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Abstract. Probabilistic Databases (PDBs) lie at the expressive inter-
section of databases, first-order logic, and probability theory. PDBs em-
ploy logical deduction rules to process Select-Project-Join (SPJ) queries,
which form the basis for a variety of declarative query languages such as
Datalog, Relational Algebra, and SQL. They employ logical consistency
constraints to resolve data inconsistencies, and they represent query an-
swers via logical lineage formulas (aka.“data provenance”) to trace the
dependencies between these answers and the input tuples that led to
their derivation. While the literature on PDBs dates back to more than
25 years of research, only fairly recently the key role of lineage for es-
tablishing a closed and complete representation model of relational op-
erations over this kind of probabilistic data was discovered. Although
PDBs benefit from their efficient and scalable database infrastructures
for data storage and indexing, they couple the data computation with
probabilistic inference, the latter of which remains a #P-hard problem
also in the context of PDBs.

In this chapter, we provide a review on the key concepts of PDBs with
a particular focus on our own recent research results related to this field.
We highlight a number of ongoing research challenges related to PDBs,
and we keep referring to an information extraction (IE) scenario as a
running application to manage uncertain and temporal facts obtained
from IE techniques directly inside a PDB setting.

Keywords: Probabilistic and Temporal Databases, Deduction Rules,
Consistency Constraints, Information Extraction.

1 Introduction

Over the past decade, the demand for managing structured, relational data has
continued to increase at an unprecedented rate, as we are crossing the “Big
Data” era. Database architectures of all kinds play a key role for managing this
explosion of data, thus aiming to provide efficient storage, querying, and up-
date functionalities at scale. One of the main initial assumptions in databases,
however, is that all data stored in the database is deterministic. That is, a data
item (or “tuple”) either holds as a real-world piece of truth or it is absent from
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the database. In reality, a large amount of the data that is supposed to be cap-
tured in a database is inherently noisy or otherwise uncertain. Example applica-
tions that deal with uncertain data range from scientific data management and
sensor networks to data integration and knowledge management systems. Any
sensor, for example, can only provide a limited precision, and hence its mea-
surements are inherently uncertain with respect to the precise physical value.
Also, even the currently most sophisticated information extraction (IE) meth-
ods can extract facts with particular degree of confidence. This is partly due to
the ambiguity of sentences formulated in natural language, but mainly due to
the heuristic nature of many extractions tools which often rely on hand-crafted
regular expressions and various other forms of rule- or learning-based extraction
techniques [9,6,62,33].

As a result of the efforts for handling uncertain data directly inside a scalable
database architecture, the field of probabilistic databases (PDBs) has evolved
as an established area of database research in recent years [63]. PDBs lie in the
intersection of database systems [2,32] (for handling large amounts of data), first-
order logic [60,65] (for formulating expressive queries and constraints over the
captured data items), and probability theory [25,58] (for quantifying the uncer-
tainty and coupling the relational operations with different kinds of probabilistic
inference). So far, most research efforts in the field of PDBs have focused on the
representation of uncertain, relational data on the one hand, thus designing ap-
propriate data models, and on efficiently answering queries over this kind of data
on the other hand, thus proposing suitable methods for query evaluation. Re-
garding the data model, a variety of approaches for compactly representing data
uncertainty have been presented. One of the most popular approaches, which
forms also the basis for this chapter, is that of a tuple-independent PDB [15,63],
in which a probability value is attached to each tuple in the database, and all
tuples are assumed to be independent of each other. More expressive models,
such as pc-tables [31], have been proposed as well, where each tuple is annotated
by a logical formula that captures the tuple’s dependencies to other tuples in
the database. Finally, there are also more sophisticated models which capture
statistical correlations among the database tuples [37,52,56].

Temporal-Probabilistic Databases. Besides potentially being uncertain,
data items can also be annotated by other dimensions such as time or location.
Such techniques are already partly supported by traditional database systems,
where temporal databases (TDBs) [35] have been an active research field for
many years. To enable this kind of temporal data and temporal reasoning also
in a PDB context, the underlying probabilistic models need to be extended to
support additional data dimensions. As part of this chapter, we thus also focus
on the intersection of temporal and probabilistic databases, i.e., capturing data
that is valid during a specific time interval with a given probability. In this
context, we present a unified temporal-probabilistic database (TPDB) model [21]
in which both time and probability are considered as first-class citizens.
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Top-k Query Processing. Query evaluation in PDBs involves—apart from
the common data computation step, found also in deterministic databases—an
additional probability computation step for computing the marginal probabilities
of the respective query answers. While the complexity for the data computation
step for any given SQL query is polynomial in the size of the underlying database,
even fairly simple Select-Project-Join (SPJ) queries can involve an exponential
cost in the probability computation step. In fact, the query evaluation problem
in PDBs is known to be #P-hard [16,30]. Thus, efficient strategies for probability
computations and the early pruning of low-probability query answers remains a
key challenge for the scalable management of probabilistic data. Recent works on
efficient probability computation in PDBs have addressed this problem mostly
from two ends. The first group of approaches have restricted the class of queries,
i.e., by focusing on safe query plans [16,14,17], or by considering a specific class
of tuple-dependencies, commonly referred to as read-once functions [57]. In par-
ticular the second group of approaches allows for applying top-k style pruning
methods [49,48,8,23] at the time when the query is processed. This alternative
way of addressing probability computations aims to efficiently identify the top-
k most probable query answers. To achieve this they rely on lower and upper
bounds for the probabilities of these answers, to avoid an exact computation of
their probabilities.

Learning Tuple Probabilities. While most works in PDBs assume that
the initial probabilities are provided as input along with the data items, in
reality, an update or estimation of the tuple’s input probabilities often is highly
desirable. To this end, enabling such a learning approach for tuple probabilities
is an important building block for many applications, such as creating, updating,
or cleaning a PDB. Although this has already been stated as a key challenge by
Dalvi et al. [13], to date, only very few works [61,41] explicitly tackle the problem
of creating or updating a PDB. Our recent work [22], which is also presented
in the context of this chapter, thus can be seen as one of the first works that
addresses the learning of tuple probabilities in a PDB setting.

In brief, this chapter aims to provide an overview of the key concepts of PDB
systems, the main challenges that need to be addressed to efficiently manage
large amounts of uncertain data, and the different methods that have been pro-
posed for dealing with these challenges. In this context, we provide an overview
of our own recent results [23,20,22] related to this field. As a motivating and run-
ning example, we continue to refer to a (simplified) IE scenario, where factual
knowledge is extracted from both structured and semistructured Web sources,
which is a process that inherently results in large amounts of uncertain (and
temporal) facts.

1.1 Running Application: Information Extraction

As a guiding theme for this chapter, we argue that one of the main application
domains of PDBs—and in fact a major challenge for scaling these techniques to
very large relational data collections—is information extraction [68]. The goal
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WonPrizeExtraction
Subject Object Pid Did p

I1 Spielberg AcademyAward 1 1 1.0
I2 Spielberg AcademyAward 2 1 1.0

BornInExtraction
Subject Object Pid Did p

I3 Spielberg Cincinnati 3 1 1.0
I4 Spielberg LosAngeles 3 2 1.0

UsingPattern FromDomain
Pid Pattern p Did Domain p

I5 1 Received 0.8 I8 1 Wikipedia.org 0.9
I6 2 Won 0.5 I9 2 Imdb.com 0.8
I7 3 Born 0.9

Fig. 1. An Example Probabilistic Database for an Information Extraction Setting

of IE is to harvest factual knowledge from semistructured sources, and even
from free-text, to turn this knowledge into a more machine-readable format—
in other words, to “turn text into database tuples”. For example, the sentence
“Spielberg won the Academy Award for Best Director for Schindler’s List (1993)
and Saving Private Ryan (1998)” from Steven Spielberg’s Wikipedia article1,
entails the fact that Spielberg won an AcademyAward, which we could represent
as WonAward(Spielberg , AcademyAward).

