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Abstract. In this paper, we present an unsupervised framework for dis-
covering, detecting, tracking, and reconstructing dense objects from a
video sequence. The system simultaneously localizes a moving camera,
and discovers a set of shape and appearance models for multiple objects,
including the scene background. Each object model is represented by
both a 2D and 3D level-set. This representation is used to improve detec-
tion, 2D-tracking, 3D-registration and importantly subsequent updates
to the level-set itself. This single framework performs dense simultane-
ous localization and mapping as well as unsupervised object discovery.
At each iteration portions of the scene that fail to track, such as bulk
outliers on moving rigid bodies, are used to either seed models for new
objects or to update models of known objects. For the latter, once an
object is successfully tracked in 2D with aid from a 2D level-set segmen-
tation, the level-set is updated and then used to aid registration and
evolution of a 3D level-set that captures shape information. For a known
object either learned by our system or introduced from a third-party li-
brary, our framework can detect similar appearances and geometries in
the scene. The system is tested using single and multiple object data
sets. Results demonstrate an improved method for discovering and re-
constructing 2D and 3D object models, which aid tracking even under
significant occlusion or rapid motion.

Keywords: Structure From Motion, SLAM, 3D Tracking, 3D Recon-
struction, Dense Reconstruction, Learning, Level-Set Evolution.

1 Introduction

Object detection, tracking and 3D reconstruction are fundamental early-vision
tasks that are often addressed independently. Here, we present a unified and
unsupervised framework that places dense-object tracking and reconstruction in
feedback with one another, allowing us to discover, detect, track and reconstruct
multiple objects simultaneously. Rigid bodies are automatically and recursively
detected and tracked based on appearance, geometry and motion information. A
2D level-set evolution is used to update the object’s 2D contour. This contour and
appearance model is useful for detection, and for image based 3D object tracking
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estimation when no 3D depth data is available. Pixels inside a 2D contour are
used to register and update an object’s 3D model – this in itself is an object-
oriented dense simultaneous localization and mapping (SLAM) system where the
object models are fused and improved over time. However, the proposed system
is also able to discover new objects based on coherent portions of the scene that
that fail to match with any known object. Rigid bodies with distinct motion are
hence natural candidates for new object creation.

In recent years, sparse structure from motion has been used for model infer-
ence from video [5]. Dense techniques have also been demonstrated[18], as well
as level-set based fusion techniques[8], though not for multi-object simultaneous
dense tracking and reconstruction in real-time.

KinectFusion, is a wonderful example of dense data fusion using signed dis-
tance functions (SDF) [14,10]. Using a single RGB-D camera, this system creates
high-quality 3D models from live scenes. Similar results are also possible using
monocular cameras alone [15,20]. The system presented in this paper extends
3D level-set fusion to model both the scene and also distinct objects. Further,
we find that combining 3D level-set shape models with 2D level-set appearance
models leads to a novel method for unsupervised object discovery tightly coupled
with tracking, detection and reconstruction.

Normally, dense fusion techniques use the whole scene, and do not isolate
objects for tracking or reconstruction purposes. There are notable exceptions
which track 3D objects within a full-SLAM framework but do not automat-
ically discover novel objects [16,19]. There have also been recent advances in
fast detection and tracking, such as the Pixel-wise Posterior tracker (PWP)[3,4],
which is a probabilistic 2D multiple-object tracking and segmentation method
based on level-sets. We extend PWP to extract objects from the scene for 3D
reconstruction purposes, and also more accurately represent changing contours
in 3D [7].

Shape and semantic priors have recently been used to improve dense static
object tracking and reconstruction [9,2]. Recently, PWP has also been extended
to handle real-time 3D object tracking [16]. This system can track a moving ob-
ject in a video sequence robustly and precisely even under rapid motion. There
are also recent SLAM frameworks that detect and track multiple objects in real-
time [19]. However, both [16] and [19] require known a priori 3D object models.
Perhaps the most similar work to ours is [17]. They present a framework that
simultaneously tracks a single object while reconstructing a 3D model using
RGB-D data. There are, however, key methodological differences. First, while
[17] selects the foreground (target) manually, we do this automatically by seg-
menting unexplained portions of the image using motion outliers. Second, our
system can track and reconstruct multiple objects simultaneously. Third, they
initialize an object’s 3D model with a shape primitive model and update the
model at each frame while we initialize and update the object’s 3D model with
its own geometry data. Finally, the presented framework can detect many ob-
jects simultaneously that are similar to other given objects (either learned by
the system online or provided by a third-party library) in the scene.
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2 Overview

