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Foreword

For its tenth edition, the international conference “Traffic and Granular Flow”
(TGF) returned to the location of the very first meeting held in 1995. From 25
to 27 September, 2013, 105 international researchers came again together at the
Forschungszentrum Jülich.

The purpose of the TGF’13 is bringing together international researchers from
different fields ranging from physics to computer science and engineering to
stimulate the transfer between basic and applied research and to discuss the latest
developments in traffic-related systems.

In 1995 the TGF was probably the first conference with this objective. The
workshop was attended by about 130 participants from 14 countries. My colleagues
– D. E. Wolf and M. Schreckenberg – and I conceived the workshop to facilitate
new ideas by considering the similarities of traffic and granular flow. To develop a
unified view of flow instabilities like traffic jams or clogging of a hopper by powder
was a purpose of the international workshop. Traffic as well as Granular Flow have
both intriguing conceptual analogies. Traffic jams can be described by the same
equations as density waves in granular pipe flow, and efficient simulation tools like
cellular automata have been developed along similar lines in both fields, just to name
two examples.

I am pleased to see that after so many years the field of traffic and granular flow
is still progressing and that numerous problems could be solved by new facilities.
Nevertheless, we are facing plenty of new challenges in these research fields. In
2013 the international conference covers a broader range of topics related to driven
particles and transport systems. Besides the classical topics of granular flow and
highway traffic, its scope includes data transport (Internet traffic), pedestrian and
evacuation dynamics, collective motions in biological systems (swarm behaviour,
molecular motors, social insects, etc.), complex networks and their dynamics
(transportation network, Internet, epidemics, social networks, etc.) and intelligent
traffic systems.

Supercomputing is one of the instruments in traffic and granular research, and
Forschungszentrum Jülich, as one of the largest national centre for supercomputing
and part of PRACE, is proud to play an important role in security research. In
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vi Foreword

the Jülich Supercomputing Centre, a division focuses on models of self-driven
systems with applications in civil security and traffic planning. Experiments are
performed and methods of data capturing are refined to support the developments
of reliable models usable for security-related applications.In combination with high
performance computing, we are able to tackle challenges in the simulation of large
systems using high fidelity models.

I would like to thank the entire Organizing Committee and the Scientific
Committee of the conference for their intensive and excellent work.

Jülich, Germany Achim Bachem
September 2013



Preface

In its tenth edition, “Traffic and Granular Flow” returned to the location of the
very first conference held in 1995 at Forschungszentrum Jülich in Germany. The
conference took place from 25 to 27 September 2013 and was organized in
cooperation with the Institute for Theoretical Physics, University of Cologne, and
the Jülich Supercomputing Centre of the Forschungszentrum Jülich.

Originally initiated to disseminate new ideas by considering the similarities of
traffic and granular flow, TGF’13 covered a broad range of topics related to driven
particle and transport systems. Besides granular flow and highway traffic, its scope
includes data transport, pedestrian and evacuation dynamics, intercellular transport,
swarm behaviour and collective dynamics of other biological systems.

One hundred five international researchers from different fields ranging from
physics to computer science and engineering came together to discuss the state of
the art developments. The stimulating atmosphere has facilitated many discussions
and several new cooperations have been initiated.

A special thank goes to all colleagues who helped behind the scenes in the
organization of the conference, especially Erik Andresen, Matthias Craesmeyer,
Christian Eilhardt, Kevin Drzycimski, Stefan Holl, Ulrich Kemloh, Gregor Lämmel,
Wolfgang Mehner, Daniel Salden, Bernhard Steffen, Antoine Tordeux and Jun
Zhang.

The organizers gratefully acknowledge the financial support from the German
Federal Ministry of Education and Research (BMBF) within the program Research
for Civil Security, grant number 13N12045.

The conference series will continue and the next conference will be held in Delft
(the Netherlands) in 2015.

Jülich, Germany Mohcine Chraibi
Jülich, Germany Maik Boltes
Köln, Germany Andreas Schadschneider
Jülich, Germany Armin Seyfried
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Dynamics



Modeling of Pedestrians

Cecile Appert-Rolland

Abstract Different families of models first developed for fluid mechanics have
been extended to road, pedestrian, or intracellular transport. These models allow
to describe the systems at different scales and to account for different aspects of
dynamics. In this paper, we focus on pedestrians and illustrate the various families
of models by giving an example of each type. We discuss the specificities of crowds
compared to other transport systems.

1 Introduction

What is the common point between fluids, cars, pedestrians or molecular motors?
Though they are quite different and evolve in systems of very different sizes, they
all result into flows, and they all obey simple conservation laws. As a result, the
families of models that have been developed in the past to describe fluids at different
scales have also been adapted to describe highway traffic [1], crowds [2] or axonal
transport [3, 4] (Table 1).

Let us consider first macroscopic models: At large scales, individuals are not
visible anymore, and the state of the system can be characterized by locally averaged
density and velocity. For fluids, Navier-Stokes equations express the conservation
of mass and of momentum.

For road traffic, mass conservation is still relevant, and provides a first equation
relating density and velocity. However, as vehicles are in contact with the road,
momentum is not conserved. A second relation must be provided to close the
equations. The simplest way is to give the (possibly data-based) fundamental
diagram, relating the flow of vehicles and the density. The resulting model is a so-
called first order model, a prominent example being the LWR model [14, 15]. The
more sophisticated second-order models [16,17] express the fact that the adjustment
of flow to density may not be instantaneous but rather takes place within a certain
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Table 1 Correspondence of model families, for four different physical systems: fluids, road
traffic, pedestrian traffic and intracellular traffic. We mention a few models (with their reference)
as prominent and/or historical examples of a given model type. The scale at which the system is
described increases as one goes down in the table

Fluids Road traffic Pedestrians Molecular motors

Molecular dynamics Car-following Ped-following Molecular dynamics

[5, 6] [7–9]

m a =
P

f a(�V , �x) m a =
P

f
Kinetic theory Kinetic theory Kinetic theory

P(v,x,t) P(v,x,t) P(v,x,t,�)

Cellular automata Cellular automata Cellular automata Cellular automata

Nagel-Schreckenberg Floor Field Langmuir

FHP Model [10] model [11] model [12] kinetics [13]

Continuous PDEs Continuous PDEs Continuous PDEs Continuous PDEs

Conservation of mass
and momentum

Conservation of mass
C fundamental dia-
gram j.�/

Conservation of mass
and . . .

Open system: balance
of fluxes

Navier-Stokes Eqs LWR Model [14, 15]

relaxation time. The second relation between density and velocity is then a second
partial differential equation.

For pedestrians also, the mass conservation equation must be completed to
provide a closed set of equations. However, the complexity is increased by the
fact that pedestrians, first, walk in a two-dimensional space, and, second, do not
necessarily all go in the same direction.

Within cells, intracellular transport also involves some “walkers”, i.e. some
molecules equipped with some kind of legs that perform stepping along some
cylindrical tracks called microtubules. In contrast with human pedestrians, these so-
called molecular motors do not only walk along microtubules, they can also detach
from the microtubules, diffuse around, and attach again. Thus, if one considers the
density of motors on the microtubule, even mass conservation is not realized any
more. The equations that determine the evolution of density and velocity must then
rather express some balance of fluxes between different regions of the system.

In the same way as various macroscopic models can be proposed for all these
systems, there are some equivalents of molecular dynamics or of cellular automata
approaches that have been developed for road, pedestrian or intracellular traffic.

In most cases, for a given physical system, different types of models have been
proposed independently to account for the behavior of the system at different scales,
leading to large families of models. In some cases however, it is possible to relate
the models at the different scales and to understand how the macroscopic behavior
can emerge from the individual dynamics.

In this paper, we shall focus on pedestrian modeling, and give an example for
each family of models. Part of this work (Sects. 2, 3, and part of 4) was performed
in the frame of the interdisciplinary PEDIGREE project [18]. The teams involved
are presented in Table 2.
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Table 2 The PEDIGREE Project involved four French teams listed below

Laboratory IMT INRIA CRCA LPT

Team leader P. Degond J. Pettré G. Theraulaz C. Appert-Rolland

Participants J. Fehrenbach S. Donikian O. Chabiron J. Cividini

J. Hua S. Lemercier E. Guillot A. Jelić

S. Motsch M. Moreau

J. Narski M. Moussaïd

The work of Sect. 5 was performed as part of the master and PhD of Julien
Cividini, in collaboration with H. Hilhorst.

2 Ped-Following Model

Fluids can be described at the level of molecules, by taking into account all the
interaction potentials between atoms in a more or less refined way, as is done in
molecular dynamics simulations [5,6]. When vehicles or pedestrians are considered,
two main difficulties arise. First the interaction potential is not know – actually
the interaction cannot in general be written as deriving from a potential. Second,
the interaction is in general highly non-isotropic, and does not depend only on the
position but also on the velocity and on the target direction of each individual.

In road traffic, cars naturally follow lanes. This features greatly simplifies the
problem. Each car has a single well-defined predecessor on its lane. Apart from
lane changes, a car driver can only adjust its speed. He will do so depending
on the conditions in front (distance, velocity, acceleration of the predecessor).
Actually several cars ahead could be taken into account (and indeed some empirical
studies [19] have shown that a driver may take into account several of its leaders).
But still, there is a clear hierarchy among the leaders, given by their order in the
lane.

In pedestrian traffic, individuals evolve in a two-dimensional space, and may
interact with several pedestrians at the same time, without a clear hierarchy. Besides,
the combination of interactions is in general not a simple sum of one-by-one
interactions. However, there are situations where the flow is organized in such a
way that it is quasi one dimensional.

For example in corridors, all pedestrians mostly go in the same direction. Even
if two opposite flows are considered, it is known that some lanes are formed
spontaneously, and within each lane the flow is again quasi one dimensional and
one directional.

The way pedestrians follow each other is even more clear when pedestrians
walk in a line. Such a configuration can be met for example in very narrow
corridors. It has been realized in several experiments [20–22], in order to study how
pedestrians react when they can only adjust their speed. One may then wonder how
the acceleration of a pedestrian is related to the distance, velocity, acceleration of
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its predecessor, and how the behavior of a pedestrian differs from the one of a car.
However, in order to evaluate the following behavior of a pedestrian, one needs to
be able to track at the same time, and on long enough time windows, the trajectory
of both the pedestrian under consideration and its predecessor.

Such an experiment has been realized in the frame of the PEDIGREE
project [18]. Pedestrians were asked to walk as a line, i.e. to follow each other
without passing [23]. Their trajectory was circular, in order to avoid boundary
effects. The motion of all pedestrians was tracked with a high precision motion
capture device (VICON) [24]. As a result, the trajectories of all pedestrians were
obtained for the whole duration of the experiment (from 1 to 3 min).

Various combinations of the dynamic coordinates of the predecessor have been
tested against the acceleration a of the follower. It turned out that the best correlation
was obtained [23, 25] for the relation

a.t/ D C
�v.t � �/

Œ�x.t/��
(1)

where v is the velocity of the predecessor, and �x the distance between the
predecessor and its follower.

One important difference with car traffic is the time delay � introduced in the
velocity: While the follower is able to evaluate quite instantaneously the position of
his predecessor, he needs some time delay � to evaluate his velocity.

Another difference with car traffic is the ability of pedestrians to flow even at very
large local densities [26]. In the aforementioned experiment, the velocity was still
of the order of 1 or 2 dm/s at local densities as high as 3 ped/m. This can be achieved
thanks to the ability of pedestrians to keep walking even at very low densities: they
can reduce the amplitude of their steps almost to zero while still keeping a stepping
pace almost constant [27].

In contrast to cars, pedestrians can also take advantage of any space left by
the predecessor, synchronizing partially their steps as was observed in previous
experiments [20]. Surprisingly, this synchronization effect is also observed for
pedestrians walking at a larger distance [27], probably as a result of the tendency of
pedestrians to synchronize with external rhythmic stimuli [22].

Here we have presented a model for one-dimensional pedestrian flows. In
general, pedestrians move in a two-dimensional space, and various agent based
models have been proposed which we shall not review here.

3 One-Dimensional Bi-directional Macroscopic Model
for Crowds

At the other extreme, when seen from a distance, crowds can be described as
continuous fluids. As mentioned in the introduction, one important difference with
fluids is that pedestrians have a target – which may not be the same for all of them.
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A simple configuration is met in corridors: the flow is quasi one-dimensional, but
pedestrians can walk in both directions. There is thus a need to distinguish two
densities �˙ of pedestrians, one for each walking direction. Each density obeys a
conservation law:

@t�C C @x.�CuC/ D 0;

@t�� C @x.��u�/ D 0;

where u˙ is the locally averaged velocity of pedestrians going in the ˙ direction.
Two other relations are needed to determine the four unknown densities and

velocities. This is achieved by writing two other differential equations for the
momentum [28, 29]

@t .�CuC/C @x.�CuCuC/ D ��C
�
d

dt

�

C
Œp.�C; ��/�;

@t .��u�/C @x.��u�u�/ D ��
�
d

dt

�

�
Œp.��; �C/�;

in which, by analogy to the pressure in fluid mechanics, the interactions between
pedestrians are described by a term p.�˙; ��/. There is however a major difference
with fluid mechanics: following [17], the derivative

.d=dt/˙ D @t C u˙@x (2)

is taken in the referential of the walking pedestrians, and not in the fixed frame as
for fluids. Indeed, pedestrians react to their perception of the surrounding density as
they see it while walking.

The term p.�˙; ��/ is actually not a pressure as in fluid mechanics, but rather a
velocity offset between the achieved velocity u˙, and another quantity w˙ which,
as it is conserved along each pedestrian trajectory, can be interpreted as the desired
velocity that the pedestrian would have if he was alone. In other words,

uC D wC � p.�C; ��/

�u� D w� � p.��; �C/

where w˙ are Riemann invariants

@twC C uC@xwC D 0

@tw� C u�@xw� D 0

conserved along the trajectories of ˙ pedestrians. The function p.�˙; ��/ can be
determined from experimental measurements.
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One difficulty coming from the fact that pedestrians do not necessarily have the
same target site is that they may converge towards the same region, leading in the
simulations to density divergences. A special treatment is thus required in order
to limit the density to physical values. The solution retained in [28, 29] was to let
p.�˙; ��/ diverge when the density approaches its upper limit value.

4 Kinetic Models

In kinetic models, instead of describing explicitly the presence of a particle
(molecule, vehicle or pedestrian) at a given location with a given velocity, one deals
with the corresponding probability.

For example, in [30], with G. Schehr and H. Hilhorst, we have considered the
case of a bidirectional two-lane road. Cars had different desired velocities, but the
overtaking can occur only if there is enough space on the other lane (see Fig. 1).
Assuming translation invariance of the probability distributions along the road,
the problem results in finding the distribution of effective velocities as a function
of the distribution of desired velocities. The solution of this problem requires to
evaluate the overtaking probability. To do so, we assume that the probability to find
a sufficient empty interval in the other lane at a given time and given place is equal to
the average probability (mean-field assumption). Under these assumptions, we find
that a symmetry breaking can occur between the lanes. This model developed for
road traffic could be seen as a first attempt to model pedestrians in a corridor when
lanes are formed, i.e. at high enough densities. However, this organization into lanes
will not be as stable as in road traffic.

To account more completely for pedestrian flows, one has to consider the
full joint probability distribution f .v; x; t; �/ of finding in position x at time t a
pedestrian with velocity v and target site located in �. It is out of scope yet to
find universal equations for this distribution. However, one may try to derive those
from microscopic models. Two such derivations have been proposed by P. Degond
et al. in [31] and [32], starting from agent based models in which pedestrians
modify their direction (and possibly velocity modulus) in order to avoid possible
collisions in the near future, while still trying to keep as close as possible to their
target direction. Some mean-field approximations have to be done to go from the

A

B

Fig. 1 Kinetic model for a bidirectional two-lane road. The vehicles (red and black circles) have
different desired velocities, leading to platoon formation. Overtaking can take place only if there
is enough free space on the other lane (From [30])
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microscopic discrete models to the kinetic ones. The smoothing due to these mean-
field expressions has to be balanced by the introduction of some appropriate noise
in the equations for the probability distribution f .

Once they have been obtained, these kinetic models can themselves be taken as
a starting point to derive macroscopic models [31, 32] in two dimensions.

5 Cellular Automata

To complete our comparison between pedestrian and fluid models, we shall now
consider cellular automata models. For fluids, the story started in 1986, with the
FHP model [10], in which pointlike particles were hopping onto a hexagonal lattice,
and undergoing collisions at the nodes of the lattice. Providing that these collisions
conserve mass and momentum but still mix enough the particle distributions, and
that the lattice has enough symmetries, the resulting lattice gas was found to obey
equations very close to Navier-Stokes equations [33]. Hence direct simulations of
this lattice gas were providing solutions of the (almost) Navier-Stokes equations – a
breakthrough given the difficulty to solve the latter.

A similar approach was proposed in 1992 for road traffic by Nagel and
Schreckenberg [11]. Of course in this case there is no momentum conservation
anymore, but rather some rules expressing the increase of velocity up to some
maximal velocity, under the constraint of collision avoidance.

For pedestrians, interactions can be quite long ranged and one has to combine
interactions taking place in any direction. It is thus a priori quite complex to develop
a cellular automaton based on interactions between neighboring cells. A solution
inspired from ants was provided by the use of some effective pheromones, which
mediate the interactions between pedestrians [12, 34, 35].

Apart from the geometry of the lattice and the evolution rules, a cellular
automaton is also defined by the sequence under which lattice sites are updated.
Processes in continuous time, with independent events occurring with given rates,
are well described by random sequential updates, in which a site is chosen at random
and updated at each micro-time step. However this update leads to large fluctuations
(the same site can be chosen twice in a row while another one will be ignored
for a long time). Thus, for traffic applications, more regular updates are preferred.
In particular the parallel update in which all the sites are updated in parallel at
discrete time steps ensures a certain regularity in the flow. It introduces a time scale
(the aforementioned time step) which can be interpreted as the reaction time of
individuals.

Parallel update is widely used in road traffic modeling. It is also employed for
pedestrians [36,37], but requires to be complemented by extra rules. Indeed, in two-
dimensional flows, two pedestrians may chose the same target site, resulting in a
conflict that has to be solved by ad-hoc rules. Though these conflicts may be given a
physical meaning in terms of friction [37], some other updates which do not require
these extra rules have been proposed.
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The random shuffle update [38–41] ensures that each site will be updated exactly
once per time step, but in an order that is randomly chosen at each time step. This
update has indeed been used in early cellular automata simulations of pedestrian
evacuations [41, 42].1

The frozen shuffle update [43, 44] associates to each pedestrian a fixed phase � ,
i.e. a real number between 0 and 1, and updates pedestrians once per time step in
the order of increasing phases. This update allows to have higher fluxes than parallel
update, reproducing the tendency of pedestrians to flow even at high densities.
Besides, the phase � can be given a physical meaning. It can represent the phase
in the stepping cycle. It allows also to some extend to map the cellular automaton
dynamics onto a continuous time/continuous space dynamics [44].

Cellular automata simulations can be useful to simulate large systems [41]. They
can also help to understand some pattern formation [45], for example lane formation
in counterflows [12, 46], or diagonal patterns at the crossing of two perpendicular
flows [47, 48].

Conclusion
In this paper we have reviewed a few models for pedestrians proposed in
the past years, to illustrate the various families of models that span over the
different physical systems considered at the TGF conference.

For completeness, we must mention that at even larger scales than consid-
ered in this paper, models for road or pedestrian traffic must be supplemented
with route choice models, as in [49].
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Generic Instability at the Crossing of Pedestrian
Flows

Julien Cividini

Abstract Diagonal stripe formation is a well-known phenomenon in the pedestrian
traffic community. Here we define a minimal model of intersecting traffic flows. It
consists in anM �M space-discretized intersection on which two types of particles
propagate towards east (E ) and north (N ), studied in the low density regime. It
will also be shown that the behaviour of this model can be reproduced by a system
of mean field equations. Using periodic boundary conditions the diagonal striped
pattern is explained by an instability of the mean-field equations, supporting both
the correspondence between equations and particle model and the generality of
this pattern formation. With open boundary conditions, translational symmetry is
broken. One then observes an asymmetry between the organization of the two types
of particles, leading to tilted diagonals whose angle of inclination slightly differs
from 45ı both for the particle system and the equations. Even though the chevron
effect does not appear in the linear stability analysis of the mean-field equations it
can be understood in terms of effective interactions between particles, which enable
us to isolate a macroscopic nonlinear propagation mode which accounts for it. The
possibility to observe this last chevron effect on real pedestrians is then quickly
discussed.

1 Introduction

Numerical models of pedestrians are expected to reproduce experimentally observed
phenomena, at least in some simple cases. Depending on the application, these
phenomena may include pattern formation, non-monotonic variation of evacuation
times, queuing behaviour, . . . In this work we address the opposite issue. Instead of
designing a model reproducing all these phenomena we try to isolate the simplest
possible ingredients necessary to exhibit a given feature, here stripe formation at the
intersection of two perpendicular flows. This will lead us to explain this pattern, but
also to dig out a much more subtle effect.
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Stripe formation at the intersection of perpendicular flows is a well-known
generic phenomenon in the pedestrian dynamics community. For now it has mainly
been observed in pedestrian simulations [1, 2] but is also known to happen in
experiments [3].

In this work we first design a minimal model containing the main ingredients
ensuring that stripe formation will be observed. The definition of the model and its
relation to previous literature will be discussed in Sect. 2. Striped pattern formation
will then be explained in Sect. 3 by considering this model with periodic boundary
conditions (PBC). Open boundary conditions (OBC) will be studied in Sect. 4 where
a smaller ‘chevron effect’ will be observed, measured and explained. And the final
section presents the Conclusion and perspectives.

2 The Model

A lane is modeled as a one-dimensional lattice of M C L sites, which we may
label from 1 to M C L for clarity. Pedestrians are modeled by particles that may
occupy these sites. They are however constrained by the exclusion principle, i.e.
there cannot be more than one particle on a given site. Particles are allowed to
stochastically enter the lane on site 1 at an average frequency determined by the
parameter ˛ 2 Œ0I 1�, to hop form site i to i C 1 and to hop outside of the lattice
from site M C L. These two actions are taken to be deterministic, i.e. if a particle
hops with probability 1 if the hop is allowed by the exclusion principle. If a particle
attempts to hop on an already occupied site the hop is discarded and the particle is
blocked.

A street of width M is then modeled as a set of M parallel non-interacting
identical lanes. The intersection of two perpendicular identical streets leaves us with
an M �M intersection square effectively populated by two types of particles. The
E particles (N ) enter the intersection from the west (south) and exit it towards east
(north). A scheme is drawn in Fig. 1.

In the scope of modeling pedestrians we choose very regular update schemes. In
particular we restrict ourselves to update schemes in which each pedestrian attempts
to move exactly once per time step. More precisely we study alternating parallel
update, in which all the particles of a given type move at the same time and alternate
with the other type, and frozen shuffle update, in which every particle P is given a
fixed phase �P 2 Œ0I 1� at its creation and is updated at times 2 N C �P .

With these update schemes the deterministic hopping implies that the motion of
the particles in the ‘entrance corridors’ of size L is simply a translation, so that the
value of L turns out to be unimportant. We therefore end up with a very simple
two-parameter model. For a fixedM a jamming transition occurs when ˛ increases,
which was studied in detail in Refs. [4,5]. Here we keep the entrance rate low enough
to ensure that the system stays in free flow, ˛ . 0:1 for M � 100. In this regime ˛
is practically equal to the average density � of the system.
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Fig. 1 Scheme of the open
system. The bold line
surrounds the M �M
intersection square. E
particles are represented by
blue right-pointing triangles
and N particles by orange
up-pointing triangles.
Particles of type E (N ) are
enabled to enter the system
with entrance probability ˛ at
the beginning of the western
(southern) entrance lane

One might think that values of M of the order of 100 are completely unrealistic.
We however argue that the relevant parameter here is the number of collisions in
which a pedestrian is involved when he goes through the whole intersection. This
number is on average �M � 0:1 � 100 � 10 for typical values of the parameters
of the model, which is comparable to what one would expect to have in a typical
experiment.

Similar models have already been studied mainly in the road traffic literature.
The Biham-Middleton-Levine (BML) model has been introduced in Ref. [6]. The
BML model is a PBC version of the model described above in which the sites
represent intersections in a Manhattan-like city and the particles represent cars. In
this context the authors observe the striped pattern but do not attempt to explain it.
The BML model has been studied by Ding et al. [7] with a ‘randomized’ version of
the update scheme. The behaviour of the system then changes as they do not observe
any pattern formation.

3 Pattern Formation in PBC

We begin with studying the case of a periodic crossing, i.e. particles going out of the
intersection at its east (north) boundary immediately enter it again at the west (south)
boundary. This problem is simpler than the OBC case because it has translational
invariance.

The stationary state of a typical realization of the system is shown in Fig. 2.
After a transient regime particles are observed to segregate into diagonal alignments.
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Fig. 2 Stationary state of a
typical realization of the
particle model with PBC for
M D 60 and particle density
� D 0:1. Particles of the same
type are aligned along
diagonals parallel to the
.1;�1/ direction that have a
width of some sites (Taken
from Ref. [8])

The pattern propagates towards the .1; 1/ direction. The angle of the diagonals with
respect to the vertical axis is exactly 45ı, as imposed by the symmetry with respect
to direction .1; 1/ at every point of the system.

This pattern can be understood by writing mean-field equations for the particle
densities. Defining �E ;Nt .r/ as an average probability that site r is occupied by an
E (a N ) particle at time t , we can write the phenomenological equations

�EtC1.r/ D Œ1 � �Nt .r/��Et .r � ex/C �Nt .r C ex/�Et .r/;

�NtC1.r/ D Œ1 � �Et .r/��
N
t .r � ey/C �Et .r C ey/�Nt .r/: (1)

The first of Eqs. 1 simply means that an E particle will hop forward if there is no
N particle on its target site and will not move otherwise, the second equation is the
symmetrical.

A constant uniform density profile �Et .r/ D �Nt .r/ D � solves Eqs. 1. A linear
stability analysis can therefore be performed around this solution. More precisely,
we set �E ;Nt .r/ D � C ı�

E ;N
t .r/ with jı�E ;N j � 1, allowing us to keep only

the linear terms in the mean-field equations. Taking the Fourier transform we find
that the homogeneous solution is unstable, with a maximal instability for the wave-
vector parallel to the .1; 1/ direction with a wavelength

�max D
p
2	

arccos
�
1�2�
2�2�

� D 3
p
2CO.�/; (2)

which explains the observed pattern.



Generic Instability at the Crossing of Pedestrian Flows 17

The explanation of the pattern coming from the equations justifies the postulated
equations a posteriori. It also gives an indication about the generality of the observed
pattern, as the equations are expected to represent a mean-field theory for a broad
class of regular enough motion rules or update schemes. We now turn on to OBC,
in which case the subtle chevron effect will be studied, making the correspondence
between particle model and equations even more robust.

4 Chevron Effect and Effective Interactions

The same kind of simulations can be performed with open boundary conditions, i.e.
with the entrance corridors drawn in Fig. 1. A typical snapshot of the system in the
stationary state is shown in Fig. 3.

Some differences with the PBC case appear. There is a penetration zone of char-
acteristic size �.˛/ near the boundaries in which the particles seem disorganized.
Outside of this penetration zone particles still segregate into alignments of a given
type, however the intersection is not homogeneous. Instead it can roughly be divided
into two triangles separated by a small transition zone along the main diagonal.
In the upper (lower) triangle the N particles (E ) are organized in very compact
nearly diagonal alignments whereas the E particles (N ) fill largely randomly the
rest of the space, as shown in Fig. 4. The angle of the organized alignments can be
accurately measured and proved to be equal to 45ı ˙�
0 everywhere inside of the
upper (lower) triangle. The stripes therefore have the shape of chevrons and give its
name to the chevron effect.

Fig. 3 Snapshot of the
stationary state of the
intersection square with open
boundary conditions, for
M D 640 and ˛ D 0:09 and
with frozen shuffle update.
The white dashed lines
delimit the upper and lower
triangles. Near the entrance
boundaries is a disordered
penetration zone of width �,
and a transition zone along
the main diagonal has been
excluded from the triangles.
The difference of color
between the two triangles is a
good clue to detect the
asymmetry (Taken from
Ref. [8])
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Fig. 4 Zoom on a region of Fig. 3, located in the upper triangle. The N particles are compacted
into dense stripes whereas the E particles fill the remaining space in a more random fashion. The
angle between the alignments of N particles and the vertical axis is slightly more than 45ı. This
has been highlighted by drawing solid black lines at an angle of 45ı (Taken from Ref. [8])

A natural attempt to explain this pattern would be to perform an other linear
stability analysis on the mean-field equations with adapted boundary conditions.
Such an analysis has been performed and no trace of the chevron effect has been
found. A numerical resolution of the nonlinear mean-field equations however shows
the same chevron effect as in the particle system, which constitutes a confirmation
of the robustness of this effect and of the close connection between equations and
particle model.

An explanation of this effect can be formulated as follows. Consider a single
E particle hopping on an infinite lattice. The sites of this lattice are taken to be
filled randomly by particles of type N with density �N , and all the particles move
according to e.g. frozen shuffle or alternating parallel update. It is now possible to
construct the set of sites which are necessarily empty (the wake) due to the E particle
blocking the N particles that could have hopped on these sites, for any given time
step and initial configuration (see Fig. 5). An other E 0 particle can then be dropped
somewhere on this wake and its escape rate from the wake can be computed by
means of rate equations.

The calculation performed in Ref. [9] shows that E 0 is stabilized by the wake of
the first one, the most striking effect being that E 0 cannot escape the wake from the
back. In the case of alternating parallel update this effect is even stronger, as it can
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Fig. 5 Wake of a single E particle in an infinite lattice randomly occupied by N particles. The
set of dotted sites can easily be constructed for any initial condition. A second E 0 particle can then
be added on one of these dotted sites and its escape rate can be computed exactly

be shown that E 0 cannot escape the set of black dotted sites shown in Fig. 5. More
E particles can then be added, and the state in which all the black-dotted sites are
occupied by an E particle is a macroscopic stable propagation mode. The deviation

of the angle of the wake from 45ı is on average �N

2
, which is in total agreement

with the measurements for alternating parallel update.
The chevron effect is therefore a purely nonlinear effect that has been explained

by isolating a particular propagation mode. The construction of this mode shows that
the chevron effect stems from the asymmetry in the organization of the two types
of particles, which is itself caused by the difference in the number of collisions
undertaken by both types of particles at a given location of the intersection.

Conclusion and Perspectives
In this work we have formulated a simple generic model for intersecting
traffic flows, having in mind the application to pedestrians. The ingredients
necessary for a system to exhibit diagonal stripe formation, which had already
been observed in experiments and simulations of pedestrians, have been
isolated and indeed lead to a diagonal pattern when studied with periodic
boundaries. This pattern formation has then been ex-pained by a linear
stability analysis of mean-field equations. With open boundaries the chevron

(continued)
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effect appears, the angle of the alignment is different in the two triangular
regions separated by the main diagonal. This fully nonlinear effect has been
shown to arise from the asymmetry in the organization of the two particle
types, and is understood by resulting from a particular propagation mode.

Eventually, this model raises some applied as well as fundamental issues.
It is questionable whether this chevron effect can be observed in experiments,
as it is observed for large intersections and very regular motion. We however
already argued in Sect. 2 that the important parameter here is the number of
collisions �M , a statement which seems to be supported by the mechanism of
the chevron effect itself. As the density is actually much larger in experiments
than in the model, the chevron effect might also be more pronounced.

A natural perspective for this model would be to extend it to incorporate
lane changes, turns . . . It is currently not known whether the studied patterns
would survive these changes, and their survival would probably depend on
their precise implementation. It is also of more fundamental interest to ask if
the chevron effect can really be sustained in theM ! 1 limit. We performed
simulations up to M D 2;900 which seem to support this assertion, however
only an analytical proof would be satisfying.

Acknowledgements I thank C. Appert-Rolland and H.J. Hilhorst for their collaboration in this
work.
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Crowd Flow Modeling of Athletes in Mass
Sports Events: A Macroscopic Approach

Martin Treiber

Abstract We propose a macroscopic model in form of a dispersion-transport
equation for non-congested flow of the athletes which is coupled to a kinematic-
wave model for congested flow. The model takes into account the performance (i.e.,
free-flow speed distributions) of the athletes in the different starting groups. The
model is calibrated and validated on data of the German Rennsteig Half Marathon
2012 and the Swedish Vasaloppet 2012 cross-country ski race. Simulations of the
model allow the event managers to improve the organization by determining the
optimum number of starting groups, the maximum size of each group, whether a
wave start with a certain starting delay between the groups is necessary, or what
will be the effects of changing the course. We apply the model to simulate a planned
course change for the Rennsteig Half Marathon 2013, and determine whether critical
congestions are likely to occur.

1 Introduction

Mass-sport events for runners, cross-country skiers, or other athletes, are increas-
ingly popular. Prominent examples include the New York Marathon, the Vasaloppet
cross-country ski race in Sweden, and the nightly inline-skating events taking
place in nearly every major European city. Due to their popularity (the number of
participants is typically in the thousands, sometimes in the ten thousands), “traffic
jams” occur regularly (Fig. 1). They are not only a hassle for the athletes (since the
time is ticking) but also pose organisational or even safety threats, e.g., because a
spillback from a jam threatens to overload a critical bridge. Nevertheless, scientific
investigations of the athletes’ crowd flow dynamics [1] are virtually nonexisting.

The crowd dynamics can be described by two-dimensional active-particle sys-
tems [2]. Unlike the situation in general pedestrian traffic, the flow is unidirectional
since all athletes share the same destination (the finishing line). This means, the
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Fig. 1 Jams at the Swedish Vasaloppet cross-country race 2012 (left) and at the Rennsteig
Marathon 2012 (right)

dynamics is equivalent to that of mixed unidirectional vehicular traffic flow which
may be lane-based, as in cross-country ski races in the classic style [3], or not,
as in skating and running events but also in mixed vehicular traffic flow in many
developing countries [4]. The uni-directionality allows to simplify the mathematical
description to a macroscopic, one-dimensional model for the motion along the
longitudinal (arc-length) coordinate.

In this contribution, we formulate a macroscopic dispersion-transport model for
free flow which is coupled to a kinematic-wave model for congested flow. We
calibrate and validate the model by data of the Rennsteig 2012 Half Marathon and
the Vasaloppet 2012 and apply it to simulate the effects of a planned course change
for the next Rennsteig Half Marathon 2013 to avoid the overloading of a critical
bridge.

In the next section, we develop the macroscopic model and show its workings on
data of past running and ski events. In Sect. 3, we apply it to simulate organisational
changes for the Rennsteig Half Marathon 2013. Finally, Sect. 4 gives a discussion.

2 The Macroscopic Model

Our proposed macroscopic model has two components for free and congested traf-
fic, respectively. Since, in free traffic, individual performance differences translate
into different speeds, we formulate the free-traffic part as a multi-class model.
In contrast, “everybody is treated equal” in congested traffic, so a simple single-
class kinematic-wave model is sufficient. During the simulation, the free-traffic
part provides the spatio-temporally changing traffic demand (athletes per second).
A congestion arises as soon as the local demand exceeds the local capacity. The
resulting moving upstream boundary of the jam is subsequently described by
standard shock-wave kinematics.
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Wave 2

Wave 4Wave 3
Wave 5

a b

Fig. 2 Two possible starting schemes. (a) Mass start (Rennsteig Marathon 2012); (b) wave start
(Jizerska Padesatka 50 km, 2012)

2.1 Free Traffic Flow

In most bigger mass sports events, the athletes are classified according to perfor-
mance into starting groups. All groups start either simultaneously (“mass start”,
Fig. 2a), or sequentially with fixed delays between the groups which, then, are also
called waves (“wave start”, Fig. 2b).

Generally, each athlete wears an individual RFID chip recording the starting
and finishing time, and also split times when passing refreshment stations along
the course. The information of the starting groups is highly useful since the speed
distribution within each group is much narrower than that for the complete field.
Thus, by considering each group individually, the model makes more precise
predictions.

Figure 3 shows the distributions of the final times of the German Rennsteig Half
Marathon and the time for a section of the Vasaloppet 2012 where no major jams are
observed. We fitted the data of each group by Gaussians parameterized, for reasons
of robustness, by the median and the inter-quartile gap instead of the arithmetic
mean and standard deviation. We infer that, in the absence of major disturbances, the
speed distribution within each group is nearly Gaussian. Significant deviations are
only observed (i) for the small elite groups due to platooning, (ii) for the low-speed
tails. (Generally, the low-speed tails are fatter compared to Gaussians. However,
at the Vasaloppet, the slowest athletes are taken out of the race thus reversing this
effect.)

Using the normal kinematic relation T D L=v for the time T that athletes of
group k take to cover the distanceL at speed v, we obtain by elementary probability
theory following relation between the density functions f v

k .v/ of the speed and the
(non-Gaussian) density function f T

k .T jL/ of the needed time,

f T
k .T jL/ D L

T 2
f v
k

�
L

T

�

: (1)
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Fig. 3 Distribution of the average speeds (left) and times (right) of the different starting groups at
the Rennsteig Half Marathon 2012 (whole race, top) and at the Vasaloppet 2012 (a 9 km section
between the stations 5 and 6, bottom). Symbols: data; curves: model

Finally, we assume that the relative performance of an athlete persists throughout
the race. In other words, in free traffic, a fast runner remains fast and a slow athlete
slow. This means, the flow dynamics obeys a dispersion rather than a diffusion
equation. Specifically, we assume constant speed distributions on flat terrain and
identical relative speed changes for inhomogeneities such as uphill or downhill
gradients. In the following, we will assume a flat terrain, for notational simplicity.

Denoting the number of athletes in each group by nk and assuming a wave start
where group k starts a time delay �k after the starting gun goes off (indicating the
start of the first and elite waves), the free-traffic demands Qfree.x; t/ and densities
�free.x; t/ read

Qfree.x; t/ D
X

k

Qk.x; t � �k/; Qk.x; t/ D nkf
T
k .t jx/; (2)

�free.x; t/ D
X

k

�k.x; t � �k/; �k.x; t/ D t

x
Qk.x; t/; (3)

whereQk and �k are set to zero for time arguments t � �k � 0. Figure 4 shows, for
the Rennsteig race, that the model prediction for the total traffic demandQfree.x; t/

at the finish line fits well with the data (possibly, the small deviation at the peak is
due to congestions). Thus, we are now able to estimate the free-flow traffic demand
upstream of a congestion at any location and at any time during the race. Moreover,
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Fig. 5 Simulated effect of a wave start on the local flow of athletes (all starting groups) at different
locations from x D 2;500m to the finish. (a) Reference (mass start), (b) delay of 5 min

we now can anticipate the consequences of organisational changes such as realizing
a wave start rather than a mass start (Fig. 5).

2.2 Kinematic-Wave Model for Congested Crowds

We propose a quasi-onedimensional Lighthill-Whitham-Richards model with a
triangular fundamental diagram. In terms of the local capacity C.x/ (maximum
number of athletes per second that can pass a cross section at location x), the free-
flow speed V0, and the maximum local one-dimensional density (athletes per meter)
�max.x/, the fundamental diagram can be expressed by [1]

Qe.�/ D max

�

V0�;
C.�max � �/

�max � C=V0

�

: (4)
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Notice that the observed capacity C increases weakly with the maximum speed
V0 such that V0 essentially cancels out in the congested branch of (4). A traffic
breakdown arises if, at any location or time, the free-flow demand Qfree.x; t/

exceeds the local capacity CB at a bottleneck x D xB (where the capacity is at
a local minimum). The resulting congested traffic region has a one-dimensional
density

�cong.x/ D �max.x/

�

1 � CB

C.x/

�

C CB

V0
: (5)

The congestion has a stationary downstream front at the bottleneck location xB
while the upstream front xup.t/ is moving according to the shock-wave formula

dxup

dt
D CB �Qfree.xup; t/

�cong.xup/� �free.xup; t/
: (6)

The congestion dissolves as soon as xup.t/ crosses xB in the downstream direction.
Finally, the outflow downstream of the congested region has a constant flow
Qdown

free .x; t/ D CB equal to the bottleneck capacity.
Both the local capacities and maximum densities are proportional to the local

width w.x/ of the course:

C.x/ D Jmaxw.x/; �max.x/ D �2d
maxw.x/: (7)

The maximum flow density (specific capacity) Jmax and the maximum 2d density
�2d

max are model parameters depending on the kind of race and on the local conditions
(e.g., gradients). From past congestions, we can estimate �2d

max D 2m�2 and Jmax D
1:5m�1s�1 for running competitions on level terrain (which is comparable to normal
unidirectional pedestrian flows), and �2d

max D 0:7m�2, Jmax D 0:6m�1s�1 for level-
terrain cross-country ski events.

3 Simulating Scenarios for a Marathon Event

At the 2012 Rennsteig Half Marathon, there were six starting groups. The last group
contained significantly more participants. For 2013, the managers plan eight groups
of equal size nk � 850, with the first five groups sorted to performance, and the
last three groups available for the runners for which no previous performance are
known or who registered too late. Based on the 2012 data, we set the average speeds
to v1 D 3:5m=s, v2 D 3:1m=s, v3 D 2:7m=s, v4 D 2:4m=s, v5 D 2:1m=s, and
v6 D v7 D v8 D 2:7m=s. All speed variances are assumed to be �2v D 0:15m2=s2.
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Due to external constraints, the course of the 2013 Marathon must be changed.
There are several options:

• Scenario 1: Mass start. The 5 m wide starting section has a capacity of 7 ath-
letes/s. The first bottleneck at x D 1;000m is a 7 % uphill gradient section of
4.5 m width. At x D 2;200m, the athletes encounter a 3.5 m wide downhill
section. The critical bottlenecks, however, consist of a bridge at x D 3;000m
(level, 3 m wide), and, 100 m afterwards, a steep uphill gradient (11 %) where
the course has a width of 3.5 m.

• Scenario 1a: As Scenario 1, but wave start with a delay of 300 s per wave
• Scenario 1b: As Scenario 1a, but the capacity of the starting section has been

reduced to 5.5 athletes/s.
• Scenario 2: The course is reorganized such that the 7 % gradient is at x D
1;400m, the downhill bottleneck at x D 2;700m, and the bridge with the
subsequent steep uphill section at x D 5;700 and 5,800 m, respectively.

Based on past experience, the maximum 2d density is set to �2d
max D 2m�2 and

the specific capacities to Jmax D 1:5m�1s�1 for level sections (including the
bridge), and 1:2 , 1:0 , and 1:3m�1s�1 for the 7, 11 %, and the downhill gradients,
respectively. Figure 6 displays the resulting fundamental diagrams for the bridge
(capacity C D 4:5 s�1) and the subsequent uphill section (C D 3:5 s�1)

While some congestions are unavoidable, we must require that there is no
significant congestion on the 60 m long bridge itself because this may result in
dangerous overloading.

Figure 7 shows the main results: With a mass start (Fig. 7a), massive jams will
form at and upstream of all the bottlenecks, including a spillback to the bridge,
so this is no option. Adopting a wave start (Fig. 7b) reduces the congestion at the
first bottleneck to a tolerable level. Furthermore, jams are no longer expected at the
downhill bottleneck while the bridge itself has even capacity to spare. However, the
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Fig. 6 Fundamental diagram for different situations of the simulation of the Rennsteig Half
Marathon 2013 (see the main text for details)
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Fig. 7 Two simulated scenarios for the Rennsteiglauf Half Marathon 2013. The horizontal lines
give the capacities of the various bottlenecks of the course, and the curves of the same color the
predicted demands at these positions

demand exceeds the capacity of the steep uphill section leading to a supply-demand
mismatch of up to about 150 athletes (the area between the blue curve and the blue
capacity line of Fig. 7b). This corresponds to a jam of about 150 m, i.e., there is a
spillback with a density of 2.5 athletes/m (cf. Fig. 6) onto the bridge. Reducing the
initial capacity of the starting field to 5.5 athletes/s (Fig. 7c) does not help much in
this situation. Only a rearrangement of the course with the bridge section located
further away from the start yields a significant improvement with the only (minor)
jam expected at the uncritical first bottleneck.

4 Discussion

We have proposed a macroscopic dispersion-transport model that allows managers
of mass-sports events to assess the implications of changing the course, or the
spatio-temporal organization of the start, without prior experiments. As a general
rule, critical bottlenecks should be moved as far away from the start as possible.
If the situation remains critical, a wave start and/or a restriction of the number of
participants will be necessary.
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Pedestrian Evacuation Optimization Dynamic
Programming in Continuous Space and Time

Serge P. Hoogendoorn, Winnie Daamen, Dorine C. Duives,
and Femke L.M. van Wageningen-Kessels

Abstract This paper deals with the optimal allocation of routes, destination, and
departure times to members of a crowd, for instance in case of an evacuation or
another hazardous situation in which the people need to leave the area as quickly
as possible. The generic approach minimizes the evacuation times, considering the
demand dependent waiting times at bottlenecks within the considered infrastructure.
We present the mathematical optimization problem for both the optimal instructions,
and the continuum model describing the pedestrian flow dynamics. The key
contribution of the approach is that it solves the evacuation problem considering the
entire solution space in a continuous manner (i.e. both the time dimension and the
routing), implying that for each location and for each time instant the optimal path
towards the most favorable exit is calculated, taking into consideration the traffic
flow operations along the routes. The approach is generic in the sense that different
network loading models can be used, and that a variety of components can be
added to the optimization objective without loss of generality. Next to presenting the
framework and the mathematical model, we propose an iterative numerical solver
to compute the optimal instructions. We demonstrate the abilities and opportunities
of this optimization framework with two case studies.

1 Introduction

As evacuation procedures are becoming an established part of large-scale event
risk assessment plans, event organizers are increasingly challenged to proof that
their plans are in order and visitors can efficiently leave the premises in case of
an emergency. Over the years numerous evacuation models have been proposed
to assist in this endeavor. A good overview of these models is given by e.g. [1].
All proposed evacuation prediction models are capable of computing an effective
evacuation. However, these models cannot predict the most effective one achievable.
In contrast to the accumulation of literature treating pedestrian evacuation behavior
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and pedestrian evacuation models, there have only been limited attempts to optimize
pedestrian evacuation behavior. Amongst these, to the authors’ knowledge none of
them provide efficient ways to optimize optimal evacuation instructions, for both
small and large scenarios.

In this paper, we introduce a mathematical optimization framework that com-
putes optimal instructions efficiently. Furthermore, we propose an iterative nu-
merical solver to compute the optimal instructions. Departure times, destinations
and routes of individual members of a crowd are considered in the evacuation
instructions. The approach minimizes the evacuation times, considering the demand
dependent waiting times at bottlenecks within the considered infrastructure. This
optimization framework, which is continuous in time and space, is generic with
respect to the macroscopic pedestrian flow model that is also presented in this paper.

2 Mathematical Preliminaries

Let us define the infrastructure from which the people need to evacuate. The area is
defined by˝ � R. Within this area, there areM obstacles that cannot be penetrated.
These are defined by areas Bm � ˝ for m D 1; : : : ;M . Finally, we define J exit
areasDj � ˝ , which represent the safe havens in area˝ . For the sake of simplicity,
we assume a one-level area.

We will look for the optimal path x�Œt;T / starting at time instant t from any location
x.t/ 2 ˝ . These paths are defined as follows:

xŒt;T / D f�.s/ 2 ˝jt � s � T; �.s/ … Bmg (1)

Here, t denotes the departure time, and T denotes the terminal time when the
evacuee either reaches one of the safe havens or when the evacuation is otherwise
ended (i.e. total simulation time has elapsed).

Since we assume that the paths are differentiable, we could analogously describe
the path in terms of the velocity path:

vŒt;T / D fv.s/ 2 � .s; �.s//jt � s � T g (2)

where �.s/ D �.t/C R s
t

v.�/d� and where � .s; �/ denotes the set of velocities that
yield admissible paths at time s and location �.

For each path xŒt;T /, or equivalently, the velocity path vŒt;T /, we define the path
costs J.t; x.t/jvŒt;T // as follows:

J.t; x.t/jvŒt;T // D
Z T

t

L.s; x.s/; v.s//ds C .T; x.T // (3)
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subject to d
dt x D v. In this expression, the function L.t; x; v/ denotes the so-called

running cost, which is the cost added to the total cost during the infinitesimal period
Œs; s C dt/. The running cost is a function of the time s, the location x.s/ and the
velocity v.s/. This cost can reflect different factors, such as the travel time or cost
incurred because the evacuee is too close to a hazard (fire, smoke). When we only
consider travel times, we can choose L D 1. The function .T; x.T // expresses
the cost incurred being at a certain location x.T / at time instant T , which in turn
denotes the terminal time, which is either the end of the evacuation period (denoted
by T D t1) or the time an evacuee arrives at one of the safe havens. In the former
case, we would set the cost of not being at one of the safe havens at the end of the
evacuation to a high value.

In the remainder, we present a network loading model that is continuous in time
and space in detail. This model describes the dynamics of the densities �.t; x/
representing the mean number of pedestrians (per unit area) at time instant t and
location x, in relation to the flows and the velocities. To determine the walking
speed, we assume dependence on the densities according to the well know relation:

ve.t; x/ D V.�.t; x// (4)

which in fact denotes the fundamental relation for pedestrian flows. The direction is
determined by the prevailing route choice.

3 Modeling Framework

The aim of the framework is to evacuate as many people as possible within the
allotted time period Œt0; t1/, taking into consideration the limited supply available
due to the infrastructure and possible queues due to these supply limitations, and
the physical capabilities of the evacuees.

To this end, we determine the optimal cost functionW.t; x/ with t0 � t � t1 and
x 2 ˝ that describes the minimal costs (e.g. time) to get to one of the safe havens
Dj for j D 1; : : : ; J . That is:

W.t; x/ D min
vŒt;T /

J.t; xjvŒt;T // (5)

subject to d
dt x D v and v.s/ 2 � .s; x.s//. Note that � .s; x.s// can be used to

describe the influence of obstacles present, as well as physical limitations of the
evacuee (including limitations in the speed due to other evacuees present).

If the minimum costs are known, determining the optimal path can be achieved
easily by determining the directions in which the costs decrease the quickest [4], i.e.:

v�.t; x/ D rW.t; x/ (6)

Note that by necessity, we have jv�.t; x/j � min.w; ve.t; x//.
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The pedestrian flows are expressed as continuum flows through the infrastructure,
and are modeled by means of simple conservation equations, yielding the densities
�.t; x/ (and speeds and flows) as functions of time and space. This is explained in
detail in the next section.

The objective of the evacuation problem is to find the optimal cost function
QW .t; x/ (and thus the optimal paths) that minimizes the evacuation costs of the

evacuees, given the evacuation flows (and thus densities Q�.t; x/). That means that we
would need to solve a dynamic assignment problem in continuous time and space
until we achieve consistency between the optimal evacuation routes (and staging,
i.e. departure times) and the resulting flows.

4 Network Loading by First-Order Pedestrian Flow
Modeling

In this paper, a macroscopic approach is taken where flow is described in terms of
the dynamics of pedestrian densities �.t; x/ in time and space. The proposed model
is similar to the well known kinematic wave model [5] for vehicular traffic, with the
exception that next to the fundamental diagram, also the flow direction needs to be
considered.

The dynamic network loading model used here is described by a simple
conservation of pedestrians equation. That is, assuming that the velocity v.t; x/ is
known, the flow propagation satisfies:

@�

@t
C @.� � v/

@x
D @�

@t
C @q
@x

D r � s (7)

subject to initial conditions �.t0; x/ D �0.x/ for all x 2 ˝ . Here r D r.t; x/ denotes
a source term where evacuees flow into the area ˝; s D s.t; x/ denotes a sink term,
where evacuees leave the area ˝ (i.e. at the safe destinationsDj ).

In the proposed framework, the (optimal) direction of the flow is determined
at the path choice level. This yields a unitary vector ��.t; x/ that points into the
optimal walking direction. This vector is defined by:

��.t; x/ D rW.t; x/
jjrW.t; x/jj (8)

That is, the unitary vector points into the steepest descent direction of the minimum
cost functionW.t; x/.

For the (absolute) speed jjvjj we assume that the flow behaves according to
the fundamental relation between density and speed, i.e. jjv.t; x/jj D V.�.t; x//.
Alternatively, we use the flow-density relation, which then results in:

q.t; x/ D ‚�.t; x/ �Q.�.t; x// (9)
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Note that for the sake of simplicity, we assume that the absolute flow is only a
function of the density. We will use a simple linear speed-density function, i.e.:
V.�/ D v0 � .1 � �=�jam/ D 1:34 � .1 � �=5:4/.

Note that with the presence of obstacles Bm 2 ˝ , we need to respect that no
evacuees can flow into the obstacles. This means that the velocities satisfy:

v.t; x/ � nm.t; x/ 	 0 (10)

where nm.t; x/ denotes the outward pointing normal vector of the boundary of
obstacle Bm.

The mathematical properties of the flow model proposed here will not be
investigated further. However, many of the approaches used for the kinematic wave
model can also be applied to 2D (e.g. method of characteristics). To keep matters
simple, we have opted for a simple approach: the Lax-Friedrich scheme [3].

5 Optimal Dynamic Routing in Continuous Time and Space
with Exogenous Speeds

For the path choice modeling in continuous time and space, we will use the
approach first described in [4]. The key to this approach is that instead of explicitly
determining the optimal paths, we will determine the optimal direction (and speed)
at each location and at each time instant towards the (nearest) destination Dj .

As we have seen in the above, the optimal velocity v�.t; x/ of an evacuee moving
in a two-dimensional area ˝ is a function of the minimum actual cost W.t; x/
towards a safe haven. Note that these optimal velocities describe not only the path
choice, but also the destination choice as well as the evacuation staging (departure
times).

The minimum actual cost W.t; x/ can be determined by solving the so-called
Hamilton-Jacobi-Bellman (HJB) equation (see [2] and [4]):

� @

@t
W.t; x/ D H.t; x;rW / (11)

with terminal conditions reflecting the penalty of not arriving at the safe haven
before the end time t1: W.t1; x/ D 1 and boundary conditions describing the cost
or preference of arriving at a specific destinationDj : W.t; x/ D dj for x 2 Dj and
t � t1.

The so-called Hamilton functionH is defined by:

H.t; x;rW / D min
v2� .t;x/ ŒL.t; x; v/C v � rW � (12)
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Here, � .t; x/ denotes the set of admissible velocities. This includes the admissible
directions as well as the possible walking speeds, which are influenced by both
infrastructure and flow conditions (i.e. density); L denotes the so-called running
costs, which describes the cost incurred over a short time interval Œt; t C dt/, given
the time t , the location x and the velocity v. Note that in [4], we discuss existence
and uniqueness of solutions to the HJB equation.

It is important to note that in this contribution, we consider a dynamic problem,
in the sense that the densities, speeds, and thus the optimal route choice will change
over time (and space) during the simulation period. As such, static approximations
of the optimal route choice problem (see [4]) are not applicable.

Let us briefly look at the problem specification for the evacuation problem.
First of all, we define the cost. For now, we will assume that evacuees will aim
to minimize their evacuation times. This implies L D 1. This leaves us with
the specification of the admissible velocities. We assume that these velocities are
determined by two factors. First of all, the obstacles restrict the walking directions.1

Equation (10) describes how the admissible set � .t; x/ is shaped by the obstacles.
Second of all, the traffic conditions determine the possible speeds. Given the local
density �.t; x/, the choice of velocities is limited by the fundamental diagram as
follows:

jjv.t; x/jj � V.�.t; x// (13)

For the sake of simplicity, we will use a finite difference approach to numerically
solve the HJB equation. We will use the same mesh as used in the pedestrian flow
model described in the previous section. In [4], details are given.

6 Optimal Evacuation by Dynamic Assignment in Time
and Space

Let us briefly describe the different steps in the approach proposed in this paper,
consisting of the following five steps:

1. Initialization. We first set the iteration index at zero, i.e. k D 0. We determine the
initial density profile �.t0; x/ D �0.x/ for all x 2 ˝ . Having not yet computed the
optimal paths, we set �.0/.t; x/ D �0.x/ for all x 2 ˝ and t 2 Œt0; t1�. Based on
these densities, and the geometry of the obstacles, we determine the admissible
velocities � .1/.t; x/.

1Note that the high running costs of being close to obstacles will automatically steer the evacuees
away from the obstacles which may make adding restrictions on the admissible velocities
unnecessary.
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2. Optimal path calculation. Given the set of admissible velocities, we solve
Eq. (11). Based on the optimal costW .k/.t; x/ that is determined, we compute the
optimal velocities (direction and speeds) for iteration k. The optimal directions
�k�.t; x/ are used in the next step.

3. Flow propagation. The optimal direction �k�.t; x/ is fixed while the densities
�.k/.t; x/ are determined by solving Eq. (7) using the numerical scheme presented
in this paper.

4. Update average densities. The densities computed in the previous step are used to
redetermine the optimal paths (step 2). However, using the densities directly will
cause oscillating behavior hampering convergence of the scheme. This is why we
introduce an exponentially smoothed density N�.k/.t; x/ D .1 � ˛/ N�.k�1/.t; x/C
˛�.k/.t; x/ for some value of 0 � ˛ � 1. The smoothed densities are used to
determine the set of admissible velocities � .k/.t; x/ that are used in step 2.

5. Check for convergence and continue. We check if the optimal cost func-
tion has not changed much over the last iteration, i.e. maxt;x jW .k/.t; x/ �
W .k�1/.t; x/j � �. If not, we go to step 2 for the next iteration step.

7 Case Study

To show the (numerical) characteristics of the approach and the solutions that result
from its application, we will consider the evacuation route computations for a simple
maze. Figure 1 illustrates this case. The evacuees are initially on the left-hand-side
(black area) with a density of 2:5 P=m2. The safe area is located on the right of the
50 m by 50 m area. The figure shows the walls and the doors the evacuees need to use
in order to reach the safe area. There are six doors in total. The doors have different
widths (door 1 and 2 are wide (2.5 m); door 3–6 are narrow doors (1.25 m)). Clearly,
there are multiple routes available.

The figure shows the results of the initial evacuation route computation (i.e.
iteration 1, assuming zero density, that is free speeds anywhere, anytime) for
t D 0. For this situation, the area was discretized using cells of 0.25 m by 0.25 m,
while using a time step op 0.1 s (both for the route choice computation and flow
propagation). We simulated a period of 250 s. The colors indicate the minimum cost
(or in this case, time) to reach the safe area on the right. The optimal route that
the evacuees take from any location is determined by the steepest descent path (i.e.
perpendicular to the iso-cost curves). For the free flow conditions situation, this will
for instance mean that when reaching door 2, evacuees are best off choosing door 4.
Note that since zero density is assumed for the entire simulation period, the optimal
routes are equal for all time instances.

When applying the flow model using these free flow optimal routes, queueing
occurs at different locations in the network. Since the evacuees will not react to
the reduced speeds caused by the high densities, these queues will persist during a
large part of the simulation (actually, some evacuees will still be left at the end of the
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Fig. 1 Minimum cost of getting to the exit on the right in case of unhindered walking
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Fig. 2 Evacuee assignment using optimal free flow routing

simulation). Figure 2 shows the results for two time steps (after 25 s and after 125 s).
Maximum (jam) densities (5:4 P=m2) are observed at various locations, yielding low
speeds and hence a slow evacuation. Furthermore, we clearly see that in this case,
the capacities of the – especially wide – doors are not fully used (evacuees have the
tendency to curl around the doors). Also, available capacity from other doors is not
used either: doors 3 and 5 are not used, while queuing occurs at door 4 and (to a
lesser extent) door 6. In this end, this results in an incomplete evacuation of the 300
(or so) evacuees, about 140 of which are not able to get our of the area within the
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Fig. 3 Evacuee assignment for two time stamps

250 s simulation period. It is important to note that this is obviously an intermediate
result (result from the initial iteration) that does not reflect any realistic (or optimal)
situation. It does illustrate, however, that taking into consideration the congestion in
finding the optimal evacuation routes is very important.

Let us see how applying the procedure proposed in this paper would yield a better
evacuation strategy. To this end, we have applied the proposed iterative optimization
scheme (with ˛ D 0:05) using a maximum number of iterations of 30. Figure 3
shows the results at two different time stamps (50 and 125 s). The two graphs clearly
show the dynamic nature of the evacuation scheme. First of all, for t D 25 s, we see
that the wide doors are utilized more effectively (flow spans the entire width of the
doors). Second of all, we see that after some time, doors 3 and 5 are used as well
(see snapshot at t D 125 s. In fact, it turns out that in the end, the available capacity
of all doors is used fully.

These favorable properties of the evacuation scheme allows clearing the area well
within the 250 s period. In fact, for this iteration the total evacuation time was 235 s,
showing that the approach leads to large improvements compared to the free flow
scheme.

Conclusions
This contribution describes a novel, generic approach to determine optimal
evacuation instructions. The paper focuses on the theory, showing that
optimization of the pedestrian decision behavior consisting of exit, departure,
and route choice can indeed yield substantial improvements in evacuation
times compared to for instance shortest distance paths. The workings of
this optimization framework have been shown for two case studies: one
in which the optimal route choice has been illustrated, while the second
case study demonstrates the optimal destination choice. Unlike previous

(continued)
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attempts to optimize evacuations, this approach covers optimal allocation of
routes, destination, and departure times, including pedestrian behavior in the
form of the well-known speed-density relation, and a first-order continuum
pedestrian flow model, comparable to the LWR model for vehicular traffic.
As the pedestrians dynamics are described by a macroscopic pedestrian flow
model, the approach is applicable to larger infrastructures, or other large-
scale applications (many pedestrians present). Despite that several practical
and theoretical issues still need to be tackled, we believe that the approach
put forward here has clear potential in terms of providing a strong theoretical
basis for evacuation plan design. The cases presented in this paper clearly
reveal this potential.
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Generalized Macroscopic Fundamental
Diagram for Pedestrian Flows

Winnie Daamen, Victor L. Knoop, and Serge P. Hoogendoorn

Abstract It has been shown that a relation exists between the number of pedestrians
in an area and the average flow in that area (production); this is called the
Macroscopic Fundamental Diagram (MFD). Using this relation, we can express
the average production of a network as a function of the average density (or
accumulation) of the network. One of the assumptions under which a proper shape
of the MFD is found, is that the congestion is spread homogeneously over the
network. In vehicular traffic, it is shown that when this assumption is relaxed, the
spatial variation of density within the network leads to a decreased production. This
paper shows to which extent a function of accumulation and an aggregated variable
of the spatial spread can predict the performance of a pedestrian traffic flow.

1 Introduction

Traffic congestion is not only a local problem: due to route choice behaviour it
spreads out over the network. To increase insights into network dynamics and how to
characterise these dynamics, the concept of the Macroscopic Fundamental Diagram
(MFD) has been re-introduced [1]. One of the assumptions under which a proper
shape of the MFD is found, is that the congestion is spread homogeneously over
the network [1]. Knoop and Hoogendoorn [3] show the effect of inhomogeneity by
deriving the so-called generalised macroscopic fundamental diagram (GMFD).

Hoogendoorn et al. [2] have shown that a similar relation exists between the num-
ber of pedestrians in an area and the average flow in that area (production). However,
the effects of spatial inhomogeneity of the density has not been considered. In the
paper at hand we show to which extent a function of the number of pedestrians
and an aggregated variable of the spatial spread can predict the performance of a
large scale pedestrian traffic flow. Similar to vehicular traffic, we found that a larger
spatial variation in density leads to higher flows in the network (at the same density).
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Next to providing insights into network pedestrian traffic dynamics, MFDs can
be important for (on-line) applications such as pedestrian traffic control. Busy
pedestrian facilities (e.g., metro and train stations, airports and shopping centres)
need to be monitored for safety and operational performance. The use of pedestrian
counting devices combined with a reliable MFD could provide a good estimator for
the traffic state in real time applications.

The paper starts with an experimental design (Sect. 2), then shows the resulting
MFDs (Sect. 3) and ends with conclusions.

2 Experimental Design

In the experimental design we introduce the simulation set-up and data used to
derive the Generalized Macroscopic Fundamental Diagram for pedestrians for a
specific network layout. Section 2.1 gives an overview of the corresponding layout,
while Sect. 2.2 shows the traffic demand for the two data sets. Section 2.3 shows
how the characteristics of the MFD (flow and density) are calculated.

2.1 Layout

In order to control the data and to identify the effects of different flow patterns on
the shape of the MFD we have chosen to model both one-directional traffic and
crossing traffic flows. Figure 1a, b show an overview of these two layouts, where
the red pedestrians walk from left to right and the blue pedestrians walk from top
to bottom. The area measures 10 � 10m, while the exits have a width of 1 m. In
order to create congestion upstream of the exits, the entrances have a width of 6 m.
To make sure that the capacity of the exit is correct, we have added a short corridor
downstream of the exit, having the same width. However, the observations are made
only for the central area.

2.2 Traffic Demand

Traffic demand is increased in a stepwise way, until a largest flow of 1.65 P/s is
generated. This demand is maintained during 30 s, to let congestion set in, after
which demand is gradually decreased. This way, both the effects of congestion onset
and its resolution are included in the GMFD. For the crossing flow scenario, the
crossing flow (from top to bottom)is much smaller than the main flow (from left to
right). The main flow in this scenario is 2 P/s, while the crossing flow is equal to
0.5 P/s. An overview of these demand profiles is shown in Fig. 2. The total duration
of the simulation is 900 s.
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Fig. 1 Layout for the two data sets. (a) One directional. (b) Crossing flows
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Fig. 2 Traffic demand over time in both scenarios

2.3 MFD Characteristics

To visualise the effect of spatial variation in the density on the density and the flow,
both density and flow need to be calculated. As the application of the GMFD is to
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see whether sufficient space is available to cope with the existent pedestrian flows
and how efficiently this space is used, we include the empty areas in the density
calculation. The local or individual density ki is equal to the inverse of the empty
space around an individual pedestrian Ai

ki D 1

Ai
(1)

Then, we calculate the so-called space mean density, where all local densities ki
are weighed:

k.t/ D 1
P

i 1=ki

N

D N
P

i 1=ki
D N
P

i Ai
D N

A
(2)

where A is the area of the whole surface. Note that by this weighting of individual
pedestrian’s individual space we obtain a consistent equation for the density,
expressed as the number of pedestrians divided over the area in space.

The speed for each individual pedestrian is calculated directly from the trajectory
data:

vi D
q

v2xi C v2yi (3)

Here, we take the absolute speed, as we want to discard the walking direction. To
calculate the flow, we use the previously calculated density and speed:

q.t/ D
P

i ki � vi
n

(4)

3 Generalized Network Fundamental Diagrams

First, we show the resulting densities (accumulation) of the simulation runs for both
scenarios in Fig. 3. It can be seen that in both scenarios the accumulation slightly
increases, although a lot of variation in the accumulation is visible as well. We can
see a rather short period in which the accumulation is relatively constant, after which
the density decreases further.

The resulting Generalized Network Fundamental Diagrams are shown in Fig. 4a,
b. The axes show the density and the density variation respectively, while the color
of each dot indicates the corresponding flow (high flows in green, low flows in
red). As we can see in both configurations, when the density increases, also the
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Fig. 4 Generalized macroscopic fundamental diagram. (a) One directional. (b) Crossing flows

standard deviation of the density increases. This can be expected, as the reason of
the density increase is the onset of congestion, which causes high densities and
low speeds just upstream of the exit, while the remaining part of the area remains
almost empty. In the latter areas the pedestrians can walk with their free speeds.
For a given density, it can be seen that flow increases with an increase in density
variation. A smaller spatial variation of density implies less variation in conditions
(being the experienced densities), and thus on average lower flows. For crossing
flows, the spatial variation in density is even larger. In this case, the crossing flow,
even though it is only small, is hindered by the congestion in the main flow, leading
to a lower speed than would be expected according to volumes. The hinder caused
by the crossing pedestrians causes disturbances in the queue, leading to a longer, and
also more spatially distributed queue. The tendency of larger flows corresponding
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to a larger spatial distribution of the density also holds for this crossing scenario. As
the spatial distribution is larger, this tendency is even better visible in the crossing
flow scenario.

Conclusions
In this paper we have shown the Macroscopic Fundamental Diagrams also
exist in pedestrian traffic. When the assumption of homogeneously distributed
congestion over the area is dropped, the spatial variation in density appears
to affect the MFD: a lower spatial variation implies lower flows, and higher
variation implies higher flows. The exact shape of the MFD and the influence
of the spatial variation in the density depends on the flow pattern (one-
directional versus crossing flows). A reliable MFD combined with the use
of pedestrian counting devices could provide a good estimator for the traffic
state in real time applications.
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Pedestrian Route Choice by Iterated
Equilibrium Search

Tobias Kretz, Karsten Lehmann, and Ingmar Hofsäß

Abstract In vehicular traffic planning it is a long standing problem how to assign
demand such on the available model of a road network that an equilibrium with
regard to travel time or generalized costs is realized. For pedestrian traffic this ques-
tion can be asked as well. However, as the infrastructure of pedestrian dynamics is
not a network (a graph), but two-dimensional, there is in principle an infinitely large
set of routes. As a consequence none of the iterating assignment methods developed
for road traffic can be applied for pedestrians. In this contribution a method to
overcome this problem is briefly summarized and applied with an example geometry
which as a result is enhanced with routes with intermediate destination areas of
certain shape. The enhanced geometry is used in some exemplary assignment
calculations.

1 Introduction

For pedestrians (and vehicles alike) it holds that in general travel times along a
route increase with increasing demand. This is because walking speeds are lower
when density is higher and because higher demand implies larger queues in front
of bottlenecks and therefore higher (enforced) dwell times. Obviously when there
is more than one route available which connects the same origin and destination
it can make sense – with regard to the objective of minimizing travel times – that
a fraction of the pedestrians walks along these alternative routes. The process to
calculate these fractions such that either all routes have the same travel time (user
equilibrium) or the average of travel times is minimal (system optimum) is called
(dynamic) assignment.

For vehicular traffic research on assignment methods has a history of more than
a half century [2,3,5,17,21] and applying these methods is an established and major
aspect of traffic planning.

Concerning pedestrians we have to go one step back and ask: what is a route?
Or better: what distinguishes two different routes? It does not make sense to say –
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with regard to assignment methods – that two pedestrians have been walking two
different routes, if their paths are the same everywhere except for a few millimeters.
Instead we require that two paths only then belong to two different routes, if they
cannot be transformed continuously one into the other without moving a path during
the transformation over an obstacle of a given minimum extent. Recently we have
proposed such a method [14–16] and will apply and demonstrate it with an example
geometry and in combination with a simple assignment method in the remainder of
this contribution.

Before we do so, one has to ask first for the motivation or better for the benefit.
The benefit of a method to find a set of relevant and mutually sufficiently distinct
routes in a pedestrian walking geometry probably is evident to every expert in
the field. However, is there a benefit to compute a user equilibrium for pedestrian
dynamics? After all there is not such a eminent day-by-day commuting traffic as it is
in vehicular traffic and day-by-day experience is the argument which explains why
in road traffic there should be an equilibrium. Yet there are comparable situations
in pedestrian traffic. Public transport commuters meet daily in large numbers in
large stations. Their day-by-day experience may suggest them to use a route which
may be longer or more arduous but saves them time; compare for example in this
book [19] where the average travel times of commuters on an escalator and those
walking stairs (not parallel to the escalators) are astonishingly similar. A fire safety
engineer can have a totally different motivation to compute a user equilibrium: s/he
may not assume that the user equilibrium emerges spontaneously from the system if
every occupant decides on his or her own which route to take. But knowing that the
user equilibrium usually also is an efficient distribution on the available routes with
relatively small delay and travel times the fire safety engineer might want to take the
results from the assignment calculation as basis for the escape plan, i.e. as answer
to the question where an escape route sign has to point into one direction and where
into another one.

At the end of this introduction we would like to point the reader to another
contribution in this book which approaches the pedestrian assignment with a
different method [20].

2 Example Application

Figure 1 shows a walking geometry where pedestrians have to pass two times
through one of two differently wide doors. Figure 2 shows the same geometry
enhanced by routes and their intermediate destinations which have been calculated
automatically with the method introduced in [15].

For this work operationally pedestrians are simulated using PTV Viswalk [1, 4,
13] which itself utilizes a combination of the circular specification and the elliptical
specification II of the Social Force Model [7]. The pedestrians are approaching
the intermediate destination with the direction of the desired velocity set into the
direction of the spatially shortest path to the next intermediate destination area. This
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Fig. 1 Walking geometry. Pedestrians are set with a given rate and spatially equally distributed
into the simulation on the yellow area to the left, have to pass through the bottlenecks formed by
the red obstacles and arrive on the green area on the right side

Fig. 2 Walking geometry enhanced with automatically computed routes (yellow) and their
intermediate destinations (blue). Note the numbers by which the routes will be identified in the
text

implies that pedestrians will arrive at an intermediate destination usually walking
orthogonally to the boundary of its area. Any deviation from this must be due to
forces between pedestrians. As the upstream borders of all intermediate destinations
are computed such that each point on that border has the same distance to the closest
point on the next downstream intermediate destination this implies that pedestrians
will not at all make a turn when they have reached an intermediate destination area
and then proceed to the next one.

On the tactical level the distribution of the pedestrians on the four routes is done
iteratively by he assignment method. In each iteration step one simulation is carried
out. In the first iteration step 25 % of the pedestrians are sent on each of the routes.
For each pedestrian the travel time is measured from the point where the pedestrian
leaves the origin area to the moment when he reaches the destination area. From
the average travel times on each of the routes the route choice ratios for the next
iteration step are computed according to the following equation.

It is easy to see that an equilibrium distribution on the four available routes must
depend on the total pedestrian volume set into the simulation (demand volume). We
have done the iterated assignment with eleven different demand volumes: 0.5, 1.0,
1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, and 6.0 pedestrians per second. These numbers
cover the whole range from total demand being below the capacity of the more
narrow doors and total demand exceeding global capacity. For each demand volume
the assignment procedure was carried out five times with different seed values for
the random number generator.
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As termination condition was chosen that the largest and the smallest average
travel time must not differ by more than 0.5 s. This is a relatively strict condition
given the variation of walking speeds (default for men and women of an age of
30–50 years as required by the International Maritime Organization [6]). For this
example study it was chosen this way to guarantee to see the dynamics of the
assignment process unfold to the end. This comes at the danger of running into
oscillations of a cycle length of two to four or five iteration steps toward the end of
the assignment process when equilibrium is in principle reached, but the stochastic
fluctuations are large enough that the termination condition is always missed by a
small amount. In such a case we chose that iteration as result which came closest to
the termination condition.

In the assignment process in each iteration step (a step is one simulation run) the
travel times of all pedestrians who arrived at the destination area between t D 300

and t D 600 s after the beginning of the simulation were recorded. At the end of the
simulation the average travel time on each route was calculated. Then for the next
iteration step the route choice probability for the route with the smallest average
travel time tmin was increased and the route choice probability for the route with the
largest average travel time tmax was decreased by the same amount. This probability
shift �p was calculated as

�p D ˛

�
tmax � tmin

tmax C tmin

�ı
(1)

where ˛ is a general sensitivity factor which was chosen to be ˛ D 0:1 in all
computations and ı is a dynamic adaptation factor which usually was ı D 1, but
was decreased when the routes with the longest and the smallest travel time were
identical in subsequent iterations and which was increased when they exchanged
roles in subsequent iterations.

Figure 3 shows for a demand of three persons per second how route choice ratios
and average travel times on each of the four routes evolve in the iteration process.

As described above we have carried out five assignment processes with different
random numbers. It is of course interesting to compare how different assignment

Fig. 3 Route choice ratios (left, in percent) and travel times (right, in seconds) for all four routes in
the course of iterations if demand is 3 pedestrians per second. The travel time for route 2 becomes
unstable when its route choice ratio is small (below 5 %) as then only few pedestrians (20 or even
less) walk along route 2 and thus the average travel time is based only on few values
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Fig. 4 Route choice ratios (left, in percent) and travel times (right, in seconds) for route 3 if
demand is 3 pedestrians per second for all five iteration processes in comparison. While a general
trend appears similar in all five processes there are differences which at least partly have their cause
in the wide distribution of desired walking speeds of the pedestrians

Fig. 5 Situation after 450 simulation seconds with a demand of 3 pedestrians per second: upper
left: if pedestrians walk 50:50 the two shortest routes; upper right: if all pedestrians walk the route
with highest capacity; lower left: if all routes are used equally; lower right: according to the result
of the assignment process (39.4 : 0 : 17.2 : 43.4)

processes evolve. For the sake of clarity we do not force travel times and route
choice ratios of all routes into a diagram, but compare in Fig. 4 the route choice
ratios and travel times of the five different assignment processes only for route 3.

Figure 5 shows a comparison of the situation after 450 simulation seconds as it
occurs when different route choice ratios are chosen. One can get the impression –
and this is correct – that pedestrians could be assigned more efficiently. The reason
for this is that in our – so far rather simple assignment method – only pedestrians
who arrive within the relevant time interval at the destination can contribute. In the
discussion we will elaborate on how the calculation of route choice ratios could be
improved.

Having looked to the details if demand is set to 3 pedestrians per second we will
furthermore present the results of all demand volume variants we have considered.
For this larger set of result data due to space limitations we have to restrict ourselves
to choice ratios and travel times when equilibrium is reached or the assignment
process has terminated otherwise.
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Fig. 6 Route choice ratios (left, in percent) and travel times (right, in seconds) vs. demand as they
result from the assignment process. It can be seen how route 3 which leads through the two wider
doors with increasing demand gains volume and thus leads to a more efficient walking behavior.
It can also be seen how the travel times for a particular demand volume for all routes and all
assignment processes all have a similar value compared to the overall dynamics of travel times
with increasing demand. For small demand route 1 has a higher load than route 4 although both
mainly differ in the sequence of bottleneck widths (route 1: wide, narrow; route 4: narrow, wide).
Even the narrow door has a capacity to easily accommodate the demand (about half of the total
demand) of the cases with 0.5 or 1 pedestrians per second total demand. Why then is there a
difference between the two route choice ratios? The reason is that along route 4 in periods of above
average demand pedestrians have to align in less time to pass through the narrow bottleneck. If
pedestrians don’t manage to do so some of them have a time delay and that is sufficient to trigger
the observed differences

Figure 6 shows the route choice ratios and the travel times as they result from the
assignment processes.

Summary, Conclusions, and Outlook
This study gave an example of how a recently proposed method to compute
and model routing alternatives for pedestrians in simulations can be applied.
The computation of routing alternatives is formulated such that the proposed
alternatives are sufficiently different which means more precisely that the
routes are separated by at least one obstacle (or non-walkable ground) of a
certain, configurable minimum size. Pedestrians follow the routes by head-
ing sequentially from intermediate destination to intermediate destination.
Hereby they can prefer to walk into the direction of the shortest path – which
is the usual strategy in a model of operational pedestrian dynamics [18] –
nevertheless as a consequence of the intermediate destinations globally they
can walk arbitrary detours. The intermediate destinations are geometrically
shaped such that no artificial sharp turns or artificial bottlenecks are intro-
duced locally into the motion. In other words: if the intermediate destinations
are not marked specifically an observer could not guess their presence from
observing local pedestrian behavior.

(continued)
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The routes which result from this method can easily be used for an
assignment computation to find the user equilibrium with regard to travel
times (Wardrop’s principle: “No traveler can improve his or her travel time
by choosing a different route.”). This was done in this contribution with a
rather simple geometry which nevertheless allowed to see exemplified how
the method of route and intermediate destination computation works.

Furthermore the method to compute from simulation results (travel times)
the route choice ratios for the next iteration step was rather simple. It only
relied on the simulation results of the very last iteration step. One can
imagine that oscillations in the results could be reduced if a longer history
of simulation results is considered. Second, the method ignores the current
travel times of pedestrians who are still in the simulation when the relevant
time interval ends. It is, however, a difference, if at that time all pedestrians
who are still on their way have a current travel time below the one which has
been measured as average for a particular route or if there are individuals who
have had long delays and thus travel times well above that average. This is
related to a third issue: we have considered all pedestrians who have arrived
within a certain time interval. One could also try to consider pedestrians who
depart within a certain time interval. This is more difficult as there is no
guaranteed maximum simulation time, but after all the route decision occurs
when a pedestrian departs, so naturally it makes sense to aggregate based on
time intervals of departure.

Independent of the details of the assignment method it would be interesting
to compare in future studies the results as well as the performance (mainly
concerning computation time) of the proposed iterative method with one-shot
methods where it is tried to achieve a good – i.e. travel time-based near user
equilibrium – within one single simulation run [8–12].
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How Navigation According to a Distance
Function Improves Pedestrian Motion
in ODE-Based Models

Felix Dietrich and Gerta Köster

Abstract We present a new ODE-based model for pedestrian motion where a
superposition of gradients of distance functions directly changes the direction
of the velocity vector: the Gradient Navigation Model (GNM). The approach
differs fundamentally from force based models where the accelerative term is
affected by forces and in turn changes the velocity. In the GNM, model induced
oscillations are avoided completely since no actual forces are present. The use
of fast and accurate high order numerical integrators is possible through smooth
derivatives in the equations of motion. As a consequence, almost no overlapping
of pedestrians occurs. Empirically known phenomena are well reproduced. The
parameter calibration is performed by theoretical arguments based on empirically
validated assumptions rather than numerical tests. The Gradient Navigation Model
is compared quantitatively and qualitatively to Helbing’s Social Force Model.

1 Introduction

Many microscopic models for pedestrian dynamics are based on systems of ordinary
differential equations (ODE) [1, 2, 4, 9]. The trajectories of the pedestrians in two-
dimensional space are solutions to these systems. Most of the ODE models describe
acceleration based on Newtonian mechanics: forces change acceleration, which is
integrated to velocity, which is then again integrated to position. Inertia is a natural
consequence of this way of modeling. This causes phenomena natural to molecular
dynamics, such as oscillations around critical points and overlapping of particles.
Although they are natural to particle physics these phenomena are not desired in
pedestrian models. Pedestrians do not oscillate around targets or repeatedly bump
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into others. There have been attempts to mitigate the problems associated with
inertia in force based models [1]. We introduce the Gradient Navigation Model [2],
an attempt to get rid of many of the problems of force based models. We use a
different approach than Newtonian mechanics to model motion, where no inertia
in the classical sense is present. The model is then compared quantitatively and
qualitatively to Helbing’s Social Force Model [5].

This paper is structured as follows. Section 2 briefly introduces the new Gradient
Navigation Model [2] and, as representative for force based models, the Social Force
Model [4]. Section 3 compares the two models: The first part focuses on microscopic
artifacts caused by inertia in force based models. In the second part, we briefly
analyze the computational efficiency of the models.

2 Models

The Social Force Model [4,5] explains pedestrian motion similar to particle motion
in molecular dynamics. A system of ODEs (Eq. 1) describes both the velocity Px
and acceleration vectors Pw at each point in time. Acceleration is changed by a
superposition of forces F . These forces represent individual decisions, such as not
to stand too close to other pedestrians or to move in the direction of the shortest path
towards the target.

Pxi D wi g.kwik; vmax
i / DW vi

Pwi D F
(1)

The function g sets the limits of the speed kwk between 0 and a maximal velocity
vmax
i (which is higher than the desired velocity vdes

i ). F D Ft C Fr is a combination
of the attractive force Ft to the target and a repulsive force Fr acting on a given
pedestrian i from other pedestrians j and obstacles B with

Ft D 1

�
.vdes
i ei � v/, (2)

Fr D �.
X

j¤i
rV.kxi � xj k/C

X

B

rU.kxi � xBk//: (3)

V is an anisotropic potential field surrounding the other pedestrians j . It is elongated
in their respective direction of motion. U is a potential field emanating from
obstacles B . The direction of pedestrian i to a vertex of a polygonal path that leads
to the target is called ei . For formal definitions of V , U and ei , we refer to [4].

The Gradient Navigation Model from [2] is based on three main assumptions:
Firstly, we assume that physical interactions between pedestrians (pushing each
other) are negligible. Pedestrians try to avoid physical contact, even in quite dense
crowds. This is the most important assumption of the model. It enables us to neglect
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the effects of Newtonian physics and instead directly steer the individuals into
their desired navigational direction N . Note that this assumption is mostly used in
discrete event models [11, 12]. Here, we use it in an ODE setting. Secondly, similar
to the Social Force Model, we assume that pedestrians want to reach their targets
in as little time as possible – based on their information about the environment.
This assumption allows to use a floor field � to steer pedestrians to their targets.
See [3] for a detailed discussion about using such a floor field in a pedestrian
context. Thirdly, we assume that pedestrians alter their speed as a reaction to other
pedestrians and obstacles, after a certain reaction time. This is based on empirical
research by [8]. Assumption three postulates a reaction time, which we introduce
by a scalar, multiplicative relaxation term w. With these three assumptions, we can
formulate the system of differential equations in the Gradient Navigation Model for
a given pedestrian i :

Pxi D wiNi
Pwi D 1

�
.vdes
i .�.xi //kNik � wi /

(4)

In this system � is a relaxation constant and vdes
i .�.xi // is the desired velocity

of the given pedestrian dependent at the local crowd density �.xi /. In this paper,
we simplify v.�.xi // D vi constant and drawn from a normal distribution
N.1:34; 0:26/.The desired direction of motionNi in the Gradient Navigation Model
is composed similar to the force F in the SFM. However, the desired direction
towards the targetNi;� is computed from the gradient of a floor field � (see Fig. 1a):

Ni;� D �r�.xi / (5)

The induced direction starting from pedestrian i away from close pedestrians j and
obstacles B is called Ni;P (see Fig. 1b):

Ni;P D �.
X

j¤i
rPj C

X

B

rPB/ (6)

NP

a b

Fig. 1 Floor field and dynamic gradients in the Gradient Navigation Model. (a) The desired
direction towards the target N� D �r� , where � is a floor field emanating from the target area of
the given pedestrian. (b) The induced directionNP away from close pedestrians j and obstacles B .
Three other pedestrians as well as an obstacle are shown here. The gray circles and lines represent
decreasing strength of repulsion imposed by NP
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The gradients rPj and rPB point towards the pedestrian j and obstacle
B . Their norms are equal to a function h that is monotonically decreasing with
increasing distance r to pedestrian i . We chose

h.r IR;p/ D
(
p exp 1

.r=R/2�1 jr=Rj < 1
0 otherwise

(7)

which is a smooth function on compact support. This choice has the major advantage
that the derivatives in the ODE system stay smooth even if we stop the computation
of nearest neighbors and obstacles for r > R. Smoothness of the floor field � can be
achieved using mollification techniques described in [2]. The two direction vectors
N� and NP are combined into N by clamping their length between zero and one
with a smooth function g W R2 ! R

2:

N D g.g.N�/C g.NP // (8)

Parameter calibration in the GNM is performed using both empirically determined
values and a new analytical calibration method developed in [2]. The method uses
plausibility arguments to construct a scenario with one pedestrian enclosed by four
others and a wall. The pedestrian in the center is assumed to have velocity zero.
Together with empirically measured values, this fixes the remaining free parameters.
No numerical calibration is needed.

3 Comparison

The equations of motion in the GNM and SFM differ in the treatment of velocity:
the velocity Px is changed indirectly in the Social Force Model (Eq. 1) and changed
directly in the Gradient Navigation Model (Eq. 4). Furthermore, the navigational
direction in the (original, 1995) Social Force Model is towards vertices of a polygon
(the ‘shortest path’), whereas the Gradient Navigation Model uses a floor field
similar to cellular automata and the Optimal Steps Model [11]. Calibration of the
Social Force Model has been performed in numerous ways in the past. Johansson
et al. [6] for example use evolutionary adjustment to video tracking data. In contrast
to this, the Gradient Navigation Model is calibrated using plausibility arguments in
a simple scenario and the analytical method from [2].

In the following, we present three scenarios where the difference between the
two models becomes apparent. The first one is composed of a wall, one target and
one pedestrian trying to reach that target. The subject is starting so close to the wall
that one would assume he or she would first move away from it and then towards
the target. Figure 2 shows simulation results with the two models. On the left, the
pedestrians motion is governed by the Social Force Model. The pedestrian circles
around the target. This is because of inertia: the pedestrians velocity vector does not
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Fig. 2 On the left, the pedestrians motion is governed by the Social Force Model. The pedestrian
circles around the target (cross). This is because of inertia: the pedestrians velocity vector does
not point directly to the target. In contrast, the Gradient Navigation Model directly changes the
pedestrians velocity direction (right figure)

Fig. 3 The scenario shown contains one moving pedestrian (left), one stationary pedestrian (non-
moving, in the center) and one target (cross, to the right). It is one-dimensional, so that the moving
pedestrian cannot move around the stationary one but must stop
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Fig. 4 Result of the scenario shown in Fig. 3 with both models. In the SFM, the moving pedestrian
bounces back from the stationary one due to inertia. The GNM produces a similar acceleration
spike as the SFM at first, but then rapidly slows the moving pedestrian down to a halt

point directly to the target, only the acceleration vector does. In contrast to that, on
the right, the Gradient Navigation Model directly changes the pedestrians velocity.
This leads to the pedestrian stepping away from the wall and then moving parallel
to it, until the path to the target is in line of sight.

In the second scenario (see Fig. 3), a pedestrian moves towards a target on
the right and is blocked by a stationary pedestrian. In this scenario, the moving
pedestrian cannot move around the stationary one but must stop. Both models are
used to compute the speed of the moving pedestrian over time. The result is shown
in Fig. 4. With the SFM, the moving pedestrian passes the stable point and moves
slightly into the stationary pedestrian. He/she is then repulsed and moves back
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a b

Fig. 5 Different congestion shapes produced by SFM and GNM during evacuation of a room. (a)
Evacuation of a room modeled with the SFM. Pedestrians clog in front of the bottleneck and get
pushed into the corners of the room. Many torsos overlap. (b) Evacuation of a room modeled with
the GNM. Pedestrians wait in front of the bottleneck and do not move into the corners. Torsos
rarely overlap

towards the stable point, again passing it. This produces the graph of the speed as
shown by Fig. 4, where the oscillation are visible. Note that three of the parameters
(including relaxation � as well as range and strength of the interaction forces) of
the Social Force Model can be changed so that it resembles a damped harmonic
oscillator. This removes the oscillations, but also restricts the parameter values to
unreasonable intervals. Moreover, the relaxation � is not a free parameter of the
model and must be determined by experiment. With the GNM, no oscillations occur
regardless of the value of � . In the first acceleration phase, the speed produced
by the GNM is equal to the result of the SFM because the same value of the
relaxation constant � was chosen. As the pedestrian comes close to the stable point,
it decelerates and never passes it. No oscillations occur.

The third scenario shows the results of the two models in a simulation of an
evacuation of a room (Fig. 5). With the SFM, pedestrians clog in front of the
bottleneck and get pushed into the corners of the room. Many torsos overlap. With
the GNM, Pedestrians wait in front of the bottleneck and do not move into the
corners. Torsos rarely overlap. The difference of the results of the two models can be
explained by the different assumptions they are built on. In the SFM, pedestrians are
assumed to behave similar to particles. Accordingly, they are attracted by targets and
get repulsed by other pedestrians. This causes overlapping. Long ranged repulsive
forces cause the arc shaped congestion. In the GNM, pedestrians are assumed
to stop in high density situations. Overlapping is avoided by this. The bounded
support for the interaction function h (Eq. 7) between pedestrians in combination
with the movement on a floor field causes the cone shaped congestion in front of the
bottleneck.

The last part of the comparison focuses on computational efficiency when the
equations of motion (Eqs. 1 and 4) are solved numerically. In the original SFM, the
derivatives are not smoothly dependent on their arguments. This makes efficient use
of accurate integration schemes like Runge-Kutta impossible [7]. In contrast to that,
the derivatives in the GNM are smooth by design. Figure 6 shows the increase in
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Fig. 6 Absolute errors of different numerical integrators for differing step sizes and function calls
to the Gradient Navigation Model. Both the Runge Kutta 4 and the explicit Euler method are
applied to solve the equations of motion. In the left figure, straight lines with slope 1 and 4 were
added to emphasize the differing rates of convergence. The right figure clearly shows that even
when using only a small number of function calls, the Runge-Kutta method can successfully be
applied to achieve an accuracy two to four orders of magnitude higher than Euler’s method

accuracy when using the Runge-Kutta (fourth order) instead of the explicit Euler
method. The figure on the right shows that even using only a small number of
function calls (calls to the right hand side of the model), the Runge-Kutta method
can successfully achieve an accuracy two to four orders of magnitude higher than
Euler’s method. Note that step size controlling methods like Dormand-Prince-45
[10] schemes could also be applied. This would automatically use small step sizes
only when needed, further increasing computation speed for a fixed accuracy.

Conclusion
We introduced a new model of pedestrian motion, the Gradient Navigation
Model, and compared it to the Social Force Model. The latter is based on
Newtonian mechanics, where forces affect acceleration and therefore inertia
affects motion. In contrast to this, the GNM is inspired by movement in
cellular automata, where the velocity vector is adjusted instantaneously to
match the desired walking direction. Two scenarios showed that force based
models suffer from drawbacks due to inertia, which are resolved in the GNM.
Firstly, circular trajectories around a target occurred when a pedestrians was
repulsed by a wall close to the target. Secondly, a moving pedestrian bounced
back and forth when trying to stop close to another pedestrian. Our brief
analysis reveals the difficulties of force based models regarding numerical

(continued)
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integration. Many force based approaches do not take smoothness of the
derivatives into account, decreasing computational efficiency as numerical
integrators of high order cannot be used to speed up the numerical solution.
Our approach to these difficulties is the Gradient Navigation Model, where
pedestrians are not subject to inertia. This avoids any oscillatory behaviour
close to targets, obstacles or other pedestrians. As the equations of motion are
smooth by design, high order accurate integration methods can be used. In
the future, we will make use of the possibility of fast and accurate solutions
to study influences of small perturbations on the macroscopic behavior of
pedestrian flows.
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Implementation Issues of Force Based
Pedestrian Motion Models

Gerta Köster and Marion Gödel

Abstract Forced based models in the form of ordinary differential equations
(ODE), such as the social force model, are among the best known approaches
to simulating pedestrian flow. They adopt the idea that the Newtonian laws of
motion mostly carry over to pedestrian motion so that human trajectories can be
computed by solving a set of ODEs for velocity and acceleration. The models
are widely spread in science and application. Nevertheless, oscillations, collisions,
and instabilities occur even for small step sizes. We identify some mathematical
properties at the root of the problem: The right hand side of the differential
equation may be non-differentiable and discontinuous at target locations. This
produces undesirable behavior in the solution and severe loss of accuracy in efficient
numerical schemes. Using the social force model as an example, we propose a
very simple mollification so that the dynamic properties of the original many-body
system are conserved. This elegantly and cost-efficiently resolves several of the
issues concerning stability and numerical resolution. On the other hand, we show
that it is insufficient to remove the typical but undesirable circular movement of
pedestrians moving towards a target.

1 Introduction

There are many approaches to modeling pedestrian dynamics [3,11,12,14]. Among
them social force models are well established [5,6]. Their proximity to equations de-
rived from Newton’s laws of motion allows direct application of standard numerical
methods, such as Euler’s method, to solve the equations. Nonetheless, scientists and
tool users continue to run into trouble when implementing or employing the model
[1,2]. While the physical properties of the model that do not match human behavior,
such as inertia, have been discussed to some extent [1] very little attention has yet
been paid to the mathematical properties and the resulting effects on the stability of
the supposed exact solution and numerical solution attempts.
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In this work we point out some properties of the right hand side especially
concerning target locations that lead to oscillations in the solution and loss of
accuracy in the numerical approximation. This background analysis is described
in Sect. 2. In Sect. 3 we propose to mollify the right hand side so that the difficulties
regarding the target locations disappear, while the desired properties of the original
model are conserved. We also demonstrate the success of our idea by comparing
numerical solutions of both models in a very simple simulation scenario and a more
complex bottleneck scenario taken from [8]. At the same time our examples show
that, while better mollification and consequently better numerical treatment of force
based models improves computational speed, it remains insufficient to get rid of
one very undesirable effect: Virtual pedestrians circle around a target before they
reach it.

2 Problem Analysis

This work is built upon the original equations of the social force model as they were
presented in [6] and in Molnár’s dissertation [9]. We look at vectors x; v 2 R

2�m
that denote the location and velocity of pedestrians 1; : : : ; m in two dimensional
Euclidean space. Vertical movement is neglected. To make sure that the speed of an
individual j does not exceed an acceptable upper limit vmax;j we need the auxiliary
velocity w in the mathematical formulation. Following [6] we set vmax;j D 1:3 v0;j
where v0;j is each pedestrian’s individual free-flow velocity. Hence pedestrians can
accelerate but will not sprint. For the j th pedestrian we have

Pxj D vj .wj / WD
(

wj if
�
�wj

�
� < vmax;j :

v0;j
kwj kwj otherwise:

(1)

The following set of equations for x and w forms the actual social force model:

Px D v.w/ (2)

Pw D F.x;w/ D Ftarget.x;w/C Fped.x;w/C Fob.x;w/:

Ftarget; Fped, and Fob stand for forces acting on each pedestrian from the attracting
target(s), repelling fellow pedestrians and repelling obstacles. Forces are assumed
to obey a superposition principle. Since there are usually several interacting
pedestrians and several obstacles Fped and Fob are sums of force terms Fped;i;j and
Fob;k . We are aware that most simulation tools based on the social force model
(SFM) use variations of the base model. But these variations still have the essential
properties of the original and hence will experience similar difficulties. In particular,
the acceleration Pw is a vector valued function. The direction of movement depends
on the acceleration in a deeply physical way that cannot be easily matched with
human walking behavior. Most of our observations are best presented when the
system is reduced to the bare essentials. Hence we will assume one target, one or two
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pedestrians depending on the scenario, and no obstacle – all unless otherwise stated.
The resulting mathematical claims can easily be carried over to more complex
situations.

There are two kinds of difficulties with the original SFM: Artificial behavior
of the pedestrians and problems stemming from computation. Some of the former
are the result from physical phenomena, such as inertia, which is caused by the
emphasis on acceleration in the model. They are typical for Newtonian systems
but, we think, untypical for human beings [1, 3]. Computation is either slow with
tiny step sizes �t or the spatial resolution is low which leads to collisions. We
will look into the reasons why faster solvers than the explicit Euler scheme so far
have not produced better results. We start with the seemingly trivial situation of
one pedestrian moving towards one target in a space free of obstacles. We may
drop the index for the pedestrian and force type and neglect that the velocity is
bounded. Without loss of generality we set the target location to .0; 0/. So we get
the simplified equations:

. Px1; Px2/ D .v1; v2/ (3)

.Pv1; Pv2/ D F..x1; x2/; .v1; v2// with force F given by

F.x; v/ D 1

�

�

� x

kxkv0 � v

�

: (4)

The free-flow velocity v0 is the presumed walking velocity of an individual across
an open space. The influence of the reaction time � modeled by pre-factor 1

�
is not

relevant for our investigations at the moment and � is set to 0:5 s as suggested in [6]
throughout the paper.

We turn our attention to a straight forward analysis of the mathematical properties
of the system: Unit vectors �x=kxk point in the direction of the target for all
locations x ¤ .0; 0/. However, the function F , that stands for the acceleration
vector, has a singularity at the target x D .0; 0/. The right hand side displays a
jump. See Fig. 1. This has two undesirable consequences: Loss of smoothness and

Fig. 1 Unit vector � x1
kxk

that
points in the direction of the
target
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loss of accuracy. The first means that a solution can only exist in a weak sense.
More important for the practical user is the loss of accuracy, in fact of convergence,
of numerical schemes near discontinuities. Higher order schemes than Euler must
fail, because the right hand side of the SFM is discontinuous. Thus the solution
is not smooth and even Euler’s method must blow up when it hits a target. Wild
oscillations and even collisions in the numerical approximation of the supposed true
trajectories are observed in practical simulations.

Applying a k-step numerical scheme on a differential equation Py D F .y/means
to discretize the equation in time. In the case of Euler’s method the result simply is
yn D yn�1 C �tF .yn�1/ where yn is the solution one step ahead in time from
yn�1 and �t is the step size in time. We construct a ‘pathological’ example using
the Euler scheme: With .x; v/ D ..0:5; 0/; .�1; 0// as starting point, the second
iteration lands exactly on the target x D .0; 0/ leading to division by zero and
abortion of the simulation run.

In the two-dimensional example in Fig. 2 the trajectories of the corresponding
difference equation show a stable orbit at nearly full speed around the target.
Obviously, the pedestrian will never get close to the target.

The situation improves, when the step size is reduced, but the underlying problem
remains: Even with a consistent numerical scheme, such as Euler’s method, there is
no guarantee that the solution of the difference equation has the same properties as
the – supposed – solution of the differential equation, unless an number of restricting
conditions on the smoothness of the right hand side are satisfied. In the case of the
social force model with its discontinuity in the right hand side at the target point we
fail to meet these conditions.
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Fig. 2 Euler’s scheme to solve the SFM develops a stable orbit around the target. With step size
in time �t D 0:5 s and free-flow velocity 1:34 m

s the person remains about 0:67m off target and
keeps moving at full speed
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3 Mollification and Performance Comparison

We propose to mollify the classic social force model (2) for the target locations.
Again we look at the simplified formulation of the social force model with a
single pedestrian and only one target as in Eq. (3). The cause for the stability and
convergence issues close to the target is the loss of continuity at the target point.
Hence we replace the directional vector � x

kxk by

� x
q
x21 C x22 C �2

with � > 0: (5)

Clearly, the mollified version of the model is continuous and infinitely often differ-
entiable at the target. Mollification is a standard technique in applied mathematics
employed in various fields, e.g. in robotics with equations very similar to (3) [10,13].
Theory guarantees a unique solution for each initial value. Also, the target point
with zero speed is a globally asymptotically stable steady state solution [7]. In other
words, the pedestrian moves towards the target while steadily decreasing the speed.
This behavior is desirable in itself, but it also leads to a much better numerical
performance. At a safe distance from the target, the solutions of the SFM and the
mollified social force model (MSFM) cannot be distinguished.

Numerical schemes to solve differential equations require, in order to work
properly, a level of smoothness in the solution of the equation that matches the order
of the scheme. If this is not the case, accuracy is usually lost. The right hand side of
the social force equation is the first derivative of the solution. It is not differentiable
in several places and discontinuous at the target. Hence the solution of the social
force equations cannot be smooth. It is at best continuous and any solution is a
solution in the weak sense only. We must expect severe loss of accuracy in any
of the non-smooth locations. This is best demonstrated by computing the order
of convergence of the numerical schemes when approaching critical locations. We
select the popular, if slow converging, explicit Euler scheme and the highly efficient
fifth order Runge-Kutta scheme that is the fifth order part of the default solver ode45
in Matlab, the Dormand-Prince scheme [4].

In the following scenario a single person moves towards a target where force F
has its singularity in the original social force model. The initial velocity is set to
vstart D .0; 0/. We look at the absolute values of the solution components .x1; x2/
and .w1;w2/ and observe, as expected, that the oscillations in the mollified model
version are significantly attenuated. See Fig. 3. Since oscillations do not match
human behavior, this outcome seems highly desirable independently of numerical
effects. On the other hand, this example shows that the underlying problem cannot
be resolved by mollification. The virtual pedestrians still circle around the target.



68 G. Köster and M. Gödel

0 2 4 6 8 10
−1

0

1

2

3

4

5

6

7

8

simulated time [s]

x 1

SFM
MSFM with ε2 = 0.1

6 6.5 7 7.5 8 8.5 9 9.5 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

simulated time [s]

x 1

SFM
MSFM with ε2 = 0.1

Fig. 3 Component wise comparison of a pedestrian’s trajectory for the SFM and the MSFM.
Scenario: A single person moves from position .7; 4/ to the target at .0; 0/ starting with a speed of
0 m

s . The desired velocity of the person is set to 1:34 m
s . Relaxation time � D 0:5 s. Mollification

parameter �2 D 0:1. Right: Focus on time t > 6 s where the solution trajectory starts to go back
and forth through the target

1 2 3 4 5 6 7 8 9 10
10−8

10−6

10−4

10−2

100

simulated time [s]

ab
so

lu
te

 e
rr

or

Social force model

x1

x2

v1

v2

1 2 3 4 5 6 7 8 9 10
10−8

10−6

10−4

10−2

100

ab
so

lu
te

 e
rr

or

Mollified social force model with ε2 = 0.1

simulated time [s]

x1

x2

v1

v2

Fig. 4 Runge-Kutta scheme with step size �t D 2�1 s D 0:5 s

We look at the global truncation error of the numerical solution at time t . It is
given by the difference between the numerical solution y�t .t/ and the exact solution
y.t/.

err.t/ D y.t/ � y�t .t/ (6)

We use the step sizes�t D 2�1 s D 0:5 s for the fifth order Runge-Kutta scheme
and�t D 2�10 s D 9:77 �10�4 s for the Euler scheme to get approximately the same
absolute error for both methods at a safe distance from the target. Each numerical
solution is compared to a much finer approximation computed with the same scheme
and �t D 2�15 s D 3:05 � 10�5 s. Then we increase the simulated time t thus
approaching the target until tend D 10 s. In Fig. 4 we compare the absolute error
of the social force model to its mollified version with �2 D 0:1 as the pedestrian is
getting closer to the target. For the original social force model, there is a pronounced
jump in the error at about t D 6:5 s when the solution trajectory .x1; x2/ starts to
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circle around the target. Both methods experience a dramatic loss of accuracy, but
the loss is much worse for the Runge-Kutta scheme which does not tolerate the loss
of differentiability. This clearly illustrates that singularities at (intermediate) targets
make the use of high performing schemes pointless. For the mollified model, on the
other hand, no jump occurs. The error still increases for both numerical solutions, as
must be expected when the true trajectories turn around narrow corners, but this time
the error stays comparable. This means that the Runge-Kutta scheme can operate
with a much larger step size to achieve the same resolution as the Euler scheme.

Computing the numerical solution at tend D 10 s took 1:16 s with Euler’s
method, but only 0:01 s with the fifth order Runge-Kutta scheme, that is, the Runge-
Kutta method was 116 times faster. The advantage becomes even more pronounced
with longer time periods and more pedestrians or, when step size control is used to
restrict the use of small step sizes to the areas with fast changes in the solution.

Finally, we compare the performance for a typical benchmark example inspired
by [8]. N virtual persons are placed in a room of length 20m and width 7m. At
one end of the room is a centrally placed door of width 1m that leads to a corridor
of the same width. An intermediate target is placed in the middle of the door. The
final target is at a safe distance to the right outside the corridor. Hand-over from
the intermediate target to the final target takes place when a person is no more than
0:4m away from the door and the final target is in the direct line of sight (neglecting
other pedestrians that may block the view). All pedestrians are identical, that is, they
have the same free-flow velocity. This is unrealistic, leading to total symmetry, but
it is deliberate because it helps to demonstrate the effects of insufficient resolution.

We use the explicit Euler scheme for the SFM and the fifth order Runge-Kutta
scheme for the mollified SFM. In both cases we set�t D 0:1 s so that an acceptable
resolution of 0:01m may be expected for Euler’s method as long as we stay away
from locations with discontinuities of the right hand side or its derivatives [7]. When
the pedestrians get close to the target Euler’s method fails for the classic SFM. The
Runge-Kutta scheme applied on the mollified model without the discontinuity at the
target encounters no more difficulties. Compare Fig. 5.
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Fig. 5 Virtual pedestrians move from left to right through a bottleneck. Numerical solution of the
social force equations with step size �t D 0:1 s. Left: Euler’s method, Right: fifth order Runge-
Kutta method
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Conclusion
In this paper we showed how to remove discontinuities of force based models
at targets using mollification techniques. We demonstrated for the case of
the SFM that the solution of the mollified model is almost identical to the
solution of the classic model, when the pedestrians are at a safe distance
from the target. That is, we have stayed faithful to the original modeling
idea preserving not only the desired dynamic properties of the model, but
also undesirable properties. In fact we showed in our examples, that although
mollification and improved numerical treatment considerably, and usefully,
speed up computation, they do not remove undesirable solution aspects. In
particular the circular trajectories of the virtual pedestrians who are moving in
on a target remain. This artifact is due to the emphasis on acceleration in force
based models that we believe is not natural for human behavior. To achieve
more natural navigation, we may have to drop Newtonian mechanics and, at
the same time, find a formulation that ensures smoothness of the solution. A
way to do this is to introduce a direct navigational function to compute Px as
in [3].
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Using Bluetooth to Estimate the Impact
of Congestion on Pedestrian Route Choice
at Train Stations

Jeroen van den Heuvel, Aral Voskamp, Winnie Daamen,
and Serge P. Hoogendoorn

Abstract At train stations escalators and stairs are common bottlenecks, typically
just after train arrivals which cause a peak in pedestrian traffic from platform to
station hall. Large stations typically have multiple sets of escalators and stairs, and
therefore offer a route choice for passengers. In previous research the impact of
waiting time and type of vertical infrastructure on pedestrian route choice behaviour
have been identified, and to a limited extent quantified. This paper presents the
results of a study of route choice behavior at congested stairs and escalators at
Utrecht Central Station in The Netherlands. For data collection, Bluetooth scanunits
have been used to measure route choice and waiting time at stairs and escalators.
Several route choice models have been estimated to describe the probability of
choosing a congested escalator route over alternative uncongested stairway routes.
It is found that the preference of escalators over stairways is statistically significant
for pedestrian route choice. Moreover, waiting time due to congestion upstream of
escalators has a measurable impact on pedestrian route choice. These insights are
valuable when improving design and operations of train stations.