Due to the many ways of rephrasing such statements in natural language, an
automatic machinery that mines such facts from textual sources will inherently
produce a number of erroneous extractions. Thus, the resulting knowledge base
is never going to be 100% clean but rather remains to some degree uncertain.
Since the Web is literally full of text and facts, managing the vast amounts of
extracted facts in a scalable way and at the same time providing high-confidence
query answers from potentially noisy and uncertain input data will remain a
major challenge of any knowledge management system, including PDBs.

For an illustration, we model a simple IE workflow in a PDB. Usually, candi-
dates for facts in sentences are detected by textual patterns [9,42]. For instance,
for winning an award, the verb “won” might indeed be a good indicator. In our
PDB, we want to capture the different ingredients that lead to the extraction
of a fact. Besides the textual pattern, this could also involve the Web domain
(such as Wikipedia.org ), where we found the sentence of interest. Hence, we
store these in separate probabilistic relations as shown in Figure 1. Therefore,
the probabilities of the tuples of each domain and each pattern reflect our trust
in this source and pattern, respectively. To reconcile the facts along with their
resulting probabilities from the PDB of Figure 1, we employ two deduction rules.
In essence, they formulate a natural join on the Pid and Did columns of the un-
derlying relations to connect an extraction pattern and an extraction domain to
the actual fact:

1 http://en.wikipedia.org/wiki/Steven_Spielberg (as of December, 2013).

http://en.wikipedia.org/wiki/Steven_Spielberg
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WonPrize(S,O)←

⎛
⎝
WonPrizeExtraction(S,O,Pid ,Did)

∧ UsingPattern(Pid , P )
∧ FromDomain(Did , D)

⎞
⎠ (1)

BornIn(S,O)←

⎛
⎝
BornInExtraction(S,O,Pid ,Did)

∧ UsingPattern(Pid , P )
∧ FromDomain(Did , D)

⎞
⎠ (2)

If we execute a query on the resulting WonPrize or BornIn relations, then the
probabilities of the pattern and domain establish the probability of each answer
fact with respect to the relational operations that were involved to obtain these
query answers.

1.2 Challenges and Outline

A number of PDB systems have been released as open-source prototypes recently.
These include systems like MayBMS [5], MystiQ [8], Orion [59], PrDB [56],
SPROUT [46], and Trio [7], which all allow for storing and querying uncer-
tain, relational data and meanwhile found a wide recognition in the database
community. However, in order to make PDB systems as broadly applicable as
conventional database systems, we would like to highlight the following chal-
lenges.

1. Apart from being uncertain, data can be annotated by other dimensions
such as time or location. These techniques are partly already supported by
traditional DBs, but to enable this kind of data in PDBs, we need to extend
the probabilistic data models to support additional data dimensions.

2. Allowing a wide range of expressive queries, which can be executed efficiently,
was one of the ingredients that made traditional database systems successful.
Even though the query evaluation problem has been studied intensively in
PDBs, for many classes of queries efficient ways of computing answers along
with probabilities are not established yet.

3. Most importantly, the field of creating and updating PDBs still is in an early
stage, where only very few initial results exist so far. Nevertheless, we believe
that supporting the learning or updating of tuple probabilities from labeled
training data and selective user inputs will be a key building block for future
PDB approaches.

The remainder of this chapter thus is structured as follows. In Section 2,
we establish the basic concepts and definitions known from relational databases
which form also the basis for defining PDBs in Section 3. Next, in Section 4, we
describe a closed and complete data model for both temporal and probabilistic
databases (TPDBs), thus capturing data that is not only uncertain but also is
annotated with time information. Section 5 discusses query evaluation in PDBs
and describes an efficient top-k style evaluation strategy in this context. Last, in
Section 6, we introduce the problem of learning tuple probabilities from labeled
query answers, which allows also for updating and cleaning a PDB. Section 7
summarizes and concludes this chapter.
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2 Relational Databases

The primary purpose of our first technical section is to establish the basic con-
cepts and notations known from relational databases, which will form also the
basis for the remainder of this chapter. We use a Datalog-oriented notation to
represent intensional knowledge in the form of logical rules. Datalog thus ful-
fills two purposes in our setting. On the one hand, we employ Datalog to write
deduction rules, from which we derive new intensional tuples from the existing
database tuples for query answering. On the other hand, we also employ Datalog
to encode consistency constraints, which allow us to remove inconsistent tuples
from both the input relations and the query answers. For a broader background
on the theoretical foundations of relational databases, including the relationship
between Datalog, Relational Algebra and SQL, we refer the interested reader to
one of the two standard references [2,32] in this field.

2.1 Relations and Tuples

We start with the two most basic concepts of relational databases, namely rela-
tions and tuples. We consider a relation R as a logical predicate of arity r ≥ 1.
Together with a finite set of attributes A1, . . . , Am ∈ A and a finite set of (po-
tentially infinite) domains Ω1, . . . , Ωm ∈ O, we refer to R(A1, . . . , Ar) also as
the schema of relation R, where dom : A → O is a domain mapping function
that maps the set of attributes onto their corresponding domains.

For a fixed universe of constants U =
⋃
Ωi∈O Ωi, a relation instance R then

is a finite subset R ⊆ Ur. We call the elements of R tuples, and we write R(ā)
to denote a tuple in R, where ā is a vector of constants in U . Furthermore, for a
fixed set of variables V , we use R(X̄) to refer to a first-order literal over relation
R, where X̄ ⊆ U ∪V denotes a vector consisting of both variables and constants.
We will use Var(X̄) ⊆ V to refer to the set of variables in X̄.

Definition 1. Given relations R1, . . . , Rn, a relational database comprises the
relation instances Ri whose tuples we collect in the single set of extensional
tuples T := R1 ∪ · · · ∪ Rn.

In other words, a relation instance can simply be viewed as a table. A tuple
thus denotes a row (or “record”) in such a table. For convenience of notation,
we collect the sets of tuples stored in all relation instances into a single set T .
In a deterministic database setting, we can thus say that a tuple R(ā) that is
composed of a vector of constants in U is true iff R(ā) ∈ T (which we will also
refer to as a “database tuple” in this case). As a shorthand notation, we will
also employ I = {I1, . . . , I|T |} as a set of unique tuple identifiers.

Example 1. We consider a database with two relation instances from the movie
domain, which capture information about the directors of movies and the awards
that various movies may have won.
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Directed WonAward
Director Movie Movie Award

I1 Coppola ApocalypseNow I4 ApocalypseNow BestScript
I2 Coppola Godfather I5 Godfather BestDirector
I3 Tarantino PulpFiction I6 Godfather BestPicture

I7 PulpFiction BestPicture

For example, the tuple Directed(Coppola,ApocalypseNow), which we also abbre-
viate by I1, indicates that Coppola directed the movie ApocalypseNow. Thus, the
above database contains two relation instances with tuples T = {I1, . . . , I7}.

2.2 Deduction Rules

To derive new tuples (and entire relations) from an existing relational database,
we employ deduction rules. These can be viewed as generally applicable “if-then-
rules”. That is, given a condition, its conclusion follows. Formally, we follow
Datalog [2,10] terminology but employ a more logic-oriented notation to express
these rules. Each deduction rule takes the shape of a logical implication, with a
conjunction of both positive and negative literals in the body (the “antecedent”)
and exactly one positive head literal (the “consequent”). Relations occurring
in the head literal of a deduction rule are called intensional relations [2]. In
contrast, relations holding the database tuples, i.e., those from T , are also called
extensional relations. These two sets of relations (and hence logical predicates)
must not overlap and are used strictly differently within the deduction rules.