The system aims to track and reconstruct n + 1 objects (rigid bodies), O =
O∅, O1, O2, · · · , On, which are present in a given video sequence. For an object
Oi, its corresponding camera pose in the reference frame (time k − 1) and live
frame (time k) are T i

wr and T i
wl, respectively. For a camera c with known calibra-

tion intrinsic matrix K, the transformation between its pose and world frame is
Twc ∈ SE(3). A 3D point can be described as xc = (x, y, z)� and dehomogeni-
sation by π(xc) = (x/z, y/z)�. A pixel u = (u, v)� in the image domain can be
back-projected to a 3D point as χ = 1

d ·K−1 · (u; 1) with depth value d.
Figure 1 shows the representation of the 2D and 3D model of an object.

An object’s 2D model refers to its shape (contour) and appearance (RGB his-
togram), where the 2D shape is implicitly represented by the zero level-set of the
object’s 2D SDF Φ (Section 4.1). A contour C segments the image domain Ω
into foreground Ωf and background Ωb, with appearance models Mf and Mb re-
spectively. Specifically, we use ΩΦ

f , Ω
Φ
b to denote the foreground and background

region segments by the zero level-set of Φ.
An object’s 3D model refers to its 3D shape (geometry), which is implicitly

represented by the zero level-set surface of its 3D SDF S (more specifically, we
use truncated signed distance function, TSDF). We also use Si to denote the 3D
SDF of an object Oi, where S∅ refers to the 3D SDF of the dominant object. S
is stored as a n3 volume cube, where n is the number of voxels in one dimension.
The size of each voxel is vm = 2r

n , where r is the radius of the volume. The
volume is initialized and updated by SDF Fusion (Section 4.2). By setting a
camera in different poses, we can ray cast the implicit surface of S and generate
virtual images (Section 4.2).

Ω

f

bΩ ø(x)=0

Ω

Virtual image of
 an object’s 3D SDF S

Fig. 1. Representation of an object’s 2D and 3D model

Our system goes through the following stages (Figure 2):
Initialization. The system is initialized by creating a 3D model of the first

frame (the scene). We call this initial 3D model the dominant object, O∅ (in our
approach, the scene itself is considered an object). S∅ is represented by a 5123

resolution volume, where the radius of the volume is based on the scene size.
Discovery. The system tracks and reconstructs O∅, frame by frame, and dis-

covers (Section 3) a contour set CD = CD1, CD2, · · · , CDp of potential rigid
bodies, by portions of the scene that fail to track with O∅.
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Detection. Given object Oi with known 2D and 3D models, the system also
detects (Section 3) objects similar to Oi in the scene and extracts contours
CL = CL1, CL2, · · · , CLq. The final contour set is C = CD ∪ CL.

Tracking. Given Cj ∈ C with foreground domain Ωj
f , if Cj fails to match

with any known objects, the system will initialize a new object with Cj . If Cj

matches a known object Oi, the 2D SDF Φ(xi) of Oi is updated by Ωj
f to Φ

′
(xi)

via LSE producing ΩΦ′
f . Tracking is achieved by estimating the relative camera

pose between ΩΦ
f and ΩΦ′

f .
Reconstruction. The 3D SDF of Oi is then updated by fusing every pixel

from ΩΦ′
f (instead of Ωj

f ) into the Si. This is done to reduce the noise sometimes

associated with Ωj
f .

(b)

(f)

(e)(a)

(h)(g)

(d)

…

(c)

Object Discovery & Detection

Tracking Reconstruction

System Initialization

Final Tracking Result

time jtime 1 …

time j time j time j

Fig. 2. System flow chart. Cyan represents missing depth data. (a) Initial RGB-D
images. (b) Virtual images of O∅ (full scene) initialized by the first input frame. (c)
Input RGB-D images at time j. (d) Virtual images of S∅ at time j. (e) Discovered and
detected (learned) objects at time j, with ID on their top left side. (f) Objects 2D SDF
are updated and tracked (shown as red/green/blue contour). (g) Reconstruction results
of objects after updating their 3D SDF by 2D SDF from (f). (h) Final tracking results
are implicitly represented by the virtual images of the 3D SDF of all objects (shown
as red/green/blue transparent masks, arrows show the objects estimated velocities).