1 Introduction

Pedestrian flows and bottlenecks are a growing challenge for station operations
and design. Not only peak crowds at special events or significant train service
disruptions, but also regular day-to-day operations have a significant impact on the
level of service of pedestrian flows: on passenger experience, retail earnings and
public transport service quality.

At many train stations the operator faces the challenge of handling growing
pedestrian volumes, often concentrated in peak hours, and in a relatively small
(semi-)indoor space. The severest bottlenecks tend to occur at escalators and stairs
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– the main vertical infrastructure (VI) – at the large train stations. This is due to
long double-deck trains which carry up to over 1,000 passengers, and simultaneous
train arrivals at the platform. At VI-bottlenecks, pedestrians are confronted with a
choice: to wait up to minutes in situations with extreme congestion, or to select an
alternative underused route to leave the platform. From the perspective of capacity
usage and investments, route choice behaviour raises the question how an optimal
VI-configuration should look like, and how this configuration is used in practice.
With more insight into the route choice behaviour of pedestrians at bottlenecks,
station operations and design can be improved. The best stations offer superior
safety (no risks), maximum functionality (shorter walking times) and a good
experience (seamless and comfortable trip).

This paper describes the study of pedestrian route choice behaviour at congested
VI at Utrecht Central Station, performed by NS Stations and Delft University of
Technology. The aim was to determine the influence of congestion at route choice
behaviour of passengers who just arrived by train. For data collection, SMART
Station has been used. This is a pedestrian flow measurement concept using multiple
technologies amongst which Bluetooth. Its availability at Utrecht Central station
offered the unique opportunity to collect data during several months.

Previous research has shown that travel time and distance are determining factors
for route choice [1], also for pedestrians [6]. Type of infrastructure and congestion
are important factors [1]. Various studies point at a preference for escalators over
stairways, in particular for the upward direction. This is a result of a desire to
minimize effort in walking [5, 11]. Similar to previous research [2, 3], we have
observed pedestrians using the VI in upward direction. Fundamentally different is
the configuration of available route alternatives. In existing studies, passenger had
a clear choice of the VI to use, since all alternatives were simultaneously in sight
after exiting the train [2,3]. In our case however, the alternative VI is located behind
the first and most obvious VI. Therefore, the route alternative is not visible from
the queueing location at the primary route. In this situation, adjustments in route
choice due to congestion are assumed to be less intuitive. This study contributes to
the knowledge about route choice at this type of VI-configuration, which is common
at train stations due to limited available platform width.

The second contribution is the data collection methodology. Data availability is
a key challenge in any attempt to quantitatively describe pedestrian route choice
behaviour [8]. In contrast with previous studies [1–3, 6], data are collected by
automatically tracking of pedestrians using Bluetooth sensor technology. Although
this technique has been used in several studies [7, 9], to our knowledge it is the first
time results are published for a train station case. In doing so, we show that these
data can be used for route choice research.

In the next Sect. 2 the case and data collection are described. Section 3 contains
the study results, and Sect. 4 describes the model estimation. The final section con-
cludes the paper.
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2 Case Description

Utrecht Central Station is the main hub in the railway network of the Netherlands
with approximately 170,000 origin and destination train passengers per day, and
60,000 transfers. Its fourteen platform tracks are used intensively by train services
to and from multiple directions. All platforms are linked to the station hall either
by an escalator-stairs combination, or a pair of stairs. Platform 18/19 is the only
two-section platform, which is consistently used by train services that start and
end at Utrecht. Route choices on this platform are observed, to allow isolation of
individual trains for both VI combinations in the data. To get to the station hall from
the northern section, arriving passengers generally use the escalator, which is the
route first in sight. Behind the escalator an alternative route is available via the stairs.
To get to the station hall from the southern section, passengers can choose from a
pair of stairways. Severe congestion at the bottleneck routes occurs frequently at
both platform sections shortly after train arrivals (Fig. 1).

For our analysis, the case of route choice at congested VI has been conceptualized
as shown in Fig. 2. The pedestrian network – including VI – determines infras-
tructure capacity supply, the pedestrian flow generators (train arrivals) determine
capacity demand. Queuing occurs when demand exceeds supply, and results in
waiting for pedestrians upstream of the bottleneck. This has an impact on pedestrian
route choice, since some passengers start to use the alternative routes, depending on
destination inside or outside the station, the relative (dis)utility of the congested
primary and uncongested alternative routes, including VI type. This choice is the
outcome of a decision making process which itself is unknown.

To determine the impact of congestion at VI on route choice behaviour, mea-
surements have to generate two types of data. Firstly, the degree of queuing at the
platform immediately upstream of the VI and the development of congestion in
time. Secondly, data about actual routes is required. By bringing together congestion
and route choice, the impact of queuing (independent variable) on route choice
(dependent variable) can be determined. By doing this for both escalators and
stairway configurations, the effect of the VI type on route choice becomes visible.
Since the VI alternatives are at different locations inside the station and route choices
also can depend on the passengers’ destinations, the measurement setup also has to
generate destination data (control variable).

For the route choice measurements (Fig. 1), eight Bluetooth scanunits have been
installed at and around platform 18/19. These sensors detect the MAC-addresses
of the mobile devices of pedestrians which have Bluetooth enabled. By matching
the collected MAC-addresses, moment(s) of detection and location of scanunits, the
actual routes of individual pedestrians can be reconstructed. The time difference
between the scans of the same MAC-address gives the route time of the individual
pedestrians in the sample.The degree of congestion is determined by subtracting
actual route times from the Bluetooth measurements from measured free flow times.
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Fig. 1 Case description and sensor configuration
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Fig. 2 Conceptualization of route choice at congested vertical infrastructure in train stations

Four specific issues arise when using Bluetooth tracking in public areas, such as
train stations:

1. Similar to [7] and [9], the collected dataset contains a sample of pedestrians
because a subset of the total population has a Bluetooth-enabled mobile device.
For valid results and a representative sample, a minimum sample size is set,
which balances the sample size of passengers per train arrival, and the sample
size of train arrivals in the dataset.

2. The collected dataset contains unintended recording of pedestrian movement
outside the research area, which causes noise in the dataset. To overcome this
issue, each scanunit has been carefully calibrated. See [10] for a description.

3. Pedestrians may wait on their route for other reasons than congestion (i.e. waiting
for others). This issue is coped with by combining the last scan of the scanunit at
the bottleneck and the first scan of the scanunit downstream of the bottleneck.

4. The privacy of users of public areas is an important issue. For this research
several technical measures and procedures have been implemented to guarantee
the privacy of all station users at all times. See [10] for a description.

Data have been collected from the 28th of March to the 11th of May 2012.
Weekend days and (public) holidays have been filtered out as they are considered
as not representative due to either very high or very low congestion situations.
Also, incomplete data have been excluded from analysis. The resulting dataset
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contains data of the 19th of April, 1–4 May and 7 May 2012, in total 3,920 detected
pedestrian movements from platform to the station hall.

3 Route Choice Behaviour at Bottlenecks

Table 1 (combined with Fig. 1) shows the use of the four alternative routes towards
the exit at Starbucks for both the stairway bottleneck and the escalator bottleneck.
It is clear that the preference of each route diminishes when it is located further
away. This holds for both types of bottlenecks. As stated before, the distance
between the bottleneck route and the first alternative is similar (for both the stairway
bottleneck and the escalator bottleneck), but the choice for the bottleneck route is
much larger in case of the escalator than in case of a stairway (82 % versus 66 %
respectively). Although the use of the second and third alternative is limited for
both bottlenecks (<7 %), the third alternative attracts most passengers in case of
the stairway bottleneck, while for the escalator bottleneck the second alternative is
chosen more frequently. In the latter case both alternatives are stairways and the
second alternative provides simply the shortest walking distance. For the stairway
bottleneck, although the second alternative has a shorter walking distance, the third
alternative is an escalator. This confirms that comfort appears to be preferred over a
longer walking distance.

The preference for the escalator alternative might be caused by the comfort or
by the difference in congestion (waiting times) in front of the escalator or stairway
respectively. From the data it has been derived that the average waiting time (during
congestion) in front of the stairway equals 6.1 s, while this is 12.6 s in front of
the escalator bottleneck. Observed route choices (Table 1) show that the escalator
is chosen more often than the stairway alternative. This again implies a higher
preference for the escalator, which is confirmed by existing research.

To assess the influence of congestion on route choice, data was required to
determine whether or not congestion occurred on either the bottleneck route or the
alternative route (Table 2). Therefore, time intervals in which congestion occurred
have been manually observed and registered using footage from CCTV at the VI.
Using this data, routes chosen while there was no congestion, have been separated
from routes chosen when there was congestion. This shows that the relative usage
of the alternative route is much larger when congestion occurred at the bottleneck

Table 1 Route usage

Route Bottleneck route 1st alternative 2nd alternative 3rd alternative Total

Stairway bottleneck 1,117 (66 %) 473 (28 %) 35 (2.1 %) 73 (4.3 %) 1,698

Escalator bottleneck 465 (82 %) 72 (13 %) 25 (4.4 %) 2 (0.4 %) 564

Total 1,582 545 60 75 2,262
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Table 2 Congestion classification

No congestion observed Congestion observed Total

Bottleneck route 120 471 591

Alternative route 27 214 241

Total 147 685 832

Relative usage of alternative route 18.3 % 31.2 %

route. A chi-square test with Yates continuity correction [4] confirmed the difference
to be statistically significant (�2 D 6:63).

4 Route Choice Model Estimation

Next, a number of route choice models has been estimated, each with the different
variables that could be measured by the scanunit configuration. A subset of the
previous dataset has been generated by a strict application of a minimum sample
size of 5 Bluetooth detections per train. At the location with largest congestion
(escalator), passenger route choices have been analysed in more detail by estimating
route choice models. To not only include congestion (or waiting time) but also
walking distance, we have looked at the total route including the VI, and the
destination in the station hall. The parameters in the choice estimation are waiting
time at the escalator, route length and route time, in various combinations.

In Table 3 Ustairs and Uesc indicate the route utility via the stairs and via the
escalator respectively. ASCstairs is the alternative specific constant (ASC), reflecting
the specific preference for the stairs route. twait represents waiting time at the
escalator, averaged per train arrival. troute and sroute represent travel time and
length of the total route alternative respectively. Finally, ˇtime;stairs and ˇtime;esc

are alternative specific parameters for the travel time, while all other refer to the
estimated parameters, i.e. the value that passengers attribute to the corresponding
variable.

From Table 3, it appears that only waiting time is significant. The corresponding
value for ˇwait – �0:0549 – implies that 1 s of waiting time at the escalator
bottleneck reduces escalator route utility by 2.3 %, compared to the alternative route
utility (stairs). At a waiting time of 44 s at the escalator bottleneck, the utilities of
both routes are equal.

The value for ˇwait is independent of other variables added to the utility functions,
as done in models 2 and 3. This shows the insignificance of these variables compared
to the waiting time. Moreover, model quality – expressed by N�2 – does not increase
when more variables are added. Including length or time variables of the total route
results in model parameter values close to zero with very large standard errors. Only
in model 4, adding an alternative specific parameter for total travel time changes
the values for the alternative specific constant and the total travel time. However,
the model quality decreases and both ˇtime;stairs and ˇtime;esc have a (non-significant)
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value close to 0. Overall, this leads to the conclusion that these attributes do not
seem to have an effect on route choice behaviour. This could be due to the small
difference in route length. For more complex networks, it is expected that route
times will have a significant effect [3]. Following the model with the best estimation
results, i.e. the route choice model with waiting time, the probability of choosing
the escalator route Pesc is described by 1

1CeUstairs�Uesc D 1

1Ce�2:43C0:0549twait

Conclusions
Previous research has shown that the type of VI and congestion are important
determining factors for pedestrian route choice. In this study the impact of
these factors has been quantified for a train station case. Data has been used
from a grid of Bluetooth scanunits around platform 18/19 at Utrecht Central
Station in The Netherlands. Our case consisted of an escalator-stairways pair
and a pair of stairways which both were situated behind each other at the
platform where passengers exit their train. We have found a Bluetooth ratio of
approximately 7–11 %, which is consistent with other studies.

The case of Utrecht Central Station has confirmed a higher preference
for escalators against stairways, which has been found in other research.
Moreover, passengers tend to adjust their route when congestion occurs at the
primary route, which was the first route in sight. Although in our study the
alternative routes were not visible from the queueing location at the primary
congested route, a significant number of passengers still chose for other,
uncongested routes.

We have estimated several route choice models using four route attributes:
waiting time due to congestion, VI type, route length and route time. In the
model estimates, only waiting time at the congested bottleneck was found
to be statistically significant. Our model shows that approximately 15 % of
the pedestrians is expected to chose an alternative route when the waiting
time at the bottleneck is 15 s. A waiting time of 45 s results in 50 % of
the pedestrians to be expected to chose an alternative route. In the situation
without congestion, over 90 % is expected to chose the primary route. These
insights are valuable for optimizing VI settings (operations) and configuration
(design) at train stations.

Further research is required, because of two major limitations of this study.
Firstly, the impact of walking distance of each alternative route (from platform
to station exit) on route choice due to congestion at VI. Our study area was
relatively small due to limited availability of scanunits. Therefore, the impact
of the destination of passengers could not be tested. Secondly, although we
have found no indications, the use of Bluetooth for measuring pedestrian
routes could result in a sampling bias due to selection, since data of only
a subset of pedestrian routes has been collected. The subset composition is
unknown due to privacy limitations.
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Empirical Investigation on Pedestrian Crowd
Dynamics and Grouping

Andrea Gorrini, Stefania Bandini, and Giuseppe Vizzari

Abstract The definition and implementation of pedestrian simulation models
requires empirical evidences, acquired by means of experiments and on-field
observations, for sake of model calibration and validation. This paper describes an
observation carried out in a urban commercial-touristic walkway (Vittorio Emanuele
II Gallery, Milan, in collaboration with the Municipality of Milano). Although the
analysis considered traditional metrics for describing pedestrian flow, such as the
level of service, the main aim of this work was to quantify and characterize the
presence, impact and behavior of groups in the observed population. In particular,
we had confirmatory results on the frequency of groups in the observed situation, but
we also achieved innovative results on trajectories and walking speeds: the walking
path of individuals was 4 % longer than the average path of groups, but the average
walking speed of group members was 37 % lower than the one of single pedestrians.
Finally, a metric for characterizing group dispersion was defined and applied to
the observed scenario: relatively large groups (size three and four) occupy more
space in their movement when compared to couples. The achieved results represent
useful empirical data for the calibration and validation of models for the simulation
of pedestrians and crowd dynamics, but also for the development of automated
techniques for data collection and analysis employing computer vision techniques.

1 Introduction

The modeling and simulation of pedestrian crowd dynamics is an innovative
and complex field of study that requires interdisciplinary efforts (e.g., computer
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science, traffic engineering, applied mathematics, social science, urban planning).
Computer-based simulations allow to properly assess, plan and design mass gath-
ering and transit spaces (e.g., large stadium, railway station), offering optimized
architectural solutions to ensure the spatial efficiency of potentially crowded
facilities in terms of services, comfort and safety.

In order to finalize pedestrian crowd simulations into decisions and operational
steps it is necessary to validate computational models facing empirical evidences
about human locomotion behavior, on both individual and aggregate level of
investigations. Data collection activities imply two main methods of analysis:
acquisition by means of on-field observations and controlled experimental inves-
tigations in laboratory setting. This is aimed at defining descriptive sets of metrics
and parameters for characterizing the phenomenon and support the validation of
computational models, both in terms of expressiveness and efficiency [1].

The early interest in studying crowd dynamics started in the late nineteenth
century, thanks to the pioneering work of the French psychologist Gustave Le
Bon [11]. Since then, the definition of the phenomenon is still controversial, due
to the lack of standard guidances for data collection, ethical-practical restrictions
(e.g. safety of individuals involved, costs of experiments) and the variability among
size and typology of the phenomenon. In this respect, this work is based on the
unobtrusive observation of pedestrian circulation dynamics in a urban crowded
scenario. We proposed to analytically investigate the phenomenon focusing on the
general framework of proxemics (i.e. human spatial behavior) [9], thanks to its
ability to model the social relationships among people and groups as they interact
in the environment. In this schema, we focused on:

• Proxemics: a type of nonverbal communication that conveys information about
the nature of participants’ relationship by means of the dynamic regulation of
interpersonal distances [9]. In motion situations, proxemics is essentially based
on the needs to avoid collision with oncoming pedestrians and to maintain spatial
cohesion among group members;

• Grouping: defined as two or more people who interact to achieve a shared goal
[15], groups are the basic interacting elements that compose a crowd (e.g.,
relatives, friends). Depending on the level of density in the environment, the
proxemic behavior of walking groups spontaneously produces typical spatial
layouts1: line abreast, V-like, river-like pattern [3, 13];

• Density: the level of density in the environment significantly impact pedestrian
circulation dynamics. Due to the lower degree of freedom for spatial positioning,
critical situations of high density are characterized indeed by competitive

1According to [3, 13], in situations of low density groups walk side by side forming a line abreast
pattern. As the density increases, groups walk with a V-like pattern with the middle individual
positioned slightly behind in comparison to the lateral individuals. In situations of high density,
the group spatial distribution leads to a river-like pattern. Groups with more than three individuals
split themselves into singles, dyads and triads, or to form other shapes, like rhombus, spherical and
ellipsoidal.
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interactions among pedestrians, continuous and sudden detouring maneuvers [7]
and crowding [2].

In the context of early observations [5, 14, 17] and experiments [4, 8], the
proposed methodological approach can be synthetically represented as a “virtuous
cycle” composed of different practices for data collection: in vivo observation of
pedestrian circulation dynamics in urban crowded scenarios, in vitro experimental
investigation of human locomotion-spatial behavior in laboratory setting. This is
aimed at validating pedestrian crowd simulations, by checking if the computational
models are able to generate outcomes that are similar to the ones produced by the
target. Then, in silico simulations can be used as virtual settings, considering the
possibility to investigate those situations that are difficult to be directly observed
(i.e. what-if scenarios).

In this respect, the results achieved by means of the presented case study are
currently applied towards the improvement and validation of MAKKSim [16], an
agent-based [6] pedestrian crowd simulation platform developed by the Complex
Systems and Artificial Intelligence research center. This is aimed at improving
the definition of the behavioral specifications of each agent, in relation to their
interpretation of the other elements in the system (e.g., agents, groups, objects,
obstacles).

This work is organized as follow: the urban scenario chosen for the observation
of pedestrian circulation dynamics is described in Sect. 2. The results achieved
are presented in Sect. 3, with reference to: (i) level of density and service, (ii)
pedestrian flow composition in terms of groups and their proxemic spatial layouts,
(iii) trajectories and walking speed of both singles and groups, (iv) spatial dispersion
among group members while walking. The paper ends with final remarks about the
impact of proxemics, grouping and density on pedestrian crowd dynamics, and the
application of results to the validation of the computational model of MAKKSim
(Sect. 4).

2 Scenario Analysis

The Vittorio Emanuele II gallery is a popular commercial-touristic walkway situated
in the Milan city center (Italy). It represents an optimal scenario for the observation
of pedestrian crowd dynamics thanks to the large amount of people that pass through
the gallery during the weekend for shopping, entertainment and visiting touristic-
historical attractions (see Fig. 1). The observation was performed on the 24th of
November 2012 (on Saturday afternoon, from 2:50 to 4:08 pm).

The equipment for video footages was positioned on a balcony that surrounds the
inside volume of the gallery from about 10 m in height. This allowed to limit video
images distortion and trajectories occlusion, and to not influence subjects’ behavior
(i.e. Hawthorne effect).
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Fig. 1 As illustrated from the left to the right side: an overview of the pedestrian circulation
dynamics at the Vittorio Emanuele II gallery (Milan, Italy), the aerial of the walkway, the
superimposed alphanumeric grid used for data analysis

A squared portion of the walkway was considered for data analysis (12.8 m wide,
12.8 m long). The inner space of the selected area were discretized in cells by
superimposing a grid on the video images (see Fig. 1). In particular, the grid was
designed by using Adobe Photoshop CS5 as composed of No. 1024 squared cells
(0.4 m wide, 0.4 m long). Then, it was transformed according to the perspective of
the video images and set up with an alphanumeric code on the sides. Eventually,
the grid with a transparent background was superimposed to a black-white version
of the video images. Data analysis was manually performed by using VLC media
player, thanks to the possibility to playback the video frame by frame.

3 Results

3.1 Level of Density and Service

According to the Highway Capacity Manual [12], the level of density in the
observed scenario was estimated by counting the number of people (No. 7773)
walking through a certain unit of space (12.8 m) in a certain unit of time (from
2:50 pm to 4:08 pm). The average flow rate (7.78 pedestrian/min/m) belonged to
a level of service (LOS) B [7], that is associated to irregular flows in low-medium
density conditions. The observed cyclical presence of high and low peak levels is
related to public transport services (i.e. subway station) from which periodic arrivals
of pedestrians were detectable (see Fig. 2).
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Fig. 2 The time distribution of the flow rate observed at the Vittorio Emanuele II gallery: LOS A
(grey colored) and LOS B (black colored). The minute 00:01:00 reported in the X-axis refers to
the starting time of the survey

3.2 Flow Composition and Group Spatial Arrangement

According to [3], the identification of groups in the stream of passersby was
assessed on the basis of verbal and nonverbal communication among members
(e.g., visual contact, body orientation, gesticulation, spatial cohesion). To more
thoroughly evaluate all these indicators the coder was asked to rewind the video
and take the necessary time to tell situations of simple local similar movements by
different pedestrians from actual group situations.

A subset of 15 min was extracted sampling the video 1 min every 5: No. 1645
pedestrians were manually counted. Results showed that 16 % of the observed
pedestrians walked alone, while 84 % walked in groups, as composed of 44 %
of couples, 17 % triples and 23 % four members groups. The observed large
structured groups, such as touristic committees, were analyzed considering
sub-groups.

Results about group proxemics spatial arrangement showed that: 94 % of couples
walked with a line abreast pattern, while 6 % walked with a river-like pattern; 31 %
of triples were characterized by line abreast pattern, 10 % by river-like pattern and
59 % by V-like pattern. Ten percent of groups of four members were characterized
by line-abreast pattern, 4 % by river-like pattern, 10 % by V-like pattern, 10 % triads
followed by a single person, 6 % single individual followed by a triad, 8 % rhombus-
like pattern, 32 % of the groups split into two dyads.
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3.3 Walking Path and Speed

A sample of No. 122 people (30 singles, 15 couples, 10 triples and 8 groups of
four members) was considered in relation to the minutes characterized by LOS B.
Data analysis consisted of measuring the trajectories of each pedestrian and the
needed time to pass through the monitored portion of gallery delimited by the grid2

(pedestrians who stopped or slowed to take pictures or shopping were not taken into
account).

Two tailed t-test analyses were used to identify differences among the average
walking path of singles (13.96 m, sd 1.11), couples (13.39 m, sd 0.38), triples
(13.34 m, sd 0.27) and groups of four members (13.16 m, sd 0.46) (as illustrated
in Fig. 3). Results showed a significant difference (p value < 0.05) between the
walking path of singles and couples, singles and triples, singles and groups of four
members. In conclusion, results showed that the path of singles was 4 % longer than
the path of group members (see Fig. 3).

About walking speed, two tailed t-test analyses were used to identify differences
among singles (1.22 m/s, sd 1.16), couples (0.92 m/s, sd 0.18), triples (0.73 m/s, sd
0.10) and groups of four members (0.65 m/s, sd 0.04). Results (see Fig. 4) showed
a significant difference (p value < 0.01) in walking speed between singles and
couples, singles and triples, singles and groups of four members, couples and
triples and triples and groups of four members (p value < 0.05). In conclusion,
results showed that group members walked 37 % slower in average than the single
pedestrians.

Fig. 3 As illustrated from the left to the right side, the observed trajectories of singles, couples,
triples and groups of four members

2We considered the cell occupied by the feet of each pedestrian as its own actual position. Every
straight step was measured as the segment between the center of two cells (0.4 m long path). Any
oblique step cell by cell was measured as the diagonal between the two cells (0.56 m long path).
The starting and final steps (i.e. entering and exiting the grid) were measured from the half of the
cell (0.2 m long path).
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Fig. 4 The average walking speed (m/s) of single pedestrians, couples, triples and groups of four
members (with standard deviation)

3.4 Group Proxemic Dispersion

The spatial dispersion of walking groups was estimated as the mean of the distances
between each member and the geometrical centre of the group (i.e. centroid).
The trajectories of the sampled pedestrians were further analyzed, considering the
positions of each member within the alphanumeric grid every 40 frames (starting
from the co-presence of the all members in the monitored area of the walkway
delimited by the grid).

Two tailed t-test analyses were used to identify differences in spatial dispersion
among couples (0.35 m, sd 0.14), triples (0.53 m, sd 0.17) and groups of four
members (0.67 m, sd 0.12). Results showed a significant difference in spatial
dispersion between couples and triples (p value < 0.05), couples and groups of
four members (p value < 0.01). In conclusion, results showed that couples walked
41 % less disperse than triples and groups of four members.

4 Final Remarks

This paper presented the data acquired by means of the unobtrusive observation of
pedestrian circulation dynamics in a urban crowded scenarios (Vittorio Emanuele II
gallery, Milan, Italy).

Results demonstrated that it is crucial to consider the impact of grouping on
pedestrian crowd dynamics, considering the massive presence of groups within the
observed pedestrian flows (84 %). Single pedestrians walked faster than groups,
often adjusting their path (generally longer than the one of group members) in
order to maintain their velocity. The number of members of a group has a negative
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impact on both speed and spatial cohesion, due to the higher probability of groups
to disperse in case of oncoming pedestrians and the need to regroup in order to
preserve the possibility to communicate.

The achieved results represent an useful contribution for the understanding of
pedestrian crowd dynamics, once again in situations characterized by low-medium
density. Further empirical investigations would be necessary to actually compare
results in situation of high density, considering also the opportunity to employ more
sophisticated and at least partly automated technologies for data analysis [10].

In conclusion, according to the proposed methodological approach, the achieved
results represent an extremely interesting and significant body of empirical evi-
dences finally aimed at supporting the improvement of the pedestrian crowd sim-
ulation platform MAKKSim. At this stage, results are currently been applied to cal-
ibrate and validate the capability of the agents to behave according to specific prox-
emic rules based on the needs to maintain group cohesion among members and to
preserve a certain distance from other pedestrians, which belong to a different group.

Acknowledgements The survey was carried out thanks to the authorization of the Milano’s
Municipality and complying the Italian legislation about the privacy of the people recorded within
the pedestrian flows without their consent.
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Experimental Analysis of Two-Dimensional
Pedestrian Flow in Front of the Bottleneck

Marek Bukáček, Pavel Hrabák, and Milan Krbálek

Abstract This contribution presents an experimental study of two-dimensional
pedestrian flow with the aim to capture the pedestrian behaviour within the cluster
formed in front of the bottleneck. Two experiments of passing through a room with
one entrance and one exit were arranged according to phase transition study in Ezaki
and Yanagisawa (Metastability in pedestrian evacuation. In: Cellular automata, ed.
by G. Sirakoulis, S. Bandini. LNCS, vol 7495. Springer, Berlin/Heidelberg, pp 776–
784, 2012), the inflow rate was regulated to obtain different walking modes. By
means of automatic image processing, pedestrians’ paths are extracted from camera
recordings to get actual velocity and local density. Macroscopic information is
extracted by means of a virtual detector and leaving times of pedestrians. The
pedestrian’s behaviour is evaluated by means of density and velocity. Different
approaches of measurement are compared using several fundamental diagrams.
Two phases of crowd behaviour have been recognized and the phase transition is
described.

1 Introduction

One of the main impacts of pedestrian behavior’s study is the ability to optimize
the infrastructure. Using some intervention, the capacity of a given zone (building,
public area, transportation hub, etc.) can be increased, i.e. more people can pass this
zone with higher velocity and lower number of conflicts [8, 12].

Many studies deal with certain aspects of pedestrian motion [2, 10, 14, 15, 17,
19]. Specific simulation tools are often supported by experimental data analyses
[5, 6, 9, 18].

This article focuses on the description of the system as a whole. In particular we
focus on the transition from the free to the congestion phase. This study is compared
with the actual states of individual pedestrians in the system as explained below.
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The density in the simplest form represents the number of pedestrians in fixed
area (referred to as �A) [13]. As mentioned in [16], this quantity can be understood
locally as well. More precisely, the density �˛ in the neighborhood of pedestrian ˛
corresponds to inverse value of his space consumption, i.e., the area of his Voronoi
cell.

The flow is defined as the number of persons, who crossed a given intersection
during one time unit. The flow through a given area (e.g. detector area) can be
evaluated from the number of pedestriansNCt , who entered into the monitored area

A during ht; t C �ti, i.e., JA.t/ D N
C

t

�t
. The specific flow is related to uniform

corridor width, therefore J sA.t/ D JA.t/

d
, where d represents the width a of given

corridor.
Using hydrodynamic approach, the density, velocity, and flow can be related by

formula

J.�/ D �v.�/: (1)

Both, the relations v D v.�/ or J D J.�/, are referred to as fundamental
diagrams (FD) [12] and are used to illustrate the essential behaviour of the system.

In this article, we distinguish two variants of FD:

• Area FD – The system is observed through a defined area to extract the
dependence JA.t/ D JA.t; �A/. Data cumulation over a long interval T allows
to observe pedestrian behavior under different conditions, e.q., the density limits,
which characterize the phase transition.

• Individual FD – For each pedestrian ˛ the dependence v˛.t/ D v˛.t; �˛/ is
evaluated. By observing pedestrians under different conditions, one can identify
the conditions preceding the decrease of velocity.

Considering a room with one entrance and one exit, the following observations
can be made. With low inflow, pedestrians can exit freely and move with maximal
velocity. By increasing the inflow rate, the number of pedestrians in the room
increases. Therefore, a cluster is created in front of the exit, which means that a
pedestrian is forced to slow down and integrate into the cluster before leaving the
room.

The motion of a chosen pedestrian ˛ can be classified according to his/her
velocity and local density into three states:

• Free state – the pedestrian does not react to other pedestrians and moves with
his desired velocity v0˛. This state is characterize by low density �˛ and high
velocity v˛ .

• Synchronized state – the pedestrian motion is highly synchronized with pedes-
trians in his surrounding due to high density. This state is characterize by high
density �˛ and low velocity v˛.

• Transition state – The transition between free and synchronized state is charac-
terized by low density �˛ and low velocity v˛ due to the anticipation or long
reaction time, respectively.
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Analogously, the phase of the entire system can be classified:

• Free phase – no cluster is formed in front of the exit, therefore the majority of
pedestrians in the system is in free state.

• Congested phase – a stable cluster in front of the exit is formed, which leads to
permanent significant ratio of pedestrians in the synchronized state.

• Metastable phase – unstable clusters arise and disappear, the ratio of pedestrians
in the synchronized state changes in time from low to significant.

2 Experiment

To detect the above mentioned phases and to analyze transitions among them, a
simple experiment has been designed – a group of pedestrians passed through the
room with one entrance and one exit, see Fig. 1. The data samples were obtained by
automatic processing of video recordings from two experiments, which differed by
the size of the room.

To realize a passing-through arrangement, an experimental room was built inside
the study hall of FNSPE, see the plan in Fig. 1. The walls 2 m high were made of
wooden construction covered by paper. Two snapshots in Fig. 2 visualize the design
and progress of the experiment.

Two cameras were used to monitor the experiment. The main camera, which
covered the whole room, was fixed on the ceiling 4.5 m above the floor. The rear
camera monitoring the egress of pedestrians was placed next to the exit, 2.5 m above
the floor.

To control the inflow into the room, which is the crucial parameter determining
the phase of the system, simple signaling device has been used. On green signal, a
group of pedestrian were forced to enter the room. This green signal was altered by
randomly long intervals of red light, the intervals � were generated from trimmed
normal distribution: VAR.�/ D 1 s2, E.�/ 2 Œ1:2; 1:8� s.

B

A

C

Fig. 1 Left: the schematic view of the experiments (area A represents virtual detector, B technical
background, C coffee corner, L refers to traffic lights). Right: Room geometry and position of
the cameras. Exp. 1: aD 10 m, bD 6 m, Exp. 2: aD 6 m, bD 3.5 m. Both: cD 2 m, dD 0.6 m,
eD 2 m, f D 0.5 m
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Fig. 2 Illustrating shots from the experiments

Since the pedestrians were not able to enter the room in headway shorter than
0.5 s, the inflow was controlled by the number of entering pedestrians as well. As
can be seen from Table 1, this method enables the control of inflow parameter, which
appears to be crucial parameter determining the free of the congestion phase, as
observed by means of model simulations in [3, 4, 9].

Nine rounds with different settings were performed in the first experiment, 11 in
the second one. Each of them lasted from 2 to 10 min. The conditions on the input
has been changed after each round, the inflow slowly raised from low values (free
flow) until the state with strong congestion (for details, see Table 1).

3 Data Processing

Pedestrians were marked by red paper hats with white rim, unlike [11]. The
principle of contrast color [7] was used to detect pedestrians on each frame and
their positions were recorded. Due to the width of the recorded area, the fish eye
deformation influenced the data. This deformation was partially suppressed by sinus
transformation (see [1] for more details).

Coordinates were assigned to one path of a given pedestrian (ref. ˛) with respect
to the distance to coordinates on the previous frame. Therefore the trajectory of a
pedestrian was reconstructed: x˛.t/ D Œx

.1/
˛ ; x

.2/
˛ �.t/, where the time is understand

to be discrete: t 2 ft0 C n�tg, �t = 1/59 s.
As mentioned in the introduction, the local density was derived from each frame

and the local velocity was extracted from paths using central differences

vx˛.t/ D x˛.t C k�t/ � x˛.t � k�t/

2k�t
; (2)

where k D 5 was used to reach sufficient smooth trajectories. Thus, the trajectory
data were obtained in the form .x˛; �˛; v˛/.t/.
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Table 1 The table describes each rounds of the experiment, following qualities are evaluated:
duration of a round, number of pedestrians at input and mean input period evaluated from time
series generated by traffic lights. The value “MIN” referred to the round without lights, participants
were asked to enter as fast as possible. The inflow is evaluated from the period and number at input

Round Duration (min:s) Input Period (s) Inflow (ped/s) (s) Observation

1 10:50 2 1.78 1.12 Free flow, occasional
delay at the exit

2 10:04 2 1.68 1.19 Free flow, occasional
delay at the exit

3 8:29 2 1.59 1.26 Free flow, occasional
delay at the exit

4 6:36 2 1.43 1.40 Metastable state

5 7:16 3 1.85 1.62 Cluster formation with
constant size

6 6:05 3 1.69 1.78 Congestion

7 5:24 3 1.72 1.74 Congestion

8 2:55 3 1.66 1.81 Congestion

9 2:05 3 1.57 1.91 Congestion

1 6:40 2 1.60 1.25 Flow, occasional delay
at the exit

2 7:47 2 1.61 1.24 Free flow, occasional
delay at the exit

3 5:06 2 1.50 1.33 Free flow, occasional
delay at the exit

4 4:15 2 1.37 1.46 Metastable state

5 1:52 2 MIN ˙2 Congestion

6 1:31 2 MIN ˙2 Congestion

7 8:07 3 1.76 1.70 Cluster formation with
constant size

8 4:31 3 1.70 1.76 Metastable state

9 2:34 3 1.56 1.92 Cluster formation with
constant size

10 3:23 3 1.55 1.94 Cluster formation with
constant size

11 3:13 3 MIN ˙3 Congestion

The macroscopic approach was implemented by monitoring the “detector” area
A, a virtual square 2 � 2m placed in front of the exit, see Fig. 1. In this area, the
density �A and flow JA were evaluated. The mean value of velocity in this area
(referred to as vA) was calculated by means of the weighted average of pedestrians’
velocity inside the area. The weight of a pedestrian depends on the overlapping
area of the detector and his voronoi cell. These detector-area-data are of the form
.�A; JA; vA/.t/.
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The crossectional data Jout.t/ were processed semi-automatically from the rear
camera. The leaving times were determined, the outflow can be calculated using
leaving times t˛ headways

Jout.t/ D nT .t/

T
; nT .t/ D #

	

t˛ 2



t � T

2
; t C T

2

��

; (3)

where # denotes the number of set elements.

4 Results

Measured quantities can be visualized by many ways. As the first report, we show
the microscopic approach. Basic review of the velocity and density is provided by
their histograms – Fig. 3. As visible, two local maxima of velovity appear: the high
peak at value 0.5 m/s corresponds to the synchronized state, while the wide peak at
value 1.8 m/s corresponds to free motion.

Individual modes of motion are clearly described by the three-dimensional
fundamental diagram (Fig. 4), regardless to their frequency of occurrence. This
frequency is displayed on the z coordinate.

As mentioned above, two main states were observed. Free flow occurs until the
density reaches 0.3 ped/m2. In this mode, the participants walked within a velocity
range 1.5–2.5 m/s. Conversely, when density exceeded 0.5 ped/m2, the congested
state appeared. In this state, the velocity fluctuates between 0 and 0.7 m/s. The
highest observed density was 3 ped/m2. The metastable state appeared when the
density occurred in the interval 0.3–0.5 ped/m2.

These critical values of density are significantly lower than in [19]. Such a
different behavior is probably caused by two dimensional nature of the investigated
movement. Pedestrians slow down due to the anticipation of side conflicts.
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Fig. 3 Histograms of velocity and density generated from pedestrians’ path data
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Fig. 4 The three dimensional fundamental diagram v.�/ generated from pedestrians’ path data
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Fig. 5 The distribution of velocity and density evaluated from pedestrians’ path data

The phase transition can be monitored by observing the distribution of velocity
and density in the room (Fig. 5). One can see that the distance between maximal
velocity and high density, which represents the process of transition from free
motion to the congested state, reaches 3 m.

The pedestrian behaviour in front of the exit has been analyzed by FD J s.�/ (in
Fig. 6). The outflow, detector and pedestrian data have been compared.

The outflow data are measured just at the door, on contrary, the detector is placed
in front of the door. The width of crossection, which is crossed by pedestrians,
is 2 m. Due to the conservation law, the absolute flow must be conserved at all
crossections which are used by all pedestrians. Therefore the specific flow at the
door is much higher than the specific flow in the detector.

However, the trends of area and outflow data in FD are similar, this curves
differs only in scaling. The flow linearly increases until the density reaches 0.3
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Fig. 6 Comparison of FD J.�/ evaluated from detector data (blue), outflow data (red) and
pedestrians’ path data (green). Dotted line illustrates the frequency of density’s occurrence

(resp. 0.4) ped/m2. This linear part characterizes the free flow state. Then, the flow
continues to increase slowly and at the density 0.8 (resp. 0.9) ped/m2, the flow
is stabilized, the cluster is formed. The maximal flow occurs at the density of
1.7 ped/m2, where the second increase comes. At the densities larger than 2 ped/m2,
a fast decrease occurs.

Using hydrodynamic relation (1), the FD J.�/ can be derived also from the
pedestrians’ data. Surprisingly the trend is quite different. The pedestrians’ velocity
decreases rapidly when the density reaches 0.3 ped/m2 and then it fluctuates around
a constant value (see Fig. 4). Thus the flow falls first and then increases linearly.

To conclude, the 3D FD generated by pedestrians’ data clearly describes the
phase of the system or the state of a pedestrian. But to provide the J.�/ FD, area
based methods produce more relevant information.

All observation of the phase transition illustrates, that pedestrians change their
velocity in advance, the slowdown process starts around 3 m in front of the obstacle.

From Table 1 it is clear that the assumption that phase transition is determined
by the inflow parameter is correct. The cluster formation in front of the bottleneck
is very sensitive to this parameter. The transition has been observed while the inflow
is between 1.4 and 1.7 ped/s respectively between 1.7 and 1.9 ped/s depending on
the size of the room.
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Simulation of Crowd-Quakes
with Heterogeneous Contact Model

Jian Ma, Weiguo Song, and Siuming Lo

Abstract Serious pedestrian trampling in crowd disasters such as the Love Parade
happened almost every year all over the world. Many people lost their lives, even
more were injured in these disasters. It was found that these hazardous sequence
usually happened after a special crowd movement pattern, i.e., crowd turbulent flow,
which was believed to be result of earthquake like “pressure release” in the crowds.
In the present study, we show video recording analysis results which indicated that
there were different kinds of contacts among pedestrians. These contacts mode
may be the origin of the pressure release. Thus, based on the discovered contacts
mode, we further built heterogeneous contact model for massive crowd. Numerical
simulation results of the model can qualitatively describe the statistical properties
of pedestrian movement behavior in crowd quakes.

1 Introduction

During the past few decades, pedestrian crowds occur more and more frequently.
Many people were injured or even die in these crowd induced disasters. It was
noticed that when located in densely packed crowds, a pedestrian can hardly move
thus can only sway around his initial position or be pushed away some distance.
This special phenomenon has been reported in 1990s by Fruin [1] in his discussion
on pedestrian safety engineering. The very similar crowd movement pattern was
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recently quantified and entitled as stop-and-go wave and pedestrian turbulent flow
[2]. These two kinds of pedestrian flow are rather dangerous because pedestrian in
crowds might fall down and get tramped due to suddenly velocity change induced
“pressure release.” For this reason, this kind of disaster is usually called trampling
disaster or human stampede. However, epidemiologic surveillance shows that the
risk posed from pedestrian fallen only counts for a small partial of the injuries and
death [3], much more victims suffered suffocation due to the pedestrian contacts
induced intense crowd pressures.

To facilitate our understanding of this kind of disasters, both numerical and
empirical studies have been performed. Based on the occupancies feature in densely
packed pedestrian crowds, it was usually assumed that people can be treated as
fluid in numerical simulations [4]. Thus nonlinear features such as shock waves
could be explored. It should be noticed that pedestrian contact forces, information
flow in crowds could barely be quantified at that time, so they can hardly be
formulized in these fluid models. Fortunately, with the development of modern
video surveillance equipment, the whole process of the crowd disaster can now be
detailed. As a result, empirical studies can now focus on the development process
of the disaster [5] and use not only eye witness report, post disaster survey but
also video recordings [6], cell phone information, RFID-based trajectories and so
on. With these abundant information, more interesting crowd movement pattern,
turbulent pedestrian movement has been reported in religious pilgrimage 2006 [2]
and in Love Parade 2010 crowd disaster [7]. Numerical simulation with contact
force considered can also display turbulent features under the circumstance of
bottleneck pedestrian merging flow [8]. However, it is still puzzling why turbulent
feature emerges in almost frozen crowds.

In the present study, we explore turbulent flow pattern in pedestrian crowds by
firstly detailing some of the pedestrian trajectory features in Love Parade disaster.
Holding these discussion, we build heterogeneous contact model in the following
section and further explore the dynamics of the model by performing simulation
analysis. The last section comes to our conclusions.

2 Model Formulation

The Love Parade 2010 happened in Germany caused the death of 21 people from
suffocation and at least 510 more were injured. Although the reason for this disaster
seems quite complex, the cause of injuries is believed to be pedestrian contacts. It
was found from video surveillance recordings that pedestrian density on the ramp
reaches as high as 11 people per square meter. Under this densely crowded situation,
pedestrians lean against each other thus can barely move. After a critical moment,
in this almost frozen crowds, a special earthquake like pedestrian movement pattern
was found, i.e., crowd-quakes [7].
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Fig. 1 Snapshot of the densely packed pedestrian crowds in Love Parade 2010 disaster

When we take a closer look at the trajectories as extracted in Ref. [7], it can
be found that, as shown in Fig. 1, there were two distinct kinds of trajectories.
The first ones show that the pedestrians can only sway near their initial locations,
the other ones however can move a relatively longer distance. For those who can
make long distance movement, we look back at the video recordings and found that
these people move in a lane, as the one formed in pedestrian counter flow [9]. In
the formed lane, the one in front try his best to push his way forward while the
ones in the rear would follow the leader’s movement, as shown in Fig. 1. Thus, we
distinguish these two kinds of people as followee and follower.

Further analyzing the velocity evolution process of those who was swaying
around and those who was making long distance travel, we can find from Fig. 2
that their velocities vary a lot. The former velocity was relatively larger, while the
later velocity is almost zero. It should be noticed that the value of the later velocity
is not absolutely zero but a little value varying from time to time, as indicated by the
inset of Fig. 2. For the reason that the pedestrian density of the captured scenario is
relatively high, we can deduce that the small velocity is resulted from body contacts
with those who made long distance travel. For the convenient of illustration, we thus
distinguish these pedestrians as inactive and active pedestrian. Active pedestrian
wants to make active move to escape the crowded situation, while the inactive
pedestrian wants to keep still but was pushed away from time to time.

To formulize a crowd model, it can be summarized from the above discussion
that, firstly, there are active and inactive pedestrians in the crowds; secondly,
active pedestrian wants to move with a high speed while inactive with low
speed; thirdly, active pedestrian will follow those other active but not the inactive
pedestrians’ movement; fourthly, there will be body contact force as long as two
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Fig. 2 Velocity evolution of active and inactive pedestrians in the crowds

pedestrian contacts each other, no matter they are active or not. Holding these basic
assumptions, the model could be formulized as follows,

*

F i D *

F s C *
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F r C "
*
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*
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*
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where
�!
Fi represents the forces exerted on pedestrian i , as shown in Fig. 3;

�!
Fs means

self-driven force to travel with an expected speed v0, and k1 means the relaxation

time whose value is chosen to be 0.5 in the present study;
�!
Fr is a repulsive force

quantifying body contact force, whose value is zero when two pedestrians are far
away and is none zero value when there is body contact. Here k2 is a factor reflecting

the willing to avoid body contacts in crowds;
�!
Fa stands for the active pedestrians

following behavior as discussed in the former section. It should be noticed that only
nearby active pedestrians were taken into consideration. Those who are too far away
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Fig. 3 Scheme of forces in
the proposed heterogeneous
contact model

barely affect pedestrian i ’s decision due to limited information transfer in crowds.
Here, ˛ represents following strength, whose value could be in between 0 and 1. It
should be noted that � is a small random number to quantify the force fluctuation.

3 Simulation Results

In this section, numerical simulations were performed with the proposed model. A
6m by 6m square with periodical boundary condition was established to accommo-
date 300 people. Thus the pedestrian density in this situation is higher than 8 per
square meter. In this crowds, there were 21 active pedestrian whose expected speed
v0 D 0:2m/s and the strength of following other active pedestrians’ movement was
set to be ˛ D 0:9. The active walkers were randomly distributed in the crowds at the
beginning of the simulation. k1 was set as 20 to quantify a strong willing to avoid
body contact with others. � has a mean value of zero and a standard deviation of
1 in this study. The simulation lasted 1,000 s, and only the last 500 s were used to
investigate the dynamics of the model to get rid of the influence of initial condition.

In Fig. 4a we show snapshots of the simulation process. As can be found, at
the beginning of the simulation, the active pedestrians were randomly located in
the crowds. For the reason that they had the tendency of following other active
pedestrians’ movement, after a short while, the active pedestrian began to move
as clusters. In each cluster, pedestrians have similar direction of movement. It is
noticed that the clusters were not stable, old clusters would disassemble and form
new clusters later. During this process, active pedestrian moved a relatively long
distance, while other inactive ones only moved when they were pushed by others.
We further explore the velocity evolution feature, as shown in Fig. 4b. Comparing
Fig. 4b with Fig. 2b, we can find similar features of movement for both active
and inactive pedestrian. In Fig. 4b, the active pedestrian moved almost along the
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a b

Fig. 4 Simulated heterogeneous contact model outputs (a) and the velocity evolution of active and
inactive pedestrians in the proposed model (b)

a b

Fig. 5 Pedestrian velocity increment (a) and displacement distribution (b)

y-direction. Due to the movement of the active pedestrians, inactive pedestrian were
pushed away from their initial locations, and as a result, their movement direction
is also along the y-direction.

To further explore the flow pattern, we firstly define velocity increment as
velocity change in a short time gap � . Results of the velocity increment distribution
was plotted in Fig. 5. As can be found from Fig. 5a, when � D 0:2 s, the probability
density curve presents a sharply peaked shape. With the increase of � , the curve
shape becomes a Gaussian-like distribution. This indicates that the crowd displays
typical turbulence features. Secondly, we quantify the displacement features. Dis-
placement means location changes between two subsequent stops. It was noticed
that pedestrians in the crowd actually kept a nonzero speed, thus a speed lower than
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0.04 m/s was treated as a stop. We plotted displacement frequency distribution in
Fig. 5b. From this figure we can see most of time, pedestrian can only make a small
step forward, long distance travel appear with much lower probability. This may
result from the fact that active pedestrian could travel a long distance while inactive
pedestrian moved only when they were pushed away from their initial locations. The
displacement distribution also follows a power law distribution, which also indicates
the flow pattern seems like fluid turbulent.

Although we can find turbulent features from pedestrian movement pattern,
however, from the velocity of each pedestrian, as shown in Fig. 4a, we can hardly
find micro turbulent flow structures including vertex, sink or origin. Thus we
reconstruct the overall flow field on the basis of each pedestrian’s velocity and show
in Fig. 6 the snapshot of the simulation and the corresponding streamlines. It is easy
for us to find that, the flow filed shows typical vertex structure on the right part
of the crowds. On the bottom-left part of the crowds, we can find origin structure.
Comparing the corresponding pedestrian distribution we can deduce that the origin
structure is a result of the pedestrian cluster which move mainly upward. The
upward moving pedestrian cluster leaves a pedestrian gap behind and meanwhile
they pushes inactive pedestrians aside, so these inactive pedestrian rushes to the
gap, which makes it seems the pedestrians are origin from that location. At this very
location, the velocity varies a lot, which may induce pedestrian fallen.

a b

Fig. 6 Velocity field (a) and its corresponding streamline (b) of the simulated densely packed
pedestrian crowds



110 J. Ma et al.

Conclusions
In the present paper, we further analyzed the trajectories of pedestrian crowds
in Love Parade 2010. Results indicated that there were two different kinds
of pedestrians in the crowds, i.e., active and inactive ones. Active pedestrian
moved with a relatively high speed while inactive pedestrian wanted to remain
standing still. It was also noticed that active pedestrian moved in lanes in
densely packed crowds, that is say, they had the tendency to follow other
active pedestrians movement.

With these facts considered, a heterogeneous contact model was built.
The model distinguished two kinds of pedestrian, and took into account not
only body contact avoidance tendency but also active pedestrian’s following
behavior. Based on the proposed model, we performed numerical simulations,
results of which indicate that the densely packed pedestrian crowds displays
sharply peaked velocity increment probability distribution, power law dis-
placement distribution, i.e., earthquake like movement pattern. The overall
flow filed shows typical vertex and origin structures, indicating the crowds
show turbulent flow pattern.
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New Definition and Analysis of Spatial-Headway
in Two-Dimensional Pedestrian Flow

Xu Mai, Weiguo Song, and Jian Ma

Abstract In recent years researchers have paid attention to the dependency between
required length and velocity, which is rather important for modeling pedestrian
movement. Some researchers have observed that the velocity of individuals is
related to the spatial headway by a linear relation. The other people have found in
experiment that there is phase transitions in the following behavior through a larger
range of velocities. However, most relations are derived from one-dimensional
experiments such as single-file movement, while the study of spatial-headway
in two-dimensional pedestrian flow is relatively rare. Here we conducted an
experiment suitable for a new insight into the two-dimensional headway.

In this study, two-dimensional experiments are carried out to study pedestrian
movement behaviors in a circular passageway. The full pedestrians’ trajectories are
extracted through an automatic image processing method of high accuracy based
on mean-shift algorithm. Here we redefine the spatial-headway in two-dimensional
following behavior, which is elaborated in detail later. The results show that the two-
dimensional spatial-headway is distinctively different from that obtained in single-
file movement. The velocity in every ligature is also extracted to get the relationship
between velocity component and distance in different angles. Results of the more
crowded situation show that the pedestrians turn into three steady lanes and the
spatial-headway also keeps in a stable state. The findings may be useful for model
calibration.
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1 Introduction

The behavior of pedestrian streams, especially in crowded situation, draws extensive
attention for a wide range of improvement in modeling and facility design. There are
many interesting dynamic characteristics in pedestrian crowds, such as spontaneous
collective phenomena [1, 2] and so on. A great many models [3–5] have been
proposed to describe the dynamics of pedestrians, which reproduce the behavior
of real crowds well, but somewhat circumscribed. So reliable experimental database
is compulsive, which is rather important for validation of simulation. In the past
few decades a great many one-dimensional experiments have already been carried
out [6–8]. However, until now the experimental database is insufficient particularly
in case of two-dimensional pedestrian flow. Also collecting the trajectories of each
pedestrian precisely and promptly is very critical [9]. Two-dimensional pedestrian
flows may present longitudinal interactions as well as lateral ones at the same
time in a circular passage [10], and under certain conditions the emerge of new
organizations allows the group to solve overcrowding efficiently without factitious
control [11,12]. Such functional patterns of motion have been identified many times
in the past, such as the alternating flows at a bottleneck, the formation of trails, or
the walking configuration of social groups, which are considered as examples of
collective intelligence. One of the most known examples is the lane formation in
both unidirectional and bidirectional flows [13].

In this paper several experiments were performed and the new results are
presented, which are based on the trajectories obtained through our newly developed
tracking approach. Besides the discussion on basic elements as velocity, density, we
also gain insights into the spatial-headway in two-dimensional situation.

2 Experimental Setup

The experiments were performed in an opening area in West Campus of USTC in
September 2011. A total of 38 participants, 17 males and 21 females, took part in
this experiment. These participants are all students and are between 22 and 25 years
old and between 157 and 181 cm tall, averaging 23 years old and 168 cm tall. The
participants were divided into different groups to wear red or yellow caps and are
told to walk without panic during the evacuation as if they were walking alone at
school. All of them were naive about the purpose of the experiment. Experiments
were conducted in an approximate ring corridor with a small rectangle encircled by
a bigger one. The size of the inner rectangle is fixed to 1.2 � 1.4 m but the outer one
is set to 5.2 � 4.4 m and 4.2 � 3.4 m respectively, as shown in Fig. 1. All trials were
made with 38 participants, corresponding to a global density of 1.70 and 2.75 p=m2

for the two scenes respectively. The typical duration of each trial was not measured
by time but the process the whole group finished five laps in the circle.
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Fig. 1 Precise description of
the scene

All experiments were recorded by two cameras located on the roof of a four-
floor building with a viewing direction almost perpendicular to the ground. The
cameras have a resolution of 1,920 � 1,080 pixels and a frame rate of 25 fps.
Manual procedures for collecting empirical data are very time-consuming and
usually cannot provide sufficient accuracy in space and time. In this study accurate
pedestrian trajectories were automatically extracted from video recordings by our
self-developed approach using the method of mean-shift [14, 15] by detection
of the caps the participants wear. The perspective distortion effect caused by
different heights of the participants could be ignored because the camera is mounted
vertically above the scene so that the distortion is negligible. Nevertheless the
horizontal direction should be calibrated because the camera is approximately 7 m
away from the top edge of the scene. Consequently, we adopted four known points
to adjust the distortion using direct linear transformation [16].

3 Measurement and Methods

3.1 Trajectories

Pedestrian characteristics including flow, density, velocity and individual distances
at any time and position can be calculated through trajectories. All the results in this
study are obtained by analyzing pedestrian trajectories from video recordings of the
experiments. Therefore we have extracted all pedestrians positions (x coordinate and
y coordinate in video recordings) at each frame and then plot them in time series to
get the trajectories precisely.
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Fig. 2 Illustration of the density definition in this method

3.2 Density and Velocity

In this study we want to see the space occupancy situation as well as the illustration
of the spontaneous emergence of density (velocity) gaps and density (velocity)
peaks that propagate in the observation area so a method different from the
traditional one is proposed [17]. The local density �.
; t/ at time t and in direction

 is defined as the average value of the local density �.x; t/, for all points x of
the corridor located along the direction 
 (here we pick seven points along the line
radiated from the origin every 2ı, that is 180 lines in total, as shown in Fig. 2). The
local density is defined as �.x; t/ D P

j f .djx/, where djx is the distance between
the center of mass of pedestrian j and his location x, and f .d/ here is a Gaussian-
based weight function f .d/ D 1

	R
exp.�d2=R2/ with R D 1, which is a weight

parameter.

3.3 Spatial-Headway

Here we redefine the spatial-headway in two-dimensional following behavior: a
reference direction is proposed between the positions of the targeted pedestrian in
the present frame and the next one. Based on the reference direction we draw a same



New Definition and Analysis of Spatial-Headway in Two-Dimensional Pedestrian Flow 115

Fig. 3 Spatial-headway definition for a pedestrian in crowd

angle on both sides for example 45ı as well as a visual range, 1 m as an example, and
then we have a vivid visual field as shown in Fig. 3. If there are other participants
right in the visual field we think that they meet the requirements thus one targeted
pedestrian may correspond to more than one spatial-headway according to our rule
and others are recognized as invalid ones.

4 Result and Discussion

In this paper we mainly focus on the second scenario sized 4.2 � 3.4 m with all the
participants going unidirectional.

4.1 Intuitional Result

There are three obvious lanes formed as shown in Fig. 4 and the velocity in a certain
frame is also demonstrated in Fig. 5. As we can find in the experiment, after people
started to go, they spontaneously walked into three separated lanes in a very short
time to avoid redundant contact with others beside them to keep them the most
comfortable state. If someone wants to surpass other pedestrians, he has to push a
hard way out to accomplish the action. Moreover there are more than half of the
participants are females who do not like to hustle and surpass. The distribution of
velocity indicated that the pedestrians in outer ring have a bigger speed with more
space while the inner people maintained a relatively lower speed in a constrained
situation (Fig. 6).
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Fig. 4 Trajectories in scene 2
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Fig. 5 Velocity in one frame in scene 2

Fig. 6 Local density in time line

4.2 Density and Velocity

For the reason that density fluctuation is important, thus we further investigate
timely density fluctuations in the experimental corridor, where highly crowded
zones and almost empty zones can be observed at the same moment of time in
different areas of the corridor as well as that of velocity. So here we adopted the
method in Ref. [17], representing the local density value for all times t and in all
directions theta, as shown in Figs. 7 and 8. We can see very clearly that when people
gathered in the left and right part in the observation area it would generate a density
gap, which is in agreement with the spatial setting. Generally speaking, people have
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Fig. 7 Radial speed in time line
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Fig. 8 Full time sketch of obstacles in front of a pedestrian

a relaxed walk in the horizontal direction while most of them should have a struggle
in the thinner tunnel in the vertical direction. The place and time where the largest
values of velocity occurs coincide with the emergence of high value in density.

4.3 Spatial-Headway

The spatial-headway in two-dimensional situation is not like that in single-file
movement which is shown to be in a linear rule. It is not appropriate to integrate
the intervals to reach the goal that one pedestrian corresponds to one interval. Full
time sketch of obstacles in front of a pedestrian is presented here in Fig. 8. It is very
interesting that the obstacles switched in the visual field left and right in turn. This
phenomenon indicated a orientation preference while pedestrians are walking.
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Conclusion and Perspectives
The trajectories of the pedestrians show us a very intense trend to formation
of lanes during the whole process. From the radial speed and local density we
can see more clearly how they affect each other in each frame and each degree.
Nonetheless the spatial-headway in this research is limited, people choose to
walk right after who are in front of them and do not want to surpass so the
intervals keeps stable. More experiments containing a larger range of density
and different shapes in geometry are needed for a more detailed analysis of
two-dimensional spatial-headway.
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On the Validation of a Discrete-Continuous
Model with Bottleneck Flow and Computational
Artifacts

Ekaterina Kirik, Andrey Malyshev, and Egor Popel

Abstract A connection of a width of a bottleneck and unidirectional virtual
people flow by the discrete-continuous pedestrian movement model (Kirik et al.
Fundamental diagram as a model input direct movement equation of pedestrian
dynamics. In: Proceedings of the international conference pedestrian and evacuation
dynamics‘2012, Zurich. Springer, 2014) is investigated. Specific and full flow rates
versus bottleneck width are presented. Computational artifacts that are pronounced
while simulation in front of bottleneck are discussed.

1 Introduction

Bottlenecks on pedestrian facilities gives the most considerable contribution to the
upper limit of capacity of an evacuation way. Up to now literature on pedestrian
dynamics does not give one quantitative answer on bottleneck questions. Qualitative
descriptions have common points. Many authors investigated bottleneck flows in
experimental environments ([12, 13], web resource http://ped-net.org). There were
observed capacity of the bottleneck versus width, trajectories of pedestrians passing
the bottleneck, and corresponding self-organization phenomenon. Flow rate have
qualitatively the same behavior, it goes up with the bottleneck width increasing.
The specific flow rate is given almost independently on the bottleneck width.

In this paper we consider dynamics of the SigmaEva module in bottlenecks.
This module realizes stochastic discrete-continuous model SIgMA.DC [7, 8]. The
discrete-continuous approach is a novel contribution to mathematical modeling of
pedestrian dynamics. This model is of individual type; people (particles) move in
a continuous space (in this sense model is continuous), but number of directions
where particles may move is limited, in this sense model is discrete.
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We investigated flow rate versus different widths of the bottleneck.
In the next section the main concept of the model is presented. Section 3 contains

description of the case study and results obtained. We conclude with a summary.

2 Description of the Model

2.1 Space and Initial Conditions

A continuous modeling space˝ 2 R2 and an infrastructure (obstacles) are known.1

People (particles) may move in a free space. To orient in the space particles use the
static floor field S [11]. Let the nearest exit is assumed as a target point.

Shape of each particle is disk with diameter di ; i D 1;N , N – number of
particles, xi .0/ D .x1i .0/; x

2
i .0//; i D 1;N – initial positions of particles which

are coordinates of disks’ centers (it is supposed that they are coordinates of body’s
mass center projection). Each particle is assigned with the free movement speed2

v0i , square of projection. It is supposed that while moving people do not exceed
maximal speed (free movement speed), and persons control velocity according to
local density.

Each time step t each particle i may move in one of predetermined directions
edi .t/ 2 fe˛.t/; ˛ D 1; qg, q – number of directions, model parameter (here a set of
directions uniformly distributed around the circle is considered). Particles that cross
target line leave the modeling space.

2.2 Preliminary Calculations

To model directed movement a “map” that stores the information on the shortest
distance to the nearest exit is used. The unit of this distance is meters, [m]. Such
map is saved in static floor field S . Idea of field S imported from floor field (FF)
CA model [11] that provides pedestrians with information about ways to exits. This
field increases radially from the exit and it is zero in the exit(s) line(s) [5, 6]. It is
independent of time and presence of the particles. To calculate field S modeling
space ˝ is covered by a discrete orthogonal grid with cell 10–40 cm in size, and,
Dijkstra’s algorithm with 16-nodes pattern is used, for instance. Distance to the exit
from arbitrary point is given by bidirectional interpolation among nearest nodes.

1Here and below under “obstacle” we mean only walls, furniture. People are never called
“obstacle”. There is unified coordinate system, and all data are given in this system.
2We assume that free movement speed is random normal distributed value with some mathematical
expectation and dispersion [3, 4].
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2.3 Movement Equation

A movement equation for an individual is derived from a finite-difference expression
of velocity. This expression allows to present new position of the particle as a
function of a previous position and local particle’s velocity. Thus for each time t
coordinates of each particle i are given by the following formula:

xi .t/ D xi .t ��t/C vi .t/ei .t/�t; i D 1;N ; (1)

where xi .t ��t/ – coordinate in previous time moment; vi .t/, [m/s] – the particle’s
current speed; ei .t/ unit direction vector, �t , [s] – length of time step that is
0.25 s.

Unknown values in (1) for each time step for each particle are speed vi .t/ and
direction ei .t/. In this model we omit to describe forces that act on person, to solve
differential equations and, as a result, to get velocity vector vi .t/. We propose to
get speed from experimental data (fundamental diagram), for example [3,4]. In this
case in contrast with force-based models [1,2] we have an opportunity to divide task
of finding velocity vector to two parts. At first direction is determined; then, speed
is calculated according to local density in the direction.

2.4 Choosing Movement Direction

In this discrete-continuous model we took inspiration from our previously presented
stochastic CA FF model [5, 6]. All predetermined directions for each particle each
time step are assigned with some probabilities to move, and direction is chosen
according to probability distribution obtained.

Probabilities in the model are not static and vary dynamically and issued from the
following facts. Pedestrians keep themselves at a certain distance from other people
and obstacles. The tighter the people flow and the more in a hurry a pedestrian, the
smaller this distance. During movement, people follow at least two strategies: the
shortest path and the shortest time.

Thus personal probabilities to move in each direction each time step have contri-
butions: (a) the main driven force (given by destination point), (b) interaction with
other pedestrians, (c) interaction with an infrastructure (non movable obstacles).
The highest probability3 is given to direction that has most preferable conditions
for movement considering other particles and obstacles and strategy of the people
movement (the shortest path and/or the shortest time).

3Mainly with value >0.9.
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Fig. 1 Visibility area of
particle i in direction ˛

Let particle i has current coordinate xi .t � �t/. The probability to move from

this position in direction e˛.t/ D
�

cos 2	
q
˛; sin 2	

q
˛

; ˛ D 1; q is the following:

pi˛.t/ D Opi˛
Norm

D
exp

�
�kiW .1 � r�

˛
r /


exp
��kiP F.r �̨/

�
exp

�
kiS�S˛

�

Norm
W

�

r �̨ � di

2

�

;

(2)

where Norm D
qP

˛D1
Opi˛ .

Visibility radius r (r > maxf di
2

g ), [m], is model parameter representing the
maximum distance at which people and obstacles influence on the probability in
the given direction. Obstacles can reduce visibility radius r to value r �̨ (see Fig. 1).
People density F.r �̨/ is estimated in the visibility area, see [8]. Function 1.�/ is
Heaviside unit step function. There are model parameters: kiS > 0 – field S -
sensitive parameter; kiW > 0 – wall-sensitive parameter; kiP > 0 – density-sensitive
parameter. More information on parameters one can find in [5, 6, 8].
�S˛ D S.t � �t/ � S˛, where S.t � �t/ – static floor field in the coordinate

xi .t � �t/, S˛ – static floor field in the coordinate x D xi .t � �t/ C 0; 1e˛.t/i .

With �S˛ moving to the target point is controlled. Function W
�
r �̨ � di

2


controls

approaching to obstacles. If Norm D 0 than particle does not leave present position.
If Norm ¤ 0 than required direction ei .t/ is considered as discrete random value
with distribution that is given by transition probabilities obtained. Exact direction

ei .t/ D e Ǫi .t/ D
�

cos 2	
q

Ǫ ; sin 2	
q

Ǫ

; ˛ D 1; q is determined in accordance with

standard procedure for discrete random values.
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As in cellular automata models here parallel update is used. Decision rules to
choose direction e Ǫi .t/, and final conflict resolution procedure are presented in [7,8].

2.5 Speed Calculation

Person’s speed is density dependent [3, 4, 9, 12]. We assume that only conditions in
front of the person influence on speed. It is motivated by a front line effect (that is
well pronounced while flow moves in open boundary conditions) in a dense people
mass when front line people move with free movement velocity while middle part
is waiting a free space available for movement. As a result it leads to a diffusion of
the flow. If not to take into account such effect simulation will be slower then real
process. Thus only density Fi . Ǫ / in direction chosen ei .t/ D e Ǫi .t/ is required to
determine speed. According [3, 4] current speed is

vi .t/ D v Ǫi .t/ D
(

v0i

�
1 � al ln Fi . Ǫ/

F 0


; Fi . Ǫ / > F 0I

v0i ; Fi . Ǫ / � F 0:
(3)

where F 0 – limit people density until which free people movement is possible
(density does not influence on speed of people movement); al – factor of people
adaptation to current density while moving on different way types (a1 D 0:295 is
for horizontal way; a2 D 0:4, for down stairs; a3 D 0:305, for upstairs).

Numerical procedures that is used to estimate local density is presented in [8].
Area where density is determined is reduced by direction chosen and visibility area
that is presented in Fig. 1.

3 Numerical Experiments

The model presented was realised in computer program module SigmaEva. Simula-
tions were performed by this module.

3.1 Experimental Setup

To investigate flow rate through the bottleneck there was used a geometry in Fig. 2
presented. This geometry was adopted from [13].

Simulation was done for three values of free movement speed v0. In each case
speed was given as a normal distributed random value with Ev0i D 1:75 m/s and
�.v0i / D 0:083 m/s, Ev0i D 1:3 m/s and �.v0i / D 0:066 m/s, Ev0i D 0:96 m/s and
�.v0i / D 0:047 m/s.
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Fig. 2 Geometry set up.
Parameters are:
d C dl D 9:6m; bl D 4m;
l D 2:8m; dl � 5:3m

All particles have unified diameter di D 0:4 [m], i D 1;N , square projection
is 0.125 m2. Initially N D 120 people filled Grey area with close to maximum
initial density, then they start to move in one time and leave the geometry through
bottleneck of width b, [m] (open boundary conditions experiment).

3.2 Stochastic Properties of the Model

For each v0 there were made simulations under different b. Model is stochastic, and
one of the goals is to investigate stability of the model, to perform it 500 runs were
done for each pair v0 and b. In Fig. 3 evacuation time distributions for v0 D 1:3m/s
(for other v0 evacuation time distributions are similar) and different b and mean
square deviations versus b are presented.

One can see dispersion goes down with increasing b. A reason is stable arc effects
in front of bottleneck are pronounced more often for small b when size of particles
(di ) is comparable with b.

Arc effects realize in a way when several particles wish to move in the direction
of exit but they have no enough place to do it (Fig. 4). One reason is that in the model
particles (people) are considered as hard bodies and they may move through and take
only free space. In real life people use squeezing to resolve arc effects, duration and
frequency of such effects are lower comparing with model effects. Now the model
does not realize squeezing. Arc effects disappears due to stochasticity of the model
when some particles move apart the door and other particles may move in a free
space. The smaller b, the higher frequency and duration of arc effects in the model.

3.3 Evacuation Time and Flow

As an estimate of evacuation time T , [s], (when last particle passes control facilities
– dotted line, Fig. 2) a mode of a time density distribution was used.

Full flow rate is J D N=T , [pers/s], specific flow rate is Js D N=T=b,
[pers/s/m].
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Fig. 3 Time distribution over 500 runs for each b for v0 D 1:3m/s (left) and mean square
deviations (right)

Fig. 4 Arc effect in front of the bottleneck

Fig. 5 Model specific (left) and full (right) flows for different b for different free movement
speeds: 0.96 m/s (Js_0,96), 1.3 m/s (Js_1,3), 1.75 m/s (Js_1,75), comparing with experimental
specific and full flows by other authors (http://ped-net.org)

In Fig. 5 (right picture) one can see that model full flow (for each free movement
speed) rises with increasing bottleneck width b. Experimental data from web
resource http://ped-net.org show similar behavior.

Model specific flow rate curves (Fig. 5 left) have two parts: they go up until some
bottleneck width b and then became stable. It is explained by arc effects that appear
more often in front of narrow bottlenecks. Due to model arc effects may appear in
front of wide door but duration of such effect is very shot and frequency is low. With
increasing bottleneck width frequency of such computational artifacts considerably
decreases and model specific flow becomes approximately constant that matches
with the theory of the bottleneck flows [9] and experimental data [10, 12, 13].

http://ped-net.org
http://ped-net.org
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Conclusion
The experimental data show flow rate increasing and approximately constant
specific flow rate with increasing bottleneck width. Comparison simulation
results with these experimental data says that model results are within an
existing conception of the bottleneck_width-flow dependence of people flow.
But it was shown that there are still points to improve model.
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Dynamic Data–Driven Simulation of Pedestrian
Movement with Automatic Validation

Jakub Porzycki, Robert Lubaś, Marcin Mycek, and Jarosław Wąs

Abstract The article presents a dynamic data-driven simulation of pedestrian
movement based on the generalized Social Distances Model, where a simulation
system is continuously synchronized with current flow data, gained from Microsoft
Kinect depth map. Both simulation and data analysis are real-time processes. Agent
appears in simulation, as soon as consecutive pedestrians leave sensors tracking
zone. Due to system architecture containing feedback loop, automatic validation
and parameters calibration is possible. A new method of depth map based pedestrian
tracking is proposed as well as a new algorithm of pedestrian parameters extraction
for short trajectories. The paper describes in detail the proposed algorithms, system
architecture and an illustrative experiment.

1 Introduction

Using of the paradigm of data-driven simulation means, that the created simulations
are influenced online by the real data, not only by offline parameters or personal
experience and intuition of the authors. Thus, in a data-driven approach, the
simulation’s input should be continually fed with actual data [2]. In crowd dynamics
simulations, the sources of the data are (most commonly) attributes of pedestrians
extracted from video recordings, mobile phones or, most recently, from other
electronic devices like Microsoft Kinect. Thanks to such approach, it is possible to
prepare short-term predictions of crowd behavior in specific, well-defined situations.

2 Related Works

Currently, one can observe significant development of real data gathering methods
for crowd dynamics. For example, time-efficient automatic extraction of accurate
pedestrian trajectories from video recordings is proposed in a recent work by Boltes

J. Porzycki (�) • R. Lubaś • M. Mycek • J. Wąs
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and Seyfried [1], while methodology of video analysis of high density crowd is
presented in [3].

Also, low-cost sensors like Microsoft Kinect are very perspective in the context
of online crowd analysis. A paper by Seer et al. [5] is devoted, inter alia, to
transformation of 3D data gained from Microsoft Kinect sensor to real world
coordinates and it proposes a new method for the data collection. Zhang et al.
propose a water filling method for people counting using Kinect sensors [10].

Discrete methods of pedestrian dynamics are very effective in the context of data-
driven simulation. One of the most known discrete models of a human crowd are
based on Cellular Automata (CA) and an idea of floor field [4]. Also the Social
Distances model is based on CA and floor field, although the model takes into
account more accurate representation of spatial relations [9]. The Social Distances
model was adapted both for simulation of mass evacuation [8], as well as for
proximity estimation among people in video analyses of crowd [7].

3 System Architecture

A client-server architecture seems to be the best solution for the concept of
providing data from motion sensors to dynamic data-driven simulation in real
time. The scalability of this approach is an important factor, especially in terms
of applying dynamic data-driven simulation methodology to larger area of interest.
A simplified scheme of the system architecture can be seen in Fig. 1.

Server

[Time, ID, 
Speed, X, Y]

[RGB stream
Depth strem]

Data driven simulation
Social Distances Model

[Time, ID, 
Speed, X, Y]

Kinect

The results of 
measurements from 

Kinect and results 
from simulations

[Feedback loop with calibration parameters]

.

.

.

Fig. 1 A simplified scheme of the system architecture. Movement sensor client provides data
about time, speed, position of the pedestrians to server, while data-driven simulation client receives
pedestrian and calibration parameters
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Physical elements included in the system and the connections between them:

• Microsoft Kinect (motion sensing input devices) connected to computer via USB
2.0 interface.

• Network equipment such as a Wi-Fi router to establish a local network.
• Personal computers connected to a local network. Each computer handles only

one Kinect due to performance reasons.

In the application layer we provide two main components:

• The server application which takes care of the synchronization issues, exchange
of information between clients and provides the feedback loop to data-driven
simulation.

• Two types of client applications. The first type handles the motion sensor devices,
second type is the data-driven simulation of pedestrians dynamics. Both types of
clients communicate with server using the same protocol.

These applications were written in C++ programming language. To support the
communication with the Kinect device we used the OpenNI library. The OpenCV
library was used to handle image processing.

4 The Depth Map Analysis

The main idea behind the presented method of pedestrian tracking is the assumption
that depth sensors are mounted on the ceiling, looking directly downward (Fig. 2).
Therefore local minima of the depth map correspond to the top the of objects. In
terms of pedestrian tracking local minima of a depth map correspond to pedestrian
heads, as is shown in Fig. 3a.

Morphological erosion operation is used to detect local minima. A raw depth
map is eroded using a circular structural element with diameter slightly larger than
the shoulder width. In result small local minima deriving from haircut, shoulders
etc. are removed. After this a binary AND operation is performed on the original
and eroded image. Only pixels with the same value on both images will be detected.

Fig. 2 Consecutive steps of local minima detection procedure. (a) Raw depth map, (b) map after
erosion, (c) detected local minima
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Fig. 3 Overview of Gradient Fill method: (a) raw depth map with minimum marked with red
dot, (b) human head profile, with marked region found by Gradient Fill algorithm, (c) the shape
determined by Gradient Fill method with the centroid marked with red dot

Fig. 4 Comparison of trajectories with (b) and without (a) use of Gradient Fill algorithm.
Trajectory A has significant noise, while trajectory B is very smooth

Due to noise in a depth map data, as well as pedestrian swaying motion, detected
local minima may not correspond exactly to head center. In consecutive frames, one
can observe discontinuity of detected points. In some cases position change can be
higher than actual displacement of the pedestrian. Following Gradient Fill algorithm
is proposed to increase accuracy of head center detection:

• Group local minima corresponding to the same pedestrian using minimal dis-
tance method.

• For each such group find its central point and mark it as belonging to the shape.
• For any pixel already belonging to the shape, mark its neighbors as belonging to

a shape, if their height difference is smaller than a given threshold (Fig. 4).
• Calculate the centroid of the shape.

To increase robustness of the Gradient Fill algorithm, an additional condition is
used: difference between given pixel and local minimum also have to be below a
given threshold.

There are two significant advantages of detecting shapes connected with local
minima:

• Noise in head center detection is significantly reduced (Fig. 4).
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• One can easily classify detected shapes, to remove from tracking furniture
elements or raised hands.

Detected heads positions on consecutive frames are assembled into trajectories
using minimal distance method with a given cut off threshold. Figure 4 shows the
difference between trajectories obtained with (b) and without (a) use of Gradient
Fill algorithm.

5 Determining Velocity and Position of the Pedestrians

People tend to sway during movement, which results in distortion of straight
trajectory if the trajectory of the head is recorded. In Fig. 5 three such trajectories
obtained with the Kinect device are shown. For reference one of the trajectories was
recorded without the use of the Gradient Fill algorithm. In order to determine actual
movement of the pedestrian, influence of the swaying has to be removed. Typical
methods based on maxima of curvature [6] fail here as the recorded trajectories
are very short. Because of this a new algorithm was developed for determining
the center of mass movement. Due to space limit only its short description will
be presented. More detailed write-up as well as mathematical background for this
method will be published as a separate article.

Fig. 5 In the figure three different trajectories (blue) recorded using a Kinect device are shown,
one of them (a) was extracted without the use of Gradient Fill method. For each trajectory its point-
to-point velocity histogram can be seen on the right. After removal of the swaying motion straight
trajectories (red) are plotted against original ones
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A recorded trajectory consists of 2D points ri D .xi ; yi / labeled with time ti .
The proposed algorithm can be described in the following steps:

• For each pair of points ri ; rj such that i ¤ j and ti > tj we calculate their
relative speed vij D ri�rj

ti�tj .
• A histogram of relative speed modules is constructed. Most probable value vp -

corresponds to the center of the mass velocity. Such histograms constructed for
the three earlier mentioned trajectories can be seen in Fig. 5.

• The most probable speed value vp depends on the binning method and is always
determined with small, but present systematic error. In order to mitigate this a set
of values close to vp is chosen Vp D fvij W kvij�vpk

kvpk � 0:05g.
• The center of mass speed vcm - is calculated as an average of Vp .
• For each point its projection on the direction perpendicular to the vcm can

calculated in order to subtract swaying from the trajectory. Results of this
procedure can be seen in Fig. 5.

After performing all steps of the algorithm a straight approximation of the center of
the mass movement is obtained. As can be seen the method used is very robust and
works well even for very noisy trajectories (see Fig. 5a).

6 Automatic Validation and Calibration with Feedback Loop

The architecture of the system, presented in Sect. 3 is designed to use information
from depth sensors to validate and calibrate simulation models online. Both
informations about tracked pedestrians and simulation results are sent to a server
(see Fig. 1), which compares these results and performs quantitative validation of
the simulation. This is a basis for automatic calibration of the simulation parameters.

The described system was used to conduct a simple experiment combining
pedestrian tracking and crowd dynamic modeling. Two Microsoft Kinect depth
sensors were mounted at two ends of a 22 m corridor (see Fig. 6). Participants were
instructed to walk the corridor one by one. As they were passing under the first depth

Fig. 6 An experiment overview. The experimental area consisted of a straight corridor with two
Kinect depth sensors installed at both ends. Each depth sensor was used to create a tracking zone
used for pedestrian tracking and speed estimation
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sensor their walking speed was estimated and the moment they left the tracking zone
a new agent with desired walking speed based on the measured one was added to
the simulation. When pedestrians left the second tracking are their passing time
was noted and compared with the simulation results. For the simulation the Social
Distances model was used, which is a non-homogeneous CA model based on Hall’s
proxemics rules [8, 9].

The experiment described above allows an automatic validation of the simulation
– as a measure an average deviation of simulated passage time from the real one was
chosen:

Nd D 1

N

NX

iD1

tpedestriani � tsimulatedi

tpedestriani

: (1)

In most models the main parameter of the pedestrians is the desired velocity vmax .
However, only actual velocity vmeasured, which is some fraction of the vmax, can be
measured in an experiment. In the proposed setup automatic calibration is possible
to mitigate this. In the simplest case this is achieved by multiplying vmeasured by a
calibration parameter k:

vmax D vmeasured � k (2)

After each group of pedestrians, the simulation was automatically calibrated –
parameter k was estimated to minimize the average time deviation. Results of such
procedure are shown in Fig. 7.

The authors understand that the presented case of calibration and validation is
quite simple. However, this experiment shows that a data-driven approach allows
automatic calibration on the fly that can be used to adjustment of the simulation tool
to specific conditions.

Fig. 7 Calibration results for two runs of experiment (a) and (b). Results of both runs are shown
on (c) without uncertainties for clarity
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7 Summary

The article presents a complete system of a dynamic data-driven simulation of
pedestrian movement. Input data are acquired using depth sensors mounted on
the ceiling. A new algorithm of depth map analysis is presented. Morphological
erosion and Gradient Filling are used to obtain smooth trajectories. Body mass
center trajectories and movement parameters are calculated from head trajectories
using a Histogram Method – a robust algorithm, which deals even with noisy data.

Pedestrians tracking is part of a dynamic data-driven simulation. Detected
individuals are used to initialize agents in the simulation. Finally, a concept
of automatic validation and calibration of simulation models is demonstrated.
Feedback information loop allows comparison between tracking and simulation
results.

Further works are needed to enlarge possible application area of the described
system. The proposed method of automatic validation and calibration should be
tested in more sophisticated cases, with more than one calibration parameter. A
tracking algorithm requires definition of pedestrian descriptor – vector of individual
properties, to distinguish pedestrians passing under different depth sensors. Opti-
mization and parallelization of image analysis methods may be useful in the process
of creating a large scale data-driven simulation covering whole retrieved input from
many sensors.
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Crowd Research at School: Crossing Flows

Johanna Bamberger, Anna-Lena Geßler, Peter Heitzelmann, Sara Korn,
Rene Kahlmeyer, Xue Hao Lu, Qi Hao Sang, Zhi Jie Wang, Guan Zong Yuan,
Michael Gauß, and Tobias Kretz

Abstract It has become widely known that when two flows of pedestrians cross
stripes emerge spontaneously by which the pedestrians of the two walking directions
manage to pass each other in an orderly manner. In this work, we report about the
results of an experiment on crossing flows which has been carried out at a German
school. These results include that previously reported high flow volumes on the
crossing area can be confirmed. The empirical results are furthermore compared to
the results of a simulation model which successfully could be calibrated to catch the
specific properties of the population of participants.

1 Introduction

1.1 Background: The Science Exchange Program
Shanghai – Karlsruhe

The Science Exchange Program Shanghai – Karlsruhe is a student exchange
program for students at an age of 16–17 years and come from various high
schools from Karlsruhe as well as Shanghai’s Jing Ye high school. It is biannually
jointly organized by the Schülerakademie Karlsruhe and the Karlsruhe Institute
of Technology (KIT). In 2 weeks of which one is held in Karlsruhe and one in
Shanghai teams of four to eight pupils (half of them Chinese and half German)
work on particular projects which are supervised by University groups, companies
or research centers. In 2012 one group decided to analyze crossing pedestrian flows
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as their project for their week in Karlsruhe. The main part of the project was to carry
out an experiment. Some simulations were done, but for this contribution additional
simulations were carried out after the end of the actual student exchange program
project.

1.2 History of the Research on Crossing Pedestrian Flows

In 1977 Naka [1] found that in crossing pedestrian flows stripes form which are
orthogonal to the sum of the velocity vectors of the two main walking directions.
This was confirmed in 1988 by Ando, Ota, and Oki [2]. However, while in the
paper by Naka the stripes are sketched1 more as extended bubbles, with a rather
organic appearance, in the later paper the sketch is drawn with straight lines, strictly
and clearly separating pedestrians of the two walking directions. This sketch was
used in English language papers for example by Hughes [3] or Helbing et al.
[4]. In this way the idea of strict and straight stripes spread and was eventually
even popularized (e.g. Fisher [5]). Seeing literature evolve in this way the question
emerges if the blurry, bubble-shaped stripes describe reality best and the straight
stripes are maybe an urban myth resulting from a kind of Chinese Whispers Effect
(here rather “Japanese Whispers Effect”) or if stripes in crossing flows can actually
be seen as clearly as the sketches in more recent popular publications suggest.
Making another attempt to decide this question was the purpose of the experiment
carried out as part of this project. Furthermore we wanted to test Naka’s claim that
“The total flow rate of two flows in the crossing can reach nearly the maximum of
the flow rate of one direction flow”.

Further notable works on crossing pedestrian flows include: an empirical study
by Sano and Tatebe [6]; extensive experiments on crossing flows of various angles
by Wong et al. and calibrated a simulation model with the data which then gave
decreasing flows with increasing intersection angle (i.e. bi-directional flow is more
reduced than orthogonally crossing flow) [7]; a work on potential benefit of crowd
control by Yamamoto and Okada [8] where both, a macroscopic continuum model
as well as a microscopic simulation model, yielded rather clear and straight stripes;
Dias et al. found oscillating flows when two groups of ants meet in a crossing
flow situation [9]; in a contribution with a theoretical focus Bärwolff et al. also
present some empirical data which gives the impression that rather blurry stripes or
oscillations were observed [10]. We also point out the contributions of Cividini et al.
[11] and Duives et al. [12] in this proceedings book.

1One can assume that most readers outside Japan will only have understood the sketches in both
papers, as both papers are written in Japanese.
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2 Experiment

2.1 Experimental Setup

The participants were a group of 80 pupils most of them at an age of 13 or 14 years.
The walking geometry as shown in Fig. 1 was about-8-shaped with a crossing area
of 3 � 3 sq m. In the first run the access corridors had the same width (3 m) as the
crossing area, in the second run two desks were added reducing the width to a total
of 2.0 m, in the third run one more desk was added, resulting in a total access width
of 1.5 m and in the fourth run four desks left an access width of 1.0 m. The camera
was placed in a height of approximately 3.5 m above the center point of the crossing
area. This was just sufficient to cover the entire crossing area.

2.2 Results of the Experiment

Figure 2 shows a still image from the third run of the experiment. The evaluation
was done manually. For this the video footage was partitioned into segments of
20 s. In these 20 s the number of participants leaving the crossing area on the two
outbound cross sections has been counted. This number divided by 3 m and 20 s
is the specific flow of that particular segment. For density we have counted the
number of pedestrians on the crossing area at times t D 5 s and t D 15 s of
the particular segment. The results are displayed in Fig. 3. Segments where the
participants obviously were doing other things than walking were not taken into
account.

The results are not easy to interpret. With decreasing access width at first density
and flow increase, then they decrease and finally the flow is decreased while the
density is increased. This could be related to a learning or a tiring effect or both.

Fig. 1 Sketch of geometrical setup



140 J. Bamberger et al.

Fig. 2 Still image from the third run with three desks restricting flow into the crossing area

Fig. 3 Results of manual counts of two persons (red diamond and green squares) as well as their
averages for each run (R1–R4). Note that the lower left corner of the diagram is not the offspring.
The blue circles mark the average of both counts. It is remarkable how stable the bias between
the two counting persons is. One may conjecture that it is more difficult to estimate if a person is
still on the crossing area or right next to it than it appears and that each counting person has had
different lines in mind to judge this

However, indisputably the specific flow is high, as Naka stated “nearly the maximum
of the flow rate of one direction flow”. Concerning the organization of the flow
we report that to us it appeared that there were rather bubbles moving, almost
oscillations of the right of way. Sometimes one could realize rather clear stripes,
but these were stable only for a few seconds – about as long as it takes for a person
to cross the crossing area.



Crowd Research at School: Crossing Flows 141

3 Simulation

It is a natural next question if the empirical results can be reproduced with a
simulation model of pedestrian dynamics. We have tried to do so using PTV Viswalk
[13–16] and in a first attempt achieved slightly too small densities and by far a too
small flow. This is, however, not a surprise, as we could not expect to have the
simulation reproduce results with this special population of participants applying
nothing but the default parameters. The first, obvious modification was to make the
simulated pedestrians smaller than by default as the participants were all children or
young youths. When we applied the changes as shown in Table 1 the results matched
much better as can be seen in Fig. 4.

We have noted that it is crucial for the movement pattern how wide the
distribution of desired speeds is. If everyone has (nearly) identical desired speed
the emerging stripes are clear, straight, and stable. The wider the distribution is the
more the stability is reduced and a deadlock consequently occurs at lower density

Table 1 Parameter
modifications for calibration.
Within the bounds of desired
speed (v0) and body radius
the values were equally
distributed in either case

Parameter Default Calibrated

vmin
0 0.72 m/s 1.25 m/s

vmax
0 1.61 m/s 1.53 m/s

Body radius (min) 16 cm 11 cm

Body radius (max) 23 cm 19 cm

tau 0.40 s 0.37 s

Asoc;iso 1.6 m/s2 2.2 m/s2

Asoc;mean 0.4 m/s2 0.2 m/s2

�t (aka VD) 3 s 2 s

Fig. 4 Simulation and empirical results in comparison
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and flow. This is – by the way – also the case for bi-directional flow for which this
relation has recently been found as well in an empirical investigation [17].

It is interesting to note that the values of the A parameters had to be changed into
different directions. Asoc;iso sets the base impact of the variant of the Social Force
Model as introduced in [18] while Asoc;mean determines the strength of the elliptical
specification II as introduced in [19]. This necessity for divergent modification
shows how different the two variants actually are. While most parameter changes
had an effect on either the density on the crossing area or the flow or both,
interestingly simulation results were nearly insensitive to the choice if pedestrians
followed a static or a dynamic potential [20] over the crossing area – a difference
which has been found to have a heavy impact on the course of simulations of other
situations [21–24]

Note that the calibration process has been carried out with regard to the empirical
data of the first evaluating person. It could have been done as well according to the
average or the result of evaluating person 2, but considering the large scattering of
empirical data it does not make sense to attempt to achieve a very precise agreement
of simulated and empirical data as obviously the empirical data yield considerable
variation and potential errors. We therefore see it as sufficient agreement when the
average of simulation data is within the cloud of empirical data points.

Excerpts from a simulation run with clear stripes (narrow speed distribution),
excerpts from the experiment, and excerpts from the calibrated simulation can be
seen in a video at this URL: youtu.be/vdjbIYpa1XE.

Conclusions
As a summary we conclude that in our experiment on crossing pedestrian
flows the formerly reported high flows and densities were confirmed. We did
not see, however, the formation of clear and stable stripes. The movement
pattern most of the time was rather bubble-shaped towards oscillating flow
directions. When there were stripes they disappeared again soon. This does
not mean that there are no situations with more stable stripes. It could
be that stripes emerge more clearly when the crossing area is larger. One
can also argue that our population of participants was rather individualistic
and rather not willing to adapt walking speeds mutually (remembering that
simulations had shown that narrow distributions of desired speeds lead to a
more pronounced stripe formation). Furthermore the corridors leading to the
crossing area were rather short such that there was no time for the pedestrians
to pre-sort themselves. Finally the demand (the inflow) on the crossing area
was relatively high in all four runs. Only in the last run the access width was
below half of the corridor width. This means that in the first three runs in
sum demand met or was above the capacity of the crossing area and probably

(continued)

http://www.youtu.be/vdjbIYpa1XE
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this was the case even in the last run with an access width of 2 � 1 m. Maybe
stripes emerge rather at demands clearly below capacity.

In other words as hints for anyone who might want to do a similar
experiment we note that first: it would have been interesting to do the
experiment with an even smaller inflow opening width, second: to potentially
allow the formation of stripes a larger crossing area was required, third: it
would have been helpful for evaluation to record a larger environment of the
crossing area, fourth: 80 participants was just enough or rather few for this
geometry, fifth: the inflow regulating obstacles (tables) should better have
been placed further upstream to allow the stream to fully expand until it
reaches the crossing area.

The conclusion concerning the simulation is that it is possible to reproduce
the empirically observed behavior to that degree of detail to which we
analyzed the empirical data plus a visual comparison of movement patterns.
The parameters of the simulation had to be adapted for this. The default
parameters led to – compared to our experiment and our population of
participants – clearly more conservative results.

As last conclusion we would think that the science of pedestrians (and
vehicles) can contribute in many interesting ways to education at school.
Pupils and students at secondary schools are involved with the topic in various
ways in their everyday lives and the systems as such are well suited to
introduce with them a number of concepts of mathematics and computer
science.

Acknowledgements We thank Yusuke Okahira from Kozo Keikaku Engineering (KKE) for help
with some of the Japanese papers.
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Stair Evacuation Simulation Based on Cellular
Automata Model Considering Social Forces

Ning Ding, Tao Chen, Hui Zhang, and Peter B. Luh

Abstract Building evacuation in case of emergencies has long been recognized as a
crucial issue, especially for the stair evacuation because evacuees may spend most of
the evacuation time in stairs. To predict the evacuation time in stairs, simulations are
commonly used, but known simulations ignore the stair structure and the fact that
people may change their speeds during evacuation. As a result, how to introduce
a reasonable mechanism on how evacuees change their speeds and improve the
stair evacuation simulation are important. In this paper, a new Cellular Automata
(CA) model where a new grid map is introduced based on the stair structure, and
then the interaction among evacuees can be simulated better than the existing CA
simulations. To make a reasonable mechanism of changing speed, the social forces
will be introduced to the new CA model based on the advantages of social force
models. However, social force model is a continuous model and CA model is a
discrete model, and there is a gap to use social forces directly into a discrete model.
To bridge the gap, the system time interval is shortened, and then evacuees have
variable speeds by updating their positions during several intervals. To validate this
simulation, an experiment was held in a high-rise building. In the fire drill, harmless
smoke was released to make the drill similar to real events. The simulation results
are similar to the fire drill data by comparing evacuation time.

1 Introduction

Building evacuation in case of emergencies has long been recognized as an
important issue, especially for the evacuation in stairs because the stair is the only
way to evacuate. For building safety, simulations are commonly used, but most
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of the existing simulations ignore the stair structure and the fact that people may
change their speeds during evacuation. As a result, how to introduce a reasonable
mechanism on how evacuees change their speeds and improve the stair evacuation
simulation are important.

Among the simulation models, the social force model and CA models are the
most popular. Social force model [1, 2] is a continuous model, which is good
at simulating the evacuation process in a room or a corridor. Several virtual
forces called “social forces”, which make the model reasonable to simulate human
behaviors, are introduced in the model. But social force model is computational
complex, and it is not appropriate for simulating stair evacuation because such
kind of evacuation is always large-scale. On the contrary, CA model [3–7] is a
discrete model, which is fit for both small-scale and large-scale evacuation [1, 8–
12]. But the transition rule, which decides how evacuees move, is defined based on
experience [2, 13, 14]. Furthermore, the existing CA simulation cannot reflect the
human behaviors well in stairs based on traditional grid and cell size [7, 15, 16].

To improve stair evacuation simulation, a new CA model is established in Sect. 2.
According to our previous work [17], a new simulation map is drawn according to
both human body size and stair structure. To make a mechanism to change evacuees’
speeds reasonably, the concept of social force will be introduced to the new CA
model based on the advantages of social force models. However, as mentioned
above, social force model is a continuous model and CA model is a discrete model.
There is a gap to use social forces directly into a discrete model, and the system time
interval is shortened to bridge the gap. Evacuees have variable speeds by updating
their positions during several intervals, and social forces, such as self-driven force
and push force, are used to change evacuees’ speeds.

To validate this simulation in Sect. 3, an experiment held in a high-rise building
was video recorded. In the experiment, 33 people evacuate from the 10th floor to the
lobby. A simulation is carried out based on the experiment. The simulation results
are similar to the fire drill data by comparing evacuation time.

2 Problem Formulation

A new CA model for stair egress simulation is established in this section. In
Sect. 2.1, to improve the basic structure of CA model, a size of the cell and a new
grid map are drawn based on the structure of stairs (tread and landing). Then the
neighborhood and transition rule are introduced in Sect. 2.2. As the grid map is
divided into six areas [17], the transition rule is defined separately on each area. In
Sect. 2.3, several social forces are introduced in the simulation model. There are two
kinds of social forces: self-driven force and push force.
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Fig. 1 The stair structure and the six areas of stair

2.1 Cell Size and Grid Map

CA model is a kind of discrete model where both the space and the time are discrete.
In the existing studies, the cell size is 0.4 [4] or 0.5 m [18] which is similar to the
cell size used in the corridor simulation. In our new model, the cell size is drawn
based on the stair structure and human body size. Given this, the cell size of the
tread area is the width of the shoulder the depth of the tread since one pedestrian
can only occupy a space on one tread. Landings (as is shown in Fig. 1) are connected
with treads, and the cell size of the landings is the width of the shoulder the width
of the shoulder. This cell size is larger than that on the tread because it is used to
simulate turning behaviors on landings. To connect the landings and the treads, the
joint cell size of the landing and tread is the width of the shoulder. Stair structure is
shown in Fig. 1a, and the corresponding cell space is shown in Fig. 1b. To distinguish
pedestrians of different directions, the stair on between two floors is divided into six
areas: Areas 1–6. The moving directions on these areas are also different, and the
directions are the same as it is shown in Fig. 1a.

2.2 Neighborhood and Transition Rules

Neighborhood cells are the environment around an evacuee, and the neighborhoods
on treads and landings are not the same in the model. When evacuees are going
downstairs, they will move forward, left ahead or right ahead (shown in Fig. 2a)
because evacuees can hardly move back, move to the left, or move to the right in
stairs. As a result, the neighborhood on the treads areas is the three cells in the front
of an evacuee which is shown in Fig. 2b. For landings, the neighborhood is the eight
cells around a pedestrian because he/she can move to any direction on a horizontal
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Fig. 2 Neighborhoods on treads and landings

place. This neighborhood is a typical Moore [12] neighborhood which is shown in
Fig. 2c.

The rule of pedestrian’s movement in the simulation is defined as transition rule,
and the transition rule determines the pedestrian’s moving directions and positions
in the next system time interval. As the stair on each floor is divided into six areas,
the transition rule of each area is defined separately to measure the probabilities
of the moving directions of pedestrians in the next time interval. Take Area 3 for
example, the destination of pedestrians in Area 3 is Area 4, and one pedestrian
has three directions to move: straight forward, left ahead and right ahead. If one of
pedestrian’s moving direction is blocked, the probability of which direction he/she
moves to will change. In the transition rule in Area 3,PF ; PL; PR, andPS represents
the probability of chosen the direction forward, left ahead,right ahead and stop,
respectively. As they are probabilities of one event, we havePFCPLCPRCPS D 1.
The transition probabilities of pedestrian movement are as follows:

PF D 1

3
; pL D 1

3
� w; PR D 1

3
C w; PS D 0I (1)

PF D 0; PL D 0; PR D 0; PS D 1I (2)

PF D 1

2
� 3w

2
; PL D 0; PR D 1

2
C 3w

2
; PS D 0I (3)

PF D 0; PL D 1

4
� 3w

4
; PR D 3

4
C 3w

4
; PS D 0I (4)

PF D 1

2
C 3w

2
; PL D 1

2
� 3w

2
; PR D 0; PS D 0I (5)

PF D 0; PL D 1; PR D 0; PS D 0I (6)

PF D 1; PL D 0; PR D 0; PS D 0I (7)

PF D 0; PL D 0; PR D 1; PS D 0: (8)
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In the new model, the tendency of walking along the inner of a stair is considered in
the transition rules. To simulate the tendency of walking, a parameter w is introduced
with 0 � w � 1=3. The transition rule on the landings is similar to the rule (Eqs. (1)–
(8)) on the tread.

2.3 Social Forces

The basic assumption of the social force model is that the interactions among
evacuees are determined by “social forces” which are not real forces, but such forces
will influence people’s movement. The social forces in the social force model [14]
are as follows:

mi

d�!� i
dt

D mi

�0i
�!e 0i .t/ � �!� i .t/

�i
C
X

j¤i
fij C

X

w

fiw; (9)

where mi and �!� i is the mass and velocity of pedestrian i,respectively. The desired
velocity value of pedestrian i is �0i , and the direction of this velocity at time t is�!e 0i .t/. The �i is a relaxation time of a pedestrian to achieve the desired velocity, and

it equals 0.5 s in the social force model. Social force
�!
f ij reflects the forces by other

pedestrians, and
�!
f iw represents the force by the wall. To introduce social forces

to change the speeds, variable speed is required in the new simulation model. The
simulation time interval is shortened, and the pedestrians can update their positions
(no more one cell) in several time intervals.

Two kinds of social forces, self-driven force and push force, will be introduced

to change the pedestrians’ speeds in the new simulation. Self-driven force
�!
f S is a

force driven by the inner desire, which is reflected by the concept “desired velocity”
or desired speed in the paper, to move to the exits as fast as possible. The force is
similar to the desired velocity mentioned in the original social force model:

�!
f S D mi

�!� d .t/ � �!� i .t/
�i

; (10)

where �!� d .t/ and �!� i .t/ is the desired speed and current speed of pedestrian i at
time t . Push forces are used to demonstrate the forces among evacuees, and such

forces including two kinds: forward push force
�!
f FP and backward push force

�!
f FP.

Forward push force is the force from the people in the back, and this force is related
to the speeds of a pedestrian i and a pedestrian j who is in the back of pedestrian i.

If j�!� i .t/j > j�!� j .t/j, �!
f FP D 0; otherwise,

�!
f FP is as follows:

�!
f FP D mi

�!� j .t/ � �!� i .t/
�i

; j�!� j .t/j � j�!� j .t/j; (11)
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where �!� i .t/ and �!� j .t/ is the speed of pedestrian i and pedestrian j , respectively.

On the contrary, the backward push force
�!
f BP is the force from the people in the

front, and this force is related to the speeds of a pedestrian i and a pedestrian j who

is in the front of pedestrian i . If j�j .t/j > j�!� i .t/j, �!
f BP D 0; otherwise,

�!
f BP is as

follows:

�!
f BP D mi

�!� j .t/ � �!� i .t/
�i

; j�j .t/j � j�!� i .t/j: (12)

Above all, the final social force equation is as follow:

13 mi
�!a i .t/ D �!

f S C �!
f FP C �!

f BP (13)

where ai .t/ is the acceleration of pedestrian i at time t , and the change of the speed
is ��i D ai t .

3 Validation and Simulation

To validate the simulation model, an experiment was held in a high-rise building,
and there are 33 people took part in the experiment. The participants are all
undergraduate students in Tsinghua University, and they all evacuated from the 10th
floor of the building. When the alarm sounded, they start to evacuate from their
rooms and all of them were told to use a specified stair in the building (a snapshot
of the evacuation process is shown in Fig. 3).

The simulation is carried out according to the experiment data. The width of an
evacuee’s shoulder is 0.5 m and the length of the tread in the building is 0.3 m. So

Fig. 3 A snapshot of
experiment process
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Fig. 4 Cumulative evacuees of experiment and simulation

the cell size on tread is 0:5 � 0:3m2 and the cell size of the landing is 0:5 � 0:5m2.
Parameter w equals 0.2 to demonstrate that people incline to evacuate along the
inner side of the stair. The desired speed (horizontal speed) of an evacuee is
0.85 m/s according to the free speed (tested in the building) of people in emergency
conditions. The simulation is run in Matlab 7.8.0 and tested on an Intel Core
i3 C 2.3 GHz Windows PC with 2 GB RAM. The simulation is run 20 times and
the average CPU time is 8.32 s. Then we use IBM SPSS Statistics 19 to analyze the
simulation data.

The evacuation times of the experiment data and the simulation results are shown
in Fig. 4. The experiment-in and experiment-out data mean the times of evacuees
entered in and exit out of the stair, so as to the simulation-in and simulation-out. The
time of simulation-in is also shown in Fig. 4. The evacuation time of the experiment
data is 153 s, and the result of simulation is 152 s, which is only 1 s smaller than the
experiment data.

The data used for linear regression is from 87 to 153 s because the first pedestrian
appears at 87 s and the last one evacuates out at 153 s. The linear regressions of the
experiment-out data and the simulation-out result are as follows:

Experiment � out W y D 0:505x � 44:140;R2 D 0:994; (14)

Simulation � out W y D 0:511x � 44:054;R2 D 0:993: (15)

The slope and intercept of the experiment and simulation are similar to each other.
Above all, the simulation results are similar to the experiment data according to the
total evacuation times and the linear regressions.
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Conclusion
This paper improves the stair evacuation simulation problem considering
social forces. In the new simulation model, basic structure of the CA model
is improved based on the structures of the stairs, and two kinds of social
forces are introduced to change evacuees’ speeds. The self-driven force is
used to demonstrate the people’s evacuation desire, and push forces are used
to show the interactions among evacuees. To validate the new simulation, an
experiment with 33 people is held in a high-rise building, and a simulation is
carried out based on the experiment. Compared with the experiment data, the
simulation results are accurate according to the evacuation time.

In the future, more experiments are required to validate the simulation from
the micro level, and optimization guidance should be studied based on the new
simulation.
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Simulation of Building Evacuation Considering
Information Flow

Yuan Gao, Tao Chen, Peter B. Luh, and Hui Zhang

Abstract Modeling and simulating building evacuation are effective to study hu-
man crowd and evaluate evacuation facilities. In most building evacuation models,
occupants are assumed to have static information on the layout of the building.
However, in reality occupants are able to obtain information from surroundings
(e.g., alarms, exit signs or movement of other occupants). The information changes
occupants’ decision-making and movement in turn. This paper considers infor-
mation flow during evacuation and combines the information flow model with a
modified social force model by updating the desired velocities of occupants. Inertia
is also added for occupants to maintain their desired direction so that oscillations
between different targets are reduced. Several cases are studied by simulation and
results show that the information significantly affects the evacuation process and
with the information model, the simulation is more realistic.

1 Introduction

Modeling and simulating building evacuation are effective for evaluating evacuation
facilities and analyzing risks during evacuation [11], because they cost significantly
less than experiments. Many evacuation models have been developed, including
network models [2], fluid dynamics models [6], route choice models [8], queuing
models [10], cellular automata (CA) models [9, 13], optimal velocity models [12],
and social force models [3–5]. In most of the existing models, occupants are
assumed to have static information on the layout of the building. However, in
reality occupants are able to obtain information from surroundings (e.g., alarms, exit
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signs or movements of other occupants), and the information changes occupants’
decision-making and movement. It is also reported that a lack of information may
increase individuals impatience, thus becoming the source of disorder and blocking
[1] during evacuation. The information plays an important role in evacuation and
occupants need to make decisions under different or even opposite information.
Studies on modeling information during evacuation include CA models which
described the communication between occupants using the ideas from chemotaxis
[9]: every occupant is information source that sends information to the space. The
information diffuses and evaporates following analogously to ant pheromones: other
occupants are attracted by it. Extensions were also made [7]: a framework of swarm
information models was developed which allows agents to have different views of
the world, so that agents can be modelled heterogeneous. Dynamic information in
the above models only affects occupants’ local movement, i.e., the probability to
move to the adjacent cells; and occupants may oscillate between different directions.
This paper builds an information model during evacuation. This information flow
model is also combined with modified social force models [3], in which desired
velocity reflects occupants way finding. Inertia is also added for occupants to
maintain their desired direction so that oscillations are reduced. Several cases are
studied by simulation and results show that information significantly affects the
evacuation process.

This paper is organized as follows: Sect. 2 provides an information model and
combines it with modified social force models [3], in which occupants obtain
dynamic information from their surroundings and update their movement by
changing their desired velocities; Sect. 3 are case studies. Evacuation from a large
room with two exits is studied. Occupants receive information from both exit signs
and other occupants. By comparing the results from models with and without
information, it is concluded that with the information model can describe individual
occupants more precisely and more realistic.