Definition 2. A deduction rule is a logical rule of the form

R(X̄) ←
∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄A)

where

1. R denotes the intensional relation of the head literal, whereas Ri and Rj may
refer to both intensional and extensional relations;

2. n ≥ 1, m ≥ 0, thus requiring at least one positive relational literal;
3. X̄, X̄i, X̄j, and X̄A denote tuples of both variables and constants, such that

Var(X̄) ∪ Var(X̄j) ∪ Var(X̄A) ⊆
⋃
i Var(X̄i);

4. Φ(X̄A) is a conjunction of arithmetic predicates such as “=” and “ 	=”.

We refer to a set of deduction rules D also as a Datalog program.

By the second condition of Definition 2, we require each deduction rule to have
at least one positive literal in its body. Moreover, the third condition ensures
safe deduction rules [2], by requiring that all variables in the head, Var(X̄), in
negated literals, Var(X̄j), and in arithmetic predicates, Var(X̄A), occur also in
at least one of the positive relational predicates, Var(X̄i), in the body of each
rule. As denoted by the fourth condition, we allow a conjunction of arithmetic
comparisons such as “=” and “ 	=”. All variables occurring in a deduction rule
are implicitly universally quantified.
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Example 2. Imagine we are interested in famous movie directors. To derive these
from the tuples in Example 1, we can reason as follows: “if a director’s movie
won an award, then the director should be famous.” As a logical formula, we
express this as follows.

FamousDirector(X)← Directed(X,Y ) ∧WonAward(Y, Z) (3)

The above rule fulfills all requirements of Definition 2, since (1) all relations
in the body are extensional, (2) there are two positive predicates, n = 2, and no
negative predicate, m = 0, and (3) the single variable X of the head is bound
by a positive relational predicate in the body.

For the remainder of this chapter, we consider only non-recursive Datalog
programs. Thus, our class of deduction rules coincides with the core operations
that are expressible in Relational Algebra and in SQL [2], including selections,
projections, and joins. All operations in Datalog (just like in Relation Algebra,
but unlike SQL) eliminate duplicate tuples from the intensional relation instances
they produce.

2.3 Grounding

The process of applying a deduction rule to a database instance, i.e., employing
the rule to derive new tuples, is called grounding. In the next step, we thus
explain how to instantiate the deduction rules, which we achieve by successively
substituting the variables occurring a rule’s body and head literals with constants
occurring in the extensional relations and in other deduction rules [2,65].

Definition 3. A substitution σ : V → V ∪ U is a mapping from variables V
to variables and constants V ∪ U . A substitution σ is applied to a first-order
formula Φ as follows:

Definition Condition
σ(
∧
i Φi) :=

∧
i σ(Φi)

σ(
∨
i Φi) :=

∨
i σ(Φi)

σ(¬Φ) := ¬σ(Φi)
σ(R(X̄)) := R(Ȳ ) σ(X̄) = Ȳ

In general, substitutions can rename variables or replace variables by con-
stants. If all variables are substituted by constants, then the resulting rule or
literal is called ground.

Example 3. A valid substitution is given by σ(X) = Coppola, σ(Y ) = Godfather,
where we replace the variablesX and Y by the constants Coppola and Godfather,
respectively. If we apply the substitution to the deduction rule of Equation (3),
we obtain

FamousDirector(Coppola)←
(
Directed(Coppola,Godfather)
∧WonAward(Godfather, Z)

)

where Z remains a variable.
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We now collect all substitutions for a first-order deduction rule which are
possible over a given database or a set of tuples to obtain a set of propositional
formulas. These substitutions are called ground rules [2,10].

Definition 4. Given a set of tuples T and a deduction rule D

R(X̄) ←
∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄A)

the ground rules G(D, T ) are all substitutions σ where

1. σ’s preimage coincides with
⋃
iVar(X̄i);

2. σ’s image consists of constants only;

3. ∀i : σ(Ri(X̄i)) ∈ T ;
4. σ(Φ(X̄A)) ≡ true.

The first and second condition requires the substitution to bind all variables
in the deduction rule to constants. In addition, all positive ground literals have
to match a tuple in T . In the case of a deterministic database, negated literals
must not match any tuple. Later, in a probabilistic database context, however,
they may indeed match a tuple, which is why we omit a condition on this case.
The last condition ensures that the arithmetic literals are satisfied.

Example 4. Let the deduction rule of Equation (3) beD. For the tuples of Exam-
ple 1, there are four substitutions G(D, {I1, . . . , I7}) = {σ1, σ2, σ3, σ4}, where:

σ1(X) = Coppola σ2(X) = Coppola
σ1(Y ) = ApocalypseNow σ2(Y ) = Godfather
σ1(Z) = BestScript σ2(Z) = BestDirector

σ3(X) = Coppola σ4(X) = Tarantino
σ3(Y ) = Godfather σ4(Y ) = PulpFiction
σ3(Z) = BestPicture σ4(Z) = BestPicture

All substitutions provide valid ground rules according to Definition 4, because
(1) their preimages coincide with all variables ofD, (2) their images are constants
only, (4) there are no arithmetic literals, and (3) all positive body literals match
the following database tuples:

Literal Tuple Literal Tuple
σ1(Directed(X,Y )) I1 σ1(WonAward(Y, Z)) I4
σ2(Directed(X,Y )) I2 σ2(WonAward(Y, Z)) I5
σ3(Directed(X,Y )) I2 σ3(WonAward(Y, Z)) I6
σ4(Directed(X,Y )) I3 σ4(WonAward(Y, Z)) I7

Finally, we employ the groundings of a deduction rule to derive new tuples
by instantiating the head literal of the rule.
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Definition 5. Given a single deduction rule D := (R(X̄) ← Ψ) ∈ D and a set
of extensional tuples T , the intensional tuples are created as follows:

IntensionalTuples(D, T ) := {σ(R(X̄)) | σ ∈ G(D, T )}

We note that the same new tuple might result from more than one substitu-
tion, as it is illustrated by the following example.

Example 5. Let D be the deduction rule of Equation (3). Continuing Example 4,
there are two new intensional tuples:

IntensionalTuples(D, {I1, . . . , I7}) =
{
FamousDirector(Coppola),
FamousDirector(Tarantino)

}

The first tuple originates from σ1, σ2, σ3 of Example 4, whereas the second tuple
results only from σ4.

2.4 Queries and Query Answers

We now move on to define queries and their answers over a relational database
with deduction rules. Just like the antecedents of the deduction rules, our queries
consist of conjunctions of both positive and negative literals.

Definition 6. Given a set of deduction rules D, which define our intensional
relations, a query Q is a conjunction:

Q(X̄) :=
∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄A)

where

1. all Ri, Rj are intensional relations in D;
2. X̄ are called query variables and it holds that

Var(X̄) =
⋃
i=1,...,nVar(X̄i);

3. all variables in negated or arithmetic literals are bound by positive literals
such that Var(X̄A) ⊆

⋃
i=1,...,nVar(X̄i), and for all j ∈ {1, . . . ,m} it holds

that Var(X̄j) ⊆
⋃
i=1,...,nVar(X̄i);

4. Φ(X̄A) is a conjunction of arithmetic predicates such as “=” and “ 	=”.

