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Abstract. The creation of surfaces from overlapping images taken from
different vantages is a hard and important problem in computer vision.
Recent developments fall primarily into two categories: the use of dense
matching to produce point clouds from which surfaces are built, and the
construction of surfaces from images directly. This paper presents a new
method for surface reconstruction falling in the second category. First,
a strongly motivated variational framework is built from the ground up
based on a limiting case of photo-consistency. The framework includes a
powerful new edge preserving smoothness term and exploits the input im-
ages exhaustively, directly yielding high quality surfaces instead of deal-
ing with issues (such as noise or misalignment) after the fact. Numeric
solution is accomplished with a combination of Gauss-Newton descent
and the finite element method, yielding deep convergence in few iterates.
The method is fast, robust, very insensitive to view/scene configurations,
and produces state-of-the-art results in the Middlebury evaluation.

Keywords: Surface reconstruction, surface fairing, multiview stereo,
Gauss-Newton, finite element method.

1 Introduction

One of the grandest problems in structure from motion concerns the creation of
surfaces from images given known view extrinsics and intrinsics. This problem is
important because it yields a dense and useful geometric representation of that
which was photographed. The problem’s complexity stems from many reasons:
nonlinear relation between surface and pixel, discontinuities and folds in the
scene, image noise, ambiguity in textureless regions, scaling and implementation
difficulties, illumination changes, and scene changes, to name a few.

There has been much work done on the topic, boosted in part by advance-
ments in computing power. One way to approach surface reconstruction is to
first perform dense matching on pairs of images (e.g. [12][18]), then create a
point cloud from the matches via triangulation (e.g. [15][31]), and finally cre-
ate a surface from the point cloud (e.g. [19][29]). This methodology is popular
for several reasons, including the availability of very fast and accurate dense
matching algorithms, the fact that a point cloud is sometimes desired instead
of a surface, processing speed, and relatively simple implementation due to the
clear separation between steps. There are disadvantages too, most significant is
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that the output surfaces might lack accuracy and have excess noise; this is partly
because these methods are based on pixel matching instead of surface generation
(for example, planar correspondences do not imply planar surfaces).

The main other class of methods basically create surfaces directly from the
images, a technique often called “multiview stereo”, examples of which include
[17][24]. Since these focus on building surfaces instead of matching pixels, they
have the potential for higher quality output. Furthermore, they inherently handle
multiview relations, which enables higher accuracy.

Fig. 1. Example of the proposed surface reconstruction in action: one of three handheld
images (left) and surface output (right) rendered with Oren-Nayar shading [27]

The primary contribution of this work is a new method for surface reconstruc-
tion belonging to the second class described above, a sample application of which
is shown in Figure 1. New ideas are combined with established concepts from
multiview stereo, optical flow, and surface fairing. Perhaps unusual for a com-
puter vision topic, numeric solution uses the finite element method with inspi-
ration from continuum mechanics. The resulting surfaces are computed quickly
and in an arbitrarily scalable manner, and since the formulation is continuous
the range of depth (or disparity) has no effect on computation speed or memory.
The resulting surfaces not only are accurate in an absolute sense, they also have
smooth, accurate normals. A method of selecting high quality surfaces is also
presented (enabled by the high accuracy of normals), yielding a means to avoid
surface fusion and limits on the scale of output.
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1.1 Related Work

The use of variational formulations to approach image matching problems (e.g.
surface reconstruction, dense correspondence, or optical flow) is nothing new,
and some of the strongest works on these topics go that route. In [5], a problem
is built using the combination of data and smoothness to provide high accu-
racy optical flow. There, the data term penalizes for differences both in image
intensity and in image gradient. This is extended in [4] to the case of “large
displacement” ; extending the same data term with bias toward sparse features.
Though indeed accurate and valid for large displacement, this will not work in
the case of significant affine changes (such as rotation) since such will transform
the image gradient, preventing it from being matched.

To deal with affine changes, [21] and [17] exploit surface normals to define
local coordinate transforms, and use cross correlation oriented with those local
transforms (potentially with normalization [23]) for the data term. This makes
for not only a more flexible problem, but also a stronger one because the data
term introduces a coupling over the surface due to its dependence on normal,
forcing a higher level of consistency in the output (otherwise, the role of coupling
rests entirely with the smoothness term). An issue with this approach is the need
for selection of correlation window size: too small results in hampered robustness,
too large smears things together. Despite many gains, the pointwise nature of
[4] lending to simplicity and high accuracy is lost.