2 Modeling

This section provides a framework of information model in Sect. 2.1 and combines
it with the modified social force model in Sect. 2.2.

2.1 Framework of the Information Model

A general framework of the information model during evacuation is shown in Fig. 1.
An “information field” is introduced in the framework. The information field reflects
distribution of information in the space. Exit signs, alarms and occupants are all
information sources that send information into the space. Occupants may have
prior information of the layout of the building before evacuation, and they keep
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Fig. 1 The framework of the information model

on receiving information from the information field. Decisions on selecting ways to
evacuate are made based on the prior information, their current states (e.g., current
positions and velocities) and information they have obtained. The decisions change
the movement of occupants, which in turn serves as information sources.

Information is important during the evacuation. Properties of the information
include:

• Source (S). There are different types of information source, e.g., prior informa-
tion, exit signs, alarms, and other occupants. The information is divided into
groups indexed by s according to the source.

• Message (M). The information may lead occupants to a specified target (e.g.,
exit); or implicitly affect individuals movement, e.g., a lack of information
may increase individuals impatience, thus becoming the source of disorder and
blocking. This paper only discusses the former information, and the possible
target is indexed by m

• Intensity (I): It means the audibility or visibility of the information. Generally
the intensity depends on the distance from the information source. The further
away from the source, the smaller the intensity of the information (With P2P
communication such as by cell phone, the distribution of the intensity can
be different). The intensity determines whether occupants are able to receiver
the information: occupants may not be able to receive information with small
intensity.

Occupants keep on analyzing the information (both received and prior) to make
decisions. They have different confidence on information from different sources,
e.g., the confidence on the information from exit signs may be larger than that from
unfamiliar evacuees. In this model, weight values wki are assigned to information
i reflecting the confidence on it by occupant indexed by k. Occupants also tend to
maintain his target unless they find a much better alternative, so a special weight
value wkinertia is assigned to the direction to current target. This inertia reduces
occupants’ unrealistic hesitation between different target. The weight values on
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all possible targets determine the probability individuals select target m, as the
following equation shows:

Pk
m.t/ D

P
MiDm wki .t/I

k
i .t/

P
i wki .t/I

k
i .t/

(1)

Where the t is the time; Mi D m means information i (including inertia) leads
occupant k to target m; I ki .t/ is the intensity of information occupant k receives at
time t .

2.2 Combination with Social Force Models

The social force model is one of the well-accepted evacuation models. In this model,
occupants are driven by forces. Every individual has a desired velocity, and the
difference between his/her desired velocity and actual velocity leads to self-driven
forces driving him/her to achieve the desired velocity. The desired direction (i.e.,
the direction of the desired velocity) in the social force model points from the
individuals position to the selected exit. If occupants know none of exits, the desired
direction will be random initially. This paper combines the information model with
the modified social force model [3] by updating the desired velocity based on the
decision making process in Sect. 2.1.

3 Case Studies

In this section, two case studies are made with a simple scenario: 100 occupants,
initially uniformly distributed in a room with two exits (a main exit on the right and
an emergency exit on the left), start to evacuate at t D 0. The layout of the room is
shown in Fig. 2. For simplicity, it is assumed that occupants can receive information
from the information source, i.e., I ki .t/ D 1, if the distance to the information
source is less than 5 m; otherwise, occupants cannot obtain the information, i.e.,
I ki .t/ D 0. The weight values of the confidence,! on prior information, the inertial,
other occupants, and observation of exits are 10.0, 5.0, 1.0, 100.0, respectively.

In the first scenario, occupants have no prior information on the positions of
two exits. If there is no information model, most occupants will randomly walk to
find exits. With the information model, occupants are able to know exits from other
occupants. Simulation results with the information model are shown in Fig. 3. At
t D 0 (Fig. 3a), since occupants know neither exit, their initial desired directions
are randomly selected, as the arrows shown in the figure. After evacuation starts,
occupants within the circle see and move to the exits. These occupants serve as
information source that sends information into the space. Other occupants will
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Fig. 2 Layout of the room. The size of the room is 15 m by 35 m with one main exit on the right
and one emergency exit on the left. The radius of the green semi-circle is 5 m: occupants within
the circle are able to obtain the information of the exit signs

Fig. 3 Snapshots of simulation at tD 0, 3, 10 and 20 s. Nobody has prior information of exits
initially. At the beginning of the evacuation, the desired directions are randomly selected. The
information of the position of the exit keep on propagating throughout the whole room. This
example shows that occupants can obtain dynamic information which change their movement.
(a) t D 0 s. (b) t D 3 s. (c) t D 10 s. (d) t D 20 s

receive this information eventually and move to the selected exit (Fig. 3b–d). Note
that the inertia reduces the hesitation of occupants on selecting exits.

In the second scenario, occupants are only familiar with the main exit. If
there is no information model, occupants will use the familiar exit to evacuate.
Simulation results with the information model are presented in Fig. 4. The initial
desired directions all point to the main exit (Fig. 4a). As the information propagates,
occupants near the emergency exit may choose this nearer exit (Fig. 4b–d).
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Fig. 4 Snapshots of simulation at tD 0, 3, 10 and 20 s. All occupants only know the main exit
initially. (a) t D 0 s. (b) t D 3 s. (c) t D 10 s. (d) t D 20 s

Conclusion
This paper provides an information model to describe how occupants obtain
information and make decisions based on the information during evacuation.
Information provided in different ways have different level of confidence and
distribution of intensity. The information model is also combined with the
modified social force model by updating the desired directions of occupants.
Inertia is added to reduce occupants’ oscillation between different targets.
Simulation results show that with the information model, the modified social
force model achieves more realistic results.
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Effects of an Obstacle Position for Pedestrian
Evacuation: SF Model Approach

Takashi Matsuoka, Akiyasu Tomoeda, Mayuko Iwamoto, Kohta Suzuno,
and Daishin Ueyama

Abstract In order to study pedestrian dynamics, mathematical models play an
important role. It is well-known that a social force model exhibits clogging or
what is called the “faster-is-slower effect” (Helbing et al., Nature 407:487–490,
2000). Also, the authors in Frank and Dorso (Phys A 390:2135–2145, 2011) and
Kirchner et al. (Phys Rev E 67:056122, 2003) reported that an obstacle facilitates
and obstructs evacuation of pedestrians trying to get out of a room with an exit,
dependently on its position, size, and shape. In particular, as stated in Frank
and Dorso (Phys A 390:2135–2145, 2011), an obstacle has a strong influence
on pedestrians if it is put in a site shifted a little from the front of the exit.
However, it has not been shown where and how it is the most efficiency to set
up an obstacle. Thus we investigate the dynamics of pedestrians and clarify the
effect of a disk-shaped obstacle with various sizes placed in several positions via
numerical simulations for a social force model. Finally, we calculate a leaving time
of pedestrians for each size and position of an obstacle, and determine an “optimal
size” of an obstacle in the case that it is set up in a site shifted from the front of the
exit.

1 Introduction

A lot of mathematical models have been proposed in order to study pedestrian
dynamics. One of the most successful models is the “social force model”
(SF model) in [2]. Since pedestrians are thought of as particles in the
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model, the “faster-is-slower effect” is considered as a kind of self-organized
behaviors observed in granular media and has been attractive for many physicists.
Also, for design of egress for places of public assembly, it is a significant issue to
investigate pedestrian dynamics in facility and safety engineering [4].

In recent years, it was reported that placement of an obstacle may lead to
alleviation of the faster-is-slower effect [5]. Experiments in [5] show the following
two results: (i) The pedestrian outflow at a bottleneck decreases in evacuation
situation when the number of pedestrians moving to an exit of a room increases.
(ii) The outflow increases by putting the obstacle in front of an exit. These results
indicate that the faster-is-slower effect does occur in pedestrian dynamics and an
obstacle near an exit facilitate evacuation of pedestrians.

These experimental results described above were supported by theoretical
approaches in [1] and [3]. Based on a cellular automaton model (CA model), the
authors in [3] showed that the evacuation time is minimal if we shift the obstacle
one site from the front of the exit. Similarly, it was shown in [1] via a SF model that
if a panel-like or a pillar-like obstacle is placed symmetrically in front of an exit, the
evacuation times are smaller than without an obstacle.

In the previous works [1] and [3], strong assumptions are made on parameters
of an obstacle. The size of an obstacle is fixed in [3], and a position is chosen from
three kinds of places, symmetrically in front of the exit, shifted one site and two
sites. In [1], only two kinds of sizes and positions are considered at most. Then
we have simple questions: where and how large obstacle facilitates evacuation of
pedestrians the best. To answer these problems is our motivation in this article.

Since any CA model is completely discretized, we cannot change parameters
for the size and positions of an obstacle continuously. Therefore we apply a SF
model in this work, which is the same as in [2] (see Sect. 2). In order to investigate
the influence of an obstacle on a leaving time of pedestrians, the size and position
of an obstacle are varied in a wide range. As we show later, a leaving time tends to
drastically change in the case that we put an obstacle near an exit of a room. Then we
restrict the range of parameters corresponding to the size and position, and calculate
a leaving time. Finally, we clarify the size of an obstacle as an average leaving time
is shortest or longest.

This paper is organized as follows. In Sect. 2, we introduce a SF model and
explain the settings of numerical simulations. In Sect. 3, we show our results of
simulations. At first, we consider a wide range of positions of an obstacle. Then,
our result implies that a leaving time changes drastically only in the case that we
put an obstacle closely to an exit (Sect. 3.1). From this observation, we carry out
simulations in a restricted range of parameters and calculate a leaving time in each
size and position of an obstacle. Finally, we make two kinds of estimates of leaving
times in Sects. 3.2 and 3.3. In section “Conclusions”, we will give a conclusion.
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2 Social Force Model

Collective behavior of humans in escape panic situations is described in the frame
work of self-driven many particle systems, called social force model (see [2]) and
given by

m
dvi .t/

dt
D m

v0e0i .t/ � vi .t/
�

C
X

j.¤i /
fij C

X

W

fiW ; (1)

where vi is the velocity of the i -th pedestrian. We suppose that the shapes of all
pedestrians are disk, and their diameters are equal to 0:6m. All pedestrians move
with an identical desired velocity v0 in each simulation, where v0 is given between
1.0 and 5.0 m/s. All terms and parameters in (1) are assumed to be the same as given
in [2]. So we omit an explanation of the details of (1).

We implement (1) for 200 pedestrians trying to exit from a room with size 20 �
20 m and move toward the 1.0 m-wide exit of the room, which is almost the same
as in [1] and [2] (see Fig. 1). Each point in the room is given a two-dimensional
coordinate, denoted by .x; y/. The center of the exit is put at .x; y/ D .0; 0/, and
the wall which contains the exit is included in a line x D 0.

In order to clarify how an obstacle affects evacuation of pedestrians, we put an
obstacle inside the room and calculate a leaving time. In some simulations, it is
observed that pedestrians with small desired devote much time to leave the room,
and some of pedestrians stop the motion. Therefore the evacuation process ran until
the first 195 pedestrians left the room or the total time in a simulation achieves
300 s. Under this setting, the leaving times are calculated as shown in Table 1 when
no obstacle set up in the room, denoted by Tv0 for each v0, which shows the faster-
is-slower effect.

In this article, we assume that the obstacle has the disk shape, and its diameter,
denoted by L, is changed between 0:1 � 1:0m. Denote the position of the center
of the obstacle by .x0; y0/. Pedestrians are supposed to receive a force which is
similarly defined by fij in (1) from the obstacle as well as other pedestrians. In other
words, the obstacle is thought of as not a part of walls but one of pedestrians in
simulations. The minimal distance between the surface of the obstacle and the line

Fig. 1 (a) Pedestrians try to
exit from a room with size 20
� 20 m2 and move to the
1.0 m-wide exit of the room.
The center of the exit is
.0; 0/, and the x and
y-directions are defined as
shown in (a). The blue disk
represents an obstacle. (b)
Snapshot of the simulation
with an obstacle at t D 3:0

a b
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Table 1 Leaving time for each desired velocity v0. The leaving time at v0 D 2:0 is smaller than
at v0 D 5:0 (faster-is-slower effect). We denote the leaving time for each v0 by Tv0

v0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Tv0 190 140 133 139 150 160 176 182 185

x D 0 is supposed to be equal to or larger than the diameter of the particle because
fij and fiW can generate heavy forces on pedestrians, and then particles may not be
able to go through interspace. Hence we assume x0 �L=2 	 0:6.

At the beginning of our simulations, we first put an obstacle, and set 200 particles
in the room randomly as no particles overlap the obstacle. The initial velocities of all
pedestrians are identically 0. For the same position and size of the obstacle, and the
same desired velocity, we carry out the numerical simulations 10 times and obtain
an average leaving time from the results. Numerical calculations for (1) were done
by the fourth-order Runge-Kutta iterative scheme with a time step of 3:3 � 10�3 s.

3 Results

3.1 Calculation Area

Our purpose in this article is to clarify the influence of an obstacle on evacuation
of pedestrians. Intuitively, an obstacle is more likely to drastically change a leaving
time in the case that it is set near the exit. To check it, we assume that L D 1:0,
v0 D 5:0, 1:1 � x0 � 3:5, and 0 � y0 � 2:5, and calculation the leaving time for
each .x0; y0/. Each site in Fig. 2 is 0.1 m from neighboring sites.

The right figure in Fig. 2 shows how much the leaving time increases or decreases
in the case that the obstacle is put at each position. For example, the leaving time is
145.0 s at .x0; y0/ D .1:2; 0:0/, which is the shortest in the region 1:1 � x0 � 3:5

and 0 � y0 � 2:5, and we call the optimal position. Then the ratio of this leaving
time to T5:0 is calculated as 0:783, which is represented as the deepest red color in
Fig. 2. Similarly, the leaving time at .x0; y0/ D .1:5; 0:0/ is 281.935. This is the
longest time, and the ratio is 1.52, which is colored by the deepest blue.

The optimal position is contained in a region around the lower right. On the other
hand, colors near the upper left are relatively light, which means that the obstacle
separated from the exit does not have a strong influence on pedestrians. Therefore
we only consider the case that the obstacle is set near the exit, and obtain the optimal
position in each parameter in the next section.
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a b

Fig. 2 Leaving times for L D 1:0 and v0 D 5:0. (a) The position of an obstacle changes in the
area defined by 1:1 � x0 � 3:5 and 0 � y0 � 2:5 (corresponding to the Grey square in (a)).
The blue disk shows an obstacle set at the lower right of the area. Note that x0 � L=2 � 0:6.
(b) The Grey square in (a) is divided into a mesh shown in (b). The neighboring sites have 0:1m
distance. We calculate the leaving time for each site of .x0; y0/ and compute the ratio of it to T5:0.
The deepest red and blue color correspond to the ratios of 0.75 and 1.25. In the case that the ratio
is smaller than 0.75 or larger than 1.25, the site is also colored by the deepest red or blue

3.2 Optimal Position and Size

We compute leaving times for various desired velocities, the sizes and positions of
an obstacle. Then we obtain the optimal position for each desired velocity and the
size of an obstacle one by one. In the following, we assume that 1:0 � v0 � 5:0,
0:4 � L � 1:0, 0:6 � x0 � L=2 � 1:1, and 0 � y0 � 1. Note that the range of x0
should be changed for L because of the assumption x0 �L=2 	 0:6.

Our result is shown in Table 2, which means the optimal position for each v0 and
L, respectively. For L � 0:8, almost all the y-coordinates of the optimal positions
are close to 0:7 except for L D 0:4 and v0 D 3:0. This result seems to suggest
that y0 D 0:7 or the neighboring sites can be a optimal position. However, this
expectation is not entirely true. The graphs in Fig. 3 represent the v0-dependency
of the leaving time at the optimal position for each L. Obviously, each leaving
time for v0 D 4:5; 5:0 at L D 1:0 is the smallest in all L, respectively, while
it is the largest for v0 D 1:5; 2:0; 2:5. This result means that a relatively large
obstacle L D 1:0 is the most effective for evacuation of pedestrians with higher
desired velocities rather than small one while it has a small influence on pedestrians
with smaller desired velocity. Therefore we state that we cannot uniquely determine
such an optimal position and size of an obstacle as it is effective for all desired
velocity.
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Table 2 Optimal positions for various L and v0. We calculate the leaving times in a range 0:4 �
L � 1:0, 1:0 � v0 � 5:0, 0:6 � x0 � L=2 � 1:1 and 0 � y0 � 1:0. A site of .x0; y0/ has
0:05m distance from the neighboring sites. The optimal position for each L and v0 is shown as a
two-dimensional coordinate .x0; y0/

Lnv0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.4 (0.85,0.65) (1.05,0.7) (0.8,0.65) (0.8,0.75) (1.0,0) (0.8,0.65) (0.8,0.6) (0.85,0.4) (0.85,0.55)

0.5 (0.8,0.65) (0.8,0.7) (0.85,0.7) (1.05,0.7) (0.9,0.75) (0.95,0.7) (0.85,0.65) (0.85,0.65) (0.9,0.6)

0.6 (0.9,0.65) (0.85,0.7) (1.05,0.7) (1.0,0.7) (0.95,0.7) (0.9,0.7) (0.9,0.65) (0.95,0.65) (0.9,0.65)

0.7 (0.95,0.7) (0.9,0.7) (1.0,0.7) (0.95,0.7) (1.0,0.7) (1.0,0.65) (0.95,0.65) (1.0,0.6) (0.95,0.65)

0.8 (1.0,0.6) (0.95,0.7) (0.95,0.7) (0.9,0.7) (1.0,0.7) (1.0,0.75) (1.0,0.6) (1.0,0.65) (1.0,0.6)

0.9 (1.05,0.65) (1.0,0.7) (0.9,0.7) (0.85,0.7) (1.1,0.7) (1.2,0.05) (1.25,0.05) (1.2,0.05) (1.2,0)

1.0 (1.15,0.6) (1.1,0.65) (1.25,0.65) (1.1,0.65) (1.25,0.05) (1.3,0.05) (1.2,0) (1.2,0.1) (1.25,0)

1 2 3 4 5
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Fig. 3 Difference of leaving times with and without an obstacle. At each optimal position shown
in Table 2, we also calculated the leaving time. The graphs show the results that we subtracted it
from Tv0 for each L and v0. The difference of the leaving times is denoted by �T0

3.3 Optimal Size for an Average of Leaving Times

As described previously, it is difficult to uniquely determine such an appropriate
position and size of an obstacle that pedestrians with various desired velocities
evacuate from a room. Then, we first observe the optimal positions as shown in
Table 2 from a different viewpoint. Next, we focus on an area around a site shifted
from the front of the exit and calculate an average of the leaving times for the
optimal positions. Finally, we will determine the optimal size of an obstacle in the
area.

At first, we replace x0 into x0 � L=2 in Table 2. Then, counting the number of
the positions .x0 � L=2; y0/ for each 0:4 � L � 1:0 and 1:0 � v0 � 5:0 where the
optimal position for L and v0 is attained at .x0; y0/, we give a score to each position
.x0 �L=2; y0/ by the total number. For example, .x0 �L=2; y0/ D .0:7; 0:7/ is the
optimal position for .L; v0/ D .0:7; 2:5/; .0:8; 3:5/, from which the score at the site
corresponding to .0:7; 0:7/ is 2 (colored by light Grey in Fig. 4).
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a b

Fig. 4 (a) Concentration of the optimal positions in a region. For the optimal position .x0; y0/
shown in Table 2, we calculate .x0 � L=2; y0/ and count the number of it. The number of most
sites is less than 5, but only the sites at .x0 � L=2; y0/ D .0:6; 0:65/; .0:6; 0:7/ are 15; 18, which
are colored by black. The square surrounded by a dashed line is denoted by RegionR. (b) Position
of Regions R in the room for L D 1:0. The region R changes its position dependently on L. The
right figure (b) shows the position of R in the room as an example
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Fig. 5 Average leaving time TR in all sites of R and desired velocities. The graph shows the L-
dependency of the difference of TR and T

Our result is shown in Fig. 4, which implies that sites with high scores con-
centrate in a region surrounded by a dashed line. We denote this region by R,
shifted from the front (see (b) in Fig. 4). More precisely, R is defined by R D
f.x0; y0/ j 0:6 � x0 � L=2 � 0:75; 0:6 � y0 � 0:8g. Indeed, the total number of
parameter sets is 63 and the total score included in this region is 50, which implies
that almost 80% of the optimal positions is contained in R. Hence to set an obstacle
in R is the most effective in evacuation. Thus we focus on the region R.

We first calculate an average of the leaving times in all sites of R and all desired
velocities for each L. Denote the average time by TR. Similarly, we compute an
average of Tv0 for all v0 and denote it by T . Then we obtain the difference of TR
and T for each L, denoted by �TR. Figure 5 shows the L-dependency of �TR.
Obviously, �TR has a minimum at L D 0:6, which implies that the obstacle with
L D 0:6 is the most efficiency for evacuation of pedestrians with various desired
velocity. Therefore we conclude that the optimal size of a disk-shaped obstacle is
L D 0:6.
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Conclusions
The faster-is-slower effect can be observed in the pedestrians dynamics,
mainly in mathematical models [2] and [5]. As is well-known, the higher
desired velocity pedestrians have, the more slowly they evacuate under the
situation that the faster-is-slower effect occurs. In the previous works [1,3], it
was shown that an obstacle can alleviate this effect. However, it has not been
shown where and how it is the most efficient to set up an obstacle in a room
for pedestrians. Thus we investigate the dynamics of pedestrians and clarify
the effect of a disk-shaped obstacle with various sizes put in several positions
via numerical simulations for a social force model.

For each desired velocity, size and position of the obstacle, we calculated a
leaving time one by one. At first, we see that the optimal position drastically
changes dependently on the desired velocity and the size of an obstacle. In
addition, as far as we calculated, many optimal positions concentrate in an
area around a site shifted from the front of the exit, which corresponds to the
result reported in [1] although a cellular automaton model was applied in [1].
Then, instead of uniquely determining the optimal position and size of the
obstacle, we focus on an area around a site shifted from the front of the exit.
By calculating an average leaving time of all optimal positions in the area
and desired velocities for each size of the obstacle, the average leaving time
becomes the smallest when the diameter of the obstacle is 0:6m. Therefore
we conclude that the optimal size of the obstacle is 0:6m in evacuation of
pedestrians.

Acknowledgements T. Matsuoka would like to thank Meiji University Graduate School to
support him. He also thanks Professor K. Ikeda in Meiji University for valuable comments and
advice.
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Realistic Stride Length Adaptation
in the Optimal Steps Model

Isabella von Sivers and Gerta Köster

Abstract Pedestrians move freely in an open space by stepping forward. When
the navigational situation becomes difficult, say in a dense crowd, they adjust
their stride length and speed. The Optimal Steps Model uses local optimization
on a circle around a pedestrian to determine the next position. The target function
is a navigational field. Each individual’s stride length, that is, the circle radius
depends on his or her speed. This introduces a delay in adaptation, because all
speed measurements involve the past. A real person, however, is more likely to
react instantaneously. We model this effectively by optimizing on a disk instead of a
circle. The radius is chosen in accordance with the pedestrian’s free-flow velocity. A
two dimensional continuous optimization problem ensues that we solve efficiently
thus maintaining fast computational speed. Our simulations closely match real
walking behavior which we demonstrate for navigation around a column in a narrow
corridor and behavior at a bottleneck.

1 Introduction

Modeling pedestrian motion has become an integral part of methods to mitigate
risks for life and health in crowded situations. Therefore, accurate models of
human behavior and movement are needed. Most state-of-the-art models suffer
from undesirable artifacts: such as inaccuracies and oscillations in social force type
models [1, 6] or grid restrictions as in cellular automaton models [4, 10].

The Optimal Steps Model, introduced in [10] avoids both types of side effects. It
is inspired by the intuitive rules often used in cellular automaton models [5], but the
pedestrians are not restricted to a grid. The next position of a pedestrian is chosen on
a circle where the radius depends on the stride length of that pedestrian. The stride
length either depends on the pedestrian’s free-flow velocity or on the actual speed
[10]. The first approach does not adapt the stride length to the actual situation; the
latter introduces a delay in adaptation because the speed can only be measured in
the past.
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A real person is more likely to reduce his or her normal step length immediately
when there is no room to move or navigation is difficult. This can be modeled
effectively if the next pedestrian position is determined on a disk instead of a circle.
The impact of this seemingly small extension of the Optimal Steps Model is strong:
The virtual pedestrians move in a significantly more realistic way.

The paper is structured as follows: Sect. 2 gives a short introduction to the
Optimal Steps Model. In Sect. 3 we formulate the search for the next position of
the pedestrian’s foot as a two-dimensional optimization problem. We also present
its numerical solution. Section 4 shows how the new stride length adaptation leads to
more realistic pedestrian movement. Section “Conclusion” summarizes the results
and gives an outlook on further work.

2 The Optimal Steps Model

In the Optimal Steps Model [10], virtual pedestrians navigate along a floor field.
The field is constructed by superposing scalar fields that represent the orientation
towards a target, the need for personal space between pedestrians and, finally, the
avoidance of obstacles. We interpret the navigational field as a utility function.
Pedestrians seek the most advantageous position in their reach.

A wave front propagating from the target (see Fig. 1) as introduced in [2, 13]
expresses the target orientation. Let ˝ � R

2 be the area of the scenario with
boundary @˝ and let � � @˝ be the boundary of the target. The arrival time
˚ W ˝ ! R of a wave front starting from � is given by the solution of the eikonal
equation (1) with traveling speed F W ˝ ! RC. We set F 
 1 outside obstacles so
that the wave propagates uniformly. With that assumption, a pedestrian navigating

Fig. 1 Wave front
propagating from the target
(small orange rectangle, on
the right)
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Fig. 2 The ‘pedestrian avoidance’ and the ‘obstacle avoidance’ in the Optimal Steps Model

along the floor field defined by ˚ takes the shortest path to the target. The eikonal
equation with boundary conditions is given by

F.x/kr˚.x/k D 1 for x 2 ˝ (1)

˚.x/ D 0 for x 2 �: (2)

Sethian’s fast marching algorithm [11,12] efficiently solves the eikonal equation
on a grid. We use a bilinear interpolation between grid points [2, 10] to define the
utility function Pt.x/ for target orientation for every point x 2 ˝ . The floor field
also contains utility functions for pedestrian avoidance and obstacle avoidance [10].

‘Pedestrian avoidance’ (see Fig. 2) stands for the need for personal space between
persons. It is modeled through ‘punishing’ functions carried around by each
pedestrian:

P j
p .x/ WD

8
<

:

�p if ıjp.x/ � gp;

�p � exp Œ�ap � ıjp.x/bp � if gp < ı
j
p.x/ � gp C hp;

0 else:
(3)

P
j
p .x/ depends on the Euclidean distance ıjp.x/ between the center of pedestrian
j and position x; gp is the torso diameter of the pedestrian. Here it is chosen
identical for all pedestrians. We prevent pedestrians from overlapping by setting
the avoidance value �p to an extremely high value. We cut off outside a radius of
influence gp C hp. The strength of the avoidance, that is, the need for personal
space of a pedestrian, can be regulated by the parameters �p; ap and bp. Obstacle
avoidance is formulated in an analogous fashion to pedestrian avoidance [10].
Superposition of the target orientation, pedestrian avoidance and obstacle avoidance
gives the navigational field Pi.x/ for pedestrian i for any point x 2 ˝ [10].

Pi.x/ D Pt .x/C
nX

jD1;j¤i
P j
p .x/C

mX

kD1
P k
o .x/; (4)
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3 Optimization Problem

Navigation in the Optimal Steps Model depends on a balance of conflicting
goals: reaching the target, avoiding fellow pedestrians and avoiding obstacles.
Superimposing the functions associated with these goals means to interpret the floor
field, or rather its negative, as an utility function. Function �Pi measures the degree
of the attraction for pedestrian i .

Following this idea, each virtual pedestrian seeks the position with the lowest
value of P within his or her reach. In the original model formulation [10],
the reachable area is a circle of radius r around the pedestrian that represents
the individual’s stride length. Finding the next position is an one-dimensional
minimization problem on the circle. The pedestrian just moves if, and only if,
the minimum value on the circle is lower than the one at the actual position.
This algorithm significantly improved on former models [10] but left unsolved the
problem of immediate stride adaptation to the navigational situation.

We propose to search the next position on a disc [14] with radius r so that
the maximum stride length corresponds to the correct length for the pedestrian’s
free-flow velocity. A two-dimensional optimization problem with one inequality
constraint ensues:

min
x2˝ Pi .x/

s.t. ıip.x/ � r � 0 :
(5)

With our choice of the floor field, the objective function Pi (4) is nonlinear, non-
differentiable and discontinuous. Hence, we can’t use optimization algorithms that
need the derivatives of the objective function. We implemented three of the most
common methods that are suitable to solve such a problem: a direct search on a grid,
a basic evolution strategy and the Nelder-Mead simplex algorithm [9] and compare
the error and the computational speed.

In our experiments, we require a maximum error in position of 10�2, that is, a
distance of 1 cm between the numerical approximation to the minimum and the true
minimum. The direct search and the evolution strategy need significantly more eval-
uations of the objective functions than the Nelder-Mead simplex algorithm before
they satisfy our error bound (see Fig. 3). We observe this behavior consistently in
our experiments [14]. Thus, we choose the Nelder-Mead simplex as default method
in our experiments.
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Fig. 3 Number of function evaluations necessary to reach a maximum error of 1 cm in an example
scenario with the Himmelblau function [3] as floor field: direct search on a grid, evolution strategy
and Nelder-Mead. The thin (red) horizontal line indicates the error bound

4 Results

In this section we compare the performance of the two step types in the Optimal
Steps Model, the optimization on the circle as presented in the original model [10]
and the optimization on the disk proposed here [14]. For this, we look at a column
in a narrow corridor that needs to be skirted. Then we show how immediate stride
length adaptation results in a realistic movement of pedestrians at a bottleneck.

In the first scenario a column is placed in the middle of a corridor. The opening
between the column and the wall is so small that only one pedestrian can walk
through it at the same time. This scenario is inspired by an experiment in [8], where
the column was represented by a person and the trajectories form an ‘eye’ around
the person.

Figure 4 shows the trajectories of ten single pedestrians with the two different
step types. The pedestrians start one after another so that they have no effect on each
other. When we use optimization on a circle, the step lengths remain unnaturally
big near the column and coarse in front of it (Fig. 4a). The trajectories for the
optimization on a disc are smoother. When necessary, the pedestrian make small
adjusting steps while squeezing through the opening (Fig. 4b). The latter is, in our
opinion, how people move in reality.

When ten pedestrians start at the same time, they get in each others way. See
Fig. 5. Again, the behavior of the Optimal Steps Model with fixed and adaptive
stride length is compared. With a fixed stride length virtual pedestrians sometimes
get stuck for a while in front of the narrowing (Fig. 5a). The floor field in the area
between the pillar and the wall forms a narrow valley. The optimization algorithm
has to find the intersection of the valley ground with the circle line. This search may
fail unless the grid is extremely fine or the algorithm. Seitz and Köster [10] restart
the algorithm while disturbing the grid with each search which results in a solution
after few attempts. Thus the pedestrian is not held up for long. Nevertheless, stalling
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Fig. 4 Navigation around a column: Trajectories for ten single pedestrians walking from left to
right. The opening between the wall and the pillar is exactly the torso diameter. (a) Optimization
on the circle. (b) Optimization on the disk

Fig. 5 Navigation around a column for a small crowd: 10 Pedestrians start all at the same time
walking from left to right. The opening between the wall and the pillar is equal to the torso
diameter. (a) Optimization on the circle: pedestrians get stuck for a while in front of the pillar
(red rectangles) because of the small opening. (b) Optimization on the disk: pedestrians make
smaller, sometimes evasive steps (red rectangles) to navigate in crowded and difficult situations
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Fig. 6 Simulation with the Optimal Steps Model with the optimization on the disk. One hundred
and eighty pedestrians walk from left to the target on the right through a smaller corridor of width
1:2m

in front of the opening looks unnatural. We think that real pedestrians make evasive
steps in dense crowds to achieve more personal space and short navigational steps
while rounding the pillar. See Fig. 5b. That is exactly what the optimization on the
disk yields.

The second scenario is inspired by an experiment by [7]. One hundred and eighty
pedestrians start in a room and walk through a bottleneck of width 1:2m to the target
on the right. We expect to see an increase of density in front of the bottleneck which
is impossible to map with a cellular automaton model. Figure 6 is a screen shot of a
simulation with the Optimal Steps Model with immediate stride length adaptation.
We observe a concentration in front of the opening and a loser spacing on the fringe
of the crowd Fig. 6. Our virtual pedestrians are able to make smaller steps when a
situation becomes tight. Thus, they move closer together in front of the narrowing
which, in our opinion, matches reality.

Conclusion
In this paper, we showed how a simple extension of the Optimal Steps Model
leads to more realistic behavior in the simulation of pedestrian motion. In
the original formulation of the Optimal Steps Model [10] pedestrians move
forward like real humans, stepping freely in continuous space. This was
achieved by optimizing the next position on a circle around the pedestrian.
We proposed to optimize on a disk instead. With that, pedestrians are now
able to adjust their stride length and speed depending on the navigational
situation. The two-dimensional optimization problem was solved efficiently
with the Nelder-Mead simplex algorithm. We saw in our simulation results
that locomotion of the has become even more realistic matching human
locomotion very well. We will use this as a basis for our further work, the
integration of sociological and psychological aspects of human behavior into
models of pedestrian motion.
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A Discrete Spheropolygon Model for Calculation
of Stress in Crowd Dynamics

Fernando Alonso-Marroquín, Jonathan Busch, Álvaro Ramírez-Gómez,
and Celia Lozano

Abstract Several models have been presented to evaluate flow rates in pedestrian
dynamics, yet very few focus on the calculation of the stress experienced by
pedestrians under high density. With this aim, a pedestrian dynamics model is
implemented to calculate the stress developed under crowd conditions. The model
is based on an extension of a granular dynamics model to account contact forces,
ground reaction forces and torques in the pedestrians. Contact stiffness is obtained
from biomedical journal articles, and coefficient of restitution is obtained by direct
observations of energy loss in collisions. Existing rotational equations of motion are
modified to incorporate a rotational viscous component, which allows pedestrians
to come to a comfortable stop after a collision rather than rotating indefinitely. The
shape of the pedestrian is obtained from a bird’s eye, cross sectional view of the
human chest cavity and arms, which was edited to produce an enclosed shape. This
shape is them approximated by a spheropolygon, which is a mathematical object
that allows real-time simulation of complex-shape particles. The proposed method
provides real benefits to the accuracy on particle shape representation, and rotational
dynamics of pedestrians at micro-simulation level. It provides a new tool to calculate
the risk of injuries and asphyxiation when people are trapped in dense crowds that
lead to development of high pressure.

1 Introduction

Since its inception in the 1950s [1], numerous methods have been developed to best
describe pedestrian behavior, including the Social Force Model, cellular automaton,
as well as fluid and gas representations. The study of pedestrian panic, however,
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began later in the 1990s in response to many of history’s horrific crowd stampedes
[2]. Typically pedestrian panic events occur in crowds with high density, at points
where flows of people conflict with one another, or at doorways and corridors
where the flow is constrained. Despite improvements in crowd management, 2,000
deaths annually occur in incidents owing to crowding. Hsieh et al. study considered
215 reports on stampedes occurred at sporting, musical, political and religious [3].
It was found that panic events at religious events were the most severe, with an
average of 12 fatalities per stampede. Fewer fatalities are reported in political, sport
and musical events, which produce 6, 5 and 3 deaths per stampede. The Muslim
pilgrimage to Mecca (also known as the ‘Hajj’), is a site with a long history of
deaths due to stampedes resulting from panic events. Over the past three decades,
nearly 3,000 people have been killed in stampedes during the Hajj; the one in 2006
causing at least 345 fatalities [4].

The numerical study of pedestrian panic has arisen because traditional methods
did not attempt to describe the collision or interaction forces between pedestrians.
Pedestrian panic models can quantify the interaction forces and stress distributions
as pedestrians come into contact with one another. The model proposed in this paper
is based on a Discrete Element Model (DEM) developed for granular materials. This
approach takes advantage of the computationally efficient and accurate calculation
of the interaction forces provided by the well-developed study of granular material.
The computer simulations in this model will be based on a complex-shapes particle
method, which use spheropolygons instead of rigid discs as discrete elements. This
allows for a more accurate pedestrian shape that reflects the morphology of the
human chest. The behavior of pedestrians in this model will be governed by a
modified form of the DEM which will include a driven force, collision forces,
rotational equations of motion, as well as friction and viscous forces.

2 State-of-the-Art of Pedestrian Dynamic Modeling

Pedestrian dynamic modeling simulations have been developed since the pioneer
work of Helbing who have been responsible for numerous advances in the field
from the mid to end 1990s until now [4–8]. During this time, the key challenge in
the pedestrian dynamic modeling has been to achieve rules that guide how the agents
considered particles in many cases interact with each other in a way that faithfully
reproduces behaviors commonly observed in reality. Earliest studies suggested that
motion of pedestrians can be described as if they would be subject to the so-called
social forces [5]. These forces would not be directly exerted by the pedestrians’
personal environment, but they would be a measure for the internal motivations of
the agents to perform movements. The social force model of Helbing and Molnar
[5] is one of the best known approaches to simulate pedestrian motion, a collective
phenomenon with nonlinear dynamics. The social force model considers that the
Newtonian laws of motion mostly carry over to pedestrian motion. Therefore,
human trajectories can be computed solving a set of ordinary differential equations
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for position and velocity. Earliest studies of evacuation [9,10] were based on a lattice
gas model of pedestrian flows. Many observations of the dynamics of pedestrian
crowds have been successfully described by simple many-particle models. Xia
et al. [11] developed a macroscopic model for pedestrian flow using the dynamic
continuum modeling approach. Chraibi et al. [12] introduced a spatially continuous
force-based model for simulating pedestrian dynamics, Guy et al. [13] proposed
a simple and intuitive formulation based on biomechanical measurements and the
principle of least effort. Baglietto and Parisi [14] presented an off-lattice automaton
for modeling pedestrian dynamics. Here, pedestrians are represented by disks. The
more recent model of Alonso-Marroquín et al. [15] accounts for particle shape using
spheropolygons and calculate the full visco-elastic forces.

3 Methodology

The proposed model is based on a modified DEM model that reflects the properties
of pedestrians in dense crowds. The so-called spheropolygons are used to represent
particles. A spheropolygon is the object generated by sweeping a disk along
a polygon [16]; contact forces between spheropolygons are calculated from the
vertex-edge distance between their polygons [17]. By including ground-reaction
forces and torques, one can simulate dynamics of pedestrian using spheropolygons
[15]. These studies represent granular flow in two dimensions, which is convenient
to adapt to pedestrians, whose interactions with obstacles and other agents can
generally be simplified to two dimensions.

In adapting granular force to pedestrians, the typical gravity force was taken to
be analogous to the pedestrian driven force which is a subset of the social forces
proposed by Helbing [18]. The agents’ desired speed is equivalent to the terminal
velocity of particle immersed in a viscous fluid. The cross-section of a pedestrian
was derived using an image of a cross section of human thorax and arms. The
image was scaled to reflect typical sternum width, and simplified into a closed curve
which is then approximated by a spheropolygon, see Fig. 1. The interaction includes
contact forces, and self-driven forces, and torques accounting shoulder rotation. A
visco-elastic force analogous to the granular force is applied at each physical contact
between pedestrians. This force consists of an elastic spring and a damper that
accounts restitution after collision [15]; The self-driven force accounts the desired
walking speed in a direction chosen by the pedestrian. The motive torque is used by
the agent to rotate from their current to their desired orientation was derived using
methods proposed by Korohonen et al. [19] and Langston et al. [20]:

T D �I

�2
Œ1 � exp.� v

v0
/�.
 � 
D/� I

�
! (1)
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Fig. 1 (a) Boundary of the cross-section chest derived from US National Library Image of Thorax;
and (b) representation of the thorax shape using a spheropolygon with 18 vertices and a sphero-
radius of 0.05 m. (c) Time lapse snapshots of the pedestrian displacement of reorientation. The
color bar encodes velocity [m/s] the frame rate is 0.25 s

Table 1 Summary of the model parameters and agent properties

Parameter Name Value Obtained from

kn Normal stiffness 105 N/m Force-displacement relation

� Agent density 103 kg/m2 Average mass divided by average area

� Reaction time 0:5 s Time required to reach the desired speed

� Coefficient of friction 0:4 Tables of friction between clothes

� Coefficient of restitution 0:3 Observations of energy loss after collisions

� Torsion stiffness 25 Comparison of simulation with video footage

The first term is the ground reaction torque that was considered to arise solely
from the pedestrian’s desire to face toward their preferred destination. 
 is the
orientation of the pedestrian and 
D is the angle to the walking direction. � is the
relaxation time of rotation, and I is the moment of inertia. In Eq. 1, the constant
� is a dimensionless constant that is derived by comparison of simulations with
real pedestrian rotation. The exponential factor is used to account for lower motive
torque at lower speeds. This is a reflection of higher rotation observed in pedestrians
at lower velocities. In this factor, we include the pedestrian speed v and the terminal
speed v0. The second term in Eq. 1 allows the pedestrian to reach their desired
angular velocity. As pedestrians prefers not to rotate, the desired angular velocity
was set to zero. As a consequence, the pedestrian comes to a comfortable stop after
a collision rather than continuing to rotate.

The parameters of the contact force model were chosen as follows, see Table 1:
the thorax responses to forces are taken from medical data on thorax deformation
[21]; the coefficient of friction� D 0:4 is close to the coefficient of friction between
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pieces of cloth fabric. Since little information is available regarding the coefficient of
restitution between pedestrians, we performed observations of pedestrian collisions
and obtained coefficients of restitution within the range 0.1–0.5. The parameters
of the torque were obtained from video footage observation, as explained in the
Table 1. For the simulation presented here, each pedestrian has an initial acceleration
of 1 m/s2 and a terminal velocity if v0 D 2m/s.

The in-house object-oriented computer program SPOLY was used to conduct the
simulations. SPOLY simulates the pedestrian dynamics based on spheropolygons
and a five-order predictor-corrector numerical integration. The use of a neighbor
table and Verlet distances allows real-time simulation with up to 400 pedestrians.
For large-scale simulations with around ten thousands pedestrians the algorithm
executes around 1 min of simulations per hour. Details relating to the SPOLY code
are found in [16, 17, 22].

4 Results

On the first test, we present the movement of a single pedestrian, as shown in the
Fig. 1. Initially, the pedestrian is facing west and its desired direction of motion
is towards the center of the exit to a hallway. Initially, the pedestrian rotates their
shoulders parallel to its desired direction of motion. Then, the pedestrian accelerates
until it reaches its desired speed. When the agent enters the hallways region, the
pedestrian turns to east. Here we notice a slight deceleration, as the desired direction
is not smooth at the exit. The deviation was not significant relative to forces observed
under panic conditions.

Using these results, we simulate the evacuation of a room, and calculate the
severity of the contact forces acting on the pedestrians during the process. A total of
500 agents were used in simulations. The room’s dimensions were set to 20 � 24m,
with the exit width varying between 1 and 3m. All widths lead to a bottleneck
forming. As expected, the flow rate increases as the width is increased. When the
exit is 1 m width, the system clogs due to interlocking between chest and arm
arrangements. Interestingly, this clogging seems to be stable to small perturbations
such as slightly shaking of the pedestrians. In reality, we expect the pedestrians
will be able to break that arch that is formed on the exit, but breaking is not an
instantaneous process, and stresses due to contact forces will persist over minutes
during evacuation. The contact forces create an intricate network as shown in Fig. 2.
Each link in this network is constructed by connecting the center of mass of the
pedestrian with the contact point; the thickness of the width encodes the magnitude
of the contact force. We separate the contact forces into severe F > 400 N , mild
40 N < F < 400 N , and low F < 40 N . Severe forces are observed in all
simulations. Intuitively, large forces remain for short time in wide corridors, while
they are long-lasting in small ones. These long-lasting severe forces are more likely
to produce injuries by asphyxiation, especially besides walls and near to the exits.
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Fig. 2 Snapshot of crowd configuration after 1 min of evacuation of a room. The width of the exit
is 1, 2, 2.5 and 3 m. The lines encode the magnitude of contact forces that are classified as severe
(red) mild (yellow) and low (green). The color of the pedestrians encodes their speed

Fig. 3 Snapshots of the simulation of the circling of the Kaaba in the Muslin Hajj peregrination.
Besides the rectangular box (Kaaba) lies the semi-circular wall (Hatim). The arrows represent the
velocity of pedestrians. The snapshots are taken after 5 and 10 min

Understanding how the contact network evolves in pedestrian dynamics is a key
factor for calculating probability of injuries in crowd.

The final simulation prepared was the circling of the Kaaba in the muslin Hajj
pilgrimage to Mecca, Saudi Arabia. This is the largest mass gathering in the world.
The Kaaba is a cube shaped building that act as the direction of muslin prayer. In the
Grand Mosque, the pilgrims circle seven times counterclockwise. In the preliminary
simulation of this event, we represent both the Kaaba and the Hatim (the semi-
circular wall besides the Kaaba) by fixed spheropolygons, see Fig. 3. A total of
6,800 pilgrims were distributed around the Kaaba. The desired direction of motion
of a pedestrian is given by the vector e D k � r � 0:1r; where r connects the
center of the Kaaba to the center of mass of the pedestrian, and k is a unit vector
perpendicular to the floor, pointing upwards. The first component of this equation
accounts for the circulation of the pilgrim; and the second one accounts for the
tendency to get approach the Kaaba.
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Figure 3 shows two snapshots at an early and advanced stage of simulation. The
spiral-like pattern results from the combined rotation and attraction of the pilgrims
around the Kaaba. Note that the Hatim acts an obstacle that keeps the pilgrims away
from the Kaaba. After few minutes, the simulation reach a stationary stage as shown
in Fig. 3b. The Hatim helps to create ordered lanes where the pedestrian are in a
comfortable contact with each other. These lanes break down spontaneously after a
certain point, leading to a less dense configuration where the pedestrian are almost in
no contact. The stresses developed in the circling of the Kaaba are quite low (below
F D 40 N ), which indicate low probability of injuries under this ritual, which is
consistent with the lower levels of injuries observed in this ritual. It is expected that
major risks of fatalities are likely in the corridor and hallways used by the pilgrims
to complete the whole Hajj ritual, and should be investigated in future research.

Conclusions
The extension of the discrete spheropolygon method to simulate pedestrian
dynamics provided an improved model in terms of the rotational motion,
pedestrian shape, and interaction via contact forces. The rotational equations
of motion produced behavior that is consistent with pedestrian rotation.
Contact parameters yielded a typical collision with a low coefficient of
restitution which was indicated by research, and the shape improvements
allowed for a more accurate description of the packing arrangements of
panic disasters. The main difficulties with implementing the model were the
inherent limitations from using a granular model with insufficient capacity
to capture route choice behavior. These restrictions did not, however, obscure
the benefits of the proposed improvements to simulate escape dynamics under
panic situations. With this aim, we are calling for real case scenarios of
crowd dynamics to be simulated with our in-house software, SPOLY. We
have capabilities to model real geometry based on scale plans. Besides,
complex behavioral rules of the pedestrian can be introduced via ground
reaction torques and forces. In addition, more customized pedestrians could be
modeled including those that deviate from the crowd’s speed to determine the
behavior of a more complex crowd. Finally, a more general implementation
of the crowd dynamic could be included to increase pedestrian avoidance at
low speeds so that behavior is more streamlined and efficient. The field of
pedestrian dynamics still has many opportunities for advances in the ever on-
going pursuit of accurate modeling methods that inform safe design practices
and describes crowd behavior.

Acknowledgements We thank the input Mustafa El Cherkawi in the modelling of Hajj’s
peregrination, and the discussion with Chraibi Mohcine and Daniel Parisi.
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Pedestrian Behavior Analysis in Crowds
Using Image-Based Methods

Saira Saleem Pathan and Klaus Richter

Abstract In this paper, we aim to investigate the image-based approaches and
propose a framework to examine the pedestrian flow in crowds on various real
situations. This research is inclined on two main aspects: first, an in-depth analysis
of image-based approaches is given particularly for the situation containing large
number of pedestrians (i.e., crowds) and second, our proposed approach which
mainly focuses on computing the flow data, modeling, and classifying the cor-
responding behaviors of pedestrians in a crowd. The dynamic data of underlying
crowd scenes establish a large cloud of information (i.e., correlated or un-correlated
data). Therefore, it is essential to extract the meaningful information from the
data cloud however the selection of criteria is a crucial task which is answered
in the first part of the paper. Moreover, in crowded scenes, it is challenging to
extract individual characteristics (e.g., head, torso, or leg count) of every pedestrian
forming the crowd. Because, the pedestrians do not own these characteristics while
moving in the form of groups. Therefore, we can not rely on such individual
information of every pedestrian for longer time instances. Based on this fact, in
this research, we measure the dynamic contents over consecutive frames. After this,
we model this information by computing the Histogram of Flow (HOF) for each
time instance. Later, we classify these HOF features according to our behavior-
specific classes. We have tested the proposed approach on the dataset recorded with
the help of approximately 30 volunteers. In the context of pedestrian behaviors
characterization, we have employed Support Vector Machines on our recorded
dataset and achieved 91 % classification rate.

1 Crowd Behavior Analysis in Computer Vision

In crowded scenes, behavior understanding of pedestrians is an emerging research
domain in computer vision. The process of pedestrians behavior detection includes
basic components of image processing, such as motion analysis, feature extraction
and classification of behaviors (e.g., normal, abnormal, running, and dispersion) at
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individual and collective level. However, research in pedestrians behavior analysis
itself poses significant challenges due to the inherent self-governing movement
of pedestrians in crowds. In literature, robust automated surveillance systems for
crowded situations are almost non-existent when taking a quick glance over the
literature and industrial applications [1]. In this paper, we provide a detailed analysis
of recent research in computer vision for pedestrians behavior analysis in crowds.
We have categorized the research of pedestrians behavior understanding in crowded
scenes based on the methodology that each work has used to solve this task.
Afterwards, the proposed approach is described which is based on simple but yet
practical solution to the problem of pedestrians behavior analysis.

1.1 Behavior Analysis with Individual Detection

Motivated with pedestrian-specific recognition of events in non-crowded scenes, the
aim of these approaches is to detect activities of pedestrians in crowds. For instance,
a model-based segmentation scheme is suggested to localize the pedestrians in
crowded scenes by Zhao et al. [2] in a Bayesian framework. With similar goal,
a global annealing optimization framework is proposed by Tu et al. [3] using the
clustering of interest points based on their (i.e., among) geometric associations
to segment the pedestrians in crowds. Also, Brostow et al. [4] proposed an
unsupervised Bayesian clustering framework for grouping the trajectories of moving
entities based on their space-proximity. Stalder et al. [5] proposed an adaptive grid-
based classifier for pedestrians detection in crowds based on the local context. In
their approach, different classifiers are trained incorporating various contexts over
time, such as scene specific samples from the background, and object class.

1.1.1 Discussion

The main drawback of these methods is that they tend to be impractical in dense
crowded scenes because of their inherent limitation when the pedestrians are moving
with free style dynamics resulting severe occlusions. Moreover, the computed
features, such as interest points, localized heads, and specific human classifiers
become unreliable. To overcome this shortcoming, we argue that detection of
pedestrian is not crucial; instead modeling the crowd at a global level is more
practical in the dense crowd where pedestrians possessing the complex interactions.

1.2 Behavior Analysis with Trajectory Modeling

Over years, tracking algorithms are focused to perform surveillance on non-crowded
scenes. Surprisingly, little work has been reported in exploiting high level cues
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for human detection, tracking, and behavior analysis for crowded situations. For
instance, Antonini et al. [6] proposed a method for detecting and tracking pedestrian
behavioral patterns using discrete choice models for crowded scenes. Rodriguez
et al. [7] proposed a framework for tracking pedestrians in unstructured crowded
scenes by employing the Correlated Topic Model. With similar motivation, Wu
et al. [8], proposed a framework for tracking and modeling the trajectories to localize
the anomalies in crowds with a three layers framework: (1) particles are advected,
(2) grouping of similar trajectories to extract the chaotic dynamics, and (3) these
chaotic features are learned by probabilistic model, and a maximum likelihood
estimation criterion is adopted to classify the scene behavior state.

1.2.1 Discussion

The individuals in crowds are highly anticipated, and it is difficult to determine
the low level features (i.e., color, spatial templates, interest points, contours, etc.)
owned by the specific pedestrian. Moreover, due to the complex interaction of
pedestrians in the crowds, severe occlusions are observed frequently; therefore,
tracking over longer time durations is difficult. Moreover, the resulting track of
pedestrians (i.e., trajectories) are highly inconsistent and unable to discriminate
between usual and unusual events. Therefore, we contend that the tracking-based
models may disregard the important correlation between pedestrian within close
proximity and is impractical to handle a wide range of situations under flexible
assumptions.

1.3 Behavior Analysis with Modeling Crowd Flow

In earlier attempts, Boghossian et al. [9] proposed a technique to model the
pedestrian dynamics such as circular flow paths or emerging and diverging points
of the scene using hough voting. Later, Andrade et al. [10] employed optical flow
and used generative model (i.e., ergodic HMM) at a global level for normal motion
patterns of pedestrians where the anomaly is treated as outliers. With a different
perspective, Kratz et al. [11] model the statistics of spatio-temporal gradients (i.e.,
cuboids) with coupled HMM to characterize the behaviors in dense crowds. Taking
inspirations from pedestrian behavioral modeling, Mehran et al. [12] suggested a
social force model with the optical flow based particle advection technique and
simulate the normal social forces of particles implicitly to detect the deviations
from pre-trained parameters. Further, these particle forces are modeled for normal
behaviors where bag of words approach is employed to classify the normal and
abnormal characteristic of crowd. In their later work by Wu et al. [8], trajectories of
advected particles are modeled to localize the abnormality. However, the resulting
tracks on the test dataset are highly inconsistent as it is difficult to determine the
pedestrian at the pixel level and their associations in next frames. Albio et al. [13]
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measure the optical flow at corner points and constitutes histograms to detect
the deviations and abnormalities on PETS2009 [14] dataset. In similar context,
Benabbas et al. [15] build the online probabilistic models for both density and
orientation of flow patterns to detect the crowd activities. Another work is presented
by Chan et al. [16] to holistically model the crowd flow in the scene using
the dynamic texture model where Nearest Neighbour (NN) and Support Vector
Machines (SVM) are used as classifiers to detect the events in crowds. Similarly,
Mahadevan et al. [17] proposed a framework to model the normal dynamics of
the crowd using mixtures of the dynamic textures hypotheses. The experiments are
demonstrated on a new dataset containing the different definitions of anomalies such
as walking in wrong direction or vehicles over walking area.

1.3.1 Discussion

In pedestrian (or crowd) behavior analysis, the term anomaly (i.e., abnormal: both
terms used interchangeably, unless specified) is formalized as an outlier detec-
tion problem. In video streams, capturing certain motion properties in situations
containing concurrent and sparse pedestrian activities are extremely difficult. For
example, in coherent crowds (e.g., marathon), the pedestrians may move with
common dynamics which is relatively easy to model. But many scenes (e.g.,
shopping centers) contain completely random movement of pedestrians resulting
in a complicated dynamics, and it is difficult to model the overall dynamics.
In the literature, generative modeling approaches [10, 11] (i.e., HMM and LDA)
require stringent conditional independence among the observed flow fields for more
tractable joint distributions. On the contrary, Mehran et al. [12] assume the particles
as pedestrian but they are not able to detect anomaly due to the multiple interacting
crowd because it requires the knowledge about physical quantities making this
approach impractical.

2 Proposed Framework

In this paper, we propose a framework to detect pedestrian behavior in crowds using
image-based methods. The proposed framework is staged in several phases to model
and characterize the behaviors in crowded scenes. The measured optical flow over
each frame in the video stream is modeled by computing the histogram at flow val-
ues defining the distinct feature for the each block. Next, the corresponding crowd
behavior is detected through SVM classifier. Finally, the cumulative behaviors are
inferred for each time instance.
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2.1 Histogram of Flow and Behavior Classification

In this paper, the dynamic information over the consecutive frames is computed by
optical flow approach [18]. The observed flow cloud data is transformed into a flow
vector f D .vx; vy/ where vx and vy represent the velocities along the horizontal
and vertical axis of the motion field. Next, each frame is sectioned into N � M

blocks of size (i.e., size D 16), selected after conducting empirical studies over our
dataset. Mathematically,

V D ŒI1; : : : ; IK�; Ik D fB1; : : : ; BLg and Bl D .f1; : : : ; fP /

where V is the video sequence containing K frames, BL are the flow blocks in
the K-th frame. Each flow block keeps P cloud of flow data which serves as a
fundamental information for the analysis of pedestrian’s behaviors in crowd.

The cloud of flow data P in each flow block represents the dynamic content.
The flow cloud data is defined as 2d flow vectors (i.e., f D .vx; vy/) in each
flow block as random variables which are extended over frames (i.e., K). But,
the direct use of raw optical flow data in each flow block is not very useful, as it
can be significantly different and correlated. However, it is important to note that
the optical flow profiles vary according to the context and situation. Later, HOF is
computed over the flow data which is spatially differentiated by making flow blocks
in each frame. Each flow vector f D .vx; vy/ in flow block is binned according to

its orientation 
 D arctan. vy
vx
/ and magnitude m D

q
v2x C v2y . The histogram is

formed for each flow block by directional binning (i.e., with 
 D 45making 8 bins)
of orientation corresponding to its magnitude. By doing so, we are able to handle
the optical flow uncertainties because the noisy flow values have an insignificant
effect on the observed histogram as well. Finally, we pick the bin with the highest
frequency and take its magnitude and direction as a representative features for the
corresponding flow block.

After the feature extraction, the next step is to classify pedestrian behaviors in
the crowd as normal and abnormal to analyze the overall situation of the scene. We
use the magnitude from the HOF as our main representative feature for each flow
block. For the classification SVM [19], a supervised learning technique for optimal
modeling of data is used with Radial Basis Function as a kernel. In the experiments,
each flow block is classified as normal or abnormal as shown in Fig. 2.

3 Experimental Results

The results of the proposed approach is tested on our record dataset where 30
volunteers are depicting the actions of various kinds (i.e., group walk or run). The
normal situations are represented by the usual walk of large number of pedestrians
whereas the corresponding abnormal situations (i.e., running, panic and dispersion)



192 S.S. Pathan and K. Richter

Total Density

Normal Block
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a b

Fig. 1 (a) and (b) shows the results where normal behaviors are indicated by black blocks
(Photo:Fraunhofer IFF)

are observed when pedestrians or groups of pedestrians deviate from the normal
behavior. Figure 1 shows the results on our dataset where pedestrians are moving
with normal behavior while moving in groups. In contrast, Fig. 2 presents the results
when the pedestrians are having abnormal state due to any unknown reason. In
Fig. 2a, the group of pedestrians are entering whereas after some instance of time, it
can be observed that all the pedestrians are running with a common goal as shown
in Fig. 2b. The graphs in Figs. 1 and 2 present the overall detection of corresponding
pedestrian behaviors (i.e., yellow curve shows anomaly, black curve shows normal,
and blue curve shows the density of pedestrians in the crowd) at each time instance.

As described in an earlier section, the definition of anomaly (i.e. abnormality)
is context specific. We assume that the categorization of pedestrian behavior in
a scene as normal and abnormal is somehow fuzzy. Therefore, we provide the
information of both behaviors to scene analyst through the graphical and visual
representation. For this purpose, a statistical analysis with an option of defining a
threshold (i.e., if abnormal behavior is more than 50 %) is provided by computing
%Anomaly D AbNB

NbCAbNB �100. Where %Anomaly defines the total abnormal behavior
of pedestrians in the scene which is computed as the ratio of total flow blocks
detected as abnormal (AbNB) relative to the total (NbCAbNB) normal and abnormal
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Normal Block
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Fig. 2 (a) and (b) shows the results where abnormal behaviors are indicated by yellow blocks
(Photo:Fraunhofer IFF)

classified flow blocks. In our proposed approach, we aimed to address the issues of
pedestrian behavior analysis (i.e., in the context of crowd analysis) and achieved
our defined objectives. However, the proposed approach has certain limitations for
instance, detection of high level events like recognition of paths blocking or falling
down of pedestrians in crowd. However, further interpretations can be built on top of
the proposed approach by employing the strong assumptions according to the social
behaviors of pedestrians in crowds and the contexts of application.

Conclusion
In this paper, we introduced a method to identify the behaviors of pedestrians
in crowds. A top to down methodology is adapted which captures the dynamic
characteristics of pedestrians in the form of flow data and computes features
with HOF approach. The SVM classifier is used to localize the specific and
overall behavior of the pedestrians in crowds. The results show that our
approach successfully identifies the behaviors of pedestrians in crowds.
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Dynamic Structure in Pedestrian Evacuation:
Image Processing Approach

Kohta Suzuno, Akiyasu Tomoeda, Mayuko Iwamoto, and Daishin Ueyama

Abstract We show that there exists a typical dynamic arch-shape structure in
pedestrian evacuation system governed by the social force model. It is well known
that the simulation of pedestrian evacuation from a square room using the social
force model shows arch-shape formation and clogging in front of the exit. It is also
known experimentally and numerically that an obstacle near the exit could improve
the flow rate, but detailed mechanism of this effect is not clear. In this paper, we
show the existence of the “dynamic arch”, the typical structure in the long term, by
using the social force model and the image processing. The time-averaged image
of the system shows us the existence of the typical structure in the system and it
can be interpreted as the probability distribution of the arch formation. With this
method, we discuss the possible physical mechanism of the effect of an obstacle in
the pedestrian system. From the observation of the morphological feature of the arch
obtained by the simulation and image processing, we show that the obstacle affects
the structure of the arch in three ways. These effects could lead the easy-to-break
arch that enhances the flow rate of the system.

1 Introduction

Congestion of particles at a bottleneck is one of the major problems in granular
and pedestrian systems. Let us consider the discharge of dissipative particles from a
square box through a single narrow exit. Such a system sometimes shows clogging
when many particles rush to the exit simultaneously. We can see such phenomena
in the granular systems (the silo, the glass hour) and the pedestrian systems
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(the evacuation from a room or through a corridor). In many cases, this clogging
leads undesirable results so that the mechanism should be clarified to improve the
particle flow.

One possible cause for the phenomena is the existence of the dynamic arch, the
arch-shaped dynamic structure [1]. The arch is formed and broken repeatedly, and
this structure decreases the flow rate.

On the other hand, we also have some hopeful solutions for that situation. Some
experimental and numerical studies have shown that one possible solution is to place
an obstacle near the exit [3, 6, 7]. It is said that the obstacle absorbs pressure [3]
and enhances smooth evacuation. But the effect of the obstacle depends on the
configuration of the obstacle (the shape, the position, and others) so that we need to
clarify how the obstacle works.

In this paper, we discuss this obstacle effect from the viewpoint of the dynamic
arch by using the social force model (SFM) [4] and the image processing technique.
Inspired by the work that visualize the static clogging of granular media [2],
we show the existence of the long-term structure of the dynamic arch in the
evacuation system by using the SFM and the image processing. By this, we give the
visualization of the dynamic arch and investigate the relation between the position of
the obstacle and the structure of the arch. In this study, we use quite simple geometry
and focus only on the effect of the position of the obstacle. Generally, the pedestrian
system has many parameters and they affect the efficiency of the evacuation in a
complicated way. For example, the relation among the driving force, the position of
the obstacle, and the size of the obstacle is also important aspect of the system [5].
But the main purpose of this paper is to discuss the relation between the structure of
the arch and the flow rate, so that we just focus on the effect of the obstacle position,
and we also pay attention to the small area just in front of the exit.

2 Methods

Let us consider the discharge of the self-driven particles from a box-shape room
through a single narrow exit. Let the motion of the particles be governed by the
SFM [4]. The situation of the system is described in Fig. 1. The size of the particles
are uniform, and the self-driven force for each particle is set to 3 m/s. The number of
particles is 150. The particles distribute randomly in the room as an initial condition.
The SFM parameters used here are based on Helbing et al. [4]. In this study, we use
the periodic boundary to keep the number of particles inside the room constant to
remove the N dependence of the flow rate. The numerical scheme is RK2 with
dt D 0:001 s.

From this simulation, we generate many snapshots and investigate them. But
what we are interested in here is the dynamic formation of the particles, thus we
depict the contact network of the particles instead of the shape of the particles. If
any two particles have the overlap above a given threshold, we draw a line that
connects two particles. Here the threshold is set to 0.01 m to visualize the dominant
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Fig. 1 Details of the system. The self-driven particles rush to the exit and evacuate from the
room. All particles have the same diameter (0.6 m) and the self-driven force (3.0 m/s). They go
out through the exit (1.0 m) and return to the room from the opposite side of the exit. The number
of particles is 150. We observe this evacuation process up to 300 s

Fig. 2 Example of contact force network. The particles move from left to right side of the picture.
When two particles have penetrated, the white line that connects two particles is depicted, and the
system shows the network structure. In this calculation, the thickness of the line does not depend
on the magnitude of force for simplicity. Note that the shape of the particles (circles in the picture)
is depicted in this example picture for clarification, but it is not drawn in the actual calculation

connection in the system and to remove the “light touch” connection between
particles. As a result, we obtain the pictures that show the connection of the particles
for each time step (Fig. 2).
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Fig. 3 Example of
time-averaged network. The
white lines show the averaged
contact network in this
many-particle system. Here
gamma correction (� D 2:0)
is used and the additional
circles are depicted for
visibility. The four-particle
arch is the most frequently
occurred structure. The
picture also shows the vague
triangular lattice in the bulk
region (behind the arch), and
it reflects the mono-disperse
property (all particles have
the same diameter) of the
system

Next, we perform the following image processing technique. Let us denote the
pixel value in the position .i; j / on the picture taken at time t as Iij.t/. Then we
generate the time-averaged image

< I >ijD 1

N

NX

nD1
Iij.ndt/; (1)

where N is the number of images generated from the simulation, and dt is the time
step. The resulting image means the probability distribution of the contact network.
We assume that the structure presented in the resulting image can be interpreted as
the dynamic arch of the system. The image obtained by the above method visualizes
the possible dynamic structure and its frequency in the system. The typical result is
given in Fig. 3.

As we can see, it shows many types of arch-like structures in front of the exit.
It implies that the arch that consist of four particles is the most frequently observed
structure. Around the arch, many faint triangles are observed and they are the results
of mono-disperse property of the system.

3 On the Effect of the Obstacle

By using the above technique, we investigate visually the effect of the obstacle on
the structure of the arch. We place the obstacle near the exit in our system which
shape is the same as the particles. Then we conduct the simulations with different
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Fig. 4 Results of the numerical simulation. We calculate the flow rate by using the SFM with
different configuration of the obstacle. The size of the obstacle is the same as the particles. (Left)
The position of the obstacle considered here is shown as the lattice point in the figure. The circle
in the figure is the example of the obstacle. (Right) The color distribution shows the flow rate for
each obstacle position. White area correspond to the flow rate without obstacle (340 person/300 s)

position of the obstacle and obtain the distribution of the flow rate as a function
of the obstacle position. We place the obstacle inside the following region: 0.9 m �
X � 1.9 m and 0.0 m � Y � 1.0 m, where X and Y are the distance from the center
of the exit. The resulting flow rate is given in Fig. 4.

The distribution of the flow rate shows that the obstacle improves the flow rate in
many cases. But we also have some “spots” where the flow rate decreases compare
to the no-obstacle case. As we can see, these spots are distributed in a triangular
manner, and their positions correspond to the case of the most packing situation.
In such cases, the obstacle enhances the closely-packed dense configuration of the
particles. Another notable feature in the figure is the top-right area where the flow
rate improves considerably due to the obstacle. This means that the shifted obstacle
(not just in front of the exit) leads better flow rate.

4 Possible Mechanisms of the Obstacle Effect

We performed simulations with different positions of the obstacle, and compared
the results of the shape of the arch. Figure 5 shows the case of no-obstacle and the
case that attain the highest flow rate. Comparing these results, we can extract three
morphological factors of the shape of the arch. The flow rate increases when (i) the
arch has a space to deform, (ii) the position of the arch is shifted, and (iii) the arch
is distorted. If there is a enough space around the exit, the arch can be deformed
easily and the symmetry is broken. The obstacle could take a role as a barrier from
the particles behind, protect the arch, and make a room to deform. The existence of
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Fig. 5 Morphological
observation of the arch. In
no-obstacle case (top-left),
the shape of the arch is almost
symmetric. On the other
hand, the situation that attain
the highest flow rate
(top-right) shows asymmetric
arch. Here gamma correction
is used for visibility
(� D 2:0). The obstacle
covers the arch in front of the
exit and protect it from the
particles behind. The obstacle
makes a space, and it also
allows the arch to be shifted
and distorted (bottom)

the obstacle also breaks the symmetry of the force from behind so that the center-
of-mass of the arch is shifted to one side and one of the leg of the arch is on the
edge of the exit. Furthermore, asymmetric force leads the distorted arch, and the
combination of these factors result in an easy-to-break arch. The improvement of
the flow rate occurs when we place the obstacle at an appropriate position where the
above three factors are realized.

Conclusion
We investigated the dynamic arch by combining the simulation with the image
processing. By using these techniques, we qualitatively clarified the effect of
the obstacle in the pedestrian simulation. The morphological observation of
the result from the SFM and the time-averaged image is performed, and the
results imply that the flow improvement by the obstacle comes from (i) the
space around the arch (these might be equivalent to the pressure absorption [3]
or dilatancy), (ii) the shift of the center of the arch, and (iii) the distortion of
the arch. Note that the study presented here has many simplifications. We
focus only on the physical properties of the system, and neglect some social
aspects. The contact force network we investigate here does not reflect the
magnitude of force (so called force chain). We need to include these factors
for further quantitative investigation of the effect of the obstacle.
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Human-Ant Behavior in Evacuation Dynamics

Daniel R. Parisi and Roxana Josens

Abstract Recently, it has been shown that ants evacuate efficiently during a life-
and-death situation displaying an unselfish behavior (Boari et al., PlosOne 8:11,
2013, e81082). Here, we model this ant behavior and compare it with the more
expected selfish (human) behavior by considering different mixtures of evacuating
agents with both kind of behaviors. Two unselfish behaviors were studied using the
social force model as physical bases. For the ant-like behavior, an optimum mixture
is found at 80 %. In the case of living-obstacle behavior, only 29 % is required to
achieve the minimum evacuation time. In general, the simulations with a mixture
of selfish and unselfish behavior show improvement in the evacuation time and
blockage probability of the exit.

1 Introduction

The main motivation of our work is to investigate the highly competitive egress of
people through narrow doors, which can display clogging, jamming and blockage
with the consequent loss of capacity and increased risk. What we understand
by highly competitive behavior is a pushing life-and-death behavior that would
be present if the estimated time to egress [1] is greater than or similar to the
estimated Available Safe Egress Time [2]. This kind of behavior was also named
as “impatient” in Ref. [3] and “selfish evacuation behavior” in Ref. [4].

Because controlled experiments in laboratory conditions of this system have
several complications, we decided to study simpler and somehow similar systems
such as granular matter [5] and ants [4, 6]. Unfortunately, these social insects have
demonstrated efficient evacuations [6] and, unlike most of the animals, ants display
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neither selfish evacuation behavior, nor highly competitive egress, nor jamming or
clogging near the door [4, 6]. In consequence, we claim that humans and ants have
a mismatched behavior.

In normal conditions, clearly ants cannot model humans because their fundamen-
tal diagram has a very different nature, i.e., the speed of ants does not depend on
their density [7] contrary to what occurs in vehicle and pedestrian traffic. Moreover,
ants do not produce jamming [7, 8]. But not only in normal conditions are ants so
different to humans, they are perhaps more different under emergency situations.

On the one hand, in the presence of a real danger most animal species, and human
beings in particular, behave individually trying to escape from the danger as soon as
possible, in a direct path to the exit. In this extreme circumstance the survival of the
individual prevails. This statement is supported by the following examples:

1. Stampedes during real catastrophes such as the one that occurred at “The Station
Night Club” fire (Rhode Island, USA, 20 Feb 2003), which has been uploaded
(http://www.youtube.com/watch?v=OOzfq9Egxeo). People that tried to egress
simultaneously through the main door caused the blockage of that door [9].

2. Saloma et al. [10] found this response when studying the egress of mice from a
water pool.

3. Zuriguel et al. [11] also observed the same response when studying the passage
of sheep through a narrow door.

4. Most of the pedestrian egress models consider this behavior, for example in the
seminal paper of Helbing et al. [12].

5. Under threatening conditions, in principle, people could rush or not toward the
exit. As this decision has an impact on the payoffs of each agent and the whole
group, it can be studied from the point of view of game theory. Heliövaara et al.
[3] have shown that jamming and clogging may be caused by people acting
rationally, even when this rational individual behavior results in a bad strategy
for the group.

In all these cases, jamming and clogging are generated upstream the exit door
causing the loss of evacuation efficiency.

On the other hand, ants do not follow a direct path to the exit under emergency
egress conditions and thus, clogging and jamming at the door are not observed. This
fact can be seen, for example, in the following articles:

1. A complete evacuation process of one of the experiments conducted by Altshuler
et al. [13] can be seen on the journal’s Web site. There, it is possible to observe
that ants did not produce jamming near the doors.

2. In Fig. 3 of Ref. [14] it can be seen that the exits do not show a higher density
than the rest of the surrounding areas.

3. In Ref. [4] it was explicitly stated that ants did not generate jamming near the exit,
for none of the intensities of the aversive stimulus studied (different citronella
concentrations). Moreover, in this work it was warned that ant models should not
be used for validating human egress simulations.

http://www.youtube.com/watch?v=OOzfq9Egxeo
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4. Also, the behavioral pattern of not following a direct path to the exit, and not
clogging or jamming, was observed in Argentine ants (Linepithema humile)
stressed with high temperature [6]. In this paper it was found that ants, even
under a life-and-death situation, egress efficiently displaying a faster is faster
effect.

Furthermore, in any of these examples it is important to differentiate similar
physical observables from the microscopic mechanism that creates them. In the
case of the faster is slower (FIS) effect observed in ants [4], it was highlighted that
the cause that originates the FIS effect is different from that in crowd simulations,
because in the latter system the FIS effect is generated by high tangential friction
[15] and in ants it is not, as can be observed in the examples mentioned above.
Similarly, the improvement by placing a column upstream the door [14] is not
for the same reason as in the social force model simulation or granular matter
experiment [16–18]. In these two systems the column reduces the pressure before
the exit while, again, in the ant system no such pressure exists because ants do not
produce jamming or high frictional contact.

Considering these differences, we discourage the approach proposed in Ref.
[14, 19, 20] where it is claimed that results from ant experiments can be directly
extrapolated to human systems. This approach is not justified and its application
could lead to grievous errors of design.

Instead, we propose studying ant egress, given that they display an efficient
evacuation behavior, and try to use its mechanism to enhance human evacuation
protocols. Our approach is to model ant behavior when evacuating through a narrow
door and then study pedestrian simulations by varying the fraction of agents with
selfish and unselfish (ant-inspired) behavior. In this sense, valid questions about
individual and collective ant behavior can be posed, such as: Is this behavior better
than the selfish one? Is there an optimum mix of both behaviors in a population?

2 Ant Behavioral Model

In this section we propose a very simple phenomenological model for describing ant
behavior when evacuating under an emergency situation. As physical background
we will use the social force model [12] describing simulated pedestrians with a high
desired velocity of 6m/s. The rest of the parameters are the same as in that paper
considering a 20 � 20m room with a 1.2 m door and 200 agents. The behavior is
defined only through the direction of the driving force and there are, in principle, two
possible behaviors: (a) selfish evacuation behavior: the agent goes directly toward
the door from the beginning of the evacuation and (b) ant-like behavior: the agent
does not go toward the door from the start of the evacuation, but some time later.

In the ant-like behavior, the criterion for deciding when to go directly toward the
door is based on the following fact. In the ant evacuation experiments performed
using citronella as aversive stimuli [4], it was observed that the discharge curve, i.e.,
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the number of ants inside the room as a function of time, follows an exponential
decay law (Parisi et al., Unpublished). It was also observed that ants move fast
during emergency but do not follow a direct path to the door [4, 6] displaying
exploratory trajectories by going to undefined points inside the room. From these
observations we propose the following ant-like behavior:

1. Initially, agents move toward random points inside the room.
2. Every second, each agent can change its state with probability �.
3. If agent i changes its state, it moves toward the door and gets out.

The results of simulating this behavior, for a given value of �, are depicted in Fig. 1.
Typical snapshots obtained at different times are shown in Fig. 1a, b. Figure 1c
displays the whole population of agents inside the room and the group going directly
toward the door as a function of time. Clearly, higher values of � will increase the
rate at which agents begin to try to exit, and thus, increasing jamming and clogging
will occur with the consequent increase of the partial evacuation time (PET). On the

Fig. 1 Results of simulations of agents with pure ant-like behavior. (a) and (b) Snapshots at times
9 and 39 s. The red (filled) agents are going toward the door and the blue (empty) agents are
wondering around inside the room. Arrows display instant velocities. (c) Evolution of the total
number of agents inside the room (blue-dashed line) and the ones heading to the door (red-solid
line). (d) PET for the first 70 % of the initial population as a function of the probability �
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other hand, with small values of � very few agents will try to exit simultaneously
and the capacity of the door will not be totally used. In Fig. 1d the PET is studied
as a function of � and there exists an optimum � at which the PET is minimum.
In consequence, we will center our attention on the probability � D 0:04 for the
simulations investigating different mixtures of selfish and ant-like behavior.

3 Simulation Results

In this section we will theoretically investigate the evacuation performance for a
group of agents having a fraction of the population behaving selfishly and the rest
following unselfish behaviors. The set-up for the simulation is the one outlined in
Sect. 2 and it corresponds to a life-and-death situation leading to highly competitive
egress as described in Sect. 1. We will call selfish or human behavior the one
displayed by agents going directly to the door from the start of the evacuation.

The performance of the evacuation process will be characterized by means of
two physical observables: (a) partial evacuation time (PET) and (b) blocking cluster
probability (BCP). The first one (a) considers the time elapsed until the first 70 %
of the initial population has egressed in accordance with the studies presented for
ants in Ref. [4]. The blocking cluster probability (b) was introduced in Ref. [21].
A blocking cluster is the subset of particles in contact with each other and closest
to the door whose first and last components are in contact with walls on both sides
of the door. This structure will be of certain duration (tbc). Summing up for all
the durations tbc during an evacuation process that lasts a time T , we compute the
blocking cluster probability as: BCP D P

tbc = T . In other words, the BCP is the
fraction that the system lay blocked.

Figure 2 shows the results of simulations considering a population with mixed
types of behaviors. Panel A displays a snapshot of the systems, with 50 % mixture
of selfish and ant-like behavior, at the start of the evacuation process showing that
there is a fraction of agents in the state of going toward the door from the very
beginning. Panel B shows the same system after 6 s, where a big cluster of agents
near the door can be observed, in contrast to what occurs in Fig. 1a, b. Figure 2c
shows the PET as a function of the human fraction behavior of the population. It
can be seen that for zero human fraction (100 % ant behavior) the optimum � is
0.04, as was already shown in Fig. 1d. An important result is that 100 % ant-like
behavior produces a better PET than in the case of 100 % selfish behavior. As the
fraction of human behavior increases, the PET decreases to reach a minimum at
20 % selfish behavior. The same qualitative characteristic is observed for the other
values of � and it can be verified that � D 0:04 produces the better combination
of behaviors. Looking at the BCP (Fig. 2d) it can be seen that the duration of these
clusters increases monotonically with the fraction of human behavior present in the
population. Focusing on � D 0:04, it can be observed that when the human or
selfish behavior is the majority (greater than 50 %), the PET and BCP are big and
do not change too much. In order to improve both physical observables, the human
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Fig. 2 Results of simulations with different mixtures of agents displaying human and ant-like
behavior. (a) and (b) snapshots at 0.6 and 9 s for a realization with 50 % human behavior. (c) and
(d) 70 % PET and BCP as a function of the human behavior fraction of the population

fraction has to be the minority of the population (less than 30 %). Thus, this result
indicates that if we tried that a fraction of evacuating people change their selfish
behavior during an emergency for an ant-like behavior, it would only be useful if a
majority of the population follows the instructions. Because it is not probable that
this occurs, we continue one step further looking for another behavior that could be
more useful for practical purposes.

In Fig. 2b we can see that there are two factors contributing to the improvement
of the evacuation metrics when ant-like behavior is present. One is that because ant-
like agents do not go immediately toward the door, they decrease the cluster size
near the door and thus the pressure and friction reduce the BCP. The other factor
is that there are trapped agents inside the cluster, wanting to go everywhere inside
the room but not to the door, and thus pushing in opposite direction of the clustered
agents trying to exit. So, these trapped agents act as living-obstacles and also reduce
the pressure over the door.
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Fig. 3 Results of simulations with different mixtures of agents with selfish and living-obstacle
behavior. (a) and (b) snapshots at 3.3 and 4.1 s. (c) and (d) show the PET and BCP, respectively,
as a function of the fraction of agents displaying living-obstacle behavior

Inspired by this observation, we defined a living-obstacle behavior that is as
follows. At the start of the evacuation all agents behave selfishly and go directly
toward the door, forming the typical big cluster. After 3.5 s a fraction of agents
inside the cluster change their states and become living obstacles trying to maintain
the position (i.e., the driving force points toward the position they were when they
changed state). If the selfish agents push obstacle agents outside the room, the
obstacle agent goes on and does not try to reenter. In this behavior no � parameter is
involved. Figure 3 illustrates the agents’ behavior in panels a and b. The impact of
the different fractions of agents behaving as obstacles can be seen in Fig. 3c and d.
Now the unselfish behavior necessary to minimize the PET is only 29 %, which is a
clear minority. Moreover, this fraction of obstacle behavior also reduce the BCP to
one half with respect to pure selfish behavior, resulting in a more applicable strategy
that could be followed by instructed pedestrians evacuating during a life-and-death
emergency.

Conclusions
Inspired by the observation of the cooperative behavior of ants when
evacuating under threatening conditions, we define two unselfish behaviors:
the ant-like and the living-obstacle behaviors, which were implemented by

(continued)
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adjusting the driving force in the social force model. The room evacuation
problem was studied using populations with different fractions of selfish and
unselfish behavior.

If all agents follow ant-like behavior, the PET and the BCP are much better
than in the case of all agents behaving selfishly. From the point of view of
the PET, a mixture with a majority of unselfish behavior (80 %) would be
optimum. Conversely, a minor fraction, only 29 % of agents, is required to
follow living-obstacle behavior in order to decrease the PET by 18 % and
the BCP by 50 %. Therefore, this is potentially more applicable if evacuating
pedestrians should follow the instruction of not pushing toward the door but
trying to keep their position near it.

Finally, we remark that it is necessary to extend this investigation with
an experimentally validated model of evacuation under highly competitive
conditions through narrow doors.
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Escape Velocity of the Leader in a Queue
of Pedestrians

Akiyasu Tomoeda, Daichi Yanagisawa, and Katsuhiro Nishinari

Abstract The relaxation process in a queue is very important for the smooth
movement of pedestrians. As previously reported, the propagation speed of a
starting wave, that is, a wave of people’s successive reactions in the relaxation
process of a queue, and the initial density of a queue are fundamentally related by
a power law. In addition, when the walking velocity of the leader of a queue, called
“escape velocity”, is optimal, the flow of the queue is maximized and the queue is
not separated. In order to investigate how the behaviour of the followers in a queue
changes with the leader’s velocity, we performed experimental measurements on
real pedestrians. In our experiment, we set the walking velocity of the leader of a
queue using three metronome tempos (fast, normal, and slow) transmitted through
earphones. The experimental results show that the escape velocities corresponding
to the fast and slow tempos cause empty spaces in a queue and limit the walking
velocities of the queue members, respectively.

1 Introduction

In recent decades, considerable research on the collective motion of self-driven
particles (SDPs), including the dynamics of traffic flow and pedestrian behaviour,
has been conducted from the viewpoint of mathematical sciences [2, 3, 5]. In
particular, the interdisciplinary research field concerning the dynamics of jamming
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phenomena in the collective motion of SDPs, called “Jamology”, has progressed
owing to sophisticated, experimentally-validated mathematical models.

In the case of one-dimensional jamming phenomena, the key concept in studying
queues of vehicles and pedestrians is called “slow-in fast-out”. This concept is
a simple idea derived from queuing theory: the length of the queue decreases
when the departure rate is greater than the arrival rate. A slow-in strategy for
traffic was proposed in [4] and demonstrated by the experiment reported in [7].
We, on the other hand, have focused on the fast-out strategy. In our previous
study [8], we investigated the dynamics of the propagation speed of a starting
wave, which is defined by people’s successive reactions in the relaxation process
of a queue. The fundamental relation between the propagation speed of a starting
wave (a) and the initial density of a queue (�) is characterized by the power law
a D ˛��ˇ .ˇ ¤ 1/, where ˛ and ˇ are positive parameters. This characterization
elucidates the dynamics of a queue before pedestrians start to walk. As a next step,
we investigate the dynamics after pedestrians start to walk. This behaviour depends
on the walking velocity of the leader of a queue, called the “escape velocity”.

The escape velocity is significant from the viewpoint of controlling a queue,
especially in an emergency situation, because it affects the walking behaviour
of followers. An appropriately controlled escape velocity will result in the ideal
situation, in which the flow of a queue is maximized and the queue is not separated.
For example, if the leader moves very fast, it becomes difficult for followers in
the queue to keep up. On the other hand, if the leader moves very slowly, the
walking velocity of followers is limited by the leader. In order to investigate
how the behaviour of followers changes with the leader’s velocity, we performed
experimental measurements on real pedestrians. In this study, we focus on the
relation between the escape velocity and the walking behaviour of followers.

2 Experiments

2.1 Settings

Figure 1 shows the passage in our experiment. The lengths of the initial queue .l1/,
the walking passage .l2/, and the total length of the passage .L/ are 11:0; 15:0, and

Fig. 1 Setting of our experimental passage
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Fig. 2 Snapshots taken during our experiment. The dashed line corresponds to the position of
the leader of the initial queue. (a) Initial position of the pedestrians in a queue. (b) Starting wave
propagates backwards in the queue after the leader starts to move. (c) The last pedestrian passes
the starting position of the leader

26:0m, respectively. The width of the passage is 0:5m. We mounted two cameras
on the windows of the fifth floor of a building, which is 20:35m above the ground,
to track the movements of pedestrians in a queue. Snapshots obtained from an
overhead camera are shown in Fig. 2. As shown in Fig. 2, each pedestrian wore a
black t-shirt and a yellow knitted hat. Data sets comprising the exact positions of
all pedestrians on the pathway at each frame were obtained from the recorded video
data by detecting the pedestrians’ hats using PeTrack software [1].

As an initial condition, all pedestrians (N in total) stood in line with the same
headway distance; that is, the density of the initial queue was constant and uniform
throughout the queue (see Fig. 2a). We fixed the number of pedestrians and the
density as N D 22 (average height: 1:73m) and � D 2:0m�1, respectively.
The leader adjusted the walking velocity according to the beats of an electronic
metronome transmitted through a headset. The relation between the walking
velocity of the leader and the metronome frequency in our experiment is shown
in Fig. 3. We found that the walking velocity of the leader increased approximately
linearly with metronome tempo. The dashed line is a fitting function based on the
linear relation between walking velocity V.x/ and tempo x, that is, V.x/ D ax C b.
The parameters .a; b/ are .0:012;�0:091/. A similar relation was reported in [6],
which experimentally studied the effect of music on individual pedestrians and
showed that walking tempo is proportional to music tempo in the majority of
cases. These results indicate that changing the tempo is a suitable method for
controlling the walking velocity of the leader of a queue. Thus, the escape velocity is
controlled using three different tempos: slow (50BPM), normal (140BPM), and fast
(208BPM). Here, BPM denotes beats per minutes. The leader started to move after
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Fig. 3 The relation between
walking velocity and tempo
(BPM)
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the tempo was arbitrarily chosen, and then the followers moved forward in order,
beginning at the front of the queue. Therefore, following pedestrians knew neither
the escape velocity nor the time at which the leader started walking. In this process,
we observed that the starting wave propagates backward in a queue (see Fig. 2b).
Figure 2c shows the moment when the last follower passes the head position of the
initial queue.

2.2 Results

Typical spatio-temporal plots for each walking velocity are shown in Fig. 4. In
the case of fast walking velocity, the time difference between the leader and the
last follower in a queue was large. Additionally, some of the distances between
successive pedestrians were large. That is, the walking velocity of the leader was
too high for some of the following pedestrians to keep up. In the case of normal
walking velocity, there was no significant time difference between the leader and the
last follower, and the trajectories of all pedestrians were mostly linear and parallel.
That is, all pedestrians could walk with constant headway and velocity. In the case of
slow walking velocity, the trajectories were not linear, and the time differences at the
end of the passage were small. The former result indicates that the followers could
not walk at a natural constant velocity, because there was a difference between their
natural walking velocity and the real walking velocity. The latter result indicates that
the followers had space to move. Note that the behaviour of the followers is nearly
independent of the escape velocity because the starting time of the last pedestrian is
almost identical in each situation.

Figure 5 shows time lapse plots for two measurement positions: (I) the starting
point and (II) the end of the passage. In case (I), at the starting point, the time lapse
TI in the case of slow escape velocity is quite larger than that for the other two
escape velocities. Therefore, the slow escape velocity is slower than the natural
walking velocity of pedestrians. On the other hand, in case (II), at the end of
the passage, the normal escape velocity appears most likely to achieve smooth
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Fig. 4 The spatio-temporal plots for three cases: (a) fast escape velocity, (b) normal escape
velocity, and (c) slow escape velocity. Zero point of space corresponds to the head position of
the initial queue
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Fig. 5 The time lapse plots for two points: (I) time elapsed after the leader starts and before the
last follower passes x D 0 m (starting position) and (II) time elapsed after the leader starts and
before the last follower passes x D 15m (end of the passage)
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Fig. 6 The difference in time elapsed between x D 0m (start) and x D 15m (end), i.e., (I)–(II)
for each escape velocity in Fig. 5

movement because the time lapse TII in the normal case is minimized. Moreover,
Fig. 6 shows the time difference �T between cases (I) and (II), which is calculated
by �T D TII � TI . From this result, we find that the time difference in the case of
slow escape velocity is negative. In this situation, the escape velocity is slower than
the natural walking velocity. In the case of fast escape velocity, the time difference is
a large positive value. When the escape velocity is higher than the natural walking
velocity, a vacant space is created in the queue, which negatively affects smooth
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movement. As observed above, we found that the slow and fast escape velocities are
not optimal for smooth movement of a queue, because they limit walking speed and
create vacant space, respectively.

Conclusions
In order to achieve a smooth movement of a queue, the escape velocity is
appropriately controlled to the optimal velocity, at which the flow in the queue
is maximized and the queue is not separated. In this study, we experimentally
investigated following pedestrians’ behaviour in three situations: fast, normal,
and slow escape velocities. The position data of the pedestrians in our
experiment were obtained using the image processing capabilities of PeTrack
software. Comparing followers’ behaviour in the three situations, we found
that the slow and fast escape velocities are not optimal for smooth movement
of a queue, because they limit walking speed and create vacant space,
respectively. This result indicates that an optimal escape velocity indeed
exists. We will demonstrate the existence of the optimal escape velocity
analytically and quantitatively in the near future.
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Experimental Study on the Interaction
Mechanism of Cross-Walking Pedestrians

Wei Lv, Xiaoge Wei, and Weiguo Song

Abstract In the field of pedestrian dynamics, the interaction mechanism among
pedestrians is significant for both system modelling and evacuation designing. In
this study, a cross-walking experiment is conducted in two crossed passageways
to investigate the microscopic interactions between individuals. Trajectories of 51
groups of pedestrians’ movements are extracted by means of image processing.
Four main behaviours, i.e. accelerating, decelerating, detour and keep-walking,
are identified when pedestrians walk crosswise. The pair velocities before and
after the cross point are also calculated and classified to three modes: the first
mode is one accelerating with the conflicting partner decelerating, the second
mode is accelerating together or decelerating together, and the third mode is
one keeping speed with the conflicting partner accelerating or decelerating. It is
found that to avoid conflict, 90.2 % of participants take accelerated behaviour or
decelerated behaviour and only 5.9 % of participants take detour behaviour, which
implies pedestrians prefer to adjust their speeds rather than change their directions
when facing potential conflict. Particularly, 64.7 % of groups of pedestrian avoid
the conflict through the coordination mode, i.e. one accelerating with the other
decelerating, which indicates the major self-organized behaviour of pedestrian.
Two kinds of detour behaviour are also observed from the experiment: detouring
ahead the conflicting partner and detouring behind the conflicting partner. It is
found the detour ahead the conflicting pedestrian would induce an approximate
lateral movement of 0.65–0.75m, larger than that of 0.55 m when detouring behind
the conflicting pedestrian. It is hoped that this study would provide some useful
experimental data or conclusions for the research field of pedestrian traffic.
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1 Introduction

Large crowds or high density crowds have been considered as a headache of the
large event organizers, the administrators and the activity managers. The large-
scale gathering or the uncontrolled crowds, especially in panic, are extremely likely
to cause stampede accident or traffic interruption. People may lose their lives
and traffic facilities could be destroyed, just because these large crowd disasters.
Therefore, to avoid such disasters and save people’s lives, some measures should
be adopted. Such as disaster prediction, risk assessment, anomaly identification and
detection, route planning, density control, evacuation, and so on. These approaches
may be important and practical, while all of them based on the researches of the
pedestrian dynamics.

In the research field of pedestrian dynamics, there have been two basic methods
to use for the majority of scholars. One is experiment [1, 3, 4], and the other is
modelling [2, 5, 6]. Experiment is an effective way to validate the accuracy of
the model because it can provide useful parameters for modelling. Meanwhile,
new models require more reasonable experiments to be designed or conducted.
Therefore, it is no doubt that experiment could promote modelling and the models
verified through experiment are more reliable and credible.

Pedestrian’s walking is complex and its mechanism involves several scientific
issues. First and foremost, the velocity and direction changing mechanism should be
revealed so as to accurately predict pedestrian’s movement. In addition, the collision
avoidance mechanism and the interaction mechanism also should be explained so as
to help facility design or crowd intervention. Therefore, experiments that can reveal
the walking mechanism of pedestrian are valuable and necessary.

In this paper, we focus on the cross-walking pedestrians through conducting a
cross-walking experiment, and try to answer what action would people take and
what is the major way to avoid collision when they are facing potential conflict.

2 Experiment

2.1 Experimental Scene and Organization

The experiment is carried out on an outdoor ground in a college campus of China.
The sketch of the experiment can be seen in Fig. 1. Two cameras were fixed at
the roof of one four-layers building that beside the ground, vertically shoot to the
ground. The experimental scene is composed of two crossing passageways that
marked by color lines on the ground. Each passageway has a length of 8 m and
a width of a half meter. In the experiment, a group of two participants are required
to walk from one side of each passageway to another side from the same start time.
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Fig. 1 Scene of the cross-walking experiment

Fig. 2 Image positions of a pedestrian (left) and real trajectories of a group of pedestrians

It should be pointed that the participants were not forbidden to walk out the marked
passageways, that is, they could walk out the passageway boundaries at any time if
they want (Fig. 2).

The experiment was conducted by the research group of Prof. Song Weiguo, in
the University of Science and Technology of China, in October, 2011. There were
34 college students participate the experiment, including 17 males and 17 females.
At the beginning of the experiment, a group of two students were arranged to stand
at each side of the two passageways. When the organizer announced ‘GO!’, the two
students began to walk towards to the other side of the passageway. This walking
process was recorded by the cameras, and can be seen as one time experiment. In
this experiment, 34 students were divided into 17 groups and each group repeated
this process three times, so total 51 recordings were obtained finally.
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2.2 Data Processing

The target of data processing is to obtain real movement trajectories of the
participants in each group, which include three steps. First, the recordings were
converted into frame images with a speed of 25 fps. Then, the positions of the red
or yellow cap in each frame image were tracked manually with the software Matlab.
Third, the Direct Linear Transformation method was used to rectify the image
positions to match the real space coordinate. Finally, we could use the trajectories
composed of the real positions to analyze the cross walking.

3 Results and Discussion

In the experiment, the cross walking would generate a potential conflict at the
crossing center. How to avoid the potential collision? What actions would be taken?

3.1 Three Modes of Cross Walking

We investigate the pedestrian’s reaction from the view of the velocity changes. We
focus on two velocities, as shown in Fig. 3, one is the mean velocity of the pedestrian
in the one-meter-distance before the center of the passageway, and the other is the
mean velocity of the pedestrian in the one-meter-distance after the center of the
passageway. As the area after the crossing center can be seen as collision-free area,
we consider the second velocity VB as pedestrian’s normal speed, so if the first
velocity VA lager than VB , it indicates the pedestrian accelerate before crossing the
intersection. According these two velocities, it is clear to see there are three kinds
of velocity changes: accelerating, decelerating and keeping speed.

Fig. 3 Velocity changes near the crossing center
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Fig. 4 Three modes of the cross walking

Using this method, we calculate the two velocities of all pedestrians. And three
modes of the cross walking can be identified. Figure 4 shows these modes and the
explanations are as follows,

Mode 1: One pedestrian accelerate with the conflicting partner decelerate. This
mode was adopted by 64.7 % of pedestrians, which indicates it is the
major way for cross-walking pedestrian to avoid potential collisions.

Mode 2: Both pedestrians accelerate or decelerate. It can be seen in this mode,
more pedestrians chose the decelerating behaviour to avoid conflict with
the partner. Only a few pedestrians both chose acceleration and these
persons may be more aggressive.

Mode 3: One keep speed, the other accelerates or decelerates. This mode occupies
only 5.9 % of participants, but it is indeed reflect real situations. One’s
acceleration can provide the space for the other to keep speed, while
one’s keeping speed can also occupy the other’s walking space and
decelerate him.

3.2 Four Behaviors in the Cross Walking

We also extract the four main behaviours in the cross-walking pedestrians: accel-
erate, decelerate, keep speed and detour. The first three behaviours can be seen as
velocity adjustment, while the detour behaviour is essentially a direction-changing



224 W. Lv et al.

Fig. 5 Rate of each behaviour in total participants and mode

method. Figure 5 shows the rates of each behaviour in the total participants and
in three modes, it can be seen 90.2 % of participants take accelerated behaviour or
decelerated behaviour and only 5.9 % of participants take detour behaviour. This
result indicates that pedestrian prefer to adjust speed rather than change direction
when facing potential conflict.

3.3 Detour Analysis

As mentioned above, detour behaviour was taken by few participants in the cross-
walking experiment, but as one direction-changing method, it is indeed reflect
some characteristics of pedestrian walking. In our study, we find the detour
behaviours exist in all modes, but the mode 3 contains the most detour behaviour.
The experiment also shows two types of detouring behaviour. One is detouring
ahead the partner’s direction (type 1), the other is detouring behind the partner’s
direction (type 2), as shown in Figs. 6 (left) and 7 (left). Meanwhile, Figs. 6 (right)
and 7 (right) exhibit the velocities of the two pedestrians in the whole cross-walking
process. The results shows similar movement characteristic, i.e., the detouring
walker accelerates when detour but the crossing walker’s speed would be reduced.

To further investigate the difference of the two types of detour, we define the
detour magnitude as the maximum offset of the person to the crossing center, as
shown in Fig. 8. And we find detouring ahead causes about 0.65–0.75 m offset,
larger than 0.55 m that caused by detouring behind.
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Fig. 6 Trajectory and velocity of the detour type 1

Fig. 7 Trajectory and velocity of the detour type 2

Fig. 8 Detour magnitude of the two detour types
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3.4 Arriving Time Interval

We also briefly study the arriving time interval of the two cross-walking pedestrians.
The arriving time interval can be calculated using the mean velocities of the two
pedestrian before arriving at the crossing center. The result shows that the intervals
in the experiment arrange from 0.4 to 1.3 s, with a mean value of 0.66 s. This
also implies that at least 0.4 s interval difference could ensure the cross-walking
pedestrians to avoid each other.

4 Summary

In this paper, we conduct a cross-walking experiment to study the interaction
mechanism of cross-walking pedestrians. By analyzing the trajectories of the cross-
walking pedestrians, we found three cross-walking modes, i.e., one accelerating
and the crossing walker decelerating, accelerating or decelerating together, and
one keeping speed with the crossing walker accelerating or decelerating. Statistical
results show the first mode is the major self-organized mode in cross-walking.
Comparing the rates of four main behaviours, it is found pedestrians prefer to avoid
conflict by adjusting velocity rather than changing direction. In addition, two kinds
of detour behaviours are identified and compared, and it indicates the detouring
usually along with self-accelerating but other’s decelerating. The brief discussion
of arriving time interval shows at least 0.4 s interval should be ensured for avoiding
conflict.

Experiments involve the movement characteristics of pedestrians and the interac-
tion between pedestrian, especially at the individual level, are valuable and essential
for pedestrian dynamics study. It is hoped more experiments and further analysis
would be done in our future work.
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Inflow Process: A Counterpart of Evacuation

Takahiro Ezaki, Kazumichi Ohtsuka, Daichi Yanagisawa,
and Katsuhiro Nishinari

Abstract We propose a new concept,“inflow process” of pedestrians as a counter-
part of an evacuation process. In the inflow process, pedestrians enter a limited area
without hurrying. This type of pedestrian motion can be observed in our daily life,
e.g. in elevators, trains, etc. From experimental observation, we found intriguing
behaviors, including pedestrians’ preference for boundaries, collective orientation,
etc. Besides, the inflow process has contrastive aspects to evacuation process. For
this reason the process is important for the pedestrian dynamics field.

1 Introduction

For human society, investigation on collective behaviors of walking people has
been of great importance since people started to live in a densely populated world.
Over recent decades, analyzing such phenomena from a physical perspective has
attracted interests of researchers, and numerous studies have been reported [1, 2].
One of the main focus of these researches is on “evacuation process” that has been
an important topic for security purposes [3–9]. On the other hand, recently we
proposed a new important research topic, “inflow process”. The inflow process is a
process in which pedestrians enter a limited area and finally stop walking after they
find their comfortable positions [10], which is observed when people use elevators,
trains, etc. In the previous work [10], we reported some fundamental phenomena,
including pedestrians’ preference for boundaries of an area, with a discrete model.
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As the next step, we have conducted an experiment of an inflow process. In this
article, we formulate the process in comparison with evacuation process, and show
its characteristics observed in an experiment.

2 Evacuation Process and Inflow Process

This section is devoted to describe the inflow process and its contrastive aspects
to the evacuation process. First, the directions of motion are opposite in the two
processes: inflow and outflow. Second, one can see the difference between their
relationships to our daily life. We experience inflow process almost everyday, while
evacuation process only in cases of emergency. In contrast, the fatality of evacuation
is high while normal inflow process is never fatal. For its fatality, evacuation process
has been considered to be an important problem; however, considering its frequency,
inflow process also has a certain impact on our life. Finally, from a scientific point of
view, we discuss driving force that acts upon pedestrians. In an evacuation process,
the most predominant motivation of pedestrians is to get out of a certain area as
quickly as possible. For this reason, pedestrian might push each other and clog exits.
In contrast, in an inflow process, people do not have a clear destination in the area,
but instead, they try to save a desirable position where they can secure their own
personal space. Namely, in this process pedestrians are driven by a psychological
repulsive force between others.

Many pedestrian models have adopted the idea that pedestrian motion is driven
by three factors [10–14]; desire to destination, physical contact force, and psy-
chological repulsion force. In an evacuation process the former two factors are
predominant, while in an inflow process the last factor drives the system dynamics.
Due to these differences, investigation on an inflow process requires different
approaches from conventional ones. Psychological repulsion force is well associated
with proxemics [15], which is a concept proposed by Hall [16]. To understand the
inflow process we have to deal with its dynamic behavior on the proxemics theory,
which is not yet accessible at the moment (Table 1).

Table 1 Comparison between the inflow process and evacuation process

Inflow process Evacuation process

Direction of motion In Out

Fatality Low High

Frequency High Low

Driving force Psychological repulsion Destination/physical contact
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3 Features of Inflow Process

In this article, we report fundamental characteristics of the inflow process observed
in our last experiment. From a queue, 25 participants were asked to enter an area
(3:6�3:6m) that was enclosed within walls, in the same manner as elevators (Fig. 1).
They wore a cap for video tracking, and their trajectories have been collected using
the PeTrack [17] software.

Figure 2 (left) shows the trajectories of all pedestrians. In contrast to direct
motion in evacuation, pedestrians walk indirectly to their final positions. This
reflects the fact that they do not have clear destinations and adopt the environment
while walking.

As predicted in our previous work [10], pedestrians tend to attracted by boundary
because their personal space is not intruded by others from the wall direction. From
Fig. 2 (right) we can see that the first half of pedestrians entered the area are at the
walls, and latter half goes inside the area that is open at the time. Each Voronoi cell
(see Appendix) indicates the space allocated to the corresponding pedestrian. Due
to the incapability and laziness of pedestrians to distribute uniformly, the area is not
equally divided into 25 pedestrians.

Interestingly, after acquiring their place, pedestrians turn around for the entrance
to see incoming pedestrians. Besides, for a pedestrian coming after, almost all the
pedestrians are facing the opposite direction, which makes him/her uncomfortable,
contributing the urge to turn around. This phenomenon can be observed even if the
direction of the exit (after the entrance) is not shown.

Fig. 1 Experimental setup. An are of 3:6�3:6m is enclosed with walls of 2:0m high. At the initial
state, in front of the entrance set at the center of one boundary, 25 participants wait in a line with a
0:5m gap between next one. In the experiment, they are asked to start walking simultaneously and
enter the area one by one
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Fig. 2 Spatial distribution of pedestrians in the final state with trajectory lines (left) and Voronoi
division (right). Pedestrians enter the area from the center of the right boundary .0; 0/. The entrance
order of pedestrian is shown with numbers on black circles in the right panel

4 Summary and Outlook

In this article we have presented a new concept, inflow process. This process has not
been well focused on so far, in spite of its importance. Difficulty in investigating this
process lies in its driving force. Different from other topics of pedestrian dynamics
including the evacuation process and directional flow in corridor, pedestrians do not
have a clear destination in the inflow process. This implies that over all motion of a
pedestrian cannot be described by a sum of “forces”. Instead, we have to consider
several distinct phases of a pedestrian: perception, decision making for destination,
interaction between other pedestrians, stopping, direction change, and adaptation to
incoming people. We now have to uncover how transitions between these phases
occur (or some could occur simultaneously), and how they drive the system. A
present task for understanding them is analyze trajectory of pedestrians obtained
by experiments, and abstract results one by one.

Acknowledgements We appreciate Mohcine Chraibi and Maik Boltes for their technical support
for performing the experiment and tracking.
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Appendix: Voronoi Diagram

In this appendix we present the definition of a Voronoi diagram [18]. For a given
area X and points P1; P2; � � � ; Pn 2 X , a Voronoi domain for each Pi (1 � i � n)
is defined as

V.Pi / D fP 2 X jd.P; Pi / � d.P; Pj /; j ¤ ig; (1)

where d.�; �/ is a distance between two points. Namely, V.Pi / is a set of points
whose distance to Pi is smaller than to other points Pj .j ¤ i/. A set of V.Pi /
defines a Voronoi diagram for X and Pi (1 � i � n). This Voronoi diagram has
been used to calculate the area used by one pedestrian [19]. In the inflow process,
since the final spacial distribution of pedestrians is of great interest, the diagram is
a powerful tool for evaluating it.
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Mobility Modelling in a Process Constrained
Environment: Modelling the Movements
of Nurses in a Neonatal Intensive Care Unit

David Greenwood, Shrikant Sharma, and Anders Johansson

Abstract Understanding the movement of people constrained by process is of
practical importance. It may enable process improvements and more accurate
provision of space in buildings (such as hospitals, laboratories and airports) and
thus contribute to making safer and more efficient built environments. We present
an empirical study of the movement of nurses working at a neonatal intensive care
unit (NICU) within a UK hospital. The aim of this study is to model the mobility
of individuals within a process constrained built environment. Our objective is to
create a model that recreates room occupancy distributions – this implies that we
require a room transition model that predicts a person’s next destination as well as
a dwell time model that predicts how long a person will stay in a room. This class
of situation is of theoretical and practical significance because nurses’ movements
are driven by sequences of purposeful activity that are spatially, logically and
temporally constrained i.e. process constrained. We used Ekahau Wi-Fi location
tracking tags to collect room transitions of 10 day-shift nurses within a NICU
for a period of 28 days. We use this dataset to evaluate four proposed models of
room transition: (1) random model; (2) an occupancy and distance model; (3) an
attractiveness model; (4) a Markov model. We evaluate the models’ goodness-of-fit
by comparing our empirical dataset with model predictions.