3 Discovery and Detection

Discovery. The system offers an unsupervised object discovery method by ex-
tracting potential objects from portions of the scene that fail to track with O∅.
Once O∅ is tracked by estimating the relative pose T ∅

rl of its camera between the



84 L. Ma and G. Sibley

reference frame Ir and the live frame Il via the ICP+RGB-D approach. (Section
4.1), we get T d

wl = T ∅
wr ⊕T ∅

rl where ⊕ indicate the composition of relative poses.

Now, we can generate a virtual image I
′
l of S∅ from T ∅

wl:

I
′
l = Υ (S, T ∅

wl) (1)

here, Υ (·) is a ray casting operator (Section 4.2). Equation (1) allows us to
produce an outline image Io = I

′
l − Il. By searching for disjoint contours in Io

that have a minimum number of pixels d1 inside of the contour boundary, a
contour set CD of potential objects can be obtained:

CD = Γ (I
′
l − Il) = Γ (Υ (S, T ∅

wl)− Il), CD = CD1, CD2, · · · , CDp (2)

where Γ (·) is a contour detection operator that detects disjoint contours in
image domain [21]. For each CDj ∈ C, it defines foreground and background

regions Ωj
f , Ωj

b . Here, Ωj
f is either used to initialize a new object, or used

to update a known object. We then compute Ic = Ω1
f + Ω2

f + · · · + Ωn
f and

Ie = Io − Ic, where Ie consists of two kinds of pixels: (1), Pixels that should
belong to Ic but were missed by a system error. (2), Pixels of O∅ which are
occluded in the reference frame. By comparing the depth value of each pixel in
Ie, pixels that are very close (e.g. 1 mm) to O∅ will be compiled into I∅ and used
to update S∅. Pixels that are very close to Ωj

f will be merged into Ωj
f and refine

its corresponding contour CDj .

Detection. For an object Oi which is either predefined in an object database
or learned by our system, the system automatically searches for other instances
in the live image Il. We start with an image I ′l = h(Il, Oi), where h(·) extracts
pixels in Il that agree with the appearance model of object Oi. We then extract
contours from I ′l :

CL = Γ (I ′l − Il) = Γ (h(Il, Oi)− Il), CL = CL1, CL2, · · · , CLq (3)

For each CLj ∈ CL, we try to match ΩLj
f with the virtual image of Si via the

ICP+RGB-D approach. We then delete contours from CL which correspondence
ΩLj

f fail to match Oi.

Discovery and Detection Integration. Once our system finishes discovering
and detecting contours in the live frame, the final contours set C based on
equation (1) and (3) is:

C = CD ∪ CL = Γ (Υ (S, T ∅
wl)− Il) ∪ Γ (h(Il, Oi)− Il), C = C1, C2, · · · , Cn (4)

4 Tracking and Reconstruction

4.1 Tracking

Objects and Contours Matching. A key problem of our framework is, given
a set of contours C = C1, C2, · · · , Cn in the live frame, where Cj derives a



Unsupervised Dense Object Discovery, Detection, Tracking, Reconstruction 85

foreground region Ωj
f , how to match Ωj

f with a known object Oi ∈ O in the
reference frame? To address this question, we designed a simple score system
to find a known object Oi ∈ O that is best matched with Ωj

f . The total score
includes three different criteria: appearance (RGB Histogram), geometry (3D
shape) and motion. The match score between Oi and Ωj

f is represented by:

S(Oi, Ω
j
f ) = SAppearancei,j + SMotioni,j + SGeometryi,j (5)

For the appearance score, SAppearancei,j = ra where ra is the rate of pix-

els in Ωj
f that agree with the appearance model of Oi. For the motion score,

SMotioni,j = p(P |P ′). Where p(P |P ′) ∼ N (P ′, Σ) is the probability of P
′
ap-

pearing in P under Gaussian distribution with uncertainty Σ. Here, P = (x, y, z)
is the geometric center of Ωj

f , P
′ = (x′, y′, z′) is the prediction of the geometric

center of Oi in the live frame, which is estimated via a constant velocity mo-
tion model. For the geometry score, we match the depth image Il of Ωj

f and
the virtual depth image Ir of Si via the ICP+RGB-D approach (Section 4.1).
Now, SGeometryi,j =

rg
rmse , where rg is the percentage of pixels in Ir used in the

ICP+RGB-D approach, rmse is the error of the ICP+RGB-D approach.
The system computes score S(Oi, Ω

j
f ) first by appearance, then motion, then

geometry and will stop computing scores and set S(Oi, Ω
j
f ) to 0 if any component

is less than a threshold. Given a set of foreground regions Ωk
f ∈ Ω′

f , we match

Oi with Ωk
f ∈ Ω′

f if:

S(Oi, Ω
k
f ) > S(Oi, Ω

l
f ), Ω

l
f ∈ Ω′

f ,m, l �= k (6)

Notice that Ωj
f may match several overlapping objects. However, each over-

lapping object can extract corresponding image regions from Ωj
f via level-set

evolution (LSE), which will be described in next Section.

Level Set Evolution. We use the level-set embedding function Φ(xi), namely
a 2D SDF, to implicitly represent an object’s 2D contour (shape). Here xi =
xi1, xi2 · · · , xin is the set of pixel locations in the coordinate frame of Oi. We
modify the Pixel-Wise Posteriors (PWP) segmentation method of [3] to use a
new level-set evolution method described in [11] and propose L(·) :

Φ(xi)
′ = L(Φ(xi), Ω) (7)

here, L(·) is the level-set-evolution operation that evolves the object’s 2D SDF
Φ(xi) to Φ(xi)

′ in image domain Ω based on the 2D appearance and shape model
of Φ(xi). This operation can be achieved via:

∂P (Φ, p|Ω)

∂Φ
= θ · Ψp + μ · Ψd + λ · Ψe + α · Ψa (8)
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The probability of updated Φ(xi) appearing in location p (image warp pa-
rameters) depends on four terms. Ψp describes the probability of a pixel in the
image domain belonging to the foreground or background under weight θ.

Ψp =
(Pf − Pb)

PfHε(Φ) + Pb(1−Hε(Φ))
(9)

where Hε(·) is a Heaviside step function, Pf , Pb are defined as:

Pf =
P (yi | Mf )

ηfP (yi | Mf) + ηbP (yi | Mb)
, Pb =

P (yi | Mb)

ηfP (yi | Mf) + ηbP (yi | Mb)
(10)

here yi is pixel value in input image, ηf and ηb is the area of foreground and
background regions respectively:

ηf =

N∑

i=1

Hε(Φ(xi)), ηb =

N∑

i=1

(1−Hε(Φ(xi)), η = ηf + ηb (11)

Ψd is the distance regularization term that maintains the signed distance prop-
erty of the level set function:

Ψd = div(dp(|∇Φ|∇Φ)) (12)

where div(·) is the divergence operator, dp(x) =
p′(x)
x .

Ψe is the edge term, which is minimized when the zero level set contour of
Φ(xi) reaches the object contour.

Ψe = δε(Φ)div(g
∇Φ

|∇Φ| ) (13)

here, δε(·) is the derivative of the Heaviside step function. g = 1
1+|∇Gσ�I|2 and

∇Gσ is a Gaussian kernel with standard deviation σ in image I.
Ψa is the area term, which speeds up the evolution of the level set. α is the

weight of Ψa, where positive means shrink and negative means expand during
the evolution of the level set function.

Ψa = gδε(Φ) (14)

We seek ∂log(P (Φ,p|Ω)
∂Φ = 0 by using the gradient flow ∂Φ

∂t = ∂log(P (Φ,p|Ω)
∂Φ . In

our implementation, we set weighting terms θ = 15, μ = 0.015, λ = 5, α = −4,
time step t = 1. level-set evolution (Equation 7) allows us update Φ(xi) to
Φ′(xi) based on the appearance and shape of Φ(xi), which provides a solution to
obtain a more precise image domain ΩΦ′

f from noisy discovery or detection and
overlapping objects for update the 3D SDF of an object (Section 4.2). Notice
that LSE is not used for object’s pose estimation. Instead, we use Φ′(xi) to limit
the pixels that are then used for shape and appearance based registration.
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Pose Estimation. Once the 2D SDF of an object Oi is updated, object track-
ing is then achieved by estimating the relative camera pose T i

rl between T i
wr and

T i
wl, where T i

wl = T i
wr ⊕ T i

rl. Here, T
i
rl can be estimated by ICP based pose esti-

mator [6] or RGB-D based (depth is only used for space warping) pose estimator
[1]. However, both ICP and RGB-D approaches have drawbacks. The ICP ap-
proach highly depends on geometric information, and fails when tracking simple
geometries (e.g. cups, dishes, etc). The RGB-D approach relies more heavily on
intensity information, requires rich texture for good estimation. However, these
shortcomings can be overcame by combining both approaches. We integrate the
ICP approach with the RGB-D approach by using a weighting strategy [22]:

E = wi � Eicp(T
i
rl) + (1 − wi) �Ergbd(T

i
rl) (15)

here, Eicp(T
i
rl) and Ergbd(T

i
rl) are the cost of ICP and RGB-D pose estimators,

respectively. wi is the weighting term, which is automatically set based on an ob-
ject’s color and geometric complexity during initialization. The pose is estimated
by minimizing the rmse of equation (15), which allows to have a ICP+RGB-D
pose estimator E(·):

Trl = E(Ir , Il) (16)

Where Ir and Il are images in reference and live frame, Trl is the relative pose
we aim to estimate. This ICP+RGB-D pose estimator is also used to decide if
two images match. Given images Ir and Il for pose estimation, if the rmse of
ICP+RGB-D is higher than the threshold ε1, or if the number of pixels used for
estimation are fewer than the threshold ε2, we assume that I1 does not match
with I2. As Ir and Il do not match in either color and geometric.

4.2 Reconstruction

SDF Fusion.Our system use SDF fusion [14] to initialize and update an object’s
3D model. Given depth image ID with world pose Twl, SDF Fusion operation
S(·) fuses every valid point χ = (x, y, z) in ID into the 3D SDF S:

S ′ = F(S, ID, Twl) (17)

Given a contour Cj ∈ C, if Cj matches with a known objectOj , our framework
uses the foreground domain ΩΦ

f (derived by the updated 2D SDF Φ of Oj) to
update Sj . If Cj does not match with any known object, the system will initialize
a new object Ok with Cj . The initialization of Sj depends on the ’type’ of Cj . (1)
If Cj belongs to object discovery result CD, the system will initialize Sj with the
foreground domain defined by Cj . (2) If Cj comes from object detection result
CL, which has a model similar to that of a known object Ok, the system will
initialize Sj by using Sk directly.

Ray Casting. Having a 3D SDF S, we can ray cast [14] the zero level set surface
of S to generate virtual image Iv (can be grey or depth images. we also rendered
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the 3D model with Phong shading) by setting the camera at pose Twc, where
the Ray Casting operation Υ (·) is:

Iv = Υ (S, Twc) (18)

Since each object Oi has its own 3D SDF Si, the virtual image Iv contains
the object Oi in the scene and the value of other pixels in Iv will be set to void.

2D and 3D SDF Interaction. For an object Oi, once the system updates its
3D SDF Si and its corresponding camera pose T i

wl, its 2D SDF Φ(xi) can be
refined by:

Φ(xi) = ν(Φ(xi), Υ (Si, T
i
wr)) (19)

ν(·) sets the zero level-set of Φ(xi) = 0 to be the object contour of Υ (Si, T
i
wr).

4.3 Tracking and Reconstruction Interaction

The 2D tracking result of an object Oi is implicitly represented by the matching
result (Section, 4.1), which may be noisy or incomplete due to noisy input data
or occlusion of its correspondence match contour Cj ∈ C. By ray casting the
up-to-date 3D SDF of Oi, the system can generate a more complete and precise
2D tracking result with respect to the object’s pose and shape, which can offer
complete knowledge of objects even in the presence of significant occlusions.

In short, the input for updating an object’s 3D SDF comes from the results of
2D tracking, while an object’s 3D reconstruction results are used to inform the
final 2D tracking results. This interaction between tracking and reconstruction
improves tracking and reconstruction results simultaneously.