Regarding smoothing (or regularization), which is necessary to deal with im-
age noise and textureless regions, [17] adds bending energy in the style of [20]
to the minimization. This is fast, simple, and smooths effectively without bias-
ing the solution toward minimum surface area, as a mean curvature approach
would do. There are disadvantages though, as pointed out in [6][25], including
poor numerical qualities and mesh-dependent behavior. They suggest principal
curvature based smoothing with an elaborate curvature calculation, which works
better and also does not induce surface area bias.

One issue common in these and other works is the fact that they rely on
the computation of curvatures (or other second order quantities) on triangular
meshes, which not only is fragile (individual mesh faces have no curvature) but
as shown in [35] is guaranteed to suffer from at least one pathology no matter
how elaborate. To make matters worse, these complicated quantities are typically
minimized with gradient descent (e.g. [17][16][9]), which is sensible for simplicity
but gives only linear convergence.

In this work, a notion of “infinitesimal patch” is introduced, giving pointwise
illumination invariant error measurements as in [5] with the affine invariance
and coupling of [17]. A scale invariant curvature-like smoothness term is used,
whose magnitude is minimized (instead of its square) for edge and discontinu-
ity preservation in the way second order total generalized variation [2] works.
Discretization is accomplished using a second order finite element method [3],
which represents the solution as a continuously differentiable function, implying
continuous surface normals. The Gauss-Newton method [36] is used for numeric
minimization, giving near second order convergence in few iterates.
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2 Design of the Framework

Consider N overlapping images, whose greyscale content is notated as B;(u;)
where u; = (u;,v;) is a pixel coordinate on image i. Each image point u; is the
projection [14] of a 3D point X according to

w;a; :KZRZ(Xfcl) (].)

where K;, R;, and c; are respectively the intrinsics, rotation, and position of
view 7, and w; is a quantity known as depth.

In this work, surface reconstruction will be posed as the problem of finding
depth on one of these images, arbitrarily the first, as a function of pixel coordi-
nate. That is, the goal is to find wg(up). Such effectively defines 3D points as a
function of image point as well, using the projection formula above.

Fig. 2. A cube imaged by two views. Left frame: projected as a grey image onto view
i, right frame: projected as depth image onto view 0.

This of course implies that only that which is viewable by the first view can be
reconstructed; however one can create a depth image for every image available
and reconstruct an arbitrarily large scene that way. As will be shown later, the
fact that disparate surfaces are created with this strategy is not problematic
(though they can be fused if desired, e.g. [29]), and the amount of focused effort
the algorithm can put into the creation of a single depth image has benefit.

2.1 The Minimization Problem

Since the depth of image 0 will be the individual focus here, to simplify notation
subscripts will be dropped for quantities referring to view 0. In other words,
B = By, w = wyp, and u = ug. The problem of finding the depth function w(u)
will then be posed as the minimization of the functional

3 //d(Bi,Bj,ui(w(u)),uj(w(u)))+a\VB(u)\S(w(u)) dudv  (2)

i>520 OiﬁOj
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where d is a photo-consistency measure between images ¢ and j, S is a smoothness
function, « is a smoothness factor, and O; is the subset of all points on image 0
which are viewed by image ¢ (that is, the overlap between 0 and 7).

Note that the summation, which appears outside of the integral, covers every
combination of ¢ and j once. This sets up interactions between every possible
combination of views, and these interactions occur over the intersections of the
overlap domains O; and O;. The smoothness term is also under the summation
though it does not involve ¢ or j, this is done so that the number of smoothness
contributions equals the number of data combinations.

2.2 Photo-Consistency

Photo-consistency is the data of the minimization; it measures correspondence
fitness based on image content. The function d(B;, Bj, u,, u;) therefore penalizes
for mismatch between the given images at the given coordinates. Note that in
(2) there is one term for every possible combination of overlapping images.