1 Introduction

Pedestrian mobility models have traditionally focused on helping planners and
architects create efficient, comfortable and safe operating environments in pedes-
trian facilities such as transport hubs, sports stadia and shopping malls. These
environments all share a key challenge which is how to manage large volumes
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of people and therefore a significant volume of research has been concerned with
understanding high volume flows or evacuations [2,3,6]. Perhaps due to the focus on
these environments, pedestrian mobility models have largely ignored the challenges
of environments where pedestrian movements are logically, spatially and temporally
constrained because the pedestrians are behaving in accordance to some process.
Some notable attempts to address this chalenge include [5, 7].

Process constrained environments are environments where a pedestrian’s
behaviour is contingent on the outcome of a previous activity such as in hospitals,
scientific labs, airports and retail environments. Take a hospital for instance, a nurse
may arrive in the morning, change in the staff area, attend a hand-over meeting
and then go on to perform planned activities such as preparing and checking
medication, administering intravenous fluids, giving blood products, record keeping,
and cleaning clinical areas. Emergent events will also occur and are responded to
such as drops in heart rate and blood oxygen saturation levels. This process of
performing planned activities and responding to unplanned events is often repeated
numerous times.

At present, pedestrian movement simulators are typically driven by an
origin-destination matrix that sets a pedestrian’s start-point, end-point and
way-points. However, in process constrained situations these types of models
have limitations because whilst the start-point and end-point is often known, the
journey by which a pedestrian goes from start to end is contingent upon the outcome
of the activities along the way. This paper contributes to addressing this challenge
by aiming to model the mobility of individuals within a process constrained built
environment and in doing so contributes to exploring the challenges of modelling
process constrained environments. Our objective is to create a model that recreates
room occupancy distributions – this implies that we require a room transition model
that predicts a person’s next destination as well as a dwell time model that predicts
how long a person will stay in a room.

2 Research Method

This section of the paper introduces the reader to the case study environment, our
method of data capture, our proposed models and our model evaluation approach.

2.1 The Case Study Environment: NICU

The case study process constrained environment is a neonatal intensive care
unit (NICU) of a major UK hospital. The NICU comprises a system with the
purpose of caring for seriously ill or prematurely born infants. The environment is
typically staffed by neonatologists, nurses, pharmacists and respiratory therapists.
The nurses, whom are the subject of this study, are responsible for performing
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activities at scheduled times as well as responding to emergent events such as a
deterioration in state of an infant. Planned activities include preparing and checking
medication, administering intravenous fluids, giving blood products, record keeping,
and cleaning the infants. Emergent events typically comprise responding to alarms
such as drops in infants’ heart rate and blood oxygen saturation levels.

The NICU comprises a process constrained environment because the nurses room
transitions are logically, spatially and temporally constrained. For example, the
nurses must administer medicines at set intervals during the day according a pre-
scription (temporal constraint), the nurses can only collect medicines from certain
rooms and administer them to infants in the clinical rooms (spatial constraints), the
nurses’ behaviour is constrained by a logical order in which tasks are performed e.g.
when administering a medicine they must first collect it from the equipment store,
administer it in a clinical area and then dispose of waste in the dirty utility room
(logical constraints).

The environment featured in this case study (Fig. 1) comprises of 21 rooms.
Rooms 1–6 are clinical rooms consisting of nurseries, other significant rooms
include the nurse station which acts as an information hub, the clean utility where
clean materials can be found, the dirty utility where used materials are disposed, the
milk kitchen where nutrition is prepared and the staff room where breaks may be
taken or meetings held.

2.2 Data Capture

We used Ekahau Wi-Fi location tracking tags to collect room transitions and dwell
times of 10 day-shift nurses within a NICU for a period of 28 days from 08:00
Tuesday 14th June 2011 to 20:00 Monday 11th July 2011. The data collected
provided a unique identifier for each nurse during a single day and consisted of the
time they entered a room and their duration of stay. We used this dataset to identify
and evaluate the proposed models of room transition.

2.3 Models and Model Evaluation Method

The models described below were evaluated for their goodness-of-fit with the
empirical dataset. The goodness-of-fit criteria used was their success rate at
predicting the next room a nurse will visit. This criteria was selected on the basis that
if a model can predict each nurses’ subsequent room transition then at the macro-
level the model will be able to provide accurate room visitation statistics.

We decided to evaluate the following models’ ability at predicting the nurses’
room transitions: (1) random model; (2) occupancy distance model; (3) attractive-
ness model; (4) Markov model.
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Fig. 1 Layout of case study NICU department

2.3.1 Random Model

A random model was proposed to act as a simple baseline to evaluate the perfor-
mance of the other room transition models against. According to the random model
all the rooms were equally probable e.g. pij D 1=N where pij is the probability of
transitioning from a room i to a room j and N D number of rooms.
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2.3.2 Occupancy-Distance Model

An occupancy-distance model (Eqs. (1)–(4)) was evaluated to understand to what
extent nurse room transitions can be predicted on the basis of the distance between
rooms and the number of other nurses in a room. The notion behind this model is to
understand whether distance, or numbers of other nurses in a room, is an attractor
and also to understand if there are any interactions between the two variables. This
model is intended to provide an indication of the solitary vs collectivist nature of the
environment as well as a distance dependency within the environment e.g. distance
dependent vs distance independent.

pij D Uij
P

j Uij
(1)

Uij D Uo.oj /C Ud.dij/ (2)

Uo.oj / D ˛0 C ˛1oj C ˛2o
2
j (3)

Ud.dij/ D ˇ0 C ˇ1dij C ˇ2d
2
ij (4)

Uij is the utility of a nurse transitioning from a room i to a room j; Uo.oj /
represents the utility derived from being in a room with an occupancy oj ; Ud.dij/

represents the utility derived from moving a distance dij. The parameters ˛ and ˇ
are to be discovered by fitting them to our empirical dataset using the Nelder Mead
method of non-linear optimisation [4].

2.3.3 Attractiveness Model

An attractiveness model (Eq. (5)) was evaluated to understand whether some rooms
are more intrinsically attractive than others ignoring all information other than the
number of room visitations. The notion behind this model is to understand to what
extent a room transition is contingent upon the intrinsic attractiveness of a room.

Aj D
P

i Cij
P

i

P
j Cij

(5)

In the equations above Aj represents the intrinsic attractiveness of a room j and
Cij represents the number of times a nurse has transitioned from room i to room j.
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2.3.4 Markov Model

A Markov Chain model [1] was evaluated to understand to what extent the room
transitions by nurses is dependent on their current room location. The notion behind
this model is to understand to what extent the system is ‘memoryless’ in the sense
that future behaviour can be accurately predicted using only current location state
information.

pij D Cij
P

j Cij
(6)

3 Results

The results indicate that Markov Chain models can be used to generate empirically
adequate room occupancy distributions in a process constrained environment
(Table 1).

The poor goodness-of-fit metric of the attractiveness model is indicative that the
NICU environment modelled is indeed a process constrained environment because
the intrinsic attractiveness of rooms accounts for only a 17 % goodness-of-fit
indicating that room transition behaviour is not random but neither is it determined
by intrinsic room attractiveness suggesting transition behaviour is contingent on the
current or prior states of the system such as number of nurses in rooms, distances
between rooms, or the nurse’s mental models of purposeful activity.

The results of the occupancy distance model (See Fig. 2a) suggests that distance
plays a small role in the room transition behaviour of nurses. However, the number
of nurses in a room did play a strong role – the greater the number of nurses in a
room the greater the likelihood that another nurse would also enter the room. This
finding is likely to be explained by the fact that the nurses have team meetings or
hand-over meetings at certain points during the day so when the number of nurses
in a room increases the probability that it is one of these all hands meetings also
increases and so it is likely that more nurses will transition to the room. The fact that
distance plays a small role is also very informative about the nurse room transition
behaviour as it is indicative that the nurses are not moving between rooms due
to their physical proximity but are transitioning on the basis of other factors one

Table 1 Model goodness-of-fit

Model name Goodness-of-fit (%) Improvement vs. baseline

Random ~5 Baseline

Attractiveness ~17 3.2 x

Occupancy distance ~31 6.2x

Markov chain ~39 7.8x
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Fig. 2 (a) Contour map of utility as calculate using distance and occupancy metrics. (b) Heat map
of room transition probabilities

Fig. 3 Comparison of empirical vs simulated distributions. (a) Empirical room occupancy
distribution. (b) Markov chain model occupancy distribution

of which we have identified is related to the number of other nurses in a room.
Combining this information with the fact that intrinsic room attractiveness has poor
goodness-of-fit it strongly suggests that the nurse room transition behaviour is being
driven by current or prior states of the system such as numbers of nurses in a room
and potentially the nurse’s mental model of purposeful activity.

The results of the Markov Chain model goodness-of-fit (39 %) was 7.8� baseline
suggesting that nurses’ room transition is strongly contingent on current room
location – see Fig. 2b. This finding is strongly suggestive that the nurses room
transitions are process constrained because the probability of transitioning to a room
j is contingent on the nurses current room (but not due to distance).

To investigate whether the Markov Chain model is sufficiently representative
of the environment to be able to generate empirically adequate room occupancy
distributions we simulated a 28 day time series of room transitions and compared it
to the empirical dataset. It can be seen from the histograms that the Markov Chain
model creates empirically adequate room transition distributions – see Fig. 3a, b.
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Conclusions and Further work
The aim of this paper was to model the mobility of pedestrians within
a process constrained built environment and in doing so to explore the
challenges of modeling process constrained environments. Our objective was
to create a model that recreates observed room occupancy distributions. We
conclude that Markov Chain models are able to capture sufficient information
about the NICU environment to generate empirically adequate room occu-
pancy distributions. Through this case study investigation we illustrated that
modelling a process constrained environment is non-trivial. Whilst we were
able to generate high-level room occupancy distributions we were only able
to predict the next room transition of nurse with an accuracy of 39 %. This
suggests that there is significant scope for future work. Modellers may wish
to consider developing models that are not ‘memoryless’ and that take into
account temporal dimensions for example taking into account that certain
rooms, such as staff rooms, are more likely to be visited at certain times of day.
Modellers may also consider developing models where the process is known
along with the number of pedestrians but room occupancy distributions and
corridor congestion is unknown.
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From Drivers to Athletes: Modeling
and Simulating Cross-Country Skiing
Marathons

Martin Treiber, Ralph Germ, and Arne Kesting

Abstract Traffic flow of athletes in classic-style cross-country ski marathons,
with the Swedish Vasaloppet as prominent example, represents a non-vehicular
system of driven particles with many properties of vehicular traffic flow such
as unidirectional movement, the existence of lanes, and, moreover, severe traffic
jams. We propose a microscopic acceleration and track-changing model taking into
account different fitness levels, gradients, and interactions between the athletes in
all traffic situations. The model is calibrated on microscopic data of the Vasaloppet
2012. Using the multi-model open-source simulator MovSim.org, we simulate all
15,000 participants of the Vasaloppet during the first 10 km.

1 Introduction

Traffic jams are not only observed in vehicular traffic but also in the crowd
dynamics of mass-sport events, particularly cross-country ski marathons. The
Swedish Vasaloppet, a 90-km race with about 15,000 participants, is the most
prominent example (cf. Fig. 1). Several other races attract up to 10,000 participants.
Consequently, “traffic jams” among the athletes occur regularly. They are not only
a hassle for the athletes but also pose organisational or even safety threats. While
there are a few scientific investigations of the traffic around such events [1], we are
not aware of any investigations on the crowd dynamics of the skiers themselves.

Unlike the athletes in running or skating events [2], the skiers in Marathons for
the classic style (which is required in the Vasaloppet main race) move along fixed
tracks, i.e., the traffic flow is not only unidirectional but lane based. This allows us to
generalize car-following and lane changing models [3] to formulate a microscopic
model for the motion of skiers.
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Fig. 1 Starting phase of the Vasaloppet 2012

Simulating the model allows event managers to improve the race organization
by identifying (and possibly eliminating) bottlenecks, determining the optimum
number of starting groups and the maximum size of each group, or optimizing the
starting schedule [2].

We propose a microscopic acceleration and track-changing model for cross-
country skiers taking into account different fitness levels, gradients, and interactions
between the athletes in all traffic situations. After calibrating the model on micro-
scopic data of jam free sections of the Vasaloppet 2012, we apply the open-source
simulator MovSim.org [4] to simulate all 15,000 participants of the Vasaloppet
during the first 10 km. The simulations show that the initial jam causes a delay of
up to 40 min which agrees with evidence from the data.

The next section introduces the model. In Sect. 3, we describe the calibration, the
simulation, and the results. Section “Conclusion” concludes with a discussion.

2 The Model

Unlike the normal case in motorized traffic, the “desired” speed (and acceleration)
of a skier is restricted essentially by his or her performance (maximum mechanical
power P D Pmax), and by the maximum speed vc for active propulsion (P D 0 for
v 	 vc). Since, additionally, P ! 0 for v ! 0, it is plausible to model the usable
power as a function of the speed as a parabola,

P.v; vc/ D 4Pmax
v

vc

�

1 � v

vc

�


.vc � v/; (1)

where 
.x/ D 1 if x 	 0, and zero, otherwise. While the maximum mechanical
power is reached at vc=2, the maximum propulsion force Fmax D 4Pmax=vc, and the

http://www.MovSim.org
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maximum acceleration

amax D 4Pmax

mvc
; (2)

is reached at zero speed. The above formulas are valid for conventional techniques
such as the “diagonal step” or “double poling”. However, if the uphill gradient (in
radian) exceeds the angle ˛slip D amax=g (where g D 9:81m=s2), no forward
movement is possible in this way. Instead, when ˛ > ˛max=2, athletes use the
slow but steady “fishbone” style described by (1) with a lower maximum speed
Vc2 corresponding to a higher maximum gradient 4Pmax=.gmvc2/. In summary, the
propulsion force reads

F.v; ˛/ D
	
P.v; vc/=v ˛ < ˛max=2

P.v; vc2/=v otherwise.
(3)

Balancing this force with the inertial, friction, air-drag, and gravitational forces
defines the free-flow acceleration Pvfree:

mPvfree D F.v/� 1

2
cdA�v2 � mg.�0 C ˛/: (4)

If the considered skier is following a leading athlete (speed vl ) at a spatial gap s, the
free-flow acceleration is complemented by the decelerating interaction force of the
intelligent-driver model (IDM)[1] leading to the full longitudinal model

dv

dt
D min

(

Pvfree; amax

"

1 �
�
s�.v; vl /

s

�2
#)

; (5)

where the desired dynamical gap of the IDM depends on the gap s and the leading
speed vl according to

s�.v; vl / D s0 C max

�

0; vT C v.vl � v/

2
p
amaxb

�

: (6)

Besides the ski length, this model has the parameters cdA�=m, �0, Pmax=m, vc
(defining amax), vc2, s0, T , and b (see Table 1). It is calibrated such that the maximum
unobstructed speed vmax on level terrain, defined by F.vmax; 0/ � cdA�v2max=2 �
mg�0 D 0, satisfies the observed speed distributions on level unobstructed sections
(Fig. 2).
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Table 1 Model parameters of the proposed longitudinal model

Parameter Typical value (fourth starting group)

ski length l 2 m

Mass m incl. equipment 80 kg

Air-drag coefficient cd 0.7

Frontal cross section A 1m2

Friction coefficient �0 0.02

Maximum mechanical power Pmax 150 W

Limit speed for active action vc 6 m/s

Time gap T 0.3 s

Minimum spatial gap s0 0.3 m

Normal braking deceleration b 1m=s2

Maximum deceleration bmax 2m=s2

Fig. 2 Speed density
functions for the section
between Station 1 and 2 for
each starting group. No jams
were observed in this section

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10  15  20  25

P
ro

b 
D

en
si

ty
 [h

/k
m

]

Speed [km/h]

Group0
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9

Group 10

2.1 Lane-Changing Model

We apply the general-purpose lane-changing model MOBIL [3]. Generally, lane
changing and overtaking is allowed on either side. Crashes are much less avoided
than in vehicular traffic, so, the symmetric variant of the model with zero politeness
and rather aggressive safety settings is appropriate. Lane changing takes place if it
is both safe and advantageous. The safety criterion is satisfied if, as a consequence
of the change, the back skier on the new track is not forced to decelerate by more
than his or her normal deceleration ability b:

dvback;new

dt
	 �b: (7)
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A change is advantageous if, on the new track, the athlete can accelerate more (or
needs to decelerate less) than on the old track:

dvfront;new

dt
	 dvactual

dt
C�a; (8)

where the only new parameter �a represents some small threshold to avoid lane
changing for marginal advantages. Note that for mandatory lane changes (e.g., when
a track ends), only the safety criterion (7) must be satisfied.

3 Simulation Results

We have simulated all of the 15,000 athletes of the Vasaloppet 2012 for the first
10 km (cf. Fig. 3) by implementing the model into the open-source traffic simulator
MovSim.org. The starting field includes 70 parallel tracks (cf. Fig. 1) where the 10
starting groups (plus a small elite group) are arranged in order. Further ahead, the
number of tracks decreases gradually down to eight tracks at the end of the uphill
section for x 	 7 km. The uphill gradients and the course geometry (cf. Fig. 3) were
obtained using Google Earth.

Fig. 3 Screenshot of the MovSim Simulation of the first 10 km of the Vasaloppet 2012 (center)
with an enlargement of the diverge-merge section (left top). Also shown are two photos of the
crowd flow at the corresponding sections (right)

http://www.MovSim.org
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Fig. 4 Distribution functions of the split times from the start to Station S1 (left), S1–S2 (left and
right), and S6–S7 (right), shown separately for the fastest groups (elite and groups 1 and 2) and
the remaining groups 3–10. All three sections take about the same time. Major jams occur only for
the groups 3–10 and only between the start and S1

As in the real event, we simulated a mass start. While the initial starting
configuration dissolves relatively quickly, massive jams form at the beginning of
the gradient section, particularly at the route divide (inset of Fig. 3). In summary, the
delays due to the jams accumulated up to 40 min for the last starting groups which
agrees with the macroscopic flow-based analysis of the split-time data (Fig. 4).

Conclusion
Using the open-software MovSim, we have quatitatively reproduced the
congestions and stop-and-go waves on the first 10 km of the Vasaloppet
Race 2012. The jams leading to a delay of up to 40 min are caused a steep
uphill section and a simultaneous reduction of the number of tracks. Further
simulations have also shown that eliminating the worst bottlenecks by locally
adding a few tracks only transfers the jams to locations further downstream.
In contrast, replacing the mass start (which is highly controversial) by a
wave start with a 5-min delay between the starting groups would essentially
eliminate the jams without the need to reduce the total number of participants.
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Quantitative Estimation of Self-Organization
in Bi-directional and Crossing Flows During
Crowd Movements

Dorine C. Duives, Winnie Daamen, and Serge P. Hoogendoorn

Abstract Understanding emerging phenomena in crowd movements is necessary
to understand how pedestrians behave during these movements under different cir-
cumstances and over time. Measures able to identify self-organization patterns are
currently scarce. In the present study the way in which three measures (the cluster-
method (Moussaid, et al. PLoS Comput Biol 8(3):e1002442, 2012), Efficiency
(Helbing (1997) Verkehrsdynamik – Neue physikalische Modellierungskonzepte,
1st edn. Springer, Berlin/Heidelberg, p. 46), and Polarization (Hemelrijk and
Hildenbrandt, PLoS ONE 6(8):e22479, 2011)) identify the presence of self-
organization within crowd movements. Trajectory data sets resulting from a
laboratory experiment and several simulations are used as a basis for the assessment.
It was found for all three methods that the extent to which self-organization can be
accurately predicted depends on the flow situation. Furthermore, two out of three
methods were able to detect the presence of self-organization in pedestrian flows
at all.

1 Introduction

Self-organization patterns in moving human crowds have been studied for more
than a decade. Self-organization has been defined as a process in which a pattern at
the global level of a system emerges solely from numerous interactions among the
lower-level components of the system [2]. Several of these patterns were also found
to appear in crowds, such as bi-directional lane formation and stripe formation.
Depending on the angle at which pedestrian flows intersect either the first or the
latter pattern arises [1, 7]. An understanding of how pedestrian flows behave under
different circumstances and develop over time is required in order to accurately
predict pedestrian crowd movements. Yet, until now quantitative research of the
self-organization patterns during large-scale crowd movements has been limited.
Measures to identify the extent of self-organization patterns are scarce. Biologists
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have studied self-organisation patterns within complex biological systems in a
quantitative manner for some time now by means of a method named “Polarization”.
Traffic related research has focused more on the stability and efficiency of pedes-
trian flows. Helbing [5] and Hoogendoorn and Daamen [7] mention quantitative
measures which might, when interpreted differently, also indicate the presence of
self-organisation. Currently, the quantitative assessment of the presence of self-
organisation is not trivial. Therefore, the present study investigates the extent to
which the three measures are capable of identifying the presence of self-organization
within crowd movements. It can be assumed that a form of self-organisation is
present, when one of the two before mentioned patterns is visible (i.e. ground truth).
The quantitative result of the three measures is compared for the time periods that
self-organisation is visually perceptible.

2 Discussion of Measures that Indicate Self-Organisation

In literature, three computational methods have been presented that can possibly
be used to analyze the extent to which pedestrian movements are self-organizing.
In this paper, the three methods are put to the test. In the following the efficiency
measure [5], the cluster-method [8], and the Polarization measure [6] are reviewed.
In the subsections underneath the three methods are explained further.

2.1 Efficiency

Helbing [5] introduces a method that determines the efficiency of a pedestrian flow.
In this case, if all pedestrians in the flow have the ability to walk in the direction
they prefer while adopting their preferred free speed, a flow is seen as efficient. In
an inefficient flow situation, pedestrians are assumed to deviate either from their
preferred direction or walking speed. See Eq. 1 for the mathematical formulation.

Efficiency < E >D lim
T!1

1

T

TZ

0

dt
1

N

NX

iD1

vi.t/ � ei
vo

(1)

Where N is the number of pedestrians in the systems, T the time period for
which the Efficiency is computed, vo is the average velocity at which a pedestrian
moves in its target direction and vi the velocity of the pedestrian at timestep i .
When assuming that self-organized flows are per definition more efficient than
unorganized flows, the method proposed by [5] can be used to determine the extent
to which a flow situation is self-organized. In this sense, E D 1 refers to lane and/or
stripe formation, while E D 0 corresponds to a crystalline non-moving state.
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Fig. 1 Clustering method according to [8]. Two pedestrians i and j belong to the same cluster if
one follows the other. In this study also t D 1 s and d D 0.6 m are the two clustering parameters
used

2.2 Cluster-Method

In order to analyse the instabilities in a self-organized pedestrian crowd, [8]
proposed a method to determine when groups of pedestrians formed that followed
a similar trajectory. The method is visually explained in Fig. 1, which is adopted
from this paper. When assuming that the extent of self-organisation is related to the
average size of the groups of pedestrians who follow each other, the Cluster-method
can serve as a proxy for the extent of self-organization within a flow situation.

2.3 Polarization

Biologists have studied the self-organisation of biological social systems for more
than a decade. Several methods have been proposed to quantitatively determine
the extent of self-organization within moving self-driven particle systems. Since
pedestrians are also self-driven particles, this method might also be used to
determine self-organisation in pedestrian flows. Most proposed methods are slightly
different versions of the mathematical formula proposed by [6]. The ‘Polarization’
of a system, extent to which all individuals in a system move in one direction, is
defined by average deviation of all individuals velocity from the systems average
course; see Eq. 2 for the mathematical formulation.

Polarization < ˚.d/ >D 1

N.d/

X

i2D

vi.d/

jjvi.d/jj
Nv.d/

jj Nv.d/jj (2)

In this formulation of Polarization, vi.d/ is the current velocity of pedestrian
i who is part of flow direction d and Nv.d/ the average movement velocity of all
pedestrians that are part of a certain flow. This method assumes that in a system
that is self-organized all pedestrians part of a certain flow direction move in exactly
the same direction due to the lack of disturbances. Since self-organized pedestrian
crowd movements know large groups of pedestrians which follow a similar path,
this assumption also holds for pedestrian crowds. In the formula, ˚.d/ D 1 refers
to complete organisation of the walking direction (i.e. self-organisation is present),
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while ˚.d/ D 0 corresponds to total chaos. When accounting for all movements
in the system, total self-organisation is accounted for by ˚.total/ D 0 for bi-
directional flow situations and ˚.total/ D 0:707 for intersecting flows.

3 Methodology of Comparison

Trajectory data sets resulting from a laboratory experiment and several simulation
data sets are used as the basis for this assessment. In this study, trajectory data sets
predicted by the calibrated microscopic pedestrian simulation model NOMAD [3]
are used. However, since it is unknown to the authors whether any simulation model
is capable of representing self-organization correctly, this study does not only rely
on computer generated trajectories. Additionally, experimental data sets are used,
which resulted from the pedestrian walking experiments performed by the Delft
University of Technology [4].

In both the laboratory and simulation study two flow patterns were generated,
being orthogonal intersecting flows (90ı angle) and bi-directional flows (180ı
angle). The demand of both experiments and simulation study followed a similar
pattern. Visually self-organisation is recognized in all trajectory data sets used in the
comparison of the methods. To review the methods specified in Sect. 2, the measures
are computed using the trajectory data sets. Accordingly the results over time are
compared with respect to each other, and a visual analysis of the situation.

4 Results

In the analysis of the results it was found that the three methods display similar
trends for both the simulation and the experimental data sets with respect to the
quantitative representation of self-organisation for respectively bi-directional and
intersecting flows. In order to explain the results, the graphs in Fig. 2 represent the
computational results from two of the simulation experiments.

The results from the Efficiency method suggest that the self-organisation of
the flows decreases over time, while the other two methods (correctly) indicate
that self-organisation increases over time. The Polarization method does indicate
a slight decrease of self-organisation for intersecting flows. A visual analysis of
the trajectory data of the bi-directional experiments shows that self-organisation
comes into existence after 120 s. In these experiments the average number of
pedestrians that are part of a cluster increases around the same period of time.
Furthermore, the increase of the polarization per direction (see Fig. 2e) indicates
that the directionality of the pedestrian movement becomes more smooth from
this moment in time onwards. Even though the system is more organized, Fig. 2a
shows that the efficiency of the overall movement decreases. For bi-directional
flow situations both the Cluster-method (see Fig. 2c) and the Polarization indicate
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Fig. 2 Simulation results bi-directional (left) and 90 intersecting flows (right). (a) and (b)
Efficiency of total system, (c) and (d) Number of pedestrians in a cluster, (e) and (f) Polarization
for pedestrians part of one of the directions

the presence of self-organisation. The Cluster-method indicates the presence of
self-organisation at the moment that the average cluster size increases. The extent
to which is visualized through size of the clusters. The Polarization graph does
also indicate the presence of self-organisation. But besides the extent to which
self-organisation is present, the graph also provides more information about the
disturbance in the system. In a sense, directionally non-uniform movements indicate
the angular deviation of pedestrians and as such friction between the directional
groups.

The results from the visual analysis of the simulations featuring intersecting
flows show that self-organisation comes into existence after 150 s. At this moment in
time the average number of pedestrians in clusters increases (Fig. 2d). Additionally,
Fig. 2f shows that the polarization per direction decreases, which indicates the
pedestrians move less uniformly. Based on these results, one can conclude that
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pedestrians need to twist, turn and decrease their velocity more in order to cross
the intersection. As a result, the efficiency of the entire system decreases, which is
indeed seen in Fig. 2b. Of the three measures, only the Cluster-method actually give
an indication of the exact moment that self-organization arises in the system, as the
graph features a sudden increase in amount of pedestrians in a cluster.

Conclusions
The outcome of the three proposed methods depends on the shape of the flow
situation. It is found that two out of three methods are capable of detecting the
presence of the self-organization in pedestrian flows. Especially the measures
Average cluster size and Polarization can do so. Where Polarization is a
more effective method to identify of the average operational interactions
within pedestrian flows (directionality), the Cluster-method can only iden-
tify whether self-organization is present. The Efficiency measure indicates
whether the pedestrian flow is effective. However, using this last method one
is not capable to identify the tipping point between non-organized and self-
organized behaviour.

This research has indicated the possibilities to use contemporary quan-
titative measures to indicate the presence of self-organisation in pedestrian
crowd movements. These measures can be implemented in order to assess the
chaos within a pedestrian movement system with a limited number of directed
flows. Yet, more research is needed to fully understand how, why and when
self-organisation plays an important role in crowd movement dynamics.

References

1. K. Ando, H. Ota, T. Oki, Forecasting the flow of people (in Japanese). R.R.R. Railw. Res. Rev.
45(8), 8–1 (1988)

2. S. Camazine, J.-L. Deneubourg, N.R. Franks, J. Sneyd, G. Theraula, E. Bonabeau, Self-
Organization in Biological Systems (Princeton University Press, Princeton/Oxford, 2003). p. 7

3. M. Campanella, S.P. Hoogendoorn, W. Daamen, Improving the Nomad microscopic walker
model, in 12th IFAC Symposium on Control in Transportation Systems (CTS’09), Redondo
Beach (2009)

4. W. Daamen, S. Hoogendoorn, Controlled experiments to derive walking behavior. Eur. J. Transp.
Infrastruct. Res. (EJTIR) 3(1), 39–54 (2003)

5. D. Helbing, Verkehrsdynamik – Neue physikalische Modellierungskonzepte, 1st edn. (Springer,
Berlin/Heidelberg, 1997), p. 46

6. C.K. Hemelrijk, H.Hildenbrandt, Some causes of the variable shape of flocks of brids. PLoS
ONE 6(8), e22479 (2011)

7. S.P. Hoogendoorn, W. Daamen. Self-organization in walker experiments, in Proceedings of the
5th Symposium on Traffic and Granular Flow, Delft (2004)

8. M. Moussaid, E. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, G. Theraulaz,
Traffic instabilities in self-organized pedestrian crowds. PLoS Comput. Biol. 8(3), e1002442
(2012)



An Expanded Concept of the “Borrowed Time”
in Pedestrian Dynamics Simulations

Marcin Mycek, Robert Lubaś, Jakub Porzycki, and Jarosław Wąs

Abstract Discretization in numerical simulations holds big advantage of decreas-
ing complexity of calculations, allowing for faster and larger-scale simulations.
However, such a procedure leads to emergence of unwanted phenomena due to
finite space and/or time resolution. For this reason when space is discretized
usually regular lattices are used as they preserve highest rotational and translational
symmetry. Highest natural isotropy is obtained by using hexagonal grid. However,
for pedestrian dynamics applications due to natural tendency of humans to build
square-based buildings and typical big size of the cell square grid allows drastically
better space representation. This paper describes how a borrowed time concept
can be used to reduce anisotropy in pedestrian dynamics simulations using regular
square grid without increasing complexity of the calculation. A simple case of
pedestrian movement using expanded borrowed time concept is described and
compared with basic approach. A method for generating static potential field with
higher isotropy is shown as well.

1 Introduction

Currently, the simulation of pedestrian dynamics is an issue of growing interest and
importance. Reliable results of the simulations enable: architects, safety engineers
or managers of public facilities to test influence of space arrangement and possible
scenarios on key characteristics of pedestrian flow. Regarding discrete, lattice-based
pedestrians simulations, a close attention should be drawn to issue of isotropy of
moving particles representing pedestrians.
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The term isotropy is a combination of two Greek words (presented below in Latin
transcription): isos – equal and tropos – way. In general, it means having the same
value when measured in different directions.

2 Related Works

Different approaches to the anisotropy reduction were presented by various authors.
For microscopic discrete simulations it was shown that introducing randomness
of any kind – be it a random distribution of active grid cells [6], a randomized
space discretization [7], introducing random walk [9], using inherent randomness
such as in lattice-gas automata [1] or asynchronous dynamics [10] can highly
reduce unwanted effects of discretization, while Kirchner et al. [3] analyzed issue of
discretization of different models of pedestrian dynamics. Kretz and Schreckenberg
in [5] discussed problems of symmetry and influence of neighborhood schemes on
discrete models of pedestrian dynamics.

In pedestrian dynamics topic of isotropy was undertaken from different angles
as most of the previously mentioned methods are not applicable due to typical large
grid cell size. Kretz and Schreckenberg [5] addressed this issue by analyzing impact
of higher speed of pedestrians i.e. allowing them to move larger, but discrete number
of steps in one round of simulation. Klüpfel [4] considered a basic borrowed time
approach, but only one step corrections were considered, which are not enough to
achieve high isotropy [8]. Hartmann [2] proposed first-order movement algorithm
for determining accurate shortest paths and presented it for a hexagonal grid.

3 An Expanded Concept of Borrowed Time

A full mathematical background of a borrowed time concept has been described in
detail in [8], in this article only key points will be briefly described.

For any regular grid one can define an optimal path from a cell A to a cell B:

Definition 1 For a path PAB between two given cells A and B: if there does not
exist a path connecting between those two cells with a shorter time than PAB, it is
called an optimal path and denoted by P op

AB, with its time (length) labeled top
AB.

For such paths between cells A and B an average speed NVAB can be defined as:

NVAB D dist.AB/

t
op
AB

; (1)
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Fig. 1 A horizon H.4/ for a
hexagonal (a) and a square
(b) grid. For clarity only part
of the whole horizon has been
shown

with dist.AB/ being Euclidean distance between cells centers. To measure relative
quantities we can introduce the average speed deviationDAB:

DAB D
NVAB � 1

1
: (2)

In order to define a measure of isotropy a set over which it can be measured needs
to be constructed as well:

Definition 2 For a given cell A and distance h, a set of all cells having at least one
common point with a circle with radius h and center in the middle of the cell A is
called a horizon and denoted by HA.h/.

How horizons are shaped for both square and hexagonal grid can be seen in Fig. 1.
Finally a measure of the average speed isotropy – IA.h/ can be introduced:

Definition 3

IA.h/ D 1

#HA.h/

X

C2HA.h/
D2
AC : (3)

The main problem with anisotropy of a square grid comes from diagonal moves.
Typical grid cell size in pedestrian dynamics is too big to disallow diagonal
movement, while pedestrians in simulation during such steps cover significantly
more distance. The proposed solution is to allow pedestrian to “borrow” time
for diagonal moves in order to keep average speed similar in all directions, thus
regaining isotropy. If the amount of time borrowed by the agent exceeds whole time
step, to compensate this the pedestrian is frozen for one round of simulation. There
are two approaches to the amount of time agent should borrow during diagonal
moves. First one is to optimize first step, i.e., IA.1/[4], the second one is to optimize
IA.1/[8]. How does IA.h/ andDAB look like for both cases and for a case without
any modifications (i.e., pure Moore neighborhood) can be seen in Fig. 2.
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Fig. 2 (a) – dependence of average speed deviation D on angle for different borrowed time
parameter values. (b) – relation between a measure of the average speed isotropy IA and a
horizon radius h. Values of b1 D

p
2 � 1 and b1 D 0:309404 correspond to first and infinite

step improvement correspondingly, b D 0 correspond to pure Moore neighborhood without any
modifications

4 Applications

Lets consider pedestrians on a square grid moving toward a point at different angles,
but with the same distance to the target, i.e., with starting points from the same
horizon. The situation is depicted in Fig. 3 with a target cell marked green and
H.16/ marked dark gray. Two potential fields are marked on the picture. The first
one (red) was calculated using Dijkstra algorithm with

p
2 distance on diagonal

connections. For the second one (black) 1C b1 value was used instead.
Lets study movement of eight pedestrians with their initial positions marked by

(1, 2, 3, 4, 40, 30, 20, 10). All pedestrians in typical way choose in each time step a
destination a cell with the smallest potential value in Moore neighborhood. Their
chosen trajectories are marked blue. The dark blue cells show where and when a
pedestrian movement is temporary frozen due to borrowing more then one whole
time step. The borrowed time parameter b was different for each potential field
as well – b1 and b1 for respectively. We see that while for pedestrians close to
main axes (1, 10, 2, 20) the difference is negligible, it is more visible the closer
the movement is to diagonal – pedestrians 4 and 40 reach target after 18 and 19
simulation steps respectively

Not only on the operational level the concept of borrowed time can be used, but
also to improve isotropy of static potential fields generated with local greedy method
such as a Dijsktra algorithm. Depending on assumed neighborhood and diagonal
distance the shape of the determined potential can be very different. In Fig. 4 four
different ways of generating potential field are shown, namely for von Neumann
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Fig. 3 An illustration of pedestrian trajectories for basic and an expanded borrowed time concept.
All pedestrians start in the same distance (grey cells) to the target point (green). (1, 2, 3, 4, 40, 30,
20, 10) depict starting positions of eight pedestrians with their trajectories marked blue. Dark blue
cells highlight where and when pedestrian movement was stopped due to borrowing too much time

neighborhood (a) and Moore neighborhood (b) with diagonal distance of 1 and for
Moore neighborhood with diagonal distance of 1C b1 (c) and 1C b1. To highlight
the differences two last cases are compared in Fig. 5 with a reference circular shape.
As can be seen for 1 C b1 the shape is always inside a circle. This means that we
make a systematic error always with the same sign. On the other hand for 1 C b1
the absolute error is lower and mean error is very close to zero [8].
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Fig. 4 A comparison of four potential fields, all generated using a Dijkstra algorithm, but with a
different neighborhood and a diagonal distance. (a) von Neumann neighborhood with a diagonal
distance 1. (b) Moore neighborhood with a diagonal distance 1. (c) Moore neighborhood with a
diagonal distance 1C b1. (d) Moore neighborhood with a diagonal distance 1C b1

Fig. 5 A comparison of static potential fields generated with a Dijkstra algorithm for a Moore
neighborhood with different diagonal distance – 1C b1 (inner) and 1C b1 (outer). A circular
shape for corresponding perfect shape is shown
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5 Summary

The article described how an expanded concept of borrowed time can be used to
reduce anisotropy in pedestrian dynamics simulations. To potential applications in
pedestrian movement and static field generation were presented. Especially isotropy
of the shapes obtained by different approaches to Dijkstra algorithm were compared,
with the clear advantage of the approach based on an expanded concept of the
borrowed time.

It should be noted that while proposed solutions are very similar to the methods
based on solving Eikonel equations proposed in [2], they are the best zero order
solution in comparison to the first order method of [2].
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Measuring Disaster Preparedness of UK Cities
from Open Spatial Databases

Bharat Kunwar and Anders Johansson

Abstract In recent years, we have seen a surge in the number of natural disasters
(Munich, Loss events worldwide 2013, 2013). Rapid urbanisation and population
growth are contributing factors. However, the planning tools available are usually
specific to a region and incompatible in new areas. Therefore, aim of the overall
project is to utilise growing wealth of crowd-sourced open spatial databases like
OpenStreetMap (OSM) (Haklay and Weber, Pervasive Comput IEEE 7(4):12–18,
2008), computational mobility and behavioural models to achieve rapid simulation
of large-scale evacuation effort in response to major crises. As part of an initial
effort to gain insight into disaster resilience of various UK cities, 7 amenities
across 11 cities have been studied. Correlations between population count (GPWv3)
(Center for International Earth Science Information Network (CIESIN)/Columbia
University and Centro Internacional de Agricultura Tropical (CIAT), Gridded
Population of the World, Version 3 (GPWv3): Population Density Grid, 2005) and
number of critical amenities that have the potential to suffer increase in demand
during a crisis have been looked at. Similarly, correlations between pairs of poten-
tially interdependent population weighted amenities have also been investigated by
working with the assumption that if they are spatially well correlated, they can work
better. As the work is ongoing, a worldwide geographically specific ‘Evacuation-
Friendliness Index’ is envisioned at the end of this project. As the research focus
expands take suitability of road networks for emergency evacuation and dynamic
effects using agents based models, the outcome is expected to have implication on
emergency planning in the short term by testing multiple strategies in the run up to
a disaster and influence policy makers in the long term by identifying weakest links
and bottlenecks in a city system.

1 Introduction

In recent years, we have seen a surge in the number of natural disasters [1]. In
early November 2013, Typhoon Haiyan, an exceptionally powerful tropical cyclone
devastated portions of Southeast Asia killing at least 6,000 people with UN estimate
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suggesting that around 11 million people have been affected by it and many have
been left homeless. While rapid urbanisation and population growth are contributing
factors, it is also a call for urgent action.

Lämmel et al., [2] carried out evacuation simulation in the Indonesian city of
Padang for Last Mile Evacuation Project. However, such planning tools rely on a
large amount of information gathering which requires an equally large amount of
time. They are also usually constrained to specific geographical regions and difficult
to keep up to date with new data.

As a result, the aim is to provide an interface where a region of interest anywhere
on the planet can be selected under risk of a type of disaster (e.g. flooding or
earthquake), and within matter of minutes, have an evacuation model running
for that region using combination of well studied approaches like Agent Based
Modelling (ABM) and road network analysis on a world-wide scale.

Initial work is an examination of Points Of Interest (POI) within various UK
cities to uncover potential socioeconomic insights from spatial data and whether
their disaster critical POI are best spatially located to serve their purpose.

An extract of OpenStreetMap (OSM) [3] spatial database for Great Britain (great-
britain-26072012.osm.pbf – 570.7 MB compressed as of 26 July 2013) [4] is used.

The OSM database schema contains three primary tables for points, lines and
polygons. POI information is accessed from the points table.

To enable comparison with distribution of population, Gridded Population of
the World, Version 3 Future Estimates (GPWv3FE) [5] is used, which consists of
estimates of human population for the years 2015 at 2.5 arc-min resolution.

Table 1 enlists sample size of amenities according to OSM database. The cities
are in the order of population size. Note that the OSM database entries do not
necessarily explicitly replicate reality and may be incomplete, as a consequence
of which the later results may be skewed, especially for cities with few samples.

Table 1 Sample size of amenities in the given cities (OSM) in the order of population size
(GPWv3) that are covered in this report

Population Fuel Police Fire_station Hospital School atm Post_box

London 8,555,606 341 79 33 76 657 642 5,232

Birmingham 1,379,033 42 12 3 12 47 104 858

Leeds 1,000,671 51 8 9 9 107 119 782

Manchester 615,549 27 8 4 11 63 21 83

Liverpool 532,449 16 11 4 11 52 20 308

York 347,195 13 2 1 3 8 40 210

Nottingham 313,880 20 7 1 1 27 36 271

Bristol 253,664 23 8 4 5 60 47 425

Cardiff 198,112 12 3 1 2 16 32 85

Oxford 158,451 9 3 1 1 5 40 209

Chester 23,644 12 1 1 2 10 7 31
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Amenities like ‘police’, ‘hospital’ and ‘fire_station’ that have the potential to be
a critical infrastructure during a crisis are examined here. Some are non-critical
amenities, e.g. ‘atm’ and ‘post_box’, but they provide good control group to
compare against, (e.g. ‘school’ vs ‘post_box’). This is to help highlight the more
useful correlations between amenities such as ‘fire_station’ and ‘hospital’.

2 Methodology

The population density raster map p.i; j / that falls within the extent of the geo-
graphical map is resized using a ‘bicubic’ interpolation method which consistently
yields the lowest error compared to other ways of interpolation methods like
‘bilinear’, ‘box’ and ‘nearest’. It is converted to population count map, P.i; j / by
multiplying each cell using the average area of a grid cell, Saverage to give,

p.i; j / � Saverage D P.i; j / (1)

Similarly, the number of amenities that fall within the extent of these cells are
counted and saved to an integer matrix to obtain an amenity count grid A.i; j /. It
may also be represented in terms of population weighted amenity A

P
.i; j / as follows,

A.i; j /

P.i; j /
D A

P
.i; j /; if P.i; j / 	 1 (2)

Then, using data on population and amenity count in the scope, correlation
coefficient between them are calculated using Eq. 3 where i is the cell index and
n is the number of cells.

rxy D

nP

iD1
.xi � Nx/.yi � Ny/

s
nP

iD1
.xi � Nx/2

nP

iD1
.yi � Ny/2

(3)

‘Population-Amenity’ correlation analysis (rPAC) aims to look at the relative
difference between various places and make a qualitative inference of places
that might be better prepared for disasters than others. To do this, correlation is
established between P.i; j / and A.i; j / to see if there are links between how well
the critical amenities and population centres are correlated as a measure of how
they are intrinsically prepared in response to various crises by having the necessary
amenities within reach of where they are most needed. Higher rPAC could mean
greater preparedness by having the necessary amenities within close proximity of
most people. However, it could also be problematic by inhibiting access to critical
amenities due to denser population.
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Fig. 1 Example cases of various interacting Highway (bottom), Amenity (middle) and Population
(top) layers for London (left) and Bristol (right). Highway and Amenity layers come from OSM.
Population layer comes from GPWv3 [5]. The size of the peaks on Amenity and Population layers
simply indicate the relative maximum and minimum points for the purpose of demonstration only

‘Amenity-Amenity’ correlation analysis (rAAC) examines the possibility of a
similar disaster preparedness indicator to rPAC by working with the assumption that
if two critical highly interdependent amenities in a city are within good proximity
of each other, it is indicative of a greater disaster preparedness but potentially also
reduce resilience as both could fail simultaneously. This is done by establishing
correlation between pairs of A

P
.i; j / dataset belonging to various amenities (Fig. 1).

3 ‘Population-Amenity’ Correlation Results

Figure 2 shows median rPAC of seven correlations per city for each amenity. It ranks
‘London’ with a median rPAC � 0:8 at the top and ‘Chester’ with a median rPAC �
�0:3 at the bottom. All the leading cities from ‘London’ to ‘Bristol’ have a strong
median rPAC, roughly following the trend of population size, with the exception of
‘Oxford’.

Figure 3 shows median rPAC of 11 correlations per amenity for each city. Amenity
‘post_box’ is best correlated with population count with a median rPAC � 0:6.
Amenity ‘hospital’ and ‘fire_station’ share the least correlation with a median
rPAC � 0:3. The range of values lean towards a positive correlation.
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Fig. 2 Distribution of mean rPAC of the 7 amenities on x-axis for each of the 11 cities on y-axis.
�1:0 is maximum anti-correlation, 0 is no correlation and 1.0 maximum correlation. The red etches
indicate the median of seven analyses per city for each amenity
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Fig. 3 Distribution of mean rPAC of the 11 cities on x-axis for each of the 7 amenities on y-axis.
�1:0 is maximum anti-correlation, 0 is no correlation and 1.0 maximum correlation. The red etches
indicate the median of 11 analyses per amenity for each city

4 ‘Amenity-Amenity’ Correlation Results

Figure 4 shows medians of 21 unique correlations per city between amenity pairs
that are not self-referential. ‘Leeds’ and ‘Manchester’ rank high with a median
rAAC � 0:7 while ‘Oxford’ with a median rAAC � 0:1 falls at the bottom.

Figure 5 shows median of rAAC for 66 unique correlations per amenity between
amenity pairs across cities. Amenity ‘post_box’ is most correlated with other
amenities with a median rAAC � 0:6. Amenities ‘fire_station’ and ‘hospital’ share
the lowest median correlation rAAC � 0:25. The range of values lean towards a
positive correlation.



270 B. Kunwar and A. Johansson

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

Oxford

Bristol

Cardiff

York

London

Chester

Birmingham

Nottingham

Liverpool

Manchester

Leeds

Correlation Coefficient

Fig. 4 Distribution of mean rAAC of the 7 amenities on x-axis for each of the 11 cities on y-axis.
�1:0 is maximum anti-correlation, 0 is no correlation and 1.0 maximum correlation. The red etches
indicate the median of 21 unique correlations per city between amenity pairs
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Fig. 5 Distribution of mean rAAC of the 11 cities on x-axis for each of the 7 amenities on y-axis.
�1:0 is maximum anti-correlation, 0 is no correlation and 1.0 maximum correlation. The red etches
indicate the median of 66 unique correlations per amenity between amenity pairs across cities

5 Conclusion

‘Population-Amenity’ correlations seem to increase with population size of the
UK cities in the study scope with greater certainty due to smaller inter-quartile
range (attribute of a bigger sample size). ‘London’ and ‘Chester’ rank at the top
and bottom respectively. The highest correlation can be seen for ‘fuel’ stations,
indicating ease of access. The lowest correlation can be seen for ‘hospital’ and
‘fire_station’ indicating presence away from dense population centres, indicating
that services are less likely to be hindered.

‘Amenity-Amenity’ correlations rank ‘Leeds’ and ‘Manchester’ at the top, and
‘Bristol’ and ‘Oxford’ at the bottom. The amenity ‘post_box’ is best correlated with
all the other amenities across all cities. However, ‘fire_hospital’ and ‘hospital’ rank
at the bottom, following the same trend as ‘Population-Amenity’ correlation. It is
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probably a good idea that these critical amenties are not spatially coupled with other
critical amenities in the face of a disaster as multiple failure could be even more
disastrous.

6 Current Limitations and Future Work

Small sample size of amenities for some of the cities and use of low resolution
GWPv3FE population data in this work are limiting factors.

However, as incorporation of ABM is the next step, layers such as ‘urban
centres’, ‘altitude’, etc. will be added. A taxonomy of various types of disasters
is also pending so that scarce resources can be identified, e.g. earthquakes may
increase demand for open spaces. Road networks will also be analysed to get an
idea of relative robustness of road networks in world cities.
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Heterogeneous Pedestrian Walking Speed
in Discrete Simulation Models

Stefania Bandini, Luca Crociani, and Giuseppe Vizzari

Abstract Discrete pedestrian simulation models are viable alternatives to particle
based models, employing a continuous spatial representation and they are able to
reproduce realistic pedestrian dynamics from the point of view of a number of
observable properties. The effects of discretisation, however, also imply difficulties
in modelling some phenomena that can be observed in reality. This paper presents
a discrete model extending the floor field approach allowing heterogeneity in the
walking speed of the simulated population of pedestrians. Whereas some discrete
models allow pedestrians to move more than a single cell per time step, in the present
work we maintain a maximum speed of one cell per step but we model lower speeds
by having pedestrians yielding their movement in some turns. Different classes
of pedestrians are associated to different desired walking speeds and we define a
stochastic mechanism ensuring that they maintain an average speed close to this
threshold.

1 Introduction

Discrete pedestrian simulation models are viable alternatives to particle based
models that employ a continuous representation (see, e.g., [4]) and they are able
to reproduce realistic pedestrian dynamics from the point of view of a number of
observable properties. The effects of discretisation, however, also imply difficulties
in modelling some phenomena that can be observed in reality. This paper focuses
on the possibility of modelling heterogeneity in the walking speed of the simulated
population of pedestrians by modifying an existing multi-agent model extending the
floor field approach [6]. Whereas some discrete models allow pedestrians (or cars,
when applied to traffic modelling) to move more than a single cell per time step (as
discussed in [1]), in the present work we maintain a maximum speed of one cell
per step, but we model lower speeds by having pedestrians yielding their movement
in some turns. Different classes of pedestrians are associated to different desired
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walking speeds and we define a stochastic mechanism ensuring that they maintain
an average speed close to this threshold. In the paper we will formally describe the
model and we will show the results of its application in benchmark scenarios (single
and counter flows in simple scenarios).

2 A Discrete Model with Heterogeneous Speeds

The method described in this paper has been developed on the computational model
described in [6]. For reasons of space, we will omit the discussion of this baseline
and we will only explain the general characteristics of the discrete environment,
fundamental for the understanding of the proposed method for managing speed
heterogeneity. The environment is represented by a grid of 40 cm sided square
cells. Moore neighbourhood structure is used for describing the agents movement
capabilities at each time step. Finally, update of agents intentions and positions
at each step are managed with the parallel update strategy, with rules for conflict
management based on the notion of friction [2].

In the literature, discrete models generally assume only one speed profile for all
the population and this is considered a strong limitation of this approach; efforts
towards the modelling of different speed profiles consider two main approaches: (i)
increasing agents movement capabilities [1] (i.e. they can move more than 1 cell
per time step), according to their desired speed; in this way, given k the side of
cells and n the maximum number of movements per step, it is possible to obtain n
different speed profiles, less or equal to n � k m/step; (ii) modifying the current time
scale, making it possible to cover the same distance in less time and achieving thus
a higher maximum speed profile but at the same time allowing each pedestrian to
yield their turn in a stochastic way according to an individual parameter, achieving
thus a potentially lower speed profile.

The method supporting movements of more than a single cell can be effective,
but it leads to complications and increased computational costs for the managing
of micro-interactions and conflicts: in addition to already existing possible conflicts
on the destination of two (or more) pedestrian movements, even potentially illegal
crossing paths must be considered, effectively requiring the modelling of sub-turns.
In addition, the expressiveness of this method is still limited: the maximum number
of movements allowed per time step determines the number of speed profiles
reproducible with simulations (e.g., with vmax D 4 cell per step and a turn duration
of 1 s, simulations can be configured with 0.4, 0.8, 1.2 and 1.6 m/s).

For these reasons, we decided to retain a maximum velocity of one cell per turn,
allowing the model to reproduce lower speed profiles by introducing a stochastic
yielding mechanism.

The baseline computational model has been modified in several parts. Each
agent has a new parameter Speedd in its State, describing its desired speed. For
the overall scenario, a parameter Speedm is introduced for indicating the maximum
speed allowed during the simulation (described by the assumed time scale). In order
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Algorithm 1 Life-cycle update with heterogeneous speed
if Random./ � ˛=ˇ then

if updatePosition./ == true then
˛ ˛ � 1

else
ˇ ˇC 1

end if
end if
ˇ ˇ � 1
if ˇ DD 0 then

.˛; ˇ/ D Frac.�/
end if

to obtain the desired speed of each pedestrian during the simulation, the agent
life-cycle is then activated according to the probability to move at a given step

� D Speedd
Speedm

.
By using this method, the speed profile of each pedestrian is modelled in a fully

stochastic way and, given a sufficiently high number of step, their effective speed
will be equal to the wanted one. But it must be noted that in several cases speed
has to be rendered in a relatively small time and space window (think about speed
decreasing on a relatively short section of stairs).

In order to overcome this issue, we decided to consider � as an indicator to be
used to decide if an agent can move according to an extraction without replacement
principle. For instance, given Speedd D 1:0m=s of an arbitrary agent and Speedm D
1:6m=s, � is associated to the fraction 5=8, that can be interpreted as an urn model
with 5 move and 3 do not move events. At each step, the agent extracts once event
from its urn and, depending on the result, it moves or stands still. The extraction is
initialised anew when all the events are extracted. The mechanism can be formalised
as follows:

• Let Frac.r/ W R ! N
2 be a function which returns the minimal pair .i; j / W

i
j

D r .
• Let Random be a pseudo-random number generator in Œ0; 1�.
• Given � the probability to activate the life-cycle of an arbitrary agent, according

to its own desired speed and the maximum speed configured for the simu-
lation scenario. Given .˛; ˇ/ be the result of Frac.�/, the update procedure
for each agent is described by the pseudo-code of Algorithm 1. The method
updatePosition./ describes the attempt of movement by the agent: in case of
failure (because of a conflict), the urn is not updated.

This basic mechanism allows synchronisation between the effective speed of an
agent and its desired one every � steps, which in the worst case (informally when
Speedd
Speedm

cannot be reduced) is equal to Speedm � 10� step, where � is associated to
the maximum number of decimal positions considering Speedd and Speedm. For
instance, if the desired speed is fixed at 1:3m=s and the maximum one at 2:0m=s,
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the resulting Frac.�/ D 13
20

, therefore the agent average velocity will match its
desired speed every 20 steps.

As discussed in [3, 5], an effect of the discretisation of the environment is the
fact that diagonal movements generate a higher movement speed. In order to face
this issue, this mechanism can be improved by considering these movements as
a different kind of event during the extraction. With this strategy, each diagonal
movement carried out by an agent decreases its probability to move in the next

steps according to the ratio � D 0:4�p2�0:4
Speedd�timeScale , where timeScale D 0:4=Speedm

(considering the adopted scale of spatial discretisation). This fraction represents the
relationship between the additional covered space, due to the diagonal movement,
and the desired speed of the agent expressed in step. In this way � represents the
exact number of steps the agent will have to stand still to achieve a synchronisation
of desired and actual speed. In order to discount diagonal movements, therefore, we
introduced in the agents’ state a parameter diagPenalty, initially set to 0, which
is increased by � each diagonal movement. Whenever diagPenalty 	 1, the
probability to move is decreased by adding in the urn of extraction one do not move
event or, in reference to Algorithm 1, by increasing of 1 unit the parameter ˇ after
updatePosition./ invocation, decreasing diagPenalty by 1.

This method is now consistent for reproducing different speeds for pedestrians
in a discrete environment also considering the Moore neighbourhood structure. It
must be noted, however, that if it is necessary to simulate very particular velocities
(consider for instance a finer grained instantiation of a population characterised by
a normal distribution of speed profiles), Frac.�/ is such that a large number of turns
is needed to empty the urn, that is, to achieve an average speed equal to the desired
one. This means that locally in time the actual speed of a pedestrian could differ
in a relatively significant way from this value. To avoid this effect, during the life
of each agent the fraction describing the probability is updated at each step and in
several cases it will reach unreduced forms, with GCD.˛; ˇ/ > 1. These situations
can be exploited by splitting the urn into simpler sub-urns according to the GCD
value. For example, given a case with Frac.�/ D 5

11
, after one movement the urn

will be associated to 4
10

; since GCD.4; 10/ D 2 the urn can be split into 2 sub-urns
containing 2 move and 3 do not move events that will be consumed before restarting
from initial urn. The effect of this subdivision is to preserve a stochastic decision
on the actual movement of the pedestrian but to avoid excessive local diversions
from the desired speed. Improvements obtained with this method (from here called
sub-urn method) are discussed in the next section.

3 Simulation Results

With the results shown in this section we want to exemplify the reliability of the
proposed method: to verify the correct reproduction of the agents speed, as well
as the average error generated by discrete space and time, two sets of stress tests
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Fig. 1 Space covered by the agent, per step, in a scenario where only diagonal movements are
possible, shown on the left

have been performed in two ad hoc scenarios. For both of them, only one agent is
present in the environment in order to avoid the influence caused by conflicts. In
the first scenario, depicted in Fig. 1 on the left, the agent can only perform diagonal
movements (either towards the destination or, less likely, backwards). Three desired
speeds have been considered – 1.6, 1.2 and 0.4 m/s – with a turn duration of 0.25 s;
test results are shown in Fig. 1 on the right. Baseline data represents the space
covered by the agent with desired speed of 1.6 m/s without using the proposed
method for the penalisation of diagonal movements: the additional space covered
by means of diagonal movement causes the agent to achieve a speed of 2.26 m/s. By
applying the proposed method the error in the actual speed is significantly reduced:
the mean absolute error in the distance covered at each step was about 0.25 m for
desired speed of 1.6 m/s, 0.35 m for desired speed of 1.2 m/s and 0.18 m for 0.4 m/s.
Maximum errors have been, respectively, of 0.54, 0.83 and 0.56 m for the lowest
desired speed.

To evaluate the improvements given by the sub-urn method a second scenario
has been executed in a linear environment which constrains the agent to perform
only non-diagonal movements. Desired speed of the agent has been configured to
1.31 m/s, which causes and initial urn of 160 events, where 131 of them are moves
(i.e., the agent will assume exactly 1.31 m/s every 160 steps). Figure 2 illustrates
the aggregation of the results of 30 different runs of the simulation by using (darker
dots) and not adopting (lighter dots) the proposed method. Results emphasize that
the sub-urn method leads to a more accurate simulation of the desired speed: darker
dots are in fact much closer to the line describing the distance covered with 1.31 m/s
in a continuous space. This result is also described by a lower mean and maximum
absolute error: the proposed method produced a mean and maximum error of 0.23
and 1.34 m against 0.56 and 2.49 m for the baseline approach.
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Fig. 2 Space covered by the agent in the second set of tests. Blue dots are obtained with the sub-
urn method, while red ones without. The green line describes 1.31 m/s

Conclusions
This paper discussed an approach for reproducing different speeds in discrete
pedestrian simulation models preserving a maximum movement of one cell
per step, avoiding thus the need to manage conflicts that arise with higher
maximum velocities. The proposed technique is simple yet effective, as
explained with the proposed test results. It allows discrete computational
models (not only the one adopted for the tests) to simulate more heteroge-
neous pedestrian populations, and it will also make possible the modelling of
portions on the environment that alter pedestrian speed like stairs.
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Stochastic Headway Dependent Velocity Model
and Phase Separation in Pedestrian Dynamics

Christian Eilhardt and Andreas Schadschneider

Abstract The occurrence of phase separation into a jammed phase and a free-
flow phase with non-interacting agents is a common feature observed in vehicular
traffic. Experiments have shown a similar behavior for pedestrians, though the
situation in pedestrian dynamics is more complicated. The two separate phases
in one-dimensional “single-file” pedestrian movement are a jammed high-density
phase and a phase of medium to high density with slowly moving pedestrians. Both
phases consist of interacting agents. In order to understand this phenomenon we
develop the one-dimensional Stochastic Headway Dependent Velocity Model which
is continuous in space but discrete in time. The velocity of each agent depends on
its headway and on its velocity: standing agents are subjected to a slow-to-start
rule. The model can reproduce the experimentally observed phase separation at high
densities.

1 Experimental Data

Experiments with single-file pedestrian traffic performed by Seyfried et al. [1] in
2006 with up to 70 pedestrians have provided strong evidence for phase separation
in these systems. The length of the experimental setup was approximately 26m
including a 4m long measurement section in which the pedestrian trajectories have
been measured by automatically tracking the pedestrian heads [2]. The resulting
trajectories at high density, shown together with the fundamental diagram and
the velocity distribution in Sect. 3, indicate a separation into a jammed phase and
a phase of slowly moving pedestrians. This is rather different from the phase
separation observed in vehicular traffic where the coexistence of a jam with free
flow is observed (see e.g. [3] and references therein). Here we introduce a simple
model which tries to capture the main features leading to this unconventional form
of phase separation.

The experimental data only extends over the small time-scale of 140 s and
small spatial scales of 26m of the whole experimental setup and only 4m of
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the measurement section. This prevents judging the stability of the empirical
phase separation. Firstly, it is unclear whether phase separation remains for longer
timescales. Secondly, we do not know whether the observed jam in the measurement
section is the only jam in the experimental setup. The existence of additional jams
would be an indication that jams might be forming and decaying dynamically.

2 Model Definition

The Stochastic Headway Dependent Velocity (SHDV) model is a space-continuous
model with discrete time in one dimension. It therefore incorporates aspects of
both continuous models such as the Generalized Centrifugal Force Model [4] or
the Optimal Velocity Model [5, 6] and discrete models, e.g. cellular automata such
as [7] or the Floor Field model [8]. Other models with discrete time and continuous
space are discussed in [9] and [10]. The SHDV model also includes a variant of a
slow-to-start rule used in vehicular traffic models [11–13].

Time is divided into discrete timesteps which can be identified with the reaction
time of a pedestrian. This is equivalent to the time-discreteness in cellular automata
models. The length of a timestep is �t D 0:3 s. Each pedestrian is represented
by an agent and moves through a continuous but finite one-dimensional space.
Periodic boundary condition are used which correspond to the circular course in
the experiments. All simulations are performed with a system length of 26m equal
to the length of the experimental setup.

The initial configuration for the simulations is very similar to that in the
experiments and resembles an ‘almost homogeneous’ state. This is achieved via a
two-step process: The agents are first distributed homogeneously. Then each agent’s
position is shifted slightly according to a Gauss distributed random variable. The
Gauss distribution is cut off to prevent overlapping of agents.

For modeling purposes, the agents are assumed to be point-like. In each timestep
the velocity is calculated as a function of the headway. Here we choose a piecewise
linear form of the velocity function v.h/. A graphical representation is given in
Fig. 1. The velocity function is characterized by five parameters vmax, vmin, d , dc ,
and ˛. Only four of these are independent, e.g. dc can be expressed in terms of the
other parameters as

dc D d C 1

˛
.vmax � vmin/ : (1)

Each agent has a maximum velocity vmax and minimum velocity vmin. An agent i is
only allowed to move if its headway hi exceeds a lower threshold d D 0:4m. Note
that this distance includes the space occupied by the pedestrian itself. We will later
see that the model dynamics leads to a minimum distance dmin between agents that
is a little bit smaller than d . Agents that have headways larger than the interaction
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Fig. 1 Relation between
headway and velocity used in
the simulations

maxV

min

0

0 d

h

dc

V
V

α

range dc move interaction-free with maximum velocity. The final parameter that
characterizes the velocity function is its slope ˛.

Additionally a slow-to-start rule is applied: with probability p0 D 0:5 the
velocity of an agent that did not move in the last timestep remains zero.

The following algorithm describes the update of the SHDV model: In each
timestep, a parallel update of all agents is performed by executing the following
steps in order:

1. First the headway hi of each pedestrians i is calculated.
2. The velocity vi of each agent i is calculated according to the velocity function

v.hi / depicted in Fig. 1:

vi D v.hi /; v.h/ D
8
<

:

0 ; h � d

˛.h � d/C vmin ; d < h < dc
vmax ; h 	 dc

(2)

3. If the agent did not move in the last timestep, its velocity remains zero with the
stopping probability p0 and with probability 1 � p0 it takes the value given by
Eq. (2).

4. Each agent moves with velocity vi determined in the previous step and its
position changes by �x D vi ��t .

5. Time is advanced by �t : t ! t C�t .

The simulations in this contribution are performed with parameter values d D
0:4m, vmax D 1:2m

s
, vmin D 0:1m

s
, ˛ D 1

2
s�1, p0 D 0:5, and �t D 0:3 s, resulting

in dc D 2:6m.
Due to the discrete timestep, the actual minimum distance between agents can be

smaller than the lower threshold d . Consider an agent i with a headway hi D d C �
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slightly larger than d following an agent i C 1 that has a headway smaller than d .
In the next timestep agent i C1 does not move whereas agent i moves with velocity
vi D v.hi /. This results in a new headway that is smaller than d . In the limit hi ! d

this is the minimum possible distance in the SHDV model and given by

dmin 	 d C � � v.d C �/ ��t ! d � vmin ��t D 0:37m: (3)

The Stochastic Headway Dependent Velocity Model can – in contrast to typical
continuous models – be implemented exactly as stated here without the need for
approximations, e.g. discretization of time. This prevents the emergence of artifacts
which depend on the implementation such as the details of the time discretization.

3 Results

3.1 Fundamental Diagram

To obtain the fundamental diagram of the stationary state we start the measurement
after 100;000 s and average over the next 100 s. Figure 2 shows fundamental
diagrams of the SHDV model as well as the fundamental diagram obtained from
the experimental data. The global fundamental diagram is obtained by using
the averaged velocity and the global density corresponding to the number N
of pedestrians. For each N , 10 simulation runs have been performed. The local
fundamental diagram uses local velocity and density values. For each timestep in

Fig. 2 Global (left) and local (right) fundamental diagrams of both simulation and experimental
data
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the simulation or for each frame of the experimental data, we get a data point for
every pedestrian.

The fundamental diagram of the SHDV model features three distinct regimes. At
low densities each agent moves interaction-free with a constant velocity equal to the
maximum velocity. In this density regime the movement is completely deterministic
with large headways that allow free flow.

At intermediate densities the fundamental diagram shows a 1=x curve. This can
be directly explained by the model dynamics. The density is too large to allow free-
flow of all agents, therefore interactions start to happen. In the stationary state the
agents are spaced evenly within the simulation area. The density is then equal to
the reciprocal of the headway, � D 1

h
. The velocity of each agent is proportional to

its headway h and therefore proportional to 1
�
. The movement is deterministic and

there are no standing agents.
At high densities there are two branches in the local fundamental diagram.

Some agents have velocity v D 0 and some agents are moving slowly. The global
fundamental diagram, on the other hand, shows an approximately linear decline due
to the averaging of standing and moving agents. At higher densities the fraction
of moving agents as well as the velocity of the moving agents decrease. This
can be seen in more detail in the velocity distribution (Fig. 3). The gap in the
fundamental diagram at the start of the linear decline stems from the beginning
influence of the stopping probability. The size of the gap depends on the value of
p0. Stochasticity plays a role for the model dynamics at high densities, leading to
a cloud of data points in the local fundamental diagram and to fluctuations in the
global fundamental diagram.

The experimental fundamental diagram does not show these clearly distinct
sections. This is expected due to measurement errors and the resulting scatter of
the data points on the one hand and the lack of data for very large densities on the
other.

Fig. 3 Velocity distribution of the experiment (left) and of the model (right)
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Note that the model is not designed to perfectly reproduce the fundamental
diagram but to recreate the observed phase separation in single-file pedestrian
flows at high densities. However, there is still a reasonable qualitative agreement
between the experimental fundamental diagram and the fundamental diagram of the
Stochastic Headway Dependent Velocity Model.

3.2 Velocity Distribution

The distribution of velocities based on the local density definition is shown in Fig. 3
for several density intervals. The size of each velocity bin is 0:005 m

s
. Note that the

density bins are different for the experimental and model data. This is necessary
because the change from a completely jammed state (at very high density) to a
state in which all agents move (at a smaller density) happens in a smaller density
interval in the model than in the experiment. The differently sized density bins lead
to sharper and more pronounced peaks in the model data compared to the broader
experimental data. The difference is amplified by the intrinsic stochasticity of real
pedestrians and the measurement process. For technical reasons, the experiment
did not track the center of mass, but the head of each pedestrian. Therefore
additional head movement (swaying) leads to a broadening of the measured velocity
distribution. This also explains the negative velocities in the experimental data.
A variation of the stopping probability p0 to larger values increases the density
range in which phase separation happens and thereby results in a broader model
velocity distribution than shown here. It does however also lead to more unrealistic
pedestrian behavior.

The general structure of the velocity distribution is however very similar. Both
model and experimental data include two peaks at v D 0 and at v D 0:1 � 0:15 m

s
,

respectively. The height of the first peak and thus the fraction of standing agents
increases with increasing density. A higher local density means on average a smaller
headway and thus a lower velocity. The position of the second peak therefore shifts
to the left for higher densities.

3.3 Trajectories

A good agreement of fundamental diagram and velocity distribution with the
empirical data does not ensure realistic dynamics on a microscopic scale. To
achieve a deeper understanding of pedestrian behavior we consider individual
trajectories. The model fundamental diagram as well as the velocity distribution
show a coexistence of moving and standing agents at high densities. Whether the
moving and standing agents are condensed in distinct phases or not can be analyzed
by looking at the trajectories. A state with a lot of small jams and congested areas
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Fig. 4 Trajectories of the experiment (left), model trajectories zoomed in to an equivalent area
(middle), and model trajectories of the whole simulation area

in the system and a state with only one big jam in the system may result in the same
fundamental diagram and velocity distributions.

Both experimental and model data shown in Fig. 4 feature a separation into two
distinct phases: a standing phase and a phase with slowly moving pedestrians. Small
movements in the experimental trajectories come from head movements of the
pedestrians. Note that the separation in two distinct phases in the model happens
at a slightly lower density (� D 2:5m�1) than in the experiment (� D 2:7m�1).

The model trajectories are shown at a later time because it takes a short time for
the phase separation to form, see the global trajectories in Fig. 4. In the first 50–
100 s the system organizes into a phase separated state. At each point in time after
that there is only one jammed phase and one moving phase in the system.

The details of the phase separation depend on the density. The size of the
standing phase increases with increasing density: both the fraction of standing
agents and the number of timesteps they remain standing increases. The velocity
in the slow-moving phase decreases a little bit with increasing density. There is only
a relatively small density interval in which phase separation occurs. The movement
is homogeneous for smaller densities and the system comes to a complete standstill
at larger densities. The phase separated state is unchanged even after long simulation
times over 100;000 s.

Conclusions and Outlook
The trajectories of single-file pedestrian movement at high densities develop
into a phase-separated state with coexisting jammed and slowly-moving
phases. To understand the emergence of this kind of phase separation, we
propose the Stochastic Headway Dependent Velocity Model. Starting from
an ‘almost homogeneous’ initial condition the model develops a single jam
in the simulated system as well as a region of congested pedestrians. This
leads to a good qualitative agreement with current experimental data for

(continued)
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the fundamental diagram, the velocity distribution, and the trajectories. The
behavioral change from free-flow to phase separation with standing agents
happens within a smaller density range than in the experiment.

The fundamental diagram and velocity distribution alone do not explain
how the moving and standing agents are distributed in the system. Instead a
detailed analysis of individual trajectories is necessary. This can be done in
a more quantitative way by defining an order parameter similar to [14]. A
detailed definition and discussion can be found in [15]. The order parameter
describes the inhomogeneity of the system and distinguishes between states
with one large jam in the system on the one hand and states with two or more
distinct jams or a random mix of standing and moving agents on the other,
thereby identifying phase separation.

In upcoming work we plan to implement and analyze several modifications
of the model in order to identify which aspects of the model are required for
the development of pedestrian phase separation.

Acknowledgements We thank the Deutsche Forschungsgemeinschaft (DFG) for support under
the grant “Scha 636/9-1”.
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Simulation of Merging Pedestrian Streams
at T-Junctions: Comparison of Density
Definitions

Matthias Craesmeyer and Andreas Schadschneider

Abstract We study merging pedestrian streams at T-junctions using the Floor Field
Cellular Automata Model. The discreteness of the underlying lattice of the cellular
automaton model limits the resolution of the predicted densities. We therefore
compare different methods for the determination of the density. In particular we
consider a discrete version of the Voronoi method which allows to define individual
densities for each pedestrian.

1 Introduction

The increasing number of mass events and planning of public buildings require
complex evacuation strategies. Escape routes should be optimized for pedestrian
traffic and (ideally) be dynamically adjusted in real-time. In the near future, new
techniques will allow us to track people by cameras and calculate optimal evacuation
strategies from this data based on computer simulations.

The models used for the planning of mass events or evacuation strategies for
public buildings have to be validated and calibrated. There are different approaches
to model pedestrian dynamics. Here we will use the Floor Field Model (FFM) [1,2]
which is arguably the most popular cellular automaton (CA) approach to pedestrian
dynamics. Our focus is on a generic structure which appears in almost all evacuation
scenarios, namely T-junctions. Despite its importance there are only few works deal-
ing with this scenario [3–6]. From a theoretical point of view T-junctions are relevant
since this is one of the simplest scenarios where several pedestrian streams merge.

2 Floor Field Model

The floor field model (FFM) is a cellular automaton model for pedestrian
dynamics and has been introduced in [1, 2]. The space is divided into cells of
size (40 cm) � (40 cm) where each cell can be occupied by at most one pedestrian.
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The motion of each pedestrian is determined by simple stochastic rules which take
into account the interactions with other pedestrians and the infrastructure. This is
encoded in two fields, the static and the dynamic floor field Sij andDij, respectively,
which determine the transition probabilities to one of the nearest neighbour cells
.i; j /:

pij D N � exp.ks � Sij/ � exp.kd �Dij/ � .1� nij/ � �ij : (1)

Here nij is the occupation number of the target cell, � a wall factor which is 0 for
inaccessible cells (e.g. walls) and 1 otherwise, and N normalisation constant. ks
and kd are coupling constants to the two floor fields. The static floor field Sij is
usually determined by the distance of the cell .i; j / to the exit. The dynamic floor
field Dij is created by moving pedestrian and has its own dynamics (diffusion and
decay). It encodes the tendency of pedestrians to follow moving persons. In addition
to the above parameters the transition probability depends on a friction parameter
� which decides whether it comes to a transition in the event of a conflict [2].

For the T-junction scenario we have to specify the sites where pedestrian enter
the junction. These entry cells are occupied with a certain probability ˛ in each time
step. At the exit cells pedestrians are removed from the system with probability ˇ
(Fig. 1).

Fig. 1 Space discretisaton of the T-junction as used for the simulations with the FFM. The color
code indicates the entry and exit cells and walls
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3 Density Definitions in CA Models

There are several density definitions that have been used for pedestrian systems, but
all of them have certain limitations. For a more complete discussion, see [7,8]. Here
we discuss and compare density definitions specifically in CA models where the
discreteness of space leads to additional problems.

3.1 Standard Method

The simplest method to determine the density �.r/ uses the number of persons in
N.A/ a predefined area A, i.e.

�.r; t/ D N.A/

A
: (2)

This density is usually assigned to the position r in the center of the area. In CA
models this definition is based on a neighbourhood of a cell. In the simplest case
the area consist of just one cell. Then, at any time, only two densities are possible
(0 or 1). The standard choice is therefore based on the Moore neighbourhood of the
center cell. For a square lattice it consists of 9 cells. The density is then quantized in
multiples of 1=9, i.e. �.r/ D n=9 with n D 0; 1; : : : ; 9. Additional problems arise
for cells near walls as illustrated in Fig. 2. Therefore the main disadvantages of the
standard method are the low resolution and the tendency to artefacts due to the edge
effects (Fig. 3).

3.2 Voronoi Method

The Voronoi method introduced in [8] has been shown to have several advantages
over the standard method. Here we adopt it for CA models. First, Voronoi cells for
all pedestrians are determined. Then the density is calculated from the surface area

Fig. 2 The density definition based on the Moore neighbourhood leads to a quantization of the
density values. The density for the center cell in the four examples is �1 D 2=9, �2 D 1=8,
�3 D 1=6 and �4 D 1=4, respectively
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Fig. 3 Density for the
configuration shown in Fig. 1
as determined by standard
method
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Aj of the Voronoi cell of pedestrian j . The density of the area covered by Voronoi
cell j is given by

�j D 1

Aj
: (3)

The Voronoi method can be implemented in different ways.

3.2.1 Exact Method

First cells are determined by the algorithm of Fortune [9]. The algorithm receives
the coordinates of the occupied positions as input. The output is a list of edges
which are assigned to the occupied positions in CA. Because the algorithm does
not consider margins, the obtained edges are generally not finite. Therefore infinite
edges have to be pruned to borders. After this procedure it is possible to extract
closed cells provided that the border is a convex polygon. In the case of a T-junction,
the boundary is not convex which means that there is no general algorithmic solution
to close the cells. A possible solution is the restriction to convex subregions.
Nevertheless the algorithm we developed works fine for most cases. Limitations
occur in cases of small densities. If the cells have been correctly determined,
the areas of each cell (irregular polygons) can be calculated by triangulation.
Because the exact determination (Fig. 4) does not work for all situations we tested
another approach where the cells are determined approximately on a refined grid
(Fig. 5).
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Fig. 4 Exact Voronoi
decomposition of the
configuration shown in Fig. 1
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Fig. 5 Density for the
configuration in Fig. 1
calculated by approximate
Voronoi method
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3.2.2 Approximate Method (Flood Fill Algorithm)

In the first step, the resolution is refined by a factor of 10 by dividing each cell of
the FFM into 10 � 10 subcells. In the flood fill algorithm, occupied cells propagate
on the refined grid to their Moore neighbourhood. The propagation ends at walls
or when propagation fronts from different occupied cells meet. The disadvantage
of this method is the ambiguity at the cell boundaries. When two growing regions
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spread simultaneously to a cell, there will be a conflict which leads to ambiguities.
The conflict can be resolved by choosing the dominant region in the Moore
neighbourhood. As can be seen in Fig. 5, only angles of 0ı, 45ı, 90ı between the
regions are possible. This effect leads to deviations from the exact determination,
particularly at low densities.

3.3 Comparison

In the comparison of the methods one should take into account the meaning of
density in pedestrian dynamics. It provides information on the available space and
thus the mobility of the individuals. In the standard method the density is a local
measure for the mobility since it is determined only by the Moore neighborhood of
a cell. Information about the mobility beyond this neighbourhood is not considered.
In contrast, in the Voronoi method the area which determines the density is dynamic
and depends on the distribution of occupied positions. In this sense, the Voronoi
method takes into account global information. To compare the methods, the average
deviation over all positions is determined. These average deviations are considered
as a function of the global density which is defined here as the fraction of occupied
cells of the CA model.

The comparison of the two methods is shown in Figs. 6 and 7. It is noticeable
that the absolute difference is especially large for medium global densities. For high
densities, square Voronoi cells arise and consequently small deviations from the
standard method appear. For small densities, absolute deviations are small, but the
relative deviations with respect to the global density are rather large, as can be seen
in Fig. 7. On the other hand, there is no big difference between the relative deviations
with respect to the global and the average Voronoi.

The extension of the Voronoi cells and their associated densities provide
information about the number of time steps a pedestrian can move without conflict.

Fig. 6 Absolute deviation:
Standard and Voronoi method
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Fig. 7 Relative deviation:
Standard and Voronoi method
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This gives a very good representation of the mobility. Furthermore it is possible
to achieve a more accurate classification by the refinement. For these reasons, the
Voronoi method is preferred.

4 Results and Outlook

Like in any other model, quantities in CAs should be introduced in a way which
allows good comparability with data from experiments. The Voronoi method can
be applied to data from CAs, as well as to data from experiments in a very similar
manner. Quantization effects, which arise from the discreteness of the CAs, do not
play a major role here. However, some technical problems in the determination of
the Voronoi decomposition for general (non-convex) geometries remain open for
the time being. In such cases. the flood fill algorithm was shown to provide good
approximate results.

Acknowledgements We thank the Deutsche Forschungsgemeinschaft (DFG) for support under
the grant“Scha 636/9-1”.
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Exclusive Queueing Process: The Dynamics
of Waiting in Line

Chikashi Arita and Andreas Schadschneider

Abstract The dynamics of pedestrian crowds has been studied intensively in recent
years, both theoretically and empirically. However, in many situations pedestrian
crowds are rather static, e.g. due to jamming near bottlenecks or queueing at ticket
counters or supermarket checkouts. Classically such queues are often described by a
M/M/1 queue which neglects the internal structure (density profile) of the queue by
focussing on the queue length as the only dynamical variable. This is different in the
exclusive queueing process (EQP) in which we consider the queue on a microscopic
level. It is equivalent to a totally asymmetric exclusion process (TASEP) of varying
length. The EQP has a surprisingly rich phase diagram with respect to the arrival
probability ˛ and the service probability ˇ. The behavior on the phase transition
line is much more complex than for the TASEP with a fixed system length. It is
nonuniversal and depends strongly on the update procedure used.

1 Introduction

Queueing processes have been studied extensively [1, 2]. Although originally
developed to describe problems of telecommunication, they have been applied later
also to various kinds of jamming phenomena, e.g. supply chains [3] and vehicular
traffic [4, 5]. However, classical queueing theory neglects the spatial structure of
queues and the particles in the queues do not interact with each other. The length
Lt of the queue is the only dynamical variable and the density along the queue
is constant. Therefore an extension of the classical M/M/1 queueing process has
been introduced recently [6, 7]. It takes into account particle interactions through
the excluded-volume effect and leads to nontrivial density profiles of the queue.
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Fig. 1 Definition of M/M/1 queue (left) and its phase diagram (right). When the arrival probability
˛ is larger than service probability ˇ, the queue diverges (D). It converges when ˛ < ˇ (C)

2 M/M/1 Queue

The M/M/1 queueing process describes the dynamics of a single queue with
Markovian arrival and service processes. It is defined by the arrival probability ˛
and service probability ˇ [1, 2]. Customers (D particles) arrive with probability ˛
at the end of the queue and are serviced (D removed) with probability ˇ at the front
of the queue (Fig. 1).

The M/M/1 queue has two phases separated by the critical line ˛ D ˇ: for ˛ > ˇ
the average length hLt i of the queue (at time t) diverges, i.e. limt!1hLt i D 1,
whereas for ˛ < ˇ it converges: limt!1hLt i D L1 < 1 (Fig. 1). In the M/M/1
queueing process, the internal structure of the queue is not considered, i.e. the queue
has density 1 everywhere and the number of particles Nt is equal to the length Lt .

3 Exclusive Queueing Process (EQP)

The EQP is defined on a semi-infinite chain where sites are labeled by natural
numbers from right to left (Fig. 2). The dynamics of the model is defined as
follows:

(i) Input: a particle is inserted with probability ˛ on the site just behind the last
particle in the queue,

(ii) Hopping: particles behind an empty site move forward with probability p
(iii) Output: a particle at site 1 is serviced with probability ˇ.

For parallel update these rules are applied simultaneously to all sites. In the case
of backward-sequential update, first (i) and (iii) are carried out. Then (ii) is applied
sequentially to all sites starting at site j D 1. The dynamics of the particle hopping
we use is of the totally asymmetric simple exclusion process (TASEP) [8–12]. The
TASEP with input and output of particles has been intensively studied, in particular
from statistical-physics point of view. However, the TASEP is usually defined on a
chain of fixed length with input and output at the fixed ends. Therefore the EQP can
be interpreted as a TASEP of variable length.
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Fig. 2 Definition of the
Exclusive Queueing Process
(EQP). The length L is
defined by the position of the
last (leftmost) particle

4 Phase Diagram of EQP

The known exact solutions for the stationary state of the TASEP with a fixed system
length [13, 14] can be generalized to the EQP [6, 15]. Exact stationary states for
parallel and continuous-time updates of the EQP have been found in matrix product
forms. In the case of parallel dynamics, an exact time-dependent solution is also
known for deterministic hopping p D 1 in the bulk [16].

By changing the input and output probabilities ˛ and ˇ the EQP shows boundary-
induced phase transitions. The phases are classified according to different criteria:

• Queueing classification: convergent (C) or divergent (D) queue length.
In the divergent case the length behaves as hLti D V � t C o.t/, whereas hLti !
L1 in the convergent phase.

• TASEP classification: maximal current (MC) or high-density (HD).
In the maximal current phase, the current Jout of particles going through the right
end is independent of both ˛ and ˇ. In the high-density phase the current depends
only on ˇ, but is independent of ˛ [17].

• Classification according to density profile: The divergent phase can be divided
into subphases according to the number of plateaus in the density profile [18].
The rescaled profile has the form of a rarefaction wave [19]. It is cut-off at some
point of the general profile shown in Fig. 3 which depends on the values of the
parameters ˛ and ˇ. The velocity V of the growth of the system length has up to
three different forms, which are denoted by I, II and III in Fig. 3.

The convergent and divergent phases are separated by a critical line whose
precise location depends on the update type. For all updates, the critical line consists
of a curve connecting .˛; ˇ/ D .0; 0/ and .˛; ˇ/ D .˛c; ˇc/ and a straight line
˛ D ˛c and ˇ > ˇc with critical values

˛c D
(
.1 � p

1 � p/=2 .parallel/;

.1 � p
1 � p/2=p .backward/;

ˇc D 1 �p
1 � p : (1)

For the parallel update and the continuous-time case, the critical line can be obtained
exactly by evaluating the normalization of the exact stationary state [6, 15].

The phase diagram is found to be dependent on the update rule. In the parallel
update case we find seven subphases (Fig. 3). For backward-sequential dynamics
one has to distinguish the cases p < 1=2 and p > 1=2. The latter shows the same
seven phases as the parallel update, but the two III-phases vanish for p < 1=2

(Fig. 3).
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Fig. 3 A schematic picture for the density profile in the divergent phase (top-left), where x is the
rescaled position j=t , and the phase diagrams of the EQP with parallel (top-right) and backward-
sequential dynamics for p < 1=2 (bottom-left) and p > 1=2 (bottom-right). According to the
injection probability (rate) ˛, the rarefaction wave is “cut” by the leftmost customer (x D V ) and
the server (x D 0). The end of the queue can be in three different regimes, (plateau at density
� < 1, regime of increasing density or plateau at density � D 1), which defines the regions I, II,
III., respectively. The density profile shown here belongs to II

5 Critical Line: Non-universal Behavior

In the divergent phase the average length hLt i and the average number of particles
hNti diverge linearly in time. On the phase transition line separating the convergent
and divergent phases the growth is slower than linear, i.e.

hXti D O.t�X / .X D L;N/; (2)

where the critical exponents �X are smaller than 1.
Figure 4 shows the time-dependence of the average system length obtained by

Monte Carlo simulations. As one can observe in these log-log plots, the slopes
depend both on the update type and the location on the critical line (curved part
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Fig. 4 Time-dependence of average system length hL.t/i for parallel dynamics (left) and
backward dynamics (right)

Fig. 5 Exponents �X for parallel dynamics (left) and backward dynamics (right). ˇ has been
rescaled so that Q̌ D 0; 1=2; 1 corresponds to ˇ D 0; ˇc; 1, respectively

ˇ < ˇc or straight part ˇ > ˇc). Figure 5 also provides simulation results of the
exponents. Depending on the update rule, the exponents have different values:

parallel: �X D
(
1=2 .for ˇ < ˇc/

1=4 .for ˇ > ˇc/
(3)

backward: �X D

8
ˆ̂
<

ˆ̂
:

1=2 .for ˇ < ˇc/;

f .p/ .for ˇ > ˇc; p < pc/

0 .for ˇ > ˇc; p > pc/

(4)

with some function f .p/ 2 .0; 1=4/, whose explicit form is not known. The
nonuniversal behavior (4) and the existence of the critical point pc for the backward
case has been tested by simulations, see [20] for detailed discussions.
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6 Discussion

The exclusive queueing process (EQP) can be considered as a minimal model of
pedestrian queues which takes into account the internal dynamics of the queue. We
have found that the EQP has a rich phase diagram. Surprisingly, it shows a strong
dependence of its critical properties on the update scheme. This is rather different
from the TASEP with a fixed system length. The order of the phase transition
between the diverging and converging phases can also be different.

Besides application to pedestrian queues, variants of the EQP might have
interesting applications to biological processes. Similar models of varying system
length have already been studied e.g. in [21–25]. We expect that transport models
with varying system lengths will show many other interesting phenomena.

Acknowledgements AS is supported by Deutsche Forschungsgemeinschaft (DFG) under grant
“Scha 636/8-1”.

References

1. J. Medhi, Stochastic Models in Queueing Theory (Academic, San Diego, 2003)
2. T.L. Saaty, Elements of Queueing Theory With Applications (Dover, New York, 1961)
3. W.J. Hopp, M.L. Spearman, Factory Physics (McGraw-Hill, Boston, 2008)
4. D. Heidemann, Transp. Sci. 35, 405 (2001)
5. F.C. Caceres, P.A. Ferrari, E. Pechersky, J. Stat. Mech. P07008 (2007)
6. C. Arita, Phys. Rev. E 80, 051119 (2009)
7. D. Yanagisawa, A. Tomoeda, R. Jiang, K. Nishinari, JSIAM Lett. 2, 61 (2010)
8. B. Derrida, J. Stat. Mech. P07023 (2007)
9. G.M. Schütz, in Phase Transitions and Critical Phenomena, ed. by C. Domb, J.L. Lebowitz,

vol. 19 (Academic, San Diego, 2001)
10. R.A. Blythe, M.R. Evans, J. Phys. A: Math. Gen. 40, R333 (2007)
11. T.M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes

(Springer, New York, 1999)
12. A. Schadschneider, D. Chowdhury, K. Nishinari, Stochastic Transport in Complex Systems:

From Molecules to Vehicles (Elsevier Science, Amsterdam, 2010)
13. B. Derrida, M.R. Evans, V. Hakim, V. Pasquier, J. Phys. A 26, 1493 (1993)
14. M.R. Evans, N. Rajewsky, E.R. Speer, J. Stat. Phys. 95, 45–96 (1999)
15. C. Arita, D. Yanagisawa, J. Stat. Phys. 141, 829 (2010)
16. C. Arita, A. Schadschneider, Phys. Rev. E 84, 051127 (2011)
17. C. Arita, A. Schadschneider, Phys. Rev. E 83, 051128 (2011)
18. C. Arita, A. Schadschneider, J. Stat. Mech. P12004 (2012)
19. P.L. Krapivsky, S. Redner, E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge

University Press, Cambridge, 2010)
20. C. Arita, A. Schadschneider, EPL 104, 30004 (2013)
21. K. Sugden, M.R. Evans, W.C.K. Poon, N.D. Read, Phys. Rev. E 75, 031909 (2007)
22. S. Dorosz, S. Mukherjee, T. Platini, Phys. Rev. E 81, 042101 (2010)
23. D. Johan, C. Erlenkämper, K. Kruse, Phys. Rev. Lett. 108, 258103 (2012)
24. A. Melbinger, L. Reese, E. Frey, Phys. Rev. Lett. 108, 258104 (2012)
25. M. Schmitt, H. Stark, EPL 96, 28001 (2011)



Air Traffic, Boarding and Scaling Exponents

Reinhard Mahnke, Jevgenijs Kaupužs, and Martins Brics

Abstract The air traffic is a very important part of the global transportation net-
work. In distinction from vehicular traffic, the boarding of an airplane is a significant
part of the whole transportation process. Here we study an airplane boarding model,
introduced in 2012 by Frette and Hemmer, with the aim to determine precisely the
asymptotic power–law scaling behavior of the mean boarding time htbi and other
related quantities for large number of passengers N . Our analysis is based on an
exact enumeration for small system sizes N � 14 and Monte Carlo simulation
data for very large system sizes up to N D 216 D 65;536. It shows that the
asymptotic power–law scaling htbi / N˛ holds with the exponent ˛ D 1=2

(˛ D 0:5001 ˙ 0:0001). We have estimated also other exponents: � D 1=2 for
the mean number of passengers taking seats simultaneously in one time step, ˇ D 1

for the second moment of htbi and � � 1=3 for its variance. We have found also
the correction–to–scaling exponent 
 � 1=3 and have verified that a scaling relation
� D 1�2
 , following from some analytical arguments, holds with a high numerical
accuracy.

1 Introduction

Recently, following the paper of Frette and Hemmer [1] there has been a spurt of
activity regarding airplane boarding, resulting in five papers in Phys. Rev. E [1–
5] in roughly 16 months. In the model considered by Frette and Hemmer [1],
N passengers have reserved seats, but enter the airplane in arbitrary order (NŠ
possibilities). A simplified situation is considered with a single isle of rows and
only one seat in each row. It is assumed that a passenger occupies a place equal
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to the distance between rows. In addition, he or she requires one time step to place
carry-on luggage and get seated, the time for walking along the isle being neglected.
However, a passenger must wait for a possibility to move forwards to his or her seat
if the motion is blocked by other passengers staying or taking seats in front of him
or her (see [1] for more details and examples). The number of seats is equal to the
number of passengers in this model. In [4], the same process has been considered
with more than one seat per row. It has been also discussed there what happens if
only some fractionp of the passengers occupy the seats. In a series of works [1,2,4],
a non-random ordering of passengers has been also considered. One of the basic
quantities of interest is the boarding time tb of an airplane. All these papers deal
with a numerical estimation of the mean boarding time htbi, stating that it is more
ore less well consistent with the power law htbi D cN˛ . Estimates ˛ D 0:69˙0:01

and c D 0:95˙ 0:02 have been obtained in [1] from the data with a small number
of passengers, 2 < N < 16.

Later on, it has risen an interesting discussion [2–4] about the value of the
exponent ˛, describing the asymptotic power law at N ! 1. It has been found
that the numerical estimates converge to a remarkably different from 0:69 value
˛ D 1=2 for large N . In particular, ˛ D 0:5001 ˙ 0:0001 has been found in [3]
from the Monte Carlo simulation data up toN D 216. In fact, ˛ D 1=2 is exactly the
analytical value reported earlier in [6]. As explained in [4], the / N1=2 asymptotic
behavior follows from the mathematical theorem reported already in [7, 8]. In [6],
the proportionality coefficient c D 4 � 2 ln 2 has been also found. Corrections to
scaling have been considered in [3], as well as in [6]. Numerical estimation in [3]
suggests that correction–to–scaling exponent 
 in htbi D cN˛

�
1C O

�
N�


��
is

approximately 1=3. It has been also numerically found there that the variance of tb
scales with a similar exponent � � 1=3. In [6] it has been argued that ˛ � 
 is
larger than 1=6, i.e., 
 < 1=3. The question about the precise values of 
 and � is
interesting and merits further investigation.

2 Exact Results for Boarding with Small Number
of Passengers

Here we consider in some detail the simple model introduced by Frette and
Hemmer [1]. For a small number of passengers N , it is possible to consider all NŠ
permutations and count exactly the number of realizationsm.N; tb/, corresponding
to certain boarding time tb , where 1 � tb � N , by an appropriate numerical
algorithm. The probability to have the boarding time tb then is P.N; tb/ D
m.N; tb/=N Š.

The results P.N; tb/ for N � 4 are collected in Table 1 (left). The number of
sequences of passengers with increasing seat numbers s is also interesting, since
these passengers always get seated simultaneously. This point has been discussed
in [1], reporting some exact results. In this case the seats are numbered from left
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Table 1 The number of realizations m.N; tb/ for boarding of N passengers in tb time steps (left
table), and the number of realizations m.N; s/ with s sequences of increasing seat numbers (right
table). P.N; tb/ D m.N; tb/=N Š in the left table is the probability that the boarding time is just
tb, and P.N; s/ D m.N; s/=N Š in the right table is the probability that there are just s sequences

N tb m.N; tb/ P.N; tb/

1 1 1 1

2 1 1 0.5

2 1 0.5

3 1 1 0.25

2 4 0.75

3 1 0.25

4 1 1 1/24� 0.04167

2 12 0.5

3 10 5/12� 0.41667

4 1 1/24� 0.04167

N s m.N; s/ P.N; s/

1 1 1 1

2 1 1 0.5

2 1 0.5

3 1 1 0.25

2 4 0.75

3 1 0.25

4 1 1 1/24� 0.04167

2 11 11/24� 0.45833

3 11 11/24� 0.45833

4 1 1/24� 0.04167

to right, passengers enter the airplane from the left hand side, and we are looking
for sequences of passengers also from left to right. A sequence of passengers
is represented by the corresponding sequence of seat numbers. For example, the
sequence 1 2 3 4 represents a queue of N D 4 passengers, where the last passenger
staying in the queue has the seat number 1, the passenger staying in front of him
or her has the seat number 2, and so on. In this case there is only one sequence
of increasing seat numbers (s D 1) when looking from left to right, which means
that all passengers get seated simultaneously in one time step, i.e., the boarding
time is tb D 1. A naive guess would be that tb D s. The number of realizations
m.N; s/, corresponding to certain s, as well as the probabilityP.N; s/ to have just s
sequences of passengers with increasing seat numbers, can be easily calculated for
a small N .

The results P.N; s/ for N � 4 passengers are collected in Table 1 (right). The
probability distribution P.N; s/ is always symmetric, as it follows from the exact
results of [1]. It is seen also in Table 1. On the other hand, it is evident from this table
that already at N D 4 the probability distribution P.N; tb/ is asymmetric, which
means that tb ¤ s. This effect appears because of merging of the sequences with
increasing seat numbers. For N D 4 such a merging occurs only for one of 4Š D 24

possible permutations, i.e., for the arrangement 2 1 4 3 with s D 3. In this case, the
passenger with seat number 1 gets seated simultaneously with the passenger with
seat number 3, although these two passengers belong to two different sequences
with increasing seat numbers. As a result, two sequences merge after the first step,
and the remaining two passengers get seated simultaneously in the second step. It
means that tb D 2 < s holds in this case.

Such cases of merging makes the problem non-trivial and does not allow us
to obtain an exact solution for arbitrary N analytically. The number of merging
increase very significantly for larger N . The exactly enumerated values of m.N; tb/
and the corresponding values of P.N; tb/ are collected in Table 2 for 5 � N � 13.
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Table 3 The number of realizationsm.N D 14; tb/ for boarding ofN D 14 passengers in tb time
steps (left table), and the number of realizationsm.N D 14; s/ with s sequences of increasing seat
numbers (right table). P.N D 14; tb/ D m.N D 14; tb/=N Š in the left table is the probability
that the boarding time is just tb, and P.N D 14; s/ D m.N D 14; s/=N Š in the right table is the
probability that there are just s sequences for N D 14

tb m.N D 14; tb/ P.N D 14; tb/

1 1 1:1471 � 10�11

2 196,417 2:2530 � 10�6

3 164,973,584 0.00189

4 5,519,763,360 0.06332

5 26,642,715,539 0.30561

6 34,207,960,967 0.39239

7 16,491,836,851 0.18917

8 3,688,831,863 0.04231

9 432,622,448 0.00496

10 28,312,826 0.00032

11 1,055,151 0.00001

12 21,957 2:5186 � 10�7

13 235 2:6956 � 10�9

14 1 1:1471 � 10�11

s m.N D 14; s/ P.N D 14; s/

1 1 1:1471 � 10�11

2 16,369 1:8776 � 10�7

3 4,537,314 0.00005

4 198,410,786 0.00228

5 2,571,742,175 0.02950

6 12,843,262,863 0.14732

7 27,971,176,092 0.32085

8 27,971,176,092 0.32085

9 12,843,262,863 0.14732

10 2,571,742,175 0.02950

11 198,410,786 0.00228

12 4,537,314 0.00005

13 16,369 1:8776 � 10�7

14 1 1:1471 � 10�11

Fig. 1 The probability
distributions P.N; tb/ and
P.N; s/ for N D 14

passengers. The mean
boarding time
htbi D 5:85212 is shown by a
vertical solid line, the range
˙� of one standard deviation
� D 0:98116 from the mean
value is indicated by vertical
dashed lines  0
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In Table 3, the results forN D 14 are shown, including also those form.N D 14; s/

andP.N D 14; s/. The probability distributionsP.N D 14; tb/ andP.N D 14; s/

are depicted in Fig. 1, showing also the mean value and the standard deviation for
the boarding time distribution.
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3 Mapping to the Two-Dimensional Problem of the Longest
Increasing Sequence

A passenger sequence can be rendered as a two-dimensional scatter plot. Each
passenger is represented by a point with coordinates x D i=N and y D j=N ,
where i is his/her sequential index in the queue and j is his/her seat number. Note
that in this case the passenger, who enters the airplane first has the index i D 1, the
passenger behind him or her has the index i D 2, and so on. In the asymptotic limit
N ! 1, an averaged over ensemble of sequences density of points .i=N; j=N /,
normalized by N , gives the probability density function p.x; y/.

According to the mathematical theorem in [7, 8], the length of the longest
increasing subsequence asymptotically scales as N1=2, provided that p.x; y/ is
finite. A subsequence

˚
.xi1 ; yj1/; .xi2 ; yj2/; : : : ; .xil ; yjl /

�
of pairs of real numbers

with 0 � xi � 1 and 0 � yi � 1 for i D 1; 2; : : : ; N is called an increasing
subsequence, if xim < ximC1

and yim < yimC1
holds for m D 1; 2; : : : ; l � 1, where

im is a sequence of non-repeated indices between 1 and N . In the considered here
model, the distribution of points in the xy plane is fully random, so that p.x; y/ 
 1

is indeed finite.
The papers [4–6] deal with claim that the length l of the longest increasing

sequence is equal to the boarding time tb . We have check it for N D 4, considering
the two-dimensional scatter plots for all 4Š D 24 permutations in Fig. 2. In each of
the cases, the longest increasing sequence is shown by connecting the points of this
sequence by lines. The number of points in this graph is equal to l . In one of the
cases no lines are present, implying that l D 1. In the cases, where there are several
sequences with the same maximal length, different lines are used to distinguish
them. In 23 of 24 cases we can see that tb is indeed equal to the length l of the
longest increasing sequence. However, there is one exception, corresponding to the
sequence 3 1 4 2 in the notations of Sect. 2. In this case, the seat numbers are j1 D 2,
j2 D 4, j3 D 1 and j4 D 3 for passengers numbered sequentially from right to left,
as considered in this section. The corresponding scatter plot is the second one in the
third row in Fig. 2. Evidently, the boarding time in this case is tb D 3, but l D 2.

This exception shows that the mapping of the original problem to the problem of
finding the longest increasing sequence is not exact. Nevertheless, it is possible that
the asymptotic scaling of hli and htbi is described by the same exponent ˛, e.g., if
tb= l is finite (and nonzero at N ! 1) in a fraction of cases which tends to unity
at N ! 1. According to the above mentioned theorem of [7, 8], hli scales with
the exponent ˛ D 1=2 at N ! 1. It is also very plausible that htbi scales with the
same exponent owing to the mentioned here reason, since ˛ D 1=2 is accurately
confirmed by Monte Carlo simulations [3].

The ensemble of realizations, illustrated in Fig. 2, is unchanged if each of the
plots is mirror-reflected with respect to the diagonal y D x. The same is true
for the mirror–reflection with respect to the other diagonal y D 1 � x. Thus, the
mirror–symmetric with respect to each other plots appear with equal probability.
This is an evident symmetry property for any passenger numberN in the considered
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Fig. 2 Scatter plots with horizontal and vertical axes representing the sequential number and the
seat number for each of N D 4 passengers, plotted by solid circles. The connecting lines are used
to show the longest increasing sequences

here mapping, where the number of seats is equal to the number of passengers
N and all NŠ permutations are equally probable. Therefore, if in the asymptotic
limit N ! 1 the plot of the longest increasing sequence follows certain curve
y D f .x/, then there exist also mirror–symmetric curves with respect to both
diagonals, representing equivalent plots of increasing sequences of the same (i.e.,
maximal) length. Hence, the curve y D f .x/ is unique only if it follows the
diagonal y D x (it cannot follow the other diagonal y D 1 � x, since it must
be increasing).

Because it turns out that the often used [4–6] and tested here mapping to the
problem of finding the longest increasing sequence is inexact, and we also cannot
see how the analytical solutions of [5, 6] reflect the outlined here symmetry of such
a mapping in the simplest case, we mainly rely on our simulation results.

4 Asymptotic Scaling Results for Airplane Boarding
with Large Number of Passengers

According to [3], the mean boarding time htbi and its second moment ht2b i for large
N values about 216 are very accurately described by asymptotic formulas
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htbi D At˛
�
1C a1N

�
 C a2N
�2
 C o

�
N�2


��
(1)

ht2b i D Btˇ
�
1C b1N

�
 C b2N
�2
 C o

�
N�2


��
(2)

with the exponents ˇ D 2˛ D 1 and 
 � 1=3. Since the boarding time distribution
is asymptotically sharp at N ! 1, the relation B D A2 holds for the coefficients.
The exponent ˛ D 1=2 agrees with the results of [2, 4–6]. The coefficient A has
been estimated in [3] (see Fig. 1 there) to be A D 2:6092˙0:0002, which is similar
to A D 4 � 2 ln 2 � 2:6137 of [6]. We consider also the variance of the boarding
time, which scales as

var.tb/ D ht2b i � htbi2 / N� (3)

at large N . According to (1) and (2), where B D A2 and ˇ D 2˛ D 1, we have
� D 1� 
 if b1 � 2a1 ¤ 0, and � D 1� 2
 if b1 � 2a1 D 0 and b2 � 2a2 � a21 ¤ 0

hold. Our numerical estimation supports the second possibility, as we find that the
relation

� D 1 � 2
 (4)

is satisfied within the small error bars of the estimates 
 D 0:330˙0:001 (see Fig. 2
in [3]) and � D 0:343˙0:001 given in [3]. The agreement of these values with 1=3,
however, is not perfect, and we allow a possibility that 
 < 1=3 and � > 1=3 hold.

5 Discussions and Application

The growing need for mobility through the world shows no sign of slowing down.
Applications of stochastic processes to transport problems in a large variety of
complex systems, including vehicular and pedestrian traffic, are well known [9,10].
Here we focus on the air traffic and boarding of an airplane as a significant part of
the global transportation process. Our Monte Carlo simulation and analysis is one
of numerous applications of stochastic methods to study the behavior of complex
systems. From the theoretical point of view, it is tightly related to the power–law
scaling and universality problems in many–particle systems. From a practical point
of view, it could help to understand the boarding process in order to optimize it.
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Part II
Highway and Urban Vehicular Traffic



Time Evolution of Road Networks

Marc Barthelemy

Abstract Urbanization is a fundamental phenomenon which however still remains
poorly quantitatively characterized. An important facet of this phenomenon is the
road network which co-evolves with other urban structures and we review here
the most recent results about the structure and the evolution of these important
infrastructures. These studies suggest that the natural evolution of a road network
is governed by two elementary processes: (i) ‘densification’, which corresponds
to an increase in the local density of roads around existing central points and
(ii) ‘exploration’ which consists in new roads triggering the spatial evolution
of the urbanization front. However, interventions of central, top-down planning
could modify this simple picture of a natural evolution and we will present the
example of the street network of Paris (France), which during the nineteenth
century experienced large modifications supervised by a central authority, the
‘Haussmann period’. In this case, the usual network measures display a smooth
behavior and the most important quantitative signatures of central planning are
the spatial reorganization of centrality and the modification of the block shape
distribution. Such effects can only be obtained by structural modifications at a large-
scale level, with the creation of new roads not constrained by the existing geometry.
These different results suggest that the evolution of a road network results from
the superimposition of continuous, local growth processes and punctual changes
operating at large spatial scales, opening new directions for the modelling of these
systems.

1 Quantitative Urbanism

Urbanization is a fundamental process in human history, and is increasingly
affecting our environment and societies. The portion of the world population living
in urban areas has just grown beyond the 50 % and is expected to rapidly increase
in the next future [1]. The challenges posed by such a fast urbanizing world are
well known, and range from an increasing dependence of cities on fossil fuels,
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to socio-spatial inequalities and economical uncertainties. Controlling urbanization
has already proven to be a difficult task, and will become even harder in the next
future due to the larger and unprecedented scale of the phenomenon. In addition,
urbanization is often accompanied by massive poverty at an equally unprecedented
scale, expanding corruption and weaknesses of the local planning systems (in
particular in developing countries). Understanding how urbanization and land use
change under different circumstances, and what are the dominant mechanisms and,
if any, the ‘universal’ features of such large-scale self-organized processes, is more
important than ever as policy makers, professionals and the scientific community are
actively looking for new paradigms in urban planning and land management [2, 3].