5 System Integration

Given a contour set C (Equation (4)), where Cj ∈ C defines an image domain
Ωj that matches a known Object Oi, where Oi with camera pose T i

wr, 2D SDF
Φ(xi) and 3D SDF Si in the reference frame, Φ(xi) can thus be updated to:

Φ
′
(xi) = L(Φ(xi), Ω

j) (20)

L(·) is a level-set-evolution operator (Section 4.1). The relative pose T i
rl be-

tween Φf (xi) and Φ
′
f (xi) can be estimated via ICP+RGB-D pose estimator E(·):

T i
rl = E(Φf (xi), Φ

′
f (xi)) (21)

Now Si can be updated by SDF Fusion F(·):

S ′
i = F(Si, Φ

′
f (xi), T

i
wl) = F(Si, Φ

′
f (xi), T

i
wr ⊕ E(Φf (xi), Φ

′
f (xi))) (22)

here, The unknown parameters are the 2D SDF Φ(xi), 3D SDF Si and camera
pose T i

wr. Equation (22) shows how the 2D and 3D model of an object is tracked
and updated with respect to the change of the camera pose, which links object
discovery, detection, tracking, and reconstruction together.
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6 Results and Discussion

We test the system with single and multiple-object data sets. Each data set,
lasting between 300 and 550 frames, is captured in 30 FPS via a hand-held
moving RGB-D camera.

To evaluate our method, we first generate ground truth 3D models of all test-
ing objects using synthetic RGB-D sequences. We then use the pose estimation
approach described in Section 4.1 to track each ground truth object model in
the testing video sequences. This allows us to generate a ground truth depth
image Dg for each object in each frame. We then run our system in the same
sequences and generate a virtual depth image Dl from each object’s learned 3D
SDF. The performance of the system is evaluated at pixel level by comparing
each corresponding object’s pixel p in Dg and Dl. We define a good match (true
positive) if abs(Dl(p)−Dg(p)) < dε. We set dε = 10mm in our experiments. We
report per-frame precision and recall values for each learned object.

Figure 3 shows an examples of discovered objects and their corresponding
matched object’s 2D level-set after refine. It can be seen that LSE allows us
to smooth noise from the raw detected contour (e.g. Fig. 3(c), 3(d)) and helps
update the 2D SDF when objects overlap with each other (e.g. Fig. 3(r)). In
totally, LSE is crucial as 1) it helps learn the unknown object based on its previ-
ous appearances and shape; 2) it helps track overlapping objects with significant
occlusions; 3) without LSE, the reconstruction contour is often unusably noisy;
4) it allows object discovery and tracking when no depth is available. Once we
update the 2D SDF, we are ready to track and reconstruct each object.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 3. Examples of raw discovered objects (odd columns, with ID on their top left
side) and the zero level-sets refined by level-set-evolution (even columns), shown as
red/green/blue outlines. Cyan represents missing depth data.
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Figure 4 shows the tracking and reconstruction results for a cup and a yellow
cartoon figure (Dave). As we move these objects, their shape and appearance
is changed greatly to test the robustness of the system. The cup, which has a
simple geometry, is used to test the ICP+RGB-D pose estimator. As motion is
applied to the cup, it is slowly removed from the dominant object’s 3D SDF S∅
(Fig. 4(t)). This confirms that the system performs SLAM by simultaneously
localization and mapping both the dominant object (desk and wall) and the
singled out object (cup/Dave). It also shows that our system is able cope with
limited input data, e.g. large portions of missing depth data (e.g. Fig. 4(f) 4(p)).

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Fig. 4. Results of tracking (first and third rows, shown as blue transparent masks)
and reconstruction (second and third rows) for single objects. Cyan represent missing
depth data, red arrows show the objects estimated velocities.

Our multiple-object tracking and reconstruction tests are shown in Figure 5.
For this experiment we focus on evaluating the performance of our system under
rapid motions, overlapping and occlusions. Overall, we see that our system can
discover, track and reconstruct multiple objects in a scene with high accuracy
(Fig. 6(c)). Our system can recover the pose of an object even under severe
occlusion (Fig. 5(m), the blue car is blocked by the donut bag).

Although our test sequences yield encouraging object tracking and reconstruc-
tion results, the precision and recall (Fig. 6) of our system changes with respect
to an object’s status. When our objects first appear (cup and Dave), the recall
grows as the system continue to learn the objects’ models.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 5. Tracking (first row, shown as red/green/blue transparent masks) and recon-
struction (second row) results of multiple objects. (m) Occluded car. (n)-(r) Multiple-
view rendering of all objects during the occlusion shown in (m).

Objects without rapid motion − frame to frame translation in (x, y, z) less
than 7 cm and rotation in roll, pitch, yaw less than 12 degrees − can be tracked
with high accuracy (precision over 90 % and recall over 80 %) for most frames
with a true positive threshold of dε = 10mm (cup/Dave/red can).