Two views. To ease the derivation of this function, two views (0 and ¢) will
be considered first without any notion of 3D. A correspondence from image 0
to image ¢ may then be represented generally by a piecewise smooth function
u;(u). Put into words, this functional representation takes as input a coordinate
on image 0 and gives a coordinate on image 1.

To build the photo-consistency function, consider a 3 x 3 patch of pixels
centered around an arbitrary point u on image 0. The correspondence function
u;(u) defines not only the location of the corresponding patch on 4, but also the
local coordinate system which describes the shape of the patch. This is illustrated
in Figure 3.

U
ou;
(17 0) (' ou
\;u/‘{%
v (07 1) 7,( ) ov

Fig. 3. Left: relation between coordinates on 0 and i at some arbitrary point, right: a
patch on image 0 and a corresponding contorted patch on image

Elaborating on “local coordinate system”, the Jacobian of u;(u) is:
_[Ou; dw;] _ | Ou @
Ji(w) = [ G0 ] = s o0, (3)
ou Ov

where the columns may be seen as basis vectors on image ¢ corresponding to the
standard basis on image 0. These vectors define the shape of the patch.
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Based on all this, a data term may be easily written as the magnitude of
the (nine element) difference between the patches, with averages subtracted for
brightness invariance. We can do much better though: by scaling the patch sizes
by some factor As, dividing the patch differences by As, and taking the limit
As — 0, the data term simplifies to:

P
d(B;, Bo,ui,n0) = |J/V;B; = VB| ; V;= (%‘) (4)
8’01

where the gradient operators are applied on the images in their own individual
coordinates as shown. Note that the magnitude of the residual is used instead of
the square; this makes numeric solution a little more complicated but ultimately
yields better results.

This data term is in essence a difference in image gradients, but with the
gradient of B; contorted into the coordinates of view 0 using the Jacobian.
In fact, the above could be derived more readily by writing the differences in
gradients of 0 and 4 in the coordinates of 0, and then using the chain rule to
change derivatives. The above derivation is interesting though, as it reveals that
this sort of gradient matching is like patch matching, but with “infinitesimal
patches”. This strongly suggests that, under this formulation at least, another
term penalizing for differences in raw color as in [4] is unnecessary.

This result gives the promised qualities: simple pointwise nature as in [4],
illumination invariance, local affine invariance, and “built in” coupling between
pixels due to the use of the Jacobian. One way to visualize the benefit of that
last item is that a single mismatched point will unfavorably affect its neighbors
due to distruption of the Jacobian.

Note that while this measure is pointwise on paper, in practice finite differ-
ences are used to differentiate images and a 3 x 3 sampling of pixels is still
necessary. The limiting case derived above remains advantageous for several rea-
sons, including the fixed size of finite differences (as opposed to chosen size of
patch) and the lower number of residuals: two instead of (at least) nine.

Surface Parameterization and Multiple Views. Extension to multiple
views is straightforward, accomplished by contorting the second term:

d(Bi, Bj,ui,v5) = |JViB; — J] V;Bj| (5)

where Jy = I is implied.

In order for this to make sense for surface reconstruction, the fact that the
N abstract correspondence functions u;(u) can be replaced with functions de-
pendent on depth w instead is used. Writing projection equations (1) for views
0 and ¢ separately and eliminating the 3D point yields this parameterization:

www) = ! (”p” “’“’) (6)

wry + .0 \Wq + 1y
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where the quantity in the denominator is the depth on view 4, and the following
definitions are made for compactness:

bi
Mi = KiRiRgKgl y t, = KiRZ‘(CO — Ci) s qi = Miu . (7)
T

To emphasize, (5) was derived using pixel correspondences but for surface
reconstruction is completely parameterized by the surface as represented by the
depth function w(u) via the relation (6). This implies that the Jacobian .J; must
be written in terms of depth as well, which is possible by differentiating (6),
involving the gradient of the depth function. This is in contrast with other ap-
proaches (e.g. [17]) that rely on the surface normal, a more complicated quantity,
and one that is more difficult to involve in an optimization.

One potential weakness here is that since all of the gradients are in essence
projected onto view 0, there will be some form of asymmetry in the photo-
consistency measure. One possible means of alleviating this, still without intro-
ducing surface normal, is to project onto i and j separately:

dsym(Bi, Bj,ui,u;) = [ViB; — J; VIV Bj| + |7 TJIViB — V;B;| . (8)

In practice this does not alter the surfaces significantly while adding significant
complexity, it is therefore not considered.