The search for a quantitative theory of cities is a long time story (see the recent
book by Batty [4]) with noticeable periods of activity. Quantitative geography in the
1960s was very active [5], and after a quieter period, there is currently a renewal
of interest about this subject mainly triggered by the availability of data. ‘Big data’
about cities allow now to construct models and to test them, a necessary condition
for knowledge evolution. More precisely, these different datasets inform us about
various aspects of cities and their analysis will lead to stylized facts and will help
us to build models with a small number of assumptions and parameters and with
testable predictions.

We can divide the available data about cities according to their temporal scale and
some of the recent results pertaining to this new science of cities are the following
ones, from time scales of order a day to long times such as decades and centuries
(Fig. 1).

• At a typical time scale of the order the hour to a day, mobility data gathered by
mobile phones, GPS, or RFIDs inform us about where and when people move
in the city, revealing in depth the spatio-temporal structure of activities in a city
and statistical patterns of mobility. The availability of mobility data renewed the
interest for understanding the laws governing the trips of individuals, such as the
gravity law, and questioned its validity, leading to new, more accurate models.
Also, these datasets provide a clear picture of the spatial distribution of activities,
and of the existence of multiple activity subcenters, allowing us to discuss the
possibility of a typology of cities in terms of degree of polycentrism [6].

• At a larger time scale, of a month to a year, socio-economical surveys provide
us with relevant informations such as the total yearly gasoline consumption, the
total yearly number of miles driven, the relation between density and area, etc.
The key of understanding how these different quantities scale with population is
the mobility spatial pattern [7, 8].

Fig. 1 We can divide the
available data about cities
according to their temporal
scale, from time scales of
order a day to long times such
as decades and centuries
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• Finally at very long time scales such as decades and centuries, remote sensing
and the recent digitization of old maps allow us to study the evolution of
urbanized areas, transportation and road networks. We can then observe that large
subway networks seem to converge to the same structure [9], characterized by
similar values of morphological indicators, revealing the existence of dominant
mechanisms independent from cultural and historical considerations. We can also
observe the large-scale evolution of road networks – that we will describe in
more detail in this paper – allowing us to characterize quantitatively the natural,
‘organic’ evolution of an urban system and the influence of urban planning.

2 Road Network: Static Properties

Despite the peculiar geographical, historical, social-economical mechanisms that
have shaped distinct urban areas in different ways (see for example [10] and
references therein), recent empirical studies [11–22] (see also the review [23]) have
shown that, at least at a coarse grained level, unexpected quantitative similarities
exist between road networks of very different cities. The simplest description of the
street network consists of a graph whose links represent roads, and vertices represent
roads’ intersections and end points. For these graphs, links intersect essentially only
at vertices and are thus planar. The degree of a node is then the number of roads
intersecting at it. Planarity can be violated due to bridges but can be in general
considered as a good approximation [16]. Measuring spatial properties of cities
through the analysis of the street network is not new and was popularized some time
ago by Hillier and Hanson [24] under the term ‘space syntax’. In this chapter, we
will discuss different recent measures of these networks in the light of our current
understanding of the structure of networks.

2.1 Degrees, Lengths, and Cell Area Distribution

In [14,17] measurements for different cities in the world are reported. Based on the
data from these sources, the authors of [19] plotted (Fig. 2a) the number of roads E
(edges) versus the number of intersections N . The plot is consistent with a linear
fit with slope �1:44 (which is consistent with an average degree value hki � 2:5

measured in [17]). The quantity e D E=N D hki=2 displays values in the range
1:05 < e < 1:69, in between the values e D 1 and e D 2 that characterize tree-
like structures and 2d regular lattices, respectively. In a study of 20 German cities,
Lämmer et al. [16] showed that most nodes have four neighbors (the full degree
distribution is shown in Fig. 3a) and that for various world cities the degree rarely
exceeds 5 [14]. These values are however not very indicative: planarity imposes
severe constraints on the degree of a node and on its distribution which is generally
peaked around its average value.
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Fig. 2 (a) Number of roads versus the number of nodes (i.e. intersections and centers) for data
from [14] (circles) and from [17] (squares). In the inset, we show a zoom for a small number of
nodes. (b) Total length `T versus the number of nodes. The line is a fit which predicts a growth asp
N (Data from [14] and figures from [19])
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Fig. 3 (a) Degree distribution of degrees for the road network of Dresden. (b) The frequency
distribution of the cell’s surface areas Ac obeys a power law with exponent ˛ � 1:9 (for the road
network of Dresden) (From [16])

In Fig. 2b, we show the total length `T of the network versus N for the towns
considered in [14]. Data are well fitted by a power function of the form

`T D �Nˇ (1)

with � � 1:51 and ˇ � 0:49. In order to understand this result, one has to focus
on the street segment length distribution P.`1/. This quantity has been measured
for London in [25] and decreases rapidly, implying that both the average and the
dispersion are finite. If we assume that this result extends to other cities, the typical
distance between connected nodes then naturally scales as

`1 � 1p
�

(2)
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where � D N=L2 is the density of vertices and L the linear dimension of the city.
This implies that the total length scales as

`T � E`1 � hki
2
L

p
N (3)

This simple argument reproduces well the
p
N behavior observed in Fig. 2b and

also the value (given the error bars) of the prefactor � � hki=2.
The simplest hypothesis consistent with all the data presented so far, at this stage,

is that the road network is a statistically homogeneous and translational invariant
structure. However, this network naturally produces a set of non overlapping cells –
or blocks – encircled by the roads themselves and covering the embedding plane,
and surprisingly, the distribution of the area A of such cells measured for the city of
Dresden in Germany (Fig. 3b) has the form

P.A/ � A�˛ (4)

with ˛ ' 1:9. This seems to be in sharp contrast with the simple picture of an almost
regular lattice which would predict a distribution P.A/ peaked around `21, but if we
assume that A � 1=`21 � 1=� and that � is distributed according to a distribution
f .�/ (with a finite f .0/), a simple calculation gives

P.A/ � 1

A2
f .1=A/ (5)

which behaves as P.A/ � 1=A2 for large A. This simple argument thus suggests
that the observed value �2:0 of the exponent is universal and reflects the random
variation of the density. More measurements are however needed at this point in
order to test the validity of this hypothesis.

The authors of [5, 16] also measured the distribution of the form factor for a cell
defined as

 D 4A

	D2
(6)

which is the ratio of the area A of the cell to the area of the circumscribed circle of
diameter D. The value of the shape factor is in general higher for regular convex
polygons, and tends to 1 when the number of sides in the polygons increases. They
found that most cells have a form factor between 0:3 and 0:6, suggesting a large
variety of cell shapes, in contradiction with the assumption of an almost regular
lattice. This fact thus call for a model radically different from simple models of
regular or perturbed lattices.
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2.2 Betweenness Centrality

The importance of a road can be characterized by its traffic which can be measured
by sensors or surveys, but if we assume that the traffic between all pairs of nodes is
the same, a natural proxy for the traffic is the betweenness centrality (BC) defined
as [26]

g.i/ D
X

s¤t¤i

�st.i/

�st
(7)

(up to a normalization factor) where �st.i/ is the number of shortest paths from s

to t going through i (and �st is the number of shortest paths between s and t). A
node with a large BC is important in the structure of shortest paths and will very
likely correspond to a node that is very congested in reality. At least, even if the
underlying assumptions are not correct the spatial distribution of the betweenness
centrality gives important information about the coupling between space and the
structure of the road network.

Lämmer et al. [16] studied the German road network and obtained very broad
distributions of betweenness centrality with a power law exponent in the range
Œ1:279; 1:486� (for Dresden �1:36). These broad distributions of the betweenness
centrality signals the strong heterogeneity of the network in terms of traffic, with
the existence of a few very central roads which very probably points to some
congestion traffic problems. Also the absence of a scale in a power law distribution
suggests that the importance of roads is organized in a hierarchical way, a property
expected for many transportation networks [27]. The broadness of the betweenness
centrality distribution does not seem however to be universal. Indeed, in [13, 28],
the betweenness centrality distribution is peaked (depending on the city, either
exponentially or according to a Gaussian) which signals the existence of a scale
and therefore of a finite number of congested points in the city.

The betweenness centrality is in itself interesting since it points to the important
zone which potentially are congested. The Fig. 4 displays the spatial distribution of
the betweenness centrality for the city of Dresden (Germany). As expected zones
which are central from a geographical point of view also have a large betweenness
centrality. We however see that other roads or zones can have a large betweenness
centrality pointing to a complex pattern of flow distribution in cities.

In addition to have a relation with the traffic and possibly with congestion, a
recent paper [29] proposes an interesting direction which is in the general context
of connecting topological measures of the networks and socio-economical indices.
In particular, these authors show that there is a clear correlation between the
betweenness centrality and the presence of commercial activities.
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Fig. 4 Betweenness centrality for the city of Dresden. The width of the links corresponds to the
betweenness centrality (Figure taken from [16])

3 Evolution of Road Networks

Street networks coevolve as with urban systems and understanding their growth
represents an important piece of the puzzle of urbanization. The recent digitization
and georeferentiation of old maps enable us to measure this evolution and we will
here consider the evolution over almost 200 years of two different systems. The first
one corresponds to the evolution of a large system made of many small towns in
the region of Groane (Italy) and not controlled by any central authority. In contrast,
we will also present the case of Paris (France) which during the nineteenth century
experienced large transformations controlled by a central authority.

We notice that for both systems (Fig. 6a) that the that the number of nodes N is
proportional to the population P (for the first case of the italian Groane region it is
of order dN=dP � 0:019 and for central Paris dN=dP � 0:0021). In other words,
the number of people per road intersection remains constant over time. To be able
to compare these systems at different points of their evolution, we thus adopt the
number of nodes N as the natural internal clock of the system, and we study the
change of various network properties as a function of N .

Finally we note that, interestingly, the total road network length growth rate
(averaged over the total period of order 200 years) is of the same order of magnitude
for both systems

�`T

�t
'
(
4:6 km=year .Groane; Italy/

1:6 km=year .Paris;France/
(8)
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3.1 Elementary Processes

3.1.1 Characterizing Network Growth

In this part we will focus on the evolution, over two centuries, of the road network
in a large area of 125 km2, located north of Milan (Italy). In Fig. 5 we show the
street networks obtained at seven different times from 1833 to 2007. In the period
under consideration, we observe an uninterrupted network growth. In two centuries,
the total number of nodes N in the road network grows by a factor of 20, from the
original 255 nodes present at t D 1833 to more than 5;000 nodes at t D 2007.
However, this growth is not regular: it is slow from 1833 to 1933, fast from 1933 to
1994, and slow again from 1994 to 2007 (Fig. 5).

The number of linksK grows almost linearly withN (Fig. 6b, top), showing that
the average degree is roughly constant despite massive historical changes, with a
slight increase from hki ' 2:57 to 2:8 when going from 1914 to 1980 (Fig. 6b,
bottom). Moreover, in Fig. 6c we observe that the total network length increases
as N� where � ' 0:54 and, accordingly, the average length of links decreases as
N��1. This result is consistent with the evolution of two-dimensional lattices with
a peaked link length distribution [19, 23] which are described by a value � D 1=2.
The quantity

rN D ŒN.1/CN.3/�

N
(9)

0241Km
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Fig. 5 Evolution from 1833 to 2007 of the road network in the region of Groane (Italy). On each
map we report in grey all the nodes and links already existing at the previous time, and we indicate
in color the new streets added in the time window under consideration. The bottom right panel
reports, as a function of time, the total number of nodes N of the graph and the total population
in the area obtained from census data. The map on top-right panel shows the location of the area
under study in the metropolitan region of Milan
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Fig. 6 (a) Number of nodes N versus total population (continuous line with circles) and its linear
fit (red dashed line). (b) Total number of edges E , and the total network length Ltot (upper panel)
versus the number of nodes. The total length scales with N as a power law with exponent close
to 1=2. (c) As the network grows, the value of the ratio rN decreases, indicating the presence of a
higher number of 4-ways crossings. In the inset we report the percentage of nodes having degree
k D 4 as a function of N . Notice that the relative abundance of four-ways crossings increases by
5% in two centuries

where N.k/ is the number of nodes of degree k, gives additional information on
the structure of the network. Indeed, the plot of rN versus N (Fig. 6d) shows that
it steadily decreases from rN ' 0:87 at t D 1833 to rN ' 0:835 at t D 2007. In
the inset we report the relative abundance of four-ways crossings, i.e. N4=N . We
notice a substantial increase from N4=N ' 11% at t D 1833 to N4=N ' 15:5%
at t D 2007. This trend is the signature of a historical transition from a pre-urban to
an urban phase.

3.1.2 Evolution of Cells: Towards Homogenization

Road networks can be considered as planar graphs consisting of a series of cells
surrounded by street segments. The statistics on area and shapes of cells can be used
to distinguish regular lattices from very heterogeneous patterns. In particular, we
saw above that cell areas seem to be distributed in general as a power-law P.A/ �
A�� , with an exponent � ' 1:9 [16]. In Fig. 7a we show that the distribution of the
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a b

c d

Fig. 7 (a) The size distribution of cell areas at t D 2007 can be fitted with a power-law p.A/ 	
A�� , with an exponent � ' 1:9. The values of � increase over the years as shown in the inset. (b)
Relative dispersion in the distribution of areas as a function of the network size N . (c) Distribution
of cell shapes at each time, as quantified by the shape factor ˚ . We also report, as a reference,
the values of shape factors corresponding to various convex regular polygons. (d) The map shows
some typical cell shapes at different times with the same color-code as in the previous panels

cell areas at t D 2007 is a power law with the same exponent � D 1:9 ˙ 0:1. As
reported in the inset, the exponent however changes in time: it takes a value � ' 1:2

at t D 1833 and converges towards � ' 1:9 as the network grows. Because a larger
exponent indicates a higher homogeneity of cell areas, we are thus witnessing here
a process of homogenization of the size of cells. This appears to be a clear effect
of increasing urbanization in time, with the fragmentation of larger cells of natural
land into smaller urbanized ones. Accordingly, the relative dispersion of cell areas,
shown in Fig. 7b, decreases from 0:5 at t D 1833 to 0:26 at t D 2007, indicating
that the variance of the distribution becomes smaller as N increases.

The diversity in the cells shape can be quantitatively characterized by the so-
called shape factor  (see above). The distributions P./ reported in Fig. 7c clearly
reveals the existence of two different regimes: for t � 1933 the distribution is well
approximated by a single Gaussian function with an average of about 0:5 and a
standard deviation of 0:25. Conversely, for t 	 1955 the distribution of shape factors
displays two peaks and can be fitted by the sum of two Gaussian functions. The first
peak coincides roughly with the one obtained for t � 1933, while the second peak,
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centered at 0:62, signals the appearance for t 	 1955 of an important fraction of
regular shapes such as rectangles with sides of similar lengths. In Fig. 7d we show
some examples of the cell shapes at different times.

3.1.3 Properties of New Links: Elementary Processes of Urbanization

We focus here on the properties of the new links at a given time by looking at their
length and centrality. We show in [21] that the average length of new links decreases
over time, as expected. The nature of the growth process can be characterized
quantitatively by looking at the centrality of streets. More precisely, we quantify
the relative impact ıb.e/ of each new link e on the overall BC of the network at time
t , essentially by looking at the difference in total centrality of the network caused
by the hypothetical removal of the link [21]. Remarkably, the distribution of this
quantity ıb.e/ displays two well-separated peaks (Fig. 8), with the first peak tending
to increase in time while the second peak decreases, until they merge into only one
peak in the last time-section (1994–2007).

In order to understand this remarkable dynamics and the nature of these two
peaks, we focus on the geographical location of new links according to their impact
on BC. We map in green the links whose centrality impact falls in the range of

Fig. 8 The two phases of densification (green) and exploration (red), illustrated for the network
at 1914 (a), 1994 (b), and 2007 (c). (d) We show the probability distribution of the BC impact
ıb.e/ for the different time snapshots. The red peak corresponds to exploration, and the green peak
to densification. Notice that the red peak becomes smaller and smaller with time, and completely
disappears in the last snapshot. In (e) we show zoom on the period 1933-1955
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the first peak (or is lower) and in red the links whose ıb falls in the range of
the second peak (or is larger). In Fig. 8a, b we can see that green links (small ıb ,
first peak) tend to bridge already existing streets while red links (large ıb , second
peak) usually connect existing edges to new nodes. The distribution of BC impact
thus suggests that the evolution of the road network is essentially characterized by
two distinct, concurrent processes: one of ‘densification’ (green links, first peak,
lower impact on centrality) which corresponds to an increase of local density of the
urban texture, and one of ‘exploration’ (red links, second peak, higher impact on
centrality) which corresponds to the expansion of the network towards previously
non-urbanized areas. Obviously, since the amount of available land decreases over
time, at earlier time-sections (such as in 1833) the fraction of exploration is higher,
while in the 1980s it becomes smaller until it completely disappears in 2007.

Finally, there is a relation between the age of a street and its centrality. In [21],
we show that highly central links usually are also the oldest ones. In particular, the
links constructed before t D 1833 have a much higher centrality than those added
at later time-sections. More precisely, the historical structure of oldest links mostly
coincides with the highly central links at t D 2007. For this region, more than
90 % of the 100 most central links in 2007 (and almost 60 % of the top 1,000) were
already present in 1833.

3.2 Planning Versus Self-Organization

A city is a highly complex system where a large number of agents interact, leading
to a dynamics seemingly difficult to understand. Many studies in history, geography,
spatial economics, sociology, or physics discuss various facets of the evolution of
the city [30–38]. From a very general perspective, the large number and the diversity
of agents operating simultaneously in a city suggest the intriguing possibility that
cities are an emergent phenomenon ruled by self-organization [34]. On the other
hand, the existence of central planning interventions might minimize the importance
of self-organization in the course of evolution of cities. Central planning – here
understood as a top-down process controlled by a central authority – plays an
important role in the city, leaving long standing traces, even if the time horizon of
planners is limited and much smaller than the age of the city. One is thus confronted
with the question of the possiblity of modelling a city and its expansion as a self-
organized phenomenon. Indeed central planning could be thought of as an external
perturbation, as if it were foreign to the self-organized development of a city.

3.2.1 The Case of Paris

We consider here the evolution of the street network of Paris over more than
200 years with particular focus on the nineteenth century, a period when Paris
experienced large transformations under the guidance of Baron Haussmann [39].
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It would be difficult to describe the social, political, and urbanistic importance and
impact of Haussmann works in a few lines and we refer the interested reader to
the existing abundant literature on the subject (see [39, 40] and references therein).
Essentially, until the middle of the nineteenth century, central Paris has a medieval
structure composed of many small and crowded streets, creating congestion and,
according to some contemporaries, probably health problems. In 1852, Napoleon
III commissioned Haussmann to modernize Paris by building safer streets, large
avenues connected to the new train stations, central or symbolic squares (such as
the famous place de l’Etoile, place de la Nation and place du Panthéon), improving
the traffic flow and, last but not least, the circulation of army troops. Haussmann also
built modern housing with uniform building heights, new water supply and sewer
systems, new bridges, etc. Hausmann plan implied a large number of destruction
and rebuilding: approximately 28;000 houses were destroyed and 100;000 were
built [40].

The case of Paris under Haussmann provides an interesting example where
changes due to central planning are very important and where a naive modelling is
bound to fail. We analyze here in detail the effect of these planned transformations
on the street network. By introducing physical quantitative measures associated with
this network, we are able to compare the effect of the Hausmann transformation of
the city with its ‘natural’ evolution over other periods.

By digitizing historical maps into a Geographical Information System (GIS)
environment, we reconstruct the detailed road system (including minor streets)
at six different moments in time, t D 1; 2; : : : ; 6, respectively corresponding to
years: 1789; 1826; 1836; 1888; 1999; 2010. It is important to note that we have thus
snapshots of the street network before Haussmann works (1789–1836) and after
(1888–2010). In Fig. 9a, we display the map of Paris as it was in 1789 on top of the
current map (2010). In order to use a single basis for comparison, we limited our

Fig. 9 (a) Map of Paris in 1789 superimposed on the map of current 2010 Paris. In the whole
study, we focus on the Haussmann modifications and limited ourselves to the 1789 portion of the
street network. (b) Map of Haussmann modifications. The grey lines represent the road network in
1836, the green lines represent the Haussmann modifications which are basically all contained in
the 1789 area
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study over time to the portion corresponding to 1789. We note here that the evolution
of the outskirts and small villages in the surroundings has certainly an impact on the
evolution of Paris and even if we focus here (mainly because of data availability
reasons) on the structural modifications of the inner structure of Paris, a study at a
larger scale will certainly be needed for capturing the whole picture of the evolution
of this city. We then have six maps for different times and for the same area (of order
34 km2). We also represent on Fig. 9b, the new streets created during the Haussmann
period which covers roughly the second half of the nineteenth century. Even if we
observe some evolution outside of this portion, most of the Haussmann works are
comprised within this portion.

3.2.2 Simple Measures

In the following we study the structure of the graph Gt at different times t , having
in mind that our goal is to identify the most important quantitative signatures of
central planning during the evolution of this road network. First basic measures
include the evolution of the number of nodes N , edges E , and total length `T of
the networks (restricted to the area corresponding to 1789). In Fig. 10 we show the
results for these indicators which display a clear acceleration during the Haussmann
period (1836–1888). The number of nodes increased from about 3,000 in 1836 to
about 6,000 in 1,888 and the total length increase from about 400 kms to almost
700 kms, all this in about 50 years. As noted above, the node increase corresponds
essentially to an important increase in the population, and the results versus the
number of nodes shown Fig. 10d–f display a smoother behavior. In particular, E is
a linear function ofN , demonstrating that the average degree is essentially constant
hki � 3:0 since 1789. The total length versus N also displays a smooth behavior
consistent with a perturbed lattice [23] of the form `T D hki

2

p
AN (A is the area

considered here). A fit of the type a
p
N is shown in Fig. 10d and the value of a

measured gives an estimate of the area A ' 29:7 km2, in agreement with the actual
value A D 33:6 km2 (for the 1789 portion). This agreement demonstrates that all
the networks at different times are not far from a perturbed lattice.

We also plot the average route distance dR defined as the average over all pairs of
nodes of the shortest route between them (see Methods for more details). For a two
dimensional spatial network, we expect this quantity to scale as dR � p

N and thus
increases with N . The ratio dR=

p
N is thus better suited to measure the efficiency

of the network and we observe (Fig. 10c, f) that it decreases with time and N . This
result simply demonstrate that if we neglect delays at junctions, it becomes easier to
navigate in the network as it gets denser.
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Fig. 10 Top panels: Number of (a) nodes, (b) total length (kms), and (c) rescaled average route
distance versus time. Bottom panels: Number of (d) edges, (e) total length (kms), and (f) the
rescaled average route distance versus the number of nodes N . In (d) the dashed (blue) line is a
linear fit with slope 1:55 (r2 D 0:99) consistent with constant average degree of order hki � 3, and
in (e) the dashed (green) line a square root fit of the form a

p
N with a D 8:44 kms (r2 D 0:99).

Based on a perturbed lattice picture this gives an area equal to A ' 29:7 km2 consistent with the
actual value (A D 33:6 km2). In (f), we show the rescaled average shortest route versus N which
decreases showing that the denser the network and the easier it is to navigate from one node to the
other (if delays at junctions are neglected)

3.2.3 Evolution of the Spatial Distribution of Centrality

We now consider the time evolution of the node betweenness centrality. We note that
in our case where we consider a limited portion of a spatial network, it is important
to bear in mind that the BC has then to be used here as a structural probe of the
network, enabling us to track the important modifications.
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Fig. 11 Spatial distribution of the most central nodes (with centrality gv such that gv >

maxgv=10). We observe for the different periods important reorganizations of the spatial distri-
bution of centrality, corresponding to different specific interventions. In particular, we observe a
very important redistribution of centrality during the Haussmann period with the appearance of a
reticulated structure on the 1888 map

In [21], we show the tail of the BC distribution remains constant in time, showing
that the statistics of very central nodes is not modified. From this point of view, the
evolution of the road network follows a smooth behavior, even in the Haussmann
period. So far, most of the measures indicate that the evolution of the street network
follows simple densification and exploration rules and is very similar to other areas
studied [21]. At this point, it appears that Haussmann works didn’t change radically
the structure of the city. However, we can suspect that Haussmann’s impact is very
important on congestion and traffic and should therefore be seen on the spatial
distribution of centrality. In the Fig. 11, we show the maps of Paris at different times
and we indicate the most central nodes (such that their centrality gv.i/ is larger than
maxgv=˛ with ˛ D 10). We can clearly see here that the spatial distribution of
the BC is not stable, displays large variations, and is not uniformly distributed over
the Paris area. In particular, we see that between 1836 and 1888, the Haussmann
works had a dramatical impact on the spatial structure of the centrality, especially
near the heart of Paris. Central roads usually persist in time [21], but in our case,
the Haussmann reorganization was acting precisely at this level by redistributing
the shortest paths which had certainly an impact on congestion inside the city. After
Haussmann we observe a large stability of the network until nowadays.
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It is interesting to note that these maps also provide details about the evolution of
the road network of Paris during other periods which seems to reflect what happened
in reality and which we can relate to specific local interventions. For example, in
the period 1789–1826 between the French Revolution and the Napoleonic empire,
the maps shown in Fig. 11 display large variations with redistribution of central
nodes which probably reflects the fact that many religious and aristocratic domains
and properties were sold and divided in order to create new houses and new roads,
improving congestion inside Paris. During the period 1826–1836 which corresponds
roughly to the beginning of the July Monarchy, the maps in Fig. 11 suggests an
important reorganization on the east side of Paris. This seems to correspond very
well to the creation during that period of a new channel in this area (the ‘Canal Saint
Martin’) which triggered many transformations in the eastern part of the network.

It is visually clear in Fig. 11, that there is a large concentration of centrality in
the center of Paris until 1836 at least. The natural consequence of this concentration
is that the center of Paris was very probably very congested at that time. In this
respect, what happens under the Haussmann supervision is natural as he acts on the
spatial organization of centrality. We see indeed that in 1888, the most central nodes
form a more reticulated structure excluding concentration of centrality. A structure
which remained stable until now. Interestingly, we note that Haussmann’s new roads
and avenues represent approximately 6 % of the total length only (compared to
nowadays network), which is a small fraction, considered that it has a very important
impact on the centrality spatial organization.

This reorganization of centrality was undertaken with creation of new roads
and avenues destroying parts of the original pattern (see Fig. 9b) resulting in the
modification of the geometrical structure of blocks (defined as the faces of the
planar street network). The effect of Haussmann modifications on the geometrical
structure of blocks can be quantitatively measured by the distribution of the shape
factor  shown in Fig. 12 (top). We see that before the Haussmann modifications,
the distribution of  is stable and is essentially centered around  D 0:5 which
corresponds to rectangles. From 1888, the distribution is however much flatter
showing a larger diversity of shapes. In particular, we see that for small values of
 < 0:25 there is an important increase of P./ demonstrating an abundance of
elongated shapes (triangles and rectangles mostly) created by Haussmann’s works.
These effects can be confirmed by observing the angle distribution of roads shown
on Fig. 12 (bottom) where we represent on a polar plot r.
/ D P.
/ with P.
/ the
probability that a road segment makes an angle 
 with the horizontal line. Before
Haussmann’s modifications, the distribution has two clear peaks corresponding to
perpendicular streets and in 1888 we indeed observe a more uniform distribution
with a large proportion of various angles such as diagonals.
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Fig. 12 (Top) Probability distribution of the  shape factor for the blocks at different years.
Until 1836, this distribution is stable and we observe a dramatical change during the Haussmann
period with a larger abundance of blocks with small value of . These small values correspond to
elongated rectangle or triangles created by streets crossing the existing geometry at various angles.
(Bottom) Radial representation of the angle distribution of road segments for 1789, 1826, 1836,
1888. The radial distance r in this plot represents the probability to observe a street with angle 
 :
r D P.
/ with 
 2 Œ�	=2; 	=2� and P.
/ is the probability to observe an oriented road with
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 with the horizontal line (see first panel, top left). Until 1836, the distribution is peaked
around two values separated by approximately 90ı and in 1888, we observe an important fraction
of diagonals and other lines at intermediate angles
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4 Discussion and Perspectives

We described quantitatively the evolution of the street network in two different
cases. In general, we observe a trend towards a larger number of 4-ways junctions,
as opposed to an earlier structure of 3-ways junctions. Our results also reveal a
clear signature of urbanization on the evolution of the shape and size of land
cells, which become more homogeneously distributed and square-shaped. These
structural transformations appear to be the result of the interplay between two
concurrent dynamics, namely densification and exploration. While exploration is
typical of the earliest historical periods of urbanization, densification predominates
in the latest.

Another interesting feature of the evolution of theses systems is the stability
of the structure of most central streets over time: the most central streets largely
coincide with the oldest ones. This is a quite remarkable result if we consider the
huge modifications that can happen during 200 years of evolution. Central roads
appear therefore to constitute a robust spatial backbone which remains stable over
time, and characterizes the evolution of the road system as a continuous expansion
and reinforcement of pre-existing structures rather than as a sharp switch towards
radically new configurations.

In the particular case of the city of Paris, we could quantify the effect of central
planning. Our results reveal that most indicators follow a smooth evolution, domi-
nated by a densification process, despite the important perturbation that happened
during Haussmann. The important quantitative signature of central planning appears
to be the spatial reorganization of the most central nodes, in contrast with other
regions where self-organization dominated and which didn’t experience such a
large-scale structure modification. This structural reorganization was obtained by
the creation at a large scale of new roads and avenues (and the destruction of older
roads) which do not follow the constraints of the existing geometry. These new roads
do not follow the densification/exploration process but appear at various angles and
intersect with many other existing roads.

While the natural, self-organized evolution of roads seems in general to be local
in space, Haussmann modifications took place during a relatively short time and
at a large spatial scale by connecting important nodes which are far away in the
network. Following the Haussmann interventions, the natural processes take over
on the modified substrate. It is unclear at this stage if Haussmann modifications
were optimal and more importantly, if they were at a certain point inevitable and
would have happened anyway (due to the high level of congestion for example).
More work, with more data on a larger spatial scale are probably needed to study
these important questions.

All these different results suggest that the evolution of a road network results
from the superimposition of continuous, local growth processes and punctual
changes operating at large spatial scales, opening new directions for the modelling
of these systems.
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Spatio-Temporal Traffic Pattern Recognition
Based on Probe Vehicles

Hubert Rehborn and Micha Koller

Abstract Ubiquitous mobile probe data give new opportunities for the precise
reconstruction of congested traffic situations. Kerner’s three-phase traffic theory
(Kerner, The physics of traffic. Springer, Berlin/Heidelberg/New York, 2004;
Introduction to modern traffic flow theory and control. Springer, Berlin/Heidelberg,
2009) is the theoretical fundament for a review of the probe data analysis presented
in this paper. The methodology of the approach developed initially in Kerner et al.
(Physica A 392:221–251, 2013), will be illustrated and evaluated with empirical
examples from a German field trial. The mobile probes are processed with a three-
phase traffic state recognition while the vehicles drive through a spatio-temporal
congested traffic pattern, i.e., they pass synchronized flow regions and/or wide
moving jams. In the traffic control center, the traffic states from all communicating
mobile probes are fused depending on the related traffic phase. The quality of the
reconstructed traffic pattern using the mobile probes can be correlated with the
reconstruction based on stationary detectors. Therefore, we can conclude which
amount of mobile probes give the same information accuracy as roadside detectors
at certain distances. A microscopic traffic simulation based on Kerner-Klenov traffic
model (Kerner and Klenov, J Phys A Math Gen 35:L31–L43, 2002; Phys Rev E
68:036130, 2003; J Phys A Math Gen 37:8753–8788, 2004; Phys Rev E 80:056101,
2009) has given us an environment for developing, testing and evaluation of the
traffic reconstruction algorithms. The car-to-infrastructure field trial with more than
120 vehicles communicating with the traffic control center for the duration of
6 month in the German federal state of Hessen produces a huge amount of empirical
data. The paper illustrates results of the congested traffic recognition and jam front
detection. We will show that 2 % communicating probe vehicles of the total flow
rate give the opportunity of precise jam front warnings and, in addition, the same
data quality as detectors of 1–2 km distances.
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1 Introduction

Nowadays the stationary detectors that are often installed, used and have their data
offered by public authorities will become more and more superfluous for traffic
services because mobile probes from vehicles (i.e., “probe vehicles”) are made
available anywhere in the road network. It has been a widely discussed question
how much probe vehicle data is needed to replace such detector data. We believe
that spatio-temporal traffic patterns should be recognized in a certain quality based
on a sufficient penetration rate of probe vehicles in the traffic flow. This paper
reveals a data fusion approach which combines stationary and mobile probe data
and compares the reconstruction quality which can be achieved with each of the
two sources.

2 Elements of Kerner’s Three-Phase Traffic Theory

Figure 1 shows a spatio-temporal diagram which explains qualitatively Kerner’s
three phase traffic theory. Free flow is drawn as white. At a specific time and location
a traffic breakdown occurs, which is a phase transition from free to synchronized
flow (drawn as yellow area). Synchronized flow stays primarily fixed at a bottleneck
and disappears after several hours only. Within the area of synchronized flow caused
by further disturbances a wide moving jam can emerge (marked as red area).
Wide moving jams propagate upstream over time with a constant velocity of the
downstream front of the wide moving jam. The downstream front propagation speed
is a characteristic parameter of this congested traffic phase and about �15 km/h (e.g.,
[1,2]). The black line in the diagram symbolizes one probe vehicle. The vehicle has
to decelerate sharply if it reaches the upstream front of the wide moving jam and
only after passing it can accelerate again to free flow. A larger number of vehicles
would allow reconstructing the congested traffic pattern if the traffic state changes
are combined with a specific data fusion algorithm.

Fig. 1 Traffic state changes
and traffic phase transitions a
vehicle experiences on its
way through a
spatio-temporal congested
traffic pattern
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3 Methodology of the Data Fusion Approach

The overview of the approach is illustrated in Figs. 2 and 3. A stochastic Kerner-
Klenov traffic simulation [3–6] allows an analysis of the microscopic vehicle
behavior which has led to a congested pattern which is qualitatively similar to
Fig. 1. In the microscopic data analysis we can change the penetration rate of probe
vehicles in the total traffic flow and, therefore, the reconstruction algorithms can
be developed and tested. Details of those traffic phase dependent algorithms can
be found in [8] and [9]. Basically, the probe vehicles send their individual driving
paths to the control center, the traffic state changes are derived there and then all
these traffic state changes will be composed in a meaningful way, i.e., regions of
synchronized flow and wide moving jams are built-up by a number of traffic state
changes which are spatio-temporally close enough together in the neighborhood.
Probe vehicles at closer distances pass the same traffic phase region and this fact
has been used to develop the fusion algorithms (see [8] for details).

To realize jam front warnings it is enough to have vehicle probe data of 2 % of
the current traffic flow available at a control center because the fronts of propagating
wide moving jams can then be observed with sufficient accuracy (Fig. 3). To know
currently and precise the very dangerous and sharp fronts between free flowing
traffic and a wide moving jam would be very important for the safety of each
driver: an upstream warning could be given that a wide moving jam front propagates
upstream in the direction of the individual driver. The vehicle and/or the driver could

Fig. 2 Methodology: (a) A5 highway section. (b) ASDA/FOTO [1, 2, 7] pattern reconstruction
based on detector data on 10th Dec., 2009. (c) Simulations of (b) with Kerner-Klenov stochastic
microscopic three-phase traffic flow model
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Fig. 3 Methodology: (a) Simulated vehicle trajectories of random distributed 2 % probe vehicles
within the congested pattern in Fig. 2c. (b) Traffic state detection for probe vehicles in (a). (c) Jam
warning messages by probe vehicles in (a)

Fig. 4 Results of traffic state detection at different penetration rates of probe vehicles: (a) 2 % and
(b) 0.25 %

be informed about the upcoming front before it is detectable and/or visible for the
vehicle. If we use a traffic state detection algorithm for probe vehicle data and vary
the penetration rates, one can see that qualitatively the congested pattern can be
reconstructed at high quality with 2 % of probe vehicles (Fig. 4a) – less percentages
would mean less quality and with 0.25 % it is very difficult to understand and
detect any current traffic congestion. The details of these investigations with a
mathematical analysis can be found in [9].
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Fig. 5 (a) Time and space resolution of empirical data. (b) Definition of hit and failure rates

4 Reconstruction Quality

To explain the approach to determine the reconstruction quality, Fig. 5a shows
a spatial and temporal discrete resolution of a congested traffic pattern: each
reconstructed congestion has in each rectangle of this resolution one of three traffic
states which then can be compared to each other. For the calculation of the related
hit and failure rates we use a general definition illustrated in Fig. 5b: if we detect a
kind of “ground truth” reality, e.g., by detectors and ASDA/FOTO models (shown
in yellow), the data source of the probe vehicles can give a detection rate, missed
detection rate and the false alarm rate, which is very important for the traffic service
quality: because traffic congestion is a more or less negative information and a driver
would probably less accept a high number of false alarms, but is interested in a very
high detection rate. In our data fusion software solution it is possible to change the
data sources for the evaluation approach: the probe data can be chosen as “ground
truth” reality and be compared with the detector data and vice versa.

5 Field Trial Results

Within the simTD-field trial (“Sichere und Intelligente Mobilität – Testfeld Deutsch-
land”) up to 120 vehicles have been equipped to send their driving paths via
WLAN/GSM communication to the traffic control center. The examination of
possibilities of the traffic data fusion from different sources was one part of the field
trial. Therefore, it was necessary that the vehicles test drives should be organized
to have as much as possible of probe vehicles on the same road section in a shorter
time interval during traffic congestion. One day has been the 29th, Nov. 2012 on
the A5-South road section (Fig. 6): on the left the reconstructed congestion based
on detectors and ASDA/FOTO models, on the right the green trajectories of the
probes and the reconstruction of congested traffic phases. The related hit and failure
rates reveal that the hit rates for wide moving jams are higher (and the failure rates
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Fig. 6 (a) Traffic state reconstruction based on detectors on A5-South, 29th Nov., 2012
(b) Achieved hit and failure rates: Hit rate for wide moving jam is 67 %, hit rate for synchronized
flow is 42 %, false alarm rate for wide moving jam is 37 % and false alarm rate for synchronized
flow is 72 %
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Fig. 7 Overview on traffic situation reconstructed based on detectors on A5-South, 29th Nov.,
2012

lower) in comparison to synchronized flow: the propagating structure of the wide
moving jams can be detected more easy due to its stability while the synchronized
flow regions are more difficult to reconstruct with the same amount of probe data.

Figure 7 shows the overview of the total congested situation of the same day as
in Fig. 6: the green trajectories show the time interval when vehicle tests have been
performed. It is obvious here in this case that the congestion duration is longer than
the field driving tests. Therefore, the total traffic congestion over time can in this
example only be reconstructed with the roadside detectors and the ASDA/FOTO
models [7].

As one final technical space-time diagram of this paper illustrating a variety
of data sources with comparable results, Fig. 8 shows three different data sources
for the same traffic congestion on a 50 km road stretch of the A5 on 12th May,
2010. Figure 8a shows more than 6 h of traffic congestions reconstructed with
ASDA/FOTO models: several wide moving jams are following one another in a
stable propagating over the whole freeway section (in addition, independent from
bottlenecks like on- and off-ramps). Figure 8b presents the TomTom GPS-based
probe data from navigation applications like personal navigation devices (PND)
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Fig. 8 Comparison of congested traffic pattern measured on 12th May, 2010 on A5-North,
Germany with detector data processed with (a) ASDA/FOTO models (b) with on-line TomTom’s
GPS and (c) GSM probe vehicle data for this day

or navigation applications used in smartphones: these data are sent as vehicle
trajectories with probe data in 10 sec intervals transferred to the control center every
2 min. Technically, Fig. 8c pictures GSM-probe vehicle data from TomTom which
allow a precise reconstruction especially of the wide moving jams: on-call data from
base stations of the GSM mobile network make the propagation of several wide
moving jams visible [10]. In the given example, the number of GPS probes is in the
order of 1 % (i.e. about 40–60 probe vehicles per hour on a three-lane highway with
a maximum flow rate of about 6,000 vehicles per hour) and the number of GSM
probes has been even more than three times higher.

Conclusions
This paper reveals that traffic congestion recognition will be performed in
the future more and more based on mobile probe data. We show that a
Kerner-Klenov-Wolf traffic model can simulate a microscopic driver behavior
leading to a collective congestion which is in good accordance with a real
congested traffic situation measured by detectors and reconstructed by the
models ASDA/FOTO [7].

The three-phase traffic theory gives the fundament for the development of
data fusion algorithm for both stationary detector data and mobile probe data.
The German field trial with about 120 vehicles has produced a large amount
of empirical data which we have used to develop, test and evaluate the data
fusion algorithms.

The reconstruction quality of a congested traffic situation using 2 %
communicating probe vehicles of the total flow rate is similar to the quality
of a traffic situation which was reconstructed based on data from stationary
detectors which has 1–2 km distances. Examinations show that today a traffic
service provider like TomTom is able to provide probe data of high quality

(continued)
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up to 2 % of the total flow rates on all highways at any time. Such high
penetration rates of probe vehicles will offer future opportunities for new
traffic services, e.g., precise jam front warnings.

Acknowledgements We would like to thank the federal government of Hessen for their per-
mission of our participation in the field trial project and TomTom for the preparation of their
anonymous aggregated probe vehicle data.
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From Random Walker to Vehicular Traffic:
Motion on a Circle

Hans Weber, Reinhard Mahnke, and Jevgenijs Kaupužs

Abstract Driving of cars on a highway is a complex process which can be
described by deterministic and stochastic forces. It leads to equations of motion
with asymmetric interaction and dissipation as well as to new energy flow law
already presented at previous TRAFFIC AND GRANULAR FLOW meetings. Here
we consider a model, where motion of an asymmetric random walker on a ring
with periodic boundary conditions takes place. It is related to driven systems with
active particles, energy input and depot. This simple model can be further developed
towards more complicated ones, describing vehicular or pedestrian traffic. Three
particular cases are considered, starting with discrete coordinate and time, then
making time continuous and, finally, considering a drift–diffusion equation in a
continuum limit.

1 Introduction

Inspired by our previous work on models of vehicular motion and traffic breakdown
in one–dimensional systems with periodic boundary conditions [1, 2]; we turn our
attention to a different set of models obeying the same geometrical constraints. Ran-
dom walk is one of basic models in understanding processes across a wide spectrum
of scientific disciplines with a large variety of different applications [3, 4]. Random
walk of independent particles is an important first step towards understanding of
stochastic transport in more complex systems with interactions [5]. Our aim is to
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consider asymmetric random walks of different type and find relations between
them. In particular, we consider different cases, where each of two variables –
position and time, can be either discrete or continuous. The following idea is
to develop these models of independent random walk towards models of traffic
flow.

2 Stochastic Motion on a Ring with Discrete Position
and Time

We start our consideration with a discrete model of asymmetric random walk on a
ring. The probability P.xm; tn/ to find the walker at a position xm at time moment
tn is given by Markov chain

P.xm; tn C �/ D p P.xm � a; tn/C q P.xm C a; tn/ ; (1)

where p and q are jumping probabilities for xm ! xm C a and xm ! xm � a,
respectively, such that p C q D 1. The discrete position and time are given by

xm D am ; m D 0; 1; 2; : : : ;M � 1 (2)

tn D � n ; n D 0; 1; 2; : : : (3)

The motion takes place on a ring of length xM D aM D L, with periodic boundary
condition P.xm; tn/ D P.xm C L; tn/, starting at certain position x0, which is not
necessarily zero. Thus the initial condition is

P.xm; t0 D 0/ D ıxm;x0 : (4)

In the following, we use the spatial Fourier transformation

QP.k; tn/ D
M�1X

mD0
P.xm; tn/ e

ikxm ; (5)

P.xm; tn/ D 1

M

X

k

QP .k; tn/ e�ikxm : (6)

with M discrete wave numbers k D 2	l=L for l D 0; 1; : : : ;M � 1. It leads to the
Markov chain

QP .k; tn C �/ D �
p eika C q e�ika

� QP .k; tn/ (7)
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in the discrete k–space. Taking into account the initial condition (Eq. 4), we obtain

QP .k; tn/ D �
p eika C q e�ika

�tn=�
eikx0 : (8)

The inverse transformation (Eq. 6) generates the following solution

P.xm; tn/ D 1

M

X

k

�
p eika C q e�ika

�tn=�
e�ika.xm�x0/=a (9)

with

k0 
 ka D 2	l=M ; l D 0; 1; 2; : : : ;M � 1 : (10)

To consider the limit M ! 1 we replace the sum by the integral as follows

1

M

X

k0

: : : ! 1

2	

Z 	

�	
: : : dk0 : (11)

The periodic solution (Eq. 9) shows the diffusive relaxation from the initial sharp
peak (Eq. 4) to steady state with or without drift depending on the asymmetry
parameter� D p � q. Using � instead of p D 1 � q we get

�
p eika C q e�ika

� D cos.ka/C i� sin.ka/ (12)

and receive the solution (Eq. 9) in the following notation

P.xm; tn/ D 1

M

X

k

e�.�0

k�i�00

k /tn e�ik.xm�x0/ (13)

D 1

M

X

k

e��
0

k tn
�
cos.�00ktn/ cos.k.xm � x0//C sin.�00ktn/ sin.k.xm � x0//

�
(14)

with

�0k D �1
�

ln

�q

cos2.ka/C�2 sin2.ka/

�

; (15)

�00k D 1

�
arctan .� tan.ka// : (16)

This rotating .� 6D 0/ random walker is, of course, not a model of traffic flow. This
stochastic process explains drift–diffusive motion without interaction and active
behaviour.
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3 Stochastic Motion on a Ring with Discrete Position
and Continuous Time

Let us now consider a model, where position is discrete, but the time t is continuous.
In this case we have the master equation

@

@t
P.xm; t/ D wCP.xm�1; t/C w�P.xmC1; t/ � ŒwC C w��P.xm; t/ : (17)

Here xm D ma, m D 0; 1; 2; : : : ;M � 1 are the discrete coordinates, whereas wC
and w� are transition rates, which in this case are assumed to be constant. As before,
motion is on a ring of length L (periodic boundary condition), starting at x0. The
solution of this problem for x0 D 0 is given in [5] (Sect. 3.1), using somewhat
different notations than here.

To obtain the solution, we use the Fourier transformation

QP.k; t/ D
M�1X

mD0
P.xm; t/e

ikxm (18)

P.xm; t/ D 1

M

X

k

QP .k; t/e�ikxm (19)

with k D 2	l=L for l D 0; 1; 2; : : : ;M � 1. It gives the equation in the k–space

@ QP .k; t/
@t

D �
wCeika C w�e�ika � .wC C w�/

� QP.k; t/ D ��k QP .k; t/ ; (20)

where

�k D wC.1 � eika/C w�.1 � e�ika/ : (21)

The complex solution reads

QP .k; t/ D QP.k; 0/e��k t : (22)

Using the initial condition P.xm; 0/ D ıxm;x0 and (Eq. 18), we get QP .k; 0/ D eikx0 .
Inserting this and (Eq. 22) into (Eq. 19), we obtain the solution in the coordinate
space,

P.xm; t/ D 1

M

X

k

e��kt�ik.xm�x0/

D 1

M

X

k

e��0

k t
�

cos.�00kt/ cos.kŒxm � x0�/C sin.�00kt/ sin.kŒxm � x0�/

: (23)
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Here �k is the complex rate parameter, which is represented as �k D �0k � i�00k ,
where

�0k D .wC C w�/.1� cos.ka// ; (24)

�00k D .wC � w�/ sin.ka/ : (25)

4 From Discrete to Continuous Time

The solution P.xm; tn/ (Eq. 14) of the model with discrete time and coordinate is
different for odd and even n, i.e., it always makes jumps in time in such a way that
it is zero for odd m and nonzero for even m at one time step and vice versa at the
next time step. Therefore, we consider the probability function

NP .xm; tn/ D 1

2

�
P.xm; tn/C P.xm; tn C �/


; (26)

which is obtained by an averaging over two successive time steps. This function is
expected to be smoother in time. Considering two successive steps of the Markov
chain (Eq. 1), we obtain the Markov chain

NP.xm; tn C �/ D p NP .xm � a; tn/C q NP.xm C a; tn/ (27)

for NP .xm; tn/. If the initial condition for P.xm; tn/ is P.xm; 0/ D ıxm;x0 , then for
NP.xm; tn/ we have

NP .xm; 0/ D 1

2

�
q ıxm;x0�a C ıxm;x0 C p ıxm;x0Ca


: (28)

Taking into account that p C q D 1, we can write

NP.xm; tn C �/� NP .xm; tn/
�

D p

�
NP.xm � a; tn/C q

�
NP.xm C a; tn/

� p C q

�
NP .xm; tn/ : (29)

The expression on the left hand side of (Eq. 29) is approximately equal to the time
derivative @ NP .xm; t/=@t at t D tn for � � tn, i.e., for a large number of time steps
or large time scale, when the probability distribution NP.xm; t/ (but not P.xm; t/)
changes very slightly in one time step. It leads to the master equation

@ NP .xm; t/
@t

D wC NP.xm �a; t/C w� NP.xm Ca; t/� .wCC w�/ NP .xm; t/ ; (30)
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where wC D p=� and w� D q=� are the transition rates. Here we consider the limit
t=� ! 1 for a finite � , since the transition rates have to be finite.

5 Stochastic Motion on a Ring with Continuous Position
and Time

We consider now the limit a ! 0 in the master equation (Eq. 17) or (Eq. 30). These
two equations are similar, with the only difference that (Eq. 30) is for the averaged
over two successive time steps probability distribution. We can rewrite (Eq. 17) as

@P.xn; t/

@t
D a2

wC C w�
2

P.xn C a; t/ � 2P.xn; t/C P.xn � a; t/

a2

� a .wC � w�/
P.xn C a; t/ � P.xn � a; t/

2a
: (31)

Considering the probability densityp.x; t/ D P.x; t/=a as a continuous function of
coordinate x and taking the limit a ! 0, we obtain from (Eq. 31) the drift–diffusion
equation

@p.x; t/

@t
D D

@2p.x; t/

@x2
� vdrift

@p.x; t/

@x
(32)

with the diffusion coefficientD and drift coefficient vdrift given by

D D a2

2

�
wC C w�


(33)

vdrift D a .wC � w�/ : (34)

To solve (Eq. 32) with the initial condition p.x; 0/ D ı.x � x0/, we use the Fourier
transformation

Qp.k; t/ D
LZ

0

p.x; t/eikxdx (35)

p.x; t/ D 1

L

X

k

Qp.k; t/e�ikxdk ; (36)

where k D 2	l=Lwith l D 0;˙1;˙2; : : : The Fourier–transformed drift–diffusion
equation reads

@ Qp.k; t/
@t

D .�Dk2 C ik vdrift/ Qp.k; t/ : (37)
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The solution is

Qp.k; t/ D Qp.k; 0/ e��kt ; (38)

where the complex rate parameter �k D �0k � i�00k is given by

�0k D Dk2 ; (39)

�00k D k vdrift : (40)

Using the initial condition p.x; 0/ D ı.x � x0/, we obtain Qp.k; 0/ D eikx0 and thus

Qp.k; t/ D e��ktCikx0 : (41)

The solution in the coordinate space

p.x; t/ D 1

L

X

k

e�.�0

k�i�00

k /t e�ik.x�x0/

D 1

L

X

k

e��0

k t
�

cos.�00kt/ cos.kŒx � x0�/C sin.�00kt/ sin.kŒx � x0�/


(42)

is obtained via the transformation (Eq. 36).

6 The Optimal Velocity Model for Highway Traffic

There are several models for highway traffic. We will restrict ourselves to a model
for vehicular traffic on a single lane. Vehicles in the model are subjected to periodic
boundary conditions and they cannot overtake. The vehicle, in the absence of
other vehicles, drives at its maximum velocity. If other vehicles are present the
‘driver’ has to take into account a safety distance to the next vehicle in front.
This leads to an adaption of speed, the optimal velocity, as a vehicle in front is
approached.

A widely used model in this context is the optimal velocity model (OVM) by
Bando et al. [6, 7]. This is microscopic model assigning to each vehicle a velocity
and a position. The motion is controlled by a set of coupled differential equations
(Eq. 43). We integrate out the equations of motion of the OV model by a Runge
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Kutta 4th order scheme. The Bando OVM is a deterministic model for traffic flow
and is given by the equations

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

d
dt vi D 1

�

�
vopt.�xi / � vi

�
d
dt ui D �

uopt.�yi/ � yi
�

.a/

d
dtxi D vi d

dtyi D 1
b

ui .b/

vopt .�xi / D vmax
.�x/2

D2C.�x/2 uopt .�yi / D .�y/2

1C.�y/2 .c/

b D D
vmax�

.d /

(43)

In the equations above the leftmost set defines the OV model. The velocity of the car
i is vi and its position is xi . The control parameters are the maximum velocity vmax,
� andD (interaction distance), vopt.�x/ is the optimal velocity function and�xi D
xiC1 � xi is the headway (bumper-to-bumper distance). The average homogeneous
density of cars is c D N

L
. The rightmost set of equations (43) are the same equations

as the leftmost but in a dimensionless form. The dimensionless velocity of car i
is ui and its position is yi . There is only one control parameter b D D

vmax�
in this

formulation.
In Fig. 1 we illustrate by a series of ‘snapshots’ taken at different times in the

development of a traffic configuration. The dimensionless set of equations (43) have
been integrated out to give results for the density of vehicles as a function of position
at three different instants of time. The parameters used are N D 90 the number of
vehicles, L D 61 the length of the circular road and b D 1:25 as control parameter.
In Fig. 1 we see a distinct feature, a maximum in the density of vehicles. Vehicles
that have entered into this stretch of the circular road where the density is increased
are in a queue. Whilst in the queue the vehicle has a low velocity. In the low density
region the vehicles are more or less in the free flow regime and move with a velocity
close the vmax.

Vehicles enter the queue from the left and exit on the right of the maximum
density. The queue shifts its position to the left in the figures as time evolves. The
leftmost figure is a snapshot of the earliest configuration of the three snapshots and
the rightmost is the latest.
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Fig. 1 The time development of a traffic queue, shown at three different instants. The equations
(43) for N D 90; L D 61 and b D 1:25
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Fig. 2 The position of the
maximum in Fig. 1 as a
function of time. The slope is
the velocity with which the
maximum moves to the left
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A property of the OV model is that the configuration of the queue in the limit
t ! 1 is stable as time evolves, ie the queue does not disperse. From the previous
graphs Fig. 1 we can construct a figure that shows how the position of the maximum
of the density evolves as a function of time t . In Fig. 2 the drift of the queue is shown
as a function of time. The position of the queue is identified by the maximum of
the distribution if Fig. 1. The drift velocity is the slope of the lines in Fig. 2. Note
the slope is negative number as cars drive into the queue from the left (in Fig. 1)
and exit on the right. Therefore the position of the maximum moves to the left in
Fig. 1

7 Numerical Solutions for the Random Walker Model

In this section we will make a comparison between three simple models of random
walkers constrained to move on a one dimensional road with periodic boundary
conditions.

• Model 1: A random walker with discrete time and position defined by the
equations in Sect. 2.

• Model 2: A random walker with continuous time and discrete position defined
by the equations in Sect. 3.

• Model 3: A random walker with continuous time and position defined by the
equations in Sect. 5.

7.1 Discrete Time and Position

The solution (Eq. 14) for a discrete asymmetric random walker on a ring is
illustrated in Fig. 3. The probabilities are set to p D 0:74 for a step to the right
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Fig. 3 The probability P.xm; tn/, given by Eq. (14), for a random asymmetric (p D 0:74; q D
0:26) walker to be at a position xm at two different time moments. The initial starting position is
set to x0 D 5 at time t D 0

and q D 0:26 for a step to the left. The initial position of the walker is set to x0 D 5.
If one takes a careful look at Fig. 3 there seems to be a spiky appearance of the
probability. This can easily be explained by the discreteness of the model. After one
time step the walker will occupy positions 4 and 6. The walker jumps from odd to
even positions and vice versa every time step, hence the spiky appearance of the
probability.

7.2 Discrete Position and Continuous Time

The solution (Eq. 23) for a discrete asymmetric random walker with transition rates
wC D 0:75 and w� D 0:25 on a ring is illustrated in Fig. 4. The walker is started at
position xm D 5 at t D 0 and the graphs show the development of the probability
distribution (Eq. 23) at four instants of time in units of � .

From the graphs we can note two characteristics. The position of the maximum
slowly drifts to the right as the walker is asymmetric and also that the distribution
of the probability P.xm; t/ gets smeared out as time increases.
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Fig. 4 The probability P.xm; t/, given by Eq. (14), for a random asymmetric (wC D 0:75;w� D
0:25) walker to be at a position xm at two different time moments. The initial starting position is
given by x0 D 5 at time t D 0. The four graphs are for times t D 11; 29; 39 and t D 49 in units
of �

7.3 Continuous Position and Time

The solution Eq. (42) for the motion of a random walker on a ring with continuous
position and time is illustrated in Fig. 5. The figures have the same appearance
as the one (Fig. 4) for the discrete walker with continuous time presented in
Sect. 7.2.

For the three random walker models discussed above we can note two character-
istic features. As all three models where put into an asymmetric state the position
of the maximum slowly drifts to the right in the Figs. 3–5. We can also tell that
all three models have a dispersing distribution of the probability P.xm; t/ as time
increases. Eventually the homogeneous distribution will be reached as time goes to
infinity.
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Fig. 5 The probability P.x; t/, given by (42), for a random (vD D 1:5;D D 0:2) walker to be
at a position x at four different time moments. The parameters of the models are N D 99 and
L D 29. The initial starting position is given by x0 D .L� 1/=6 D 4 2

3

8 Discussion

All the considered models in Sects. 2–5 describe a random walk of a single particle
or, equivalently, of independent particles. These models include an asymmetry of
the walker as a very important feature of traffic or pedestrian flow. However one
should be careful as the three random walker models presented are not real models
of traffic flow. Indeed, the considered solutions spread out with time due to the
diffusion, and the long–time equilibrium state is described by a uniform distribution
of the probability or probability density.

Continuous stochastic model of Ornstein-Uhlenbeck type [8] with ‘staying
together parameter’ � , drift or speed v, diffusion or stochasticity D

@

@t
p.x; t/ D �v

@

@x
p.x; t/C �

@

@x
.xp.x; t//CD

@2

@x2
p.x; t/ (44)

would be an appropriate extension of the drift–diffusion equation (Eq. 32), allowing
us to describe a stable spatially non-homogeneous density distribution correspond-
ing to a traffic jam, coexisting with free flow, or to stop–and–go waves.



From Random Walker to Vehicular Traffic: Motion on a Circle 359

Properties of the different models

• In the ‘Bando Model’ a steady state does not disperse. Whereas in the different
realisations of the random walker there is dispersion. Except for special cases
like p D 0 or wC D 0.

• The ‘Bando Model’ and the all the different realisations of the random walker
show a well defined linear drift with a well defined drift velocity.
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Different Approaches to the Multilane Traffic
Simulation

Antonina Chechina, Natalia Churbanova, and Marina Trapeznikova

Abstract The paper deals with development of both macroscopic and microscopic
approaches to the mathematical modeling of multilane vehicular traffic on city roads
and highways. The macroscopic model considers synchronized traffic flow, uses the
continuum approach and is based on the original quasi-gas-dynamic (QGD) system
of equations. The distinguishing feature of the model is the variable transverse
velocity reflecting the speed of lane changing. The numerical implementation
is explicit, the similarity with kinetically consistent finite difference schemes
is used. The microscopic model is based on the cellular automata theory and
presents generalization of Nagel-Schreckenberg model to the multilane case. The
computational domain is the 2D lattice where two directions correspond to the road
length and width. The number of cells in the transverse direction corresponds to the
number of lanes. Each cell of the lattice can be either empty or occupied by one
vehicle. Such a model allows vehicles to change lanes and to overtake one another.
The algorithm of cell state update is formed by two components: lane change (if it
is necessary and possible), movement along the road by the rules of N-S model.

1 Introduction

There are two main approaches to traffic flow modeling: macroscopic approach,
in which vehicle flow is considered as a compressible fluid or gas flow, and a
microscopic one, where each car is considered separately. Macroscopic models
describe congested traffic, when distance between cars and their size have the same
order. Commonly in macroscopic models all the drivers have the same strategies and
behavior. The computational cost in such approach does not depend on the amount
of vehicles in the network, that is why it is usually used for traffic simulation on large
road networks. In microscopic approach there are no restrictions concerning flow
density, but computational cost increases if more cars are added in simulation. There
is a possibility to take into account different drivers behavior and car properties, so
we can get a detailed picture of traffic flow as a result of simulation.
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In this article macroscopic [1] and microscopic [2] models proposed by authors
earlier received further development.

2 Macroscopic Model

The majority of macroscopic models are one-dimensional, i.e. lane changing is not
considered. Therefore, the real road geometry is not taken into account. Developing
two-dimensional macro model is not easy because of inequivalence of movement
along and across the road.

As is standard, we deal with the density of cars �.x; y; t/, i.e. the number of
cars per lane per length unit and the flow velocity consisting of two components:
u.x; y; t/ is the speed along the road, v.x; y; t/ is the speed across the road. As
said before, the continuum approach can be applied only in case of congested
(synchronized) traffic state. Under these conditions all drivers have to maintain the
same strategies:

• To move with the speed providing safe traffic,
• To move to the lane with lower density and/or higher speed,
• To approach planned destination.

The main difference between gas dynamics equations and traffic flow equations is
in the terms that describe human will, for example, acceleration/deceleration force:

fx D ax � �; fy D ay � �I (1)

Acceleration depends on the difference between the real and equilibrium speed, the
last one is the specific speed of movement at the exact value of �:

ax D ueq � u

Tx
; ay D veq � v

Ty
I (2)

Equilibrium speed along the road:

ueq D uf �
�

1 � �

�jam

�

I (3)

where uf is the free flow speed, �jam is the jam density, i.e. the density of traffic jam,
the maximum density of vehicular flow.
Tx and Ty – relaxation (driver reaction) times:

Tx D t0x �
�

1C r�

�jam � r�

�

; Ty D t0y �
�

1C r�

�jam � r�
�

I (4)

t0x , t0y and r – phenomenological constants.
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Equilibrium speed across the road consists of three terms:

• Movement to the lane with higher speed –

vu D ku � @u

@y
; (5)

• Movement to the lane with lower density –

v� D �k� � @�
@x
; (6)

• Movement towards desired destination –

vdes D min

�

kdes � u

xdes � x
; 1

�

� u � ydes � y
xdes � x

I (7)

here ku, k�, kdes – phenomenological constants and .xdes; ydes/ – coordinates of
desired destination point.

v D vu C v� C vdes: (8)

Speed limitation due to safety conditions:

0 � u � umax; �vmax � v � vmaxI (9)

The analogue of pressure is introduced into the model to represent the driver’s
reaction on the road conditions downstream and on the neighbouring lanes:

px D �x
�ˇx

ˇx
; py D �y

�ˇy

ˇy
I (10)

where �x , �y , ˇx , ˇy – phenomenological constants.
We consider the Knudsen number Kn that is the ratio between the typical scale

of the medium and the typical scale of the flow. In hydrodynamics, Kn < 10�3;
however, for traffic flow Kn � 0:1, which is the reason we use kinetically consistent
difference schemes (KCDS) [3] in this work, as they work well within the wide
range of Knudsen numbers.

In addition, we introduce the minimal time scale to meet the approximation of
the continuous medium. We take the time instant when the given point of the road
is crossed by several cars as such a time.

�x � ı.u/

u
; �y � 1

v
(11)

To simplify the model, we treat �x and �y as constants.
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Special term is included in continuity equation providing solution smoothing
along the road:

Wx D �x

2
� @
@x

�
�u2 C px

�
: (12)

Additional diffusional flow connected with vehicle movement across the road:

Wy D �y

2
� @
@y

�
�v2 C py

�
: (13)

Generalizing the assumptions (1)–(13), we obtain system of flow dynamics equa-
tions:

@�

@t
C @�u

@x
C @�v

@y
D @

@x

�x

2

�
@

@x

�
�u2 C px

� � fx C @

@y
.�uv/

�

C @

@y

�y

2

�
@

@y

�
�v2 C py

� � fy C @

@x
.�uv/

�

(14)

@�u

@t
C @

@x

�
�u2 C px

� � fx C @

@y
.�uv/

D @

@x

�x

2

�
@

@x

�
�u3 C 3pxu

�� 3fxu

�

C @

@y

�y

2

�
@

@y

�
�uv2 C pyu

� � fyu

�

C @

@x

�x

2

�
@

@y

�
�u2v C pyv

� � fyv

�

C @

@y

�y

2

�
@

@x

�
�u2v C pxv

�� fxv

�

(15)
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�
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�
@
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�� fyu

�

C @

@y

�y

2

�
@

@x

�
�v2u C pxu

� � fxu

�

(16)

Model includes several constants and parameters that can be obtained only from
experimental and statistical data. We used the following values:

�x D 60
km2

h2 ; �y D 4
km2

h2 ; ˇx D 2; ˇy D 1; �x D 2 � 10�3 h; �y D 3 � 10�4 h;

t0x D 50 s; t0y D 7:5 s; r D 0:95; �jam D 120
veh

km � lane
; umax D 90

km

h
;

uf D 120
km

h
; vmax D 20

km

h
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3 Microscopic Model

The proposed microscopic model is based on Nagel-Schreckenberg model [4] using
cellular automata (CA) theory.

The original 1D model was extended by authors to the multilane case. The
computational domain is 2D lattice, each cell is 7.5 m long and 1 lane wide, it can
either contain a car or be empty. Time and speed are also discrete, speed v of each
vehicle can take one of the integer values v D 0; 1; : : : ; vmax (each vehicle can have
its own vmax), it denotes how many cells the vehicle overpasses during a time step.

Cell state update algorithm consists of two steps:

1. Lane change (if it is necessary and possible);
2. Movement along the road by the rules of one-lane traffic.

Change of lanes should happen during a time step. If there are more than two lanes
in one direction, a conflict can occur when two vehicles from extreme lanes tend
to the inner lane and try to occupy one and the same cell. The rule like the next
one could help to resolve such a situation: vehicles change to the right only on even
time steps and change to the left on odd steps. In general rules and conditions for
changing lanes are as follows:

• Vehicle is located in the domain where lane change is allowed;
• Lane change leads to increase of the speed (decrease of the density) or is

necessary to reach the destination (to achieve the goal);
• Target cell is empty;
• Safety condition is satisfied – on the target lane the distance behind the vehicle

is greater or equal to vmax, in front of the vehicle it is greater or equal to vn, then
the change takes place with some probability.

If xn and vn are the position and the speed of the current n-th vehicle, dn is the
distance between the current vehicle and the vehicle in front of it, then at each time
step t ! t C 1 the algorithm of the vehicle arrangement update consists of the next
stages:

1. Acceleration vn ! min.vnC1; vmax/

2. Deceleration vn ! min.vn; dn�1/
3. Randomization vn ! max.vn�1; 0/ with some probability p
4. Vehicle movement xn ! xn C vn

The first stage reflects the common tendency of all drivers to move as fast as
possible, the second one guarantees avoiding collisions, the third one takes into
account randomness in driver behavior, and the skip itself takes place on the fourth
stage – each vehicle is moved forward according to its new velocity.
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4 Test Results

Several test problems were solved in order to verify our models and make a
comparison between them and with standard program package Aimsun TSS [5].

4.1 Local Widening of the Road

The first test problem is vehicle movement on the road with local widening. The
corresponding road configuration is shown in Fig. 1.

Figure 2 demonstrates the density field obtained by macroscopic simulation.
The density of vehicles decreases at the wide part of the road but then increases
significantly near the narrowing point. Thus, the total time required to pass the given
road interval grows as compared with the road without widening.

The same test problem has been solved using the microscopic model. The average
density is depicted in Fig. 3. Here is the same tendency: the maximal density is
located at the end of widening. Moreover the density at the road exit exceeds the
enter density.

In Fig. 4 the simulation results via Aimsun TSS, the widely used commercial
traffic modeling software, are shown. There is no possibility to get the detailed
picture of density distribution along and across the road using Aimsun, only average
density on large road fragments is depicted. However, the density increases in the
wider part leading to capacity reduction.

Fig. 1 Local widening: the problem statement

Fig. 2 Density field obtained via the macroscopic model
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Fig. 3 Density field obtained via the microscopic model

Fig. 4 Density field obtained via Aimsun

Fig. 5 Entering flows and permitted directions on the signalized intersection

4.2 Traffic Lights on the Crossroad

The second problem to be considered is the simulation of traffic on a crossroad
at different traffic lights regimes using the above microscopic model. The problem
involves obtaining the optimal traffic lights regime namely the signal durations to
ensure the minimal time of stay on the crossroad for all traffic participants (Fig. 5).

In Fig. 6 the capacity of the signalized intersection in case of different traffic
lights regimes is shown. Fifteen regimes obtained by changing durations of traffic
light phases were explored using microscopic model and Aimsun. As is seen from
the picture, though the absolute values of capacity obtained via Micro and Aimsun
differ in the same regimes (this is a calibration problem), the results show good
agreement.
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Fig. 6 Capacity of the signalized intersection. Results for 15 configurations of traffic lights
regimes obtained via Micromodel and Aimsun TSS

Conclusions
• The models and algorithms developed showed results comparable with

the simulation by the standard program software but demonstrated more
detailed description of the traffic flow and its evolution in time. They can
be implemented as a program package for traffic modeling.

• Due to inner parallelism and simplicity of numerical algorithms of the
models the calculations can be carried out using high performance super-
computers on large-scale road networks. The capacity and performance of
modern multicore hybrid computer systems allows real time predictions.
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Empirical and Theoretical Fundamentals
for Reliable Control and Optimization
of Vehicular Traffic and Transportation
Networks

Boris S. Kerner

Abstract As explained in a TGF’13 talk and Kerner (Physica A 392:5261–5282,
2013), generally accepted fundamentals and methodologies of traffic and transporta-
tion theory have failed by their applications for traffic network optimization and
control in the real world. In comparison with a full version of the review Kerner
(Physica A 392:5261–5282, 2013) with about 540 references, in this short paper we
formulate and discuss empirical and theoretical fundamentals, which can be used
for the development of reliable control and optimization of vehicular traffic and
transportation networks.

1 Introduction

In the review [1] it has been shown that the generally accepted fundamentals and
methodologies of traffic and transportation theory are not consistent with the set of
the fundamental empirical features of traffic breakdown at a highway bottleneck. In
this article, based on the results of three-phase traffic theory, we discuss briefly
empirical and theoretical fundamentals of reliable control and optimization of
vehicular traffic and transportation networks.
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2 The Fundamental Empirical Basis for Reliable Control
and Optimization of Vehicular Traffic and Transportation
Networks

Users of traffic and transportation networks would expect that through the use of
traffic control, dynamic traffic assignment and other methods of dynamic optimiza-
tion traffic breakdown can be prevented, i.e., free flow can be maintained in the
network. This is because due to traffic breakdown congested traffic occurs in which
travel time, fuel consumption as well as other travel costs increase considerably in
comparison with travel costs in free flow. Therefore, any traffic and transportation
theory, which is claimed to be a basis for the development of reliable methods
and strategies for dynamic traffic assignment as well as network optimization and
control should be consistent with the fundamental empirical features of traffic
breakdown at a road bottleneck.

• The fundamental empirical basis for reliable control and optimization of vehic-
ular traffic and transportation networks is the set of empirical features of traffic
breakdown at a road bottleneck.

Consequently, we can also make the following conclusion:

• Traffic and transportation theories, which are not consistent the set of the
fundamental empirical features of traffic breakdown at a bottleneck, cannot be
applied for the development of reliable management, control, and organization
of traffic and transportation networks.

3 The Set of Empirical Features of Traffic Breakdown
at Highway Bottlenecks

The set of fundamental empirical features of traffic breakdown at a highway
bottleneck, which is found from a study of traffic breakdown at a given bottleneck
during many different days (and years) of traffic breakdown observations (see,
e.g., [2–11]), is as follows [12, 13]:

1. Traffic breakdown at a highway bottleneck is a local phase transition from free
flow (F) to congested traffic whose downstream front is usually fixed at the
bottleneck location (see, e.g., [2–11] and references there). Such congested traffic
we call synchronized flow (S) [12, 13] (Fig. 1).

2. At the same bottleneck, traffic breakdown can be either spontaneous (Fig. 1a) or
induced (Fig. 1b) [12, 13].

3. The probability of traffic breakdown is an increasing flow rate function [6–11].
4. There is a well-known hysteresis phenomenon associated with traffic breakdown

and a return transition to free flow (e.g., [2–4]).
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a b

Fig. 1 Empirical examples for spontaneous (a) and induced traffic breakdown (b) at highway
bottlenecks (Taken from [12])

4 Failure of Generally Accepted Fundamentals
and Methodologies of Traffic and Transportation Theory

Traffic researchers have developed a huge number of traffic theories for optimization
and control of traffic and transportation networks. In particular, to generally ac-
cepted fundamentals and methodologies of traffic and transportation theory belong
the following theories and associated methodologies:

(i) The Lighthill-Whitham-Richards (LWR) model introduced in 1955–1956 [14,
15]. In 1994–1995, Daganzo introduced a cell-transmission model (CTM)
that is consistent with the LWR model [16, 17]. Currently, Daganzo’s CTM
is widely used for simulations of traffic and transportation networks (see
references in [1]).

(ii) A traffic flow instability that causes a growing wave of a local reduction of the
vehicle speed. This classical traffic flow instability was introduced in 1959–
1961 in the General Motors (GM) car-following model by Herman, Gazis,
Montroll, Potts, and Rothery [18–20]. With the use of very different mathe-
matical approaches, this classical traffic flow instability has been incorporated
in a huge number of traffic flow models that can be considered belonging to the
GM model class. This is because (as found firstly in [21, 22]) in all these very
different traffic flow models the traffic flow instability causing a growing wave
of a local reduction of the vehicle speed leads to a moving jam (J) formation in
free flow (F!J transition) (see references in [1]).

(iii) The understanding of highway capacity as a particular value. This understand-
ing of road capacity was probably introduced in 1920–1935 (e.g., [23] and
references in [2, 24–26]). Recently due to empirical results of Elefteriadou
et al. [5, 7, 26], Persaud et al. [6] as well as Brilon et al. [8–11] it has been
assumed this the particular highway capacity is a stochastic value: At any time
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instant, there is some particular value of highway capacity, however, we know
the capacity with some probability only [6–11, 26].

(iv) Wardrop’s user equilibrium (UE) and system optimum (SO) principles for
traffic and transportation network optimization and control introduced in
1952 [27]. The Wardrop’s UE and SO principles are the basis for a huge
number of models for dynamic traffic assignment, control and optimization
of traffic and transportation networks (see references in [1]).

There are many achievements of these generally accepted fundamentals and
methodologies of traffic and transportation theory, which have made a great impact
on the understanding of many traffic phenomena as emphasized in [1]. Because
of these achievements of generally accepted classical traffic and transportation
theories, a question arises:

• Why does the author state in [1] that the generally accepted classical traffic and
transportation theories are not consistent with the set of empirical features of
traffic breakdown and, therefore, they are not applicable for a reliable description
of traffic breakdown, capacity, traffic control, and optimization of real traffic and
transportation networks?

The failure of the generally accepted classical traffic flow models is explained as
follows [1]:

1. The LWR-theory ([14–17] and references in [1, 2]) fails because this theory
cannot show induced traffic breakdown observed in real traffic (Fig. 1b).

2. Two-phase traffic flow models of the GM model class (see references in [1, 2,
12, 13]) fail because traffic breakdown in the models of the GM class is an F!J
transition. In contrast with this model result, real traffic breakdown is a phase
transition from free flow (F) to synchronized flow (S) (F!S transition) (Fig. 1).

3. The understanding of highway capacity as a particular value [2, 6–11, 24–26]
fails because this assumption about highway capacity contradicts the empirical
evidence that traffic breakdown that limits highway capacity can be induced at a
highway bottleneck as observed in real traffic (Fig. 1b).

4. Dynamic traffic assignment or/and any kind of traffic optimization and control
based on Wardrop’s SO or UE principles (see references in [1]) fail because
of random transitions between the free flow and synchronized flow at highway
bottlenecks. Due to such random transitions, the minimization of travel cost in a
traffic network is not possible.

This can explain why network optimization and control approaches based on
these fundamentals and methodologies have failed by their applications in the real
world. Even several decades of a very intensive effort to improve and validate
network optimization models have no success. Indeed, there can be found no
examples where on-line implementations of the network optimization models based
on these fundamentals and methodologies could reduce congestion in real traffic
and transportation networks.
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This is not surprising: The fundamental empirical features of traffic breakdown
at highway bottlenecks have been understood only during last 20 years. In contrast,
the generally accepted fundamentals and methodologies of traffic and transportation
theory have been introduced in the 1950s–1960s. Thus the great scientists whose
pioneering ideas led to these fundamentals and methodologies of traffic and trans-
portation theory [14, 15, 18–20, 23, 27] could not know the fundamental empirical
basis for reliable control and optimization of vehicular traffic and transportation
networks.

5 Basic Theoretical Fundament for the Development
of Reliable Control and Optimization of Traffic
and Transportation Networks

To explain the set of the fundamental empirical features of traffic breakdown at
network bottlenecks, the author has introduced three-phase traffic flow theory [12,
28–30].

• The main reason for the three-phase theory is the explanation of the set of the
fundamental empirical features of traffic breakdown, rather than the features of
traffic congestion.

In three-phase theory, an F!S transition explains traffic breakdown at a highway
bottleneck: The terms F ! S transition and traffic breakdown at a highway bot-
tleneck are synonyms. The F!S transition (traffic breakdown) occurs in metastable
free flow (Fig. 2) [12, 13]. The term metastable free flow with respect to an F!S
transition means that a small enough disturbance for free flow at a bottleneck decays;
therefore, in this case free flow persists at the bottleneck over time. However, when
a critical disturbance (or a disturbance that is larger than the critical one) for free
flow appears in a neighborhood of the bottleneck, traffic breakdown occurs at the
bottleneck.

The metastability of free flow explains both spontaneous (Fig. 2a) and induced
(Fig. 2b) traffic breakdowns leading to the emergence of synchronized flow at
the bottleneck (empirical features 1 and 2 of traffic breakdown of Sect. 3). The
theoretical probability of spontaneous traffic breakdown at the bottleneck found
firstly from simulations of a microscopic stochastic three-phase traffic flow model
by Kerner, Klenov and Wolf [31] (Fig. 2c) is a growing flow-rate function as in
empirical observations [6] (empirical feature 3 of traffic breakdown of Sect. 3). This
theoretical dependence of the probability of spontaneous breakdown on the flow rate
qsum downstream of a bottleneck is well fitted by a function [31]

P .B/ D 1

1C expŒ˛.qP � qsum/�
; (1)
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a b

c

d

Fig. 2 Explanations of the fundamental empirical features of traffic breakdown at a highway
bottleneck based on the assumption of three-phase theory about the metastability of free flow at the
bottleneck with respect to an F!S transition (Taken from [1]): (a, b) Simulations of spontaneous
(a) and induced (b) breakdown at on-ramp bottleneck. (c) Simulations of the probability of
spontaneous traffic breakdown at on-ramp bottleneck on a single-lane road taken from [31]. (d)
Qualitative Z-speed–flow-rate characteristic for traffic breakdown; F – free flow, S – synchronized
flow (simulations of the Z-speed–flow-rate characteristic for traffic breakdown can be seen in
Fig. 3.17b of [13])
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where ˛ and qP are parameters. Qualitatively the same growing flow-rate function
for the breakdown probability has later been found in measured traffic data [8–10].

The explanation of traffic breakdown at a highway bottleneck by an F!S
transition in a metastable free flow at the bottleneck is the basic assumption of
three-phase theory (Fig. 2) [12, 28–30]. Because none of the earlier traffic flow
theories includes this basic assumption of three-phase theory, in accordance with
the classical book by Kuhn [32], the three-phase theory is incommensurable with
all other traffic flow theories.

The possibility of induced traffic breakdown at a bottleneck (Fig. 1b) leads to
the following conclusion of three-phase theory: At the same flow rate on a network
link, traffic flow at the bottleneck can be either in the free flow phase (F) or in the
synchronized flow phase (S) (Fig. 2d). This fact is responsible for the existence of
the range of the infinite number of highway capacities in three-phase theory: At any
time instant, there are the infinite number of highway capacities within a range of
the flow rate between the minimum highway capacity and the maximum highway
capacity (Fig. 2c, d); within this flow range, traffic breakdown can be induced at the
bottleneck. Thus, the theoretical fundament resulting from three-phase theory for
the development of reliable control and optimization of traffic and transportation
networks is as follows.

• At any time instant, there are the infinite number of the flow rates in free flow at a
highway bottleneck at which traffic breakdown can be induced at the bottleneck.
These flow rates are the infinite number of the capacities of free flow at the
bottleneck. The range of these capacities of free flow at the bottleneck is limited
by a minimum capacity and a maximum capacity (Fig. 2d).

Recently, this conclusion has been generalized for a city bottleneck due to traffic
signal [33–36].

Conclusions
• The fundamental empirical basis for reliable control and optimization of

vehicular traffic and transportation networks is the set of empirical features
of traffic breakdown at a road bottleneck.

• The theoretical fundament resulting from three-phase theory for the devel-
opment of reliable control and optimization of traffic and transportation
networks is the existence of the range of the infinite number of highway
capacities: At any time instant, there are the infinite number of highway
capacities within a range of the flow rate between the minimum highway
capacity and the maximum highway capacity (Fig. 2c, d); within this flow
range, traffic breakdown can be induced at the bottleneck.

(continued)
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• The explanation of traffic breakdown at a highway bottleneck by an F!S
transition in a metastable free flow introduced in three-phase theory is
responsible for the incommensurability of three-phase theory with all other
traffic flow theories.
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Simulation Model for Traffic Using Network
Fundamental Diagrams

Victor L. Knoop and Serge P. Hoogendoorn

Abstract Traditionally, traffic is described at the level of an individual vehicle
(microscopic) or at the level of a link (macroscopic). This paper introduces a traffic
flow simulation model at a higher, subnetwork scale. The network is split in cells
(subnetworks), and for each of the cells the Network Fundamental Diagram (NFD)
is determined. Each time step, the flow from one cell to another is determined by
the NFD, separated in a demand and a supply. For the demand, the border capacity
between two cells plays a role. Opposed to the cell transmission model, the demand
is decreasing for overcritical accumulation in cell i due to accumulation effects.
This model can be used to quickly determine effects of network wide traffic control.

1 Introduction

Nowadays, due to increased communication techniques, traffic control measures can
be coordinated over larger areas. For this, control concepts need to be developed.
Moreover, these concepts needs to be tested, possibly on-line, for which traffic
simulation programs are used. We argued earlier [5] that the larger the area, the
longer the look-ahead period. For larger areas and longer time intervals, microscopic
(vehicle-based) or macroscopic (link-based) simulation programs are too slow.

On an aggregate level there is a relation between the number of vehicles and
their speeds [2,4], the Network Fundamental Diagram (NFD). Although some basic
calculations have been describing the dynamics of a network by NFDs, none of
these describe a multi-zone network, taking physical effects of the limited boundary
capacity into account. This paper develops such a model. This model is useful for
on-line optimization of traffic management measures. The paper also shows the
application of the model in Sect. 5.
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2 Simulation of Traffic Flow Dynamics

In traffic flow theory, several macroscopic models are available. One of the most
intuitively understandable is the cell transmission model (CTM) [1]. In this model,
the road is split in cells. The flow between cells is based on an upstream demand
and a downstream supply (see also [6]). Up to the critical density, demand is an
increasing function. For densities higher than the critical density, the demand is
equal to the capacity of the road. The supply equals the capacity of the road up to
the critical density. For higher densities, the supply decreases. The flow from one
cell to the next is the minimum of the upstream demand and the downstream supply.

The above models describe how traffic flows on links. A network model also
needs to describe how traffic behaves at nodes. A good overview of node models
and their requirements is given by [8].

In this paper, we combine the concepts of the cell transmission model and good
node models and apply it to a model describing the network dynamics, called the
Network Transmission Model.

3 Traffic Coding

The basis of the model are subnetworks, called cells in the description of the com-
putational methodology. The basic quantities used in this paper are accumulation
K and performance P , which can be seen as weighted average density and flow,
respectively. Note that performance is the flow which exits a network, rather than
the internal flows. It has been shown that the performance is strongly correlated
with the internal flow, the production [4]. The accumulation K in each cell A is
the average density k for all links Z in the cell weighted to their length L and the
number of lanes l . This total weighting factor is indicated by w

wA D
X

Z2A
LZlZ (1)

The accumulation is now calculated as

K D
P

Z2A kZLZlZ
wA

(2)

For each cell, it is registered which fraction of the vehicles (and thus accumula-
tion) is heading towards which destination s; this is called �s . The routing from
cell A to the destination is coded by the next neighboring cell B in so called
destination-specific splitfractions �s;A;B . All neighbouring cells of A are indicated
by the set B. The fraction �s;A;B lies between 0 and 1, and all vehicles should be
heading somewhere, so

P
B2B �s;A;B D 1. In our formulation, vehicles are assumed
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to have arrived their destination once they arrive somewhere in the cell. This could
be changed in a future version.

4 Traffic Dynamics

Let’s now consider the traffic dynamics. The flow diagram of the model can be
found in Fig. 1. The dynamics of traffic are simulated in these subnetwork, using
properties of the NFD in each subnetwork. For these cells the NFD is assumed to
be known. The flow from cell A to cell B is determined by the minimum of three
elements

1. The capacity of the boundary between cell A and cell B, CB
A ; this is determined

exogenously
2. The demand from cell A to cell B, DB

A

3. The supply in cell B, related to the total demand to cell B

The demand from A to B DB
A is determined based on the NFD, the function

which relates production P to the accumulation K: P D P.K/. This NFD has
to be determined exogenously, for which are several methods, empirically [4] or
theoretically [7]. Now, a demand and supply scheme similar to the cell transmission
model [1] is constructed. The supply S can be determined in the same way as in the
cell transmission model, that is, it is at capacity if the accumulation in the receiving
cell is lower than the critical density and equal to NFD for higher accumulations:

S D
(
Pcrit if K � Kcrit

P.K/ if K > Kcrit

(3)

Fig. 1 A graphical representation of the steps taken in the computation scheme
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Fig. 2 The factors determining the flow. (a) Network Fundamental Diagram. (b) Demand. (c)
Supply

Contrary to the CTM, the demand in a cell decreases with an increasing
accumulation at values over the critical accumulation. This is because there is
internal congestion in the cell, limiting the potential outflow. We thus have: D D
P.K/, graphically shown in Fig. 2. Additionally, a minimum flow can be defined.
This would allow a demand even from a completely full cell.

The total demand from cell A to cell B, DB
A is only a part of the total demand in

cell A, DA. In fact, we consider the destinations separately. Hence, the demand in
A for each of the destinations is

DA;s D �sDA (4)

For each of these partial demands, the fraction heading to neigbouring cell
B is indicated by �BA;s The demand from cell A towards cell B hence is
DB
A D P

all destinations s �
B
A;sDA;s . This is now limited to the capacity of the boundary

between A and B, CB
A , giving the effective demand QDB

A D min
˚
DB
A ;C

B
A

�
The

fraction of traffic allowed over the boundary between A and B, 
BA , is now calculated

as: 
BA D min
n QDB

A

DB
A

; 1
o

As an intermediate step, we now have the effective demand

from cell A to destination s via cell B:

QDB
A;s D DA;s�

B
A;s


B
A (5)

The total demand towards cell B (DB ) is determined by adding all effective
demands towards cellB , i.e. for all destinations and origin cells A. This is compared
with the supply in cell B. If the supply is larger, the flow is unrestricted. However,
if the supply is lower, the fraction of the flow which can flow into cell B  B is

calculated:  B D min
n
SB

DB ; 1
o
.

All cells B, neighbours of A, which have effective demand QDB
A larger than zero

are combined in set B. It is now calculated what is the lowest of these outflow
fractions. This will be the restricting factor for the flow from cell A: �A: �A D
minB2B

˚
�B

�
. If the supply restricts the flow, demand to all neighboring cells in B

is scaled down with this factor �A. Now, the flow from A to B is set as the minimum
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of demand and supply. This flow is assumed to be constant between two consecutive
time steps. The accumulation in any cell A towards destination s can now be updated
based on the flows from B to A with destination s, indicated qAB;s and the flow in the
opposite direction, qBA;s:

Ks
A.t C �/ D Ks

A.t/C
 
X

B2B
qAB;s �

X

B2B
qBA;s

!

�=wA (6)

From the flow, vehicles have to be translated into accumulation using the simulation
time step � and the road length wA.

5 Application on a Case Study

For the case study we set up a network with 10� 10 cells, each representing an area
and all having the same characteristics. The cells have a size of 1�1 km and 10 kms
of roadway length. The NFD of the cells is shown in Fig. 2a. The capacity on the
boundary between two cells is high enough that it does not restrict the flow. The
time step used in the case study is 15 s.

A cross-network demand is loaded onto the network, shown graphically in
Fig. 3a. The arrow width indicates the size of the demand. The base demand for
directions top-down and left-right is 625 veh/h, to left is 833 veh/h and the demand
bottom-up is 312 veh/h. To this base demand, an extra demand is added, representing
the loading onto the network, and then gradually reducing. After the demand has
decreased to zero, the simulation continues to empty the network.

For the routing we use the Floyd Warshal algorithm [3]. Travel costs per cell
are updated on-line, based on the time it costs to cross a cell. Routing variation is
ensured by doing a probit assignment with 10 % error in the perceived travel costs.
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Fig. 3 Case study. (a) Demands in the network. (b) Case study network
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Figure 3b shows a snapshot of the model during the simulation. It shows that
traffic is clustering around the middle cells, and due to the congestion there, traffic
is taking alternative routes around the city center. This shows the model works in
practice and shows plausible results.

Conclusions
This paper introduced the Network Transmission Model describing the traffic
flow dynamics on an aggregate level. The network was splitted into cells
and for the traffic flow dynamics a numerical approach based on the MFD
was introduced. The model is face valid, but further studies should test the
model and calibrate and validate it against real data or more often used traffic
simulation programs. Once done, the model seems promising to test network
traffic control using model predictive control.
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A Model of Car-Following Behavior at Sags

Bernat Goñi Ros, Victor L. Knoop, Wouter J. Schakel, Bart van Arem,
and Serge P. Hoogendoorn

Abstract Sags are bottlenecks in freeway networks. The main reason is that the
increase in slope has a negative effect on vehicle acceleration, which results in local
changes in car-following behavior that reduce traffic flow capacity. Existing car-
following models are not able to reproduce the acceleration behavior of drivers at
sags and the resulting traffic flow dynamics in a sufficiently realistic way. This paper
presents a new car-following model that aims to fill that gap. The model assumes that
drivers have a limited ability to compensate for the negative effect that an increase
in gradient has on vehicle acceleration. Compensation is assumed to be linear over
time; the maximum compensation rate is defined as a parameter. The paper presents
the results of a case study using the proposed car-following model. The study site
is a particular sag in Japan. Similar traffic flow patterns are observed in simulation
and in empirical data from that site. In particular, the model generates a bottleneck
caused by the increase in freeway slope, reproducing its location very accurately.

1 Introduction

Sags are freeway sections along which the slope changes significantly from
downwards to upwards. Sags are bottlenecks in freeway networks [1, 2]. The
main cause is that the increase in freeway slope has a negative effect on vehicle
acceleration, which results in local changes in car-following behavior that reduce
traffic flow capacity [3–5]. In this contribution, we identify two characteristics of
traffic flow at sags that existing car-following models are not able to reproduce
in a sufficiently realistic way. The first characteristic is that drivers change their
car-following behavior only on the lower part of the uphill section, regaining their
normal driving behavior farther up the hill [4, 5]. The second characteristic is that,
at sags, the capacity bottleneck is located 500–1,000 m downstream of the bottom
of the sag [2, 4]. In this paper, we present a new car-following model that aims to
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reproduce traffic flow dynamics at sags, including the two phenomena mentioned
above. We present the results of a case study using the new model. The study site is
the Yamato sag (Tomei Expressway, Japan). Analyses of empirical traffic data from
that site are available [2,6]. The results of the case study show that the model is able
to reproduce the traffic flow patterns observed in empirical data. Particularly, the
model generates a bottleneck caused by the increase in freeway slope, and it predicts
the location of that bottleneck very accurately. We conclude that the proposed model
is able to reproduce traffic flow dynamics at sags more realistically than existing
models.

2 Background

Empirical studies show that drivers change their car-following behavior when they
reach the uphill section of sags. Drivers tend to reduce speed [4, 7] and keep
longer headways than expected given their speed [3]. These local changes in car-
following behavior occur because drivers are unable to accelerate sufficiently to
immediately compensate for the increase in resistance force resulting from the
increase in freeway slope [5]. Capacity decreases as a result of the above-mentioned
changes in car-following behavior, which causes congestion in conditions of high
traffic demand [1,2]. Generally, in congested conditions, the head of the queue (i.e.,
the bottleneck) is located 500–1,000 m downstream of the bottom of the sag [2, 4].

Several car-following models have been developed in the last decades with
the objective of reproducing traffic flow dynamics at sags. Koshi et al. [1] and
Komada et al. [8] propose two different models that assume that drivers do not
explicitly compensate for the limiting effect that a positive freeway gradient has
on vehicle acceleration. Therefore, those models assume that a constant slope has
a constant influence on vehicle acceleration. This assumption is not consistent
with empirical observations, which show that drivers generally regain their normal
car-following behavior as they climb the uphill section [4, 5]. Yokota et al. [9]
present a car-following model that assumes that drivers explicitly compensate for
the limiting effect that an increase in gradient has on vehicle acceleration. The
model assumes that drivers are able to fully compensate for changes in slope
with a certain time delay. Hence a constant slope has a decreasing influence on
vehicle acceleration. This is more in line with empirical observations. However, an
important disadvantage of that model is that it does not accurately reproduce the
location of the bottleneck at sags. The model generates a bottleneck around the
bottom of the sag [9].

In order to model traffic operations at sags, it is necessary to develop a car-
following model that reproduces the following two phenomena: (i) drivers regain
their normal car-following behavior as they climb the uphill section of sags; (ii) at
sags, the bottleneck is located 500–1,000 m downstream of the bottom of the sag. In
the next section, we present a car-following model that aims to fill that gap.
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3 Car-Following Model

The model describes vehicle acceleration (Pv) based on a two-term additive function:

Pv.t/ D fr.t/C fg.t/ . (1)

The first term (fr) describes regular car-following behavior. Its formulation is
based on the IDM model [10], and it accounts for the influence of speed (v), relative
speed to the leading vehicle (�v) and net distance headway (s) on acceleration:

fr.t/ D a �
"

1 �
�

v.t/

vdes.t/

�4
�
�
sdes.t/

s.t/

�2
#

, (2)

where the dynamic desired net distance headway (sdes) is:

sdes.t/ D s0 C v.t/ � T .t/C v.t/ ��v.t/

2 � p
ab

. (3)

The parameters in Eqs. 2–3 are: desired speed (vdes), maximum acceleration (a),
maximum comfortable deceleration (b), net distance headway at standstill (s0), and
safe time headway (T ). Note that we specified a different value for T depending on
the traffic state. If v.t/ 	 vcrit (uncongested traffic conditions), T D T0. If v.t/ <
vcrit (congested conditions), the value of T is higher (T D � � T0, where � > 1).

The second term in Eq. 1 (fg) accounts for the influence of freeway gradient on
vehicle acceleration. At a given time t , that influence is the gravity acceleration
(g D 9:81m/s2) multiplied by the difference between the gradient at the location
where the vehicle is at that time (G.t/) and the gradient compensated by the driver
until that time (Gc.t/):

fg.t/ D �g � ŒG.t/ �Gc.t/� . (4)

The compensated gradient (Gc) is a variable that accounts for the fact that drivers
have a limited ability to compensate for the negative effect that an increase in
freeway slope has on acceleration [5]. The model assumes that drivers compensate
for any increase in slope linearly over time with a maximum gradient compensation
rate defined by parameter c (and they fully compensate for any decrease in slope):

Gc.t/ D
(
G.t/ if G.t/ � G.tc/C c � .t � tc/

G.tc/C c � .t � tc/ if G.t/ > G.tc/C c � .t � tc/ ,
(5)

where:

tc D max.t j Gc.t/ D G.t// . (6)
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Fig. 1 Influence of an
increase in gradient on the
acceleration of a single
vehicle driving on a sag. (a)
Gradient and compensated
gradient over distance. (b)
Vehicle acceleration over
distance
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The properties of the model are as follows. If the gradient profile of a sag is such
that the rate at which the freeway slope increases is lower than the driver’s maximum
gradient compensation rate (c), then Gc.t/ D G.t/ at any time t . Therefore, in
such a sag, fg.t/ D 0 at any time t , which implies that vehicle acceleration is
not affected at all by the increase in slope. However, at sags where the gradient
increase rate is higher than the driver’s maximum gradient compensation rate (see
example in Fig. 1a), Gc.t/ < G.t/ for a certain period of time t D Œtc; tf�. Time tc
is the time at which the driver could no longer fully compensate for the increase in
gradient, and time tf is the time at which the driver fully compensates for the whole
increase in gradient. In Fig. 1a, tc corresponds to the time at which the vehicle is
at location x D 2:7 km, and tf corresponds to the time at which the vehicle is at
location x � 4:8 km. During period t D Œtc; tf�, the compensated gradient (Gc)
increases linearly over time (see Fig. 1a), but fg is negative (see Fig. 1b). Note that
the acceleration limitation caused by a negative fg may reduce the vehicle speed
and/or increase the distance to the leading vehicle, which are regular car-following
behavior incentives to accelerate. Therefore, in our model, a negative fg generally
causes an increase in fr. Acceleration is the combination of the influence of regular
car-following behavior incentives and the influence of gradient (Eq. 1). As shown
in Fig. 1b, fr.t/ C fg.t/ < 0 during the time the vehicle is within the freeway
section with increasing degree of gradient; therefore, the vehicle decelerates on that
section. Once the vehicle gets on the freeway section with constant positive slope,
fr.t/ C fg.t/ becomes positive; hence the vehicle re-accelerates and normal car-
following behavior is eventually restored. Note that the acceleration limitation is
maximum at the location where the gradient increase rate becomes lower than the
driver’s maximum gradient compensation rate (i.e., x D 3:3 km in Fig. 1b), because
the difference between G and Gc is maximum at that location (see Fig. 1a).
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4 Case Study

4.1 Site

The study site is the Yamato sag (Tomei Expressway, Japan), which has three lanes.
Analyses of empirical traffic data from that site are available [2, 6]. According to
those data, the bottleneck at the Yamato sag is located on the uphill section, 500 m
downstream of the bottom of the sag. The free flow capacity and the queue discharge
capacity of the bottleneck are around 5,400 and 4,800 veh/h, respectively. Therefore,
the capacity drop is approximately 11 %. The process of congestion formation
consists of two phases: first, traffic flow becomes congested on the median lane
(which is the busiest lane in high demand conditions); then, congestion spreads to
the other lanes as a result of lane changes.

4.2 Model Setup

We simulate traffic on a 5-km freeway stretch that has a layout similar to that of the
Yamato sag. The freeway stretch has three lanes and the following gradient profile
(Fig. 1a): (a) 2.7-km section with a constant slope of �0:5%; (b) 0.6-km section
where slope increases linearly from �0:5% to C2:5%; and (c) 1.7-km section
with a constant slope of C2:5%. We defined two vehicle classes (i.e., cars and
trucks), which have different vehicle length (4 and 15 m, respectively) and different
speed limit (100 and 85 km/h, respectively). Furthermore, we defined three classes
of car drivers and one class of truck driver. The drivers’ car-following behavior is
determined by the model presented in Sect. 3. Lane-changing behavior is determined
by the LMRS model [11]. The values of the parameters of the car-following and
lane-changing models for each vehicle-driver class are shown in Table 1. Those
values were selected based on [11]; however, it is important to remark that the
car-following and lane-changing models have not been specifically calibrated for
the study site. Note that some of the parameters are stochastic. More specifically,
the values of parameters vdes, a, b, T0, c, Tmin for car drivers (only parameter vdes

for truck drivers) are Gaussian distributed. The values of the stochastic parameters
shown in Table 1 correspond to their mean values. The simulation period is 100 min.
Total demand increases linearly from 3,000 to 5,200 veh/h between t D 0 and
t D 75min. From t D 75min on, total demand is constant (5,200 veh/h). The
distribution of the total demand across the three lanes at location x D 0 is
determined by Wu’s lane flow distribution model [12]. The composition of the traffic
demand is the following: (a) 10 % trucks and 90 % cars with drivers of class I on
the shoulder lane; (b) 5 % trucks and 95 % cars with drivers of class II on the center
lane; and (c) 100 % cars with drivers of class III on the median lane. After entering
the network, drivers are free to change lanes according to the lane-changing model.
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Table 1 Parameters of the car-following model and the lane-changing modela

Vehicle class Car Truck

Driver class Class I Class II Class III

a (m/s2) 1.15 1.21 1.29 0.50

b (m/s2) 1.66 1.75 1.85 1.50

T0 (s) 1.58 1.24 1.12 1.50

s0 (m) 3 3 3 3

vdes (km/h) 92 97 103 85

vcrit (km/h) 60 60 60 60

c (s�1) 0.00039 0.00041 0.00043 0.00042

� (-) 1.15 1.15 1.15 1.15

Tmin (s) 0.61 0.58 0.54 0.56

� (s) 25 25 25 25

x0 (m) 200 200 200 200

vgain (km/h) 70 50 50 70

d
ij
free (-) 0.365 0.365 0.365 0.365

d
ij
sync (-) 0.577 0.577 0.577 0.577

d
ij
coop (-) 0.788 0.788 0.788 0.788

aA description of the lane-changing model parameters can be found in [11]

4.3 Results

The model generates a bottleneck around the location where gradient becomes
constant on the uphill section, i.e., 500 m downstream of the bottom of the sag (see
Figs. 1a and 2). Traffic breaks down at that location when the total flow approaches
5,200 veh/h (see Fig. 3b), which can be considered as the free flow capacity of the
bottleneck. The process of congestion formation is as follows. First, traffic breaks
down on the median lane (see Figs. 2 and 3a). Then, some drivers move from the
median lane to the other lanes in order to avoid queuing. This increases the flow
on the center and shoulder lanes, as observed in Fig. 3a. The capacity of those
lanes is exceeded and traffic breaks down there as well (see Fig. 3a). Note that the
occurrence of congestion on a lane causes a reduction in lane flow (capacity drop).
When congestion has spread to all lanes, the total outflow from the bottleneck is
around 5,000 veh/h, i.e., 4 % lower than the total demand (see Fig. 3b). As a result, a
queue forms upstream of the bottleneck. The head of the queue stays at x � 3:3 km,
as observed in the speed contour plot of the median lane (Fig. 2). The speed contour
plots of the other lanes (not shown) are very similar to that of the median lane.

The traffic flow patterns observed in simulation are similar to those observed in
empirical data (see Sect. 4.1). The model generates a bottleneck and reproduces its
location very accurately, although the simulated free flow capacity (5,200 veh/h) is
lower than in empirical data (5,400 veh/h). Also, the model reproduces the capacity
drop in congestion, although the magnitude of the drop (around 4 %) is lower than
in empirical observations (11 %). Finally, the car-following model (combined with
a lane-changing model) is able to reproduce the process of congestion formation.
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Conclusions
This contribution presented a new model describing car-following behavior at
sags. The model assumes that drivers have a limited ability to compensate
for the negative effect that an increase in freeway slope has on vehicle
acceleration. Compensation is assumed to be linear over time. The maximum
compensation rate is defined as a parameter. The difference between actual
gradient and compensated gradient is the variable that limits vehicle accel-
eration. A case study was carried out in order to test the model. The study
site is a particular sag of a Japanese freeway. Similar traffic flow patterns
are observed in the simulation output data and empirical data from the study
site. More specifically, the model generates a capacity bottleneck caused by
the increase in gradient, reproducing its location very accurately. Although
the proposed model still needs to be calibrated, we conclude that it is able
to reproduce traffic flow dynamics at sags more realistically than existing
models. The assumption of a bounded gradient compensation rate appears
to be more realistic than the behavioral assumptions of other models, such as
a fixed compensation time delay [9]. This finding suggests that the magnitude
of the gradient change over distance has a strong influence on the location and
capacity of the bottleneck at sags.
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Multi-anticipative Car-Following Behaviour:
Macroscopic Modeling

G. Costeseque and Jean-Patrick Lebacque

Abstract In this work we will deal with a macroscopic model of multi-anticipative
car-following behaviour i.e. driving behaviour taking into account several vehicles
ahead. Some empirical studies have suggested that drivers not only react to the
closest leader vehicle but also anticipate on traffic conditions further ahead. Using
a recent mathematical result of homogenization for a general class of car-following
models (and also available for multi-anticipative models), we will deeply investigate
the effects of multi-anticipation at the microscopic level on the macroscopic traffic
flow. To investigate multi-anticipation behaviour may be fundamental to understand
better cooperative traffic flow dynamics.

1 Introduction

1.1 Motivation

Our motivation comes from the sky-rocketing development of new technologies in
transportation leading to the multiplication of Intelligent Transportation Systems
(ITS). More precisely we would like to assess the impact of cooperative systems
on general traffic flow. Cooperative systems include vehicle-to-vehicle (V2V)
or vehicle-to-infrastructure (V2I) communications, generally designated as V2X
technologies. There is a fast growing literature about cooperative systems. The
interested reader can refer for instance to [13] and references therein.

The fact that the observed headway between two consecutive vehicles is often
strictly less than the reaction time of the drivers, suggests that drivers anticipate
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on more than one leader. Indeed, if not, the proportion of accidents should be
dramatically increased. The multi-anticipation has been shown as a key element
for the stabilization of traffic flow, above all in dense traffic situations.

However multi-anticipation behaviour has only been taken into consideration at
a microscopic scale. Indeed such macroscopic models as the Payne-Whitham one
only account for anticipation in time. The macroscopic issues encompass multi-lane
traffic with lane changing and assignment but also multi-anticipation on each lane or
the combination of those both processes. In classical approaches, the whole traffic is
projected on a single line to simplify the problem in a one-dimensional framework.

1.2 Notations

Let x denote the position and t > 0 the time. xi .t/ refers to the trajectory of the
vehicle i 2 Z. The speed and the acceleration of vehicle i are described by the first
and second derivative of xi w.r.t. time. Notice that we also introduce a time delay
T 	 0.

We assume that the vehicles are labelled according to a snapshot of a section of
road from upstream to downstream (see Fig. 1). Vehicle labels increase with x. Thus
.xiC1 � xi /.t/ is the spacing and . PxiC1 � Pxi /.t/ the relative speed at time t between
vehicle i and its leader .iC1/. We also denote bym 	 1 the total number of leaders
that are considered by vehicle i 2 N.

At the macroscopic level, we denote respectively the density and the flow of
vehicles at location x and time t as �.x; t/ and Q.x; t/.

1.3 Main Results and Organization of the Paper

As a main result we describe a new macroscopic model that encompass multi-
anticipative car-following behaviour that are classically taken into account only at
the microscopic scale. Moreover our model is able to consider multi-lane dynamics.

The rest of the paper is organized as follows: we first recall some existing multi-
anticipative car-following models in Sect. 2. We particularly highlight what we
think to be the seminal form of such a model. In Sect. 3, we describe the formal
mathematical result that allows us to pass from microscopic models to equivalent

Fig. 1 Notations for the
microscopic car-following
models

x
xi−1xi−2 xi+1 xi+2xi
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macroscopic ones. Our macro model is also described in Sect. 4. Finally we provide
some numerical considerations in section “Conclusion and Future Directions”
before to discuss the results and to conclude.

2 Multi-anticipative Traffic Modelling: An Introduction

Multi-anticipative models The main existing multi-anticipative car-following
models come from adaptations of classical car-following ones with a single leader
vehicle. We recall below some examples. The interested reader could refer to [4] for
references. We can quote for instance

• The model of Bexelius extends the car-following model of Chandler et al.
• Lenz et al. extend the model of Bando et al. yielding a second order multi-

anticipative model.
• Hoogendoorn et al. [7] propose an extension of the model of Helly

Rxi .tCT / D
m1X

jD1
˛j
� PxiCj � Pxi

�
.t/C

m2X

jD1
ˇj
��
xiCj � xi

�
.t/ � S0 � jT Pxi .t/

�
;

(1)

with two different number of considered leaders m1 	 1 and m2 	 1 according
to either speed variations or headway variations.

• Treiber et al. introduces the Human Driver Model (HDM) as an extension of his
well-known Intelligent Driver Model (IDM).

• Farhi et al. [4] describes a first order model that extends the Min-Plus car-
following model. This model is described in Sect. 3. As it is based on Min-Plus
algebra, it is easy to check its global properties.

