 �3 �2 �3 3 2 �3 �2 �2 2 �3 2 �3

�3 3 �2 �2 �3 �2 2 3 3 2 2 3 3 �2 3

3 2 �3 �3 3 2 �2 �3 �3 3 3 2 2 2 2

�2 2 2 2 3 �3 3 2 �3 3 3 �3 2 2 �3

2 3 �2 3 �3 3 �3 3 3 2 2 �2 �2 3 �2:
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The distribution of the matrix C15 entries over the levels is shown in Fig. 10.13
(n = 15, 2 levels, α = 0.3).

Moreover, at n = 15 there is the matrix C15 (the variant) that contains 7 twins and
8 units in each of its lines:

C15: ¼
2 2 2 �2 1 2 �1 1 �1 �1 �1 �1 2 �1 2

1 2 �1 �2 �2 2 2 1 �1 2 �1 2 �1 �1 �1

1 �1 2 1 �2 2 �1 �2 2 �1 �1 2 2 �1 �1

�1 �2 1 �1 �1 1 1 �1 �2 �2 �2 �2 �2 1 �2

1 �1 2 �2 1 �1 2 �2 2 2 �1 �1 �1 �1 2

�2 2 2 1 �2 �1 2 1 2 �1 2 �1 �1 �1 �1

�2 �1 �1 1 1 2 2 �2 �1 2 2 �1 2 �1 �1

2 1 1 2 2 1 1 2 1 1 �2 �2 1 1 �2

�1 �2 1 �1 2 1 �2 2 1 1 1 1 �2 �2 �2

�2 �1 �1 �2 1 �1 2 1 2 �1 �1 2 2 2 �1

2 �2 �2 �1 �1 1 1 2 1 �2 1 �2 1 �2 1

�1 1 �2 �1 �1 �2 �2 �1 1 1 �2 �2 1 �2 �2

�1 �2 1 2 �1 �2 1 2 �2 1 �2 1 1 �2 1

�2 �1 �1 1 �2 2 �1 1 2 2 �1 �1 �1 2 2

1 �1 2 �2 �2 �1 �1 1 �1 2 2 �1 2 2 �1

The distribution of the matrix C15 (the variant) entries over the levels as it is shown
in Fig. 10.14 (n = 15, 2 levels, α = 1/3).

Similar matrices with elements consisting of two adjacent integer numbers exist
at n = 22k − 1, i.e. at n = 3, 15, 63, 255,… At a given k there exist two matrices, one
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with elements k − 1 and k, the other with elements k and k + 1. In particular, at
n = 63 (k = 3) such matrices will have elements which have modules equal to 3 and
4; 4 and 5.

With the help of the Kronecker product it is possible to construct three-level
matrices too. When performing the multiplication, it is possible to use the following
orthogonal matrices as the basic ones:

A2 ¼ a b
b �a

� �
A3 ¼

a b c
�c a �b
�b c a

2
4

3
5 A4 ¼

a �b �c d
b a d c
c �d a �b
�d �c b a

2
664

3
775 :
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At the same time a part of elements in these matrices can be made equal to each
other. Below the three-level matrix of the 9th order is shown, which is based on the
optimal matrix M3, the distribution of modules of its elements is illustrated too.

The distribution of the Hadamard-Mersenne matrix M9 entries over the levels is
shown in Fig. 10.15 (n = 9, α = 4/9).

The integer-valued three-level matrix of the 25th order with a unit diagonal can
be obtained with the help of cyclic shift of line:

1 �4 �4 6 �4 6 6 6 6 6 6 6 �4 �4 6 �4 �4 6 �4 6 �4 6 �4 �4 �4:

The Hadamard-Mersenne matrices. The minimax matrices of orthogonal bases
(i.e. M-matrices) with a minimal number of levels depending on a division
remainder r by 4, can be divided into 4 cases:

• The matrices with r = 0: Hadamard matrices (H) [3, 21, 29, 34], containing
matrices of the Sylvester chain.

• The matrices with r = 1: Hadamard-Fermat matrices (F) [35], including orders
from the Fermat chain.

• The matrices with r = 2: Hadamard-Euler matrices (E) [36] (and C-matrices
[28], with exceptions based on Euler criterion).

• The matrices with r = 3: Hadamard-Mersenne matrices (M) [37], including
orders from a chain of Mersenne numbers.

The Hadamard-Mersenne matrices represent a class of two-level matrices of
the odd order, which are close to the Hadamard matrices. The dimensionality of
these matrices is equal to Mersenne numbers 2k − 1, and their elements tend to
values {1, −1}, as the values of a integer-valued argument k increases, as it takes
place with the Hadamard matrices [38].
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The classical method of constructing Hadamard matrices of the order n = 2 is
based on using the iteration formula, where the iteration process begins from the
matrix A1 = 1

A2n ¼ An An

An �An

� �
:

On the analogy, at the start of constructing the Hadamard-Mersenne matrices we
will use a modified Eq. 10.15, where the Mn-matrix contains elements of the form
±a and ±b (without any limitation of the commonness, let us consider that a = 1),
and the matrix M�

n was formed with the help of permutation of the levels a and − b.

M�
n ¼ S2n ¼ Hn Hn

Hn H�
n

� �
ð10:15Þ

The matrix S2n obtained with this formula is symmetrical; its order is even and
less than the order of the next Hadamard-Mersenne matrix M2n+1 by 1. At the
second step the matrix S2n is “bordered” by the way of adding a line and column,
where λ and e are the proper number and eigenvector of the matrix S2n

M2nþ1 ¼ H2nþ1 ¼ �k e0

e S2n

� �
:

If the iteration process is started from

H3 ¼
a �b a
�b a a
a a �b

2
4

3
5;

then the matrix obtained by such a manner will be symmetrical and orthogonal.
The eigenvalue of the matrix S2n will be equal to λ = −a. At the same time half of

the components of the eigenvector consists of –b, and the remaining half consists of

a. It takes place for next values of generating pair: b = a/2 at n = 3 and b ¼ p�
ffiffiffiffi
4p

p
p�4 a,

p = n + 1 on the contrary.
The structure of the Hadamard-Mersenne matrix of the 15th order is shown in

Fig. 10.16, where the white fields are the matrix elements with the value a = 1, and
the black fields are the elements of the matrix with the value b.

Hadamard-Fermat matrices. These matrices represent a class of three-level
matrices of the odd order, close by their properties to the properties of the Had-
amard matrices. The size of these matrices is equal to numbers 22k + 1 and as the
values of integer-valued argument k increase, their elements tend to values {1, −1},
as it takes place with the Hadamard matrices.

Let the Hadamard-Fermat matrix Fn be of the order n and designate by Sn−1 a
symmetrical matrix obtained from the matrix Fn by means of deletion of its first line

10 Implementation of Hadamard Matrices for Image Processing 343



and column. After that, let Eq. 10.15 be modified by replacing it with quadrupli-
cating its order according to rule [39] in Eq. 10.16, where the matrix S�n�1 was
formed by replacing the values of levels a with −b and vice versa.