The first condition allows us to ask for head literals of any deduction rule. The
set of variables in positive literals are precisely the query variables. The final two
conditions ensure safeness as in deduction rules. We want to remark that for a
theoretical analysis, it suffices to have only one intensional literal as a query, since
the deduction rules allow us to encode any combination of relational operations
such as projections, selections or joins. However, for practical purposes, it is
often useful to combine more than one literal into a query via a conjunction.
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Example 6. Extending Examples 1 and 2, we can formulate the query

Q(X) := FamousDirector(X) ∧ (X 	= Tarantino)

which asks for all famous directors except Tarantino. Thus, the only query vari-
able in this example is X .

Since queries have the same shape as the antecedents of the deduction rules,
we apply Definition 4 also for grounding the queries. Assuming that T ′ comprises
all database tuples and all new intensional tuples resulting from grounding the
deduction rules, we may again rely on G(Q(X̄), T ′) to define the query answers.

Definition 7. For a set of tuples T ′ and a query Q(X̄), the set of query answers
is given by:

QueryAnswers(Q(X̄), T ′) := {σ(Q(X̄)) | σ ∈ G(Q(X̄), T ′)}
Thus, each answer provides a distinct binding of (all of its) query variables to

constants in U .
Example 7. For the query Q(X) of Example 6 and the deduction rule of Exam-
ple 2, there exists only one answer, namely FamousDirector(Coppola).

Again, in a deterministic database setting, we can thus say that a tuple R(ā)
(which may now refer to either a “database tuple” or a “derived tuple”) is true
iff R(ā) ∈ T ′. This assumption will be relaxed in the next section.

3 Probabilistic Databases

We now move on to present a model for probabilistic databases. This model
extends the one for relational databases by using probabilities.

3.1 Possible Worlds

In this subsection, we relax the common assumption in deterministic databases,
namely that all tuples, which are captured in both the extensional and inten-
sional relations of the database, are certainly true. Depending on the existence
(i.e., the “correctness”) of the tuples, a database can be in different states. Each
such state is called a possible world [3,63].

Definition 8. For a relational database with extensional tuples T , a possible
world is a subset W ⊆ T .

The interpretation of a possible world is as follows. All tuples inW exist (i.e.,
they are true in W), whereas all tuples in T \W do not exist (i.e., they are false
in W). In the absence of any constraints that would restrict this set of possible
worlds (see Subsection 3.6), any subset W of tuples in T forms a valid possible
world (aka. “possible instance”) of the probabilistic database. Hence, there are
2|T | possible worlds.

Example 8. Considering the relational database of Example 1, a possible world
is W := {I2, I4, I6}, which hence has only one tuple in the Directed relation and
two tuples in the WonAward relation.
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3.2 Probabilistic Database Model

Based on the possible worlds semantics, we can now formally introduce prob-
abilistic databases [63], which—in their most general form—simply impose a
probability distribution over the set of possible worlds.

Definition 9. Given a set of tuples T with possible worlds W1, . . . ,Wn, a prob-
abilistic database (PDB) assigns a probability P : 2T → [0, 1] to each possible
world W ⊆ T , such that: ∑

W⊆T
P (W) = 1

In other words, in a PDB the probabilities of the possible worlds P (W) form
a probability distribution. Thus, each possible world can be seen as the outcome
of a probabilistic experiment.

Example 9. If we allow only two possible worldsW1 := {I1, I3, I5, I7} andW2 :=
{I2, I4, I6} over the tuples of Example 1, we can set their probabilities to P (W1) =
0.4 and P (W2) = 0.6 to obtain a valid PDB.

We remark that the above possible-worlds semantics, which is the predomi-
nant data model of virtually any recent PDB approach [63], is a very expressive
representation formalism for probabilistic data. By defining a probability distri-
bution over the possible instances of the underlying deterministic database, it in
principle allows us to represent any form of correlation among the extensional
tuples. In practice, however, it is usually not permissible to store an exponential
amount of possible worlds over the set of extensional tuples T . We thus now
move on to the concept of tuple independence.

3.3 Tuple Independence

Since there are exponentially many possible worlds, it is prohibitive to store every
possible world along with its probability in an actual database system. Instead,
we opt for a simpler method by annotating each individual tuple with a probabil-
ity value. By assuming that the probabilities of all tuples are independent [25,58],
we obtain the representation model of tuple-independent PDBs [15,63].

Definition 10. For a set of extensional tuples T , a tuple-independent PDB
(T , p) is a pair, where

1. p is a function p : T → (0, 1], which assigns a non-zero probability value
p(I ) to each tuple I ∈ T ;

2. the probability values of all tuples in T are assumed to be independent;
3. every subset W ⊆ T is a possible world and has probability:

P (W , T ) :=
∏
I∈W

p(I ) ·
∏

I∈T \W
(1 − p(I ))
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The probability p(I ) of a tuple I denotes the confidence in the existence of
the tuple in the database where a higher value p(I ) denotes a higher confidence
in I being valid. However, the probabilities of different tuples do not depend on
each other; that is, they are assumed to be probabilistically independent. This
allows us to multiply the probabilities of the tuples to obtain the probability
of the possible world. From a probabilistic perspective, each extensional tuple
corresponds to an independent binary random variable.

Example 10. Assuming we are unsure about the existence of each of the tuples
in Example 1, we may now annotate them with probabilities as follows.

Directed WonAward
Director Movie p Movie Award p

I1 Coppola ApocalypseNow 0.7 I4 ApocalypseNow BestScript 0.1
I2 Coppola Godfather 0.5 I5 Godfather BestDirector 0.8
I3 Tarantino PulpFiction 0.2 I6 Godfather BestPicture 0.9

I7 PulpFiction BestPicture 0.5

Here, Coppola directed the movie Godfather only with probability 0.5. In addi-
tion, the possible world W := {I1, I3, I5, I7} has the probability:

P (W , {I1, . . . , I9}) = 0.7 · (1− 0.5) · 0.2 · (1− 0.1) · 0.8 · (1− 0.9) · 0.5 = 0.00252

In Subsection 3.2, we required a PDB to form a probability distribution over
its possible worlds. For a tuple-independent PDB, we can now prove that this
condition also holds.

Proposition 1. Given a tuple-independent PDB (T , p), then P (W , T ) of Defi-
nition 10 forms a probability distribution over the possible worlds W ⊆ T , such
that: ∑

W⊆T
P (W , T ) = 1

Proof. We prove the proposition by induction over the cardinality of T .

Basis i = 1:∑
W⊆{I1} P (W , {I1}) = p(I1) + (1− p(I1)) = 1

Step (i− 1)→ i:

Let T := {I1, . . . , Ii} where Ii is the new tuple.

∑
W⊆T P (W , T )
=
∑
W⊆T

∏
I∈W p(I ) ·

∏
I∈T \W(1− p(I ))

= (p(Ii) + (1− p(Ii)))︸ ︷︷ ︸
=1

·
∑
W⊆T \{Ii}

∏
I∈W p(I ) ·

∏
I∈T \W(1− p(I ))︸ ︷︷ ︸

=1 by hypothesis

In the remaining parts of this chapter, we will always consider a
tuple-independent PDB when we refer to a PDB.
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3.4 Propositional Lineage

In this subsection, we introduce how to trace the derivation history of intensional
tuples. In database terminology, this concept is commonly referred to as data
lineage [7,12,54], which we represent via propositional (Boolean) formulas. More
specifically, lineage relates each newly derived tuple in T ′\T with the extensional
tuples in T via the three Boolean connectives ∧, ∨ and ¬, which reflect the
semantics of the relational operations that were applied to derive that tuple.