Remark 1 The additive form in the multi-anticipative models yields models which
are easier to study analytically. But the minimum form expresses the fact that a
driver will adapt its velocity (or equivalently its acceleration) according to the worst
behaviour of all the considered leaders and thus offers more physical interpretation.

Experimental results In [6, 14], the model (1) is calibrated on real data and it
fits best for m1 D 3 and m2 D 1, meaning that the drivers are more sensitive to
speed variations than headway variations. It is also shown that the multi-anticipative
models improves the representation of driving behaviour. However there is a high
variance in driving behaviour which is not totally accounted for.

In many studies (for instance [13, 16] and references therein), platoon stability
(on a single lane) is shown to decrease when the reaction time increases, and to
increase when the spatial and/or temporal anticipation are increased.
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3 Macroscopic Model for Multi-anticipative Traffic

3.1 First Result in the Min-Plus Algebra

First order multi-anticipative models can be viewed as high-viscosity approximation
of second order models (such as the Frenkel-Kontorova model studied in [5]). For
instance, in [4] the model is a first order and based on a piecewise linear fundamental
diagram (FD). The velocity is computed by taking the minimum of all constraints
imposed by preceding vehicles. The model is expressed in the Min-Plus algebra as
follows

xi .t C 1/ D xi .t/C min
1�j�m.1C �/m�1 min

v2U max
w2W

�

˛vw

�
xiCj .t/ � xi .t/

j

�

C ˇvw

�

(2)

where U and W are two finite sets of indices. The � 	 0 is a discount parameter
favouring closer leaders over the farther ones.

The authors obtain semi-analytical results concerning the stability of the model
and the existence of fixed points. These fixed points match invariant states for the
macroscopic traffic flow.

Notice moreover that the simulation results in [4] show the smoothing effects of
multi-anticipative driving on the macroscopic traffic flow.

3.2 Multi-anticipative First Order Models
and Hamilton-Jacobi Equation

One approach to micro-macro passage relies on the mathematical homogenization
of car-following models into Hamilton-Jacobi equation.

Let us first consider the following first order multi-anticipative model

Pxi .t C T / D max

2

40; Vmax �
mX

jD1
f
�
xiCj .t/ � xi .t/

�
3

5 (3)

with T 	 0 and with f W R�C 7! RC which needs to be a non-negative and non-
increasing function describing the speed-spacing relationship. Let us choose

f .r/ D ˇ exp.��r/; for any r > 0; (4)

with ˇ, � > 0. This choice is mathematically convenient because if we set

F .fxkgk/ WD Vmax �
mX

jD1
f
�
xiCj .t/ � xi .t/

�
;
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then we can check that
@F

@xk
	 0, for any k D fi; : : : ; i Cmg. Thus, it is possible to

recover (at least formally) homogenization results.

Remark 2 Notice that qualitatively this choice of an exponential speed-spacing
fundamental diagram (FD) implies that the more the vehicles anticipate on their
leaders, the lower their speeds and the higher their spacings. However one would
expect that multi-anticipation allows shorter spacing and with high speeds.

Remark 3 (Equivalence result) One can check that if we consider a piecewise linear
speed-spacing relationship, then the model (3) can be approximated by the Min-Plus
model (2).

Let us consider the model (3). If we apply an unzooming procedure by
introducing the rescaled position of vehicles as follows

X".y; t/ D "xb y" c
�
t

"

�

; for y 2 R; t 2 Œ0;C1/ (5)

where b:c denotes the floor integer, then we can recover a Hamilton-Jacobi equation
by homogenization when the scale factor " goes down to zero:

@X0

@t
D NV

�
@X0

@n
;m

�

(6)

with m the number of considered leaders and the (macroscopic) flow speed as
follows

NV .r;m/ D max

2

40; Vmax �
mX

jD1
f .jr/

3

5 :

The unknownX0.n; t/ denotes the position of the vehicle labelled n at time t :

@X0

@t
D v and

@X0

@n
D r;

where v and r describe respectively the speed and the spacing.
We recover the classical LWR model (standing for Lighthill, Whitham [12] and

Richards [15]) in Lagrangian coordinates .n; t/ that is

(
@t r C @nv D 0;

v D NV .r;m/: (7)
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We recall that the LWR model in Eulerian coordinates .t; x/ expresses the
conservation of vehicles on a section

(
@t� C @x .�v/ D 0;

v D V.�;m/ WD NV .1=�;m/:

with � the density of vehicles and the modified speed-density fundamental diagram
(FD) V W .�;m/ 7! V.�;m/ which is non-negative and non-increasing w.r.t. �.

This homogenization result is fully described in [1] and Khoshyaran, Lebacque
and Monneau (Private communications, 2010). Homogenization is a general
technique which has been used for several different models involving interactions
with a finite number of particles. The interested reader is referred to [5] and
references therein.

3.3 General Multi-lane Traffic Flow Model
with Multi-anticipation

We consider a multi-lane road section and we consider the projection of vehicles
on the spatial axis as in Fig. 1. Assume that the traffic flow on such a section is
composed of a mixture of multi-anticipative vehicles. The model (7) implies that low
anticipation vehicles will be stuck behind high anticipation vehicles. In the case of
multi-lane traffic such behaviour is precluded by the fact that vehicles can overtake
each other.

Therefore let us denote by �j the fraction of j -anticipative vehicles. Then the
traffic flow is the superposition of traffic of j -anticipative vehicles, i.e.

� D �
�j
�
jD1;:::;m ;

with 0 � �j � 1 for any j D f1; : : : ; mg and
mX

jD1
�j D 1. It is then obvious that

the composition is advected with the traffic flow. We can express this concept using
a model of the Generic Second Order Modelling (GSOM) familly as it has been
introduced by Lebacque et al. in [10]. The driver attribute is the composition �. We
get the following expression

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

@t�C @x .�v/ D 0;

v WD
mX

jD1
�j V .�; j / D

mX

jD1
�j NV .1=�; j /;

@t .��/C @x.��v/ D 0:

(8)
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Let us set

W.�; �/ D
mX

jD1
�j NV .1=�; j /; and W .r; �/ D W.1=r; �/ D

mX

jD1
�j NV .r; j /:

We can check that the third line in Eq. (8) could be rewritten as a simple advection
equation

@t�C v@x� D 0:

As it has been already shown (see for instance [10]), the system (8) admits only
two kinds of waves:

• Kinematic waves (rarefaction or shock) for the vehicles density, similar to
kinematic waves for the LWR model. Through such a wave, the composition
of traffic � is preserved but not the speed;

• Contact discontinuities for the composition of traffic. In this case, the wave
velocity is equal to the speed of traffic v which is conserved through the wave.

In Lagrangian coordinates .t; n/, with n the label of cars, the flux variable is v and
the stock variable is the spacing r D 1=�. The model can be recast as:

8
ˆ̂
<

ˆ̂
:

@t r C @nv D 0

v D W .r; �/

@t� D 0

(9)

The model (8) and (9) is new in the sense that there already exist some multilanes
models such as the model of Greenberg, Klar and Rascle (see [10] and references
therein) which belong to the GSOM family. However to the authors best knowledge,
there does not exist any macroscopic PDE model taking into consideration multi-
anticipative behaviour in a multi-lane context.

4 Numerical Approaches

To numerically solve the system (8), we can use classical GSOM methodologies
[10, 11] that encompass:

• Godunov-like schemes for which we need to introduce finite time and space steps
�t , �xk that need to satisfy a CFL condition. Consider the following scheme

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�tC1k D �tk C �t

�xk

�
qtk � qtkC1

�
;

qtk WD min
˚
�k

�
�tk ; �

t
k

�
; ˙kC1

�
�tkC1; �tkC1

��
;

�tC1k �tC1k D �tk�
t
k C �t

�xk

�
qtk�

t
k � qtkC1�tkC1

�
:

(10)
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We also need to define the supply and demand functions as in [9]

�k.�; �/ D max
0���� Œ�Wk.�; �/� ; and ˙k.�; �/ D max

��� Œ�Wk.�; �/� :

• Variational formulation and dynamic programming techniques [2].
• Particle methods in the Lagrangian framework .t; n/. A standard way of ob-

taining these (refer to [10, 11]) is to apply a Godunov scheme to (9). This is
easy: the supply is simply vmax, the demand is W , because r 7! W .r; �/ is
increasing. Since a cell can be associated to a packet of�n vehicles having a total
spacing rtn and tail position xtn, a simple car-following like model (11) is derived.
Considering Lagrangian finite difference methods, we can either deal with a
vectorial attribute � or with an integer j D 1; : : : ; m with randomization of
probability �j . We opt here for the first option. The resulting model is described
hereafter:

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

xtC1n D xtn C�tW
�
rtn; �

t
n

�

rtn D �
xtnC1 � xtn

�
=�n

�tC1n D �tn

(11)

The Lagrangian method (11) is more precise (less smoothing of waves) than (10)
and easier to calculate (the demand being the speed).

4.1 Choice of the Fundamental Diagram

For this numerical example, we have used the speed-spacing function described
in (4) that is

NV .r;m/ D max

2

40; Vmax �
mX

jD1
ˇ exp.��jr/

3

5

with ˇ, � > 0. As we consider that those coefficients are strictly independent of the
number of considered leaders j 2 f1; : : : ; mg, one can easily check that

ˇ D Vmax exp .�rmin/

where rmin is the minimal spacing between two consecutive vehicles. The maximal
speed Vmax is equal to 25 m/s and �rmin is fixed to 0.18 in order to ensure a proper
critical density. The maximal number of considered leadersm is equal to 5.

Note that the fundamental diagrams plotted on Fig. 2 are intended for a single
lane. Then the higher the number of considered leaders, the higher the critical
spacing (or equivalently the lower the critical density) per single lane.
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Fig. 2 Speed-spacing fundamental diagram r 7! NV .r; �/ (left) and Flow-density fundamental
diagram � 7! �V .�; �/ (right) for different values of �

Fig. 3 Downstream supply value (left) and traffic composition attribute � (right)

4.2 Description of the Use Case

Let us consider a traffic flow on a multi-lane road section. Roughly speaking,
assume that entering the section we have two distinct compositions of traffic: high
anticipatory, then low anticipatory, then high anticipatory again (see Fig. 3). The
downstream supply is formulated in terms of speed, which is more convenient in
the Lagrangian framework. The supply is assumed to drop in the middle of the
considered period (from times t D 250 to t D 2;200), generating a high-density
wave propagating backwards.

This shock wave interacts with the contact discontinuities carried by the incom-
ing traffic (at times t D 1;000 and t D 1;800). Note that the increase of downstream
supply at time t D 2;200 generates also a rarefaction wave (see Fig. 4).
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Fig. 4 Positions in Lagrangian framework (left) and Eulerian trajectories (right)

This simple numerical example shows that the low anticipatory fraction of the
traffic allows to reduce or annihilate the shock wave because drivers accept lower
critical spacings. This effect results is strongly dependent on our choice of the speed-
spacing relationship NV which implies that less anticipative drivers driver faster, take
more risks. The inclusion of stochastic effects [8] would show another effect: that
multi-anticipation smoothens traffic.

Conclusion and Future Directions
Possible extensions include adding source terms for the equation of advection
of the composition. This could account for the spatial variability of multi-
anticipatory behaviour. See for instance [11]. Moreover our model should
be tested on real measurement data. The main problem is the identification
of instantaneous traffic composition � as well the speed-spacing function
parameters as it was done in [4].

Another study should be based on the analysis of individual trajectories to
recover the results of previous studies which state that the multi-anticipative
car-following models improve the representation of individual driving be-
haviour. While the existing experiments only take into account already
congested situations, these works should extend the results by considering
for congested and also fluid traffic flow situations. Such a study could also
confirm or infirm the impact of anticipatory traffic on the driving behavior
(see Remark 2).

Acknowledgements The authors are grateful to Prof. Régis Monneau. We also want to thank the
organizers of the Conference on Traffic and Granular Flow (TGF’13) in Jülich, Germany.

This work was partially supported by the ANR (Agence Nationale de la Recherche) through
HJnet project ANR-12-BS01-0008-01.



Multi-anticipative Car-Following Models 405

References

1. R. Monneau, Homogenization of some traffic vehicular models, private lectures (2011)
2. G. Costeseque, J.P. Lebacque, A variational formulation for higher order macroscopic traffic

flow models: numerical investigation, Transp. Res. B, 70 112–133 (December 2014)
3. N. Farhi, Piecewise linear car-following modeling. Transp. Res. Part C Emerg. Technol. 25,

100–112 (2012)
4. N. Farhi, H. Haj-Salem, J.P. Lebacque, Multi-anticipative piecewise linear car-following

model. Presented at the 91st Transportation Research Board Annual Meeting (No. 12-3823),
Washington, DC, 2012, arXiv:1302.0142 [math.OC] (2012)

5. N. Forcadel, C. Imbert, R. Monneau, Homogenization of accelerated Frenkel-Kontorova
models with n types of particles. Trans. Am. Math. Soc. 364(12), 6187–6227 (2012)

6. S.P. Hoogendoorn, S. Ossen, M. Schreuder, Empirics of multianticipative car-following
behavior. Transp. Res. Rec. J. Transp. Res. Board 1965(1), 112–120 (2006)

7. S.P. Hoogendoorn, S. Ossen, M. Schreuder, Properties of a microscopic heterogeneous multi-
anticipative traffic flow model, in Transportation and Traffic Theory, ed. by R.E. Allsop,
M.G.H. Bell, B.G. Heydecker (Elsevier, Amsterdam, 2007)

8. M.M. Khoshyaran, J.P. Lebacque, A stochastic macroscopic traffic model devoid of diffusion,
in Traffic and Granular Flow’07, ed. by C. Appert-Rolland, F. Chevoir, P. Gondret, S. Lassarre,
J.-P. Lebacque, Michael Schreckenberg (Springer, Berlin/Heidelberg, 2009), pp. 139–150

9. J.P. Lebacque, The Godunov scheme and what it means for first order traffic flow models,
in Transportation and Traffic Theory, Proceeding of the 13th ISTTT, Lyon (Elsevier, 1996),
pp. 647–677

10. J.P. Lebacque, S. Mammar, H. Haj Salem, Generic second order traffic flow modelling, in
Transportation and Traffic Theory 2007. Papers Selected for Presentation at ISTTT17, 2007

11. J.P. Lebacque, M.M. Khoshyaran, GSOM traffic flow models with eulerian source terms,
Presentation at TGF’2013 (2013, in preparation)

12. M.J. Lighthill, G.B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded
roads. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 229(1178), 317–345 (1955)

13. J. Monteil, R. Billot, N.E. El Faouzi, Véhicules coopératifs pour une gestion dynamique du
trafic: approche théorique et simulation. Recherche Transports Sécurité, 29 47–58 (2013)

14. S. Ossen, S.P. Hoogendoorn, Multi-anticipation and heterogeneity in car-following empirics
and a first exploration of their implications, in Intelligent Transportation Systems Conference,
ITSC’06, Toronto (IEEE, 2006), pp. 1615–1620

15. P.I. Richards, Shock waves on the highway. Oper. Res. 4(1), 42–51 (1956)
16. M. Treiber, A. Kesting, D. Helbing, Delays, inaccuracies and anticipation in microscopic traffic

models. Physica A Stat. Mech. Appl. 360(1), 71–88 (2006)



A Simple Statistical Method for Reproducing
the Highway Traffic

Luis Eduardo Olmos and José Daniel Muñoz

Abstract Some of the most important questions concerning the traffic flow theory
are focused on the correct functional form of the empirical flow-density fundamental
diagram. Although most cellular automata intend to reproduce this diagram by mea-
suring the limit steady-states from the dynamic simulation, real roads are constantly
perturbed by external factors, driving the system to explore a much broader phase
space. Hereby, we show that a Monte Carlo sampling of all states compatible with
a driving rule (previously derived for Bogota) actually reproduces the measured
fundamental diagram, both in mean values and dispersion, when all such states are
assumed equally probable. Even more, by using the Wardrop’s relation, the same
gathered data also approximates the general form of the time-mean fundamental
diagrams. These results suggest that driving rules are much richer in information
than usually expected and, that the assumption of equally probable states plus a
finite length of road may be a first model for the statistical description of highways.

1 Introduction

Since the beginnings the investigation in traffic flow is mainly focused on the
functional relationships between the flow q, the space-mean speed vs and the density
of vehicles on a road � and even Greenshields [1] found a linear relationship
between speed and density. The first fundamental diagrams were found just by
fitting a relation q.�/ D � � v.�/ of the empirical data, where v(�) is again the
fitted empirical velocity-density relationship. However, this is much more complex
than just a well-defined function. It is discontinuous and, for high densities, the data
are widely scattered, which is usually interpreted as an effect of fluctuations or of an
instability in vehicle dynamics. This property shows that rather than the fundamental
diagram, the microscopic structure is the key for the understanding of the traffic
flow characteristics. That is why microscopic models have been more successful
over other models. Among those, cellular automata models (CA) have been some
of the most fruitful, as they have reproduced the more complex properties of the
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traffic flow. The success of these models is due to its simplicity and flexibility in
the introduction of individual driving features, which are ultimately the responsible
for the complex behaviour. Nevertheless, the traffic flow is a open system that,
in general, is continuously perturbed at random by real factors (like pedestrians,
or road imperfections) which make the system walks about several states. This
arises the question of which traffic features can be reproduced by a Monte Carlo
exploration of the phase space allowed by the driving rules.

2 Data Collection

Most empirical data are collected by stationary inductive loops at many highway
locations. The loop detects a vehicle, it records the time of passing and it can also
calculated the vehicle speed vi . Quantities as q and v can be derived and presented in
aggregated values for a time period, for instance, 1 or 5 min. The flow q is given by
the number of cars N.�t/ passing the detector per time interval �t , i.e. q D N.�t/

�t
.

The time-mean speed, vt , is obtained as the arithmetic average vt D 1
N

PN
iD1 vi .

However, the determination of density is rather problematic. The difficulty arises
from the fact the density is derived from the hydrodynamic relation � D q

v and, when
vt is used, standing or slow cars are not detected, so then density is underestimated.
By assuming stationary conditions, some authors avoid this difficulty by computing
the space-mean speed as the harmonic mean of the time measurements [2, 4, 6, 10]:

vs D 1
1
N

PN
iD1 1

vi

: (1)

The harmonic mean value corrects the detection of slow cars, but it does not allow to
account for standing cars. Even so, this relation is the mostly used in the empirical
data analysis. On respect to the differences between these two speed averages
Wardrop [11] found that under homogeneous and stationary conditions:

vt D �2s
vs

C vs ; (2)

where �2s is the variance of space mean speed. Equation 2 is not useful if one
has just local measurements (real case). This difficulty makes the single-vehicle
data more interesting over aggregated data for the study of traffic flow. In other
words, the histograms of quantities such as the time interval between consecutive
cars (temporal-headway) or the spatial distance between them, distance-headway
or gap, contains much more valuable information that simple relationships among
average values [2, 6].
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3 Methods

Let us implement a simple Monte Carlo sampling from the driving rules to generate
at random the traffic states on the road in such a way that the states so obtained fulfill
the driving rules. With this aim, the road is represented by a one-dimensional lattice
ofL sites with periodic boundaries. Since the empirical data are aggregated for short
time periods we must use small road sizes, otherwise, the data dispersion would be
reduced. Then, we choose a number of cars N and throw them randomly into the
road. After that, each car computes its distance headway and takes the maximal
allowed velocity vcom (comfort velocity) according to the rules of the CA model
we are studying. So, we are absorbing both the non-equilibrium characteristic of
traffic and the fact that drivers want to move as fast as possible. For each state so
generated, it measured the spatial variables � and q which corresponds to a point
in the fundamental diagram. The process is repeated many times for each number
of cars N � L and the fundamental diagram was obtained by cumulating these
samples onto a two-dimensional histogram on the flow-density map (see Fig. 1).
The main assumption of this work is that all randomly generated configurations,
understood as the disposition of the cars on the road, are equally probable. But it
is not the same for the macroscopic states of the traffic defined by the value of q, v
and �. Figure 1 right shows that for a value of � there is a value of q more probable
which just depends on the driving rules. We identify the most likely regions as the
realistic states observed in empirical measurements.

We studied the driving rules of two CA models. The first one is the deterministic
case of the well known NaSch model [5] where vcom D gap for gap � vmax and
vcom D vmax for gap > vmax. The second one is the Olmos-Muñoz model [7, 8]
which was developed and implemented by the authors for reproducing the behavior
of traffic flow in Bogota. This model keep in mind the particularities of Bogotan
drivers, measured directly inside a car running on Bogota’s highways. In this model,
each car occupies two cells, and the gaps the driver uses to decide to brake or
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Fig. 1 Monte Carlo sampling from driving rules to generate at random the traffic states of the
road. Scatter plot of the fundamental diagram (left) and density of states (right) obtained from the
highway traffic states of these random configurations



410 L.E. Olmos and J.D. Muñoz

Table 1 Values of vcom for
each gap in the Olmos Muñoz
model

Gap vcom Gap vcom

0 or 1 0 6 6

2 1 7 7

3 2 8 9

4 3 9 9

5 4 10 10

accelerate are different for each speed. Then, if the headway distance is less or
equal to the brake gap, the car brakes, and if it is greater than the accelerate gap,
it accelerates; otherwise, the speed remains constant. Here, the comfort speed vcom

corresponds to the largest one at which the gap ahead is lower or equal than the
accelerate gap. The other two elements are delay time on the acceleration ( the time
it takes the car to reach the next discrete speed value) and break lights that force to
brake when the car ahead breaks. Since these last two elements have a dynamical
nature, they cannot be included in our method. This model is not as simple as the
NaSch model but the value of vcom is summarized in the Table 1.

4 Results for the Fundamental Diagram

Figure 2 up shows the contour graph obtained for the frequency to obtain states
with flux q at density � for the driving rules of the deterministic NaSch model.
This is compared to the steady states of the dynamic simulation of the cellular
automata. It is clear that around the value of maximum flow the most probable
states do not match with the equilibrium states of the dynamical simulation. This
could be expected, since there is not disorder in the deterministic NaSch model
and, thus, it describes an unrealistic traffic flow. Nevertheless, by setting a non-zero
value for the stochastic parameter, the match can improve. Figure 2 down shows the
comparison between the empirical fundamental diagram measured for Bogota (built
from space-mean measures in [7]) and the result obtained with the Monte Carlo
method by using the Olmos-Muñoz driving rules (Table 1). This figure shows that
the most likely states of the system (red color region) match in a good agreement to
the real data measurements of a non-equilibrium system.

As we mentioned above, this method build the fundamental diagrams from
space-mean variables. This arises the question of how a fundamental diagram
is based on time-mean quantities. Although our method is not dynamic, we can
compute the local quantities by using the Eq. 2, since �2s can be estimated from
the histogram by computing standard deviations on horizontal sections of the
diagram. So then, vt can be obtained from vs , the flow q remains the same but
the density is recalculated from � D q

vt
. This step is included in the method before

computing the density of the states. Figure 3 shows the surprising result. We obtain
a fundamental diagram very similar to those measured empirically using temporal
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Fig. 2 Contour graph of the
fundamental diagram
obtained from the driving
rules of the deterministic
NaSch model (top) and of the
Olmos-Muñoz model (down)
for L D 50. Top: the right
line corresponds to the steady
state from a cellular automata
simulation. Down: the black
dots correspond to the
empirical fundamental
diagram measured in Bogota

Fig. 3 Contour plot of the
fundamental diagram
obtained by transforming the
space-mean variables in
time-mean by using the Eq. 2
and the driving rules of the
NaSch model. It is clear the
similarity to those measured
empirically using temporal
averaged variables. It should
remark that the discontinuity
emerges naturally as a region
of unlikely states

averaged variables. Focusing on the most likely states, one can distinguish the
free-flow branch with high-flow states, and separated from this, a wide dispersed
data appears as the synchronized phase under the perspective of the three-phases
theory [3]. Therefore, the discontinuity appears naturally as a region of unlikely
states. Besides that, it appears a region with low flow and a underestimated density,
in similarity with the real collected data.
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5 Analytical Approach and Distribution of Spatial Headways

We are also interested in the features of the microscopic structure that this method
can reproduce. Clearly, the spatial-headway distribution is the characteristic that
we can study directly. Due to the assumption of equally probable microstates, this
method neglects the correlation between the gaps in front of successive cars. If we
assume further that the length of the road L ! 1, one can analytically derive that
the gaps distribute as

}.gap/ D � � .1��/gap and, therefore, hgapi D
1X

gapD0
gap �}.gap/ D 1 � �

�
(3)

However, the empirical distribution of distance-headways reveals the inadequacy
of this equation. As Fig. 4 left shows, this distribution is surprisingly broad. Even
so, it is interesting to see that the right hand of the Eq. 3 predicts an average gap
decreasing with the inverse density 1

�
, as Tilch and Helbing reported [10]. Thus, let

us go more deeply with the idea. Since the vcom is related with the gap, we can study
the distribution of speeds. The distribution of speeds }.vcom/ for the deterministic
NaSch model, for instance, is the same }.gap/ for vcom < vmax and }.vmax/ DP1

iDvmax
i � � � .1 � �/i for vmax. Then, the average speed can be written as

hvi D 1 � �

�
� .1 � .1 � �/vmax/ ; (4)

and one can obtain the flow immediately as q D � � hvi. Note that Eq. 4 with
vmax D 1 reproduces Greenshield’s model, and even other empirical models can be
reproduced with other values of vmax. The kind of analytical calculations resulting
in Eq. 4 are typical of the naive mean-field theory1 and its generalizations [9]. These
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Fig. 4 The broad distribution of vehicle distance-headways at all densities �. Left: Empirical
distribution from Tilch and Helbing [10]. Right: Distance-headways distribution just for most likely
states in the Monte Carlo sampling of the NaSch model. Figure shows the same broad distribution
observed in empirical data

1Actually our calculations are more naive than the naive mean-field theory.
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theories were applied with success to the NaSch model at the beginning of the past
decade but, as we already noted, they could not reproduce the distance-headway
distribution of the stationary states of the CA model on a large system. Nevertheless,
we are not interested in the stationary states of a cellular automaton but in the most
likely states one would measure in reality. Therefore, we computed the distance-
headway distribution for a finite system just for most likely states (the red color
regions in Fig. 2 up). The results, in Fig. 4 right, shows the same broad distribution
observed in empirical data.

Conclusions
Hereby, we have showed that a Monte Carlo exploration of the driving rules
can reproduce the empirical fundamental diagram. Indeed, by generating
states according with the Olmos-Muñoz model, and assuming that all these
microstates are equally probable, we have reproduced with good agreement
the capacity and the data dispersion of the fundamental diagram measured for
Bogota city. Even more, by using the Wardrop’s relation (Eq. 2), our data also
approximates the general form of the time-mean fundamental diagrams, re-
vealing a naturally emergence of both the discontinuity between free-flow and
congested phases, and the high-flow states in this diagram as a consequence of
such relation. In addition, by computing the distance-headways distribution
according to the driving rules of NaSch model and just for the most likely
states of a finite road, we have reproduced the broad distribution observed
in reality. All this result suggests that the non-dynamical driving rules are
more than a simulation mechanism; they can give valuable information about
the macroscopic behaviour of the highway traffic flow. In addition, they also
suggest that the assumption of equal probabilities for all states compatible
with the driving rule plus a finite length of road may be a first model for
the statistical description of highways. Of course, this hypothesis should be
validated on other roads with other automaton rules, and this will be an
interest subject of future work.
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Controlling of Vehicular Traffic Flow
at an Intersection Via Two Schemes of Traffic
Lights

Somayyeh Belbasi and M. Ebrahim Foulaadvand

Abstract By means of extensive Monte Carlo simulation, we have investigated the
traffic flow characteristics in a single signalised intersection via developing Nagel-
Schreckenberg cellular automata model. A set of traffic lights operating in two
schemes controls the traffic flow. A closed boundary condition is applied to the
streets, each of which conducts a unidirectional flow. It is shown that there exists
a plateau region in fundamental diagrams inside which the total outflow remains
almost.

1 Introduction

Simulation of urban traffic flow is becoming an essential tool for optimisation
purposes as the number of vehicles increases continuously and traffic conditions
deteriorate, both for vehicles and pedestrians. Modelling the dynamics of vehicular
traffic flow by cellular automata has constituted the subject of intensive research by
statistical physics during the past years [1–3]. City traffic was an early simulation
target for statistical physicists [4–11]. Recently, physicists have notably attempted
to simulate the traffic flow at intersections and other traffic designations such as
roundabouts [12–20].

The vehicular flow at the intersection of two roads can be controlled via two
distinctive schemes. In the first scheme, the traffic is controlled without traffic
lights [19, 21]. In the second scheme, signalised traffic lights control the flow. Our
objective in this paper is to study in some depth, the characteristics of traffic flow
and its optimisation in a single intersection
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2 Description of the Problem

Consider a traffic flow at the intersection of two streets. Each street conduct a
unidirectional traffic flow and has two lanes. The flow directions are taken south-
north in street one and east-west in street two. Vehicles can turn when reaching to
the intersection. A northward moving car can turn right left and a westward moving
car can turn right when reaching to the intersection. We model each street lane
by a chain of L sites. The chains of perpendicular streets intersect each other at
the middle sites i1 D i2 D L

2
. The discretisation of space is such that each car

occupies five cells. Time elapses in discrete steps of �t and velocities take discrete
values 0; 1; 2; � � � ; vmax in which vmax is the maximum velocity measured in unit
of �x

�t
in which �x is the cell length. In the first scheme, fixed time signalization

of lights, the lights periodically turn into red and green. The period T , hereafter
referred to as cycle time, is divided into two phases. In the first phase with duration
Tg, the lights are green for the northward street and red for the westward one. In the
second phase which lasts for T � Tg timesteps the lights change their colour i.e.;
they become red for the northward and green for the westward street. The gap of
all cars are update with their leader vehicle except those two which are the nearest
approaching cars to the intersection. These two cars need special attention. For these
approaching cars gap should be adjusted with the signal in its red phase. In this case,
the gap is defined as the number of cells right after the car’s head to the intersection
point L

2
. The system is update for 2 � 105 time steps. After transients, two streets

maintain steady-state currents denoted by J1 and J2 which are defined as the number
of vehicles passing from a fixed location per time step. They are functions of global
densities �1 and �2 and signal times T and Tg. Figures 1–3 show the fundamental
diagrams for specified parameters.

Fig. 1 Current versus �1 for
T D 30, Tg D 15 and
�2 D 0:1 ρ1
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Fig. 2 Current versus �1 for
T = 30, Tg D 20 and
�2 D 0:1
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Fig. 3 Current versus �1 for
T = 35, Tg D 20 and
�2 D 0:1
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We observe that for each Tg, J1 linearly increase then a lengthy plateau region is
formed. It seems the plateau region is natural because by increasing Tg the model
tends to a normal NS model. The emergence of a plateau region is associated to
defect-like role of the crossing point. After the plateau, J1 exhibits linear decrease
versus �1 in the same manner as in the fundamental diagram of a single road.
Concerning the variation of cycle time T , increasing the cycle time T gives rise,
on an equal basis, to increase both in the green and in the red portion of the cycle
allocated to each street. The results show a notable increase in flows when T is
increased. This observation does not seem to comply to reality. The reason is due to
unrealistic nature of NS rules.
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Although �2 remains constant J2 is affected by density variations in street 1.
For each Tg, J2 as a function of �1 exhibits two regimes. In the first regime, J2
is almost independent of �1 and remains constant up to high �1. Afterwards in the
second regime, J2 exhibits a linearly decreasing behaviour towards zero. Analogous
to J1, the existence of a wide plateau region indicates that street 2 can maintain a
constant flow capacity for a wide range of density variations in the first street. If Tg
is increased, the green time allocated to the second street decrease so we expect J2
to exhibit a diminishing behaviour.

In general, the dependence of total current on J1 depends on the value of Tg .
Except for small values of Tg, total current increases with �1 then it becomes
saturated at a lengthy plateau before it starts its linear decrease.

In the second scheme, intelligent controlling scheme, the signalisation of traffic
lights is simultaneously adapted to traffic status in the vicinity of intersection. There
exist numerous schemes in which traffic responsive signalisation can be prescribed.
Here for brevity we discuss only one of these methods. To be precise, we define
a cut-off queue length. The signal remain red for a street until the length of the
corresponding queue formed behind the red light exceeds the cut-off length. At
this moment the lights change colour. Apparently due to stochastic nature of cars
movement, the cycle time will be subjected to variations and will no longer remain
constant. In Figs. 4 and 5 we exhibit J versus �1 for various values of cut-off lengths.

Analogous to fixed-time scheme, for given �2 a lengthy plateau in Jtot forms. The
plateau height as well as its length show a significant dependence on queue length.
Higher queue length are associated with smaller length and higher current. We have
also examined larger values of �2. The results are qualitatively analogous the above

Fig. 4 Total current versus
�1 for �2 D 0:03 and queue
length = 8 ρ1
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Fig. 5 Total current versus
�1 for �2 D 0:05 and queue
length = 5
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Fig. 6 Space-time plot for
�1 D 0:9, �2 D 0:9, T = 30
and Tg D 15
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graphs. The notable point is that for �2 larger than 0.1, Jtot do not show a significant
dependence on �2.

To shed some light onto the problem, we sketch space-time plots of vehicles
in Figs. 6 and 7. It is oberved that in traffic responsive scheme, the cars spatial
distribution is more homogeneous which is due to randomness in cycle times.
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Fig. 7 Space-time plot for
�1 D 0:9, �2 D 0:9 and
queue length = 5
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Conclusion
Our finding show that hindrance of cars upon reaching the red light gives
rise to the formation of plateau regions in the fundamental diagrams. This is
reminiscent of the conventional role of a single impurity in one-dimensional
out of equilibrium systems. The existence of a wide plateau region in the
total system current shows the robustness of the controlling scheme to the
density fluctuations. The overall throughput from the intersection exhibits a
significant dependence on the cycle time in the fixed time scheme and on the
queue cut-off length in the responsive scheme.
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Equation-Free Analysis of Macroscopic
Behavior in Traffic and Pedestrian Flow

Christian Marschler, Jan Sieber, Poul G. Hjorth, and Jens Starke

Abstract Equation-free methods make it possible to analyze the evolution of a
few coarse-grained or macroscopic quantities for a detailed and realistic model
with a large number of fine-grained or microscopic variables, even though no
equations are explicitly given on the macroscopic level. This will facilitate a study of
how the model behavior depends on parameter values including an understanding
of transitions between different types of qualitative behavior. These methods are
introduced and explained for traffic jam formation and emergence of oscillatory
pedestrian counter flow in a corridor with a narrow door.

1 Introduction

The study of pedestrian and traffic dynamics leads naturally to a description by a few
macroscopic, e.g., averaged, quantities of the systems at hand. On the other hand, so-
called microscopic models, e.g., multi-agent systems, inherit individual properties
of the agents and can therefore be made very realistic. Among more successful
microscopic models are social force models for pedestrian dynamics [1–3] and
optimal velocity models in traffic dynamics [4–8]. Although computer simulations
of microscopic models for specific scenarios are straightforward to perform it is
often more relevant and useful to look at the systems on a coarse scale, e.g., to
investigate a few macroscopic quantities like first-order moments of distributions or
other macroscopic descriptions which are motivated by the application.

The analysis of the macroscopic behavior of microscopically defined models
is possible by the so-called equation-free or coarse analysis. This approach is
motivated and justified by the observation, that multi-scale systems, e.g., many-
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particle systems, often exhibit low-dimensional behavior. This concept is well
known in physics as slaving of many degrees of freedom by a few slow variables,
sometimes referred to as “order parameters” (see e.g. [9, 10]) and is formalized
mathematically for slow-fast systems by Fenichel’s theory [11]. These methods
aim for a description of the system in terms of a small number of variables, which
describe the interesting dynamics. This results in a dimension reduction from many
degrees of freedom to a few degrees of freedom. For example, in pedestrian flows,
we reduce the full system of equations of motion with equations of motion for
each single pedestrian to a low-dimensional system for weighted mean position and
velocity of the crowd.

A difficulty for such a macroscopic analysis is that governing equations for the
coarse variables, i.e., the order parameters, are often not known. Those equations
are often very hard or sometimes even impossible to derive from first principles
especially in models with complicated microscopic dynamics. To extract informa-
tion about the macroscopic behavior from the microscopic models equation-free
methods [12–15] can be used. This is done by using a special scheme for switching
between microscopic and macroscopic levels by restriction and lifting operators and
suitably initialized short microscopic simulation bursts in between. Problems with
the initialization of the microscopic dynamics, i.e., the so-called lifting error, have
been studied in [8]. An implicit equation-free method for simplifying the lifting
procedure has been introduced, allowing for avoiding lifting errors up to an error
which can be estimated for reliable results [8]. The equation-free methodology is
most suitable in cases where governing equations for coarse variables are either not
known, or when one wants to study finite-size effects if the number of particles is too
large for investigation of the full system, but not large enough for a continuum limit.
It is even possible to apply equation-free and related techniques in experiments,
where the microscopic simulation is replaced by observations of an experiment [16–
18].

For pedestrian and for traffic problems, a particularly interesting case is a
systematic study of the influence of parameters on solutions of the system. This
leads to equation-free bifurcation analysis. One obtains qualitative as well as
quantitative information about the solutions and their stability. Furthermore, it saves
computational time and is therefore advantageous over a brute-force analysis or
computation. The knowledge of parameter dependence and the basin of attraction of
solutions is crucial for controlling systems and ensuring their robustness. Changes of
solutions are summarized in bifurcation diagrams and solution branches are usually
obtained by means of numerical continuation. These techniques from numerical
bifurcation analysis can be combined with equation-free methods to gain insight
into the macroscopic behavior in a semi-automatic fashion.

In the following, we apply equation-free bifurcation analysis to two selected
problems in traffic and pedestrian dynamics. Section 2 gives a short overview
about equation-free methods. The methods introduced in Sect. 2 are then applied
to study traffic jams in the optimal velocity model (cf. [4, 8]) in Sect. 3. Section 4
describes the macroscopic analysis of two pedestrian groups in counterflow through
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a bottleneck (cf. [3]) and the section “Discussion and Conclusion” concludes the
paper with a brief discussion and an outlook on future research directions.

2 Equation-Free Methods

Equation-free methods have been introduced (cf. [14, 15] for reviews) to study
the dynamics of multi-scale systems on a macroscopic level without the need for
an explicit derivation of macroscopic equations from the microscopic model. The
necessary information is obtained by suitably initialized short simulation bursts
of the microscopic system at hand. Equation-free methods assume that the system
under investigation can be usefully described on a coarse scale. Evolution equations
on the macroscopic level are not given explicitly. A big class of suitable systems are
slow-fast systems, which have a separation of time scales. Under quite general as-
sumptions (cf. [11]) these systems quickly converge to a low-dimensional object in
phase space, the so-called slow manifold (cf. Fig. 1). The long-term dynamics (i.e.,
the macroscopic behavior) happens on this slow manifold, which is usually of much
lower dimension than the overall phase space (of the microscopic system). The goal
of equation-free methods is to gain insight into the dynamics on this slow manifold.

In the following we discuss the equation-free methodology in detail. The
construction of a so-called macroscopic time stepper requires three ingredients to
be provided by the user: the lifting L and restriction R operators to commu-
nicate between the microscopic and macroscopic levels and vice versa, and the
microscopic time stepper M . Due to a separation of time scales, it is possible to
construct the macroscopic time stepper by a lift-evolve-restrict-scheme. This scheme
is subsequently used to perform bifurcation analysis and numerical continuation.

2.1 Microscopic Time Stepper M

To be specific, let us consider a microscopic model in the form of a high-dimensional
system of N differential equations

Pu D f .u/: (1)

Fig. 1 Fast convergence to a slow manifold (thick blue curve). Trajectories in many dynamical
systems converge very quickly to a slow manifold, along which the long-time macroscopic
behavior takes place



426 C. Marschler et al.

This can be any model of traffic or pedestrian dynamics, possibly depending on a
set of parameters. We generally assume that the number of degrees of freedom and
thereby the dimension N of u is large. Note that a second-order model, e.g., the
social force model with forces fforce.x/, can be written as a first-order model of
the type (1) by including the velocities Px D v into the equation. Then u has the
form u D .x; v/, and the right-hand side is f .u/ D f ..x; v// D Œv; fforce.x/�. We
assume that a microscopic time stepper M for model (1) is available. That is, we
have a routine M (usually a simulation or software package) with two inputs: the
time t 2 R by which we want to evolve and the initial state u0 2 R

N from which
we start. The outputM.t; u0/ 2 R

N is defined by the relation

u.t0 C t/ D M.t; u.t0//: (2)

That is M.t; u0/ is the state u of (1) after time t , starting from u0 at time t0.

2.2 Separation of Time Scales

We also assume that the dynamics on the macroscopic scale can be described by a
few macroscopic variables x 2 R

n, where n is much smaller than the phase space
dimension N of the microscopic model. This assumption is typically true in many-
particle systems, e.g., pedestrian flow and traffic problems. The goal of equation-free
methods is then to construct a time stepper for x on the macroscopic level,

x.t0 C t/ D ˚.t; x.t0//; (3)

based on repeated and appropriately initialized runs, i.e., simulation bursts, of the
microscopic time stepper M for u. In practice, a user of equation-free methods
begins with the identification of a map, the so-called restriction operator

R W RN ! R
n,

which reduces a given microscopic state u 2 R
N to a value of the desired

macroscopic variable x 2 R
n. The assumption about the variables x describing

the dynamics at the macroscopic scale has to be made more precise. We require
that for all relevant initial conditions u and a sufficiently long transient time tskip the
result of the microscopic time stepper (2) is (at least locally and up to a small error)
uniquely determined by its restriction, i.e., its macroscopic behavior. That is, if for
two initial conditions u0 and u1 the relation

RM.tskipI u0/ D RM.tskipI u1/ holds, then

jRM.tskip C t I u0/� RM.tskip C t I u1/j < C exp."t � � tskip/
(4)
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for all t 	 0. In (4) the pre-factorC should be of order unity and independent of the
choice of t , u0 and u1. The growth rate " is also assumed to be smaller than the decay
rate � . This is what we refer to as separation of time scales between macroscopic
and microscopic dynamics. Requirement (4) makes the statement “the dynamics of
u on long time scales can be described by the macroscopic variable x D Ru” more
precise. We also see that the error in this description can be made as small as desired
by increasing the healing time tskip. In fact, requirement (4) determines what a good
choice of tskip is for a given problem.

In order to complete the construction of the macroscopic time stepper˚ , the user
has to provide a lifting operator

L W Rn ! R
N ,

which reconstructs a microscopic state u from a given macroscopic state x. See
[19–21] for proposals how to construct good lifting operators for explicit equation-
free methods (see Eq. (6) below). In the case of implicit equation-free methods the
choice of a lifting operator is not as delicate [8]. Also note that the choice of lifting
operator is not unique.

2.3 Macroscopic Time Stepper ˚

We can now assemble the approximate macroscopic time stepper ˚ for x by
applying the steps Lift-Evolve-Restrict, as illustrated in Fig. 2 in a judicious manner
(cf. Fig. 3 for a detailed construction): the time-t image y D ˚.t I x/ of an initial
condition x 2 R

n is defined as the solution y of the implicit equation

RM.tskipIL y/ D RM.tskip C t IL x/. (5)

Fig. 2 Scheme for construction of the macroscopic time stepper ˚ using the lifting L and
restriction operator R for switching between microscopic and macroscopic levels. M denotes the
microscopic time stepper
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Fig. 3 Visualization of the implicit scheme (5). The macroscopic time stepper ˚ maps the
macroscopic state x to the yet unknown macroscopic state y. The scheme lift-evolve-restrict is
applied to both states. Additionally to the healing step tskip the dynamics on the slow manifold are
observed for state x for an additional (long) time t . Both “paths” are compared at the macroscopic
end point x�. Note, that this scheme defines y implicitly

Note, that the macroscopic time stepper has originally been introduced as the
explicit definition (cf. also Fig. 2)

Q̊ .t I x/ D RM.t IL x/: (6)

The explicit method (6) requires that the lifting operator maps onto (or very close
to) the slow manifold for every macroscopic point x. The implicit method (5) does
not have this requirement and should be the method of choice (cf. the discussion
in Sect. 3). The implementation of the explicit and implicit time stepper is further
illustrated in Table 1 using pseudocode. Equation (5) is a nonlinear but in general
regular system of n equations for the n-dimensional variable y. Note that the
construction (5) does not require an explicit derivation of the right-hand side
F W Rn ! R

n of the assumed-to-exist macroscopic dynamical system

Px D F.x/. (7)

However, it can be used to evaluate (approximately) the right-hand side F in desired
arguments x (see below). The convergence of the time stepper˚ to the correct time-
t map˚� of the assumed-to-exist macroscopic equation (7) is proven in detail in [8].
The error j˚.t I x/ � ˚�.t I x/j is of order exp."t � � tskip/.

2.4 Advantages of Equation-Free Methods

What additional benefits can the macroscopic time stepper ˚ have beyond simu-
lation of the low-dimensional dynamics (which could have been accomplished by
running long-time simulations using M directly)?
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Table 1 Pseudocode algorithm for computing the macroscopic solution y after time t using
the macroscopic time stepper for the solution x using the explicit (6) and implicit (5) scheme,
respectively. The implicit scheme uses a Newton iteration with a given tolerance tol to find y.
For one-dimensional y the Jacobian dF is given by (F(y[n]+dy)-F(y[n]))/dy . Note, that
the complexity of the implicit scheme stems mainly from the Newton iteration, which is not specific
for equation-free computations

Required functions: lift, evolve, restrict (cf. main text)

solution at time t0: x

function res = Phi(t,x)

u1 = lift(x); u2 = evolve(t,u1); res = restrict(u2);

end

Explicit scheme Implicit scheme

y = Phi(t,x); choose dy, tol, y[0] = x, n = 0, err = 2*tol

function res = F(y)

res = Phi(tskip,y) - Phi(tskip+t,x);

end

while err > tol

Fy = F(y[n]);

dF = Jacobian(F,y[n],dy);

y[n+1] = y[n] - (dF)�1�(Fy);
err = abs(y[n+1] - y[n]);

n = n+1;

end

y = y[n];

• Finding locations of macroscopic equilibria regardless of their dynamical stabil-
ity: macroscopic equilibria x are given by solutions to the n-dimensional implicit
equation ˚.t0I x/ D x, or, in terms of lifting and restriction:

RM.tskip C t0IL x/ D RM.tskipIL x/ (8)

for a suitably chosen time t0 (a good choice is of the same order of magnitude
as tskip). The stability of an equilibrium x, found by solving (8), is determined
by solving the generalized eigenvalue problem Ax D �Bx with the Jacobian
matrices

A D @

@x
RM.tskip C t0IL x/, B D @

@x
RM.tskipIL x/.

Stability is determined by the modulus of the eigenvalues � (where j�j < 1

corresponds to stability).
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• Projective integration of (7): one can integrate the macroscopic system (7) by
point-wise approximation of the right-hand side F and a standard numerical
integrator. For example, the explicit Euler scheme for (7) would determine the
value xkC1 � x..k C 1/�t/ from xk � x.k�t/ implicitly by approximating

F.xk/ D 1

ı

�
RM.tskip C ıIL xk/ � RM.tskipIL xk/

�

with a small time ı, and then solving the implicit equation

RM.tskipIL xkC1/� RM.tskipIL xk/ D F.xk/�t

with respect to xkC1. Projective integration is useful if the macroscopic time step
�t can be chosen such that �t  ı, or for negative �t , enabling integration
backward in time for the macroscopic system (7).

• Matching the restriction: Sometimes it is useful to find a “realistic” microscopic
state u, corresponding to a given macroscopic value x. “Realistic” corresponds
in this context to “after rapid transients have settled”. This can be accomplished
by solving the nonlinear equation

RM.tskipIL y/ D x (9)

for y and then setting u D M.tskipIL y/.

The formulas (8) and (9) have already been presented and tested in [22], where they
were found to have vastly superior performance compared to alternative proposals
for consistent lifting (such as presented in [19–21]).

2.5 Bifurcation Analysis and Numerical Continuation

Building on top of the basic uses of the macroscopic time stepper ˚ , one can also
use advanced tools for the study of parameter-dependent systems. Suppose that the
microscopic time stepper M (and, thus, the macroscopic time stepper ˚) depends
on a system parameter p. We are interested in how macroscopic equilibria and their
stability change as we vary p. In the examples in Sects. 3 and 4 the primary system
parameter is the target velocity (traffic) and door width (pedestrians), respectively.

When tracking equilibria in a parameter-dependent problem one may start at a
parameter value p0, where the desired equilibrium x0 (given by ˚.t0I x0; p0/ D x0)
is stable so that it can be found by direct simulations. This achieves a good
initial guess, which is required to solve the nonlinear equations (8) reliably with
a Newton iteration for near-by p close to p0. In the traffic system studied in Sect. 3
the equilibrium corresponding to a single phantom jam undergoes a saddle-node
bifurcation (also called fold, that is, the equilibrium turns back in the parameter
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Fig. 4 Pseudo-arclength continuation of a curve of fixed points f.p; x/ W ˚.t0I x; p/ D xg of the
macroscopic time stepper˚ . A new point . Np; Nx/ is computed along the secant through .p`�2; x`�2/

and .p`�1; x`�1/ in a so-called predictor step. The following corrector step solves the equilibrium
condition (cf. (10)) in the perpendicular direction to find the next equilibrium .p`; x`/ on the curve

changing its stability, see Fig. 5a for an illustration). In order to track equilibria near
folds one needs to extend the nonlinear equation for the macroscopic equilibrium
with a so-called pseudo-arclength condition, and solve for the equilibrium x and
the parameter p simultaneously [23, 24]. That is, suppose we have already found a
sequence .pk; xk/, k D 1; : : : ; `� 1, of equilibria and parameter values (see Fig. 4).
We then determine the next pair .p`; x`/ by solving the extended system for
.p`; x`/:

0 D ˚.t0I x`; p`/� x` equilibrium condition

s D Np`.p` � p`�1/C NxT` .x` � x`�1/ pseudo-arclength condition.
(10)

The vector

. Np`; NxT` / D .p`�1 � p`�2; xT`�1 � xT`�2/
j.p`�1 � p`�2; xT`�1 � xT`�2/j

(11)

is the secant through the previous two points, scaled to unit length, and s is the
approximate desired distance of the newly found point .p`; x`/ from its predecessor
.p`�1; x`�1/. The continuation method (10) permits one to track equilibria through
folds such as shown in Fig. 5a or Hopf bifurcations such as shown in Fig. 6b (where
the equilibrium becomes unstable and small-amplitude oscillations emerge). For a
more detailed review on methods for bifurcation analysis the reader is referred to
standard references, e.g., [23, 24].
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a b

c d

Fig. 5 Equation-free bifurcation analysis for the optimal velocity model (12). (a) Bifurcation
diagram in healed quantities for h D 1:2. Headway profiles are shown for selected points (black
circles) along the branch. Blue and red dots denote stable and unstable solutions, respectively. (b)
and (d) show bifurcation diagrams for different lifting operators. Healed values in (d) lie exactly
on the same branch and recover the results from direct simulation (black dots). Thus, the choice
of lifting operator L does not affect the results if one reports the healed values (in contrast to (b),
reporting the solutions � of (8)). (c) Two-parameter bifurcation diagram for continuation of the
fold point. Saddle-node (blue crosses) and Hopf points (green dots) from measurements in one-
dimensional diagrams are in perfect agreement with the continuation in two parameters h and v0
(red dots) and the analytical curve (black line)

3 Traffic Models

We apply the methods introduced in Sect. 2 to the optimal velocity (OV) model [4]
as an example of microscopic traffic models. The model captures the main features
of experiments of cars on a ring road [6]. We exploit equation-free numerical
bifurcation analysis to answer the following questions; (1) for which parameter
values in the OV model do we expect traffic jams and (2) how severe are they?

The equations of motion for car n in the OV model are

� Rxn C Pxn D V.xnC1 � xn/; V .�xn/ D v0.tanh.�xn � h/C tanh.h//; (12)
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where � D 0:588 is the reaction time and V is the optimal velocity function
depending on the velocity parameter v0 and inflection point h. Periodic boundary
conditions xnCN D xn C L are used for N D 60 cars on a ring road of length
L D 60. Depending on the choice of v0 and h one observes uniform flow, i.e., all
cars have headway�xn D 1, or a traffic jam, i.e., a region of high density of cars. It
is worth noting, that bistable parameter regimes can exist, i.e., a stable uniform flow
and a stable traffic jam coexist and one or the other emerges, depending on initial
conditions.

First, we fix h D 1:2 and study the bifurcation diagram in dependence of v0.
Before we are able to apply the algorithms presented in Sect. 2, we have to define
the lifting and restriction operators.

3.1 The Restriction and Lifting Operators

The restriction operator R, used to compute the macroscopic variable to describe
phenomena of interest (here the deviation of the density profile from a uniform flow)
of the microscopic model on a coarse level, is chosen as the standard deviation of
the distribution of headway values

R.u/ D � D
v
u
u
t 1

N � 1

NX

nD1
.�xn � h�xi/2; (13)

where h�xi is the mean headway.
As the numerical continuation operates in a local neighborhood of the equilib-

rium states, the lifting operator can be based on a previously computed microscopic
reference state Qu D . Qx; Qy/ for positions Qx and velocities Qy and its macroscopic
image under R, Q� D R Qu. We use Qu and Q� to obtain a microscopic profile u for
every � � Q� :

L�.Qu; �/ D u D .x; y/ D .xnew; V .xnew// ; xnew D ��

Q� .� Qx � h� Qxi/C h� Qxi.

(14)

We let the lifting L� depend on an artificial parameter �. We will vary � later to
demonstrate that the resulting bifurcation diagram is independent of the particular
choice of L .

3.2 Numerical Results

The results of the equation-free bifurcation analysis are shown in Fig. 5. The
bifurcation diagram for fixed h D 1:2 (cf. Fig. 5a) shows a stable traffic jam
for parameter values v0 > v� D 0:887. By continuation of the solution from a
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stable traffic jam towards smaller values of v0 a saddle-node bifurcation is found
at v0 D 0:88. The traffic jam loses stability and an unstable solution exists for
v0 2 Œ0:88; 0:887�. Continuing further along the branch, a Hopf bifurcation, i.e., a
macroscopic pitchfork bifurcation, where traffic jams are born as small-amplitude
time-periodic patterns, is found at v0 D 0:887. At this point, stable uniform flow
solutions (� D 0) change their stability to unstable uniform flow solutions. For
v0 2 Œ0:88; 0:887� two stable solutions coexist. In this one-dimensional system,
the unstable solution separates the stable and the unstable fixed point, acting as a
barrier. Thus, the bifurcation diagram also informs us about the magnitude of the
disturbance necessary to change the behavior of the system from a stable traffic
jam to a stable free flow. Headway profiles are shown for selected points along
the branch to illustrate the microscopic solutions. In Fig. 5b, d the comparison of
different lifting operators is shown. While the unhealed values � (cf. Fig. 5b) of the
equilibrium depend on the choice of �, the healed values RM.tskipIL �/, used in
the implicit equation-free methods (cf. Fig. 5d and [8]) are in perfect agreement with
results from direct simulations (black dots).

In order to study the dependence on both parameters v0 and h simultaneously,
we use an extended set of equations to continue the saddle-node bifurcation point
in Fig. 5c. Blue crosses and green dots denote measurements of the saddle-node
and Hopf points from one-parameter continuations, respectively. The two-parameter
continuation (red dots) is in perfect agreement with the measurements. As a check
of validity, the Hopf curve (black line below red dots) can be computed analytically
(cf. e.g., [8]) and is shown for comparison.

In conclusion, the analysis pinpoints the parameter values for the onset and
collapse of traffic jams. This information is of potential use to understand the role
of speed limits. The two-parameter bifurcation diagram in Fig. 5c shows a free flow
regime for small v0 and large h (bottom right part of the diagram). On the other hand,
a large velocity parameter v0 and a small safety distance h lead to traffic jams (top
left part). In between, a coexistence between free flow and traffic jams is found. The
final state depends on the initial condition. A speed limit lower than the saddle-node
values is necessary to assure a global convergence to the uniform free flow.

4 Pedestrian Models

For further demonstration of the equation-free bifurcation analysis, we also apply
it to a social force model describing pedestrian flow [1, 25]. A particular setup
with two crowds passing a corridor with bottleneck [26] from opposite sites (the
crowd marked blue moving to the right, the crowd marked red moving to the left) is
analyzed with respect to qualitative changes of the system behavior [3, 27]. To this
end, a coarse bifurcation analysis is used to determine which bifurcations occur and
thereby to understand which solutions are expected to exist. Details about the model
and the analysis of the bottleneck problem can be found in [3]. Here, we focus on
the coarse analysis of the problem.
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Two parameters have been chosen as the main bifurcation parameters; the ratio
of desired velocities of the two crowds rv0 D vr0=vb0 and the width of the door w
acting as a bottleneck. Microscopic simulations of the model for two crowds of size
N D 100 reveal two fundamentally different regimes of the dynamics. One finds a
blocked state and a state that is oscillating at the macroscopic level (cf. Fig. 6a) for
small and large door widths, respectively. The question we would like to answer is:
how and where does the transition from a blocked to an oscillating state happen? In
mathematical terms the question is, where is the bifurcation point and what type of
bifurcation is observed at the transition?

a

c d

b

Fig. 6 Coarse analysis of the pedestrian dynamics in a corridor with bottleneck. (a) Snapshots of a
microscopic simulation show oscillating behavior for large enough door width w D 0:6. (b) Two-
parameter plane explains the dynamics of the system and the point for the Hopf bifurcation. (c)
Transient and limit cycle in the macroscopic description for w D 0:7. (d) The coarse bifurcation
diagram reveals a Hopf bifurcation at a critical door width w D 0:56
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4.1 The Restriction and Lifting Operators

We define the macroscopic quantitym as

m D mr Cmb

2
; m.r;b/ D

P
i2.r;b/ �.xi /xi
P

i2.r;b/ �.xi /
; (15)

where m.r;b/ is a weighted average of the longitudinal component for the blue and
red pedestrian crowd, respectively. The function � gives more weight to pedestrians
close to the door (see [3] for details). Since we expect oscillations from microscopic
observations the pair of variables .m; Pm/ is used as the macroscopic variable for
the equation-free methods. The transient from the initial condition to a limit cycle
in the macroscopic description is shown for w D 0:7 in Fig. 6c. The restriction
operator R D .m; Pm/ is therefore defined by the macroscopic description (15) and
its derivative.

The lifting operator L uses information about the distribution of the pedestrians
in front of the door to initialize a sensible microscopic state. The distribution
of positions of pedestrians along the corridor is known from numerical studies
and is observed to be well-approximated by a linear density distribution, i.e., the
distribution is of the form p.jxj/ D ajxj C b, where jxj is the distance from the
door along the corridor axis. The slope a and interception b are determined by
simulations for all parameter values of interest. The lifting uses these distributions
to map, i.e., lift .m; Pm/ to a “physically correct” microscopic state. All velocities
are initially set to 0, such that we lift to a microscopic state with Pm D 0 (see [3] for
details).

4.2 Numerical Results

Using equation-free bifurcation analysis, the bifurcation diagram is computed for
the fixed ratio rv0 D 1. Figure 6b shows the maximum and minimum of m.t/ as a
function of w. The transition from a blocked state to an oscillating state is clearly
observed and the bifurcation point is found to be at w D 0:56. The transition is
analyzed in detail in [3] and the bifurcation point is identified as a Hopf bifurcation
point using Poincaré sections, i.e., a discretization of the recurrent dynamics in time.
This method is also implicit with a healing time tskip determined by the first crossing
of the Poincaré section. The Hopf bifurcation gives rise to macroscopic oscillations
for large door width w emerging from a stable blocked state for w small enough.

Let us now study the influence of rv0 on the location of the bifurcation point. The
system for macroscopic continuation is analyzed by a predictor-corrector method
using a linear prediction and a subspace search for the correction in order to study
the two-parameter problem and to continue the Hopf point. The results are shown
in Fig. 6a. Keeping the other model parameters fixed, this gives an overview of the
behavior of the system on a macroscopic level in two parameters.
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The application of equation-free analysis is not limited to pedestrians in a
bottleneck scenario. One could also think of applications in evacuation scenarios
(see, e.g., [28,29]), where parameter regimes with blocked states have to be avoided
at all cost. It is also possible to apply equation-free analysis to discrete models, e.g.,
cellular automaton models [30, 31]. This motivates further studies using equation-
free methods in traffic and pedestrian flow in order to systematically investigate and
finally optimize the parameter dependencies of the macroscopic behavior of such
microscopic models.

Discussion and Conclusion
We have demonstrated, that equation-free methods can be useful to analyze
the parameter dependent behavior in traffic and pedestrian problems. Implicit
methods allow us to improve the results further by reducing the lifting error.
The comparison between traffic and pedestrian dynamics shows that both
problem classes can be studied with the same mathematical tools. In particu-
lar, the use of coarse bifurcation analysis reveals some information about the
system that could not be obtained by simpler means, e.g., direct simulations
of a microscopic model, since they cannot investigate unstable solutions.
Nevertheless, unstable solutions are important in order to understand the
phase space and parameter dependence of the dynamics. In particular, in the
case of a one-dimensional macroscopic dynamics the unstable solutions act as
barriers between separate stable regimes defining reliable operating ranges.
The knowledge of their locations can be used to systematically push the
system over the barrier to switch to another more desirable solution, e.g.,
leading to a transition from traffic jams to uniform flow. In the application
to two-dimensional macroscopic dynamics, we find the precise dividing line
between oscillations and blocking in two parameters.

Finally, let us contrast equation-free analysis to the most obvious alter-
native. A common approach to determining the precise parameter value at
which the onset of oscillations occurs, is to run the simulation for sufficiently
long time and observe if the transient behavior vanishes. This approach suffers
from two problems. First, close to the loss of linear stability in the equilibrium
(i.e. close to the bifurcation point) the rate of approach to the stable orbit or
fixed point is close to zero as the Jacobi matrix becomes singular. This makes
the transients extremely long, resulting in unreliable numerics. Second, even
eventually decaying transients may grow intermittently (the effect of non-
normality) such that the criteria for the choice of the transient time to observe
are non-trivial. Equation-free computations working on the macroscopic level
in a neighborhood of the slow manifold do not suffer from these long
transients, as they are based on direct root-finding methods.

(continued)
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In conclusion coarse bifurcation analysis can be used in future research to
improve safety in traffic problems and evacuation scenarios of large buildings
in case of emergency. The main advantage is, that realistic models can be
used and a qualitative analysis of the macroscopic behavior is still possible.
The method works almost independent of the underlying microscopic model
and has a significant potential for helping traffic modellers to gain insight into
previously inaccessible scenarios.
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Dynamical Systems on Honeycombs

Valery V. Kozlov, Alexander P. Buslaev, Alexander G. Tatashev,
and Marina V. Yashina

Abstract Stochastic and deterministic versions of a discrete dynamical system on
a necklace network are investigated. This network contains several contours. There
are three cells and a particle on each contour. The particle occupies one of the cells
and, at each step, it makes an attempt to move to the next cell in the direction of
movement. As well as on neighboring contours the particles move in accordance
with rules of stochastic or deterministic type. We prove that the behavior of the
model with a rule of the first type is stochastic only at the beginning, and after a
time interval the behavior becomes purely deterministic. The system with a rule
of the first type reaches a stationary mode which depends on the initial state. The
average velocity of particles and other characteristics of the dynamical systems are
studied.

1 Introduction

Dynamical systems of different nature have been used in studies of physical
phenomena, see e.g. the work of Kac [1] and Kozlov [2]. A type of dynamical
systems was introduced by Nagel and Schreckenberg in [3]. These systems are
used as traffic models and have been investigated by many authors [3–10]. Exact
mathematical results for characteristics of deterministic versions of these models
have been proved by Blank [11, 12]. In [11], monotonic walks of particles on a
one-dimensional lattice (a ring or a straight line) were considered. Each particle
moves a position at every step, in the direction of movement, with probability 1, if
the cell ahead is vacant. A formula has been proved which describes the dependence
of the average velocity of particles on the flow density. In [12] the formula, proved
in [11], is generalized in the case when each cell can contain no more than a fixed
number of particles.
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Some exact results for stochastic models have been obtained in our papers [13–
15]. In [13], a monotonic random walks of particles on a ring was investigated. In
this model, each particle moves a position at every step, with a fixed probability
if the cell ahead is vacant. A formula has been found for the average velocity of
particles. In [14] the model considered in [13] is investigated in the case of the big
number of cells and fixed density. In this limit a formula has been found for the
average velocity of particles. In [15], the formula has been obtained for the average
velocity of particles in a model with maximum distance jumps of particles. In this
model the probability of each jump depends on the type of the particle and the cell
occupied by the particle. In [16, 17] some cluster models have been introduced as
a continuous analogue of totally – connected monotonic walks. In [17, 18], cluster
models on planar networks of contours (chainmails) are investigated.

The average characteristics, in first place the velocity, are studied in [17, 18].
The studies of conditions of collapse (all particles do not move) and of synergy
(all particles move at each step) are of considerable interest. Numerous results
and computer simulations show that, in the symmetrical case (identical circles and
masses), half circle and quarter circle are the critical values for a periodical chain of
rings (necklace) and for a periodical two-dimensional network of rings (chainmail).
The phase transitions take place in a neighborhood of these values.

As proven in [18], some models of particles walk on a network are equivalent
stochastically to some discrete time queueing systems, the behavior of which
has been studied [19]. In the models introduced in [3], particles move on a
one-dimensional circular lattice. These models can be considered as Markov
chains [20]. All possible states of these Markov chains have positive stationary
probabilities. Some network traffic models with symmetrical periodic structures
were studied in [21] using simulations.

2 Honeycomb Networks

We will consider networks made of honeycombs (Fig. 1, left) where network nodes
(small circles) and cells (small squares) are alternating (ANC). The other kind of
honeycomb networks are networks, where nodes and cells coincide (NC) (Fig. 1,
right).

In presented fragments of networks every internal contour has three neighboring
contours (network of index 3). The networks of indexes 2 (necklace) and 4
(chainmail) were considered in [17,18,22–24]. The direction of movement and cell
numbering on contours are coordinated. At every step a particle moves to the next
cell in the direction of movement, if the next cell is vacant and there is no conflict
for the node ahead. Conflict rules are given below.

We consider symmetrical structures of NC and ANC honeycombs networks. If
we identify the opposite nodes on horizontal and vertical lines in Fig. 1 then we
obtain NC and ANC honeycomb networks on horizontal and vertical lines, on a torus
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Fig. 1 Left: Alternating honeycomb network (ANC). Right: Coinciding honeycombs network
(NC)

Fig. 2 Honeycomb network on a torus

(Fig. 2). If we continue periodically the blocks in Fig. 1 on horizontal and vertical
lines, then we obtain NC and ANC honeycomb networks with multiple sizes.

3 Quantitative Characteristics of Particle Flow

We introduce the concept of the velocity in case of a network with n contours and
one particle on each contour. Suppose Si.T / is the number of of transitions of the
particle of the contour i (the particle i ) for the time interval Œ0; T / (for i D 1; : : : ; n).
The average velocity v�i .T / of the particle i on the time interval Œ0; T / is defined as

v�i .T / D Si.T /

T
; .i D 1; : : : ; n/: (1)
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The limit

v�i D lim
T!1 v�i .T /; .i D 1; : : : ; n/; (2)

is called the velocity v�i of the particle i; if this limit exists.
We introduce also the velocity 
i .T / of the particle i at the time instant T . Let by

definition 
i .T / D 1; if at fixed initial condition and at the instant T the particle i is
in the state, when it moves to next step, and 
i .T / D 0 otherwise (T D 0; 1; 2; : : : )
The average velocity by coordinates v.T / of particles at the instant T is defined as

v.T / D 1

n

nX

iD1

i .T / : (3)

The average velocity in the system on time axis v� is defined as arithmetic average
of individual velocities:

v� D 1

n

nX

iD1
v�i D lim

T!1
1

n

nX

iD1

 
1

T

TX

kD1

i .k/

!

D 1

nT
lim
T!1

nX

iD1

TX

kD1

i .k/: (4)

We say that the system, since some instant, is in the state of synergy if 9 T � such
that for all T > T �

v.T / 
 1: (5)

The system, since the instant, is in the state of collapse if there 9 T � such that
8 T > T �

v.T / 
 0: (6)

If the system, since the instant, comes to the state of synergy, then v�i D 1; 8 i;

v D 1:

4 Star of David as the Minimum Alternating Honeycomb
Network

4.1 David Star

Consider an alternating honeycomb network of minimum size, which contains six
contours (Fig. 3 (left)). We consider a rule of behavior of conflict particles that the
results can be generalized to any dimension. There are common cells of contour i
and contour i C 1 and of contour i and contour i C 3, respectively (the addition is
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Fig. 4 Non-priority contour between three priority contours

meant modulo six). There is a particle on each contour which occupies one of three
cells at each time instant. A particle moves clockwise if the index of the contour is
odd, and counter-clockwise if the index is even. At every step, each particle moves
one cell forward, if the neighboring particle does not have to move through the
same node. In the latter case, one of two particles moves in accordance with a rule
of behavior of particles in the case of a conflict.

The considered network system is topologically equivalent to a network in which
arcs of contours between nodes are replaced by segments resulting in a six-pointed
star. We enumerate each triangular contour as shown in Fig. 3 (right).

4.2 David Star with FM-Rule

We consider the behavior of the system in the case of the “father–mother” rule.
Particles of the contour with an odd index (a particle “father”) have priority. In the
case of this rule, each particle moves at each step. We can consider the behavior
of non-priority particles (“mother”). The behavior of each mother-particle does
not depend on other non-priority particles, and depends only on the behavior of
three priority particles (Fig. 4). Therefore we can consider only the behavior of four
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particles, one of which is mother-particle. Suppose the mother-particle is on the
contour 2. Suppose the vector .i1; i2; i3; i5/ corresponds to the state of the four such
that the particle of the contour j occupies the cell ij . There are 81 states of the 4.

Theorem 1 1. If the initial state .i1; i2; i3; i5/ of the four contours is such that there
are, in set of numbers i1; i3; i5; at least two the same, then the system comes to
the state of synergy after a finite time interval. There are 63 such the states.

2. There are 9 initials states .i1; i2; i3; i5/ such that all the numbers i1; i3; i5 are
different and the velocity of each mother-particle equals 2/3. For these states,
we can get the permutation .i1; i3; i5/ from the permutation .3; 2; 1/ with cyclical
shift.

3. There are also 9 initials states .i1; i2; i3; i5/ such that all the numbers i1; i3; i5 are
different and the velocity of each mother-particle equals 1/2. For these states,
we can get the permutation .i1; i3; i5/ from the permutation .1; 2; 3/ with cyclical
shift.

4. If all possible initial states are equiprobable, then the expectation of the average
velocity of mother particles is 49/54, and the expectation of the average velocity
of the particles in the network is equal to 103/108.

Proof If the initial state .i1; i2; i3; i5/ is such that all numbers i1; i3; i5 are different,
then, after a finite number of steps, the value of i2 will differ from any value i1; i3; i5;
and the mother particle will move at every step.

For nine initial states, the mother particles will move at every second step, and we
can the permutations corresponding to vectors of these states from the permutation
.1; 2; 3/ with cyclical shift. Indeed, we have the following sequence of transitions

.1; 1; 2; 3/ ! .2; 1; 3; 1/ ! .3; 2; 1; 2/ ! .1; 2; 2; 3/

! .2; 3; 3; 1/ ! .3; 3; 1; 2/ ! .1; 1; 2; 3/ : : : ;

.1; 3; 2; 3/ ! .2; 1; 3; 1/ : : : ;

.2; 2; 3; 1/ ! .3; 3; 1; 2/ : : : ;

.1; 3; 2; 3/ ! .2; 1; 3; 1/ : : : (7)

For nine initial states, the mother particles will move at two steps from each three
steps, and we can do the permutations corresponding to the vectors of these states
from the permutation .3; 2; 1/ with cyclical shift. Indeed, we have the following
sequence of transitions

.1; 1; 3; 2/ ! .2; 1; 1; 3/ ! .3; 2; 2; 1/ ! .1; 3; 3; 2/ !
! .2; 3; 1; 3/ ! .3; 1; 2; 1/ ! .1; 2; 3; 2/ ! � � � !
! .2; 2; 1; 3/ ! .3; 3; 2; 1/ ! .1; 1; 3; 2/ ! : : : (8)

If all possible initial states are equiprobable, then the velocity, with probability 7/9,
is equal to 1, with probability 1/9, is equal to 2/3, and, with probability 1/9, is equal
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to 1/2. Thus the expectation of the average velocity of the mother particle equals
49/54. As the number of father particles equals the number of mother particles, and
the velocity of mother particle equals 1, then the expectation of the average velocity
of particles in the network equals 103/108. Thus Theorem 1 has been proved.

Remark When we consider the behavior of a mother particle, we do not take into
account the dimension of the network and the existence of the network save the
considered four. Therefore the velocity of the non-priority particle is the same at
the same state of the four, and the velocity is the same still at the same state of the
networks of the minimum dimension and any dimension. Taking into account that
there exist the same 81 states of the 4 in the case of any alternating honeycomb
network, we can generalize the result to the case of structures of an arbitrary size.

4.3 David Star with Egalitarian Rule

We can consider a similar dynamical system with the egalitarian rule of behavior of
particles in the case of conflict. In accordance with this rule, each of two conflicted
particles has the priority with probability 1/2. In this case we can formulate the
following.

Hypothesis 1 Suppose the egalitarian rule is used in the alternating honeycombs
network star of David. Then, for any initial state, the system comes to the state of
synergy for a time interval with a finite time interval.

5 Necklaces with Displaced Centers

Consider (non-symmetrical) periodical structures which are closed chains of con-
tours. Each contour has common cells with two neighboring contours. There is
a common cell of each two neighboring contours. Examples of a symmetrical
structure of such type are the elementary necklace, which was considered in [22],
and the system of pendulums considered in [23]. Non-symmetrical networks can be
considered as fragments of two-dimensional structures called “chainmail” and are
considered in [24]. We will discuss the non-symmetrical necklace as a fragment of
a honeycomb network on a torus in more detail below.

Consider a dynamical system, in which particles move on M contours. Suppose
there are 3 cells and a particle on each contour (Fig. 5). This system is similar to
the system considered in Sect. 2 as there are three cells on each contour of both
the system. The system time is discrete. At every step, each particle moves a cell
forwards in the direction of movement, if the cell ahead is vacant, and this particle
and the particle of the neighboring contour are in conflict. In the latter case, one of
two these particle moves. Suppose that each of two conflicted particles has has the
priority with probability 1/2, i.e., we consider the case of the egalitarian rule.
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The indexes of cells are such that the common cell of contours i and i C 1 has
the same index on both the contours. We suppose M is multiple of 6. In this case,
the indexes of the cells 1 and M are the same too (Fig. 5).

Suppose the vector .i1; : : : ; in/ corresponds to the network state at that the
particle of the contour j occupies the cell ij ; j D 1; : : : ;M:

Theorem 2 SupposeM D 6; and the egalitarian rule is used.

1. There is a unique state of collapse.
2. There exist classes of corresponding states such that there are six states at each

class. If the system is at one of this state, the sequence of states alternate with
period six, and there are three transitions of each particles per period, i.e., the
velocity of particles is equal to 1/2.

Proof The state .3; 1; 2; 3; 1; 2/ is the unique state of collapse. If .2; 1; 2; 3; 2; 1/ is
the initial state, then we have the sequence of transitions

.2; 1; 2; 3; 2; 1/ ! .3; 1; 2; 1; 3; 1/ ! .3; 1; 3; 2; 3; 2/ ! .3; 2; 1; 2; 1; 2/

! .1; 3; 1; 3; 1; 2/! .2; 3; 2; 3; 1; 3/ ! .2; 1; 2; 3; 2; 1/ : : : (9)

Thus the initial state is repeated. The sequence of states is repeated with period
six. There are three transitions of each particle per period. The velocity of particles
equals 1/2. Thus Theorem 2 has been proved.

Theorem 3 SupposeM D 6 and the egalitarian rule is used.
There are initial states from that the system, after the finite time interval, comes,

with positive probability, to the state of collapse, and, with positive probability,
comes to the class of corresponding states, where the velocity of particles is equal
to 1/2.

Proof Suppose .2; 3; 1; 3; 1; 1/ is the initial state. From this state the system, with
probability 1/2, comes to the state of collapse .3; 1; 2; 3; 1; 2/: With probability 1/2
the system comes to the state .3; 1; 2; 3; 2; 1/; and then to the state .3; 1; 2; 1; 3; 1/:
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This state belongs, in accordance with Theorem 2, to the class of corresponding
states in that the velocity of particles equals 1/2. Thus Theorem 3 has been proved.

Let us formulate some hypotheses. Supposem is any multiple of 6.

Hypothesis 2 SupposeM 	 4; and the egalitarian rule.

1. There is a unique state of collapse.
2. There is no state of synergy.
3. The “yellow” particles disappear after a time interval with a finite time interval,

but, for any k; “yellow” particles can appear after the time instance k with
positive probability.

4. There are initial states such that the system, with probability 1, comes to the state
of collapse after a finite number of steps.

5. There exist initial states such that, with probability 1, the system comes to the
class of corresponding states, where the velocity of every particle is non-zero.

6. There exist initial states such that the system, with a positive probability, and,
with a positive probability, comes to the class of corresponding states, where the
velocity of every particle is non-zero.

We return to the example of repeating sequences of six states. Mark out the
coordinates corresponding to “red” particles:

.2; 1; 2; 3; 2; 1/ ! .3; 1; 2; 1; 3; 1/ !! .3; 1; 3; 2; 3; 2/ ! .3; 2; 1; 2; 1; 2/

! .1; 3; 1; 3; 1; 2/ ! .2; 3; 2; 3; 1; 3/ ! .2; 1; 2; 3; 2; 1/ : : : (10)

We see that the configuration of marked coordinates is shifted a position at each
step. This allows to formulate the following

Hypothesis 3 1. If the system is at the state of corresponding states such that there
are “green” and “red” particles, but there are no “yellow” particles, then the
configuration of coordinates corresponding to non-moving particles is shifted a
position at each step, and the sequence of states alternate with period M: There
are 3i transitions of each particle per period (i D 1; 2; : : : ; .M=3/� 1/.

2. When steady periodic movement occurs, the velocity of each particle is the same.
The possible values of velocities are 3i=M; (i D 0; 1; : : : ; .M=3/�1). There are
no other possible values of velocities.

6 Honeycomb Networks with Coincided Nodes and Cells

We consider a honeycomb network with joined nodes and cells (Fig. 6 (left)).
Consider a system with six contours (star of David with joined nodes and cells)
similar to a non-symmetrical necklace but the non-common cell of the contour i is
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Fig. 6 Left: Development of NC-network on torus. Right: Minimum non-symmetrical necklace
with coincided cells and nodes

common with a cell of the contour iC3; i D 1; : : : ; 6 (the addition is meant modulo
6) (Fig. 6 (right)). This system can be considered as a fragment of a honeycomb
network with joined cells and nodes (Fig. 6 (right)).

In the system in Fig. 6 (right) the particles on every contours move to opposite
directions. In this case the numbering of cells is the same as for the non-symmetrical
necklace with six contours, which was considered in Sect. 4. On the network
in Fig. 6 (left) the particle movement is co-directed and the numbering of cells
corresponding to alternating honeycomb network.

Theorem 4 1. There exist the collapse states.
2. There exist classes of communicating states such that in each class there are

six states. As well as if the system is in one of these states, then state sequence
repeats with period six, and for the period three transferences of each particle.
i.e. velocity of each particle is equal to 1/2.

Proof The examples for a collapse state and a state, when every particle moves
with velocity 1/2, are presented in the proof of Theorem 2. These also hold for the
considered system. Thus Theorem 4 is proved.

Theorem 5 The collapse state is not unique.

Proof Before the collapse state .3; 1; 2; 3; 1; 2/, that is the unique state of collapse
for corresponded non-symmetrical necklace, in this case the collapse state is, for
example, the state .1; 3; 3; 2; 2; 1/. Thus Theorem 5 is proved.
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Fig. 7 Dynamical system on
torus with coincided cells and
nodes
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Remark In Fig. 7 the development of minimal network with coincided nodes and
cells on a torus is shown. It is easy to see that reasoning of Sect. 4 is useful to
this case. In particular, on one of the horizontal placed non-symmetrical necklace a
collapse state can be obtained, while the dynamical system on another necklace will
be independent.
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Local Stability Conditions and Calibrating
Procedure for New Car-Following Models
Used in Driving Simulators

Valentina Kurtc and Igor Anufriev

Abstract The Intelligent Driver Model (IDM) is studied and several drawbacks
with respect to driving simulators are defined. We present two modifications of
the IDM. The first one gives any predefined distance to the leading vehicle in a
steady state. The second modification is a combination of the first one and the
optimal velocity model. It takes into account driver’s reaction time explicitly and
is described by delay differential equation. This model always results in realistic
vehicles accelerations what allows simulating real traffic collisions.

Necessary and sufficient conditions are obtained, that guarantee a non-oscillating
solution near the equilibrium for the vehicle platoon. We suggest the calibrating
framework based on a numerical solution of the constrained optimization problem.
Nonlinear constraints are generated by the numerical integration scheme. The
suggested procedure incorporates the local stability conditions obtained and takes
into account vehicle dynamics, drivers’ behavior and weather conditions.

1 Introduction

Driving simulators are certain kind of training systems in a car driving application
[1, 12]. Firstly, these were developed for the training in the use of military
mechanisms during the Second World War. Later, driving simulators were used
to examine drivers’ behavior and their interaction with the environment – vehicle
controls, other cars, pedestrians and etc. The quality of traffic simulation plays a
major role. It is important that the other cars move as naturally as possible, drivers
behave in predictable manner and in accordance with traffic rules. This article
focuses on appropriate vehicle traffic models for using in driving simulators. The
general and necessary features which a model should demonstrate are real vehicle
dynamics, adequate driver’s behavior and mathematical stability of the solution.
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In this paper, we propose two microscopic models. The first one provides any
predefined distance in a steady state that allows to take into account road covering
and weather conditions. The second modification is the extension of the first one
and includes driver’s reaction time. Both models are described by continuous
acceleration functions and are the car-following type ones.

In Sect. 2 we state some drawbacks of the Intelligent Driver Model (IDM)
in application to driving simulators. Then we formulate two modifications based
on the IDM in terms of the acceleration function. In Sect. 3 we evaluate linear
stability analysis for the case of vehicle platoon for the first proposed model
and obtain condition for non-oscillating solution. In Sect. 4 we present calibration
framework which is applicable for any microscopic model. It allows considering
local stability conditions obtained. In the concluding Sect. 5, we discuss results and
further investigations.

2 IDM Drawbacks and Two Modifications

The trainee observes vehicle traffic from their respective cabin so the cars’ dynamics
and drivers’ behavior should be realistic to the highest degree. We considered
the Intelligent Driver Model (IDM) [13] as a starting point for using in driving
simulators. This model has a set of parameters which can be tuned to achieve desired
objectives. After detailed study of this model we discovered several disadvantages
in application to driving simulators.

• The IDM admits big deceleration values [6] and, as a result, a collective dynamics
is crash-free. However, accidents are probable when people study driving.

• Instant reaction to the leading car. For example, at the signalized intersection cars
start simultaneously.

• The steady-state gap does not incorporate the roads covering effect

d�IDM.v/ D .s0 C Tv/=
q
.1C .v=v0/ı/ (1)

To eliminate these drawbacks two modifications are presented.

2.1 Predefined Distance in a Steady State

Let us formulate the acceleration function for the first proposed model

Pv D w.h; d�;D/a
�
1 � �

v=v0
�ıC .1 � w.h; d�;D//a

�
1 � �

d�=h
�2


(2)
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Here w is a continuous weight-function, which depends on headway h and
parameterD.

w.h; d�;D/ D

8
<̂

:̂

0; h 2 .�1; d�/
�2

�
h�d�

D
� 1

3 � 3
�
h�d�

D
� 1

2 C 1; h 2 Œd�; d� CD�

1; h 2 .d� CD;C1/
(3)

If vehicle is quite far from its leader Eq. (2) has the first term only. If the current gap
is less than the steady-state distance set, only the second term works.

This car-following model guarantees any predefined gap between vehicles in the
steady-state flow. Equalling the right-hand side of Eq. (2) to zero, it is not difficult
to demonstrate that the distance in a steady state is d�. We chose distance from the
Tanaka model [4]. It contains the braking path and the coefficient c that characterizes
the roads covering

d�.v/ D s0 C Tv C cv2 ; (4)

2.2 Reaction Time

To take into account driver’s reaction time we suggest the second modification that
is described by the DDEs. It combines the optimal velocity model [2] and the first
modification. The acceleration function is as follows

Pvi D w.hi ; d
�;D/a

�
1 � �

vi =v0
�ıC .1 � w.hi ; d

�;D//b .V .hi .t � �//� vi / ;

(5)

Here we follow the same logic as in the first model (2) – separate free-road
vehicle dynamics and interaction with its leader. Moreover, we suggest to make the
parameter s of the optimal velocity function [9] depending from the current distance
to the leader h

V.h/ D

8
<̂

:̂

0; 0 � h � s0

v0
�
h�s0

s.h/

3

1C
�
h�s0

s.h/

3 ; h > s
0 (6)

This empirical relationship is obtained as follows. We put the vehicle with the
velocity v at a distance of the Tanaka model (4) and request it to stop at the distance
s0 from its fixed leader.
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Fig. 1 Comparison of the IDM and model with delay proposed. Fixed leader approaching –
velocity time history

Figure 1 compares acceleration dynamics of the IDM and the model (5).
According to the model with the delay driver starts deceleration earlier and does
it more smoothly with approximately constant rate.

3 Linear Stability Analysis

Here we perform a linear stability analysis for a vehicle platoon. Lets the accelera-
tion of the i th vehicle be set on the basis of its speed vi , the leaders speed vi�1 and
the distance between hi

Pvi D a.i/.vi�1; vi ; hi / (7)

Every vehicle may have its own acceleration function. We have a system of 2n
ODEs for n vehicles. The Jacobian matrix has the block-like structure, so it is
possible to obtain the determinant analytically

�.�/ D
nY

iD0
.a
.i/

h � �.a.i/v � �// (8)

Here a.i/h and a
.i/
v are partial derivatives at the steady-state point. Finally we

obtain all 2n eigenvalues. The local stability takes place when its real parts of all
eigenvalues are negative. If we need no oscillations we require the imaginary parts
to be equal to zero:

(
local stability, a

.i/
v < 0;

no oscillations, .a.i/v /
2 � 4a

.i/

h > 0:
(9)
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Fig. 2 Phase diagram ‘velocity vs. distance’. Oscillations of the velocity and the gap to the fixed
leader (left), and non-oscillating solution due to conditions obtained (right)

Fig. 3 Platoon stability – 9 vehicles approaching the 10th fixed car. Top: model parameters for
every vehicle – a D 2; T D 1:1; s0 D 1. Stability conditions are satisfied for every one – no
oscillating solution. Below: model parameters for the 5th vehicle – a D 2; T D 1:1; s0 D 4, for
others are the same as in the first case. Stability conditions are broken for the fifth one – oscillations
are observed

Now lets apply these conditions to the first model presented. We consider the
car approaching its fixed leader. The results are shown at Fig. 2. The horizontal and
vertical axes represent the velocity and the distance to the fixed leader respectively.
On the left plot the parameters’ values do not satisfy inequality obtained and
oscillations over the equilibrium take place, whereas the right plot represents their
absence. Figure 3 demonstrates the velocity series in case of vehicle platoon. We
examine nine vehicles moving one by one in accordance with the model (2). The
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10th car is fixed. In the first case the stability condition is fulfilled for all cars and
no oscillating solution is observed. Then we break stability condition for the fifth
vehicle and observe velocity oscillations of this and all subsequent ones.

4 Model Calibration

The calibration procedure can be carried out on two different levels that are
macroscopic and microscopic ones. This former implements calibration with respect
to macroscopic traffic data, for example, flow-density data for the specific region, or
estimates origin-destination matrices [3]. The latter treats vehicles as an individual
entities and uses microscopic trajectory data [5, 11]. The goal is to determine the
optimal model parameters that better reproduce vehicle dynamics (acceleration on
free-road, deceleration process) and drivers’ behavior (distance between vehicles
in a steady-state flow). Consequently, the calibration is evaluated on the basis of
intra-driver and inter-driver criteria.

Our framework is intended for microlevel calibration and can be used for any
parametrical traffic model that is described by ODE or DDE [8]. Let the vehicle’s
dynamics is defined by the ODE with following initial conditions

dh

dt
D vL � v

dv

dt
D A.vL; v; 
/

h.t0/ D h0; v.t0/ D v0

Here 
 contains the set of the model parameters to be determined. In case of the first
modification 
 D .a; ı; T; c/. Also the real data – velocity time history f Qvi gNiD1 and

trajectory data
n Qhi
oN

iD1 are provided. We have to determine the model parameters

that minimize the objective function with respect to vehicle’s speed and its position.
The main difficulty is that the second one can not be obtained analytically. Using
the Euler method for numerical integration we formulate optimization problem with
constraints as below

8
ˆ̂
<

ˆ̂
:

w1jjv � Qvjj2 C w2jjh� Qhjj2 ! min
siC1 � si D �t � vi ; viC1 � vi D �t � A.vi ; vLi; hi ; 
/

h.t0/ D h0; v.t0/ D v0
+ local stability condition (9)

(10)

The no oscillation condition obtained for the first modification is here incorporated
in the optimization problem as an inequality constraint.
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Fig. 4 Solution of the two-step calibrating problem – comparison of simulated and empirical data.
The numerical solution and real data are shown as solid and dashed curves respectively. Top: free-
road acceleration case and values for a and ı. Below: emergency deceleration case and values for
T and c

We consider two sequent problems for calibrating procedure:

• Free-road acceleration (no leader presents),
• The emergency deceleration to avoid collision.

Solution of the first optimization problem contains values of two parameters – a
and ı. Then solving the second one we obtain values for last two parameters T and c
(Fig. 4). This calibrating procedure was evaluated for several vehicle models. In
summary, this framework provides the parameter space that provides real dynamics
of the specific car model and simultaneously ensures solution stability.

5 Discussions

Driving simulator is an effective tool as a training system. It allows to put trainee
in real environment with road infrastructure (signs, road surface markings, traffic
lights), vehicle traffic and pedestrians. The adequacy of environment reproduction
affects on driver’s perception and feelings and defines the quality of learning
process. The realistic microscopic models are required for vehicle traffic simulation.
The training process implies different environment conditions. Moreover, traffic
flow should be diverse from two points of view – drivers’ behavior and cars’ dy-
namics. In other words, the mathematical models used should reproduce dynamics



460 V. Kurtc and I. Anufriev

of the specific car model, drivers’ behavior and take into account weather conditions
(e.g. day/night time, fog, snow, surface icing).

In this paper we propose two microscopic models for using with driving
simulators. The first one is developed on the basis of the well-known Intelligent
Driver Model (IDM). Deriving a continuous weight-function we combine two
different modes – free-road acceleration and interaction with the preceding car
– in one continuously differentiable acceleration function. This model ensures
any predefined distance in a steady state and, thus, allows taking into account
weather conditions and consider different physiological types of drivers. This model
is investigated with linear stability analysis for the case of vehicle platoon. The
stability conditions are obtained in general form and assume that every vehicle in a
platoon has its own continuous acceleration function.

To consider human reaction time explicitly we propose the second microscopic
model. In accordance with the acceleration function drivers response to their
headway via the delay � . This model combines the first modification and the optimal
velocity. When compared to the IDM this model is not crash-free, always results in
real acceleration values and allows to simulate collisions. Moreover, to guarantee
safe stop before fixed leader with different initial conditions for velocity and position
we modified optimal velocity function and calibrated it to fulfill this objective.

The model calibrating procedure is an essential part of model preprocessing.
In this work we construct the framework for microlevel calibration. As inputs the
velocity and position time history are used. We consider two scenaria – acceleration
to the maximum speed with no leader presented and the emergency deceleration
with the constant deceleration rate. The minimization of the objective function is
evaluated both with respect to the vehicle’s velocity and position, each of which
has its own weight coefficient. This way, we can indicate what is more important
– vehicle’s gap or its speed agreement. This framework can be used for any
microscopic model with parameters to be determined on the basis of ODEs or DDEs.
In this paper, we demonstrate the results for the first microscopic model presented.

For the further work, we are planning to investigate the presented time-delay
model with stability analysis. Some articles [9,10] and approaches [7] have already
been studied on this subject. The goal is to find out weather this model admits real
human reaction times and simultaneously ensures solution stability. Another issue
we are interested in is the effective numerical schemes. The Euler method used now
does not work well for such time steps as human reaction time. As a result, we need
to use more robust scheme in calculations. Moreover, this scheme should not be
numerically consuming in order to simulate city-scale traffic in a real time.
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Physically Bounded Solution for a Conserved
Higher-Order Traffic Flow Model

Zhi-Yang Lin, Peng Zhang, Li-Yun Dong, S.C. Wong, and Keechoo Choi

Abstract This paper investigates bounded domains of the solution to a higher-order
model in the density-velocity phase plane, according to the monotonicity of two
characteristic variables. The basic principle is that the evolution of any phase states
in a domain can be confined within this domain which is embraced by four isolines
of two characteristic variables, if the evolution towards these isolines is impossible
or against the monotonicity of the corresponding characteristic variable. The study
provides more information than the classical linear analysis regarding the stability
of solution to a higher-order model.

1 Introduction

Traffic flow models have been intensively studied (e.g., see [1–12]), among which
the higher-order model takes the form of mass and “momentum” conservations,
but the solution does not share the total variation diminishing (TVD) property
with those for most hyperbolic conservation laws. This is mostly because of a
relaxation source term by which the solution to the system is often unstable with
oscillations. Thus, physically bounded solutions to higher-order traffic flow models
worth investigating.

This paper serves as supplement to the work in Ref. [11] by implementing a
systematic study of the physically bounded solution to a conserved higher-order
(CHO) model. The discussion is associated with the stability of an initial state by
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dividing the velocity-density (or flow-density) phase plane into several regions. A
stable region is defined in a way that the evolution of any phase points is confined
within this region, but for an unstable region the evolution of a phase point in
this region might traverse the boundaries. Here, two phase points are in the link
between a stable and an unstable region, which are well known as critical densities
for division of equilibrium solution into stable and unstable intervals. Our discussion
easily leads to the linear stability conditions; however, it provides more information
for stability analysis. Moreover, the solution is indicated to be physically bounded
in that all phase points in the largest stable region are physically significant, e.g., the
density and velocity are non-negative and are bounded by the desired maximums.
Numerical simulation is given to support these findings.

The remainder of the paper is organized as follows. In Sect. 2, the monotonicity
of two characteristic variables in the evolution is discussed. In Sect. 3, the isolines
of the two characteristic variables are used to find several bounded domains for the
evolution of solution in the density-velocity phase plane, and numerical simulation
is implemented to support the analytical findings. The paper is concluded by
section “Conclusions”.

2 Model Equations

In the macroscopic description, traffic flow is modeled as a continuum for which the
number of vehicles on a highway road is conserved,

�t C .�v/x D 0; (1)

where �.x; t/ and v.x; t/ are the average density and velocity in location x at time
t . The traffic acceleration is described in higher-order models, among which the
“anisotropic” models can be written in the following conservative and transport
form:

.�z/t C .�zv/x D ˇ�1.v � ve.�//; (2)

where �z is analogous to the momentum that must be conserved in a fluid under
Newtonian mechanics, and parameter ˇ is associated with relaxation time �

depending on the choice of the relationship: z D z.�; v/. We note that any two of �,
v, z and other introduced variables can be chosen as independent solution variables
which uniquely determine the others. In this case, it is implied that the Jacobian for
the transformation between any two pairs of independent variables is non-singular.

The variable z.�; v/ usually describes the deviation of a traffic state from some
ideal state. In the Aw-Rascle-Zhang (ARZ) or an extended ARZ model [1, 3, 4, 9],
z was taken as z D v � V.�/, and interpreted as a relative speed with respect to
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a desired speed V.�/. In the CHO model [11], z is taken as z D w��1, with w being
defined by v D V.w/ and interpreted as a pseudo-density. Here, the function V.�/
is a velocity-density relationship. Accordingly, ˇ D �� in the ARZ model, and
ˇ D ��V 0.w/ � �V .0/.�jam/

�1 in the CHO model.

2.1 Characteristic Equations

For a 2 � 2 system defined by Eqs. (1) and (2), one can always derive two
characteristic equations by following a standard procedure. More simply, the
operation .(2)–(1) � z/��1 directly give the second characteristic equation of the
system,

zt C vzx D .�ˇ/�1.v � ve.�//; (3)

with �2 D v being the second characteristic speed and z the corresponding char-
acteristic variable. Moreover, the operation (3)�.zv/

�1 gives the first characteristic
equation of system (1) and (2):

vt C .v � �z�.zv/
�1/vx D .zv�ˇ/

�1.v � ve.�//;

with �1 D v � �z�.zv/
�1 being the first characteristic speed and v the corresponding

characteristic variable. Thus, the two characteristic fields are defined as follows:

1 � field W dx

dt
D �1;

dv

dt
D .�zvˇ/

�1.v � ve.�//; (4)

2 � field W dx

dt
D �2;

dz

dt
D .�ˇ/�1.v � ve.�//; (5)

Generally, Eq. (4) or (5) cannot be analytically solved. However, the monotonicity of
each characteristic variable with respect to t along the corresponding characteristics
can be indicated through the right hand term of (4) or (5), which helps study the
boundedness of solution.

2.2 Solution Through Characteristics

Characteristic equations essentially describe the wave propagation in a hyperbolic
system. For application problems, only the information that is propagated from
initial states through characteristics are physically meaningful, to which the cor-
responding solution is mostly the “physically relevant” or “entropy” solution. This
fact is well known in the literature and is taken as a preliminary in the following
discussion.
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Assumption 1 A solution state .�.x; t/; v.x; t// of system (1) and (2) is derived
from some two initial states .�.�; 0/; v.�; 0// and .�.�; 0/; v.�; 0//, continuously
through propagation of 1-field defined by (4) and 2-field defined by (5), respectively.

Since .�; v/ ! .v; z/ is assumed to be a reversible transformation, the derivation
is through the following three steps. First, v.�; 0/ and z.�; 0/ are determined
by .�.�; 0/; v.�; 0// and .�.�; 0/; v.�; 0//, respectively. Second, v.x; t/ and z.x; t/
are determined by v.�; 0/ and z.�; 0/ through propagation of a characteristic
defined by (4) and (5), respectively. Third, .�.x; t/; v.x; t// is obtained through
the transformation .v; z/ ! .�; v/. See Fig. 1a for illustration. The argument also
implies that each solution state of .�; v/ in the characteristic connecting v.�; 0/
to v.x; t/ is determined through its intersection with a 2-characteristic. Thus, the
aforementioned characteristic can be mapped onto �-v phase plot, as is the other
characteristic that connects z.�; 0/ to z.x; t/. Correspondingly, the two mapped
curves shown in Fig. 1b are also called a 1- and a 2-characteristic. Since a solution
state is derived through intersection between a 1- and a 2-characteristic starting from
initial states, it is straightforward to have

Lemma 1 A phase point in �-v phase plane can be excluded from the solution
domain if it cannot be reached by either a 1- or a 2-characteristic starting from
an initial state.

In a higher-order model, ve.�/ is defined as an equilibrium velocity-density
relationship with equilibrium solution: .�; v/ D .�0; ve.�0//. Thus, the evolution
of v through a 1-characteristic tends to approach the curve v D ve.�/ in �-v phase
plane, and we have

Lemma 2 We should reasonably assume that zvˇ < 0. Then, we have

1. v is increasing/decreasing of t along a 1-characteristic for .�; v/ below/above
the curve v D ve.�/;

a b

Fig. 1 Derivation of solution through intersection between a 1- and a 2-characteristic. (a) In x–t
coordinate plane. (b) In �–v phase plane
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2. z is increasing/decreasing of t along a 2-characteristic for .�; v/ below/above
the curve v D ve.�/ in the case where zv > 0, and ˇ < 0 (applicable to the ARZ
model);

3. z is decreasing/increasing of t along a 2-characteristic for .�; v/ below/above
the curve v D ve.�/ in the case where zv < 0, and ˇ > 0 (applicable to the CHO
model).

3 Physically Bounded Solution for the CHO Model

Given v D Qv or z D Qz, the transformation .v; z/ ! .�; v/ defines a curve in �-v
coordinate plane, which is called the isoline v D Qv or z D Qz. The isolines of v D Qv
are simply straight lines parallel to � axis. The isolines of z D Qz are a family of
parallel curves defined by w��1 D Qz in the CHO model, which are shown in Fig. 2
with a variety of Qz.

3.1 Globally Bounded Solution

Note that inD[@D, the isolines of v D Qv go increasingly from the boundaries v D 0

to v D vf ; the isolines of z D Qz go decreasingly from z D 1 to z D zjam, which turn
out to be the boundaries � D 0 and v D V.�/. Then, starting from initial solution
states, a 1-characteristic cannot exceed the boundary v D 0 and a 2-characteristic
cannot exceed the boundary � D 0. This is because the characteristic variables v and
z propagates increasingly (and continuously) in D�, according to Lemma 2. Here,
we define D� D D \ f.�; v/j v 7 ve.�/g. It is similarly verified (by considering
the domain DC) that a 1-characteristic cannot exceed the boundary v D vf , and a
2-characteristic cannot exceed the boundary v D V.�/. These statements imply that
any points outside D cannot be solution states, according to Lemma 1. Thus, we
have

Fig. 2 Physically bounded
solutions within the domains
D and Di . Each domain is
enclosed by two isolines of
v D Qv and two isolines of
z D Qz
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Proposition 1 Assume that the isoline z D zjam (
 1) that insects with .�jam; 0/

is above the curve v D ve.�/. Then, the solution of system (1) and (2) is globally
bounded by the domainD D f.�; v/j 0 < v < V.�/; � > 0g, if it is initially in D.

3.2 Regionally and Locally Bounded Solutions

The isolines of z D Qz intersect with v D ve.�/ at zc1 and zc2, which correspond to the
two critical densities �c1 and �c2 for stability. The occurrence can be associated with
most common cases in the literature, but we show more than before in the following.

In Fig. 2, the isoline of z D zci is tangent to v D ve.�/ at Ci.�ci; ve.�ci// (i D
1; 2). This suggests that .�ci;wci/ (i D 1; 2) are the roots of the following algebraic
equations:

wV 0.w/ D �v0e.�/;w D V �1.ve.�//; (6)

where wci D �cizci, which helps determine zci. Equation (6) is exactly the same as
that derived from the linear stability analysis [7]. Assume that �h and �l are the
densities at the intersections between the isolines z D zci and v D ve.�/. We define
the following domains:

Ds D f.v; z/j ve.�h/ < v < ve.�l /; zc1 < z < zc2gI
Ds1 D f.v; z/j ve.�c1/ < v < vf ; zc1 < z < zc2gI
QDs1 D f.v; z/j ve.�c1/ < v < ve.�l /; zc1 < z < z2gI
Ds2 D f.v; z/j 0 < v < ve.�c2/; zc1 < z < zc2gI
QDs2 D f.v; z/j ve.�h/ < v < ve.�c2/; zc1 < z < z2gI
Du D f.v; z/j ve.�c2/ < v < ve.�c1/; zc1 < z < z2g (7)

Then, by Lemmas 1 and 2 we have

Proposition 2 Assume that the isoline z D zjam is above the curve v D ve.�/. Then,
the solution of system (1) and (2) is regionally bounded by each of the following
domains:Ds , Ds1, QDs1, Ds2, and QDs2, if it is initially in the referred domain.

The proof of Proposition 2 is similar to that of Proposition 1. By the subscript “s”,
Proposition 2 implies that the referred domains are stable. Referring to the stable
domainsDs1 andDs2, we also have

Proposition 3 The equilibrium solution .�; v/ D .�0; ve.�0// of system (1) and (2)
is stable for �0 2 .0; �c1/ (or .�c2; �jam/), if this state together with the perturbed
state .�0 C��0; ve.�0/C�v/ is within the domainDs1 (orDs2).



Physically Bounded Solution for a Conserved Higher-Order Traffic Flow Model 469

By Proposition 3, we say that the equilibrium solution .�; v/ D .�0; ve.�0// is
locally bounded for � 2 .0; �c1/ [ .�c2; �jam/, because the perturbation can be so
sufficiently small that the perturbed state is within Ds1 or Ds2. Propositions 1–3
convey more information for stability of solutions than the linear stability analysis
on the equilibrium solution. On the other hand, the equilibrium solution is instable
for �0 2 .�c1; �c2/, according to the linear stability analysis [7]. More generally,
solution states in Du are not locally bounded. As a consequence, their development
would exceed the upper boundary v D ve.�c1/ or/and the lower boundary v D
ve.�c2/, and fall into the stable region(s) Ds1 or/and Ds2, because v increases for
.�; v/ between v D ve.�c1/ and v D ve.�/, and decreases for .�; v/ between
v D ve.�c2/ and v D ve.�/. If all initial states are in Du and the total number of
vehicles remains unchanged, the stop-and-go wave with low density � < �c1 and
high density � > �c2 is expected. This agrees with the illustration in Fig. 2 and the
studies in [2–4, 8, 10, 11].

3.3 Numerical Results

Let ve.�/ and V.�/ be given by those in [2] and [12], and the Godunov scheme be
applied [11, 12]. The simulation time is taken as t D 3:125, by using the periodic
boundary conditions and the initial data: (i) .�.x; 0/; v.x; 0// D .0:04; 0:975/,
.0:05; 0:94/, .0:1; 0:91/; and (ii) .�.x; 0/; v.x; 0// D .0:43; 0:05/, .0:5; 0:01/,
.0:85; 0:005/, for x 2 Œ0; 0:3125�, .0:3125; 0:625�, .0:625; 1�, respectively. We
observe that these initial phase states together with their evolution are within QDs1

and QDs2 for (i) and (ii), as is shown in Fig. 3a, b, respectively. However, for the
following initial data:

�.x; 0/ D 0:22C0:2Œcosh�2.160x�60/� 1

4
cosh�2.40x� 65

4
//�; v D ve.�.x; 0//;

which are in Du, the evolution crosses the upper and bottom boundaries of Du.
Nevertheless, the evolution is confined within Ds � Du. The simulation results
agree with Propositions 1–3 and the analysis in the context.

Fig. 3 Evolution of phase states is within stable regions but out of an unstable region. (a) WithinQDs1. (b) Within QDs2. (c) Out of Du but withinDs
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Conclusions
The study provides a better understanding of the evolution and stability
of solutions to the higher-order model of traffic flow. The analytical tool
can be helpful for the choice of model parameters or functions to ensure
physically bounded solution and improve current formulations in modeling
more complex phenomena (e.g., those associated with phase transition and
hysteresis in the observation).
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A Review of Cellular Automata Model
for Heterogeneous Traffic Conditions

Gaurav Pandey, K. Ramachandra Rao, and Dinesh Mohan

Abstract Over the years various microscopic traffic models were developed to
predict vehicular behaviour from mid-block section of road to the network level.
Cellular Automata (CA) was found to be a promising approach to meet this
challenge in the recent past. A CA approach to traffic simulation is potentially
useful in order to achieve a very high computational rate in microscopic simulation,
and to facilitate distributed computing. Because of this CA models are becoming
increasingly popular for their potential to simulate large scale road network using
macroscopic traffic characteristics like flow and density. Despite an increase in
computational power over the past decade, limited efforts have gone in evaluating
the model at microscopic level using characteristics like lane keeping and lane
change. These characteristics along with traffic composition and density have
significant influence on the amount of interaction between different vehicle types.
This paper provides a brief review of CA models developed for heterogeneous
traffic conditions and provides insights for improvement. Model performance is
evaluated at macroscopic and microscopic level using characteristics like speeds
and positions obtained from vehicle trajectories. The data was collected on arterial
roads in Ludhiana, India for this study.
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1 Introduction

Traffic flow modelling describes the dynamics of different types of vehicles and
their interaction. In microscopic simulation model, each vehicle is described by its
own equation of motion, hence the computational time and memory required are
greater for these models. In this context, Cellular Automata (CA) based models were
found to be promising approach to meet this challenge in the recent past. Since the
introduction model developed by Nagel and Schreckenberg (NaSch) model, many
researchers have developed traffic flow models using CA [8]. Most of the CA based
traffic flow models have addressed the homogeneous traffic flow and its behaviour.
Due to discreteness of this model, it can simulate large scale real time microscopic
phenomena like platoon formation, estimate the capacity drop at transition between
free and congested flow. Later many researchers contributed to the development
of the model by adding more rule sets to increase its capability and replicate traffic
features seen in multilane, heterogeneous traffic [1–3]. Mallikarjuna and Rao further
developed the model for Indian conditions. They found that traffic in India is highly
heterogeneous with no proper lane discipline hence it was necessary to modify the
model to incorporate many types of vehicles and also their lateral movements [5].
Nassab et al. [7] gave symmetric lane changing rules to control vehicle’s lateral
movement near a partial lane closure. However, the length of transition area was
assumed as two cells in their study, which is inconsistent with the real world work
zone configuration [7]. Lan et al. developed CA model for cars and two-wheelers to
simulate lateral traversing by two-wheelers in stopped traffic [4]. Meng and Weng
first calibrated the randomization parameter by using observed work zone data to
simulate the homogenous work zone traffic [6]. Vasic and Ruskin developed one
dimensional cellular automata model based on Nash model for combined car and
bicycle traffic [9]. They found that vehicles have positional discipline based on
vehicle types which implies that bicycles keep to the side of the road nearest to
the kerb, while cars allow space for any present bicycles by staying as far away
from the kerb as possible.