S4n�4 ¼
S�n�1 Sn�1 Sn�1 Sn�1

Sn�1 S�n�1 Sn�1 Sn�1

Sn�1 Sn�1 S�n�1 Sn�1

Sn�1 Sn�1 Sn�1 S�n�1

0
BB@

1
CCA ð10:16Þ

The matrix S4n−4 obtained according to Eq. 10.16 is symmetrical. Its order is
even and less than the order of the next Hadamard-Fermat matrix F4n−3 by a unit.
To complete the recursive process an additional bordering (addition of a line and
column) is needed. The most important requirement is the orthogonality of the
matrix obtained due to edging.

To find the location of the orthogonal edging, let the method based on the
properties of proper numbers and eigenvectors of block matrices be applied. Matrix
F4n–3 is formed by edging the matrix S4n−4 (Eq. 10.16) in such a way, where λ and
e are the proper number and eigenvector of the matrix S4n−4, respectively,

F4n�3 ¼ �k e0

e S4n�4

� 	
: ð10:17Þ

The matrix obtained in such a way will be symmetrical and orthogonal, if the
iteration process is started from the matrix S4n−4

F5 ¼

a s s s s
s a �b �b �b
s �b a �b �b
s �b �b a �b
s �b �b �b a

0
BBBB@

1
CCCCA :

Fig. 10.16 The structure of
the Hadamard-Mersenne
matrix M15
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The matrix S4 is obtained by deleting its first line and first column (“edging”).
Here a = −λ is the proper number of the matrix S4, taken with an inverse sign; s are
the elements of the corresponding eigenvector, at that b < s < a.

At n = 5, in particular, we have b = s = 2a/3, where in the general case b ¼ n�q
q a,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
np�2

ffiffi
p

pp
2q a, q ¼ pþ ffiffi

p
p
2 , p = n − 1.

The structure of the matrix F5 and matrix F17 constructed according to the
iteration are shown in Figs. 10.17 and 10.18. The intermediate level of the second
matrix corresponds to the elements of the marked vector. Here, the white field is the
matrix element of the form a = 1, the black field is the element of the form −b, the
grey field is the element of “edging” элeмeнт b < s < a.

The Hadamard-Euler matrices. In [40] a class of two-level matrices is named as
the Hadamard-Euler matrices. These matrices are represented by the square
matrices En of the order n, consisting of the numbers ±a and ±b. Such matrices are
constructed on the basis of the formula, where Hn/2 is the two-level Hadamard-
Mersenne matrix of the half odd order, which consists of the numbers {a = 1, −b}
with a recalculation of their level in such a manner as to have b = 1/2 at n = 6, and

in the remaining cases, b ¼ q�
ffiffiffiffi
8q

p
q�8 , q = n + 2

Fig. 10.17 The structure of
the Hadamard-Fermat matrix
F5

Fig. 10.18 The structure of
the Hadamard-Fermat matrix
F17
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En ¼ Hn=2 Hn=2

Hn=2 �Hn=2

� �
:

The Hadamard-Mersenne matrix of the 3rd order has the form:

H3 ¼
a �b a
�b a a
a a �b

2
4

3
5:

The Hadamard-Euler matrix obtained on its basis will be of the 6th order, where
a = 1, b = 0.5

E6 ¼

a �b a a �b a
�b a a �b a a
a a �b a a �b
a �b a �a b �a
�b a a b �a �a
a a �b �a �a b

2
6666664

3
7777775
:

The Hadamard-Euler matrices can be used in a number of cases instead of
C-matrices, e.g., when the last ones do not exist. An important property of the
Hadamard-Mersenne matrices is kept for them, i.e. with an increase of n the modules
of all elements tend to 1. As an example, in Fig. 10.19 the structure of the Hadamard-
Euler of the 30th order is demonstrated.

Fig. 10.19 The structure of
the Hadamard-Euler matrix
E30

346 L. Mironovsky and V. Slaev



Thus, in asymptotes (at large n) all three described classes of matrices (Hadamard-
Mersenne, Hadamard-Fermat, and Hadamard-Euler) tend to a common limit of the
form of orthogonal matrices with elements ±1.

10.5 Conclusion

This chapter contains the description and analysis of the matrix method of trans-
forming images, which is based on a procedure of the strip-transformation that can
be considered as a finite dimensional analogue of the holographic principle of
image transformation. The main tasks on investigation and implementation of the
strip-method are formulated for increase of immunity with regard to pulse noises
present in communication channels, determination of requirements for strip-trans-
formation operators, development of the strip-method for the case of transmitting,
storage and processing two-dimensional images, and search of optimal matrices of
two-dimensional strip-transformation. In solving these tasks the main requirements
for an operator of transformation are considered. It is shown that the operator
should be linear, isometric, or finite dimensional. This leads to use the matrices,
which have the symmetry of a certain type and have entries equal in absolute value.

The possibility to apply two-dimensional strip-transformation for storage and
noise immune transmission of images is considered. At the same time two-sided
matrix transformations of an original image have been used, in the process of which
image fragments are mixed and superimposed on each other. Great attention is paid
to the implementation of the Hadamard matrices and matrices close to them. They
include Hadamard-Mersenne, Hadamard-Fermat, and Hadamard-Euler matrices.
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Chapter 11
A Generalized Criterion of Efficiency
for Telecommunication Systems

Alexey A. Borisenko, Vyacheslav V. Kalashnikov,
Alexey E. Goryachev and Nataliya I. Kalashnykova

Abstract The chapter develops a generalized criterion to estimate the efficiency of
telecommunication systems that can be applied to economics information systems,
too. The criterion combines evaluation of such special properties as information
quantity, noise immunity, data transmission speed, and transmission cost. In contrast
to other criteria, the proposed one is non-dimensional and normalized, thus esti-
mating a telecommunication system by means of real numbers between 0 and 1. The
design of the developed criterion based upon the concept of conditional entropy is
rather simple. It allows one to calculate the system’s characteristic value with suf-
ficient accuracy for practice, thus comparing various telecommunication systems to
transmit the economic information. The generalized criterion is composed as a
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product of some partial criteria, which permits to estimate the telecommunication
system not only as a whole body, but also with respect to their partial characteristics,
such as their productivity, reliability, and transmission costs.

Keywords Telecommunication systems � Conditional entropy � Noise immunity �
Generalized efficiency criterion

11.1 Introduction

A system of any kind designed for collecting, keeping, transforming, processing,
and transmitting information is usually called a telecommunication system. Such an
entity is an indispensable part of each control system that has to control either
technological processes or administration bodies of enterprises. In the former case
(technological processes) one gets information from various gadgets (controllers)
and processes it with an aid of computers, the results being then transmitted to the
objects of control in order to switch their states (often without intervention on part
of personnel). As examples of the control objects mentioned above, one can list
chemical reaction processes, steel manufacturing procedures, as well as machine
tools, compressors, reactors, etc.

In the second case (administration of enterprises), various documents serve as
the input and output pieces of information. These are accumulated in the system’s
memory and used to help solve many problems related to the enterprise adminis-
tration, such as, for example, financial support or accounting tasks. Nowadays,
information and help systems are widespread, hence databases of enormous
(sometimes even global) scale are needed and created.