2.3 Smoothness Function

As is well established in the study of differential geometry, quantities derived
from curvature are high performing (though complicated) measures of surface
quality, fairness, and noise [25][22].

It would seem natural then to add a curvature-derived quantity to the min-
imization here in order to keep the output of surface reconstruction fair and
high-quality. Unfortunately, smoothness penalties derived from raw curvature
are unsuitable because they will involve the scale of the 3D output. This is highly
undesirable because scale is ambiguous in structure from motion problems [33].

To remedy this, [17] multiplies curvature with depth (canceling scale), however
such is ad-hoc and not certain to work universally. In this work, the fact that
curvature can be measured from spatial changes in surface normal is exploited.

For example, one of many definitions for the mean curvature of a surface is
the divergence (with respect to 3D space) of the normal [13]. Following this, the
smoothness term used here is based on the first derivatives of the normal, not
against 3D space, but against image coordinates:

S(w) = |Vir(u)] . 9)

To emphasize, the unit normal is a dimensionless function of shape, and since
differentiation is against pixel coordinate this quantity is free from physical scale.
This fairness measure may be thought of as the curvature of the surface as seen
by view 0.
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Note that in (2) the magnitude of the gradient of B appears as a factor
on S. This results in a texture/contrast invariant balance between data and
smoothness; one might imagine that omitting such for more smoothness in areas
with less contrast would make sense, however experiment shows that full contrast
invariance works better. Furthermore, if the smoothness factor « is understood
to have pixel coordinate units, the data and smoothness terms in (2) will both
have the same units. This suggests a well-formed problem which will have very
consistent behavior at multiple scales (the meaning of scale explained in the
section on numeric solution), which is demonstrated in Figure 4.

'
-

W D=
N [

Y

Fig. 4. From top left: a 2400 x 1596 aerial image of the peak and northeastern upper
reaches of Mt. Hood taken with a nadir-looking wide angle lens; depth images at scales
64, 16, and 4, rendered with Oren-Nayar shading [27]. Sixteen other images were used
to reconstruct these surfaces with @ = 0.6. Note that the coarse scale captures the
overall shape of the terrain, while the fine scale sharply reveals every crevasse without
sacrificing smoothness. These images feature a variety of reconstruction difficulties:
high /low texture transitions, shadow noise, highly oblique surfaces, and sharp edges.

3 Numeric Solution

With the raw variational problem fully defined, numeric solution now will be
described. It consists of three basic ingredients: a discretization reducing w(u)
to an interpolation on a regular 2D grid, a means of minimizing (2) at fixed scale
and domain, and a coarse to fine domain management scheme.
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3.1 Discretization

The finite element method is used to discretize the problem. This method is
extremely popular in the study of continuum mechanics and other fields [28],
but unfortunately has made few appearances in computer vision.

To briefly summarize, the method as applied here defines the unknown depth
function w(u) as a set of bicubic patches on a square grid of spacing o. The grid
intersection points are called nodes, and each node carries the value, gradient,
and mixed second derivative of depth at that point, giving rise to a solution sur-
face that is continuously differentiable by definition (i.e. without differencing).

Bicubic Node
patch

connecting

four nodes Element

Fig. 5. Illustration of the finite element method discretization used

This representation is substituted into (2) and the integrals are evaluated
with the midpoint method; all of the nodal values therefore form the discrete
unknowns of the problem. Advantages of this approach include a clear and nat-
ural discretization of (2); more importantly, the smoothness of the solution im-
plies continuous Jacobians in (5) and continuous normals in (9). A simpler dis-
cretization would require finite differences for these quantities, leading to messy
implementations and much less effective smoothing.

3.2 Minimization

At some fixed spacing o and set of domains O;, the minimization of (2) is carried
out using the Gauss-Newton method. That is, steps are taken by solving for a
Newton step p to be applied to all nodes from the linear system

Hp=-g ; H~J'J, g=Jr (10)

using a Hessian matrix H approximated as shown. Often, this is done by storing
the Jacobian J and residuals r for the whole problem (this is different from the
Jacobians of (5)), however in this case the residuals are too many and it is more
practical to directly store the gradient g and approximate Hessian H.