Definition 11. We establish lineage inductively via the function

λ : GroundLiterals → Lineage

which is defined as follows:

1. For tuples T and R(ā) with R being extensional and R(ā) ∈ T , we have

λ(R(ā)) := I

where I is a Boolean (random) variable representing the tuple R(ā).
2. For tuples T , deduction rules D, and R(ā) with R being intensional, lineage

is defined as

λ(R(ā)) :=
∨
D∈D,

σ∈G(D,T ),
σ(X̄)=ā

⎛
⎝ ∧
i=1,...,n

λ(σ(Ri(X̄i))) ∧
∧

σ(Rj(X̄j))∈T

¬λ(σ(Rj(X̄j)))

⎞
⎠

where D is a deduction rule having R as its head literal:

R(X̄) ←
∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄)

3. If there is no match to R(ā) in both T and D:

λ(R(ā)) := false

In the first case, we simply replace a ground literal R(ā) by a Boolean ran-
dom variable I that represents this database tuple. The second case however is
slightly more involved. The ground literal R(ā) is replaced by the disjunction
over all deduction rules and all groundings of thereof, where the ground head
literal matched R(ā). Likewise, negative literals are only traced if they occur in
the tuples. In the third case, all literals not being matched at all are replaced by
the constant false, which resembles a closed world assumption that is common
in databases and is known as “negation-as-failure” in Datalog [2]. Finally, arith-
metic literals do not occur in the lineage formulas, since a successful grounding
replaces them with the constant true (see Definition 4). Similarly, because a
query has the same shape as the body of a deduction rule, we write λ(Q(ā)) to
refer to the lineage formula associated with a query answer.
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Example 11. Building on Examples 4 and 5, we determine the lineage of the
tuple FamousDirector(Coppola), which was produced by the three substitutions
σ1, σ2, and σ3. The second case of Definition 11 delivers a disjunction ranging
over both substitutions:

λ(FamousDirector (Coppola)) =(
λ(Directed(Coppola ,ApocalypseNow ))

∧ λ(WonAward(ApocalypseNow ,BestScript))

)
from σ1

∨(
λ(Directed(Coppola ,Godfather ))

∧ λ(WonAward(Godfather ,BestDirector))

)
from σ2

∨(
λ(Directed(Coppola ,Godfather ))

∧ λ(WonAward(Godfather ,BestPicture))

)
from σ3

Then, the first case of Definition 11 replaces all ground literals by their tuple
identifiers:

(I1 ∧ I4)︸ ︷︷ ︸
from σ1

∨ (I2 ∧ I5)︸ ︷︷ ︸
from σ2

∨ (I2 ∧ I6)︸ ︷︷ ︸
from σ3

Next, we study the computational complexity of lineage tracing. It is known
that grounding non-recursive Datalog rules, which coincides with our class of
deduction rules, has polynomial data complexity [39]. Now, we extend this result
to lineage tracing.

Lemma 1. For a fixed set of deduction rules D, grounding with lineage as of
Definition 11 has polynomial data complexity in |T |.

Proof. We have to show that, according to Definition 11, lineage creates an
overhead which is polynomial in |T |. In the first and third case of the definition,
we can see that we solely rely on a look-up in D or T , which is computable
in polynomial time. The second case iterates over all deduction rules D ∈ D.
For each deduction rule D, it performs a number of look-ups which is upper-
bounded by |G(D, T )| · |D|. Since grounding has polynomial data complexity,
G(D, T ) is of polynomial size in T . Thus, also the third case has polynomial
data complexity.

We next introduce a normal form of propositional lineage formulas, which is
very common in logic [60]. Assuming lineage formulas to be in a normal form
will simplify proofs that follow later on.

Definition 12. A propositional lineage formula φ is in Disjunctive Normal Form
(DNF) if φ = ψ1 ∨ · · · ∨ ψn and each clause ψi is of the form

∧
j Ij ∧

∧
k ¬Ik.

As an illustration, the lineage formula of Example 11 is in DNF. In general,
any propositional formula can be transformed into DNF [60], which we rely on
in order to show the following statement.
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Proposition 2. The deduction rules of Definition 2 allow us to express any
propositional lineage formula.

Proof. Consider a probabilistic database (T , p) and an arbitrary propositional
formula φ connecting tuple identifiers. Without loss of generality, let the formula
φ be in DNF and range over only one relation R. First, we introduce one addi-
tional tuple R(0) and set p(R(0)) = 1. Then, for each clause ψi =

∧
j Ij ∧

∧
k ¬Ik

of φ, we create exactly one deduction rule:

R′(0) ← R(0) ∧
∧
j

R(j) ∧
∧
k

¬R(k)

The lineage formula of the intensional tuple R′(0) thus is φ. The reason is that
each rule creates one clause. Then, these clauses are connected by a disjunction
that originates from the second case of Definition 11.

From the above consideration, it follows that the lineage formulas considered
in our context may take more general forms than lineage formulas resulting from
(unions of) conjunctive queries (UCQs) [14,16], which produce only formulas
which are restricted to positive literals.

3.5 Computing Probabilities

Since in a probabilistic database each tuple exists only with a given probability,
we can now quantify the probability that each answer exists. Based on [28,54,63],
we compute probabilities of query answers via their lineage formulas. To achieve
this, we interpret the propositional lineage formulas over a possible world of
a probabilistic database (T , p) as follows. We say that a possible world W is
a model [65] for a propositional lineage formula φ, denoted as W |= φ, if, by
setting all tuples in W to true and all tuples in T \W to false, W represents
a truth assignment that satisfies φ. Moreover, let the set M(φ, T ) contain all
possible worlds W ⊆ T being a model for a propositional lineage formula φ.

M(φ, T ) := {W | W ⊆ T ,W |= φ} (4)

If it is clear from the context, we drop T as an argument ofM. We compute
the probability of any Boolean formula φ over tuples in T as the sum of the
probabilities of all the possible worlds that are a model for φ:

P (φ) :=
∑

W∈M(φ,T )

P (W , T ) (5)

Here, P (W , T ) is as in Definition 10. We can interpret the above probability
as the marginal probability of the lineage formula φ. The above sum can range
over exponentially many terms. However, in practice, we can—at least in many
cases—compute the probability P (φ) directly via the structure of the lineage
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formula φ. Let Tup(φ) ⊆ T denote the set of tuples occurring in φ. Then, the
following computations can be employed:

Definition Condition
P (I ) := p(I ) I ∈ T

P (
∧
i φi) :=

∏
i P (φi) i 	= j ⇒ Tup(φi) ∩ Tup(φj) = ∅

P (
∨
i φi) := 1−

∏
i(1− P (φi)) i 	= j ⇒ Tup(φi) ∩ Tup(φj) = ∅

P (φ ∨ ψ) := P (φ) + P (ψ) φ ∧ ψ ≡ false
P (¬φ) := 1− P (φ)
P (true) := 1
P (false) := 0

(6)

The first line captures the case of an extensional tuple I , for which we
return its attached probability value p(I ). The next two lines handle independent-
and and independent-or operations for conjunctions and disjunctions over tuple-
disjoint subformulas φi, respectively. In the fourth line, we address disjunctions
for subformulas φ and ψ that denote disjoint probabilistic events (disjoint-or).
The fifth line handles negation. Finally, the probability of true and false is 1 and
0, respectively.

Example 12. Let us compute the probability P (I1 ∧ I2 ∧ ¬I3) over the tuples of
Example 10. First, the second line of Equation (6) is applicable, which yields
P (I1) ·P (I2) ·P (¬I3). Next, we can replace the negation to obtain P (I1) ·P (I2) ·
(1−P (I3)). Now, looking up the tuples’ probability values in Example 10 yields
0.7 · 0.5 · (1− 0.2) = 0.28.