One of the principal features of the information systems employed in the tech-
nological (manufacturing) control is that they must react to the production’s needs
momentarily. The latter makes out special requirements to the speed of informa-
tion’s transmission and transformation: a minute delay can lead to gross material
losses, and sometimes even to disastrous outcomes. Although the delays are not so
critical for the administration systems, both types of information systems (tech-
nological and administrative ones) may suffer severely from possible errors in the
transmitted or processed messages, which can entail substantial damages.

How can a telecommunication system be characterized? Its principal parameters
are: the overhead cost, the time of recovery of the outlay, the annual gross income,
the lifetime revenue, the present value of return percentage, as well as the system’s
speed, the reliability of data processing, the completeness of the output, the time
needed to adjust the system, its structure’s flexibility, and the list of tasks that the
system accomplishes [1–3]. A number of these characteristics can be reduced with
only the main of those kept intact: the speed, the reliability, and the cost of
information processing per a unit of time. In more detail, the cost of information
processing should include not only overhead capital costs but also the expenditures
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generated during the running time: e.g., reparation costs in case of the system’s
failure, expenses for the development of additional service codes, training and
publicity costs, etc. In addition, the material damage caused by decreasing the
amount of information processed and transmitted via the system due to revealed
errors should also be summed up to the total cost.

After a criterion evaluating a telecommunication system has been selected, the
following step is to develop its general structure and to choose its optimal specific
version. The chosen structure will mandatory include information sources, the
number of which can reach dozens and even hundreds, as well as the tools trans-
forming and processing the information. Next, transmission channels such as cable,
telephone, optical fiber cable, or radio channels are to be selected. Each type of the
transmission channels has its own specific merits and flaws related both to
the transmission costs and to the transmission speed and reliability indexes. The
problem of choice of one or another channel is solved first by transmission experts,
whose decision is then tested numerically by making use of an accepted generalized
criterion evaluating the telecommunication system as a whole. The generalized
criterion should take into account the speed, reliability and cost of information
transmission, as well as the possibility of use of transmission codes. Estimation of
the information value and the frequency of inquires is also a must. The transmission
channels and means decided, a question arises of a proper selection of the tools
processing and transforming information in order to transmit it at a higher quality
level. As examples of such tools, the methods and instruments of noise-proof coding
can be mentioned. The latter might be not only usual computing systems but also
more powerful ones boasting distributed processing tools based, e.g., on Internet.

The chapter’s structure is as follows. Section 11.2 provides the basis of eco-
nomic evaluation of telecommunication systems. Section 11.3 deals with the gen-
eral problem statement. Later on, Sect. 11.4 shows how it is possible to manipulate
with an ideal telecommunication system as a landmark for real-life devices, while
Sect. 11.5 represents the main results of the chapter. Finally, in order to illustrate
the developed algorithm, Sect. 11.6 considers an imaginary “real-life” telecom-
munication system, obtains its generalized efficiency parameter, and discusses the
possible ways to increase the value of the latter by modifying the system in
question. The short Sect. 11.7 with the conclusion, acknowledgments, and reference
list finishes the chapter.

11.2 Economic Evaluation of Telecommunication Systems

A telecommunication system’s operation quality is evaluated by the degree of
achievement of the system’s goals subject to restrictions on its parameters. The
principal aims of a newly developed telecommunication system are: to elevate the
productivity of a technological procedure, to improve the quality of a commodity,
to decrease its production cost, etc. A telecommunication system may achieve such
targets in multiple ways, e.g., by developing one or another version of its structure,
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each being marked by an outstandingly low cost, a high reliability, a superb noise
immunity, speed, low operation costs, and/or other parameters, such as, for
example, the system’s openness, the existence of special service functions. Because
of that, the problem of an optimal structure of a telecommunication system
(compared to many others) is quite a complicated task that needs a proper efficiency
criterion.

Papers [1, 2] discuss some economic criteria, such as the term of return, overall
and reduced costs, an equivalent income rate, etc. However, quite often, these
criteria produce contradictory recommendations about the selection of the structure
of a telecommunication system, hence they cannot be accepted as universal tools.
Besides, the economic canons do not take into account such important technical
features of telecommunication systems as their operation speed, noise immunity,
and reliability, thus showing the deficiency of purely economic measures. The latter
means that the quality of a telecommunication system can hardly be estimated with
the aid of only economic yardsticks. Therefore, we need a kind of generalized
touchstone that could combine both economic and technical criteria.

However, any accepted measure must somehow take into account the following
economic characteristics of the evaluated telecommunication system: (a) buying
and overhead capital expenditures Wbo paid, when the system is acquired and
installed; (b) service costs per a time unit Wserv, as well as (c) the positive effect of
the system’s exploitation per a time unit W+. Then the system’s payback period can
be computed by Eq. 11.1.

T ¼ Wbo

Wþ �Wserv
ð11:1Þ

Next, the regulatory costs Wred during the prescriptive payback time period Tpay
(the reduced expenditures) are determined by Eq. 11.2.

Wred ¼ Wbo þ TpayWserv ð11:2Þ

Therefore, the total expenditures of the telecommunication system (for the
complete service time period Ttot) will be determined by Eq. 11.3.

Wtot ¼ Wbo þ TtotWserv ð11:3Þ

It is worthwhile to notice that each telecommunication system should provide for
the positive effect W+ higher than the service costs Wserv: only then the system’s
payback period will be reasonable. However, even if the difference (W+ − Wserv) is
positive, the system in question need not be optimal, since this difference may be of
various magnitudes for different systems. That leads to different payback periods,
only after which the use of such a system starts giving rise to net profit. In some
cases, notwithstanding, it makes sense to increase the payback period, because the
latter may well cut down the buying and overhead expenditures. Then the drop in
the positive effect of running the system is completely reimbursed with the said
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savings in the initial capital expenditures. All the above examples show that even the
problem of selection of an economic efficiency measure for a telecommunication
system is far from being a simple choice.

This section outlines the main items of the economic evaluation of telecom-
munication systems, while its Sects. 11.2.1 and 11.2.2 explain their technical-
economic and purely technical assessments, respectively.

11.2.1 Technical-Economic Evaluation of
Telecommunication Systems

Apart from the purely economic measures of the telecommunication systems, eval-
uations of their technical characteristics are also required. For instance, their running
costs depend a lot upon the systems’ reliability, which can be enhanced by investing
solidly into higher quality equipment, diagnostic software, control systems, etc.
Especially important for the telecommunication systems is the degree of reliability of
the information processing and transmission, which can be elevated with the aid of
special noise-proof codes. Nevertheless, the latter implies extra expenditures for
coding and decoding devices with the appropriate software, which as a rule abates
the transmission speed and increases the transmission cost. As a result of the lower
degree of the reliability of the information processing and the delays in its trans-
mission, the positive effect of running the telecommunication system may go down
and end becoming negative, thus doing away with the system’s efficiency.