The solution of one step is carried out using the conjugate gradient method
[36], explicitly preconditioned with a Cholesky factorization [36] of the 4 x 4
diagonal blocks of H. This normally is not regarded as a very powerful precon-
ditioner, however it is adequate for this problem because H tends to be relatively
well-conditioned, because the blocks are moderate-sized, and also because the
solution happens over multiple scales as in [8].
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Unregulated steps work quite well (perhaps surprisingly), and step control
(e.g. trust region, line search) is unnecessary. The minimization is allowed to
run till the steps change the reprojections in amounts significantly smaller than
one pixel.

The fact that both data (5) and smoothness (9) involve the magnitudes of
vectors (as opposed to squares) makes the optimization potentially difficult;
iterative re-weighting is used here to keep it simple. That is, squares of d and S
are used for the computation of H and g, weighted by the reciprocals of their
magnitudes. This is relatively simple to implement, and is surprisingly effective
for data + smoothness type problems, for example the algorithm in [7] yields
excellent results in just one iteration.

3.3 Coarse to Fine Domain Management

The minimization problem (2) is incomplete in that the overlap domains O; are
unknown. Since these are not differentiable objects and appear only fixed in (2),
a set of heuristics are used to manage them outside of individual minimizations.
This is done over multiple scales, coarse to fine, gradually refining both the
solution w(u) and the domains.

Initially, the spacing o is set to a power of two larger than typical sparse point
spacing but smaller than image dimensions, e.g. 0 = 128. The input images are
Gaussian blurred with standard deviation 0.12040.2. The initial domain is fitted
to sparse points at this spacing.

Fig. 6. Various domain operations. Left to right: initial domain with sparse points,
expanded domain, domain at halved spacing, cleaned domain with topology change.

The solution process proceeds as follows: with scale and domains fixed, min-
imize (2) as described in the previous section, expand the domains by extrapo-
lating, clean them to remove occlusions and non-converged points, and repeat a
number of times, leading to convergence of both domain and depth. The spac-
ing is then halved and the process repeated. Completion happens when (2) is
minimized at o = 2, or at some a coarser terminal spacing if lower resolution is
considered adequate. Going below ¢ = 2 will add no benefit, since that is the
point where the total number of degrees of freedom will equal the number of
pixels. Behavior with decreasing scale is shown in Figure 4.

The expansion operation is an extrapolation of all of the boundary nodes
using thin plates [1], the purpose of which is to enlarge the domains. The more
complicated cleaning operation removes non-converged nodes (those tend to be
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mismatches), elements covering adequately textured pixels with a normalized
cross correlation [23] less than zero, spots on individual domains violating the
visibility constraint [32], and elements that are suspected of lying on an occlusion
boundary. The test for occlusion is similar to that in [11]: a small singular value
of the Jacobian at a node is indicative.

4 Practical Usage

The methodology outlined here yields one surface for one image. Though potent,
this is restrictive since one cannot expect that which is viewed by one image to
cover all that is interesting in an arbitrary set of images. The obvious remedy
is to separately output surfaces from different groups of overlapping images.
Though this could mean redundant work, there is the significant benefit of scal-
ability: an arbitrary number of surfaces can be processed, provided the number
of overlapping images is controlled (in practice, approximately ten images per
surface works well). Furthermore, the work is trivial to parallelize — individual
processing units work on individual surfaces.

Fig. 7. Ama Dablam in the Himalayas; 639 depth images have been separately com-
puted and outputted as meshes, taking less than an hour on 24 cores. Top: raw sur-
faces, bottom: after cutting (10 minute computation), with some permitted overlap.
Helicopter photography by David Breashears, December 2010, www.glacierworks.com.
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Such collections of surfaces can be fused into single surfaces [29][19]. Though
this specific task is not arbitrarily scalable, it is very effective for the creation of
mensurable, high quality surfaces.

For visual applications there is another option: the outputted surfaces can
be “cut” so that surface points are kept only if best viewed by the view that
generated them, and deleted otherwise. These cut surfaces can then be optimally
meshed in two dimensions [10] (since they are individually represented as 2D
functions w(u)), and then either “zippered” [34] or simply presented together
without any fusion. An example of this is shown in Figure 7.