The definition of P (φ) presented in Equation (6) can be evaluated in linear
time in the size of φ. However, for general lineage formulas, computing P (φ)
is known to be #P-hard [16,15,45]. Here, #P [66] denotes a class of counting
problems. Its prototypical problem, #SAT , asks for the number of satisfying
assignments of a propositional formula and may thus have to consider a number
of satisfying assignment that is exponential in the number of variables in the
formula.

We next present a number of deduction rules which are known to yield lineage
formulas that may exhibit computationally hard instances in terms of probability
computations.

Lemma 2. Let a probabilistic database (T , p) and the following deduction rules
be given:

H (0)← R(X) ∧ S(X,Y ) ∧ T (Y )

H (1)← R(X) ∧ S(X,Y )
H (1)← S(X,Y ) ∧ T (Y )

H (2)← R(X) ∧ S1(X,Y )
H (2)← S1(X,Y ) ∧ S2(X,Y )
H (2)← S2(X,Y ) ∧ T (Y )
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H (3)← R(X) ∧ S1(X,Y )
H (3)← S1(X,Y ) ∧ S2(X,Y )
H (3)← S2(X,Y ) ∧ S3(X,Y )
H (3)← S3(X,Y ) ∧ T (Y )

. . .

Then, for each H(k) the corresponding computations of the probabilities P (λ(Hk))
are #P-hard in |T |.

In the lemma above, k is a constant, hence H(0) is a ground literal resembling
a Boolean query. A formal proof for the above statement can be found in [17].

To be able to address also these hard cases, we employ the following equa-
tion, called Shannon expansion, which is applicable to any propositional lineage
formula:

P (φ) := p(I ) · P (φ[I/true]) + (1− p(I )) · P (φ[I/false ]) (7)

Here, the notation φ[I/true] for a tuple I ∈ Tup(φ) denotes that we replace
all occurrences of I in φ by true. Shannon expansion is based on the following
logical equivalence:

φ ≡ (I ∧ φ[I/true]) ∨ (¬I ∧ φ[I/false ]) (8)

The resulting disjunction fulfills the disjoint-or condition (see Equation (6))
with respect to I . Repeated applications of Shannon expansions may however
increase the size of φ exponentially, and hence do not circumvent the computa-
tional hardness of the problem.

Example 13. We calculate the probability of the lineage formula of Example 11
as follows:

P ((I1 ∧ I4) ∨ (I2 ∧ I5) ∨ (I2 ∧ I6))

The top-level operator is a disjunction where the third line of Equation (6) is not
applicable, since I2 occurs in two subformulas. Hence, we first apply a Shannon
expansion for I2:

p(I2) · P ((I1 ∧ I4) ∨ I5 ∨ I6) + (1 − p(I2)) · P (I1 ∧ I4)

Now, we can resolve the disjunction and the conjunction by independent-or and
independent-and, respectively:

p(I2) · (1− (1− p(I1) · p(I4)) · (1− p(I5)) · (1− p(I6))) + (1− p(I2)) · p(I1) · p(I4)

Partial Derivatives. As introduced in [38,50], we can quantify the impact of
the probability of a tuple p(I ) on the probability P (φ) of a propositional lineage
formula φ by its partial derivative, which has many applications to sensitivity
analysis [38] and gradient-based optimization methods [43] (see also Section 6.4).
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Definition 13. Given a propositional lineage formula φ and a tuple I ∈ Tup(φ),
the partial derivative of P (φ) with respect to p(I ) is

∂P (φ)

∂p(I )
:=

P (φ[I/true])− P (φ[I/false ])
P (true)− P (false) = P (φ[I/true])− P (φ[I/false ])

Again, φ[I/true] means that all occurrences of I in φ are replaced by true (and
analogously for false).

Example 14. We may determine the derivative of the probability of the propo-
sitional lineage formula φ := I1 ∧ I4 with respect to the tuple I4 as follows:

∂P (φ)
∂p(I4)

= P ((I1 ∧ I4)[I4/true])− P ((I1 ∧ I4)[I4/false])

= p(I1)− P (false)
= p(I1)

3.6 Consistency Constraints

To rule out instances (i.e., possible worlds) of the probabilistic database, which
would be inconsistent with assumptions we may make about the real world, we
support consistency constraints. For instance, if for the same person two places
of birth are stored in the database, then we may intend to remove one of them by
a consistency constraint. In general, we consider the constraints to be presented
in the form of a single propositional lineage formula φc, which connects differ-
ent tuple identifiers. Intuitively, the constraint formula φc describes all possible
worlds that are valid. In contrast, all possible worlds that do not satisfy the con-
straint will be dropped from the probability computations. Because it is tedious
to manually formulate a propositional formula over many database tuples, we
allow φc to be induced by deduction rules Dc and two sets of queries Cp and Cn
as follows. For simplicity, we assume Cp ∩Cn = ∅ and Dc ∩Dq = ∅, where Dq are
the deduction rules related to the query.

Definition 14. Let a set of deduction rules Dc and two sets Cp and Cn of in-
tensional literals from Dc be given. If T contains all tuples deducible by Dc, then
the constraint formula φc is obtained by:

φc :=
∧

Cp(X̄)∈Cp,
Cp(ā)∈Answers(Cp(X̄),T )

λ(Cp(ā)) ∧
∧

Cp(X̄)∈Cn,
Cn(ā)∈Answers(Cn(X̄),T )

¬λ(Cn(ā))

Hence, based on the above definition, we create constraints on probabilis-
tic databases directly via deduction rules. All answers from literals in Cp yield
propositional lineage formulas which must always hold, whereas the lineage for-
mulas being derived from literals in Cn must never hold. We connect all these
ground constraints, i.e., their lineage formulas, by a conjunction to enforce all
of them together. It is important to note that the deduction rules of the con-
straints do not create any new tuples, but merely serve the purpose of creating
the propositional constraint formula φc.
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Example 15. Let us formalize that every movie is directed by only one person.
Suppose we create the following deduction rule

Constraint(P1, P2,M)← (Directed(P1,M) ∧Directed(P2,M) ∧ P1 	= P2)

and insert Constraint(P1, P2,M) into Cn, which hence disallows the existence of
two persons P1 and P2 that both directed the same movie.

Due to the logical implication, we may also abbreviate constraints consisting
of a single deduction rule by the body of the deduction rule only. That is, we
may just omit the head literal in these cases.

Example 16. We can write the constraint of Example 15 without the head literal
as follows:

¬(Directed(P1,M) ∧Directed(P2,M) ∧ P1 	= P2)

Here, the negation indicates that the former head literal was in Cn.

With respect to the probability computations, constraints remove all the pos-
sible worlds from the computations, which violate the constraint. This process
is called conditioning [41], which can be formally defined as follows.

Definition 15. Let constraints be given as a propositional lineage formula φc
over a probabilistic database (T , p). If φc is satisfiable, then the probability P (ψ)
of a propositional lineage formula ψ over T can be conditioned onto φc as follows:

P (ψ | φc) :=
P (ψ ∧ φc)
P (φc)

(9)

In the above definition, ψ can represent any lineage formula, in particular also
that of a query answer. After removing the possible worlds violating a constraint
from the probabilistic database, conditioning (re-)weights the remaining worlds
such that they again form a probability distribution.