Since recently, the privacy in information processing and transmission has
become a crucial feature. On the one hand, this furtiveness diminishes the possible
damage caused by an unauthorized intercept of the transmitted information, but on
the other hand, the expenditures needed to guarantee such privacy may reach hefty
sums. Moreover, the secrecy defending devices use to cut down the information
transmission speed, which is accompanied with the above-mentioned minor points.

All the listed above, together with some other contradictory requirements toward
telecommunication systems (e.g., taking into account both the information value
and the results of its aging), impulse the search for certain generalized criteria,
which would evaluate both technical and economic parameters of the systems in a
combined mode.

11.2.2 Technical Evaluation of Telecommunication Systems

The technical evaluation of telecommunication systems is conducted by analyzing its
levels. Nowadays, a telecommunication system usually comprises the physical,
channel, network, transportation, session, representation, and application levels [4, 5].
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The physical (hardware) level is represented by the material transmission
channels, such as, for example, twisted pairs or coaxial cables, or wi-fi networks,
through which elementary signals are dispatched [5]. Such channels are charac-
terized with their broadband features, noise immunity, high transmission speed,
appropriate voltage levels, and a series of other physical parameters. The said
channels boast modems at both emitting and perceiving extremes, thus they can
emit and perceive information at both ends, which allows one to ask to repeat a
message should any errors of transmission occur. In order to detect transmission
errors, one can use the noise-proof coding of the transmitted signals, which permits
one to correct the errors either by requesting a repetition of the message, or by
making use of special error-correcting codes at the perceiving extreme. This is the
fastest information transmission level, hence it has the highest channel capacity,
marked with its transmission speed and reliability.

The channel level is based upon a physical channel of transmission, but it
provides information in the form of files, which later, when passing to the lower
(physical) level, are transformed into signals. This level is formed as a functionally
complete set of operations aimed at the transmission of information between the
nodes of a telecommunication system. The first thing done by a channel level is to
check the availability of a physical channel for transmission of information, and
whether the latter is connected to both the emitting and perceiving devices in order
to arrange a link between two computers. The channel level mandatory controls the
transmitted information with the aid of a special noise-proof coding of the trans-
mitted blocks of digital data. The most common way of such control is adding
checksums (or, hash sums) to the transmitted digital blocks. A wrong checksum is
revealed when summing up the bites of a block detects some errors that might have
been generated during its transmission. Whenever that happens, the channel level
suggests that the transmission of this block be repeated. Here again, just as in the
case of a physical level, the channel is evaluated according to the information
transmission speed and reliability it provides.

A network level is usually represented with a set of computers linked by one of
the standard connection schemes that makes use of a protocol of a channel level.
There may be various networks, and a kind of network connection is established
among them, which is exactly what is called the network link. The latter is arranged
with the help of special devices collecting information about inter-network links:
these devices are called routers. A set of routers organize routes among several
networks, and the selection of routes is called a routing process. The problem of
routing is number one for the network level. The information transmitted among
networks is then recollected and packed as information packages, the beginning of
each package being endowed with the network’s number and the number of its node
to receive the package. All nodes of the same network are supplied with the
network’s number at the initial block and with the node’s number at the end. Two
different kinds of protocols are employed at the network level: the routing protocols
conduct the communication among the networks, while the network protocols work
immediately within the networks. It is clear that the information transmission time
along a route is one of the decisive criteria to evaluate the route: the less this time,
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the better the route. Another important criterion to evaluate a routing scheme is the
reliability of the information transmission, which depends upon not only the
selected network route’s quality but also the level of noise affecting the latter.

The principal task of the transportation level of a telecommunication system is to
prevent possible losses of information when transmitting the blocks of data to
addressees. This level comprises various services that, for example, help resume
communication after a break, as well as restore data blocks, and what is most
important, detect and correct errors by either requesting a reiteration of the trans-
mission of a data block, or by correcting the errors at the perceiving unit. Here, one
can see the relationships between the transportation level and the lower levels of the
telecommunication system. If the lower levels of a telecommunication system
guarantee a high accuracy and reliability of the information transmission, there is no
need in developing complicated gadgets to control errors at the transportation level.
Otherwise, i.e., if the lower levels cannot boast an advanced degree of defense
against transmission or storage errors, then the transportation level must provide for
a higher degree of such a defense, including numerous checks of data blocks, their
duplication, handshaking, analysis of checksums, etc. To resume, the main problem
solved at the transportation level is the quality of bringing information to the
addressee, which means both the speed and precision of the transmission procedure.

The session level is responsible for revealing (at a specified time moment), who
(what) is the information source and who (what) is the information receiver, and
finally, who (what) is synchronizing the telecommunication. The latter is extremely
important in order to fix the connection supporting points, to which it is possible to
return in case of a connection break. For practical purposes, the session level is
usually attached to the transportation level, although the former boasts its own
functioning protocols. Here again, the same as at the other levels of a telecom-
munication system, the obvious requirement is the high quality of connection
articulated via the timely and exact transmission of information to the receiver.
Here, the principal efforts are applied to establish a reliable synchronization of
operations by both the emitting and perceiving units (ends) of the telecommuni-
cation system.

The application level of a telecommunication system is characterized by man-
aging a plenty of protocols allowing an access to a sundry of distinct sources of the
information system, which is part of the telecommunication system in question.
These are: websites, reference subsystems, e-mail, printers, etc. This level permits a
user to insert his/her own tools to defend the transmitted information from errors
and an unauthorized access, thus enhancing the quality and reliability of the per-
ceived messages. At the application level, the operational efficiency of the com-
munication is a big deal as much as at the lower levels, too.

Finally, the representation level solves the problem of transforming one form of
information to another without changing the contents; e.g., by transforming certain
symbols into other characters. The coding-decoding items are also treated at this
level.

The session, application and representation levels are special in that they are
independent of the network. The latter means that any kind of information
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processed within these levels doesn't depend on the network’s structure and its
technical features. A different network technology or new protocols used at the
lower levels in no way affect the performance of the three upper levels and/or their
protocols. On the contrary, the physical, channel, and network levels (and partially,
the transportation level, too) are tightly related to each other, hence their protocols
are changed after a variation of the network’s structure or the physical carriers of
information.

Based upon the above-mentioned features, it is possible to conclude that the main
parameters of any telecommunication system are (independently of the level of
operation) the information transmission and processing speed, as well as the reli-
ability of the perceived data blocks. Therefore, these parameters must be included and
serve as the principal technical criteria to evaluate the efficiency of the telecommu-
nication system, no matter whether it operates within a simplest local network or in a
global international one, including Internet.

11.3 Problem Specification

The information transmission and transformation are indispensable when solving a
variety of applied problems. It is especially true, if one talks about telecommuni-
cation systems designed for treating economic issues with the aid of modern
information technologies [3]. The telecommunication systems are responsible for
the speed of information transmission, its reliability, and in the end, the efficiency of
the decisions made by the administration. In order to evaluate a tested telecom-
munication system one needs to have an appropriate measure at hand, which may
be quite a difficult problem. Indeed, the modern telecommunication systems differ
from each other in many aspects, such as their structures, operation algorithms,
modes of information transmission and transformation, to mention only few of the
principal features.

