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Abstract One of the most important objectives in the development of traffic
theories is the improvement of traffic conditions. To achieve this goal, it is important
a good understanding of multistyle and/or multilane traffic. In this work, we
summarize the traffic model presented in Mendez and Velasco (FTC J Phys A
Math Theor 46(46):462001, 2013) and additionally include the stability analysis of
the same. The presented traffic model considers different driving styles, different
vehicle types or both, for a two-classes of vehicles in which a model for the
average desired speed is introduced (the aggressive drivers model) (Mendez and
Velasco, Transp Res Part B 42:782–797, 2008; Velasco and Marques, Phys Rev E
72:046102, 2005). The kinetic model was solved for the steady and homogeneous
state and also we obtained the local distribution function from an information
entropy maximization procedure. The macroscopic traffic model is constructed by
the usual methods in kinetic theory and a method akin with the Maxwellian iterative
procedure is accomplished in order to close the macroscopic model for the mixture,
where only the densities are present as relevant quantities. The linear stability
analysis is carried out in order to have an insight of the unstable traffic regions
of the model, which is very helpful in the numerical solution.

1 Introduction

Kinetic theory methods have been largely used in the study of the traffic flow
phenomena [1–3, 5, 10, 12]. This kind of methods links the microscopic and
macroscopic modeling giving a theoretical support to phenomenological models.
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Empirical observations have highlighted the wide variety of phenomena observed in
traffic flow [6–9,14,15], and recently there have merged many efforts to describe and
explain the wealth of traffic flow phenomena. In this work we present the stability
analysis of a model that considers different driving styles, different vehicle types
or both. The point of view we will follow to study such a problem is based on the
kinetic theory of traffic flow. In Sect. 2 we summarize (see [12]) some details of the
kinetic equation describing the evolution of each class of vehicles for aggressive
drivers which has been also addressed before for a single class of driver [11, 16].
The kinetic model is solved for the steady and homogeneous state and also we have
obtained a local distribution function from an information entropy maximization
procedure. In Sect. 3 the macroscopic traffic model is constructed by means of a
general transport equation obtained by the usual methods in kinetic theory. Then,
a method akin with the Maxwellian iterative procedure is achieved in order to
close the macroscopic model for the mixture where only the species densities are
considered as relevant quantities. The linear stability analysis is presented and
discussed in Sect. 4.

2 The Kinetic Model with Two-Classes of Vehicles

For a two-classes of drivers with punctual vehicles and diluted traffic, the equations
describing the evolution of the distribution function fi D fi .x; vi ; t/ for individual
vehicles of class i D a; b is
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for self-interaction we have terms i D j and cross-interaction are represented by
i ¤ j .

In Eqs. (1) and (2) p is the overtaking probability and Wi is the mean desired
velocity. We propose the following prescription for the former velocity

Wi .x; vi ; t/ D !i vi ; (3)
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where !i & 1 is a constant called the aggressivity parameter of i�class vehicles.
Relation (3) indicates that drivers desired velocity increases as their actual velocity
increases, i.e., drivers want to drive faster than they do [11, 16].

As usual in kinetic theory, the local variables such as the traffic density and the
mean velocity of each vehicle class i are defined through the first two moments of
the distribution function as follows

Z
fi dvi D �i

Z
fi vi dvi D �i Vi ;

X
i

Z
fi vi dvi D �V: (4)

2.1 Equilibrium Solution and the Information Entropy

For the homogeneous and steady state, Eq. (1) can be solved analytically assuming
relation (3) for the mean desired velocity. The details of this calculation are
analogous to the single class case and can be consulted in [16], the result is
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(5)

˛i is a constant that contains information on the equilibrium state and the model
parameters �i , !i and p and � .˛i / is the gamma function with argument ˛i . In
this case the e-subindex means that the quantity corresponds to the steady and
homogeneous case, usually called as the equilibrium state.

The local zeroth-order approximation for the one-vehicle distribution function
follows through a maximization procedure of the information entropy referred to
the equilibrium state. First we write the information entropy as
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and consider relations (4) as restrictions for the optimization procedure. With this
information the corresponding Lagrangian function, F , is constructed and the
distribution function which satisfies the optimality condition ıF=ıf

.0/
i D 0 is

given by

fi .x; vi ; t/ D �i .x; t/ ˛i
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�
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At this point it seems important to emphasize that the distribution function (7) has
the same functional structures that (5), both the equilibrium values are replaced by
the local variables.
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2.2 Model Equation

The mathematical complexity of the non-linear interaction operator Qij can be
avoided if we replace the right hand side of Eq. (1) by a simple relaxation-time
term of the form [4]:
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where fij is a reference distribution function to be determined. Our aim is to derive a
model equation for a two-classes of vehicles characterized by the �i ; Vi . We propose
the following form for the reference distribution function fij:

fij D f
.0/

i
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where Ci D .vi � V / (9)

f
.0/

i given by (7) and Aij and B ij are undetermined coefficients. To specify these
coefficients we assume

fi D f
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where the deviation �i is a linear function of the spatial gradients and must satisfy
compatibility conditions. Inserting (9) and (10) in (8)
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where restrictions (4) have been used. It is worth noticing that the deviation � to the
distribution function depends on the velocity gradients.

3 The Macroscopic Equations and the Iterative Procedure

Once we have the distribution function fi , through (10) and (11), it is possible to
obtain the macroscopic equations and close them. The procedure is the standard in
kinetic theory, the resulting balance equations are
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where �i 	i D R
f .x; vi ; t/ .vi � Vi /

2 dvi ; i D a; b are the speed variances. To
be practical, we now apply a method akin to the Maxwell iterative procedure [13],
to obtain a first order model for each different class of vehicle. We assume that
Vi .x; t/ D V

.0/
ie .�i .x; t// C OVi .x; t/. In this case we obtain the closure relation
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By introducing (14) in (12) we get the model
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4 Linear Stability Analysis and Concluding Remarks

In order to determine if our model equation produces unstable traffic regions, a linear
stability analysis of Eqs. (15) will be carried out. We write the perturbed densities
as

�i .x; t/ D �ie C �i exp .�� t C ikx/ D �ie C Q�i .x; t/ (16)

for i D a; b where k is the wave number and � is the growth parameter.
The procedure consists in inserting perturbations (16) into Eqs. (15) and neglect
nonlinear contributions. The following linear system is obtained
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Fig. 1 The stable region for �e D 35 veh/km

Fig. 2 The stable region for �e D 70 veh/km

Table 1 Parameters for the
graphics

Vehicle class

Class a ˛a D 120 �a D 0:012

Class b ˛b D 100 �b D 0:06

The nontrivial solutions of system (17) are obtained when the determinant of the
coefficient matrix vanishes, leading to a dispersion relation of the form �2C�b.k/C
c.k/ D 0.

This relation is very complex and is solved in Mathematica for some specific
values. The results in Figs. 1 and 2 show the stable regions, corresponding to
RŒ�1;2� > 0, that is, when both �1 and �2 are positive. The parameters used in these
figures are in Table 1 and we have used also the relations Ve.�/ D Vmax .1 � �=�max/

and .1 � p/ D �=�max with �max D 140 veh/km and Vmax D 120 km/h.
Figures 1 and 2 show that we have stable regions. Worth be mentioned that a

linear stability give us just a guide of the real stability regions, in order to have a
better understanding a non-liner stability analysis should be done.
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