Example 17. We consider the lineage formula ψ = I2 ∧ (I5 ∨ I6) over the tuples
of Example 10. Without any constraints, its probability is computed by Equa-
tion (6) as P (ψ) = 0.5 · (1 − (1 − 0.8) · (1 − 0.9)) = 0.49. If we set φc = I2 as
a constraint, we remove all possible worlds that exclude I2. Consequently, the
probability is updated to:

P (ψ | I2) =
P (I2 ∧ (I5 ∨ I6))

P (I2)
=
p(I2) · P (I5 ∨ I6)

p(I2)
= P (I5 ∨ I6) = 0.98

In the following, we characterize a useful property of constraints. If a num-
ber of constraints do not share any tuple with a lineage formula ψ, then the
probability P (ψ) is not affected by the constraints.

Proposition 3. If the constraints φc and the lineage formula ψ are independent
with respect to their database tuples, i.e., Tup(ψ) ∩ Tup(φc) = ∅, then it holds
that:

P (ψ | φc) = P (ψ)
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Proof. Due to the second line of Equation (6) and Tup(ψ) ∩ Tup(φc) = ∅, we
can write P (ψ ∧ φc) = P (ψ) · P (φc) . Therefore, the following equation holds:

P (ψ | φc) =
P (ψ ∧ φc)
P (φc)

= P (ψ) · P (φc)
P (φc)

= P (ψ)

Hence, if we have the constraint φc ≡ true, the standard unconditioned prob-
ability computations of Section 3.5 arise as a special case. Finally, since Equa-
tion (9) invokes probability computations on the constraint φc, constraints may
also yield #P-hard computations, which we capture next.

Observation 11. Constraints can cause #P-hard probability computations.

The reason is that one of the lineage formulas described in Lemma 2 could
occur in φc.

Expressiveness of Constraints. The deduction rules of Definition 14, which
we employ to induce the constraints, may yield an arbitrary propositional lineage
formula when grounded. This is formally shown in Proposition 2. We note that
restrictions on the shape of the constraints, i.e., to avoid the #P-hard instances
of Observation 11, should follow work on tractable probability computations in
probabilistic databases. The reason is that the computational complexity arises
from the probability computations. In contrast, when solving constraints over
deterministic databases, the complexity mainly results from finding a single con-
sistent subset of the database, rather than from counting all of these subsets.

4 Temporal-Probabilistic Databases

In recent years, both temporal and probabilistic databases have emerged as
two intensively studied areas of database research. So far, the two fields have
however been investigated largely only in isolation. In this section, we describe a
closed and complete temporal-probabilistic database (TPDB) model [21], which
provides the expressiveness of the afore defined probabilistic database model,
but augments this model with temporal annotations for tuples and temporal
predicates for the rules. To the best of our knowledge, prior to [21], only Sarma
et al. [55] have explicitly modeled time in PDBs. However in the former work
time refers to the “transaction-time” of a tuple insertion or update, thus focusing
on versioning a probabilistic database. Rather, we consider time as the actual
temporal validity of a tuple in the real world (e.g., the time interval of a marriage
in the IE scenario).

Example 18. This time, our running example is centered around the actors
“Robert De Niro” and “Jane Abott” about whom the TPDB of Figure 2 captures
a number of facts. Tuple I1 expresses that DeNiro was born in Greenwich (New
York) on August 17th, 1943, which is encoded into the time interval [1943-08-
17, 1943-08-18) using an ISO style date/time format. The time and probability
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BornIn
Subject Object Valid Time p

I1 DeNiro Greenwich [1943-08-17, 1943-08-18) 0.9
I2 DeNiro Tribeca [1998-01-01, 1999-01-01) 0.6

Wedding
Subject Object Valid Time p

I3 DeNiro Abbott [1936-11-01, 1936-12-01) 0.3
I4 DeNiro Abbott [1976-07-29, 1976-07-30) 0.8

Divorce
Subject Object Valid Time p

I5 DeNiro Abbott [1988-09-01, 1988-12-01) 0.8

Fig. 2. Example Temporal-Probabilistic Database with Tuple Timestamping

annotations together express that this tuple is true for the given time interval
with probability 0.9, and it is false (i.e., it does not exist in the database) for
this interval with probability 0.1. Furthermore, tuples are always false outside
their attached time intervals. Notice that another tuple, I2, states that DeNiro
could have also been born in Tribeca in the interval [1998-01-01, 1999-01-01) with
probability 0.6. In the remainders of this section, we investigate how to evaluate
queries over this kind of data, i.e., how to propagate time and probabilities from
the database to the query answers. We also discuss consistency constraints. For
instance, the two tuples of BornIn state different birth places of DeNiro and
create an inconsistency we should rule out by the use of constraints.

4.1 Time

We start with the most important point, namely our model of time. As in a
calendar, there are a number of choices to make. First, we have to decide on the
granularity of time, which could be days, hours or minutes, for instance. Also,
we should determine whether time is finite, and, if so, when it starts or ends,
e.g., at the first or the last day of a year, respectively.

Technically, we adopt the view of time as points which then can be coalesced
to form intervals [35,67]. We consider the time universe UT as a linearly or-
dered finite sequence of time points, e.g., days, minutes or even milliseconds.
Considering time to be finite and discrete later ensures that there are finitely
many possible worlds. A time interval consists of a contiguous and finite set of
ordered time points over UT , which we denote by a half-open interval [tb, te)
where tb, te ∈ UT and tb < te. For instance, a day can be viewed as an interval of
hours. Moreover, we employ the two constants tmin, tmax to denote the earliest
and latest time point in UT , respectively. Finally, temporal variables are written
as T or [Tb, Te), if we refer to a time interval.

At this point, we want to remark that we do not consider the finiteness of
UT to be any limitation of the above model for time in practice, since we can
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always choose tmin, tmax as the earliest and latest time points we observe among
the tuples and deduction rules. Also, discrete time points of fixed granularity do
not present any restraint, as we could resort to employing time points of smaller
granularity than the ones observed in the input data if needed. The complexity
of the following operations, which we define over this kind of temporally and
probabilistically annotated tuples, will in fact be independent of the granularity
of the underlying time universe UT .
Example 19. Regarding the database of Figure 2, UT comprises the sequence
of days starting at tmin := 1936-11-01 and ending at tmax := 1999-01-01. We
could equally choose any more fine-grained unit for the time points, but for
presentation purposes, we select days.

4.2 Temporal Relations and Tuples

We now relate data to time, that is, tuples are considered to be valid during
a specific time interval, only, and they are invalid outside their attached time
intervals. For this, we extend the relations introduced in Section 2.1 to temporal
relations, following work by [1,35,64]. We annotate each tuple by a time interval
specifying the validity of the tuple over time—a technique, which is commonly
referred to as tuple timestamping [35]. More specifically, a temporal relation RT

is a logical predicate of arity r ≥ 3, whose latter two arguments are temporal.
Hence, an instance of a temporal relation is a finite subsetRT ⊆ Ur−2×UT×UT .
Therein, we interpret the temporal arguments tb, te of a tuple R

T(ā, tb, te) to form
a time interval [tb, te). Choosing intervals over time points has the advantage that
the storage costs are independent of the granularity of the time points.

Example 20. The tuple BornIn(DeNiro,Greenwich, 1943-08-17, 1943-08-18) is va-
lid only at one day, namely on August 17th, 1943.

In general, a temporal relation instance can contain several tuples with equiv-
alent non-temporal arguments ā, but with varying temporal arguments. For
instance, assume we have two tuples describing DeNiro’s birthday, one time-
stamped with the year 1943 and one by the day 1943-08-18. Then, a database
engine might conclude that he was born twice on August 18th, 1943 with dif-
ferent probabilities. To resolve this issue, we enforce the time intervals of tuples
with identical, non-temporal arguments to be disjoint. A relation instance that
adheres to this condition is going to be termed duplicate-free [19].