In practice, people mostly use the well-developed particular technical criteria to
evaluate the efficiency of telecommunication systems, such as their speed, noise
immunity, expenditures (costs), etc. (cf., [4–7]). However, the latter touchstones are
often incompatible, like for example, the system’s speed and expenditure. There-
fore, the particular measures used separately are unable to estimate the telecom-
munication system’s efficiency in all its integrity. Because of that, apart from the
partial measures, there is a need of generalized criteria that would make one able to
compare telecommunication systems and select the most efficient among them. In
order to boast such strength, on the one hand, the generalized criteria must take into
account the partial characteristics, assign certain weights to the latter and moreover,
provide the highest possible impartiality. On the other hand, they should be rela-
tively simple, easily calculated and finally, giving the opportunity to compare the
telecommunication systems within a numerical range fixed beforehand; in other
words, they have to be normed, too. The authors of paper [8] examined one of the
generalized criteria to estimate the efficiency of telecommunication systems, which
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is based upon a generalized measure developed earlier for assessing Automated
Control System (ACS) [9, 10]. Nevertheless, the criterion presented in [8] was
lacking the detailed algorithm to compute its values, which hindered its practical
use. Motivated by the desire to overcome this handicap, the authors have improved
the criterion in question and developed a more reliable method to estimate its
numerical values. Exactly these new results are presented in the chapter.

Section 11.3.1 contains a short survey of the relevant literature, Sect. 11.3.2
details the unsolved part of the problem, and Sect. 11.3.3 specifies the novelty of
the chapter.

11.3.1 A Survey of Recent Results of Research

In the majority of cases, telecommunication systems are assessed with the aid of
especially developed partial criteria. For instance, transmission systems are usually
compared to each other with respect to the total expenditure, the number of sub-
scribers available, the noise immunity, the facilities for simultaneous conferences
and video-conferences with several communication partners, etc. (see [4–7]).
Nonetheless, as already mentioned above, those and a plenty of other characteristics
can be reduced to the following three particular features: the system’s speed, noise
immunity, and expenditures for information transmission. This is why the majority
of practitioners select these properties as the measures to assess telecommunication
systems. The rest of the attributes are either reduced to the three main qualities or
brushed aside as secondary ones, at least at the very initial stage of planning the
development of a new telecommunication system.

On the contrary, unfortunately, generalized criteria are not very popular,
although it is exactly they that allow one to conduct the thorough evaluation of a
telecommunication system thus prompting the selection of the optimal system. It is
worth noting that the first generalized criterion was actually proposed by Shannon
in his works, where he assessed information transmission systems. Indeed, Shannon
proposed to take into account two technical parameters at the same time, namely,
the information transmission speed and reliability [10, 11]. However, the latter
generalized criterion did not comprise the information transmission costs, i.e., it
was purely technical and not technical-economical; in addition, it wasn’t normed.

11.3.2 The Unsolved Part of the Problem

Works [8–10] introduced a new criterion involving the costs, and moreover, it was
generalized and normed. Nonetheless, there was no algorithm to calculate the cri-
terion’s value. Exactly such an algorithm is the crucial target to hit when developing
a new generalized measure for assessing the efficiency of a telecommunication
system.
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11.3.3 The Results of This Chapter

The main goal of this chapter is to develop a numerical method of computing the
value of a generalized criterion of efficiency of a telecommunication system, which
allows one to evaluate its performance based upon the quantity of the transmitted
information, the reliability of the latter, and last but not least, the transmission speed
and cost.

11.4 Replacement of a Telecommunication System
with Its Ideal Model

The generalized criterion of the efficiency of telecommunication systems is founded
upon the idea of a generalized measure for automated control systems (cf., [9, 10]).
The measure makes use of an ideal system, and the selected criterion is based upon
subjective perceptions of the user (which may be quite different for various classes
of such systems). Nevertheless, the criterion in question keeps in mind real
(objective) factors as well, which are necessary for creating real-life systems, too.
Exactly the same approach is proposed in this work.

As an ideal object, each user would be happy to have an impeccable transmis-
sion system with null service expenditures that would transmit and process all the
input information without losses, and moreover, the transmission time should be
comparable with that provided by the best systems of the given rank, and all that at
the minimum possible cost. Of course, in reality, it is almost impossible to fulfill all
these requirements at the same time, but this list may explain what an ideal tele-
communication system could be like, and also serve as a landmark for those who
develop and design real-life systems.

In order to solve the considered problem of assessing the efficiency of tele-
communication systems, the ideas by Winograd and Cowan [12] are developed in
this research, and a given telecommunication system is replaced with two different
systems. Namely, the first of them will be the original telecommunication system
imagined as ideal, i.e., having no errors and/or failures when working, and boasting
the minimum possible time needed to transform, process, and transmit information.
Meanwhile, the second one is a reduced telecommunication system that only
transmits the information, i.e., it is nothing more than an information transmission
system. In addition, it is supposed that the transition time achieved by the second
system coincides with that of a real telecommunication system. Besides, other
parameters of the second system, such as the reliability and cost of transmission are
exactly the same as those of the evaluated real-life telecommunication system. This
approach permits us to use the prowess of all already known methods of evaluation
of transmission systems for assessing the existing telecommunication systems.
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11.5 Main Results

One of the principal parameters of an information transmission system is its speed,
that is, the quantity of information units transmitted per a time period: the higher this
speed, the better the system. The calculation of such transmission speed is based on
the assumption that the information source (input unit) A generates information
in form of any of the messages a1; a2; . . .; ai; . . .; aN , with the corresponding prob-
abilities p a1ð Þ; p a2ð Þ; . . .; p aið Þ; . . .; p aNð Þ. After that, the transmission system dis-
patches them to the perceiving (output) unit B, which, in turn, comprehends them as
the messages b1; b2; . . .; bj; . . .; bN , with the respective probabilities p bj

� �
j ¼

1; 2; . . .;N (see, [11]). As is well-known (cf., [11] again), the unconditional entropy
of the input unit A (representing the degree of uncertainty, when generating any of
the N messages listed above) is determined by Eq. 11.4.

H Að Þ ¼ �
XN
i¼1

p aið Þlog2 p aið Þ ð11:4Þ

This value characterizes an average quantity of information units I = H(A) that
could be theoretically transmitted toward the perceiver B under the given proba-
bility distribution of the messages and in the absence of transmission noise.

However, real-life telecommunication/transmission systems are always subject
to various types of noise implying that the message bj; j ¼ 1; 2; . . .;N, might be
identical to the input message ai with certain conditional probability p aijbj

� �
. As a

consequence, there arises a kind of uncertainty about the fact that the message bj
perceived by output unit B is indeed the message ai actually emitted by source A.
This uncertainty is measured with the conditional entropy H(A|B) provided by
Eq. 11.5.

H AjBð Þ ¼ �
XN
j¼1

XN
i¼1

p bj
� �

p aijbj
� �

log2p aijbj
� � ð11:5Þ

The conditional entropy can be interpreted as an average amount of loss of
information when transmitting all possible messages from the list.