Drops in precision and recall that can be seen in Fig.(6) are due to rapid
motions (e.g. the donut bag, frame to frame translation of more than 15cm in
(x, y, z), and rotation of more than 15 degrees in roll, pitch, yaw) or occlusions
(e.g. the blue car is 80 % occluded). In both cases, precision and recall recover
to around 85% immediately after. When objects are highly occluded, (more than
90%, see blue car during frame 40 to 47 and frame 50 to 53 in Fig. 6(c) 6(d),
corresponding tracking sequences in 5), both precision and recall are set to 0.
While we don’t yet have enough confidence to track occluded objects, our system
proves adept at tracking objects that reappear after occlusion.

Over all, our system maintains good tracking and reconstruction performance
(both precision and recall over 90%) when objects have less than 5cm frame
to frame translations and 9 degrees frame to frame rotations. However, failure
cases occur under significant motion blur, serious occlusions (more than 90%
occluded), which predominantly hamper pose estimation.

Object Detection of Learned Objects. We demonstrate the learning and sub-
sequent detection ability of the system with a coke can data set. Here, we grab
a coke can in the left side of the scene (Fig. 7(a)). After the system has accrued
enough 2D and 3D modeling information of the can (Fig. 7(b)), the system can
detect other instances of the coke can, that will then be tracked and recon-
structed (Fig 7(c)- 7(f)). This experiment shows that the system can discover
new objects in the scene and learn similar objects without human intervention.
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Fig. 6. Precision and Recall of system’s performance under single (a), (b) and multiple-
object (c),(d) data sets with true positive threshold of dε = 10mm. Frame number
starts when motion is first applied to an object in test sequences.

System Run-Time. The system is implemented in C++. Both the reconstruc-
tion and the combined ICP and RGBD approach are GPU-based. We test our
system with a single Nvidia TITAN GPU, Intel i7 CPU desktop, using 640×480
resolution of input images. Table 1 shows our system run-time in different stages.

Table 1. System Run-time of Different Stages, (*) Represent GPU-Based

Discovery
Match Objects
and Contours*

Single ICP+
RGB-D*

Single level-set
evolution

Single

Reconstruction*

Single Object 15 ms 24 ms 11 ms 31 ms 5 ms

Three Objects 15 ms 80 ms 11 ms 32 ms 5 ms

As table 1 shows, the most expensive stage comes when matching contours
with objects. However, since computing the match score between each contour
and a known object can be processed in parallel, we anticipate that running
time can be significantly decreased. Discovery and the level-set-evolution are also
amenable to GPU implementation where LSE is known to run in less than 6ms
in [4]. Finally, tracking and reconstruction of each object can also be processed
in parallel. With these enhancements and based on run-times reported in the
literature [16,3], it is reasonable to conjecture that our system will run at 24Hz.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 7. Multiple instance detection. Above are shown tracking (first row, shown as
different color transparent masks) and reconstruction (second row) results of detected
(learned) objects (coke can) in the scene. After motion is applied to one coke can (a),
all the other cans are detected.

7 Failure Cases and Future Work

Although the system is robust to many real-world operating conditions, it is
not robust under significant motion blur, serious occlusions, etc., which predom-
inantly hamper pose estimation. In future work, we aim to improve the resolution
of the reconstructed models by [12,23] and enhanced the system with a single
RGB camera techniques from [15,13]. We also see the potential applications in
robot-object interaction and autonomous cars.

8 Conclusions

We present a novel unsupervised framework that is able to discover, detect,
track and reconstruct multiple rigid bodies simultaneously. Instead of consider-
ing them independently, the presented system uses tracking results to refine
reconstruction-models and reconstruction-models to aid detection and track-
ing. This allows objects tracking even under significant occlusion, missing data
and rapid motion. Rigid bodies are automatically and recursively detected and
tracked based on appearance, geometry and motion information. The system
preforms dense SLAM on an object by object basis, and also discovers new ob-
jects it has not seen before. The system is tested using single and multiple object
data sets. Results demonstrate an improved method for discovering and recon-
structing 2D and 3D object models. To summarize, our primary contributions
are: 1) a new framework, which unifies dense object discovery, detection, tracking
and reconstruction; 2) an unsupervised approach to discover unknown objects;
3) a framework that not only learns objects but also detect similar objects based
on learned models; and 4) present a new level-set evaluation method.
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