2 Data Collection

Ludhiana city, Punjab, India was selected for the study as it has one of the highest
fatality rate and ongoing study aims at understanding accidents from traffic flow
point of view. Two road sections were selected for video-graphic traffic survey
namely Jagraon bridge to Bharatnagar intersection and Chima intersection to
Vishwakarma intersection owing to their higher involvement in fatalities and easy
availability of vantage points for mounting camera. Camera was placed along the
centreline of one direction on top of foot-over bridge to get required elevation and
view needed for image processing software. The focus of camera was adjusted such
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Fig. 1 Location with marked vehicles in TMTRAZER

that it could capture 70 m road stretch. Four points indicating a road trap of 30 m
by 7 m were marked on road to facilitate image calibration to ground dimensions.
Figure 1 shows one of the location and marked vehicles in TMTRAZER software.

Video data was collected for 2 h on both locations for a total of 4 h covering
both morning and evening peaks. These videos were analyzed using TMTRAZER,
an image processing software and vehicles trajectories were marked manually
to ensure highest accuracy. Each vehicle’s position was marked in every 25th
frame (approx., 1 s) to generate a total of 2,359 trajectories giving frame-wise x–
y coordinates. Out of these 33 % were cars, 3 % were trucks, 17 % were 3 wheelers
and 48 % were 2 wheelers. Truck volume was low as the roads being urban arterials.
A TMMATLAB program was developed to determine vehicle-wise traffic flow
characteristics namely speed, lateral position on the road, lateral and longitudinal
gaps from x–y coordinates of vehicles. Speed was calculated using position in
first and last frame of trajectory and grouped into 5 classes with an interval of
20 km/h. Gaps were calculated as difference in x–y coordinates of adjacent vehicles
in a particular frame after adjusting for vehicle dimensions. These microscopic
characteristics were then used to estimate macroscopic characteristics like flow, area
occupancy and stream speed. Stream speed is calculated as the arithmetic mean of
speeds of all vehicles in a frame and then averaged based on area occupancy. Area
occupancy is the ratio of road space occupied by vehicle divided by total area. The
mean and maximum area occupancy was found to be 0.03 and 0.08 % respectively.
Flow is calculated as a product of stream speed, road width and area occupancy
divided by horizontal projection area of standard vehicle (i.e., car).



474 G. Pandey et al.

3 Model

Mallikarjuna and Rao found Knospe’s brake light model to be better in reproducing
different realistic traffic features. This model is having greater scope to incorporate
some heterogeneous traffic features other than variable acceleration/deceleration
[5]. For example, in the updating procedure, safe headway and anticipation param-
eters such as security distance could be useful in representing vehicular interactions
observed in the heterogeneous traffic. When the leading vehicle is car, following
driver’s anticipation is different from the situation where the leading vehicle is
a truck. Regarding lateral movement there is no added advantage of BL model
compared to the other CA models. Hence a modified brake light model proposed by
Mallikarjuna and Rao is further evaluated using microscopic traffic characteristics
observed in the field. The longitudinal and lateral update rules of the model are same
as those used by Mallikarjuna and Rao. Table 1 below shows the values of different
parameters used in the model. In this study maximum speeds of different vehicle
types is modified according to field conditions.

A lattice with periodic boundary conditions was used. The lattice consists of 10�
1;000 cells each cell being 0.7 m wide and 0.5 m long. A total of 1,000 simulation
steps were performed at different global area occupancies between 0.06 and 0.15.
At each run first 500 time-steps were discarded and second half were considered for
analysis. The traffic composition chosen for the simulation is same as that observed
in the field data. Each time-step represents 1 s in real world.

Table 1 Parameters used in the model

Parameter 2Wheeler 3Wheeler Car Bus Truck

Length (cells) 4 6 7 25 25

Width (cells) 1 2 3 4 4

Maximum Speed (cells=sec) 26 20 30 28 28

Acceleration (cells=sec2) at speed
<5.5 m/s

5 2 4 2 2

Acceleration (cells=sec2) at speed 5.5
and 11 m/s

4 2 3 1 1

Acceleration (cells=sec2) at speed
>11 m/s

3 1 2 1 1

po 0.3 0.4 0.5 0.6 0.6

pdec 0.1 0.3 0.3 0.1 0.1

Alpha 1.5 2 1.5 1.5 1.5

pbl 0.94 0.94 0.94 0.94 0.94

plc 0.5 0.5 0.5 0.5 0.5

Security distance (cells) 2 5 5 21 21

Interaction headway (sec) 6 6 6 6 6
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3.1 Local Measurement Using Moving Detectors of Finite
Length

Here unlike earlier studies the detectors are not fixed in lattice but each vehicle
acts as a moving detector with one end being the headlight and other end being
point 50 m ahead of it. Local measurements are not averaged temporally or spatially
as values taken over time do not represent same measurement region of lattice.
The length of detector is chosen as 50 m because that is the maximum distance a
vehicle can travel in one time-step. Also simulated measurement region will be more
representative as the field data is collected using camera with trap length of 50 m.
In this spatial measurement region, speed and number of cells occupied by each
vehicle at particular time-step is observed and then used to calculate space mean
speed, local density, area occupancy and flow using fundamental flow equations.
Since there are various types of vehicles that occupy different number of cells, each
occupied cell is considered as one vehicle and its speed is equal to the speed of
vehicle occupying that cell. This means one bus occupying .4� 25/ cells and speed
20 cells/sec becomes 100 vehicles moving at 20 cells/sec each occupying one cell.
Hence we can write from fundamental traffic flow equations

k.t/ D N.t/= l � n (1)

q.t/ D ˙
N.t/
iD1 Vi .t/= l � n (2)

v.t/ D q.t/=k.t/ D ˙
N.t/
iD1 Vi .t/=N.t/ (3)

Where, k.t/, q.t/ and v.t/ are area occupancy, flow and space mean speed
respectively at time-step t , N.t/, l and n are number of cells occupied by vehicles,
length and width of measurement region in cells respectively, Vi.t/ is the speed of
vehicle i at time-step t in cells/time-step. Here unlike other studies measurements
are not averaged temporally as area occupancy and flow may vary significantly in
subsequent time-steps.

4 Results

The flow-occupancy relationship obtained from simulation is shown in Fig. 2. The
relationship followed conventional bell-shaped curve but slightly over-estimated
the maximum flow. The maximum flow obtained from simulation is around 5,000
vehicles/hr whereas that observed on road is around 3,000 vehicles/hr for two-lane
road. Here note that the flow values represent average of all flow values at that
occupancy for each simulation run. It was also found that the transition from free
flow state to synchronized state occurs around an area occupancy of 0.1.
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Fig. 2 Flow-occupancy curve

Fig. 3 Speed-flow curve

The v � q and v � k diagrams obtained from simulation are shown in Figs. 3 and
4 respectively. The relationships obtained from model showed conventional traffic
flow trends but over-predicted the stream speed by almost 5 km/h. The difference
between observed and simulated speeds increased at higher occupancy (i.e., above
0.7). This suggests that vehicles in simulation were able to maintain higher speeds
even as the density on road increased. This could possibly explain higher maximum
flow for the model. Figure 5 shows lateral position of vehicles on road. It is found
that in observed data different vehicle types tend to have position preference so
heavy vehicles and cars usually travel closer to median whereas lighter vehicles
travel closer to shoulder. Thus if a heavy vehicle coming at higher speed faces a
slower moving vehicle in front it would prefer to apply brakes instead of overtaking
it from wrong side. Since there are no lateral movement rules in cellular automata
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Fig. 4 Speed-occupancy curve

Fig. 5 Modewise lateral position curve

which consider driver preference while making lane change, many heavy vehicles
and cars end up travelling on furthermost lane. This is very unrealistic and gives
higher stream speeds and flow for given occupancy.

Conclusions
It is clear from the studies that cellular automata models can reproduce
fundamental traffic flow diagrams but little work has been done to validate it
using microscopic driving characteristics. Lane keeping behaviour of drivers
plays important role in determining the amount of interaction that different
vehicle types would have at given density and composition. These interactions
dictate many traffic phenomenons like accidents and capacity. Hence CA

(continued)
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model need to consider position preference for different vehicle types to
produce realistic microscopic interactions. This would help in identifying the
vehicular interactions in terms of safe and unsafe operations which can further
lead to the assessment of risk propensity of their operations.
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A Demonstration Experiment of a Theory
of Jam-Absorption Driving

Yohei Taniguchi, Ryosuke Nishi, Akiyasu Tomoeda, Kenichiro Shimura,
Takahiro Ezaki, and Katsuhiro Nishinari

Abstract We have conducted an experiment to demonstrate “jam-absorption driv-
ing”, which is a method of driving with a single car to avoid being entangled in a jam
by changing its headway and velocity dynamically. We used real cars on a circuit.
In the experiment, the car doing jam-absorption driving takes a long headway in
advance before a jam comes. We draw a time-space diagram and it is found the jam
can be removed by this driving method.

1 Introduction

Many drivers have been troubled in traffic jams on highway. In Japan, the economic
losses caused by such traffic jams are about 11 trillion yen in 2005 [10]. Recently,
not only engineers but also scientists have studied the traffic flow to clarify the
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mechanism of traffic congestion [3, 4, 6, 7, 11, 13]. In order to avoid jams, various
strategies controlling traffic flow such as the ramp metering [2, 9] and the variable
speed limits (VSL) [5, 12, 15] have been proposed and operated. Not only such
strategies based on road infrastructures, but also strategies based on focusing each
car’s behavior such as car-following behaviors have been studied. One of famous
study in this scope is utilizing a system of adaptive cruise control (ACC) for
improving the efficiency of traffic flow [14]. ACC is an on-board system on a
car controlling time-headways as well as velocities according to a headway sensor,
and enables the car to drive car-following behaviors more accurately than manual
cars.

Relative to these strategy performing such dynamical driving, the effect of a car
taking a large headway before being entangled in a jam was discussed by Beaty [1].
He suggested that cars running behind the car performing this action avoid braking
if the car forecasts right the timing of approaching a jam. This driving method has
a good characteristic that a jam can be removed by just a single car. However, his
driving method lacks theoretical supports. Later, a theoretical framework of a car’s
driving to absorb a jam is constructed with a kinematic-like traffic model and named
“jam-absorption driving” [8]. The car performing jam-absorption driving (called
“the absorbing car”) has a chain of two actions, slow-in and fast-out. Slow-in is
to avoid being involved in a jam and remove it by decelerating and enlarging own
headway. Fast-out is performed after slow-in, and it is to follow the car in front
without any extra time headway by accelerating quickly. The theory indicates the
condition to remove a jam and without causing so-called “secondary jam”, i.e., the
condition on which the perturbation caused from jam-absorption driving does not
grow to another jam.

Beyond the theoretical study [8], we aim to verify the jam absorption driving
with real cars. To this aim, we conducted an experiment of jam-absorption driving
in a closed circuit with human-driving cars. We simplify the experimental scenario
such that the absorbing car initially obtains large gaps at the beginning of the
experiment.

2 Settings

Five cars run in a column on a circuit. We assume that a jam already occurred
far downstream of the five cars and it is coming to them. In the experiment, the
absorbing car is in the column and keeps the extra amount of gaps to remove the
jam. Under this situation, we introduce the scenario of our experiment. First, as the
initial state, all the five cars remain stationary and the cars except for the absorbing
car have the same headway h1. It should be noted that the headway of a car is defined
as the sum of the car’s inter-vehicular distance and the cars length. The absorbing
car is the third car and it has the headway ha. They start simultaneously and run in
a platoon with velocity vF . Each car keeps its headway at the initial state. After a
stable platoon is formed, the first car causes a perturbation by a sequence of actions:
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Fig. 1 The circuit for the experiment. The horizontal and vertical axes denote the longitude and
latitude, respectively. The unit of length is meter. The black loop represents the circuit and is
composed of the two chords of the hemispheres and the two straight lines. All cars move to the
counterclockwise direction. They run several laps and try to make a platoon. After making it, the
first car decelerates at the “A” point and accelerates again at the “B” point

decelerating from vF to vJ , keeping vJ for a period T , and accelerating to vF . These
actions represent that the first car enters the jam, stays inside it for T and goes out of
it. The absorbing car tries to remove this perturbation by keeping vF and consuming
its gap.

The circuit is composed of two straight lines and two circular curves as shown
in Fig. 1. For the aspect of safety, cars cannot run over 40 km/h. All the five cars
traveled in counterclockwise direction. The leader car was ordered to run at vF D
35 km/h. We set the two points A and B on the circuit where the first car took actions.
At the point A, it was ordered to decelerate to vJ D 20 km/h and keep this velocity.
At the point B, it was ordered to accelerate to vF D 35 km/h. We set the period for
which the first car keeps the velocity vJ as T D 15 s. We put marks to visualize
the points A and B thus every driver recognized where the first car decelerated
and accelerated. These marks are necessary for the drivers’ safety. We chose
h1 D 13m.

3 Results

We pick a trial where jam absorption succeeded. In this trial, ha is set to 50m. We
show the time-space diagram of all cars in the trial in Fig. 2. The second car’s line
are clearly bended, that is, the second car brakes on the way of the circuit because
of the perturbation caused by the first car. On the other hand, the lines of the third,
forth and fifth car are mostly straight, that is, these cars can keep the velocity around
vF . It is because the third car has a longer headway ha at the beginning of the trial
and does not catch up with the second car.
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Fig. 2 A time-space diagram
with ha D 50m. The
trajectory of each car is
depicted as a line

Conclusion
We have conducted an experiment to demonstrate “jam-absorption driving”.
We succeeded in observing a situation where a jam generated by a preceding
car is removed by the absorbing car.

As our future work, it is necessary to perform social experiments of jam-
absorption driving in real highway traffic. Our experiment was conducted
with low velocities around 35 km/h due to the limitation of the length of the
straight track. Hence, we are going to investigate jam-absorption driving with
higher velocities such as 100 km/h, which is popular speed limits in Japanese
highways.
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Generic First-Order Car-Following Models
with Stop-and-Go Waves and Exclusion

Antoine Tordeux, Sylvain Lassarre, Michel Roussignol, and Vincent Aguiléra

Abstract A new Optimal Velocity (OV) car-following model is defined and
explored. The model is solely based on an optimal speed function and a reaction
time, and, oppositely to classical OV models, is intrinsically collision-free. If the
model has uniform solutions, kink-antikink and soliton stop-and-go patterns can be
described with a linear bounded optimal velocity function when the reaction time is
high enough.

1 Introduction

Observations of congested road traffic flows present stable propagation of stop-
and-go waves (see e.g. [1, 2]). Such waves are observed on highways or during
experiments [3], where the disturbance due to the infrastructure can not explain
their presence. The phenomenon is collective and complex.

Many approaches are developed to understand non linear traffic waves, instabil-
ity, hysteresis, or more generally non uniform solutions [4,5]. Most of the studies are
done with microscopic models. One of the best investigated model is the Optimal
Velocity (OV). The first OV models are car-following microscopic ones [6,7]. They
are solely based on the optimal (or equilibrium) speed function, and the reaction
(or relaxation) time parameter. The OV models are simple, with few parameters
that could be estimated from traffic data. Despite of their simplicity, the dynamics
obtained are rich and allow to describe many empirical features, and notably stop-
and-go waves [8, 9].
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The OV models have stationary uniform solutions that can be unstable. Yet,
classical OV models locally oscillate, leading to collisions or negative speed
when unstable. Only particular sigmoid optimal speed functions give collision-
free solutions [7, 10]. This prevents to well describe the space phase of the OV
models. These deficiencies are clearly established and debated in the literature [11–
13]. Extensions of the OV models are able to solve the problems (see for instance
[14–16]), but with the drawback of increasing the numbers of model parameters.
At present, there exist no consensus for one or an other extended model and it is
unclear whether a higher modeling complexity is necessary or not.

In this paper, we explore a new generic OV model, intrinsically collision-free.
The model is from the first order with two predecessors in interaction.

2 Optimal Velocity Models

2.1 Classical Models

The OV models are set by the optimal (or equilibrium) speed function V depending
on the spacing (the difference of the central positions of a considered vehicle and the
predecessor). The function describes how drivers regulate their speed. It is helpful
to describe the dynamic of traffic systems but it is not derived from fundamental
physical laws. On one side it contains strong physical constraints like the volume
exclusion or finite desired speed. On the other side, it contains factors determined
by the perception and behavior of drivers. Classical modelings assume V positive,
differentiable and increasing with finite limit value (the desired speed). The function
is nil when the spacing is smaller than the length of the vehicle. A simple speed
function is the bounded linear

V.d/ D min
˚
v0;max

˚
0; .d � `/=T

��
(1)

with v0 the desired speed (in free situation), ` the vehicle length (with potentially a
marge), and T the time gap (in following situation).

The most basic OV model [17] is from the first order:

Pxn.t/ D V.�xn.t//; (2)

where xn.t/ is the position of the considered vehicle and�xn.t/ D xnC1.t/�xn.t/
is the spacing of the vehicle n at time t (nC 1 is the predecessor).

More realistic dynamics are obtained by introducing a delay time � > 0 in the
model, corresponding to the observed driver and vehicle reaction time [6]

Pxn.t C �/ D V.�xn.t//: (3)
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A Taylor expansion to the delayed quantity in (3) leads to the second-order OV
model [7], where the reaction time � is considered as a relaxation time

Rxn.t/ D 1

�

�
V.�xn.t// � Pxn.t/

�
: (4)

The OV model (2) is solely based on the optimal speed function V , while the
models (3) and (4) also incorporate the parameter � . More complex OV models
exist, with more parameters. See for instance the Generalized Force [14] or Full
Velocity Difference [16] models incorporating a speed difference term and two
relaxation times, or even the multi-anticipative OV model [15], with K 	 1

predecessors in interaction.
For a given mean spacing d > 0, all the OV models have uniform solutions

�xUn .t/ D d; xUn .t/ D xUn .0/C tV .d/; 8n; 8t 	 0: (5)

The uniform solution can be stable, when perturbations vanish, or unstable. The
analysis of the stability allows to determine these properties according to the values
of the parameters.

The solutions are collision-free if initially xn.0/ C ` � xnC1.0/ for all n, with
` 	 0 the length of the vehicles, and if

8n; xn.t/C ` � xnC1.t/; 8t 	 0: (6)

Using the terminology of discrete models, the property describes the volume
exclusion of vehicles. The uniform solutions are trivially collision-free. If non
uniform solutions exist, they have to satisfy the exclusion property (6).

Both local and global stability conditions of the OV models are well-know (see
for instance [18]). We remind them here. The basic first order model (2) is locally
and globally linearly stable and non-oscillating if V 0.d/ > 0. This assumption is
natural for a model. With the delayed model (3), the local linear stability holds
if 0 < �V 0.d/ < 	=2, while it is non-oscillating if 0 < �V 0.d/ < 1=e

(see for instance [19]). The second order model (4) is locally linearly stable if
V 0.d/; � > 0, and non-oscillating if 0 < �V 0.d/ < 1=4. The models (3) and (4)
both have the condition for global linear stability 0 < �V 0.d/ < 1=2 (see for
instance [7]).

For high enough reaction time � , the models (3) and (4) can produce unstable
uniform solutions. Yet, they are only collision-free (i.e. locally non-oscillating)
under more restrictive conditions (we have �V 0 < 1=4 < 1=e < 1=2). This
means that instability of uniform solutions for models with two parameter (�
and V 0) can not be combined with collision-free property. This can be argued
using the general second order model with two parameters Rxn.t/ D F

�
xnC1.t/ �

xn.t/; Pxn.t/
�
. If we denote F W .d; v/ 7! F.d; v/ and the parameters ˛ D

@F=@d > 0 and ˇ D @F=@v, the condition ˇ2 � 4˛ < 0 for which the model
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is locally non-oscillating is incompatible with the condition for global instability
ˇ2 � 2˛ > 0.

Many studies report the presence of collisions with two parameters OV model [7,
10–12,20]. Extended OV models can be simultaneously locally non-oscillating and
globally unstable [14, 16]. Yet, this is done by adding parameters to the dynamics,
that may be unnecessary for the modeling of stop-and-go waves.

2.2 Definition of a New OV Model

The presence of collision is hard to control with OV model by delayed differential
equation, or second order ones. This is due to their tendency to locally oscillate.
In contrast, it is easy to control the exclusion with ordinary first order models.
With these models, the exclusion property (6) holds if the optimal speed function is
positive and nil when the distance spacing is nil. However, first order model always
have stable uniform solutions if they do not consider a reaction time. Therefore, our
purpose is to develop an ordinary first-order OV model including a reaction time
parameter.

The second order OV model (4) can be obtained by applying a Taylor expansion
around t to the left part of the delayed first order model (3). We propose here to
apply a Taylor expansion to the right part of (3). This leads to an implicit equation
on the speed, sometimes related as the generalized optimal velocity model Pxn.t/ D
V
�
�xn.t/ � �� PxnC1.t/ � Pxn.t/

��
.

To approximate the solution of the implicit equation, the speeds in the right part
are substituted by the optimal speed function of the spacing:

Pxn.t/ D V
�
�xn.t/ � �ŒV .�xnC1.t// � V.�xn.t//�

�
: (7)

This model is from first-order. It is based on an optimal speed function and incorpo-
rates a parameter for the reaction time. It takes two predecessors in interaction. For a
given spacing d , the speed of a vehicle varies between the borders b�.d/ D V.d C
�V .d/ � � infd1 V .d1// and bC.d/ D V.d C �V .d/� � supd1 V .d1// according to
the spacing of the predecessor. With the bounded linear speed function (1), theses
borders are

b�.d/ D min
˚
v0;max

˚
0; .1C �=T /.d � `/=T � v0�=T

��

bC.d/ D min
˚
v0;max

˚
0; .1C �=T /.d � `/=T

�� (8)

The generic first order model (7) is trivially collision-free, if V is such that

V.d/ 	 0 8d; V .d/ D 0; 8d � `; (9)
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since in this case the speed of a vehicle is nil when the spacing is nil. The linear
bounded function (1) satisfies this property. The stability analysis of the model (7)
(not presented here) shows that the uniform solutions (5) are linearly stable under
the same conditions than the classical models (3) and (4), i.e. if

0 < �V 0.d/ < 1=2: (10)

The condition is 0 < 2� < T with the bounded linear function (1). Therefore the
model is able to have non-uniform collision-free solution with no use of additional
parameter. The non uniform solution obtain with V bounded linear are described in
the next section by simulation.

3 Simulation Results

3.1 Settings

The solutions of the new model (7) are simulated on a ring of length L. We use the
parallel explicit Euler scheme

xn.t C ıt/ D xn.t/C ıt V
�
�xn.t/ � �ŒV .�xnC1.t// � V.�xn.t//�

�
(11)

with ıt D 10�2 s the time step. The optimal speed function is the bounded linear (1)
with ` D 5m, v0 D 20m/s. T D 1:5 s. We set � D 1 s for that the stability
condition (10) does not hold. The length of the ring is L D 205m. We successively
simulated the trajectories of N D 9; 10; 12 vehicles from random initial condition
such that minn �xn.0/ 	 `.

3.2 Results

The trajectories obtained are drawn in the top of Figs. 1–3 during the first 120 s
with respectively N D 9; 10; 12 vehicles. The sequence of speed and spacing,
and the speed function of the spacing, with the optimal speed function (1) and
the borders (8) in dotted line, are plotted for t 2 Œ60; 120 s� at the bottom of the
figures.

For all the experiments, a unique stop-and-go wave emerges and propagates. This
phenomenon is realistic. It has been observed in real experiment with 22 vehicles
on a ring of length 250m [3]. The speed and spacing converge to a limit-cycle into
the borders (8). The waves are solitons when N D 9 and N D 12. For N D 9

the speed of a vehicle varies from v > 0 to v0, with a plateau in v0. For N D 12

the speed varies from 0 to v < v0, with a plateau in 0. The speed of propagation



490 A. Tordeux et al.

0

50

100

150

200

0 20 40 60 80 100 120

Sp
ac

e,
m

Time, s

0
9

18

60 80 100 120Sp
ee
d,

m
/
s

Time, s

5
17
29

60 80 100 120Sp
ac

in
g,

m

Time, s

0

7.5

15

20

5 15 25 35

Sp
ee
d,

m
/
s

Spacing, m

→t

Fig. 1 Top, trajectories of 12 vehicles from random initial configuration. Bottom the sequence of
speed and spacing and the speed function of the spacing of a vehicle

of the waves are approximately �4:27 and �5:54m/s for respectively N D 9 and
N D 12. The solution is a kink-antikink for N D 10, with speed varying from
0 to v0, and plateau for both values. The speed of the waves is �4:77m/s. The
characteristics of the wave seem to depend on the system size. On large systems,
the waves are generally solely kink-antikink ones, with constant characteristic
speed.

Here a unique wave is observed. Further experiments not shown here show that
several waves can propagate if the system is large enough. This suggests that the
waves produced by the model have characteristic length.
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Fig. 2 Top, trajectories of 10 vehicles from random initial configuration. Bottom the sequence of
speed and spacing and the speed function of the spacing of a vehicle
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Fig. 3 Top, trajectories of 9 vehicles from random initial configuration. Bottom the sequence of
speed and spacing and the speed function of the spacing of a vehicle

Conclusion
A new continuous OV car-following model is proposed for traffic applica-
tions. The model is a generic first order one, based on the optimal speed
function and the reaction time parameter. Oppositely to classical OV models,
it does not produce local oscillating dynamics and is intrinsically collision-
free. The model has the same stability condition of the uniform solution as
classical OV models. It is unstable for high enough reaction time.

(continued)
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The model is performed with bounded linear optimal speed functions with
three parameters. When unstable, the solutions are realistic collision-free
stop-and-go, with kink-antikink and soliton implying several vehicles. Further
results not shown here show that waves and vehicle’s speed modal value can
be controled using non-linear optimal speed function.

The modeling framework proposed gives a way to basically describe on
continuum stop-and-go waves. It could be useful for the microscopic simula-
tion of traffic or pedestrian flows, as well as for theoretical investigations.
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Influence of Velocity Variance of a Single
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Abstract We have developed a new calibration method to analyze the effect
of velocity variance of a single particle (VVSP) on flow in cellular automaton
(CA) models. We have verified that the flow in the totally asymmetric simple
exclusion process (TASEP) decreases when VVSP increases even if the mean
velocity of each particle is same. The effect of VVSP on other CA models, such as
a stochastic Fukui-Ishibashi (SFI) model and a simple evacuation (SEV) model, are
also investigated. When VVSP increases, the flow decreases in the one dimensional
models (TASEP and SFI model), whereas, it increases in SEV model. Furthermore,
it is investigated how the effect of VVSP is strengthened or weakened by the
characteristic parameter in SFI model.
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1 Introduction

Cellular automaton (CA) [1] is widely applied to model traffic flow, pedestrian
dynamics, and other self-driven particles [2–5].

The research on traffic flow by using CA has been started from the elementary
CA Rule 184 [1]. In spite of the very simple updating rule, it has reproduced the
fundamental characteristic of traffic flow. Namely, a cluster of vehicles (traffic
jam) moves backward. By extending this model, one of the most famous traf-
fic CA model, the Nagel-Schreckenberg (NaSch) model [6], which implements
acceleration and random braking rule, has been developed. It has succeeded to
reproduce a fundamental diagram in real traffic and become a basic CA model
for traffic flow. Following NaSch model, Fukui-Ishibashi (FI) model [7] has been
considered. It is a deterministic model and implements the maximum velocity
of vehicles as a controllable parameter. The critical density is clearly expressed
by simple mathematical formulation. Effects of drivers’ anticipation and vehicles’
inertia are also studied in Quick-Start model [8] and Slow-to-Start model [9, 10].
Furthermore, an integrated model which includes the parameters of maximum
velocity, anticipation, and inertia is also developed [11].

Another major application of CA is pedestrian-dynamics models. The lattice-
gas model [12] and the floor-field model [13] are two famous CA models for
pedestrian dynamics. They enable us to simulate lane-formation phenomenon in
pedestrian counter flow in a corridor. Evacuation is one of the most important topic
in pedestrian dynamics, so that it is eagerly studied by both theoretical analysis [14]
and computer simulation [15] of CA models. Method for shorten the evacuation
time is also considered. In Ref. [16], it is investigated that an obstacle which is put
appropriate position in front of an narrow exit shorten the total evacuation time from
a room.

As shown in the previous paragraphs, many CA models have been developed to
study the dynamics of self-driven particles such as vehicles and pedestrians. One of
the many reasons of this success is introduction of stochastic parameters. Movement
of self-driven particles is not always exactly constant. Even if one particle moves
straightly in vacant space without any interaction with others, its velocity fluctuates.
Hopping probability in stochastic CA models well represents this phenomenon.
However, the effect of velocity variance of a single particle (VVSP) has been seldom
discussed when the models are developed. This is because the hopping probability
does not only control the variance but also influences the mean velocity of a particle.
By contrast, collective phenomena of pedestrian dynamics related with VVSP are
studied in experimental researches. References [17] indicates that rhythm removes
the heterogeneity of pedestrians’ movement, synchronizes it (decrease VVSP),
and contributes to the homogeneous spatial distribution. Moreover, Ref. [18] has
reported that movement of pedestrians synchronizes especially in the high density
regime. Therefore, theoretical research on VVSP is important for analyzing these
phenomena.
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In order to investigate the effect of VVSP, we have newly developed a simple
calibration method that enables us to control VVSP without changing the mean
velocity. By using this method, we have succeeded in analyzing the effect of VVSP
on CA models such as the totally asymmetric simple exclusion process (TASEP), a
stochastic FI (SFI) model, and a simple evacuation (SEV) model.

2 Calibration Method

In this section, we would like to propose a new calibration method for controlling
VVSP independent from mean velocity in CA models. We consider a very simple
stochastic CA model where one particle is in one-dimensional space consisted of
discrete cells. Time is also discrete in this CA model. If the particle moves one cell
with the probability p in one time step, its mean and variance of traveling time for
one cell are

Mean:
1

p
[step];

Variance:
1 � p
p2

[step];

(1)

respectively. As we see from the equations above, both the mean and variance of
traveling time dependent on the hopping probability p. Thus, we develop a method
for determining the mean and variance independently in the following. Note that a
calibration method of the particle density in CA models is developed in [19].

When we apply CA models to the real situation, we have to determine the size of
a cell and the length of one time step since both space and time are discrete. Let us
denote them as �l [m/cell] and �t [sec/step]. If a particle moves one cell with the
probability p in one time step, its mean velocity in the real situation is calculated as

v.p;�l;�t/ D p
�l

�t
[m/sec]: (2)

In the equation above, the mean velocity v is a function of the parameters p, �l and
�t . If we transform this equation as follows:

�t.v; p;�l/ D p
�l

v
[sec/step]; (3)

then the length of one time step �t becomes a function of v, p and �l . Since the
mean velocity is determined by v in this equation. The parameter p no longer affects
the mean velocity, and can be utilize for controlling the variance. Thus, when we
substitute this equation to other equations which represent a physical quantity, we
are able to determine the mean and variance of the velocity independently. Let us
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examine the validity of this method by applying to the traveling time for one cell
calculated in the beginning of this section. We multiply Eq. (1) by�t and .�t/2 and
substitute Eq. (3), then the mean velocity and VVSP are describe as

Mean:
�t

p
D �l

v
[sec];

Variance:
.1 � p/.�t/2

p
D .1 � p/.�l/2

v2
[sec2]:

(4)

The parameter p disappears from the equation of the mean, so that we are able to
change the mean velocity and VVSP independently. Since p is a probability, its
domain is [0,1], thus the variance achieves the maximum .�l=v/2 and the minimum
0 at p D 0 and p D 1, respectively.

3 Influence of Velocity Variance of a Single Particle on CA
Models

In this section, we see how VVSP affects on flow in CA models such as TASEP, SFI
model, and SEV model.

3.1 Totally Asymmetric Simple Exclusion Process (TASEP)

First, we apply our calibration method to TASEP [20, 21]. It is one of the basic
one-dimensional stochastic CA model. A schematic view of the TASEP with
parallel-update rule and periodic boundary condition is depicted in Fig. 1. Particles
represented by black circles proceed one cell to the right with the probability p
in one time step, only if its right neighboring cell is empty. Since the effect of
excluded-volume effect is implemented automatically in TASEP, it can be utilized
for considering dynamics of self-driven particles. The expression of flow in TASEP
is described as

Q.�; p/ D 1 �p
1 � 4p�.1 � �/

2
Œstep�1�; (5)

Fig. 1 Schematic view of TASEP and SFI model (Vmax D 3) with parallel-update rule and
periodic-boundary condition. Particles move to their target cells with the probability p in one
time step. Solid and dashed arrows represent movements of the particles in TASEP and SFI model
(Vmax D 3), respectively
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Fig. 2 Flow-density diagram of TASEP. (a) (TASEP-a) Q.�; p;�t D 1/ Before substituting
Eq. (3). (b) (TASEP-b) Q.�; vD 1; p;�l D 1/ After substituting Eq. (3)

where � is the number density of particles. By dividing the equation above by �t
and substituting (3), the expression of the flow is transformed as

(TASEP-a) Q.�; p;�t/ D 1 �p
1 � 4p�.1 � �/
2�t

Œsec�1�;

(TASEP-b) Q.�; v; p;�l/ D v

�l

1 �p
1 � 4p�.1 � �/
2p

Œsec�1�:

(6)

By changing the value of p in Eq. (6) (TASEP-b), we are able to analyze the effect of
variance on flow in TASEP. Figure 2a, b show flow-density diagrams (fundamental
diagrams) depicted by using Eq. (6) (TASEP-a) with �t D 1 and (TASEP-b) with
v D 1 and �l D 1, respectively. The result of Fig. 2a is well known; the flow
achieves the maximum at � D 0:5 and increases as p increases. Since p represents
the mean velocity of a single particle, it is obvious that large p attains large flow.
Figure 2b is similar to Fig. 2a; however, this result is new and surprising because the
values of v and �l are constant, i.e., mean velocity is same in all the three curves
.p D 0:2; 0:6; 1:0/. Small p implies large VVSP, so that the flow becomes large
when VVSP is small even if the mean velocity of single particle is same.

3.2 Stochastic Fukui-Ishibashi (SFI) Model

Next, we apply our calibration method to SFI model [22]. In SFI model, particles
can maximally move Vmax 2 N cells, if there are enough empty cells. A hopping
probability p is introduced, so that the particles maximally move Vmax cells with the
probability p or remain their cell with probability 1 � p. The model is reduced to
TASEP in the case Vmax D 1.
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Fig. 3 Normalized maximum flow QNormalized against hopping probability p for various Vmax

Fig. 4 Schematic view of SEV model in the case n D 3

Figure 3 shows the normalized maximum flow with Vmax 	 1 against the hopping
probability p. Normalized maximum flow is defined as

QNormalized.p/ D Qmax.p/

Qmax.p D 1/
; (7)

Qmax.p/ D Q.�cr.p; Vmax/; p/; (8)

where �cr achieves maximum flow for given p and Vmax. When our method is
applied to the model, increase of p corresponds to decrease of VVSP and vice
versa. Therefore, we see that the normalized maximum flow increases when VVSP
decreases in Fig. 3. It is also observed that when Vmax is small, the normalized
maximum flow greatly changes against the change of p, whereas, when Vmax is
large, the change is small. This result implies that Vmax weakens the effect of VVSP
on the flow.

3.3 Simple Evacuation (SEV) Model

Finally, we would like to apply our calibration method to SEV model as shown in
Fig. 4. The model focuses on an exit cell and its neighboring cells, and is updated
in parallel. The number of the neighboring cells is given as n. Since we consider
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congested situation, we assume that particles enter the n neighboring cells with the
probability 1 if they are empty. The particles at the n neighboring cells move to
the exit cell with the probability p. When more than one particle move to the exit
cell at the same time, a conflict occur. We solve this phenomenon by using friction
parameter � 2 Œ0; 1�. One of them randomly succeeds to move to the exit cell with
the probability 1��, while movements of all of them are denied with the probability
�. The particle at the exit cell get out from the room with the probability 1. Average
outflow through the exit cell, i.e., the average number of particles go through the
exit cell in one time step, is calculated as follows:

Q.n; p/ D
�
1

r.n/
C 1

p

��1
Œstep�1�; (9)

where

8
ˆ̂
<̂

ˆ̂
:̂

b.k/ D
�
n

k

�

pk.1 � p/n�k;

r.n/ D
nX

kD1
Œf1 � �g b.k/� :

(10)

By dividing Eq. (9) by �t and substituting Eq. (3), the expression of the average
outflow is transformed as

(SEV-a) Q.n; p;�t/ D 1

�t

�
1

r.n/
C 1

p

��1
Œsec�1�;

(SEV-b) Q.n; v; p;�t/ D v

�l

�

1C p

r.n/

��1
Œsec�1�:

(11)

Plots of (SEV-a) with �t D 1 and (SEV-b) with v D 1 and �l D 1 as a function
of the parameter n in the case � D 0:2 are shown in Fig. 5a, b, respectively. In

a b

Fig. 5 Average outflow as a function of the number of neighboring cells n in the case p D 0:2.
(a) (SEV-a) Before substituting Eq. (3). (b) (SEV-b) After substituting Eq. (3)
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Fig. 5a, the outflow in the case p D 1 is the largest of the three. Since the parameter
p represents the mean velocity before the calibration and the friction parameter is
small (� D 0:2), large average flow achieved by large p. By contrast, in Fig. 5b,
the outflow in the case p D 1 is the smallest of the three. The small p indicates
the movement of pedestrians varies, thus, contrary to TASEP and SFI model cases;
unsynchronized movement improves the outflow in SEV. Synchronized movement
induces increase of conflicts, so that it is not adequate for situations where many
particles gather at one place such as evacuation.

Conclusion
We have developed a new calibration method to analyze the effect of velocity
variance of a single particle (VVSP) in cellular automaton (CA) models.
The method is applied to the totally asymmetric simple exclusion process,
a stochastic Fukui-Ishibashi (SFI) model, and a simple evacuation (SEV)
model. It is elucidated that VVSP decreases flow in one-dimensional CA
models, while it increase outflow in SEV model that includes merging
dynamics. Furthermore, we have investigated that the parameter of the
maximum velocity Vmax in SFI model influences on the effect of VVSP on the
flow. When Vmax is small, flow greatly changes against the change of VVSP,
whereas, when Vmax is large, flow little changes against the change of VVSP.

We would like to analyze the effect of VVSP on other CA models such as
quick-start and slow-to-start models in the near future.
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Abstract In a previous experiment, we have demonstrated that a traffic jam
emerges without any bottleneck at a certain high density. In the present work,
we performed an indoor circuit experiment in Nagoya Dome and estimated the
critical density. The circuit is large (314 m in circumference) compared to the
previous experiment. Positions of cars were observed in 0.16 m resolution. We
performed 19 sessions by changing the number of cars from 10 to 40. We found that
jammed flow was realized in high density while free flow in low density. We also
found the indication of metastability at an intermediate density. The critical density
is estimated by analyzing the density-flow relation. The critical density locates
between 0:08 and 0:09m�1. It is consistent with that observed in real expressways.
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1 Introduction

Traffic jams are familiar daily phenomena observed on expressways and city streets.
Even from naive observations, traffic flow can be divided into two types: smooth
flow, which occurs under light traffic and in which cars run almost at the allowed
maximum speed; and jammed flow, which occurs under heavy traffic. In jammed
flow, jam clusters, in which cars stop or move slowly, emerge and propagate
upstream.

Fundamental diagrams describing the density-flow relation are widely used for
analyzing traffic flow. Observations of real expressway traffic show that fundamental
diagrams (e.g. Fig. 1) have two regions divided by a certain density value: free
(smooth) flow with low density, and jammed flow with high density. In low density
traffic, cars run at an almost constant speed, and therefore the flow increases in
proportion to the density. The flow and the average speed for high density traffic, on
the other hand, decrease with the density. The data points from high density traffic
are broadly scattered; i.e. the speed and density fluctuate widely in jammed flow due
to the existence of jam clusters.

Since the 1990s, many researchers have studied traffic flow from a physics point
of view and various theoretical models for traffic flow have been proposed and
studied extensively [1–6]. Those approaches have clarified that a homogeneous
flow becomes unstable, leading to a traffic jam, if the density exceeds a critical
value. Therefore the emergence of traffic jams is understood as a dynamical phase
transition controlled by the density of cars.

In a previous study, we performed a traffic jam experiment using real cars on an
outdoor circuit of 230 circumference in order to verify the theoretical understanding
of traffic jams as a dynamical phase transition [7, 8]. In the study, we demonstrated

Fig. 1 Fundamental diagram observed on a Japanese highway. Red points are taken from the fast
lane and blue ones from the slow lane
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that traffic jams emerge at a certain high density without bottlenecks. And we ob-
served the metastable homogeneous flow that appears as a precursor to traffic jams.

An experimental investigation of the density dependence of flow is required for
confirming that the emergence of traffic jams is a really dynamical phase transition.
For this purpose, we performed an extended experiment with varying number of
cars under an improved environment [9]. The experiment was conducted on a
circuit set in the Nagoya Dome, an indoor baseball field [10]. The new circuit was
larger (314 m in circumference) than that used in the previous experiment. And we
employed a laser scanner for higher-resolution positioning of the cars. We intend
to estimate the critical density by comparing observations in real highways. To this
end, we study the fundamental diagrams from the experimental data.

2 The Experiment

In order to study the effects of car density on traffic flow, inhomogeneity in the
circuit should be reduced as low as possible, as it may act as bottlenecks. Therefore
we needed to use a circular road on flat ground with homogeneous conditions.
For accessing a flat, concrete floor of the Nagoya Dome, the pitching mound and
artificial turf were removed and areas around the bases were covered with gray
sheets in order to reduce visual inhomogeneity (Fig. 2). On a circuit of 314 m
circumference, we were able to vary the density of cars by 10�2 m�1.

Fig. 2 Bird’s-eye view of 50 m radius (314 m circumference) circuit in the Nagoya Dome. The
field is flattened by removing the pitching mound and artificial turf
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In the previous experiment, we read car positions manually from video data
captured by a 360ı camera; the positioning error in this case was roughly ˙0:5m.
In this experiment, we employed a laser scanner (Sick LD-LRS 1000) located at
the center of the circuit to measure car positions with an improved resolution.
The scanner rotated at a frequency of 5 Hz, detecting the distance to objects every
360ı/1,920ı; the resulting time resolution was 10�4 s, and the spatial resolution
was 0:16m at a distance of 50m. The stream of data was stored in a computer
connected to the scanner, allowing sequences of position and speed for each car to
be reconstructed. The details of the data acquisition and the spacetime diagrams are
given in Ref. [9].

We conducted 19 sessions. For each session, the number of cars are varied from
10 to 40. All of cars were of the same model and specifications (Toyota Vitz: 1.3L,
3885m long, automatic transmission). We use data from 14 sessions for analyses.

3 Fundamental Diagrams and Estimating the Critical
Density

We examined the fundamental diagrams which represent the density-flow relation.
On real expressways, induction-loop coils are buried beneath observational points
on a road and count the cars passing by the point and measure their speed. The
number of cars q and their average speed v are recorded, for example, every 5 min.
Then the density � at a given point and time is calculated from the relation q D �v.

To obtain a fundamental diagram from the experimental data, we place three
virtual observational points, which are spaced at intervals of 120ı for collecting a
sufficient number of data. At each observational point, we count the number of cars
passing and average their speed by intervals of 45 s, the duration determined based
on the time needed for a jam cluster to move around the circuit.

Figure 3 shows the fundamental diagram for all sessions except two sessions
which exhibited stop-and-go motions. This fundamental diagram is similar to that

Fig. 3 Fundamental diagram
for the selected sessions
excluding two sessions with
stop-and-go traffic. The red
curve and the blue line are
drawn as references to show
the typical behavior of free
and jammed flows
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Fig. 4 Fundamental diagram
for the selected sessions with
stop-and-go traffic
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extracted from traffic on real expressways. In Fig. 3 we find three typical features:
free flow, jammed flow and metastable states. The red curve and the blue line in
Fig. 3 are drawn as references to show the typical behavior of free and jammed
flows, respectively.

Data points from the sessions with small numbers of cars, 10 � N � 25, locate
in the vicinity of the red curve. Here, the flow is an increasing function of the density,
which is a typical feature of free flow. For the sessions with large numbers of cars,
N 	 32, data points are scattered broadly near the blue line. The flow shows the
typical feature of jammed flow. Data points from the sessions with intermediate
number of cars, N D 28 and 30, distribute around both the red curve and the blue
line. This shows the typical feature of metastable states. Thus, we can conclude that
critical density locates between 0:08m�1 (N D 25) and 0:09m�1 (N D 28).

The fundamental diagram for the two sessions that exhibited stop-and-go traffic,
in which cars stop or nearly stop in jam clusters, is shown in Fig. 4. Because cars are
detected only when they pass by the observation point, stopped cars are not taken
into account in the flow measurement and in the average speed. In other word, the
fundamental diagram consists mainly of data from cars moving smoothly outside
of jam clusters. Because the speeds of cars outside the jam cluster are nearly the
same as those in free flow, the diagram resembles that for a free flow. It can be seen
that the average speed is a bit smaller and the amplitude of fluctuation is larger than
those in a ‘true’ free flow because the motions of cars catching up with and escaping
from the jam clusters are also included in the data. The resemblance between stop-
and-go traffic and free flow has been reported also for the fundamental diagram of a
real expressway traffic [11].

4 Summary and Discussions

We conducted the experiment to confirm that the emergence of a traffic jam is a
dynamical phase transition controlled by the density of cars. And we estimated the
critical density based on the experimental data. In our previous study [7, 8], which
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was conducted on an outdoor field, we demonstrated that a traffic jam occurs at a
certain high density without bottlenecks. The current experiment was carried out on
an indoor circuit of 314 m circumference with high resolution measurements (i.e. 0.2
s in time and 0.16 m in space). For estimating the critical density, the number of cars
was varied from 10 to 40 [9]. Based on our analysis of fundamental diagrams, we
confirmed that a dynamical phase transition between free and jammed flow occurs
at a critical density. We also observed that metastable states occur at intermediate
densities between free and jammed flows. The critical density was estimated to
locate between 0:08 and 0:09m�1.

We can compare the critical density obtained in this study with that measured
on a real expressway. The critical density of an expressway in which the observed
average speed is 120 km h�1 in free flow is known to be 0:025m�1 (25 cars km�1)
[7]. In our present experiment, on the contrary, the average speed in free flow was
about 40 km h�1. Suppose a car requires a headway that is three times larger when
driving three times faster, our measured experimental critical density is consistent
with values observed on the expressway.

In this paper, we discussed the phase transition based on conventional observ-
ables, such as fundamental diagrams, measured in real expressways. And we did
not mention any models, because we intended to estimate the critical density by
comparing with observations in real expressways without depending on any models.

We showed that the transition between free and jammed flow occurs at a critical
density and metastable states appear around the critical density. In this sense, the
transition seems to be first order. However, it is different from phase transitions of
ordinary equilibrium systems. In a traffic flow, particles (cars) in the system are
moving, and emerged patterns (jam clusters) also move. Therefore the transition is
essentially dynamical.
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Weather and Road Geometry Impact
on Acceleration Behavior: Experimental Set-Up
and Data Collection Using a Driving Simulator

Lingqiao Qin and Samer H. Hamdar

Abstract Transportation researchers tried for decades to investigate the dynamics
of traffic flow in order to “optimize” the movement of goods and people under
different surrounding conditions while reducing the negative environmental impacts
and the economic losses due to congestion and traffic incidents. An important aspect
missing from some previous studies relates to the activities through which drivers
process the information representing a given surrounding. Such activities include:
perception, evaluation, judgment and execution. Recognizing such limitation, the
objective of this paper is utilize a 3-D driving simulator to advance the state of
knowledge related to driving behavior while considering the surrounding environ-
ment’s impact (weather and road geometry) on drivers’ decision-making logic.

Through a thorough literature review, the authors looked at the external factors
that may impact longitudinal driving behavior. The major factors considered include
visibility level, road friction, curvature, gradient, median existence, lane width and
shoulder width. The literature review is then translated to an experimental set-
up with variables that “parameterize” the external environment’s characteristics.
A total of 36 students and staff from the George Washington University, 26 male
and 10 female, with varying driving experience participated in the experiments. The
participants drove behind a yellow cab which speed patterns are dictated by real-
word trajectories taken from the NGSIM trajectory data. The collected performance
measures include accelerations, speeds, longitudinal and lateral coordinates of the
subject vehicle and the lead vehicle.
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1 Introduction and Motivation

Different environmental conditions have been identified to have an impact on
individuals’ driving behaviors. Examples of different environmental conditions are
weather-related factors and road geometry-related factors. For instance, it has been
shown that reduced visibility has a substantial impact on traffic flow dynamics [14]
while the geometry of the road layouts leads to changes in driving behavior [23].
Weather condition and road geometry are the two congestion and crash triggering
factors which are still insufficiently understood. A large quantity of evidence exists
about the likelihood of rear-end crashes during abnormal weather or at accident
prone sections [3, 18, 19, 26, 33], but little effort has been devoted to quantify their
effects on driving behavior (in the micro scale) and congestion and safety (in the
macro scale) in the literature. Therefore, more detail behavioral bases studies are
required to describe the driving behavior of pre-crash in such situations.

Driving behavior is subject to change according to the surrounding environment.
While it is expected that different driving environments impose different changes
to the driving behavior of an individual, the magnitude of deviation from normal
driving behavior varies among drivers. Comprehensive study of the effect of certain
driving environments on driving behavior has been presented in the literature
[3], however, little effort has been presented to quantify the effects of different
weather conditions and road geometrical configuration on driving behavior. The
main objective of this paper is to use a driving simulator to test individual driving
behavior in different environmental situations and then use the data obtained to
understand how a driver perceives the dynamic changing driving surroundings (i.e.
different weather conditions and road geometrical configurations) and executes
acceleration maneuvers accordingly.

The structure of the remainder of this paper is as follows. First a background
review on the effects of weather and road geometry on the driving behavior is
presented. This section is followed by the experimental setup. The data collection
procedure is presented which is followed by a thorough numerical analysis. The
concluding remarks and future research directions are presented next.

2 Background Review

2.1 Weather

Multiple studies have focused on the statistical relationships between different
traffic measures and different surrounding weather conditions. The overall findings
of these macro level studies denote that visibility impairment, precipitation, and
temperature extremes may affect driver behavior and vehicle maneuverability.
Chen et al. [4] found that weather and road surface conditions bring about some
differences in car-following behavior. Based on recorded traffic data, Ibrahim and
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Hall [16] found that free-flow speed reduces 1.9 mph in light snow, 3.1–6.2 mph
in heavy rain, and 23.6–31 mph during heavy snow. Liang et al. [21] conducted a
study to investigate the impact of visibility on speed. Through data collection, they
found that average speed reduces 11.9 mph during snow events, and that the overall
variability in average speed during snow events was nearly three times larger than
normal weather conditions.

Another group of studies have focused on the concepts and theories of car
following to understand drivers’ car following behavior, their headway maintenance
and how the choice of headway affects safety [3, 33]. It was suggested that drivers’
car following behavior can be affected in dense fog resulting from obscure scenery
[7]. Evans also observed that drivers tended to follow the lead vehicles much closer
from the fear of losing a reference when driving in foggy weather. Hawkins [13]
reported a significant increase in distance headways when visibility distance was
150 m. Van Der Hulst et al. [31] studied driving behavior in fog with a visibility
distance of 150 m. They noted that due to the difficulty in anticipation that the
visibility reduction causes, drivers increase time headway under low visibility
conditions. They also found that drivers’ reactions to decelerations of the leader
were very accurate even when visibility was reduced.

The friction coefficient of the road surface, which influences vehicle’s maneu-
verability, has been widely studied. Perrin and Martin [25] analyzed traffic flow in
Salt Lake Valley, Utah during winter. The results indicated that start-up delays on
snowy pavement and wet pavement was 23 and 5 % higher, respectively, than the
delays observed on dry pavement. As friction and precipitation types are highly
correlated, Wu et al. [34] presented a novel car-following model according to the
relationship between vehicle deceleration and passenger comfort levels. In this
model, the friction coefficient between vehicles and road surface is considered and
experiments with this model showed high compatibility with real-life observations.
Wallman et al. [32] found that average speed reduces by 10–30 % in icy and snowy
weather conditions respectively. Tanaka et al. [30] studied the influence of different
road surfaces through car-following platoon experiments and they discovered a
significant difference in driving behavior between icy and dry roadway surfaces.

2.2 Road Geometry

Roadway layouts, including lane and shoulder width, median existence, horizontal
and vertical alignment, also have considerable impact on driving behavior. Roadway
geometry affects drivers’ perception of driving environment and therefore influences
their driving behavior [17]. Several studies showed that crash rate were associated
with roadway design [18, 19, 26]. However, only few studies directly investigated
the effects of a specific roadway design elements on driving behavior through
controlled manipulations [22]. In this paper and based on the above studies,
horizontal and vertical alignments, lane width, shoulder width, and median existence
are considered as the geometric features of interest.
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Different road characteristics such as road curvature and gradient affect driving
behavior differently, as suggested by Rockwell [27]. Andueza [2] developed a
model to estimate vehicular speed on curves and tangents of roads. The study
found that drivers’ choice of speed within horizontal curves highly depended on
the roadway features before the start point of the curve. McLean [23] studied the
influences of rural road alignment on drivers’ speed selection behavior by collecting
free-flow speed data at 120 curves with approach tangent sites on two-lane rural
highways. Their analysis suggested that the observed 85th percentile car speeds
were dominantly influenced by the desired speed.

Yang and Peng [36] identified the road gradient as an exogenous disturbance of
longitudinal driving behaviors in an error-able car-following model. Mullins and
Keese [24] also suggested that rear-end accidents were common at vertical curve
locations where unfavorable sight conditions existed. Lefeve [20] investigated driver
behavior on two lane rural highways with vertical curves, where the minimum sight
distances ranged between 150 and 500 ft. It was well observed that drivers invariably
reduced the speeds as they approached vertical curves with short sight distances. It
was also found that speeds at the vertical curves (regardless of the sight distance)
appeared to be determined by present operating speeds. According to this study,
roadway crash rate was much higher on sag curves than on crest curves. Glennon
[10] noted that crash rate at grade sections were much higher than crash rate at
level sections. Their findings showed that crash rate is higher at steep gradients and
down-hill sections.

The effect of lane width on traffic flow efficiency as well as safety implications
has been investigated for many years. Harwood et al. [12] suggested that the
roadway capacity would drop when the width of traffic lanes is below 12 ft.
Specifically, 11 ft lanes have 3 % less capacity than 12 ft lanes; 10 ft lanes have 7 %
less capacity than 12 ft lanes; 9 ft lanes streets have 10 % less capacity than 12 ft
lanes. Narrower lanes are perceived as less tolerant and less secure. This led drivers
to adopt speed control to avoid dangerous or risky situations [29]. De Waard [6]
noted that driving on a narrow lane requires greater mental effort than driving on a
wide lane, because drivers need to keep vehicles within the lane. Yagar and Van [35]
reported 1.1 mph reduction in average speed for every 1 foot reduction in lane width.
Likewise, Heimbach et al. [15] found that during off-peak hours, if lanes narrowed
by 1 ft, speed would tend to reduce 0.6 mph, when other factors are held constant.
They showed that during peak hours, speed decreases by 1 mph per foot of lane
width. Besides the impact of lane width on driving behavior and speed selection,
lane width has an effect on roadway safety. It has been demonstrated that the use of
narrower lanes would lead to more crashes if other roadway characteristics remain
unchanged [11]. Heimbach et al. [15] showed that crash rate increases as lane width
decreases, but the relationship is not linear. Karlaftis and Golias [18] quantitatively
assessed the effects of various highway characteristics on crash rate using a crash
database. They identified lane width as one of the most important factors affecting
crash rate on two-lane roadways.

Shoulder width has also an impact on driving behavior. Yagar and Van [35] found
a small increase in driving speed on 2-lane rural roads if an emergency lane/hard
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shoulder was added. Stamatiadis, et al. [28] suggested that wider shoulders give
drivers a sense of security and much space to correct their driving errors. However,
narrow lanes demand more mental concentration and could decrease the positive
effects of wide shoulders on safety. In a study on safety relationships between
geometric characteristics and crashes, Zegeer and Deacon [37] concluded that crash
rate decreased with increasing lane width and shoulder width. It was also observed
that lane width had a greater impact on crash rate compare to shoulder-width.

Finally, it has been confirmed that the existence of median on highways have
substantial influence on traffic flow operations and traffic safety. For example,
Council and Stewart [5] examined the safety differences between divided two-lane
and undivided four-lane rural roadways. It was concluded that the existence of
median barriers had positive effect on crash rate. Fitzpatrick et al. [9] pointed out
that the presence of medians results in higher speeds than where no median existed.
The speed on streets without medians was about 38 mph, and the speed was 42 mph
with a raised median in urban areas.

3 Experimental Set-Up

By reviewing the external factors of weather and road geometry, the objective is to
investigate drivers’ responses (in terms of basic traffic measures of effectiveness)
to reduced visibility, different road surface conditions, different horizontal and
vertical curves, and different lane and shoulder widths in real-world conditions.
This investigation is performed using a driving simulator. Using a driving simulator
is an alternative for on-road tests when researchers wish to use more controlled
circumstances, or manipulate specific test conditions such as weather conditions
and road geometric configurations. Since the hazard normally faced on a roadway
due to inclement weather conditions or to challenging geometric conditions may be
minimized, driving simulators are useful tools for the studies of driving behavior
and traffic safety. A total of 36 students and staff from the George Washington
University, 26 male and 10 female, with different driving experience participated
in the experiments. The participants’ average age was 24.8 years (std 4.02 years),
ranging from 20 to 35 year. Every participant had a valid US driving license with
6 years of driving experience in average (std 4.50 years). None of the participants
had previous experience with the driving simulator or reported any history of visual
problems. Among 36 participants, 6 (1 female, 5 males) had road crashes in the
past 5 years and 1 (male) refused to answer this question. The 26 males and 10
females were randomly assigned to 2 or 3 of the 15 experimental scenarios (5.5 min
each). Details about these experiments are presented later. With this assignment,
each experiment had at least three participants (one female participant and two male
participants).

The simulation scenarios in our study consist of different weather conditions
and road geometric configurations. In standard scenario, the test route is an 8,000 ft
stretch of two-way, two-lane roadway through a rural landscape. A series of metal
median barriers with the dimensions of 10 ft long, 1.5 ft wide and 1.5 ft high are
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displayed in the middle of the roadway. The lane width and the shoulder width of
the roadway in both directions in the standard scenario are 12 and 6 ft, respectively.
Speed limit signs of 65 mph, white dashed lines as the lane markings and white solid
line at edge were posted throughout the scenario. The weather condition for the
standard scenario is set as clear day with blue skies with no wind that may influence
vehicle maneuverability. In terms of traffic condition, multiple vehicles traveling on
both directions of the road are inserted. Steady streams of oncoming vehicles were
created throughout each simulation. There was also steady traffic traveling in the
same direction as the driver in both the center lane and side lane. In addition, one
lead vehicle was programmed to travel on the side lane throughout the simulation
of the standard scenario (a yellow cab). In order to make the movement of the lead
vehicle as generic as possible, the traffic data collected in the Federal Highway
Administration’s Next Generation Simulation project [8] were adopted to define the
speed profile of the lead vehicle in this study.

Two different median types: metal median barrier and concrete median barrier
were used in the experiment. Undivided road was also tested in the studies. The
lane width of a roadway also greatly affects the safety and comfort of drivers as
reviewed in the previous sections. Although 12 ft lane width is desirable on both
rural and urban roadways, lane width of 9, 10 and 11 ft are all in use in real word
[1] and thus were tested in the simulator experiment. In terms of the horizontal and
vertical curves, the spiral curve design standards were adopted (per AASHTO [1]).
When designing the roadway layouts in mountainous area, six different horizontal
curves were adopted. Three smooth horizontal curves were also used in the case of
rolling terrain scenario.

On the other hand, it was confirmed in the literature that reduced visibility
conditions have huge impact on rear-end crash rate. In order to see the weather
influence on longitudinal driving behavior, the current study utilizes the driving
simulator-based method where fog is simulated as a distance dependent contrast
reduction while having participants follow a lead vehicle in front of them. Fog
density is considered uniform throughout each driving test and is adjusted to present
four different sight distances (65.62, 164, 328 and 656.2 ft) for each of the four fog-
related experimental scenarios. Road surface condition also affects vehicle stability
of driving behavior. The Road Surface Attribute event in STISIM Drive (Software
operating the simulator) is used to define different road surface conditions. In this
driving experiment, two different road surface conditions were created to simulate
wet and icy roadway surfaces. When driving on normal roadway surfaces, the
vehicle tires will have enough traction, which is sufficient to respond to steering
input. However, when the friction coefficient reduced to 0.2 (icy condition) and
0.4 (wet condition), drivers will find that the vehicle is harder to control and less
responsive.

Table 1 presents the summery of all 15 scenarios that resulted from the change
of the surrounding parameters presented above. Note that in all of the 14 scenarios
(excluding the standard scenario), only one external factor was changed while the
other conditions remained as in standard scenario. The standard scenario consists
of two-lane rural road marked with single white edge lines and separated by metal
median barrier.
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Table 1 Test variables in each driving scenario (HC: horizontal curve length; VC: vertical curve
length)

External factors Items Specification

Road geometry Median 10 ft long, 2 ft wide, 3 ft high concrete barrier

10 ft long, 1.5 ft wide and 1.5 ft metal barrier

Undivided Road (Double Solid Yellow Line)

Lane width (LW) LW = 9 ft

LW = 10 ft

Shoulder width (SW) SW = 0 ft

SW = 3 ft

Mountainous area HC = 172 ft VC = 134 ft

HC = 344 ft VC = 200 ft

HC = 515 ft VC = 300 ft

HC = 345 ft VC = 500 ft

HC = 687 ft

HC = 1,716 ft

Rolling terrain HC = 572 ft VC = 500 ft

HC = 1,030 ft VC = 963 ft

HC = 1,145 ft VC = 843 ft

Weather Visibility distance (VD) VD = 65.62 ft

VD = 164 ft

VD = 328 ft

VD = 656.2 ft

Friction coefficient (FC) FC = 0.2 (ice condition)

FC = 0.4 (wet condition)

4 Exploratory Numerical Analysis: Speeds and Headways

In this section, the results of driving simulator experiments are presented and the
impacts of the external factors on longitudinal driving behavior are discussed in
detail. The average speed is calculated for each group in the 15 experiments. The
average choice of time headway and its standard deviation is also calculated for
each experiment. The results reveal that participants tend to choose lower speed
when traveling on narrower lanes or narrow shoulders. Likewise, the average speed
under wet and icy road surface conditions are also slightly lower than under other
conditions, which were 23.94 and 23.82 ft/s. The results show that fog density has
little to no effect on the drivers’ choice of speed (average speeds in four different
foggy conditions were all about 24 ft/s). However, the standard deviations of speed
in foggy conditions were greater than under standard condition, except for the third
case (VD = 328 ft), which indicates that poor visibility to some extent does not
always confine drivers’ traveling speed but it does cause much more uncertainties
and therefore leads to much more changes in drivers’ speed choices when following
a leader.
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When looking at the longitudinal driving behavior, the distance to a vehicle ahead
is one of the important safety margins that drivers have to maintain properly.

Generally, the distance to a vehicle ahead is expressed in terms of time headway
that is defined as the distance gap between the preceding and the following vehicles
divided by the following vehicle’s speed. Choice of time headway is also affected
by different weather and roadway conditions. When traveling on the undivided
roadway, the participants had the smallest time headway (4.71 s). This means that,
without additional objects/separations on the roadway, drivers feel much more
freedom and less constraint to keep a short gap following a leader. It is well
established that undivided roadways are less safe than divided ones. Therefore short
time headways on undivided roadways may appear to explain why crash history
on undivided roadways is relatively higher. Drivers’ behavior in dealing with foggy
condition is however different depending on the fog density. In very low and low
visibilities, driver tends to keep their distance from the leader, therefore, very high
time headways are observed. As the visibility distance increases, the drivers tend to
consider the leader in their decision making process; therefore, a decrease in time
headways is observed (comparing to the cases on very low and low visibilities).
Note that, the average time headway when visibility is 656.2 ft is less than most of
other scenarios. This finding is consistent with the previous research’s conclusions
that drivers tend to follow a lead vehicle much closer for visible cues under poor
visibility condition [7]. In addition, the time headway in rolling terrain is 10.14 s that
is the greatest in all experiment. This result suggests that following a lead vehicle
on a stretch of road with a number of uphill and downhill requires much more effort
dealing with the vertical alignment changes and drivers tend to “lose” the leader
which results in an increased in average time headway.

Conclusions and Future Research Needs
It is known that road traffic efficiency and safety result from a series
of factors including road-geometry factors, weather factors, vehicles, and
traffic dynamics. This study investigates the longitudinal driving behavior
under different road-geometry and weather conditions. Based on an extensive
literature review, 15 driving experiments are designed using the STISIM Drive
simulator. Throughout the test, 66 effective results are collected.

Testing the roadway-related factors (lane width, shoulder width, median
existence, median type, horizontal curves and vertical curves) and weather
related factors (foggy weather and icy and wet road surface conditions) in
15 driving scenarios, it is found that overall drivers’ average speed, time
headway, and distance headway are affected by these factors. It has been
confirmed repeatedly that undivided road will cause drivers to adopt an
aggressive driving strategy (less safety margins reflected by smaller time
headways). Conversely, traveling on the divided road, drivers adopt less

(continued)
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aggressive behavior since they try to avoid the barrier. The narrower lanes
are also found to be one of the influential factors that impact drivers driving
style when following a leader. The most extreme case of 9 ft traveling lane
would increase their distance with the leader compare to the normal case.
Drivers driving on a road without hard shoulders would less likely follow the
leader at a dangerously close distance. Inadequate visibility distance is also
found to influence driving behavior. Low visibility cause drivers to increase
their distance with the leader, while in higher visibility drivers tend to follow
the leader more closely.

Given the meticulous design of the experiments and the extensive data
collection efforts made, extending the findings of this study to calibrate
existing microscopic acceleration models while analyzing further the resulting
acceleration and deceleration patterns may constitute the future direction of
this research.
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The Stability Analysis of a Macroscopic Traffic
Flow Model with Two-Classes of Drivers

Alma R. Méndez and R.M. Velasco

Abstract One of the most important objectives in the development of traffic
theories is the improvement of traffic conditions. To achieve this goal, it is important
a good understanding of multistyle and/or multilane traffic. In this work, we
summarize the traffic model presented in Mendez and Velasco (FTC J Phys A
Math Theor 46(46):462001, 2013) and additionally include the stability analysis of
the same. The presented traffic model considers different driving styles, different
vehicle types or both, for a two-classes of vehicles in which a model for the
average desired speed is introduced (the aggressive drivers model) (Mendez and
Velasco, Transp Res Part B 42:782–797, 2008; Velasco and Marques, Phys Rev E
72:046102, 2005). The kinetic model was solved for the steady and homogeneous
state and also we obtained the local distribution function from an information
entropy maximization procedure. The macroscopic traffic model is constructed by
the usual methods in kinetic theory and a method akin with the Maxwellian iterative
procedure is accomplished in order to close the macroscopic model for the mixture,
where only the densities are present as relevant quantities. The linear stability
analysis is carried out in order to have an insight of the unstable traffic regions
of the model, which is very helpful in the numerical solution.

1 Introduction

Kinetic theory methods have been largely used in the study of the traffic flow
phenomena [1–3, 5, 10, 12]. This kind of methods links the microscopic and
macroscopic modeling giving a theoretical support to phenomenological models.
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Empirical observations have highlighted the wide variety of phenomena observed in
traffic flow [6–9,14,15], and recently there have merged many efforts to describe and
explain the wealth of traffic flow phenomena. In this work we present the stability
analysis of a model that considers different driving styles, different vehicle types
or both. The point of view we will follow to study such a problem is based on the
kinetic theory of traffic flow. In Sect. 2 we summarize (see [12]) some details of the
kinetic equation describing the evolution of each class of vehicles for aggressive
drivers which has been also addressed before for a single class of driver [11, 16].
The kinetic model is solved for the steady and homogeneous state and also we have
obtained a local distribution function from an information entropy maximization
procedure. In Sect. 3 the macroscopic traffic model is constructed by means of a
general transport equation obtained by the usual methods in kinetic theory. Then,
a method akin with the Maxwellian iterative procedure is achieved in order to
close the macroscopic model for the mixture where only the species densities are
considered as relevant quantities. The linear stability analysis is presented and
discussed in Sect. 4.

2 The Kinetic Model with Two-Classes of Vehicles

For a two-classes of drivers with punctual vehicles and diluted traffic, the equations
describing the evolution of the distribution function fi D fi .x; vi ; t/ for individual
vehicles of class i D a; b is

@fi

@t
C vi

@fi

@x
C @

@vi

�
Wi.x; vi ; t/ � vi

�i
fi

�

D
X

jDa;b
Q.fifj /; (1)

where

Q.fifj / D .1 � p/

�Z 1

v
dwj fi .vi /fj .wj /.wj � vi /

�
Z v

0

dwj fi .vi /fj .wj /.vi � wj /

�

: (2)

for self-interaction we have terms i D j and cross-interaction are represented by
i ¤ j .

In Eqs. (1) and (2) p is the overtaking probability and Wi is the mean desired
velocity. We propose the following prescription for the former velocity

Wi.x; vi ; t/ D !ivi ; (3)
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where !i & 1 is a constant called the aggressivity parameter of i�class vehicles.
Relation (3) indicates that drivers desired velocity increases as their actual velocity
increases, i.e., drivers want to drive faster than they do [11, 16].

As usual in kinetic theory, the local variables such as the traffic density and the
mean velocity of each vehicle class i are defined through the first two moments of
the distribution function as follows

Z

fidvi D �i

Z

fividvi D �iVi ;
X

i

Z

fividvi D �V: (4)

2.1 Equilibrium Solution and the Information Entropy

For the homogeneous and steady state, Eq. (1) can be solved analytically assuming
relation (3) for the mean desired velocity. The details of this calculation are
analogous to the single class case and can be consulted in [16], the result is

fie.vi / D �ie˛i

� .˛i / Ve

�
˛ivi
Ve

�˛i�1
exp

�

�˛ivi
Ve

�

; ˛i D �i

!i � 1.1 � p/�eVe:
(5)

˛i is a constant that contains information on the equilibrium state and the model
parameters �i , !i and p and � .˛i / is the gamma function with argument ˛i . In
this case the e-subindex means that the quantity corresponds to the steady and
homogeneous case, usually called as the equilibrium state.

The local zeroth-order approximation for the one-vehicle distribution function
follows through a maximization procedure of the information entropy referred to
the equilibrium state. First we write the information entropy as

S Œfi .x; vi ; t/� D
X

iDa;b

Z 1

0

f
.0/
i .x; vi ; t/ ln

 
f
.0/
i .x; vi ; t/

fie .vi /

!

dvi ; (6)

and consider relations (4) as restrictions for the optimization procedure. With this
information the corresponding Lagrangian function, F , is constructed and the
distribution function which satisfies the optimality condition ıF=ıf

.0/
i D 0 is

given by

fi .x; vi ; t/ D �i .x; t/ ˛i

� Œ˛i � V .x; t/

�
˛ivi

V .x; t/

�˛i�1
exp

�

� ˛i vi
V .x; t/

�

: (7)

At this point it seems important to emphasize that the distribution function (7) has
the same functional structures that (5), both the equilibrium values are replaced by
the local variables.
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2.2 Model Equation

The mathematical complexity of the non-linear interaction operator Qij can be
avoided if we replace the right hand side of Eq. (1) by a simple relaxation-time
term of the form [4]:

@fi

@t
C vi

@fi

@x
C @

@vi

��
Wi.x; vi ; t/ � vi

�i

�

fi

�

D �
X

jDa;b
�ij
�
fi � fij

�
; (8)

where fij is a reference distribution function to be determined. Our aim is to derive a
model equation for a two-classes of vehicles characterized by the �i ; Vi . We propose
the following form for the reference distribution function fij:

fij D f
.0/
i

�
1C Aij CB ijCi

�
where Ci D .vi � V / (9)

f
.0/
i given by (7) and Aij and B ij are undetermined coefficients. To specify these

coefficients we assume

fi D f
.0/
i .1C i / (10)

where the deviation i is a linear function of the spatial gradients and must satisfy
compatibility conditions. Inserting (9) and (10) in (8)

i D 1

�i

"

1C 2

Vi
.vi � Vi /� ˛i

V 2
i

.vi � Vi/
2

#
�@Vi

@x


: (11)

where restrictions (4) have been used. It is worth noticing that the deviation  to the
distribution function depends on the velocity gradients.

3 The Macroscopic Equations and the Iterative Procedure

Once we have the distribution function fi , through (10) and (11), it is possible to
obtain the macroscopic equations and close them. The procedure is the standard in
kinetic theory, the resulting balance equations are

@�i

@t
C @�iVi

@x
D .1 � p/��i .V � Vi /; (12)
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� �iVi D �.1 � p/�
i : (13)
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where �i
i D R
f .x; vi ; t/ .vi � Vi /

2 dvi ; i D a; b are the speed variances. To
be practical, we now apply a method akin to the Maxwell iterative procedure [13],
to obtain a first order model for each different class of vehicle. We assume that
Vi .x; t/ D V

.0/
ie .�i .x; t//C OVi .x; t/. In this case we obtain the closure relation
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By introducing (14) in (12) we get the model
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4 Linear Stability Analysis and Concluding Remarks

In order to determine if our model equation produces unstable traffic regions, a linear
stability analysis of Eqs. (15) will be carried out. We write the perturbed densities
as

�i .x; t/ D �ie C �i exp .�� t C ikx/ D �ie C Q�i .x; t/ (16)

for i D a; b where k is the wave number and � is the growth parameter.
The procedure consists in inserting perturbations (16) into Eqs. (15) and neglect
nonlinear contributions. The following linear system is obtained
�
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0
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Fig. 1 The stable region for �e D 35 veh/km

Fig. 2 The stable region for �e D 70 veh/km

Table 1 Parameters for the
graphics

Vehicle class

Class a ˛a D 120 �a D 0:012

Class b ˛b D 100 �b D 0:06

The nontrivial solutions of system (17) are obtained when the determinant of the
coefficient matrix vanishes, leading to a dispersion relation of the form �2C�b.k/C
c.k/ D 0.

This relation is very complex and is solved in Mathematica for some specific
values. The results in Figs. 1 and 2 show the stable regions, corresponding to
RŒ�1;2� > 0, that is, when both �1 and �2 are positive. The parameters used in these
figures are in Table 1 and we have used also the relations Ve.�/ D Vmax .1 � �=�max/

and .1 � p/ D �=�max with �max D 140 veh/km and Vmax D 120 km/h.
Figures 1 and 2 show that we have stable regions. Worth be mentioned that a

linear stability give us just a guide of the real stability regions, in order to have a
better understanding a non-liner stability analysis should be done.
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Driver Heterogeneity in Rubbernecking
Behaviour at an Incident Site

Shahreena Rhasbudin Shah, Victor L. Knoop, and Serge P. Hoogendoorn

Abstract Incidents can reduce roadway capacity due to lanes blockages, and in
some cases, also affect the flow in non-incident direction. This paper provides
insights into change of driving behaviour while passing an incident site in attempt
to assess rubbernecking activity. We use empirical trajectory data obtained from
a helicopter-mounted video camera. By assessing the points where acceleration
changes on speeds profiles over distance of individual vehicle, the behavioural
changes of driver passing in the opposite direction of the freeway incident can be
determined. Results show that the variations in speed in the upstream of incident
location are substantially higher within passenger car drivers then within the truck
drivers. The passenger cars in the median lane reduce the speed further upstream,
mostly with sharp deceleration while passenger cars in the shoulder lane reduce
the speed closer to the incident scene. Truck drivers, on the other hand, tend to
decelerate earlier and farther upstream, more than 125 m from the incident site.
Some drivers did not exhibit rubbernecking behavior, passing the incident with a
steady speed. This study emphasizes the difference between passenger car and truck
driving behaviour while passing an incident location. The results provide a better
understanding of rubbernecking behaviour and useful for modeling driver behaviour
under incident conditions.

1 Introduction

Most of traffic incidents such as crashes, spilled load, or temporary road
maintenance that happens on a roadway can affects traffic due to physical reductions
(lane blockages). However, traffic incidents also can cause a phenomenon, which
significantly affects the traffic flow referred to as rubbernecking. Rubbernecking
term is widely used in incident study to describe the breakdown of traffic in the
opposite direction of the incident resulted by non-physical bottlenecks. It is caused
by change in driver behaviour when passing an incident. Knoop et al. [1, 2] have
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shown that rubbernecking may reduce the capacity per available lane by about 50 %.
According to that study, the behavioural changes of drivers (lower speed, increase
in time headway and increase in reaction time) during incident conditions lead to a
25–40 % reduction of normal queue discharge rates [3]. It has been reported in [4]
that about 10 % of accidents caused rubbernecking in the opposite direction.

To the best of our knowledge, only average rubbernecking effects have been
analyzed but in depth the heterogeneity in the behavioural change has never been
look into. In this paper, heterogeneity not only focuses on the behavioural difference
between passenger cars and trucks but defined as difference in individual driver
behaviour when passing an incident. In this study, acceleration changes while
approaching the incident scene are attributed to a rubbernecking behaviour, due
to driver attention shift to the incident. The main goal of this paper is to improve
understanding on the heterogeneity in rubbernecking behaviour. Therefore, the main
question addressed in this paper is: is there a variation on driver behaviour between
vehicle groups and within vehicle groups when passing an incident? We do so by
identifying differences in speed changes between passenger cars and trucks while
passing an incident site. The findings of this paper will be useful in considering the
heterogeneity in modeling microscopic driver behaviour under incident conditions.

2 Data Extraction and Handling

2.1 Incident Description

The incident site is located on Motorway A1, near the city of Apeldoorn, The
Netherlands. The incident type is a rolled over van, ended in the median (unpaved
area which separates opposing lanes of the motorway), and happened around
9:15 a.m. on 6 June 2007, at the eastbound direction. There are two main lanes and
one shoulder lane in each direction of the motorway, and no gradient. The speed
limit on the motorway is 120 km/h. The weather condition during the incident was
clear. Emergency vehicles were presence during the collection of data and blocked
one lane in the incident direction.

2.2 Data Collection and Description

The empirical trajectory data in the opposite direction of the incident location have
been collected using a digital camera mounted under a helicopter. Microscopic data
was obtained over a length of 230 m, starting approximately 125 m upstream of the
incident site. A total of 199 vehicle trajectories were observed and collected on both
lanes, consisting of 123 passenger cars in the median (left/fast) lane, 35 trucks and
41 passenger cars in the shoulder (right/slow) lane. The trajectories have undergone
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Fig. 1 The examples of speed patterns of individual vehicles

several processes before proceeding with the analysis. For further explanation, we
refer to [5].

2.3 Overview of the Collected Data

The speed data were separated into three vehicle groups: passenger cars in the
median lane, trucks, and passenger cars in the shoulder lane. In order to determine
the changes in speed due to rubbernecking behaviour, we plot the speed (calculated
with 0.1 s intervals) over incremental distances for each individual vehicle. Analysis
of the individual vehicle speed profiles show that there are three distinct speed
patterns as shown in Fig. 1. The black vertical line on the graph represents the
location of the incident.

3 Data Analysis and Results

3.1 Analysis on Difference in Speed at a Location

We analyzed the speed data for different parts along the road. We focus on the
variation in vehicle speeds and the statistical difference in speed between each
vehicle class and within vehicle class, spatially split the roadway in segments of
10 m. In each segment, there are speeds for vehicles in all groups. Using a t-test, we
test whether differences in mean speed between the vehicle groups are significant.
In the remainder of the paper, the distance along the roadway is denoted by x.
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3.2 Statistical Analysis on Speed Data

This section presents the statistical analysis on driver speed passing the incident
site. Figure 2 shows the spread in speed for each vehicle group. We can observe
that there are wide variations of speed of passenger car drivers at the beginning
of study section, especially the one in the median lane. From the observation of
individual speed profiles, all of the passenger cars show the three reaction patterns.
Measurement of central tendency suggest that most of the passenger cars in the
median lane reduce the speed between x = 20 and 40 m, while in the right lane
they reduce speed between x = 50 and 70 m. Since this is the point where the
average speed drops, it can be assumed that the points are the rubbernecking zone,
where most of the drivers reduce their speed. However, there is no speed drop for
truck drivers, suggesting that most of the truck drivers continue to accelerate when
passing the incident location, as conform to the speed profiles of truck drivers where
majority show acceleration pattern within the study area.

Figure 3 shows the difference of mean speed between each vehicle group and the
results of independent t-test. There are three sets of pairs in this test: (1) Trucks in
the shoulder lane and passenger cars in the shoulder lane, (2) Trucks in the shoulder
lane and passenger cars in the median lane and (3) Passenger cars in the median
and passenger cars in the shoulder lane. The plots show large differences in speed
between the first pair, even though both vehicle groups are in the same lane. The
passenger car drivers start with a higher speed than truck drivers, but the wide
difference in speed between them is closer towards the incident site, hence there is
no statistical difference in speed between the two groups between x = 90 and 120 m.
After passing the incident, the difference continues to increase with a slow rate, due
to trucks capability to accelerate.

As for the second pair, the approaching mean speed of passenger cars in the
median lane is higher than trucks drivers but the difference decreased until there is
no significant difference between x = 30 and 40 m. This is believed to be where the
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Fig. 3 Mean speed difference and independent t-test

drivers drive at the lowest speed to look on the incident. After passing this point, the
passenger cars continue to speed up and resulting a large difference in mean speed.

Between the passenger cars, shoulder lane drivers approaching the incident
location with a slightly higher speed than median lane drivers, but there is no
significant difference in speed. At x = 60–80 m, the difference in mean speed
between this vehicle groups is nil. After this point, the median lane passenger cars
accelerate and increase the difference between these two vehicles.

4 Discussion

This study provides the insight into heterogeneity of vehicle speed in rubbernecking
behaviour. The analysis shows that there is a high variation in speed profiles between
individual vehicles. The variation in speed of passenger cars are higher upstream of
incident site and lower downstream of the incident site. It was found that the lowest
speed of median lane vehicles is further upstream than shoulder lane passenger cars,
within x = 25–70 m. On the other hand, the shoulder lane passenger cars reduce the
speed when closer to the incident scene. This can be described by the location of
the incident itself. Since the passenger cars in the median lane is close to median
(where the incident happened), the drivers are aware of the incident earlier than
drivers in the shoulder lane. In contrast, variation in speed of trucks is low and
constant through out the incident area. They mainly accelerate through the section,
indicating that they had to slow down for the congestion caused by the other drivers,
but they anticipated and started accelerating earlier, thus the rubbernecking zone of
trucks is nowhere to be found in the study section.

There is significance difference in mean speed between vehicles in median and
shoulder lanes. However, the mean speed difference in the upstream of incident is
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lower compared to downstream, and at certain points the results show no statistical
difference in mean speed between these vehicle groups. Further examination
on individual speed profiles shows that passenger cars in the median lane are
significantly affected by the incident, and demonstrate a sharp deceleration when
approaching the incident scene. On the other hand passenger cars in the shoulder
lane approach the incident with a higher speed than those in the median lane. Some
drivers, however, were not affected by the existence of incident and maintain a
steady speed, suggesting that not all vehicles choose to slow down the vehicles
while passing an incident site.

Conclusions and Future Work
This study analyzed the rubbernecking behaviour in the opposite direction of
the freeway accident, and shows that there is high variation in driver behaviour
under incident conditions due to different driver reaction. Passenger cars in
the median lane show a much higher variation in speed. Truck drivers, all in
the shoulder lane, showed a completely different type of behaviour. Drivers
of passenger car in the shoulder lane showed a more dynamic behaviour
than the truck drivers, but speed variations were less than the passenger cars
in the median lane. The findings show that the speed of individual vehicle
varies between vehicle class, occupying lane and visibility of the incident.
Vehicles in either the same or different groups react differently while passing
an incident.

This study gives an insight into underlying processes that leads to a
speed reduction and variation in non-incident direction. The results provide
a better understanding of underlying activity in rubbernecking and can be
used to establish a framework in quantifying the rubbernecking effects. In
this study, we did not differentiate between speed reductions due to car-
following behaviour and speed reductions due to rubbernecking. And also
the variation of other parameter such as headway and reaction time, as well
as lane changing behaviour. This will get more attention in future work.
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Why Does Traffic Jam Acts Universally?

Tsumugi Ishida and Yūki Sugiyama

Abstract The theoretical reason for the existence of universal features of traffic
jams forming in various places and with different number of cars on highways is
provided using exact solutions of a mathematical model for traffic flow, the Optimal
Velocity (OV) model. The OV model well reproduces real traffic data of jams in
several aspects, such as the critical density of jam formation, the velocity of a jam
cluster, etc. where each value is almost universal. The OV model with Heaviside step
function as OV-function has essentially the same properties as a realistic OV model.
Recently, we have obtained exact solutions of jam flow in the model for an arbitrary
number of cars N > 3 and car-density. In the solutions, the dependence on N and
the density are exponentially reduced for N ! 1. This means that the properties
of jams with more than about ten cars are almost the same as that of an infinite jam.
This result is originated in the fact that the model is built mathematically based on
the concept that traffic flow is a non-equilibrium dissipative system. This explains
the universality of jam flow.

1 Introduction and OV Model

Traffic jams appear on a highway in several places, with different numbers of cars
and under different conditions of the road. However, the properties of traffic jams,
such as the critical car-density of emergence of a jam, the fundamental diagram (the
relation between car-density and flow), the velocity of a cluster of jam, etc. These
properties are very common independent of such conditions. We naturally wonder
why traffic jams act highly universal. The question seems naive, but the answer is
not trivial at all. In this paper we provide a physical and mathematical answer using
the exact solution of a traffic flow model, the Optimal Velocity model.
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The OV model is a minimal 1-dimensional system of particles with nonlinear
asymmetric interactions and a dissipative (viscous) term, which was first introduced
as a traffic flow model in [1, 2]. The equation of motion is formulated as

d2xn

dt2
D a

�
V.�xn/ � dxn

dt


; (1)

where xn is the position of the nth car, and �xn D xnC1 � xn is the headway
distance. a is a control parameter, which dimension is the inverse of time. The
OV-function V.�xn/ determines the interaction with a car moving ahead. V.�xn/
should be a sigmoidal function. The model well describes the emergence of a jam
in traffic flow and clearly explains its physical mechanism.

As for the simple case choosing the Heaviside step-function as OV-function, such
that V.�x/ D 0 for �x < d , and V.�x/ D vmax for �x 	 d , the emergence of a
traffic jam is observed as in Fig. 1.

The jam flow solution in this model can be obtained analytically based on some
hypothesis, which is justified for the case of large N [3]. Moreover, the N -body
problem for the jam flow solution is exactly solved for N D 2; 3; 4; � � � , in the
special case of car-density L=N D d [4]. Recently, we have obtained the most
general jam flow solution for arbitrary N and L.

The profile of a jam flow is described by a limit cycle solution in the phase space
.�xn;

dxn
dt /, which expresses the two regions in a jam cluster and that cars move

smoothly [2]. Profiles of jam flow solutions for several N , L, and car-densities are
presented in Fig. 2.

We notice that solutions with the same density L=N but with different number
of carsN , are different. However, these differences seem to be reduced for largeN .

In this paper, using the exact solution for an arbitrary number of cars N and
length of circuit L, we discuss the universality of traffic jams.

Fig. 1 Plot of all cars,
N D 100, for the process of
jam formation on a circuit in
the OV model with Heaviside
step function as OV-function.
The initial condition is set as
homogeneous flow. The orbit
for a car is represented as an
example
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Fig. 2 Profiles of jam flow solutions (limit cycles) for N D 4; 5; 10; 30 with several densities,
L=N D d ˙ �. The horizontal axis is the headway distance �x, and the vertical axis is the
velocity dx

dt
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2 Procedure of Solving the OV Model

The equation of motion Eq. (1) consists of two parts according to �x < d or �x 	
d . Each case is easily solved as follows. At the initial condition, xn.t0/, Pxn.t0/ for
t D t0, in the case �x < d ,

xn.t/ D xn.t0/C Pxn.t0/
a

.1 � e�a.t�t0//; (2)

and in the other case �x 	 d ,

xn.t/ D xn.t0/C vmax.t � t0/ � vmax � Pxn.t0/
a

.1 � e�a.t�t0// (3)

The motion of each particle is constructed by changing these two solutions
depending on its headway distance �x. The important point for obtaining a jam
flow solution is how to connect the above two solutions in the appropriate condition.

If we obtain five unknown variables, we can determine the connection condition
to build up a jam flow solution for N and L. They are the following: The velocity
vRB of a particle at the time when�x D d where the solution changes from Eqs. (2)
to (3), and the velocity vBR when the solution changes from Eqs. (3) to (2); the time
delay � ; the period of the same relative position shifting one number of particle,
satisfying xn.t C �/ D xnC1 � vc� ; the shift of time beyond � , denoted by �t ,
that is the difference between the period in �x < d and that in �x > d ; and vc ,
the velocity of a cluster moving in the opposite direction of the car motion. We can
write down five independent equations including the above five unknown variables
and derive these variables from the solution.

3 Exact Solution of a Jam Flow

A cluster flow solution for a given arbitrary number of cars,N and circuit length,L,
with a densityL=N D dC�, .� 	 0/ is expressed by using five unknown variables;
vRB, vBR, vc , � , �t .1 They are obtained as

vRB D vmax.1 � e
N
2 a.���t//

.1C e
N
2 a� /.1 � e

N
2 a� /

; (4)

vBR D vmax.1 � e�N2 a.���t//
.1C e�N2 a� /.1 � e� N

2 a� /;
(5)

1 The solution with a density L=N D d � � is also obtained, which has the symmetry of duality.
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vc D d � 1
2
vmax�

�
C f .�t IN/; (6)

a�.1C e�N2 a� /.1 � e�N2 a� /

1 � e�
N
2 a� .e�

N
2 a�tCe N2 a�t /
2

D 2.1 � e�a� /; (7)

where f .�t IN/ is given as

f .�t IN/ D vmax

2a�

e
N
2 a�t � e� N

2 a�t

e
N
2 a� � e� N

2 a�
.1� e�a� /: (8)

The difference of density from the self-dual case d D L=N , denoted by �, is
expressed with �t as

� D vmax�t

2
� f .�t IN/� (9)

4 Rapid Convergence to the Universal Solution for Large N

The property of convergence for large N in the formula of the obtained solution is
determined by the largest of the two values a� and a�t . Figure 3 shows the relation

Fig. 3 N -dependence of a� and a�t
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obtained by solving Eq. (7) numerically for given N , which indicates

a� > a�t; (10)

for N 	 3. Thus, f .�t IN/ ! 0 for N ! 1 in Eq. (8), and Eqs. (4)–(7) are
reduced to

vRB D 0; (11)

vBR D vmax; (12)

vc D d � 1
2
vmax�

�
; (13)

a� D 2.1� e�a� /; (14)

independent of �t or �, which means independent of the density L=N . The jam
flow solution for N ! 1 is already known 10 years before [3]. In addition, as for
Eq. (9),

� D vmax�t

2
: (15)

Jam flow solutions depending onN and L converge exponentially, as e�N2 a� and
e�N2 a�t ! 0, for large N to the universal self-dual solution. They are independent
of the car density L=N D d ˙ � and the number of cars N . Based on these results,
we can explain analytically that the motion of every car in a jam flow built with
more than several 10 cars shows the same universal profile of the limit cycle as in
Fig. 2.

5 Answer of the Question

The property of the rapid convergence to the universal profile of the limit cycle
solution for jam flow explains that any jam flow shows the same behavior with the
common features independent of the condition and situation on real highways.

The characteristic factor of convergence as e�N2 a� is originated in the dissipative
(viscous) term in the basic equation of motion in OV model. This is evidence that
phenomena of traffic flow, such as jam flow, follow from the dissipative features in
physics.
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Stability and Homogenization of the Optimal
Velocity Model

Antoine Tordeux

Abstract Local and collective stability analysis give the conditions for that the
stationary solutions of car-following models are uniform. Recent homogenization
methods allow to obtain sufficient conditions for that the system converges with
no collision to the uniform solution. These conditions are calculated and illustrated
by numerical experiments with the linear optimal velocity model. As expected, the
homogenization condition is more restrictive than the condition for the collective
stability. More precisely, the homogenization condition corresponds to the over-
damped case of the local stability.

1 Introduction

The paper is devoted to the “Optimal Velocity” (OV) car-following model for traffic
developed by Bando et al. [1]. This model assumes a relaxation of the vehicle speed
towards an optimal speed that is a function of the distance gap.

Let denote xn.t/ 2 R the position of the vehicle n 2 N at time t 	 0. The
dynamics of the model are the differential system

8
<

:

Pxn.t/ D vn.t/;

Pvn.t/ D xnC1.t/ � xn.t/
� T

� vn.t/

�
;

(1)

with the parameters �; T > 0, and nC 1 the predecessor (or leading) vehicle. Here
the length of the vehicle is neglected. The parameter � calibrates the sensitivity
(or reactivity) of the driver, while T is the targeted time gap. The optimal velocity
implicitly used here is the linear function V W d 7! d=T .

Due to its simple form, the model is frequently mathematically investigated in
the literature. The stability conditions of the uniform solutions are well-known with
the OV model. Local analysis, when the dynamics of a single vehicle is described,
as well as collective (or string) stability of a line of vehicles, have been explored
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since the 1990s. See for instance [2, 3] for string analysis performed on a ring, or
[1, 4] for the case of an infinite line.

In the same spirit but with more rigorous constraints, invariance and homog-
enization methods have been developed with more general models, see [5]. The
approach, coming from the deterministic theory of infinite particles systems, is
based on viability techniques. It has been recently applied to the adaptive time gap
car-following model [6].

Both methods give the condition for that 1D systems of vehicles converge to
uniform solutions. We propose here to bring back the stability conditions, and to
calculate the homogenization conditions of the linear OV model (1). The simple
form of the results allows an explicite comparison. The paper is organized as
follows. Section 2 is devoted to the stability conditions, while Sect. 3 concerns the
homogenization properties. The results are illustrated through simulations in Sect. 4,
and discussed and resumed in the conclusion section

2 Stability Condition

We remind here successively the conditions for the local and for the collective
stability of the OV model (1). The results presented are well-known, see [7].

2.1 Local Stability

Within the local stability we describe the motion of a vehicle following a leader
moving at a constant speed v1 	 0. We denote x.t/ the position of the consider
vehicle at time t 	 0 and x1.t/ D x1.0/ C v1t the position of the leader. The
dynamics are

8
<

:

Px.t/ D v.t/;

Pv.t/ D x1.t/ � x.t/
�T

� v.t/

�
:

(2)

Let introduce y.t/ D x1.t/ � x.t/ � v1T . The spacing x1.t/ � x.t/ of the consider
vehicle converges to the equilibrium spacing v1T if limt y.t/ D limt Py.t/ D 0.

We have by construction � Ry.t/ D y.t/=.�T / C Py.t/=� . The equation corre-
sponds to the damped harmonic oscillator with angular frequency!0 D 1=

p
�T and

damping ratio � D .2T!0/
�1. The characteristic equation of this linear differential

equation is �2 C �=� C 1=�T D 0, with � 2 C. All the solutions y.t/ are linear
combinations of e�t and �e�t terms. Hence, the spacing converges to v1T if the
real part <.�/ < 0. More precisely, this convergence is strictly monotone (i.e.
with no oscillation, this is called over-damped for the oscillator) if the imaginary
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part =.�/ D 0. We have here � D � 1
2T

�
1˙ .1 � 4�=T /1=2

�
, and <.�/ < 0

since

T; � > 0 (3)

(except for the special case 4�=T 6 D 1 where �D 0). The spacing v1T is then
(almost) always stable. Moreover, =.�/D 0 if 1� 4�=T 	 0, i.e. the convergence is
strictly monotone (or over-damped) if

4� � T: (4)

An oscillating convergence to the spacing v1T can lead to collision. This is trivially
the case if v1 D 0. Thus, the condition (4) locally ensures no collision.

2.2 Collective Stability

We consider here an infinite line of vehicles. One denotes the density level � > 0.
The uniform (or homogeneous) solution H is such that xHnC1.t/ � xHn .t/ D 1=�

and xn.t/ D xn.0/C v�t , for all n and all t 	 0, with v� D 1
T�

. The homogeneous
configuration is an equilibrium solution.

If yn.t/ D xn.t/ � xHn .t/, the solution H is said to be stable if limt yn.t/ D
limt Pyn.t/ D 0 for all n. It is easy to check using (1) that Ryn.t/ D ˛.ynC1.t/ �
yn.t// C ˇ Pyn.t/, with ˛ D 1=.�T / > 0 and ˇ D �1=� < 0. The characteristic
equation of the system is �2
 � ˇ�
 C ˛

�
1� ei


� D 0, with �
 2 C and 
 2 R. All
the solutions y.t/ are linear combinations of e�
 t and �
e�
 t , and the homogeneous
configuration is stable if <.�
 / < 0 for all 
 2 .0; 2	/.

Solving the characteristic equation, it is well-know that stability holds if ˛.1 C
cos 
/ < ˇ2 ( 2˛ < ˇ2 (see for instance [1]), that is, using the initial parameter,

2� < T: (5)

Note that for a general optimal speed function V 2 C1, the condition,
corresponding to the linear stability condition, is 0 < V 0.1=�/ < 1=.2�/, and that
the strict inequality is a simple one for the case of a finite system (ring).

The condition obtained for the collective stability is stronger than the condition
for local stability (3), but weaker than that of the over-damped local stability (4).

3 Homogenization Condition

The homogenization condition of the optimal velocity model are calculated as in
[6] with the adaptive time gap model. The method is extracted from deterministic
theory of infinite particles systems. It consists to use an equivalent system of
spatial variables, and to determine sufficient conditions for that it exists invariant



552 A. Tordeux

(viable) sets for successive difference (or spacing) variables. This enables to obtain
a comparison principle, ergodic property and, after rescaling, homogenization to the
macroscopic LWR model [8, 9].

The approach is close to the one use by Aw et al. [10], who used Euler/Lagrange
changing of variables instead of viability techniques with invariant sets and
comparison principle. Note that invariant set for spacing variables (and collision
presence) is also investigated by Greenberg et al. [11] but in a different way, using
discrete estimates and monotonic properties.

We propose here a brief analysis allowing to obtain the invariant sets (and refer
to [6] for a complete approach). Let first introduce the variable

�n.t/ DW xn.t/C ��vn.t/; � > 0: (6)

Then, .xn; vn/n solves (1) if and only if .xn; �n/n solves
8
<

:

Pxn.t/ D 1

��

�
�n.t/ � xn.t/

�
;

P�n.t/ D F.xn.t/; xnC1.t/; �n.t//;
with F.xn.t/; xnC1.t/; �n.t// D 1��

��

�
�n.t/ � xn.t/

�C �

T

�
xnC1.t/ � xn.t/

�
:

(7)

The two systems .xn; vn/n with (1) and .xn; �n/n with (7) are equivalent. We
henceforth work with the second system, that is linear. Given any initial condition
.xn.0/; �n.0//n, classical Cauchy-Lipschitz theorem ensures that there exists a
unique solution .xn.t/; �n.t//n of (7) defined for all times t 	 0. Oppositely to
[6], there is no requirement of using a truncated system.

Consider 0 < a < b and an initial configuration such that at t D 0

	
a � xnC1.t/ � xn.t/ � b;

a � �nC1.t/ � �n.t/ � b;
8n: (8)

We show sufficient conditions for that (8) holds for all t > 0. Note that since a > 0,
the assumption ensures that no collision appears at any time.

Let define

z1n.t/ D xnC1.t/ � xn.t/ � b;
z2n.t/ D a � .xnC1.t/ � xn.t//;

z3n.t/ D �nC1.t/ � �n.t/ � b;
z4n.t/ D a � .�nC1.t/ � �n.t//:

(9)

We set M.t/ D supn2Z maxjD1;2;3;4 zjn.t/. Notice that M.t/ � 0 is equivalent
to (8). Let t� 	 0 such that M.t�/ D zjn�

.t�/, for some n� 2 Z and j 2 f1; 2; 3; 4g.
Suppose j D 1 or j D 2. We have using the dynamics (7)

Pz1n�

D 1

��

�
z3n�

� z1n�

� � 0 and Pz2n�

D 1

��

�
z4n�

� z2n�

� � 0; (10)
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since for both cases zjn�
is maximal for, respectively, j D 1 and j D 2. Note

that this step does not hold if we have used the initial speed/position variables
because the signs of speed differences are not constant. For j D 3, we set
Yn�

D ..Yn�
/1; .Yn�

/2; .Yn�
/3/ D .xn�

; xn�C1; �n�
/. We have with B D .b; b; b/

Pz3n�

D F.Yn�C1 � B/� F.Yn�
/ D P

iD1;2;3..Yn�C1/i � .Yn�
/i � b/F 0i .Z/

D z1n�

F 01.Z/C z1n�C1F
0
2.Z/C z3n�

F 03.Z/ � z3n�

P
iD1;2;3 F 0i .Z/ D 0:

(11)

using successively the fact that F.Y C .z; z; z// D F.Y / for all z, the Taylor-
Lagrange development Z D 
.Yn�C1 � B/ C .1 � 
/Yn�

with 
 2 Œ0; 1�, the
monotonicity F 01; F 02 	 0 (that remains to be proved), the fact that z1n�

� z3n�

and
P

iD1;2;3 F 0i D 0. Similarly, we get Pz4n�

� 0 for j D 4.
This formally shows that PM.t/ � 0. We have M.0/ � 0 because the initial data

satisfies (8). Then a Gronwall type argument implies M.t/ � 0, for all t 	 0.
The monotonicity assumptions used here to obtain the invariant property (8) for

all t are F 02 D �=T 	 0, this is always true since �; T > 0, and F 01 D �.1 �
�/=.��/��=T 	 0. As �; � > 0, the sign of F 01 is the sign of g.�/ D ��2 �

T
C��1.

It is positive if 4� � T and � 2
h
T
�
1˙ .1 � 4�=T /1=2


.2�/�1

i
.

The results show that if 4� � T , there exists � > 0 for that (8) holds for all
t 	 0. Using the equivalence of the systems, the homogenization condition of the
model (1) is then simply

4� � T: (12)

For a general optimal speed function V 2 C1, the homogenization condition
is 0 < V 0.d/ < 1=.4�/ for all d 2 Œa; b�. Note that bounds on vehicle speed
V.a/ � vn.t/ � V.b/ for all n and all t 	 0 can be obtain with no more assumption
on V.:/ and � (only more constraint initial data and � parameter).

As expected, the homogenization condition (12) implies the stability condi-
tion (5). Yet, it is surprising to see that the homogenization condition, that is only a
sufficient condition, directly coincides with the local over-damped one (4).

4 Simulation Experiments

Some simulations are presented to illustrate the results. One considers a 20-long
ring, with 10 vehicles and initial jam condition (minn xnC1.0/� xn.0/ D a D 0:1).

Two experiments are realized: One with T=� D 2, corresponding to solely stable
conditions, see Fig. 1; The second with T=� D 4, corresponding to stable and
homogenization conditions, see Fig. 2.



554 A. Tordeux

0

5

10

15

20

(x
n
(t
),

n
 =

1,
..

.,
10

)
T/τ = 2

−1

0

0 20 40 60 80 100m
in

n
x
n
+
1
(t
)−

x
n
(t
)

t

Fig. 1 Top: trajectories of 10 vehicles. Bottom: minimum spacing over the time

0

5

10

15

20

(x
n
(t
),

n
=

1,
..

.,
10

)

T/τ = 4

0

1

2

0 20 40 60 80 100m
in

n
x
n
+
1
(t
)−

x
n
(t
)

t

Fig. 2 Top: trajectories of 10 vehicles. Bottom: minimum spacing over the time



Stability and Homogenization of the Optimal Velocity Model 555

One observes that, as expected, the two systems convergence to an uniform
solution. Yet, the set for spacing variables (8) is invariant only for the second
experiment, where the homogenization condition (12) holds. For the first experiment
where solely the stability condition (5) holds, one has t > 0, minn xnC1.t/�xn.t/ <
a, with collisions and unphysical behaviors.

Conclusion
Stable and homogenization conditions are investigated within the linear OV
model. The results show that the condition for stability is not enough to ensure
that spacing variables keep in bounded sets. This means that a system can
lead to unphysical behaviors during the convergence to an uniform solution,
even if the conditions are stable. No collision occurs for any initial condition
when the homogenization (or local over-damped) condition holds. A space
parameter can hence been suggested : Unstable (with potentially collisions in
transient and stationary states), stable (with potentially collisions in transient
state) and stable with no collision.

The spacings keep in invariant sets for stronger conditions than the ones
for the stability, related here as the homogenization condition. For the basic
linear OV model we used, the homogenization condition coincides with the
condition for over-damped local stability. Since the homogeneous condition
is a sufficient one, it was expected stronger than local over-damping one. This
is notably the case for the adaptive time gap model, which is always locally
over-damped stable while the homogenization condition is more restrictive.
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Statistical Analysis of High-Flow Traffic States

Florian Knorr, Thomas Zaksek, Johannes Brügmann,
and Michael Schreckenberg

Abstract We present an analysis on the characteristics of so-called high-flow
states of traffic, i.e. traffic states where the flow rate exceeds 50 vehicles per
minute and lane. We investigate the duration, frequency and other statistics of such
states. Moreover, we study the conditions under which they occur. The factors that
influence the existence and occurrence of high-flow states in traffic are, for instance,
the fraction of slow vehicles, the motorways’ general topology (e.g. number of lanes,
slope, interchanges, ramps and exits), the flow rate on neighboring lanes, the hour
of the day and day of the week.

1 Introduction

It is well known that traffic exhibits metastable states and hysteresis behavior [1]:
At high vehicle flow rates, a transition from free to congested flow is likely to
occur—resulting in a considerable decrease of the flow rate and significant changes
of other traffic characteristics such as the average velocity. To restore high traffic
flows after such a transition, it is necessary that the flow rate drops below a threshold
value first.

But states of high traffic flow are not only interesting from a physical point of
view. At high flow rates, the road is operating close to its optimum. Therefore, it
is also of practical importance to investigate under what conditions these so-called
high-flow states occur.

We will present an analysis of detector data collected from the motorway network
of the German state of North Rhine-Westphalia (e.g., see [2, 3]). This analysis
focuses on the characteristics of so-called high-flow states (e.g., when and how
often do they occur, on which lane can they usually be observed). In the following,
we refer to a flow rate as high, if it exceeds 50 vehicles per minute and lane (i.e.,
3,000 veh/h/lane).
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2 Analyzed Data

Our analysis is based on detector data provided by more than 3,000 loop detectors
during December 19, 2011 and May 31, 2013 on the motorway network of the
state of North Rhine-Westphalia. Inductive loop detectors still are the most common
source of traffic data: for each (1 min)-interval, loop detectors count the number of
passing vehicles, they measure the vehicles’ velocity distinguished by vehicle type
(passenger cars and trucks), and they determine the fraction of time within they are
covered by passing vehicles.

We restricted our analysis to 178,800 measurements exhibiting high flow charac-
teristics (flow >50 veh/min) and to valid values only for each of the just mentioned
observables. Figure 1 shows the frequencies of high-flow states depending on
the corresponding flow rate (Fig. 1a). It turns out that, up to flow rates of about
73 veh/min, the frequencies of high-flow states of a given flow rate J follow the
power law

frequency D A � exp .�˛ � J /

with A � 3:11 � 1014 and ˛ � 0:44.
For the small number of data sets with a higher flow rate (less than 0:03%, 47

total) it is not clear whether they actually deviate from the power law or whether
these data sets indicate erroneous measurements: As we will see, the average
velocity of high-flow states varies between 60 and 120 km/h. Therefore, high flow
rates with an average time headway of 1 s and less pose an actual risk for drivers.
Even though such time headways have already been observed at similar velocities
for single vehicles [4], it may be doubted whether this behavior can be observed for
a sequence of 70 (and more) vehicles.

y(x) = (3.11 × 1014) × e−0.44x
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3 Share of Trucks and Lane Usage

As the detectors used for this analysis classify the detected vehicles into two
groups [5], namely ‘trucks’ and ‘passenger cars’, we can also investigate the
influence of heterogeneous traffic flow on the occurrence of high-flow states. From
Fig. 2a it becomes obvious that the likelihood of high traffic flows decreases with
an increasing share of trucks contributing to the total flow rate. This phenomenon is
caused by trucks that generally are restricted to a velocity of 80 km/h in Germany.
Therefore, trucks lower the maximum achievable average velocity in traffic flow
and, due to their length, they block detectors for a longer period. On the other hand,
high traffic flows require high average velocities (60–120 km/h). Consequently,
high-flow traffic states are expected to favor an almost homogeneous flow of the
faster passenger cars.