The probability p(bj) of having perceived the message bj involved in Eq. 11.5
can be calculated by Eq. 11.6 of complete probability shown below, whenever the
unconditional probability p(ai) of generating message ai by emitting unit A, as well
as the conditional probability p(bj|ai) of perceiving message bj instead of ai by the
output unit B, are known.

p bj
� � ¼ XN

i¼1

p aið Þp bj
��ai� � ð11:6Þ
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Probabilities p(bj) should also satisfy the evident condition (Eq. 11.7).

XN
j¼1

p bj
� � ¼ 1 ð11:7Þ

The value of conditional entropy (Eq. 11.5) is used to update the quantity of
information transmitted from input unit A, which is represented by the reduced (due
to the existing noise) amount I calculated by Eq. 11.8.

I ¼ H Að Þ � H AjBð Þ ð11:8Þ

In the case when p(ai|bj) = p(ai), one evidently has Eq. 11.9.

H A Bjð Þ ¼ �
XN
j¼1

XN
i¼1

p bj
� �

p ai bj
��� �

log2p ai bj
��� �

¼ �
XN
j¼1

XN
i¼1

p bj
� �

p aið Þ log2p aið Þ

¼
XN
j¼1

p bj
� � �

XN
i¼1

p aið Þ log2p aið Þ
" #

¼ H Að Þ
XN
j¼1

p bj
� � ¼ H Að Þ

ð11:9Þ

The latter, together with Eq. 11.8, clearly entails that the quantity of information
I transmitted from input unit A is zero, and no statistical relationship among the
emitted and perceived messages exists. On the contrary, if there is no noise, one
contemplates a rigid statistical relationship, under which one of the conditional
probability values is 1 (for example, p(ai|bj) = 1), whereas all the others are 0 (that
is, p(ai|bk) = 0, k ≠ j). Indeed, under this assumption (Eq. 11.5) leads to H(A|B) = 0,
which means that the complete information emitted by input unit A and contained in
message ai will be transmitted to output unit B without distortions in the quantity
I = H(A).

On the other hand, perceiving unit B is also characterized by its own entropy
with respect to entering messages bj perceived with the corresponding probabilities
p bj
� �

; j ¼ 1; 2; . . .;N, when transmitted from emitting unit A. Hence, the receiver
unit’s entropy is described by Eq. 11.10.

H Bð Þ ¼ �
XN
j¼1

p bj
� �

log2 p bj
� � ð11:10Þ
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Analogous to Eq. 11.5, the conditional entropy of the receiving device B given
the emitting unit A is determined via unconditional and conditional probability
values p(ai) and p(bj|ai), as shown below in Eq. 11.11.

H B Ajð Þ ¼ �
XN
i¼1

XN
j¼1

p aið Þp bj aij� �
log2 p bj aij� � ð11:11Þ

The latter conditional entropy measures the loss of information occurring at
receiving unit B owing to some uncertainty about the message ai that appears at
emitting unit A. This uncertainty, caused by the transmission noise, arises because
input unit A may not be sure about which of the messages ai; j ¼ 1; 2; . . .;N, will
be perceived as message bj by receiver B.

If conditional entropy H(B|A) is nonzero, the information quantity transmitted to
the receiver may be reduced to the value provided by Eq. 11.12.

I ¼ H Bð Þ � H BjAð Þ ð11:12Þ

Whenever the quantities of emitted and perceived information are the same, one
has Eq. 11.13.

H Að Þ � H AjBð Þ ¼ H Bð Þ � H BjAð Þ ð11:13Þ

It is easy to see that if the transmission system is flawless and no information
losses occur, then H(B) = H(A), hence the corresponding unconditional probabilities
coincide: p(ai) = p(bj).

In order to simplify the numerical operations with the data, we will represent the
conditional probabilities through a channel matrix, the ith row of which comprises
the conditional probabilities of transition of the message ai emitted by input unit A
to all possibly perceived messages bj; j ¼ 1; . . .;N, by receiver B. For example, row
1 corresponding to emitted message a1 contains the following (conditional) prob-
abilities of the former message being perceived as message bj; j ¼ 1; . . .;N with the
sum of these entries equal to 1 mentioned below:

p b1ja1ð Þ p b2ja1ð Þ . . . p bN ja1ð Þ½ �

All the remaining rows of the matrix have a similar structure (see, transition
matrices used in the Markov chains).

Example 1 If an information source generates two signals 0 and 1 and they are
transmitted to a receiver through a channel with noise, the receiving unit may
perceive 1 instead of the transmitted signal of 0, and vice versa, perceive 0 rather
than the transmitted 1. These possible transitions can be described with the fol-
lowing channel matrix, whose entries are the corresponding conditional probability
values described by Eq. 11.14.
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P ¼ p 0j0ð Þ p 1j0ð Þ
p 0j1ð Þ p 1j1ð Þ

� �
ð11:14Þ

In case of a noiseless channel, matrix (Eq. 11.14) reduces to the unit matrix
(Eq. 11.15).

P ¼ 1 0
0 1

� �
ð11:15Þ

Here, row 1 means that if the source generates the information unit 0 and the
latter is transmitted via the channel to the receiver, then the latter perceives it as 0
with probability 1 and erroneously comprehends as 1 with probability 0. Similarly,
row 2 confirms that if the generated and transmitted information unit is 1, then the
receiving unit perceives it as 0 with probability zero, and recognizes it as 1 with
probability 1.

However, if the transmission channel is noisy, then receiver B having gotten a
message bj from source A has to decide (based upon the conditional probability
values p aijbj

� �
; i; j ¼ 1; . . .;N), which of the N possible input messages ai gener-

ated by source A has been really sent. In that case, conditional probabilities p(ai|bj)
could also be arranged in form of a channel matrix with its columns containing
these conditional probabilities p(ai|bj) of the event that receiver B has recognized
message ai having obtained message bj. Applied to Example 1, the channel matrix
for the binary signals will read as Eq. 11.16.

PT ¼ p 0j0ð Þ p 0j1ð Þ
p 1j0ð Þ p 1j1ð Þ

� �
ð11:16Þ

The last expression is clearly the transposed channel matrix (Eq. 11.14).
Therefore, in the latter case, summing the conditional probabilities as entries of
each column produces 1.

Section 11.5.1 demonstrates the proposed formula for the generalized criterion,
and Sect. 11.5.2 describes the new algorithm that helps calculate the telecommu-
nication system’s generalized efficiency parameter.

11.5.1 Evaluation of Efficiency of Telecommunication
Systems

The knowledge of the information quantities contained in transmitted messages
helps estimate such an important parameter of a real-life telecommunication system
as its speed or productivity V, which is determined as the ratio of the transmitted
information quantity and the average time taken for its transmission (Eq. 11.17).
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V ¼ H Bð Þ � H B Ajð Þ
T

ð11:17Þ

If the transmission system is free from delays caused by correction of errors,
failures of devices, etc., then the average transmission time equals the minimum
time T = tmin necessary for the proper information transmission. Besides, whenever
the telecommunication system is immune to information losses then the system’s
ideal productivity or transmission capacity is obtained by Eq. 11.18.