The criteria for surface cutting is based on the surface resolving power (deriva-
tion may be found in supplemental material):

dqQ
dA

where A is a physical area, () is a projected pixel area, and u is the projection
(1) of the 3D point X being evaluated. This may be interpreted as a “pixels
per surface area” measure taking obliqueness into account, and the image which
views a point best will score highest in surface resolving power. That point is
deleted from all other images.

= -1 (Vxu x Vxv) (11)

5 Results

Figure 8 shows the output of this work compared to ground truth and two other
high performers in the Middlebury multiview stereo evaluation [30]. For this, a
maximum of 15 views were used to output every individual depth image, and
a = 0.2. Generation of all 363 depth images took just under an hour on a 12
core machine; these were then fused together using Poisson reconstruction [19],
taking an additional 10 minutes on one core.

In addition to being accurate, the result of this work clearly rivals others in
terms of smoothness, sharpness, and visual quality; for example, the mouth of
the stegosaurus is resolved, its scales are sharp, its toes are distinct, and there is

Fig. 8. Left to right: surface reconstructions of Furukawa2 [9], Shroers [29], this work,
and ground truth for Middlebury’s Dino dataset
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Fig. 9. Left to right: one of five 2746 x 1832 images of a ceramic bull figurine taken
with a telephoto lens, reconstruction from stereo correspondences using elas [12], re-
construction at o = 4 and scale 4 using this work. Rendered with mean curvature
colorization, best viewed in color.

nearly no noise to be found. Its specular characteristics (which reveal curvature
and surface quality [26]) also match the ground truth most closely.

In Figure 9, comparison is made against elas, a high ranking stereo corre-
spondence method [12]. Every surface point is triangulated from five densely
matched points via reprojection error minimization [14]. While the surface is ac-
curate in an absolute sense, the normals are almost random and curvature is not
controlled; a surface such as this could not be cut using (11) due to inaccuracy
of normal. It should be noted though that elas took less than 9 seconds, while
the result of this work took 150 seconds.

Figure 7 demonstrates capability on a large physical scale. This shows what
can be done with high accuracy surfaces foregoing fusion. The mountain in the
center of the model is well resolved due to proximity with the camera; in contrast,
the far content (up to 20 km away) serves as backdrop material, lacking fidelity
without being noisy, much as it is in the source imagery.

Methods relying on fusion such as [19] or [29] would be unable to neatly mix
far and near in a single reconstruction because these generally scale poorly with
physical scale; methods such as [12] or [18] would also suffer because of the large
disparities (a consequence of large depth ranges).

Figure 10 shows in detail and higher resolution one reconstruction from the
image set in Figure 7. The seven images used were taken with a forward looking
wide angle lens; all of the epipoles are in the image as shown in the figure.
Though there is no stereo at an epipole and less than a pixel of parallax near Mt.
Everest, the reconstruction is successful in making the most of what is available.
Of particular note is the very consistent action of smoothing: the perceived
curvatures are very even across all depth scales, and there is no increase in noise
due to contrast changes, the epipoles, or distance from camera.
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Epipoles Mt Everest

Fig. 10. Surface reconstruction of Ama Dablam (foreground peak) in the Himalayas
using seven images and o = 0.3, with Mt Everest 15 km away in the background.
Helicopter photography by David Breashears, December 2010, www.glacierworks.com.

6 Conclusion

In this paper, a novel surface reconstruction method was built from scratch.
With only a single tunable parameter controlling smoothness, it has been shown
to output accurate, smooth, sharp, natural-looking surfaces. It is arbitrarily scal-
able and performs uniformly across many different kinds of images. A method for
discarding surfaces that are better seen by other views was also given, reducing
the need for fusion and allowing models of arbitrary size to be reconstructed.

Another notable aspect of this work is the use of the finite element method,
which has unfortunately made few appearances in computer vision. Its applica-
tion resulted in solutions with built-in differentiability, necessary for the smooth-
ness term to work properly.

The highly effective smoothness function (9) could be used in other vision
problems, such as shape from shading. Other possibilities for future work include
the incorporation of sparse features as in [4], dense initialization with stereo
correspondences, stronger occlusion handling, and refinement of view parameters
alongside surfaces for very high accuracy output.
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