At least some high-flow traffic measurements including trucks may be explained
by the classification of the detector loops: light trucks (e.g., SUVs and small
buses/vans) are classified as trucks, but the general speed limit for trucks does not
apply to them and they exhibit driving characteristics similar to passenger cars.

For a similar reason the occurrence of high traffic flows is practically limited
to the leftmost lane (see Fig. 2b). In Germany, the leftmost lane is reserved for
fast-traveling vehicles to overtake, whereas the right lane is reserved for slow
vehicles (i.e., usually trucks). Therefore, traffic flow on the left and middle lanes is
characterized by a relatively low share of trucks and high average velocities, which
facilitates the formation of high flow rates.

These results also confirm an observation first made by Sparmann [6] and
Leutzbach and Busch [7] that is known as lane inversion: They found that, close
to the optimal flow rate, the vehicle density in the left lane surmounts the density in
the right lane. This observation surprises as by German law drivers are required to
use the right (and middle) lane whenever possible.
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4 Average Velocities of High-Flow Traffic States

As already stated in the previous section, the average velocities of high-flow states
range from approximately 60–120 km/h. In Fig. 3a, one can see the distribution of
the average velocities. For better analysis, these measurements were subdivided into
two classes: (i) measurements without trucks (in this case the depicted average
velocity is identical to the average velocity of all cars on the road) and (ii)
measurements in which at least one vehicle was identified as a truck.

From these histograms we see that the average velocity in homogeneous traffic,
consisting of passenger cars only, is considerably higher than in mixed traffic of
passenger cars and trucks with a single peak at approximately 100 km/h. In mixed
traffic, we observe two peaks: one at 100 km/h and another one at approximately at
60 km/h. The first one (at 100 km/h) corresponds to a very low number of trucks
contributing to the total flow. The second one results from measurements with
roughly four or more trucks. This could be verified by varying the threshold (i.e.,
the number of trucks) which separate the two curves (not depicted). It should also be
noted that the classification of vehicle types, which is mostly based on the estimated
vehicle length [5], is not free of fault. Therefore, it is safe to assume that a certain
amount of the measurements which contributed especially to the first peak consisted
of passenger cars only.

Figure 3b shows the difference in the average velocities of trucks and passenger
cars for the observed high flow states. This histogram illustrates very well the
synchronization of average velocities in high traffic flow: the distribution’s mean
is at 0 km/h (0:52 km/h) with a variance of �2 � 35 km=h2. Moreover, the resulting
distribution is strongly peaked around its mean (leptokuric with a sample excess
kurtosis of 3:89).
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5 Temporal Occurrences and Lifetimes of High-Flow Traffic
States

The histograms given in Fig. 4 show the temporal occurrence and the duration (i.e.,
lifetime) of high-flow states. If one considers that a high flow rate indicates a high
traffic volume, the results of Fig. 4b, c are easy to understand. High-flow states
occur on work days during peak-hours. At these times, there is a huge demand of
commuters (i.e., many passenger cars) traveling to or from work.

As the lifetime of a high-flow state we defined the number successive (1 min)-
intervals that were classified as “high-flow state”. The resulting distribution of
lifetimes is given in Fig. 4d. One can easily see that such states hardly last longer
than a few minutes. This observation only confirms the long-known metastable
character of traffic flow: An increased flow rate also increases the probability of
a traffic breakdown [1, 8]. Especially at flow rates such as the ones considered in

0

100

200

300

400

500

600

Jan

Feb

M
ar

A
pr

M
ay

Jun

Jul

A
ug

S
ep

O
ct

N
ov

D
ec

Month of Year

H
ig

h 
flo

w
 s

ta
te

s 
pe

r d
ay

0

1 × 104

2 × 104

3 × 104

Sun Mon Tue Wed Thu Fri Sat
Day of Week

Fr
eq

ue
nc

y

0

1 × 104

2 × 104

3 × 104

4 × 104

01 03 05 07 09 11 13 15 17 19 21 23
Hour of Day (UTC)

Fr
eq

ue
nc

y

100

101

102

103

104

10 20 30

Lifetime [min]

Fr
eq

ue
nc

y

a b

c d

Fig. 4 Temporal distribution of high-flow states depending on (a) the month, (b) the weekday, and
(c) the hour of day. (The hour of day is given as UTC. The actual hour of day follows by adding
1 or 2 h—depending on daylight saving time.) (d) The frequency of successive measurements
classifying as high-flow



562 F. Knorr et al.

this article traffic flow is very unstable and long-lasting high-flow states could not
be expected.

Conclusions
The findings of our analysis can be summarized as follows: high-flow states
make high demands on the traffic conditions.

• As a large number of vehicles is required for high-flow states, such
states are usually observed during the morning and evening peak hour on
workdays (from Monday to Friday).

• The requirement of good road conditions is reflected by the fact that high-
flow states are more likely to be observed in the summer.

• The share of trucks must be close to zero for high flows to occur as high
average velocities are required. The lower the share of trucks, the higher is
the average velocity.

• The lifetime of high-flow states is typically limited to intervals of a few
minutes length because traffic flow tends to be very unstable on this regime.
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Simulations of Synchronized Flow in TomTom
Vehicle Data in Urban Traffic with the
Kerner-Klenov Model in the Framework
of the Three-Phase Traffic Theory

Gerhard Hermanns, Igor N. Kulkov, Peter Hemmerle, Hubert Rehborn,
Micha Koller, Boris S. Kerner, and Michael Schreckenberg

Abstract In this article, we describe our simulations of TomTom probe vehicle data
measured in city traffic. An analysis of the vehicle trajectories in the TomTom data
reveals the typical features of the traffic phases as defined in Kerner’s three-phase
traffic theory: free flow, synchronized flow and wide moving jam (moving queues).
The existence of the synchronized flow phase has previously been found within
traffic data from highways, but not within data from urban road networks. We will
show that the microscopic simulation of vehicular traffic with the stochastic Kerner-
Klenov model on a multi-lane urban road stretch reproduces the synchronized flow
found in the TomTom data.

1 Introduction

In three-phase traffic theory in addition to the free flow traffic phase there are two
phases in congested traffic: the synchronized flow phase and the wide moving jam
phase. Up to now synchronized flow has been studied empirically and theoretically
in highway traffic only. As we have found recently by empirical studies of TomTom
vehicle probe data in oversaturated traffic measured in Düsseldorf (Germany),
synchronized flow can also be observed in city traffic [6, 7]. A theory that gives
a physical mechanism as explanation of such a synchronized flow in oversaturated
city traffic has recently been developed [2, 5]. In this article that is based on the
aforementioned theory we present more detailed simulation results of synchronized
flow in oversaturated city traffic. The article is organized as follows: In Sect. 2 we
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formulate the Kerner-Klenov model used for all simulations. In Sect. 3 we consider
simulations of synchronized flow on one of the roads in the city of Düsseldorf and
compare them with empirical findings of synchronized flow in oversaturated city
traffic of [6, 7].

2 Kerner-Klenov Stochastic Microscopic Three-Phase Traffic
Flow Model

We use a discrete version of a stochastic three-phase microscopic model of Kerner
and Klenov [4]. The physics of the model variables have been explained in [1] and
more detailed in [8]. In the model whose parameters have been adapted for city
traffic in [3], the vehicle speed vnC1, the coordinate xnC1, and the accelerationAnC1
at time step nC 1 are found from the following equations:

vnC1 D max.0;min.vfree; QvnC1 C �n; vn C amax�; vs;n//; (1)

xnC1 D xn C vnC1�; (2)

AnC1 D .vnC1 � vn/=�; (3)

QvnC1 D min.vfree; vs;n; vc;n/; (4)

vc;n D
(

v.1/c;n at �vn C A`;n� < �va,
v.2/c;n at �vn C A`;n� 	 �va;

(5)

�va is constant.

v.1/c;n D
(

vn C�
.1/
n at gn � Gn,

vn C an� at gn > Gn;
(6)

�.1/
n D max.�bn�;min.an�; v`;n � vn//; (7)

v.2/c;n D vn C�.2/
n ; (8)

�.2/
n D kaan� max.0;min.1; �.gn � vn�///; (9)

amax D
	
a at �vn C A`;n� < �va,
kaa at �vn C A`;n� 	 �va;

(10)

an D a�.P0 � r1/; bn D a�.P1 � r1/; (11)
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P0 D
	
p0 if Sn ¤ 1;

1 if Sn D 1;
P1 D

	
p1 if Sn ¤ �1;
p2 if Sn D �1; (12)

SnC1 D
8
<

:

�1 if QvnC1 < vn;
1 if QvnC1 > vn;
0 if QvnC1 D vn;

(13)

r1 D rand.0; 1/, �.z/ D 0 at z < 0 and �.z/ D 1 at z 	 0, p0 D p0.vn/,
p2 D p2.vn/, p1 is constant.

�n D
8
<

:

�a if SnC1 D 1;

��b if SnC1 D �1;
�.0/ if SnC1 D 0;

(14)

�a D a.a/��.pa � r/; �b D a.b/��.pb � r/; (15)

�.0/ D a.0/�

8
<

:

�1 if r � p.0/;

1 if p.0/ < r � 2p.0/ and vn > 0;
0 otherwise;

(16)

r D rand.0; 1/; a.b/ D a.b/.vn/; pa, pb, p.0/, a.a/, a.0/ are constants; synchronization
gap Gn and safe speed vs;n are

Gn D G.vn; v`;n/; (17)

G.u;w/ D max.0; bk�u C a�10u.u � w/c/; (18)

vs;n D min .v.safe/
n ; gn=� C v.a/` /; (19)

v.safe/
n D bv.safe/.gn; v`;n/c; (20)

v.safe/�safe CXd.v.safe// D gnCXd.v`;n/, Xd.u/ D b�2
�

˛ˇC ˛.˛�1/
2

�

, ˛ D bu=b�c,

ˇ D u=b� � ˛, v.a/` D max.0;min.v.safe/
`;n ; v`;n; g`;n=�/ � a�/, �safe is a safe time

gap; b, k > 1, a, ka, and 0 are constants; bzc denotes the integer part of a real
number z. In (1)–(20), n D 0; 1; 2; : : : is the number of time steps, � D 1 s is a
time step, amax is a maximum acceleration, vfree is a maximum speed in free flow,
Qvn is the vehicle speed without speed fluctuations �n, `marks the preceding vehicle,
gn D x`;n � xn � d is the space gap between vehicles, d is the vehicle length,
�vn D v`;n � vn; xn and vn are measured in units ıx D 0:01m and ıv D 0.01 m/s,
respectively.
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Fig. 1 2D-regions for steady
states of synchronized flow in
the flow–density (a) and the
space-gap–speed planes
(b) [3, 4]. F – free flow, S –
synchronized flow, J – line
J [1]
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In the model, vehicles decelerate at the upstream front of a moving queue at
a signal as they do at the upstream front of a wide moving jam propagating on
a road without traffic signals [1]. During the green phase, vehicles accelerate at
the downstream front of the moving queue (queue discharge) with a random time
delay as they do at the downstream jam front. In other words, the well-known
saturation flow rate of moving queue discharge is equal to the jam outflow qout under
the condition that vehicles accelerate to the maximum speed vfree, i.e., in this case
qsat D qout (Fig. 1a). During the yellow phase a vehicle passes the signal location, if
the vehicle can do it until the end of the yellow phase; otherwise, the vehicle comes
to a stop at the signal. It is sufficient to consider traffic at a single city intersection.
Open boundary conditions have been used in all simulations.

We use a stochastic description of the driver’s speed adaptation through proba-
bilities p2 and p1 in (12). Introducing a coefficient of speed adaptation ", we write
these probabilities as follows:

p1 D min.1; .1C "/p
.0/
1 /; p2 D min.1; .1C "/p

.0/
2 .vn//; (21)

where p.0/1 D 0:3, p.0/2 .vn/ D 0:48 C 0:32�.vn � v21/. We have found that the
larger ", the stronger the speed adaptation and, therefore, the larger the mean space
gap (the longer the mean time headway) between vehicles in synchronized flow.

In accordance with the classical theory [9], well-developed oversaturated traffic
consists of a sequence of moving queues with stopped vehicles separated by regions
in which vehicles move from one moving queue to the adjacent downstream moving
queue. The mean duration of the vehicle stop within a moving queue usually does
not change while the moving queue propagates upstream of the signal (Fig. 2).
Rather than such a well-known stop-and-go pattern (Fig. 2b, c), it has recently been
found [6,7], that synchronized flow is very often observed in TomTom vehicle probe
data in real oversaturation city traffic. Below we briefly consider this empirical data
and show simulation results of synchronized flow.
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Fig. 2 Spatiotemporal structure of oversaturated traffic at a traffic signal of the classical theory
of city traffic [9] simulated with model (1)–(21). In all simulations we use the following model
parameters: �safe D � D 1, d D 7:5m, vfree D 18:0558m s�1 (65 km/h), b D 1m s�2, a D
0:5m s�2, k D 3, 0 D 1, �va D 2m s�1, ka D 4, � D 1, pb D 0:1, pa D 0:03, " D 0,
p.0/ D 0:005, p0.vn/ D 0:667C 0:083min .1; vn=v01/, v01 D 6m s�1, v21 D 7m s�1, a.a/ D a,
a.0/ D 0:2a, a.b/.vn/ D 0:2a C 0:8amax.0;min.1; .v22 � vn/=�v22//, v22 D 7m s�1, �v22 D
2m s�1

3 Synchronized Flow in Oversaturated City Traffic

In Fig. 3 we show a part of the road Völklinger Straße in Düsseldorf at which
oversaturated traffic has been measured. At the beginning of the road there is a
road detector that measures speed and flow rate at 1 min intervals, at the end of the
road stretch there is a traffic signal.

Typical distribution of vehicle speed along TomTom probe vehicles moving
through this road is shown in Fig. 4a. We can see that vehicles move almost without
a stop up to the queue at the signal. In accordance with the microscopic criterion for
traffic phases in congested traffic the observed oversaturated traffic is associated
with the synchronized traffic flow phase. To simulate the synchronized flow we
increase the parameter of drivers speed adaptation " (21). This means that a driver
on average chooses a larger space gap (time headway) to the preceding vehicle. The
simulations show that due to the increase in space gaps instead of a stop-and-go
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20m, traffic light at x D 630m (cycle time # D 70 s, red phase duration TR D 35 s, yellow phase
duration TY D 4 s), speed limit vmax D 60 km/h
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Fig. 5 Simulated synchronized flow: time-dependence of microscopic (single) vehicle speed (a)
related to vehicle trajectory shown in time-space diagram (b). Simulations made on infrastructure
of Völklinger Straße in Düsseldorf, Germany (see Fig. 3). Model parameters are the same as those
in Fig. 2 with the exception of the value of ", that is taken as "D 1:333

pattern of oversaturated traffic we find a synchronized flow pattern (Fig. 5) that is
very similar to the one observed in TomTom empirical data (Fig. 4).

The physics of synchronized flow patterns in oversaturated city traffic is as
follows. For strong enough driver’s speed adaptation, the mean space gap between
vehicles is large. Therefore, space gaps (time headways) between vehicles increase
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considerably upstream of moving queues. As a result, the absolute value of the
upstream front velocity of a moving queue becomes smaller than that of the
downstream front of the moving queue, resulting in moving queue dissolution and
leading to synchronized flow.

Conclusions
Traffic data measured by TomTom navigation devices shows synchronized
flow in oversaturated city traffic [6, 7]. We have simulated empirical data
in oversaturated city traffic with the Kerner-Klenov three-phase traffic flow
model. The simulations show that under strong speed adaptation synchronized
flow patterns which are very close to empirical data can be reproduced with
this model. Strong speed adaptation is associated with an average increase of
space gaps (time headways) which drivers choose moving in very dense city
traffic.
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Relation Between Longitudinal and Lateral
Action Points

Victor L. Knoop and Serge P. Hoogendoorn

Abstract Delay on the motorways can be reduced by traffic management measures
changing driving behaviour, which need to be tested before implementation. Micro-
scopic traffic simulation is well suited for this, if sufficiently accurate. Recent studies
show that drivers do not continuously change their acceleration, but rather at specific
moments in time. These moments are called longitudinal action points. Also for lane
changing, moments in time can be identified when drivers start and end changing
lanes, so called lateral action points. This paper develops a methodology to find
these action points. Data of individual driving behavior, collected from a helicopter,
show that the approach with action points is plausible. Moreover, the longitudinal
and lateral action points are correlated. Current models not incorporating this
discontinuous behaviour correctly, might produce incorrect predictions.

1 Introduction

Delay on the motorways can be reduced by traffic management measures changing
driving behaviour, which need to be tested before implementation. Microscopic
traffic simulation is well suited for this, if sufficiently accurate.

Recent studies show that drivers do not continuously change their acceleration,
but rather at specific moments in time [2]. These moments are called longitudinal
action points. Also for lane changing, moments in time can be identified when
drivers start and end changing lanes, so called lateral action points. Up to now,
most traffic simulation models consider longitudinal behaviour separately from lane
change behaviour, where in fact, the two are closely coupled. A lateral action
(lane change), is generally is triggered by a lack of longitudinal space. But also
a longitudinal action can be triggered by a (planned) lane change. This raises the
idea that these two processes might hence be intertwined. In particular, in this paper
we test whether the action points on the longitudinal an lateral processes perhaps
are the same.
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The idea that the two are related is not new. For instance, the Mobil lane change
model [3] makes a lane change decision based on the possible accelerations, which
are calculated using a longitudinal model. The integrated model [7] chooses a path
over different lanes, and hence makes the decision to accelerate dependent on the
lane change model. It also is useful to mention an earlier approach, the LMRS
(lane change model with relaxation and synchronisation [6]) which accounts for
accelerations related to a lane change, both for the lane changer as for the putative
follower. However, none of these models consider joint action points which are the
only points at which acceleration changes.

If accelerations indeed only change at action points, and these are related to
the action points of lane changing, this changes the way we should consider
microscopic traffic simulators. The idea of not continuously changing acceleration
might seriously impact the traffic streams.

2 Methodology

It can be hypothesised that drivers accelerate or decelerate in order to perform a
lane change. In fact, we developed a methodology to fit piecewise linear functions
in speed-time and lateral position as function of time, revealing the longitudinal
and lateral action points. We calculated these best fits for longitudinal and lateral
behaviour separately first, and then do the same if we require the action points to be
the same.

2.1 Fitting Action Points Separately

Fitting the action points separately means that we find the longitudinal and the
lateral action points jointly. For the longitudinal action points we follow [2]. In
summary, we do as follows. We fit a piecewise linear function on the speed-time
( Px,t). The quality of the fit is expressed as root mean squared error between the fitted
speed and the observed speed. Obviously, the higher the number of intermittent
points, the better the fit becomes. For each intermediate point a cost of 2 m/s is
added, so any new point should improve the RMSE of the fit by 2 m/s.

For the lateral positions as function of time also a piecewise linear fit is made.
There are, however, more restrictions than in the speed profile. We consider that the
vehicle needs to drive in a lane unless it is changing lanes, so at a constant y value.
For one lane change, we consider two action points: one for the start and one for the
end of a lane change. Further constrains are that a lane change cannot start within 2 s
of the end of the previous lane change, and all lane changes should have a duration
of at least 2 s. Opposed to the piecewise linear fit, adding extra intermediate points
cannot improve the fit since it is required that the lane change is finished. However,
at the beginning and the end of the trajectory a slight offset of the middle of the lane
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can be “corrected” by the model by initiating a lane change just before the beginning
or the end of the trajectory. Therefore, it is also required that more than half of the
lane change is within the observed trajectory.

2.2 Fitting Action Points Jointly

If we consider joint action points, we restrict action points of the start of the lane
change is coupled with the longitudinal action point. The error is combined where
1 m/s error has an equal weight as begin a lane off in the lateral direction. Using
Matlab’s build in function fmincon we search the action points which minimize
the error. Moreover, the number of longitudinal action points is fixed at the same
number as found in the separate fit method. Also the speed at the start and the end
of the trajectory is fixed at the values found for the separate fit of speed over time.
Similarly, the number of lane changes, as well as the lanes, are the same as found
for the separate fits.

3 Data Collection

The ideas have been applied on trajectory data collected at a Dutch motorway. We
used a high resolution video camera attached to a helicopter to collect images of the
traffic stream. Later, the trajectories of the vehicles were extracted from the video
footage using the procedure described in [1].

We collected data at a freeway in the Netherlands, near Everdingen. The data is
the same as used by Ossen [5]. It is a three lane freeway with no gradient. Traffic
conditions were changing, with speeds from complete standstill up to freeway
speeds 32 m/s. The video recorded a road stretch of approximately 300 m. Due to
unavoidable movement of the helicopter the exact location of the road which was in
sight moves forward and backward by approximately 100 m. For this paper, we use
video footage of a little over 5.5 min, in which time 301 are in view for a sufficiently
long time to have a useful trajectory. Twenty-three of these vehicles change lane in
the captured scene.

4 Results

Figure 1 shows the trajectories and the fits for different vehicles. It shows that if
fitted separately both the longitudinal fit as well as the lateral fit follow the real data
quite closely. On average, the mean of the root mean square error in the speed over
all vehicles is 0.6 m/s (standard deviation: 0.27 m/s), see Table 1. This supports the
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Fig. 1 Examples of the speed and lateral position over time for two vehicles. Left: good fit.
Right: bad fit

Table 1 Overview of the typical errors for the fits of 25 vehicles performing a lane change

RMSE speed (m/s) RMSE lateral position (m) Weighted error .�/
Fit Mean Stdev Mean Stdev Mean Stdev

Separate 0.40 0.13 0.56 0.22 0.51 0.13

Joint 0.51 0.26 1.42 0.99 0.75 0.26

idea that drivers do not change their speed continuously, but instead have lateral and
longitudinal action points.

The effect of combining fits is only relevant for the 23 vehicles which make a
lane change during the observation period. These vehicles have an average error of
0.52 m/s in the fitted speed (standard deviation 0.22 m/s). The distribution of the
errors (combining error in lateral and longitudinal direction) is shown in Fig. 2a.
This shows that indeed the separate fits do better than the combined fit. In fact, this
is theoretically required since for each vehicle we impose a restriction during the
fitting process. Therefore, the joint fit can never get a lower error than the separate
fits. For each vehicle we can calculate how much larger the error in the fit is for
the joint fit. The distribution of these ratios can be found in Fig. 2b. The line shows
for instance that for approximately 85 % of the vehicles the error in the joint fit is
less than 80 % more than in case of the separate fit. The tendency is for a large part
of the vehicles the increase in the error is limited. However, for some vehicles the
restriction cause a considerably worse fit. An example of a particularly bad fit is
given in Fig. 1b. The description of joint behaviour does not match the behaviour
of drivers of these vehicles. In fact, that might imply that some drivers do drive
according to a different driving scheme than others, which is in line with [4].
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Fig. 2 The resulting errors. (a) The errors for the joint and for the separate fitting procedure.
(b) Comparison of the errors for the joint and for the separate fitting procedure

Conclusions
This paper shows that longitudinally and laterally the movement of vehicles
is well captured in a description of action points. Longitudinal action points
are moments drivers change their speed, and lateral action points are moment
drivers start or end changing lanes.

For many drivers, it is reasonable to assume that the start of a lane change
manoeuvre was at the same moment as a change in acceleration. That might
imply that for these drivers, performing the lane change might be linked to
changing the acceleration. It should also be noted that some other drivers show
a completely different behaviour.

This is an important behavioural finding for microscopic traffic flow
models. Usually a car-following model is implemented separately from a
lane change model, whereas this research suggest drivers might make the
decision jointly. Considering these actions jointly can fundamentally change
the dynamics of traffic flow. The differences become especially relevant when
active traffic management measures are being tested in a traffic simulator.
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Applications of the Generalized Macroscopic
Fundamental Diagram

Serge P. Hoogendoorn, Victor L. Knoop, Hans van Lint, and Hai L. Vu

Abstract The generalised Macroscopic Fundamental Diagram (g-MFD) relates the
network traffic density and the spatial variation of this density. Recent work of
the authors show that by using both the average and the standard deviation in the
density, a very crisp relation can be found, also in case the network conditions are
inhomogeneous. This paper presents results for the g-MFD using empirical data
collected for the freeway network around Amsterdam. Next to presenting the g-
MFD, we will show how the dynamics in the network relate to the evolution of the
network state in terms of average density and spatial density variation. The paper
discusses regular dynamics, as well as the dynamics in case of incidents occurring
in the network. The presented results justify using the g-MFD for a number of
applications that will be detailed in the rest of the paper. First of all, the g-MFD
can be used to determine the network-wide service-level, both for recurrent and
non-recurrent situations. The results for incident situations motivate the second
application, namely the analysis of the resilience of the network by studying the
changes in the service level for specific network states. We will illustrate these
applications using the aforementioned Amsterdam test case.

1 Generalised Macroscopic Fundamental Diagrams

The concept of the generalised Macroscopic Fundamental Diagram was first
introduced by [1]. The g-MFD generalises the Macroscopic Fundamental Diagram
(MFD) by introducing another independent variable next to the average density k,
namely the spatial variation in the density. In this manuscript, we will use � D �.t/

to denote the standard deviation of the density at time instant t , i.e.:

�.t/ D
v
u
u
t1

n

nX

iD1
.ki .t/ � k.t//2 (1)
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where ki .t/ is the traffic density at segment i of a network consisting of n segments
(or links) at time instant t and k.t/ denotes the average density at time instant t :

k.t/ D 1

n

nX

iD1
ki .t/ (2)

The general idea of the g-MFD is that the average network flow Q, and thus the
average network speed V are functions of both the average density and spatial
standard deviation of the density, that is Q D Q.k; �/, and V D V.k; �/.

Based on the estimation results in [1], it is shown that this generalisation provides
a much better fit to traffic network data than the original MFD. In fact, the g-MFD
relaxes the rather restrictive requirement to the applicability of the MFD of network
traffic conditions needing to be homogeneous.

In the remainder of this section, we will present a novel intuitive functional form
for the g-MFD that will be fitted on motorway traffic data.

2 Example g-MFD for a Freeway Ring Road

This section presents empirical results for the g-MFD using empirical data collected
for the freeway network around Amsterdam (so-called A10 ring road, clockwise
direction). The 33 km ring road has a general speed limit of 100 km/h, apart for a
stretch of about 11 km for which the speed limit is 80 km/h.

Figure 1 shows average results for 2 months of data (November and December
2011), as well as the .k; �/ path of a single day (8th of November 2011). The figure

Fig. 1 Network state path
.k.t/; �.t// in relation to the
g-MFD for a regular day density (veh/km)

sp
at

ia
l v

ar
ia

nc
e 

de
ns

ity
 (

ve
h/

km
)

08−11−2011

5

 5.5

6

 6.5

7
 7.5

8 8.59

 9.5
 10

 10.5
 11 11.5 12

 12.5 13 13.5 14
 14.5

 15

 15.5

 16

 16.5

 17

 17.5

 18 18.5

 19

 19.5

 20 20.5
 21

0 10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

50

55

60

65

70

75

80

85

90

95



Applications of the Generalized Macroscopic Fundamental Diagram 579

Fig. 2 Network state path
.k.t/; �.t// in relation to the
g-MFD. The arrow indicates
the starting time of the
incident
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Start of incident

shows how the morning peak is less congested than the evening peak, maintaining
average speeds well above 85 km/h. In the evening however, more severe congestion
brings the network speed to around 60 km/h. Note that the path approximately
follows a straight line described by � D 2k=3. This turns out to be the case
for all regular days where no incidents occur. In all of these days, we see slight
counterclockwise hysteresis showing that in general, the spatial variation is less
when the density is increasing and higher when it is decreasing. Note that the
hysteresis phenomena is discussed in detail by [2]

An example is given by Fig. 2, showing the network state path for an incident
case. We see how the dynamics of the path are influenced by the incident: when
the incident occurs at 19:00, the path breaks away from the congestion recuperation
path it was moving along. From this point onwards, the path moves in the vertical
direction showing that the average density stays about the same, while the spatial
variation increases considerable. The reasons for this are clear: the incident causes
an increase in the spatial variation, while the overall density is not necessarily
increasing.

3 Functional Relation

A functional form for the g-MFD can be found by fitting a multivariate function to
the data. For this function to be realistic, it needs to satisfy some requirements. First
of all V.k; �/ is a decreasing function of both k and � , i.e.:

@V

@k
< 0 and

@V

@�
< 0 (3)
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Furthermore, we hypothesise the existence of a maximum density, possibly depen-
dent on the spatial variation, for which the network speed is zero (full gridlock):

V.kjam.�/; �/ D 0 (4)

That is, we assume that for each � we can find a density value for which the
speed equals zero. Note that kjam.0/ denotes the jam density for fully homogeneous
conditions, i.e. when each network link has jam density. We expect:

@kjam.�/

@�
< 0 (5)

The following function satisfies these conditions. Furthermore, we found that it
provided a very reasonable fit to the data on the A10:

V.k; �/ D min

�

v0; ˇ �
�
1

k
� 1

kjam

��

�
�

1 � �

�0

�

(6)

with v0 D 100:6 km/h, kj D 166:6 veh/km/lane, �0 D 113:5 veh/km/lane, and
ˇ D 2;382 veh/h; the resulting fit yields an adjusted rho-square of 0:9894. All
parameters are statistically significant at 95 %. This function was chosen since the
density-dependent part of the function is a often used model form for the (normal)
fundamental diagram (i.e. congested branch stemming from a simple car-following
model).

Most of the parameters in this equation have a nice interpretation: v0 can be
interpreted as the average free network speed, which for this situation in 100:6 km/h.
The parameter kjam can be seen as the average jam density in the network; the
estimated value of 166:6 veh/km/lane seems very plausible. The parameter �0
denotes a scaling parameter for the spatial variation; note that when � D �0 D
113:5, the speed is zero. The scale parametersˇ denotes the reduction in the average
distances s between vehicles with decreasing speed. This can be seen by noticing
that in the congested branch of the (g-) MFD, we have V=ˇ D 1=k � 1=kjam D
s � 1=kjam.

4 Application to Network Resilience Analysis

The g-MFD has many applications, including modelling and control. In [3], the
g-MFD is used as a real-time of to determine the network service level (e.g. the
average quality of the network operations in the network). In this case, both speed
and flow are used to determine the level-of-service, which for example can be
defined as an average speed of the network or the production of average speed and
density. For more details, we refer to [3].
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In this section, we propose a new approach to test the network resilience which
uses the concept of using the g-MFD as a network service level indicator. The
idea is that the change in the level-of-service due changes in the spatial variation
is an indicator of resilience. In other words, if the spatial variation in the density
increases, the extent in which this yields a change in the level of service (e.g. speed)
provides information on how well the network can deal with such disturbances. In
Sect. 2 we have illustrated the state dynamics in case of incident conditions. Here it
was shown that as an incident occurs, the spatial density variation increases. If this
yields only a limited reduction in the level-of-service, then the network is robust
since it can deal with such disturbances.

4.1 Network Resilience Definition

The resilience of the network is defined by “the ability to provide and maintain an
acceptable level of service in the face of faults and challenges to normal operation”.
For traffic networks, these “faults” could be interpreted as incidents or other events
that (temporarily) reduce the capacity of a roadway segment.

Given the path dynamics discussed in Sect. 2, we know that in case of a (possibly
temporary or partial) blockade, the .k; �/ path moves in the upward direction: the
density remains constant, while the spatial variation in the density increases. The
impact on the level-of-service � – as shown in examples later on – can thus be
defined logically by taking the partial derivative of the level-of-service to the spatial
density variation, i.e.:

� D �.k; �/ D @

@�
�.k; �/ (7)

From this definition, we see that resilience is defined by the rate in which the level-
of-service drops when the spatial variation in the density increases. If this rate � is
high, then a small increase in the standard deviation of the density � causes a large
reduction in the level-of-service �. On the contrary, when the rate � is small, the
level-of-service in relatively insensitive to an increase in � . Note that the resilience
is determined by a number of factors, such as the availability of alternative routes
in the network, but also the level of information provided to the road users allowing
them to reroute in case of an incident.

In the remainder, we will take the average speed � D V.k; �/ as a proxy for the
level-of-service �, although other (continuous) definitions can be used as well, for
instance the production (which may yield completely different results); see [3] for
more information.
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4.2 Functional Expression for Network Resilience of the A10
Ring Road

In illustration, let us revisit the A10 ring road example and take a look at the
resilience definition. Recall that we used the formal expression Eq. (6). Using this
functional form, we get:

�.k; �/ D � 1

�0
min

�

v0; ˇ �
�
1

k
� 1

kj

��

(8)

This expression shows that � becomes smaller when the density becomes larger.
That is, when the speed is already low, the extra speed reduction due to for instance
an incident is less pronounced. Note that when taking the production as a measure
for the level-of-service � , this conclusion does not hold. In that case, we get:

�.k; �/ D � 1

�0
min

�

v0 � k; ˇ �
�

1 � k

kj

��

(9)

meaning that the maximum reduction rate in level-of-service occurs at some critical
density value kc .

5 Discussion

This paper has presented the generalised Macroscopic Fundamental Diagram (g-
MFD) as a means to analyse the dynamics in a network (for recurrent and
non-recurrent conditions) and to assess the level-of-service and network resilience.
Using data from a Dutch freeway ring road, we showed that a good fit could be
obtained using a pre-specified functional form of the g-MFD that satisfied key
functional criteria. Using this fitted functional form, conclusions can be drawn
about the network resilience, depending on the used level-of-service indicator (e.g.
average speed or production).

Future research focuses on cross-comparing different network structures with
different types on traffic information and management strategies. In doing so, insight
will be gained into the applicability of the approach presented here to quantify
network resilience.
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Network Fundamental Diagrams
and Their Dependence on Network Topology

Victor L. Knoop, David de Jong, and Serge P. Hoogendoorn

Abstract Recent studies have shown that aggregated over a whole network a
rather crisp relation between average density (accumulation) and average flow
(production) exists. This relationship is called the Network Fundamental Diagram
(NFD). We developed a tool to automatically design networks. Using this tool,
different networks are created for which the following general properties are the
same: (1) the number of intersections, (2) length of signalised multi-lane arterial
roads, (3) length of single-lane urban roads. The main contribution of this paper
is that it shows that NFDs are not only dependent on these properties, but also on
the exact network layout (e.g., which link connects to which link) and/or origin-
destination pattern. As a consequence, the NFD needs to be determined for each
network separately and cannot be derived from these general properties.

1 Introduction

The Network Fundamental Diagram (NFD) is the relationship between the number
of vehicles and the average flow in an area. After [2] it gained attention. Recently
developed control concepts as for instance perimeter control [6] or routing [8]
require the shape of the NFD to be known. This shape can of course be measured
in real life. For networks which are not yet implemented in real life, determining
this curve empirically is impossible. Therefore it is useful to have techniques to
determine this curve based on other principles.

An analytical method has been proposed [4], but this holds only for arterial roads
with traffic lights. The network specific effects or influence of road types cannot be
captured by this methodology. The question addressed in this paper is there: is the
NFD dependent on road types and the specific network layout?

In this paper we will show that the network design can change the shape of NFD,
even though the main statistics as roadway length and road types are the same.
Mixing road types also has an effect. Methodologically the approach taken in this
study is that random networks are being designed with similar properties. This could
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be networks with and without hierarchical structure (e.g., a ring road and minor
roads inside).

The methodology to test different networks with all the same properties raised an
issue, namely to create networks with all the same properties. This paper develops
a method and a tool to do so, which is described in Sect. 4. This tool is used in the
study to create similar networks. The goal of this paper is to test the influence of the
road layout. All active traffic management measures are hence not incorporated in
this paper and for the traffic lights, a fixed timing is adopted.

The remainder of the paper is set-up as follows. The next section gives an
overview of the ways to estimate the NFD. Then, Sect. 3 gives the research set-up
and methodology. Section 4 describes the tool which has been developed to create
networks. Section 5 presents the resulting NFDs, and finally the last section presents
the conclusions.

2 Network Fundamental Diagrams

The field of research into the NFD is rapidly developing. The number of papers on
the NFD which appeared recently is too large to discuss all, so we restrict ourselves
to the shape of the NFD. For estimating the NFD, an analytical method has been
developed [4]. The authors apply variational theory to traffic operations. Integrating
the effect of traffic lights into the variational formulation, they are able to present
an analytical approximation of the NFD. This is extended by [9] where the effect
of route choice is included. Both papers use routes in one dimension, so effects
of crossing flows cannot be studied with either of these methods. Effects of signal
timing in a regular lattice network are shown by [11].

The dynamics of traffic play an important role in the shape of the NFD. This has
been studied for instance for simple insightful networks [3] or grid networks [7].
They show that traffic networks tend to get more congested once traffic congestion
sets in and that production decreases with decreasing traffic homogeneity. This
feature is explained and seems to be independent of the network layout.

The design of a network itself is also of importance. With design we mean what
the exact connections of the links are. The link length and the number of connections
can be similar, but how these links are connected by intersections or T-junctions. The
influence of these effects is – as far as the authors are aware – not been studied in
depth yet, and this will be studied further in this paper.

3 Methodology

The goal of this paper is to study the effect of specific network design on the NFD.
We do so by creating different networks which share the same basic properties.
This means that the main road (arterials) are the same, as well as the locations of



Network Fundamental Diagrams and Their Dependence on Network Topology 587

the connections between the main roads and the underlying road network. For the
underlying road network, the roadway length is similar. However, the exact layout
of this underlying road network is different. For instance, the underlying network
may consist of several housing blocks, and a block of sport facilities. These can be
arranged in a different order, changing the network connections. We say that the
basic properties of these networks are the same, but the exact network is different.

The NFD represents traffic operations at the network level. It can therefore be
conceived that the exact layout is an issue. On these changing underlying road
networks, there are no traffic signals, so they cannot play a role. The main question
addressed in this paper is: “Can the NFD been constructed from the roadway length,
speed limit and capacity?”

Creating similar networks is challenge on its own, which will be tackled by
a tool which will be described in Sect. 4. The tool will be used to create three
different networks, all 3 � 3 km with an arterial ring road. However, they differ
in the unsignalised roads.

The networks are in the end compared on the relationship between production
and accumulation. These are calculated as follows. The production is the average
flow, here calculated by the distance that all vehicles cover in a aggregation
time divided by the aggregation time and the road length in the network (units:
veh/h/lane). The accumulation is the average density, calculated here as the total
number of vehicles divided by the road length in the network (units: veh/km/lane).
The capacity of the network is the highest production.

4 Designing Random Networks

The networks are created using a tool which takes an input. For a microscopic
network simulation program – in this paper, we use Vissim – an exact intersection
design and signal timing are required as well. The steps to come to a detailed
network design are described here. Due to limitation of space, the paper does not
describe all steps of the algorithm in detail – for this, we refer to [5] – but describes
the main principles.

We want to have three different networks of 3 � 3 km with an arterial at the
outer edge and local roads within. Every 500 m there is an entry point to the local
road network, which also acts as OD-zone. Following the Dutch guidelines [1] the
intersections are created. A demand of 100 veh/h is set to each directions of the
intersections and than the signal scheme for each intersections is determined [10].
The length of auxiliary lanes is set to the minimum for which there is no blocking
of the main traffic.

For each OD pair a uniform number between 0 and 1 is drawn, and there are
no trips within the same zone. The demand is then scaled to a predefined total
number of trips. To compare the shape of the NFD there need to be congested
and uncongested conditions. Therefore, simulations are repeated with different
demands, proportionally scaled for all OD pairs.
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With the obtained flows, first the number of lanes for each link is determined and
the layout of each intersection is updated. Within this update, the flow of each link is
assigned to the corresponding turn and a new intersection layout with corresponding
signal scheme is calculated. If the cycle time is too long (>120 s), an additional lane
is added to the turn with the highest flow per lane after which the layout and signal
scheme are recalculated. This process is repeated until the cycle time is within the
limits.

After the general network layout is created, the areas between the major roads
are converted to subnetworks. Along the border of each subnetwork a safety zone
is added, in order to accommodate the roads of the main network. Also inserts are
made, which are used to accommodate the connection to the main network, using
the temporary subnetwork nodes created earlier.

For each of these areas a street pattern, consisting of local, bi-directional, single
lane roads is created. This is based on the size of the blocks. Using Google
maps, the typical sizes of blocks with different land use houses are determined;
we differentiate between high rise buildings, parks and sport facilities. Also, it is
determined which fraction of the blocks is used for what purpose. Using these
values, a block type and its dimensions are drawn at random, after which the block is
inserted at the first possible bottom-left position. Then a local road is added around
that block. This process is repeated until the block is filled for a certain percentage,
or no more blocks can be added. The remaining areas which are too small to fit any
other purpose are filled with parks.

Next the subnetwork is divided in smaller sections. The demand is assigned to
the original temporary subnetwork nodes, are now originating at different locations
within the subnetwork, inversely proportional to the relative distance to each of the
intersections. This avoids demands originating from the eastern intersection to be
assigned to a feeder at the west of the subnetwork, resulting in a mismatch of the
demand at each intersection. The three resulting networks are shown in Fig. 1.

Fig. 1 The networks. (a) Network 1. (b) Network 2. (c) Network 3



Network Fundamental Diagrams and Their Dependence on Network Topology 589

5 Traffic Operations

Figure 2 shows the NFDs for the different networks. It shows that although the
general pattern is the same (going up and down, quite sharp peak), the differences
in the fundamental diagram are – measured by traditional traffic management
standards – considerable. The capacity of network 1 is lower by approximately
15 % compared to network 2. There is also quite some spread in the first part of the
congested branch of network 1. The free speeds are similar, as well as the expected
accumulation for which the speed approaches zero.

After the top, all NFDs decrease to the congested branch. This transition is much
sharper than the analytical method with cuts for a ring road with traffic lights [4]
suggests. Moreover, the congested branch shows a convex part, which cannot be
found using the above mentioned method. Possibly network effects with spillbacks
to other links cause this shape. The NFDs, created by averaging all traffic operations
on the arterial and the inner network, are quite crisp.

It is remarkable that network 3 the increased demand has a lower effect on the
speeds, i.e., the speeds do not decrease as much as for the other two networks (i.e.,
the congested branch does not reach gridlock accumulation), although the demands
are the same. That means that not only the shape of the NFD is different, but also
the position of the traffic state on the NFD given a specific demand.
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Conclusions
This paper studied NFDs of various road networks. It presented a tool to create
random networks based on required properties of the network. This tool has
been used to analyse the effect of the network layout on the NFD.

It has been known that signal timing plays an important role in the NFD.
However, also Changes in the underlying road network in which no traffic
signals are present, result in differently shaped NFDs. That implies that the
network structure also has an important role. Traffic control schemes based
on the NFD are currently being developed. The findings in this paper show
that it is required to determine the NFD for each network layout specifically,
and it cannot be based on the general characteristics as network length or road
type.
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A Simple Cellular Automaton Model
with Limited Braking Rule

Thorsten Chmura, Benedikt Herz, Florian Knorr, Thomas Pitz,
and Michael Schreckenberg

Abstract Despite its simplicity, the Nagel-Schreckenberg (NaSch) traffic cellular
automaton is able to reproduce empirically observed traffic phenomena such as
spontaneous traffic jam formation. Most traffic cellular automata models achieve
collision-free driving by explicitly allowing for unlimited braking capabilities.
However, it is rather natural to view the collision-free traffic flow as a consequence
of moderate driving instead of infinite braking capabilities. Lee et al. (Phys Rev Lett
23:238702, 2004) introduced a traffic model that limits the vehicles’ acceleration
and deceleration rates to realistic values. The underlying rules of motion in this
model are, however, quite complicated. In this article, we introduce and analyse a
modified version of the NaSch traffic model with simple rules of motion and limited
braking capabilities. We achieve collision-free driving with realistic deceleration
rates by the introduction of the function �.viC1t ; ıit / which determines a vehicle’s
new speed depending on the preceding vehicle’s speed viC1t and the distance ıit to
its predecessor. After proving that this function limits the maximum deceleration
rate to realistic values and guarantees the collision-freeness at the same time, we
investigate the resulting traffic dynamics.
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1 Introduction

In 1992, Nagel and Schreckenberg [2] proposed one of the first stochastic cellular
automaton (CA) models for analyzing traffic on a one-lane road. Various modifi-
cations and extensions such as for the analysis of city traffic or the application to
complex road networks have been proposed since then (for reviews see, e.g., [3,4]).
The primary criterion to assess these models is their ability to reproduce empirically
observed features of traffic flow [5, 6], which follows from the vehicles’ rules of
motion.

In the Nagel-Schreckenberg model (NaSch), the road is modeled as a one-
dimensional array of sites, and each site is occupied by at most one vehicle.
The position of the i th car at time t is denoted by xit and the position of its
immediate predecessor by xiC1t . The vehicle’s dynamics (i.e., its acceleration and its
deceleration) depends on its predecessor on the road. This behaviour is implemented
by an update scheme in which the following simple rules are applied to each vehicle
in parallel:

1. A car i with speed vit at time t accelerates if the distance to its predecessor ıit D
xiC1t � xit is large enough. That means if ıit is larger than vit C 1 then the speed is
advanced by one until the car’s maximum speed vmax is reached: vitC1 D min.vitC
1; vmax/.

2. If the distance ıit is too small (i.e., ıit � vitC1), the car reduces its speed to avoid
a collision: vitC1 D min.ıit � 1; vitC1/.

3. The car’s speed is decreased by one at random: vtC1 D max.0; vitC1 � 1/ with
probability 1 � pacc.

4. Finally, the vehicle moves from its current position xit to its new position xitC1 D
xit C vitC1.

Note that a car accelerates by one at maximum (step 1), but it can slow down by
more than one (step 2). Step 3 mimics speed fluctuations due to human behaviour. It
is essential for traffic jams to occur. Nagel and Schreckenberg focused their analysis
on the relationship between the density � (the number of cars N divided by the
length of the road L) and the traffic flow J (the average number of cars which pass
a site per time step). They conclude that the traffic flow increases rapidly up to a
certain density above which the average traffic flow decreases as the probability of
traffic jams increases rapidly. Despite its simplicity, the model is able to reproduce
empirically observed traffic phenomena such as the spontaneous formation of traffic
jams. A major drawback of the model is that it allows for unrealistically high
deceleration rates (step 2).

With our modification of the NaSch we will present a minimalistic discrete CA
model with limited braking capabilities for simulating traffic flow on a single lane.
We will also show that this modified model (in the following: mNaSch), unlike
the Nagel-Schreckenberg model, tends to converge to steady states. First, let us
introduce the modified model.
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2 Modified Version of the NaSch

Let L 2 N be the number of sites representing the one-lane road. At time t , the car
labeled i moves with speed vit which is bounded from above by �.viC1t�1 ; ıit�1/. This
upper boundary, whose value depends both on the speed of the leading vehicle and
the distance gap, ensures that there are no collisions of two cars as we will show
below. In our modified model, a car changes its speed according to the following
rule:

vit D

8
ˆ̂
<

ˆ̂
:

vit�1 C 1 if vit�1 C 1 � �.viC1t�1 ; ıit�1/ and � � pacc;

vit�1 if vit�1 C 1 � �.viC1t�1 ; ıit�1/ and � > pacc;

�.viC1t�1 ; ıit�1/ otherwise:

(1)

The variable � denotes a random number uniformly generated in Œ0; 1�. Note that it
holds vit�1 � 1 � �.viC1t�1 ; ıit�1/ � vit � vit�1 C 1. Hence, acceleration and braking
capabilities are limited, and a car changes its speed by at most ˙1.

2.1 Collision Free Driving

We will now determine the values of �.viC1t ; ıit / for the mNaSch which ensure that
there are no collisions between any two cars. (Valid initial configurations for open
and periodic boundaries are given in the Appendix.) We need to distinguish between
two cases:

1. The vehicle i does not have a predecessor. This is only possible in an open
system. In this case, the car’s speed is only limited by vmax, the maximum
technical speed of the car. (We assume here vmax D 6.)

2. The vehicle i does have a predecessor. That means that there is another car
driving ahead of vehicle i . This is always the case in a closed system. The
maximum possible speed of car i at time t depends on (i) the speed of its
predecessor and (ii) the distance to its predecessor at time t � 1.

This is captured by the function �.viC1t ; ıit / defined as follows:

�.viC1t ; ıit / D min

	�
1

2

q
8ıit � 7C 4viC1t

�
viC1t � 1� � 1

2

�

I vmax

�

; (2)

where b�c denotes the floor function and ıit the distance between car i and its
predecessor i C 1 at time t .

The values resulting from Eq. (2) are given in Table 1 for various combinations
of a vehicle’s headway and speed.
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Table 1 The values of the function �.viC1
t ; ıit / for vmax D 6

viC1
t / ıit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 20 21 � 22

0 0 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6

1 0 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6

2 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6

3 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6

4 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6

5 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6

6 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

(To some extent this approach is comparable to the work of Emmerich and Rank [7],
who investigated an update mechanism which takes into account both a vehicle’s
space gap and its speed as well. By ignoring the leading vehicle’s speed this
mechanism could not avoid collisions.)

Theorem 1 It holds for all times (8t 2 N) that for any two cars i; j with i < j :
xit < x

j
t . This means that there are no collisions at any time.

Proof From Table 1 we see that it holds

�.viC1t�1 ; ı
i
t�1/ < ıit�1 C maxfviC1t�1 � 1; 0g (3)

and therefore (using ıit�1 D xiC1t�1 � xit�1)

xit � xit�1 C �.viC1t�1 ; ı
i
t�1/ < xiC1t�1 C maxfviC1t�1 � 1; 0g � xiC1t ; (4)

where we assume without loss of generality that xit < x
iC1
t 8t 2 N. Therefore, there

are no collisions of any two cars for all times t .

Theorem 2 By the definition of the function �.v; ı/, the braking capabilities of the
cars are limited. This means that the following inequality holds:

�.viC1t ; ıit / 	 �.viC1t�1 ; ı
i
t�1/ � 1 8t 2 N: (5)

Proof The theorem follows directly from the definition of �.viC1t ; ıit / as shown in
Table 1.

3 Results

To begin our analysis we will present fundamental diagrams for different values of
pacc. For the simulation we used a road length of L D 104 sites and averages over
T D L time steps after a relaxation time of 10T . Densities 0:01 � � � 1 were
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a b

Fig. 1 For periodic boundaries: (a) Fundamental diagram for different values of pacc. (b)
Corresponding average speeds

simulated in steps of 0.01 for several values of pacc. The fundamental diagrams are
shown in Fig. 1a and the corresponding average speeds in Fig. 1b.

Similar to the NaSch, the traffic flow increases rapidly up to a critical density.
The reason is that for smaller densities all vehicles can accelerate to the maximal
speed vmax. Therefore, the flow rate J is given by J D � � vmax.

Unlike in the NaSch, traffic flow is not strictly monotonically decreasing for
larger densities. The reason is the major difference between the NaSch and the
mNaSch: as opposed to the NaSch, the mNaSch converges to stable states where
all vehicles move with the same speed v or with two different speeds v and v�1. We
will refer to the first case as “speed-synchronized flow”. When varying the system’s
density, the latter case can be regarded as a transition state between two speed-
synchronized flows with speeds v and v � 1.

We use the term “speed-synchronized flow” to make clear that these phases
are not necessarily identical with Kerner’s three-phase traffic theory: In early
investigations (e.g., [8]) the synchronized phase was identified as a phase where
vehicles travel with nearly identical speeds (even in different lanes) considerably
below their maximum speed. In this sense, our speed-synchronized flow could be
identified as Kerner’s synchronized flow. Yet, more recent studies (summarized in
[9]) have revealed a more complicated structure of synchronized flow.

As an example, Fig. 2a, b show the synchronization in a randomly initialized
system with � D 0:22, pacc D 0:9 and L D 104. Here the system converges to a
stable state of speed-synchronized traffic flow where all cars have a speed of v D 2.
Thereupon, vsf

�;pacc
refers to the speed of a stable state of speed-synchronized flow

with given � and pacc.
We will now examine the relationship between � and vsf

�;pacc
. We chose pacc D 0:9

for our analysis because, with this value, the non-monotonical decrease for densities
� > �pacc can be seen particularly well in Fig. 1a.

Figure 2c shows the share of vehicles with a given speed after 104 time steps for
densities � 2 Œ0:01; 1� in steps of 0.01. Note that stable states of speed-synchronized
flow with the same vsf

�;0:9 are connected. We can therefore refer to a region of
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a b

c

Fig. 2 For periodic boundary conditions one can see (a) the convergence to a stable state with
speed-synchronized flow; time steps 1 to 10; � D 0:22, pacc D 0:9 and L D 104 . Each curve
shows the percentage of cars with a certain speed. During the first few time steps cars frequently
change their speeds. (b) After 200 time steps nearly all vehicles travel at a speed of v D 2 or v D 3.
(c) The share of vehicles traveling at a given speed after a sufficient relaxation time (105 timesteps)
for all densities with pacc D 0:9

speed-synchronized flow when we mean a subset of [0.01,1] for which vsf
�;0:9 is

identical. Furthermore, vsf
�;0:9 is monotonically decreasing with �. This is evident,

for a higher density implies smaller distances between the cars in a stable state.
Obviously traffic flow in a region of speed-synchronized flow is increasing with
�. This is an important finding as it explains why the fundamental diagram is, in
contrast to the fundamental diagram for the NaSch, not monotonically decreasing
for � > �pacc .

Conclusion and Perspectives
The focus of this work was laid on a comparison of the Nagel Schrecken-
berg model and our modified version (mNaSch). We showed by means of
simulations that the mNaSch converges to either a steady state of speed-
synchronized flow or a steady state with only two different speeds. We regard
the latter case as a transition state between two states of speed-synchronized

(continued)
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flow. We found differences between the fundamental diagrams of the two
models. The fundamental diagrams of the mNaSch model have been shown
to be more complex than those of the NaSch. Traffic flow is not simply
increasing until a certain density is reached and decreases then, but it is
moving in waves with the peak-values decreasing in density. The two principal
differences between the NaSch and the mNaSch are that (i) in the mNaSch
braking capabilities are limited and (ii) vehicles accelerate with a certain
probability whereas in the NaSch vehicles decelerate at random.

Acknowledgements TC and FK thank the German Research Foundation (DFG) for funding under
grant no. SCHR 527/5-1.

Appendix: A Initial Conditions Guaranteeing Collision Free
Driving

The proof of collision free driving (Sect. 2.1) requires that the road’s previous
configuration was free of collisions as well. Therefore, we present valid initial
configurations for both open and periodic boundaries. First, the case of periodic
boundaries: initially, N vehicles are randomly set on the road, and the initial
speed of each vehicle is 0. Consequently, it holds that xi ¤ xj for i ¤ j and
min.ıi / 	 1 8i . For all later times t , it follows xit D .xit�1 C vit / mod L.

An open system represents a bottleneck situation where each car passes through
the road only once. New cars enter the road via the left boundary, which requires
that the leftmost site (x D 1) is empty. In this case a new car labeled k can be
inserted with speed vkt D minfvin; �.v

kC1
t�1 ; x

kC1
t�1 � 1/g at position xkt D 1 C vkt ,

where vin D 2 denotes the maximum speed of inserted cars. Afterwards, we apply
the rules of motion to the remaining cars (i.e., all but the newly inserted one) and
obtain the road’s configuration at time t .
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Diffusive Transport on Directed Random
Networks

M. Reza Shaebani, Zeinab Sadjadi, and Ludger Santen

Abstract We study diffusive motion of non-interacting particles on directed ran-
dom networks, motivated by the structural polarity of cytoskeletal filamentous
structures in biological systems. We consider a complex network consisting of
directed intersecting filaments. The network structure can be characterized by the
distribution of the segment length between two neighboring intersections and the
distribution of the angle between two intersecting filaments. The transport problem
is studied by introducing a master equation for the probability of arriving at the
vicinity of a given position along a certain direction. Using an analytical Fourier–Z-
transform technique, we present expressions for the mean square displacement and
the diffusion coefficient in terms of the microscopic geometrical properties of the
structure and the persistency of the walker. The method enables us to investigate the
influence of structural inhomogeneity and anisotropy of the network on the transport
properties.

1 Introduction

Motor proteins are self-propelled particles that are powered by the hydrolysis of
ATP and move along the cytoskeletal filaments by converting the chemical energy
into mechanical work [1]. More generally, self-propelled particles consume energy,
obtained either from external or internal sources, and dissipate it by undergoing
active Brownian motion. Several examples exist, ranging from biologically relevant
systems to nonliving realizations such as vibrated granular gases and self-motile
colloidal particles that use a chemical reaction catalyzed on their surface to swim.
Understanding the physical origin of the frequently observed anomalous transport
of self-propelled particles in complex systems, specially in biological environments,
has attracted much attention [2–7]. Here, by developing a general analytical
framework, we study how the structural properties of the underlying network lead
to a wide range of different types of anomalous transport on different timescales.
We clarify and disentangle the combined effects of motor processivity and the
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heterogeneity and anisotropy of the underlying network on transport properties,
and show how the competition between these key parameters leads to a rich phase
diagram of motion. The method is also applicable to the problem of motion in
continuous space, where the stepping strategy of the walker determines the transport
properties.

2 Model

The motion of self-propelled particles can be considered as a random walk
consisting of consecutive steps of different length and direction. We assume that the
motion of the walker on the filamentous structure is characterized by the normalized
probability distributionsR./ and F.`/ for the intersection angle  and the segment
size `, respectively. Note that a motor protein has an effective processivity, i.e. the
tendency to move along the same filament [8, 9]. This effect is taken into account
in our formalism by introducing a persistency probability p to stay on the same
filament when crossing an intersection. We describe the motion of the particle by
a Markovian stochastic process in discrete time and introduce Pn.x; yj
/ as the
probability density for a particle to arrive at the position .x; y/ with a direction of
motion 
 at time step n. The dynamical evolution of Pn.x; yj
/ is then expressed
by the following master equation

PnC1.x; yj
/ D p

Z

d`F.`/ Pn
�
x�`cos.
/; y�`sin.
/

ˇ
ˇ

�

C s

Z

d`F.`/

Z 	

�	
d� R.
��/ Pn

�
x�`cos.
/; y�`sin.
/

ˇ
ˇ�
�
;

(1)

where the first term on the right hand side describes the motion in the same direction
as the previous step with probability p, representing the persistency of the walker.
The second term corresponds to changing the direction with probability sD1�p
(see Fig. 1). It is quite hard to obtain an exact solution for the master equation

Fig. 1 Trajectory of the walker during two successive steps
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(1), however, the explicit analytical expression for Pn.x; yj
/ is not necessarily
required. Here, we use an analytical Fourier–Z-transform technique to evaluate the
moments of the displacement without having the exact form of Pn.x; yj
/. See also
Ref.[10] for a simplified version of the formalism applied for studying diffusive
transport of light in wet foams.

We first introduce the characteristic function Pn.!jm/ associated with
Pn.x; yj
/, where ! is the transform variable with components .!x; !y/, or .!; ˛/
in polar representation. We define Pn.!jm/ as a Fourier transform of the form

Pn.!jm/ 

Z 	

�	
d
 eim


Z

dy

Z

dx ei!
rPn.x; yj
/; (2)

thus, the moment hxk1yk2i can be obtained as

hxk1yk2in 

Z

d


Z

dy
Z

dx xk1yk2Pn.x; yj
/

D .�i/k1Ck2 @
k1Ck2Pn.!x; !y jmD0/

@!
k1
x @!

k2
y

ˇ
ˇ
ˇ
ˇ
ˇ
.!x;!y /D.0;0/

:

(3)

We are interested in the first and second moments of Pn.x; yj
/, namely, hxin, hyin,
hx2in, and hy2in. Therefore, it is sufficient to evaluate the terms up to second order
in ! in the Taylor series of Pn.!jm/, given in the polar representation as

Pn.!; ˛jm/ D Q0;n.˛jm/C i!

Z

d`F.`/ ` Q1;n.˛jm/

� 1

2
!2
Z

d`F.`/ `2 Q2;n.˛jm/C � � �

D Q0;n.˛jm/C i! h`iQ1;n.˛jm/

� 1

2
!2 h`2iQ2;n.˛jm/C � � �:

(4)

Then, from Eqs. (3) and (4) it follows that

hxin D
Z

d`F.`/ ` Q1;n.0j0/ D h`iQ1;n.0j0/;

hyin D
Z

d`F.`/ ` Q1;n

�	

2

ˇ
ˇ0
� D h`iQ1;n

�	

2

ˇ
ˇ0
�
;

hx2in D
Z

d`F.`/ `2 Q2;n.0j0/ D h`2iQ2;n.0j0/;

hy2in D
Z

d`F.`/ `2 Q2;n

�	

2

ˇ
ˇ0
� D h`2iQ2;n

�	

2

ˇ
ˇ0
�
:

(5)
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Fourier transforming Eq. (1), one can obtain

PnC1.!; ˛jm/ D
1X

kD�1

h
ike�ik˛�

Pn.!; ˛jmCk/�p C sR.mCk/�
Z

d`F.`/Jk.!`/
i
;

(6)

where R.m/ D R 	
�	 d e

imR./ is the Fourier transform of the intersection
angle distribution R./ and Jk.z/ D 1

2	ik

R 	
�	 d
 e

iz cos 
 e�ik
 is the kth order
Bessel function. As we are interested only in the Taylor coefficientsQ1;n.˛jm/ and
Q2;n.˛jm/, we insert Eq. (4) into Eq. (6). Using the Taylor expansion of the relevant
Bessel functions Jk.z/.jkj � 2/ and collecting all terms with the same power in !,
we get the following recursion relations for the Taylor coefficientsQi;n.˛jm/:

Q0;nC1.˛jm/ D Q0;n.˛jm/�p C sR.m/
�
;

Q1;nC1.˛jm/ D Q1;n.˛jm/�p C sR.m/
�

C 1

2

�

ei˛Q0;n.˛jm�1/�p C sR.m�1/�C e�i˛Q0;n.˛jmC1/�p C sR.mC1/�
�

;

Q2;nC1.˛jm/D
�
1

2
Q0;n.˛jm/CQ2;n.˛jm/

�
�
p C sR.m/

�

Ch`i2
h`2i

�

ei˛Q1;n.˛jm�1/�pCsR.m�1/�Ce�i˛Q1;n.˛jmC1/�pCsR.mC1/�
�

C1

4
e2i˛Q0;n.˛jm�2/�pCsR.m�2/�C1

4
e�2i˛Q0;n.˛jmC2/�pCsR.mC2/�:

In order to solve these set of coupled equations we use the z-transform method. The
z-transformQ.z/ of a functionQn of a discrete variable nD0; 1; 2; � � � is defined by

Q.z/ D
1X

nD0
Qnz

�n: (7)

By using z-transform we are able to solve the above set of coupled linear equations
in z-space. We obtain a set of algebraic equations, whose z-transforms are accessible.
Thus, we can obtain the first and second moments of x and y in n-space by means of
inverse z-transform. Since the general expression for the mean square displacement
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is lengthy in form, here we present the final result in a simple case of motion with
left-right symmetry, and no processivity (pD0):

hr2in D nh`i2
�

�C 2R

1�R

�

Ch`i2 2R
�
1�R

�2
�
Rn�1�; (8)

where �Dh`2i=h`i2 is the relative variance of the segment-size distribution.

3 Results

In this section we briefly introduce the possible scenarios of anomalous diffusion
which directly originate from the microscopic details of the stepping strategy of
the walker. The time evolution of the mean square displacement hr2i is shown in
Fig. 2 for different values of the parameters p, R, and �. Interestingly, it turns out
that the behavior at small time scales can vary from super to normal diffusion and
even to subdiffusion and oscillatory behavior (not shown). Indeed, positive values
of R facilitate the forward motion of the particle and lead to superdiffusion, while
a negative R competes against the processivity, leading to a variety of anomalous
behavior depending on the relative importance of p and R. Another point is that
increasing the heterogeneity of the structure pushes the initial slope of hr2i towards
normal diffusion. The heterogeneity � appears only in the linear term with n in
Eq. (8), therefore, increasing � increases the contribution of the linear term which
changes the initial slope of the curve towards normal diffusion. To conclude, one
may observe up to three different regimes of motion at short, intermediate, and large
time scales (see Fig. 2(right)).

a b

Fig. 2 (a) A few examples of different types of motion. The mean square displacement hr2i versus
the number of time steps n for different values of p, R, and �. (b) Schematic diagram of the three
possible regimes of motion
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Fig. 3 The crossover time to the asymptotic diffusion in p � R plane for (left) �D1, (middle)
�D5, and (right) �D10. The color intensity reflects the number of time steps at which the crossover
occurs

Fig. 4 The long-term diffusion coefficient D in terms of (left) p (at RD 0) and (right) R
(at pD 0) for different values of �. Insets: The same plots in log-lin scales

The correlation between consecutive turning angels has a finite length scale, i.e.
the particle eventually (on large time scales) forgets its local direction and gets
completely randomized. The crossover time to reach the asymptotic diffusive regime
is shown in Fig. 3. The time scale varies several orders of magnitude depending
on the choice of the parameter values. This indicates that the time window in
experiments should be chosen wide enough to capture all possible regimes of
motion. Finally, we investigate how the asymptotic diffusion coefficient D varies
with the control parameters of the problem. As shown in Fig. 4,D increases several
orders of magnitude with increasing p, R, or �.

In summary, we disentangled the combined effects of the structural properties
and motor processivity, and related the details of the transport on the level of
individual steps to the macroscopically observable transport coefficients.

Acknowledgements This work was funded by the Deutsche Forschungsgemeinschaft (DFG)
through Collaborative Research Centers SFB 1027 (Projects A7 and A3).
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Stochastic Modeling of Cargo Transport
by Teams of Molecular Motors

Sarah Klein, Cécile Appert-Rolland, and Ludger Santen

Abstract Many different types of cellular cargos are transported bidirectionally
along microtubules by teams of molecular motors. The motion of this cargo-motors
system has been experimentally characterized in vivo as processive with rather
persistent directionality. Different theoretical approaches have been suggested in
order to explore the origin of this kind of motion. An effective theoretical approach,
introduced by Müller et al. [9], describes the cargo dynamics as a tug-of-war
between different kinds of motors. An alternative approach has been suggested
recently by Kunwar et al. [7], who considered the coupling between motor and cargo
in more detail.

Based on this framework we introduce a model considering single motor
positions which we propagate in continuous time. Furthermore, we analyze the
possible influence of the discrete time update schemes used in previous publications
on the system’s dynamic.

1 Introduction

In the last years bidirectional motion along microtubules was observed in many
different cell types [10, 12]. In most of these cells it is still not clear how this
bidirectional motion is realized.
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Similar to a human road network connecting different places, the cell provides
several filaments which can be used for directed transport. Besides the transport
utility, the filaments give the cell its characteristic shape. To achieve this double goal
the cell produces a cortex of filaments close to the membrane and radial growing
filaments from the nucleus to the periphery. The set of these filaments constitutes the
cytoskeleton. Intracellular transport along microtubules, which is a radial growing
filament, is managed by mainly two kinds of transporters, the so-called molecular
motors which are identified as kinesin and dynein [6]. The principal difference be-
tween the two kinds of motors is their preferred walking direction. The microtubules
are polarized, i.e. they have well-defined directions which are called plus- and
minus-direction, respectively. Kinesin’s preferred orientation is to the plus-end of
the microtubule, while dynein’s orientation is opposed. Assuming that microtubules
mainly grow with their plus end to the cell periphery cellular cargos can be moved
to the nucleus and to the membrane by dynein and kinesin, respectively. However,
secretory cargos which could be thought to leave the cell as fast and straight as
possible, actually show a saltatory motion in vivo [11]. This behavior suggests that
a number of cellular cargos exists, on which kinesins as well as dyneins are bound
at the same time. One possible reason for this motion is to pass obstacles by a
second try [2]. The detailed mechanisms, which are leading to this unconventional
bidirectional motion are for most of the motor-cargo systems still unknown.

To describe this bidirectional motion theoretically two mechanisms have been
suggested: The first one assumes that NC kinesins and N� dyneins are involved
in a mechanical tug-of-war and fight for the direction the cargo effectively moves,
while the second one requires a control mechanism to achieve coordinated in vivo-
behavior [5, 13]. The pure tug-of-war model was introduced by Müller et al. [9] to
describe lipid droplet movement in evolving Drosophila embryo cells. They use a
mean-field model, meaning that the motors of one team share the load equally. As a
consequence, all kinetic quantities are determined by the number of attached motors
to the filament. Indeed, since the motors can bind to and unbind from the filament,
the number of motors of each kind attached to the filament fluctuates between zero
andN˙ with time. Between two attachment/detachment events, the cargo’s velocity
is constant and determined by the strength of the two teams (which depends on the
number of attached motors). The number of attached motors also determines the
load force felt by each team of motors, and exerted by the opposite team via the
cargo. Once one motor detaches one observes a cascade of detachments of motors
of this kind and therewith it is possible, in the framework of this model, to generate
motility states with high velocity, where one team wins over the other.

This model is quite elegant since experimental observables like the cargo’s
velocity can be calculated analytically. However, since this walking in concert was
not yet observed in vitro, Kunwar et al. had a closer look at different observables,
like the pausing time and run length of single trajectories but did not find matching
results in experiments. Therefore they introduced a model taking explicitly the
motor positions into account and models the motor-cargo coupling as a linear spring.

In this contribution, we introduce a general model with simple reaction rates
which propagates the cargo along its equation of motion in continuous time.



Stochastic Modeling of Cargo Transport by Teams of Molecular Motors 611

Fs< |F-
3| >  |F-

2| >  |F-
1| = 0

L0 L0

= |F+
1|= |F+

2| <  |F+
3| <  Fs

kd
ka

s(|F|>FS) s(|F|<FS)

(F)

Fig. 1 Sketch of the model dynamics. Two kind of motors: one team prefers to walk to the plus-
end (green) while the other prefers walking to the minus-end (yellow) of a microtubule. Within the
region L0 around the cargo’s center of mass the motors apply no force on the cargo (blue)

Furthermore, we compare and discuss the consequences of using different update
schemes.

2 Model

Inspired by the bidirectional cargo transport models of [7, 9] we define a stochastic
model to move a cargo by teams of molecular motors along a microtubule.NC and
N� motors are tightly bound to the cargo and pull it in plus- and minus-direction,
respectively, as shown in Fig. 1. In contrast to [9] and in agreement with [7] we
take every single motor position xi into account and calculate the thereby generated
force Fi on the cargo. We model the motor tail, which permanently connects the
motor head to the cargo, as linear spring with an untensioned length L0 and a spring
constant ˛. In contrast to Müller’s model [9] where the motors can attach (with rate
ka) to and detach from the filament (with force-dependent rate kd .Fi /) only, in our
model the motors can once bound to the filament, a one-dimensional infinite lattice,
can make a step of size d with a force-dependent rate s.Fi /. Since it seems to be
biological relevant that the motors feel no force when they attach to the filament
we reduce the allowed attachment region to ˙L0 around the center of mass of the
cargo.
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Due to the de-/attaching events the number n˙ of plus (minus) motors bound to
the filament is in the range 0 � nC � NC (0 � n� � N�). The resulting force on
the cargo at position xC .t/ at time t is then given by the sum of all single forces

F .xC .t/; fxi g/ D
nCCn�X

iD1
Fi .xC .t/; fxi g/ (1)

D
nCCn�X

iD1
˛

��
.xi � xC .t// � L0 sgn.xi � xC .t//


���jxC .t/ � xi j � L0

�
�

;

with the Heaviside step function�.:/. In this paper we illustrate how we extend the
model of Kunwar et al. for a continuous time propagation of the cargo in the case
of the simple relations for the stepping and detachment rates introduced in [9] and
given below.

The motors cannot stand arbitrarily high forces. Thus the so-called stall force FS
gives the maximal force under which a motor can walk in its preferred direction.
We split the stepping rate s.Fi / in two regimes: (I) forces smaller in absolute value
than the stall force (jFi j < FS ) where the motors walk in their preferred direction
and (II) forces bigger in absolute value than the stall force (jFi j 	 FS ) where the
motors walk opposed to their preferred direction and use

s.jFi j/ D

8
ˆ̂
<

ˆ̂
:

vf
d

�
1� jFi j

FS


jFi j < FS

vb
d

�
1 � jFi j

FS


jFi j < FS

(2)

with vb � vf [1, 8].
Assuming that the motors can walk on several close microtubules in a crowded

environment and that their attachment point to the cargo is not necessarily the same,
a sterical exclusion of the motor heads on the lattice is not regarded in the model.

For the detachment rate we use [9]

kd .jFi j/ D k0d exp

� jFi j
FD

�

; (3)

with the force-free detachment rate k0d and the detachment force FD , which
determines the force scale.

Update Mechanisms

In the mean-field model [9] the cargo moves with a constant velocity during two
motor events, calculated by the number of attached motors of each team. The time
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at which the next event occurs, is calculated by means of Gillespie’s algorithm [3].
Within this framework the cargo’s velocity is piecewise linear.

Kunwar et al. [7] use a parallel, thus discrete time update scheme to propagate
the system. At every fixed time step �t they calculate the probability that a motor
event occurs within this time step. An event should be rare within �t to get a good
approximation of the exact solution in continuous time. In their simulations they use
�t D 10�6 s.

Once the motor dynamic is determined, one has to decide how the cargo reacts
to each change in the motor configuration. In [7] two different cargo dynamics are
introduced: either the cargo moves instantaneously to the position with balanced
forces, or it undergoes a viscous force from the environment. The mean-field model
of [9] was treated in the case of an instantaneously reacting cargo.

In [7] a viscous environment was taken into account by calculating the position
of a cargo with radius R after �t according to

xC .t C�t/ D xC .t/C
nCCn�X

iD1

Fi

6	�R
; (4)

where � is the fluid’s viscosity.
To get a more general approach we rather use the cargo’s equation of motion

m
@2xC .t/

@t2
D �ˇ@xC .t/

@t
C

nCCn�X

iD1
Fi .xC .t/; fxi g/; (5)

with ˇ D 6	�R and the cargo’s mass m, to determine the time-dependent position
of the cargo.

By determining the force applied on each motor by the distance between motor
head position and the center of mass of the cargo, the force Fi depends on time,
too. Hence, the motor rates for stepping and detaching are time-dependent. Thus
the cargo moves in a viscous medium in a harmonic potential of the sum of the
springs. Note that the number of engaged springs changes, if the distance between a
motor and the cargo falls below or exceeds L0. Therefore we have to solve Eq. (5)
piecewise on segments with a constant number of motors which pull the cargo. On
every single segment we solve the equation

m
@2xC .t/

@t2
D �ˇ@xC .t/

@t
� �xC .t/C ��; (6)

with

� D
nCCn�X

iD1
˛ ���jxC .t/ � xi j �L0

�
(7)
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which determines the effective spring constant and

� D
nCCn�X

iD1

�
xi � sgn.xC .t/ � xi /L0

� ���jxC .t/ � xi j � L0
�
; (8)

the effective potential generated by the given motor configuration. We then get the
cargo position xC .t/ at time t on the segments with constant number of pulling
motors

xC .t/ D �1� C �1x0 � v0
�1 � �2 exp.�2t/C v0 � �2� � �2x0

�1 � �2
exp.�1t/ � � (9)

with

�1 D � ˇ

2m
C
s
�
ˇ

2m

�2
� �

m
and �2 D � ˇ

2m
�
s
�
ˇ

2m

�2
� �

m
: (10)

Now knowing the cargo position at an arbitrary time t we can use Gillespie’s
algorithm for time-dependent rates [4] to calculate the next event time.

3 Results

At first we analyze the distribution of times between two motor updates which we
generate with the exact algorithm and the parameter set given in Table 1.

In Fig. 2 the normalized count of times between events is shown in a double
logarithmic plot. Obviously, times smaller than �t D 10�6 s occur if we propagate
the system with the exact algorithm. By analyzing 105 events we calculated the
mean time between events hti for the two stall forces as well as the smallest ts and
the longest time tl between two events and get

FS D 2 pN hti D 3:5 � 10�3 s ts D 3:1 � 10�8 s tl D 1:8 � 10�1 s

FS D 6 pN hti D 1:8 � 10�3 s ts D 1:6 � 10�8 s tl D 8:1 � 10�2 s:

Table 1 Simulation
parameter for the results
below

N
˙

5

vf 1;000 nm/s

vb 6 nm/s

D 0.32 pN/nm

FD 3 pN

ka 5.0 s�1

k0d 1 s�1

FS 6 / 2 pN

R 250 nm
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the exact algorithm [4] for FS D 2 pN (blue) and FS D 6 pN (red). Obviously, times between
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Fig. 3 Difference between the exact velocity histogram generated with Gillespie’s algorithm [4]
and the parallel update scheme suggested in [7] with different �t for (a) FS D 2 pN and (b)
FS D 6 pN. Sample size per histogram: 5 
 106

It remains the question how this influences the system’s observables. In [7] the
focus is on the run length and pause duration of the single walks. However, as the
motion is stepwise, these observables are defined from quite arbitrary time/distance
thresholds. That is why we preferred to concentrate on another quantity to compare
our data to the parallel update scheme, namely the discrete velocity

Qv D jx.t C Dt/ � x.t/j
Dt

; (11)

where we use Dt D 0:16 s as it was suggested in [9].
In Fig. 3 we show the difference between the normalized velocity histogram

generated by Gillespie’s algorithm [4] and those generated by the parallel update
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Table 2 Mean discrete
velocity hQvi in nm/s for the
exact and the parallel update

�t

FS Exact 10�6 s 10�5 s 10�4 s 10�3 s

2 pN 149.0 149.8 149.7 150.3 155.4

˙0:10 ˙0:05 ˙0:05 ˙0:08 ˙0:08
6 pN 449.4 450.2 450.4 451.1 458.5

˙0:18 ˙0:09 ˙0:13 ˙0:13 ˙0:13

scheme for different �t and for two different stall forces FS . In both cases an
increase in �t increases the cargo’s velocity as shown in Table 2.

4 Discussion

We have introduced in this contribution an exact algorithm to propagate the
motors-cargo system in continuous time.

An analysis of the times between two events reveals that very different time
scales are involved: while most times between two events are greater than 10�3 s, a
fraction of events are separated by less than 10�7 s.

From our results, a first conclusion is that if one uses parallel update, the time
step �t should at least be less than 10�5 s to expect results in good agreement
with the continuous time dynamics. However, the continuous time dynamics reveals
that much shorter time scales are involved, as a signature of cascades of events.
These cascades are overlooked in the discrete updates even for time steps as small
as �t D 10�6 s. While we have found that this approximation does not alter the
quality of measurements of most quantities when such a small time step is used
(as it is the case in [7]), one cannot exclude that for some other sets of parameters,
and/or for more sensitive observables, these cascades could have a stronger effect.
Actually, though further numerical support should be provided to conclude, our
results seem to indicate that discrete updates systematically slightly underestimate
the probability to have weak cargo velocities (unless prohibitively small time steps
would be used). This can be understood as an effect of the synchronization of
the motors induced by the time discretization, similarly to what happens with the
mean-field assumption used in [9] (which can also be seen as a synchronization
mechanism) which overemphasizes large velocity states. As a conclusion, in such a
system involving very different time scales, an exact algorithm in continuous time
provides an efficient numerical scheme: it allows to avoid any possible artefact that
would come from the discretization, without any extra numerical cost.

In further work we will extend this model to more realistic motor rates and show
for biologically relevant parameter sets how some external quantity like the ATP
concentration or the viscosity of the surrounded fluid can control the drift of the
cargo [14].



Stochastic Modeling of Cargo Transport by Teams of Molecular Motors 617

Acknowledgements This work was supported by the Deutsche Forschungsgemeinschaft (DFG)
within the collaborative research center SFB 1027 and the research training group GRK 1276.

References

1. N. J. Carter et al., Nature 435(7040), 308–312 (2005)
2. K. Döhner et al., Trends Microbiol. 13(7), 320–327 (2005)
3. D.T. Gillespie, J. Comput. Phys. 22(4), 403–434 (1976)
4. D.T. Gillespie, J. Comput. Phys. 28(3), 395–407 (1978)
5. S.P. Gross et al., J. Cell Biol. 156(4), 715–724 (2002)
6. N. Hirokawa et al., Curr. Opin. Cell Biol. 10(1), 60–73 (1998)
7. A. Kunwar et al., Proc. Nat. Acad. Sci. 108(47), 18960–18965 (2011)
8. R. Mallik et al., Curr. Biol. 15(23), 2075–2085 (2005)
9. M.J.I. Müller et al., Proc. Nat. Acad. Sci. 105(12), 4609–4614 (2008)

10. G. Steinberg et al., J. Microsc. 214(2), 114–123 (2004)
11. B. Trinczek et al., J. Cell Sci. 112(Pt 14), 2355–2367 (1999)
12. M.A. Welte, Curr. Biol. 14(13), R525–R537 (2004)
13. M.A. Welte et al., Cell 92(4), 547–557 (1998)
14. S. Klein, C. Appert-Rolland, L. Santen, EPL 107(1), 18004 (2004)



Molecular Motors with a Stepping Cycle:
From Theory to Experiments

Luca Ciandrini

Abstract The traffic of molecular motors is often represented by means of Poisso-
nian particles moving on a unidimensional track. However, biological ‘particles’
generally advance with complicated stepping cycles, passing through different
biochemical and conformational states. In this contribution we review an extension
of the typical exclusion process, the archetypical model of unidimensional transport;
we explore it first from a theoretical point of view, and then we show how it has been
possible to provide quantitative comparisons to experiments in the context of mRNA
translation.

1 Introduction

Many macromolecules perform active directed motion on different biological tracks
inside the cell. Often called molecular motors, all those molecules share the same
general feature: they convert energy from a biochemical source into mechanical mo-
tion. Among the several types of self-propelled molecules involved in sub-cellular
processes, some move on linear substrates in order to efficiently transport matter
and organise large-scale structures inside the cell (such as kinesins or myosins on
microtubules or dyneins on actin filaments). In addition to those, other linear motors
are implicated in biopolymerisation processes. For instance, RNA polymerases are
complexes that ‘walk’ on a strand of DNA to produce a messenger RNA (mRNA),
and ribosomes are molecular motors that are able to read and translate the genetic
information encoded in the mRNAs, and assemble the corresponding proteins [1].
Interestingly, many motors can bind their corresponding unidimensional tracks (e.g.
microtubules, mRNA, . . . ) concurrently; since they cannot overtake each other, this
causes traffic effects and collective phenomena of molecular motors.

Although the model reviewed in this contribution is rather general and its
different aspects can be adapted to different types of motors, here we will deal
in particular on the traffic of ribosomes moving on mRNAs and translating their
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Fig. 1 A standard exclusion process is represented in panel (a), with the particle dynamics
explained in the main text. Panel (b) shows the typical density-current relation J D p�.1 � �/,
while in (c) we have drawn the phase diagram of the system, highlighting the three phases the
system shows: low density (LD), high density (HD) and maximal current (MC). The dashed line
represents a first order transition (where LD and HD coexist) and the continuous line represents
the second order transition towards the MC

encoded message. It was precisely for this problem that a prototypic model of traffic
in one dimension has been introduced in the literature by MacDonald and coworkers
in 1968 [2]: the totally asymmetric simple exclusion process (TASEP). In this
model, particles (ribosomes) are injected from one side of a discrete unidimensional
lattice composed of L sites (an mRNA with L codons, i.e. triplets of nucleotides)
with a rate ˛, then they move from one site to the following one with a hopping
rate p (provided that it is not occupied by another particle), and at the end of the
chain they are depleted with a rate ˇ (see Fig. 1a). This apparently simple model has
however a very rich phenomenology, and for this reason it has been deeply studied
in the mathematical and physical literature since the 1970s. In the following we will
give a brief and not exhaustive summary of some known results of the TASEP.

1.1 The TASEP: Survival Guide

The exclusion process, being one of the few out of equilibrium models that can
be exactly solved, has become a paradigmatic subject of study in nonequilibrium
statistical mechanics. More in particular, for each couple of parameters ˛ and ˇ, the
particle density � (average amount of particles on a lattice divided by L) and the
particle current J (particles passing through a site per unit of time) are known [3].
The system shows boundary-induced transitions, where the current J plays a role
analogous to the free energy of an equilibrium system. Intuitively, if the particles
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are slowly injected in the system, i.e. if the entry rate ˛ is smaller than the other
rates, the lattice is found in a low density (LD) phase, with just a few particles on
it; on the contrary, if the exit rate ˇ is limiting, the lattice will be in a high density
(HD) phase, with particles start jamming from the end of the lattice. However, if
none of the boundaries is limiting, the system enters a so called maximal current
(MC) phase, where the density and the current no longer depends on ˛ and ˇ.

A mean-field (MF) theory is proved to be correct in the limit of large systems
(L ! 1) and it provides the correct fundamental diagram (Fig. 1b), and phase
diagram of the system (Fig. 1c). For instance, the fundamental diagram shows the
dependency of the current over the density: in MF, interpreting � as the probability
of finding a particle on a given site and 1 � � as the probability of finding a hole,
the current can be expressed as J D p�.1 � �/ (Fig. 1b). The MF values of density
and current in the different phases can be found in (Fig. 1c); a refined examination
of the features of the exclusion process is beyond the scope of this work, but it can
be found in other publications (see, e.g., [3]).

Different ‘flavours’ or variants of the TASEP have been developed during the
years to describe several traffic problems, often related to biological systems.
Among the many variants to the standard homogeneous exclusion process described
above, we remind here the works on lattices with inhomogeneities (e.g. [4, 5]),
static defects [6–8] or dynamical ones [9], once again inspired by the translation
of the mRNA by ribosomes; the TASEP-LK [10] (TASEP with Langmuir Kinetics)
where particles can attach and detach anywhere in the lattice like motor proteins do;
TASEP with finite resources of particles [11–14], or in which particles occupy more
than one site at a time [15, 16], or where they have to undergo a stepping cycle to
advance [17]. The following part of this contribution is indeed focused on particles
having a stepping cycle, and we show that the presence of even the simplest stepping
kinetics can induced large changes in the phenomenology of the transport process.

2 A Simple Stepping Cycle: Theory

In contrast to a standard TASEP, where particles attempt to translocate to the next
site as Poissonian steppers, here we study a model with particles having an extra
degree of freedom, or stepping cycle. Biological ‘particles’ are in fact much more
complicated objects than Poissonian walkers and, to advance, they need to undergo
several biochemical and mechanical stages. Here we consider a lattice gas with
particles having the simplest stepping kinetics, where they need to be excited before
translocating, and only excited particles can move (if the following site is empty),
see Fig. 2. All other features (such as exclusion and boundaries) remain the ones
introduced above for the TASEP.

From a more mathematical point of view, the occupation number ni D 0; 1; 2

of a site i of the lattice describes the different states in which it can be found: if a
site is empty its occupation number is 0, while a site i occupied by a particle in the
ground or excited state is respectively described by ni D 1 or ni D 2. Then the only
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Fig. 2 A schematic representation of the simplest stepping cycle: a particle in the ground state
becomes excited (in the figure an excited particle is marked with a square on the top-right), and
only after the excitation it can move to the following site

transitions allowed by the stepping cycle described above are the following:

1 ! 2 with rate k (1)

20 ! 01 with rate � , (2)

where the first line means that a particle in the ground state becomes excited with
rate k, and the second line is a schematic representation of the translocation of an
excited particle to the empty next site. This dynamics has been first introduced in the
literature by Klumpp and coworkers in [18] to model the traffic of molecular motors
on a filament, and then investigated in [19] in the perspective of mRNA translation
and having in mind the properties of the ribosomal bio- and mechano-chemical
cycle. The formalism is adapt to describe molecular motors whose movement is
controlled by a biological substrate that provides the energy necessary to some
conformational changes, then followed by the translocation of the motor.

The values of the occupation numbers ni ’s change with time according to these
dynamical rules:

d hnii
dt

D �hıni�1;2ıni ;0i C khıni ;1i � 2�hıni ;2ıniC1;0i ; (3)

where, with the presence of the Kronecker ı, the first two terms represent an increase
of ni by one due to an incoming particle (ni D 0 ! 1) or a particle undergoing a
transition (ni D 1 ! 2), while the last term represents an excited particle leaving
the site (ni D 2 ! 0). The brackets indicate the average of the quantities over time,
which are equivalent to ensemble averages. By defining �i 
 hıni ;1i, �i 
 hıni ;2i as
the average occupancy of respectively ground and excited particles on the site i ,
and �i 
 hıni ;1 C ıni ;2i as the total occupancy of the site i , it is possible to establish
a MF theory. In this framework, we will approximate hıni ;2ınj ;1i � �i�j and the
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mean-field equations describing the evolution of the densities at site i can be written
as [19]:

d�i

dt
D �i�1.1 � �i � �i /� � ki�i (4)

d�i

dt
D ki�i � �i .1� �iC1 � �iC1/� : (5)

We will first review the periodic boundary case (a circular lattice with a fixed
total density of particle �) to study the fundamental diagram of this model, and then
move our attention to the open boundary case.

2.1 The Periodic Boundary Case: Fundamental Diagram

Considering the steady-state, from Eqs. (4) and (5) one can find the MF value of the
current of particles J as a function of the total density � (see [19]):

J D k
�.1 � �/

w C .1 � �/
; (6)

where w 
 k=� is the ratio between the excitation and translocation rate. The values
of the densities only depend on w and �, while the current timescale also depends on
their absolute values (presence of k in Eq. (6)). In the large w limit we recover the
TASEP results, while new properties emerge when the internal transition becomes
limiting.

We make use of a standard TASEP with hopping rate p D k�=.kC�/ to compare
the two models (the TASEP and the model with two internal states, the two-state
model): an isolated particle that moves with rate p has the same (mean) hopping
time of an isolated two-state particle. Hence, the two models should behave similarly
in the low density regime, and the differences arise only as a consequence of the
internal transition.

Figure 3 shows the comparison between the density-current relation of two-state
model (MF, and simulations carried out with a Gillespie-like algorithm) and the
TASEP. We immediately notice that (i) the two-state model carries higher currents
compared to the TASEP, and (ii) that it reaches its maximum for higher densities
(larger than 0:5), indicating that the particle-hole symmetry no longer holds in the
two-state model. Moreover, (iii) for small values of w the MF breaks down and does
not provide a good approximation anymore. This in sharp contrast to the TASEP, for
which the MF works well: here, instead, for small w’s we observe a large deviation
between theory and simulations.
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a b

Fig. 3 Comparison between the fundamental diagram of the TASEP and of the two-state model
(mean-field and simulations) for different values of w

An explication for these behaviours can be found in [20], where It has been
shown that this simple stepping cycle can induce moving clusters of particles,
causing correlations between sites neglected by the MF theory. A particle blocked
in the queue can use the time spent there to make the transition towards the excited
state, and then jump with a rate � when the next site becomes empty. When w is
small, this effectively changes the hopping rate of particles when the traffic effects
are relevant. For this reason, the two-state model cannot be mapped onto a TASEP
with hopping rates that are independent from the density; this is also clear from
Fig. 3.

2.2 The open Boundary Case: Phase Diagram

If we now focus on a system with open boundaries, the density � is not fixed but its
mean is controlled by the boundaries ˛ and ˇ. Although it is out of the scope of this
work to provide a detailed illustration of the model with open boundaries, the MF
phase diagram is known, and it is compared to the standard TASEP one in Fig. 4a.

The structure of the MF phase diagram remains the same of the TASEP one,
oppositely to what other MF theories predicts for various models with particles
having internal states, e.g. [21, 22]. However, numerical simulations (Fig. 4b, c)
seem to confirm qualitatively the MF form of the phase diagram. One should
however notice that, as in the periodic boundary case, important deviations between
MF and simulations are present [19], and the development of refined theories to
obtain a more quantitative phase diagram will be the subject of future investigations.
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a b c

Fig. 4 (a) Comparison between the phase diagram of a TASEP with rate p and of the two-state
model (mean-field). In (b) and (c) we show the numerical phase diagram for the two-state model
with k D 10�2 and � D 1. Panel (b) is the colormap of the current J while in (c) one can observe
the 3D plot of the density � for different values of ˛ and ˇ

3 Experiments

In this section we use the two-state model previously discussed, and apply it to the
study of mRNA translation. In this process ribosomes enter the mRNA from one
end (50), then move codon by codon (one codon is a triplet of nucleotides) towards
the other end (30), from which they then detach. The translocation by one codon is
only possible if a transfer RNA (tRNA) carrying an amino acid is captured by the
ribosomes; a complex formed by the ribosome and the correct tRNA can then move
to the following codon.

Because of the presence of a biochemical stepping cycle (capture of the correct
tRNA and several biochemical intermediate conformations), a quantitative more
reliable study of mRNA translation is possible with a model explicitly considering
the transition to an excited state, followed by the translocation. Instead, mapping the
biological process to a standard lattice gas model with Poissonian particles becomes
cumbersome: the choice of the effective hopping rates would in fact depend on
the density. As a result of the inhomogeneity of the lattice (there are different
tRNAs associated to different codons, and therefore the hopping rate can change
from site to site), mapping the biological process to the standard TASEP is even
more complicated in the case of mRNA translation. The problem of the choice
of rates can be overcome with introducing a stepping cycle of the type discussed
in the previous section, where the transitions correspond to known biochemical
processes. More in particular, in this case we will interpret k as the rate at which the
ribosome is able to get a correct tRNA, and � as the translocation rate of “excited”
ribosomes. Different genes, i.e. codon sequences, are then represented by different
lattices with characteristic sequences of k rates. It turns out that most of the codon
have a ratio w < 1, meaning that the inclusion of the ribosomal stepping cycle is
biologically relevant. More details about the rates and the biological process can be
found in [19, 23], and references therein.
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Fig. 5 Scatter plot of the
predicted protein production
rate versus the measured
protein abundances. These
two quantities, although they
are not the same, should
correlate. In the figure, each
black point represents a gene
m, while the yellow square
are their average made with a
logarithmic binning

Knowing the set of parameters for all mRNAs, it is then possible to simulate
the translation of the entire genome of an organism as done in [23] for yeast,
S.cerevisiae. With this model it has been possible to deduce biologically important
outcomes, such as the classification of the mRNAs according to their translation
properties based on the phase diagram of the individual mRNA, or the evaluation
of the ribosomal entry rates (the rate ˛ of each mRNA). Moreover, by calculating
the current J at the estimated value of ˛ for each gene m (˛m), it has been possible
to provide an estimate of the protein production rate Pm 
 Jm.˛m/. This quantity,
multiplied by the amount of the corresponding mRNA Mm, well correlates (and
better than other quantities currently used, see [23]) with the protein abundance as
shown in Fig. 5.

Furthermore, the two-state model provides good predictions for single-gene in
vivo experiments [24]. These, at our knowledge, are the first attempts to use TASEP-
based models to quantitatively describe in vivo experiments.

4 Summary

We have presented features of a driven lattice gas model with internal states
mimicking a stepping cycle. The model is presented in the perspective of mRNA
translation, for which we have compared the results to experiments, but the
formalism introduced could in principle be applied to different types of molecular
motors whose biochemical stepping cycle is composed of two main stages. For
example, this could be an approximation of other motors whose stepping is limited
by the concentration of a substrate (e.g. ATP).

The simplest stepping cycle (two-state model) already presents remarkable
differences to the standard TASEP, which indicates the importance of considering
the stepping cycle to compare the model to experiments.
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Correlation Functions and Finite–Size Effects
in Granular Media

Jevgenijs Kaupužs

Abstract A model is considered, where the local order parameter is an
n–component vector. This model allows us to calculate correlation functions,
describing the correlations between local order parameter at different spatial
coordinates. The longitudinal and transverse Fourier–transformed two–point
correlation functions Gk.k/ and G?.k/ in presence of an external field h are
considered in some detail. In the thermodynamic limit, these correlation functions
exhibit the so-called Goldstone mode singularities below certain critical temperature
at an infinitesimal external field h D C0. The actual model can be applied to
granular media, in which case it describes a small particle and, therefore, the
finite–size effects have to be taken into account. Based on Monte Carlo simulation
data for different system (lattice) sizes, we have found that the correlation functions
are reasonably well described by certain analytic approximation formulas.

1 Introduction

We consider here the n–component vector–spin models, called also n–vector models
or O.n/ models. These models describe the magnetism phenomena and can be
applied also to small systems like granules. Description of a system of interacting
magnetic particles is a challenging problem, which can be tackled with this
approach. Historically, the n–vector models have attracted significant interest during
the last decades owing to the critical phenomena (see, e.g., [1–9] and references
therein) and also the so–called Goldstone mode singularities observed here (see,
e. g., [6, 9–21] and references therein). We will briefly review this subject in the
following section, discussing the application to a small granule later on.
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2 The n–Vector Model and Its Relation to Critical
Phenomena and Goldstone–Mode Singularities

The n–vector model describes a Hamiltonian system of interacting spins. The
Hamiltonian H is

H

T
D �ˇ

0

@
X

hiji
si sj C

X

i

hsi

1

A ; (1)

where T is temperature, measured in energy units, si is the spin variable
(n–component vector of unit length) of the i -th lattice site, ˇ is the coupling
constant, and h is the external field with magnitude j h jD h. The summation
in (1) runs over all nearest neighbors hiji in the lattice. Each spin configuration
has an equilibrium statistical weight / exp.�H=T / consistent with the Boltzmann
distribution. The model with ˇ > 0 describes the ferromagnetism, whereas that
with ˇ < 0 – the anti-ferromagnetism. Note that in a special case of n D 1, the
considered here n–vector model is the well known Ising or Lenz–Ising model.

A quantity of particular interest here is the two–point correlation function

JGi.x/ D hsi .0/si .x/i ; (2)

where si .x/ is the i -th component of the spin (i D 1; 2; : : : ; n) at the lattice site
with coordinate x. In the following, we assume that the external field is oriented
along the axis labeled by i D 1. At h ¤ 0, the longitudinal (i D 1) and transverse
(i 	 2) correlation functions have to be distinguished for models with n 	 2. The
Fourier–transformed two–point correlation function is

Gi.k/ D
X

x

JGi.x/ e�ikx : (3)

Further on, the longitudinal correlation function (i D 1) is denoted by Gk.k/, and
the transverse one (i 	 2) – by G?.k/.

Consider the lattice with spatial dimensionality d . In the thermodynamic limit
at zero external field, the n–vector model with d > 2 for n 	 2 or with d 	 2

for n D 1 undergoes the phase transition from a disordered state to a state with
long–range order at a certain critical coupling ˇ D ˇc . We will focus only on the
ferromagnetic case ˇ > 0, where the disordered state at ˇ < ˇc is characterized by
zero spontaneous magnetization M D 0, whereas the ordered state at ˇ > ˇc – by
M > 0. The spontaneous magnetization is equal to the average longitudinal spin
component hs1i at a vanishingly small external field h D C0 in the thermodynamic
limit.

From the exact solution found by Onsager [1] we know that the phase transition
in the 2D Ising model on a square lattice takes place atˇc D 1

2
ln.1Cp

2/. This is the
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second–order phase transition, which is characterized by power–law singularities. In
particular, the spontaneous magnetization behaves as M � .ˇ � ˇc/

1=8 at ˇ ! ˇc
for ˇ > ˇc , the correlation length diverges as � �j ˇ�ˇc j�� with � D 1 at ˇ ! ˇc ,
whereasG.k/ (here index i 
 1 is omitted) behaves asG.k/ � k�2C� with � D 1=4

for small wave vectors j k jD k ! 0 at the critical point ˇ D ˇc [1–3]. The
exponents in these expressions are called the critical exponents. According to the
universality hypothesis, these are universal in the sense that the same exponents
correspond to certain class of models with given d and n.

Exact and rigorous results in critical phenomena are mainly restricted to two–
dimensional models [3]. In three–dimensional cases, perturbative renormalization
group (RG) methods, high temperature series expansion, as well as numerical
simulations are commonly used – see [6] for a review. A controversy between the
perturbative RG method [5,6] and an alternative analytical approach, called the GFD
(grouping of Feynman diagrams) theory [7, 18], has been recently discussed in [9].

In the models with n 	 2, certain singularities appear not only near and at the
critical point, but also below the critical temperature, i.e., at any ˇ > ˇc . These
are the Goldstone mode singularities, which are related to the global rotational
O.n/ symmetry of the model at h D 0. At h ! 0 and ˇ > ˇc , the ordering
direction of an infinitely large spin system with the linear lattice size L ! 1 is
fixed – parallel to h. At the same time, an infinitesimal variation ıh of the external
field in the transverse (perpendicular to h) direction leads to the rotation of the
total magnetization vector by an angle ıh=h. It results into the divergence of the
transverse magnetic susceptibility �? D G?.0/ at h ! 0. Other singularities are
induced by this effect, as well. In the thermodynamic limit L ! 1 at ˇ > ˇc , we
have the following Goldstone mode power–law singularities:

M.h/�M.C0/ / h� at h ! 0 ; (4)

G?.k/ / k��? ; Gk.k/ / k��k at h D C0 ; k ! 0 : (5)

Here M.h/ is the magnetization depending on h, and M.C0/ is the spontaneous
magnetization. According to the standard theory [10–14], �? D 2 and �k D 4 � d

hold for 2 < d < 4. This approach gives �? D 2, �k D 1 and � D 1=2 in three
dimensions d D 3. Predictions of the GFD theory [18] are somewhat different:

d=2 < �? < 2 ; �k D 2�? � d ; � D .d=�?/ � 1 : (6)

Several Monte Carlo simulations have been performed earlier [15–17] to verify the
compatibility with standard–theoretical expressions, where the exponents are fixed.
In recent years, a series of accurate Monte Carlo simulations [9, 19–21] have been
performed for remarkably larger lattices than previously were available, with an aim
to evaluate the exponents in (4)–(5). The results point to some deviations from the
standard–theoretical values, in agreement with (6).
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3 Relation to Granular Media

Here we would like to emphasize several aspects, which might be important in
various applications of the n–vector model to magnetism phenomena in granular
media:

• A separate small particle (granule) has a finite size.
• Boundary spins have different conditions than the bulk spins.
• Interaction between magnetic particles (granules) can be important.

In the current study only the first aspect is taken into account, considering this as
a first step towards a more realistic description. Here we assume periodic boundary
conditions for a finite–size system. One has no notice that the n–vector model is
suited to describe the magnetism of granular media. In this case, dissipative forces
and friction between granules might be neglected.

4 Analytic Approximations for the Two–Point Correlation
Functions

We have evaluated the Fourier–transformed transverse and longitudinal two–point
correlation functions of the O.4/ (i.e., n D 4) model in the h100i crystallographic
direction of the simple cubic lattice. These are denoted as G?.k/ and Gk.k/,
respectively. We have used the Monte Carlo techniques of [20]. The results for
relatively large system sizes, up to L D 350, have been analyzed in [20] with an
aim to evaluate the thermodynamic limit. Here we will show the simulation results
for much smaller sizes in order to examine the finite–size effects.

In addition, here we propose and test certain analytic approximations

G?.k/ � �?
� Qa.h/

Qa.h/C Qk2
��?=2

; (7)

Gk.k/ � �k

 Qb.h/
Qb.h/C Qk2

!�
k
=2

; (8)

where �? and �k are the transverse and longitudinal susceptibilities, respectively,
and Qk2 D .2 sin.k=2//2. These approximations have a set of expected properties
under appropriate choice of parameters Qa D Qa.h/ and Qb D Qb.h/. The actual choice
of Qk2 ensures the periodicity G?.k C 2	/ D G?.k/ and Gk.k C 2	/ D Gk.k/
and, at the same time, Qk2 ! k2 at k ! 0. The formulas (7) and (8) ensure
that the correlation functions can be expanded in powers of k2 in vicinity of
k D 0 for any nonzero h. At the same time they ensure the power–law asymptotic
G?.k/ D a k��? and Gk.k/ D b k��k in the thermodynamic limit at h ! 0
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provided that Qa.h/ � Qb.h/ � h2=�? holds at h ! 0, taking into account the
relations �? D M.h/=.ˇh/ and �k � h��k

=�? . The latter one is true at h ! 0

according to Eq. (9.25) in [18]. This behavior of Qa.h/ and Qb.h/ implies that
�?.h/ � �k.h/ � h�1=�? holds for small h, where �? and �k are the transverse and
the longitudinal correlation lengths. Note also that (7) is the well–known Gaussian
approximation at �? D 2, although our fits give �? < 2.

Equations (7) and (8), apparently, represent the simplest analytic formulas having
all the discussed here expected properties. Therefore, they might be very meaningful
approximations. We have tested them in the O.4/ model at ˇ D 1:1 > ˇc � 0:936

(an estimate given in [15]) and a small value of the external field h D 0:0003125. In
the following, we discuss Monte Carlo data for three relatively small lattice sizes –
L D 16, L D 32 and L D 64. The fit results for G?.k/ and Gk.k/ are shown
in Figs. 1 and 2, respectively. The corresponding fit parameters are collected in
Table 1. Note that the values of susceptibilities have been determined directly from
the simulation data as �? D M.h/=.ˇh/ and �k D Gk.0/.

It turns out that the transverse correlation function G?.k/ can be quite well fit
to (7) within the whole range of the wave vector values k � 	 . The longitudinal
correlation function Gk.k/ is quite similar to the transverse one for L D 16, and
also can be fit over the whole k range to the corresponding formula (8). For L D 32

such a fit is still good, but for a larger system size L D 64 the fit is acceptable only

Fig. 1 The lnG?.k/ vs ln k
plots for the O.4/ model at
ˇ D 1:1 and h D 0:0003125.
The Monte Carlo results for
lattice sizes L D 16 (circles),
L D 32 (squares) and
L D 64 (diamonds) are
shown

-2 -1 0 1

ln k

-2

0

2

4

ln
 G

 (
k)

Fig. 2 The lnGk.k/ vs ln k
plots for the O.4/ model at
ˇ D 1:1 and h D 0:0003125.
The Monte Carlo results for
lattice sizes L D 16 (circles),
L D 32 (squares) and
L D 64 (diamonds) are
presented. For comparison,
the values of lnG?.k/ at
L D 16 are shown by pluses
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Table 1 Parameters in (7) and (8) depending on the linear lattice size L for the O.4/ model at
ˇ D 1:1 and h D 0:0003125, evaluated from Monte Carlo simulations

L �? Qa.h/ �? �k
Qb.h/ �k

16 270.7(1.0) 0.001932(11) 1.8961(12) 259.70(29) 0.001932(12) 1.8877(17)

32 1095.2(1.1) 0.0005694(26) 1.9410(11) 340.3(2.1) 0.0005578(51) 1.7124(18)

64 1389.21(58) 0.0005376(24) 1.9744(11) 50.1(1.3) 0.000426(18) 1.2198(49)

350 1422.831(40) 0.0005354(26) 1.9776(11) 7.41(20) 0.00277(36) 0.872(22)

within a narrower k interval. Therefore, the fit over the range k � 	=4 is shown in
this case.

As we can see from Figs. 1, 2 and Table 1, the finite–size effects are remarkably
larger for the longitudinal correlation function as compared to the transverse one
within 16 � L � 64. We have considered also a much larger lattice size L D 350.
The transverse correlation function, again, is well fit within k � 	 , whereas the
longitudinal one – within k < 0:28. The values of parameters are given in Table 1.
Comparing the results in Tab. 1, we conclude that the size L D 64 is already
quite close to the thermodynamic limit for G?.k/, but not for Gk.k/ at the actual
parameters ˇ D 1:1 and h D 0:0003125. One has to note that the smaller is h,
the larger are transverse and longitudinal correlation lengths and, therefore, the
larger are lattice sizes L at which the thermodynamic limit is reached with certain
accuracy.

Interestingly, the transverse and longitudinal correlation functions in our example
are practically the same for the smallest lattice size L D 16. It can be seen in
Fig. 2, where lnGk.k/ and lnG?.k/ for L D 16 are shown by solid circles and
pluses, respectively. The reason of this is the smallness of the term

P
i h � si, which

contains the sum overL3 lattice sites and represents the interaction of spins with the
external field in Hamiltonian (1). Indeed, this term is responsible for the breaking of
rotational symmetry and the related differences between Gk.k/ and G?.k/.

Summary and Conclusions
In the actual work, the n–component vector spin model (n–vector model or
O.n/ model) has been considered. We have briefly reviewed its relation to
critical phenomena and Goldstone mode singularities and have considered
also its application to magnetic phenomena in a granular media. In particular,
two–point correlation functions and finite–size effects have been discussed
in some detail based on Monte Carlo simulation data and certain analytical
approximations.
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