Cideal ¼ H Bð Þ
tmin

¼ H Að Þ
tmin

ð11:18Þ

If a telecommunication system can afford only the minimal necessary expen-
ditures Wmin to acquire the indispensable technical hardware and software, then the
generalized efficiency parameter for such a system is proposed in form of Eq. 11.19.

Eideal ¼ H Að Þ
tminWmin

¼ Cideal

Wmin
ð11:19Þ

Now let us introduce a generalized efficiency criterion for a real-life telecom-
munication system. In order to do that, one have to take into account the reduction
of the transmitted information insinuated by the transmission noise. The latter is
achieved by replacing the information quantity transmitted by an ideal system
Iideal = H(A) with that transmitted by a real-life system, which equals HIideal =
H(A) − H(A|B). It means that the amount of lost information is equal to H(A|B) bits.
In addition, the minimal transmission time tmin must be increased by an average
delay time tdelay generated by various causes, including the channel noise and
failures of the hardware. As a consequence of these delays, the extra expenditures
Wexp needed to remove the delays should be added to the minimal costs Wmin. As a
result, the following generalized efficiency parameter of a real-life telecommuni-
cation system is represented by Eq. 11.20, where Creal is computed by Eq. 11.21.

Ereal ¼ H Að Þ � H A Bjð Þ
tmin þ tdelay
� �

Wmin þWexp
� � ¼ Creal

Wmin þWexp

ð11:20Þ

Creal ¼ H Að Þ � H A Bjð Þ
tmin þ tdelay

�Cideal ð11:21Þ

Parameter Creal is the real productivity of the telecommunication system counted
in bits-per-second (or bps) units. Nevertheless, the latter criterion is not normed. In
order to amend this flaw, the real efficiency parameter of the telecommunication
system can be divided by its ideal efficiency value, and the generalized normed
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measure is calculated by Eq. 11.22, where the value of E is dimensionless and
belongs to the interval [0, 1].

E ¼ Ereal

Eideal
¼ V �Wmin

Cideal Wmin þWexp

� �
¼ H Að Þ � H A Bjð Þ½ � � tmin �Wmin

H Að Þ � tmin þ tdelay
� �� Wmin þWexp

� � ð11:22Þ

Indeed, on the one hand, the value of E is equal to zero only in the case of an
extremely noisy channel, when the conditional entropy H(A|B) achieves the absolute
entropy valueH(A); on the other hand, it reaches 1 if there is no noise, i.e.,H(A|B) = 0.
Meanwhile, both the expenditure costs Wexp and the information transmission delay
time tdelay are null, which is almost impossible to guarantee for a real-life telecom-
munication system. It is not difficult to see that the higher (i.e., closer to 1) the value
of E, the more efficient is the analyzed telecommunication system. The latter means
that the proposed generalized efficiency criterion (Eq. 11.22) provides for the
possibility of finding the most efficient item among the existing telecommunication
systems.

The considered generalized efficiency criterion (Eq. 11.22) can be further mod-
ified by including in its structure not only the telecommunication system’s proper
costs Wmin and its employment expenditures Wexp but also the lost profit values
caused by the decreases in the quality of communication owing to possible noises
and hardware failures. The latter profit losses are evaluated by introducing special
information utility functions for various telecommunication systems (see, e.g., [13]).

11.5.2 An Algorithm to Assess the Efficiency
of a Telecommunication System

Based upon the above-mentioned techniques, the following method to calculate the
value E of the generalized efficiency measure for a telecommunication system can
be proposed. The latter is described with the algorithmic steps below:

1. Determine the numberN of all possible messages to be transmitted, as well as their
both unconditional and conditional probabilities to be transmitted and recognized.
The said probability values are usually found by experiments, for example, fol-
lowing the way proposed in [11]. Nonetheless, they can be well-known before-
hand, too: since the statistical properties of various alphabets have been
thoroughly examined, the probabilities of generating distinct letters in an average
message could be given even without experiments. Finally, in the complete
absence of any hints about the necessary probabilities, one can accept them all
equal to 1/N, which, however, may decrease the accuracy of conclusions.
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2. Compose the appropriate channel matrix with its entries being the (conditional)
probabilities of transition of original messages to correct or incorrect ones,
caused by either the source or the receiver.

3. Making use of the above-defined conditional and unconditional probability
values determine the unconditional entropies of both the information emitting
and receiving units. Then apply the channel matrices and calculate the source’s
and receiver’s conditional entropies, as well as the quantities of transmitted
information according to Eqs. 11.4–11.13.

4. Select the parameters of an ideal telecommunication system in line with the
above-mentioned recommendations and Eqs. 11.17–11.18.

5. Calculate the possible time delays and expenditure costs of the real-life tele-
communication system by taking into account the parameters of the subsystems
that defend the transmitted information from possible errors and failures of
hardware. Compute then the real-life system’s speed/capacity parameter of the
transmission system by Eq. 11.21.

6. Calculate the ideal and real efficiency parameters Eideal and Ereal of the evaluated
telecommunication system according to Eqs. 11.19–11.20, respectively.

7. Find the value E of the generalized criterion of efficiency of the given tele-
communication system by Eq. 11.22.

8. Compare the thus obtained generalized efficiency parameter with those for other
versions of the telecommunication system and select the best (i.e., with the
largest value of E) among them.

9. Finally, decide about the selection of the telecommunication system with the
best (the highest) value of the generalized efficiency criterion E.

11.6 An Example of Evaluation of the Efficiency of a
Telecommunication System

Assume that when designing a real-life telecommunication system, a model has
been selected in such form that an information source A generating each time one of
three possible messages (signals, symbols, etc.) is connected to a receiver B (per-
ceiving those signals) with a noisy transmission channel described by the following

channel matrix P ¼ P BjAð Þ ¼ p bjjai
� �� �N N

i¼1;j¼1 from Eq. 11.23.

P ¼ P BjAð Þ ¼
0:98 0:01 0:01
0:10 0:75 0:15
0:20 0:30 0:50

2
4

3
5 ð11:23Þ

Besides, the probabilities of generation of each of the three messages ai,
i = 1, 2, 3, by source A are as follows: p a1ð Þ ¼ 0:70; p a2ð Þ ¼ 0:20; p a3ð Þ ¼ 0:10.

11 A Generalized Criterion of Efficiency … 367



An ideal telecommunication system desired by the consumers who ordered the
device should transmit one message from source unit A to receiver B in 1 micro-
second (mcs), cost $1,000,000 of conditional currency units (ccu), and be free of
information losses and/or running expenditures.

In reality, after having completed the system’s development, the latter turns out
to cost $1,300,000 ccu, and to transmit one message per 2 mcs. Here, the trans-
mission time includes the delays occurring because of the extra time needed to
correct the errors generated due to the channel noise. One need determine the value
of the generalized efficiency criterion to evaluate the given real-life telecommuni-
cation system with the channel matrix (Eq. 11.23) and propose some steps to
improve the system as much as possible.

The given channel matrix P = P(B|A) entails that the message a1 emitted by
source A is expected to arrive to receiver B as is with probability of 0.98, whereas
with probabilities of 0.01 each, it would be perceived erroneously as the other
messages a2 or a3, respectively. Similarly, the channel matrix (Eq. 11.23) predicts
that message a2 would be perceived correctly with probability of 0.75, while being
recognized erroneously as a1 and/or a3 with probabilities of 0.10 and 0.15,
respectively. At last, message a3 generated and transmitted from source A would
arrive as is to receiver B with probability of 0.5 or might be mistaken for the
messages a1 and a2 with probabilities of 0.20 and 0.30, respectively.

In the absence of information losses within an ideal telecommunication system,
all the information generated by source A will be transmitted safely to receiver B, in
the exact quantity determined according to Eq. 11.4 as mentioned in Eq. 11.24.

H Að Þ ¼ � 0:7log2 0:7þ 0:2log2 0:2þ 0:1log2 0:1ð Þ
¼ 1:1568 bits

ð11:24Þ

Now determine by Eq. 11.25 the ideal telecommunication system’s efficiency
parameter value Eideal (according to Eq. 11.19):

Eideal ¼ H Að Þ
tminWmin

¼ 1:1568
10�6 � 106

¼ 1:1568 bps=ccu ð11:25Þ

In order to evaluate the information quantity transmitted from the source to the
receiver within the real-life telecommunication system, first the receiver’s
(unconditional) entropy H(B) according to Eq. 11.10 is determined, then the con-
ditional entropy H(B|A) making use of Eq. 11.11 is calculated, and finally, the latter
is subtracted from the former.

Before one gets H(B) by Eq. 11.10, the unconditional probabilities p b1ð Þ; p b2ð Þ,
and p(b3) (via operations listed in the complete probability (Eq. 11.6)) ought to be
computed by Eq. 11.26.

368 A.A. Borisenko et al.



p b1ð Þ ¼ p a1ð Þp b1 a1jð Þ þ p a2ð Þp b1 a2jð Þ þ p a3ð Þp b1 a3jð Þ
¼ 0:7 � 0:98þ 0:2 � 0:1þ 0:1 � 0:2 ¼ 0:726

ð11:26Þ

Doing the same for the two remaining messages one gets p(b2) = 0.187 and p
(b3) = 0.087. The checksum operation confirms that the sum of the above-computed
probabilities is 1. Now substituting them into (Eq. 11.10) yields the unconditional
entropy by Eq. 11.27.

H Bð Þ ¼ � 0:726 log2 0:726þ 0:187 log2 0:187þ 0:087 log2 0:087ð Þ
¼ 1:095 bits

ð11:27Þ

The latter entropy is lower than H(A) due to the existing transmission noise. In
the absence of noise, these two values would be equal: H(A) = H(B).

The average amount of information lost during the transmission of one message
due to the noise is determined by Eq. 11.11 as follows from Eq. 11.28.

H B Ajð Þ ¼ �0:7 0:98log2 0:98þ 2 � 0:01log2 0:01ð Þ
� 0:2 0:75log2 0:75þ 0:1log2 0:1þ 0:15log2 0:15ð Þ
� 0:1 0:2log2 0:2þ 0:3log2 0:3þ 0:5log2 0:5ð Þ ¼ 0:456 bits

ð11:28Þ

The difference between the values of H(B) and H(B|A) yielded with the aid of
Eq. 11.12 provides for the quantity of correct information transmitted to the receiver
with one message. According to the previous calculations conducted in
Eqs. 11.27–11.28, the latter amount of information equals 1:095� 0:456 ¼
0:639 bits. For instance, if the total number of such messages transmitted from the
source is 400, then the receiver will obtain only 255.6 bits of the total 438 bits sent.

Now we are in a position to use Eq. 11.20 and determine the generalized
efficiency of the real-life telecommunication system as given below in Eq. 11.29.

Ereal ¼ H Að Þ � H AjBð Þ
tmin þ tdelay
� �

Wmin þWexp

� � ¼ 0:639
2 � 10�6 � 1:3 � 106 ¼ 0:246 bps=ccu

ð11:29Þ

Finally, the ratio of the efficiencies of the real-life and ideal telecommunication
systems according to Eq. 11.22 yields the normed and dimensionless generalized
efficiency of the evaluated system by Eq. 11.30.

E ¼ Ereal

Eideal
¼ 0:246

1:1568
¼ 0:212 ð11:30Þ

The latter result shows that the analyzed telecommunication system has a rather
low efficiency: the existing channel noise drops it to only 21.2 %. One of the
possible ways to increase the efficiency of the telecommunication system consists in
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enhancing the degree of information protection by the use of certain noise-proof
coding procedures, which, however, leads to the elevated transmission time and
total system cost. Nevertheless, such a decision often proves to be reasonable,
because the financial losses caused by a noisy channel could be much higher than
the expenditures entailed by the information protection devices and software added
to the telecommunication systems.

To continue the illustration by means of the considered example, assume that the
selected noise-proof coding procedure increases the bulk of correct information
reaching the receiver via one message from the previous 0.639 to 1 bit. It is clear
that the transmission time will inevitably jump up, too. In order to take that into
account, suppose that the transmission time needed to send one bit of information
within the designed telecommunication system, previously being 2 mcs, now, after
applying the noise-proof coding procedure, has grown up to 3 mcs. Besides, pre-
sume that the higher degree of information protection adds to the reliability of the
received messages, thus cutting down the telecommunication system’s total cost,
e.g., from the previous $1,300,000 to $1,200,000 ccu. In this case, it is easy to find
that the efficiency of the improved real-life telecommunication system enhances up
to the value provided by Eq. 11.31.

Ereal ¼ H Að Þ � H AjBð Þ
tmin þ tdelay
� �

Wmin þWexp

� � ¼ 1:000
3 � 10�6 � 1:2 � 106 ¼ 0:278 bps=ccu

ð11:31Þ

Then the normed generalized efficiency E grows too (Eq. 11.32).

E ¼ Ereal

Eideal
¼ 0:278

1:1568
¼ 0:240 ð11:32Þ

Therefore, for this imaginary “real-life” telecommunication system, the noise-
proof coding elevates its generalized information transmission efficiency, which
allows one to conclude that such a modification of the system’s design should be
undertaken.

11.7 Conclusion

The criterion of efficiency for telecommunication systems proposed in the chapter is
generalized, normed, and dimensionless. It evaluates telecommunication systems
on the base of their productivity (speed), the reliability of the perceived messages,
as well as the system’s total cost and running expenditures. Such a structure of the
generalized criterion provides for the possibilities to compare the telecommunica-
tion systems with respect to the above-mentioned partial criteria, too. The algorithm
that helps calculate the generalized efficiency parameter allows one to evaluate a
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real-life telecommunication system with a precision enough for practical purposes.
In addition, the generalized criterion permits to compare various telecommunication
systems with the goal to select the optimal one.
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