Definition 16. A temporal relation instance RT is called duplicate-free, if for
all pairs of tuples RT (ā, tb, te), R

T (ā′, t′b, t
′
e) ∈ RT it holds that:

ā = ā′ ⇒ [tb, te) ∩ [t′b, t
′
e) = ∅

We remark that the above definition does not affect tuples of different, non-
temporal arguments or with non-overlapping temporal arguments.

Example 21. In Figure 2 the temporal relation instance Wedding is duplicate-
free, as both tuples have equivalent non-temporal arguments, but their time
intervals are non-overlapping.
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4.3 Temporal-Probabilistic Database Model

In this section, we extend tuple-independent probabilistic databases of Defini-
tion 10 to temporal data as in [21]. Intuitively, each tuple has two annotations:
a temporal and a probabilistic one. Hence, each tuple exists only during a given
time and with a given probability. Supporting both probability and time anno-
tations allows to represent data, where we are unsure whether a tuple is valid at
a given set of time points or during an entire time interval, respectively.

Definition 17. For temporal relations RT1 , . . . , R
T
n a tuple-independent

temporal-probabilistic database (TPDB) (T , p,UT ) is a triple, where

1. T := RT1 ∪ · · · ∪ RTn is a finite set of tuples;

2. ∀i ∈ {1, . . . , n} : RTi is duplicate-free;

3. all tuples RTi (ā, tb, te) of all relation instances RTi share the time universe
UT , that is, tb, te ∈ UT ;

4. p is a function p : T → (0, 1] which assigns a non-zero probability value p(I )
to each tuple I ∈ T ;

5. the probability values of all tuples in T are assumed to be independent.

In the above definition, the first, fourth and fifth condition are analogous to
Definition 10. Still, we here consider temporal relation instances RTi and require
them to be duplicate-free (see Definition 16). Additionally, all time points occur-
ring in any relation instance RTi must be contained in the time universe UT . We
highlight that the probabilities of two tuples R(ā, tb, te) and R(ā, t

′
b, t
′
e), even if

they share ā, are independent due to the fifth condition. In the remaining parts
of this chapter, we will thus again drop the attribute “tuple-independent” when
we refer to a TPDB. As in Section 3, dependencies among tuples will be induced
by constraints and queries.

Example 22. The temporal relation instances of Figure 2, together with their
time universe defined in Example 19 form the TPDB ({I1, I2, I3, I4, I5}, p, 〈1936-
11-01, . . . , 1999-01-01〉).

Since tuple probabilities here are defined as in PDBs, and UT is finite as well
as discrete, the possible-worlds semantics of Subsection 3.1 applies to TPDBs as
well. Next, we thus more formally characterize the relationship between TPDBs
and (non-temporal) PDBs.

Proposition 4. Every PDB instance (T , p) can be encoded in a TPDB instance
(T ′, p,UT ).

Proof. To achieve the encoding, we create the time universe UT := 〈1, 2〉, expand
each relationR in T by two temporal arguments, and set T ′ := {RT (ā, 1, 2) | R(ā)
∈ T }.
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4.4 Temporal Arithmetic Predicates

To express temporal statements, it is necessary to be able to compare tempo-
ral annotations in the form of time points. Hence, we support two temporal-
arithmetic predicates “=T ” and “<T ” [27,44], which each check for the equality
and precedence of two time points, respectively.

Definition 18. For t1, t2 ∈ UT the temporal-arithmetic predicates =T and <T

are evaluated as follows:

t1 =T t2 ≡
{
true if t1 = t2,
false otherwise,

t1 <
T t2 ≡

{
true if t1 strictly before t2 in UT ,
false otherwise.

In other words, “=T ” is satisfied, whenever two time points are identical,
whereas “<T ” compares the order of two time points in UT .

Example 23. Since 1998-01-01 is before 1999-01-01, we have 1998-01-01 <T

1999-01-01≡ true.

By utilizing conjunctions of “<T ” and “=T ” predicates over the temporal ar-
guments, we are able to express all of the 13 relationships between time intervals
defined in the seminal work of Allen [4], such as overlaps, disjoint or starts.

Proposition 5. We can express all the 13 relationships between two time in-
tervals as defined by Allen [4] by relying solely on conjunctions of “=T” and
“<T”.

Proof.

Allen’s Relation Encoding
[Tb, Te) before [T ′b, T

′
e) Te <

T T ′b
[Tb, Te) equal [T

′
b, T
′
e) Tb =

T T ′b ∧ Te =T T ′e
[Tb, Te) meets [T ′b, T

′
e) Te =

T T ′b
[Tb, Te) overlaps [T

′
b, T
′
e) Tb <

T T ′b ∧ T ′b <T Te ∧ Te <T T ′e
[Tb, Te) during [T ′b, T

′
e) T ′b <

T Tb ∧ Te <T T ′e
[Tb, Te) starts [T

′
b, T

′
e) Tb =

T T ′b ∧ Te <T T ′e
[Tb, Te) finishes [T

′
b, T
′
e) T ′b <

T Tb ∧ Te =T T ′e

The remaining 6 relationships are the inverse of one of the above ones, except
for equality which is symmetric.

4.5 Temporal Deduction Rules

Next, we devise temporal deduction rules, that is, general “if-then” rules which
mention time. Formally, our temporal deduction rules [21] are logical implications
over temporal relations and temporal arithmetic predicates, defined as follows.
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Definition 19. A temporal deduction rule is a logical rule of the form

RT (X̄, Tb, Te)←
∧

i=1,...,n

RTi (X̄i, Ti,b, Ti,e) ∧
∧

j=1,...,m

¬RTj (X̄j , Tj,b, Tj,e) ∧ Φ(X̄A, T̄A)

(10)
where

1. all requirements of Definition 2 hold;
2. Tb, Te, Ti,b, Ti,e, Tj,b, Tj,e and T̄A are temporal constants and variables,

where Var(Tb, Te),Var(Tj,b, Tj,e),Var(T̄A) ⊆
⋃
i Var(Ti,b, Ti,e);

3. Φ(X̄A, T̄A) is a conjunction of literals over the arithmetic predicates, such as
“=” and “ 	=”, and the temporal arithmetic predicates “=T ” and “<T”.

With respect to non-temporal arguments, all restrictions of non-temporal de-
duction rules (see Definition 2) hold. Combining this observation with the sec-
ond requirement above, we conclude that temporal deduction rules are safe [2].
Furthermore, the third condition allows the temporal-arithmetic predicates of
Definition 18 to occur in temporal deduction rules. Of course, also non-temporal
relations are allowed in temporal deduction rules, hence inducing mixtures of
temporal and non-temporal rules. We note that the above class of temporal de-
duction rules is very expressive, as it allows Tb, Te to be constants or to be
variables from different literals RTi . As before, we assume also the temporal
deduction rules to be non-recursive.

Example 24. Given the tuples of Figure 2 about both DeNiro’s wedding and
divorce with Abbott, we aim to deduce the time interval of their marriage by
temporal deduction rules. The first rule states that a couple stays married from
the begin time point of their wedding (denoted by the variable Tb,1) until the
last possible time point we consider (denoted by the constant tmax ), unless there
is a divorce tuple.

MarriageT(P1, P2, Tb,1, tmax )←
(
WeddingT(P1, P2, Tb,1, Te,1) ∧

¬Divorce(P1, P2)

)
(11)

Here, the existence of a divorce independent of time is modeled by the following
projection:

Divorce(P1, P2)← DivorceT(P1, P2, Tb, Te)

The second rule states that a couple stays married from the begin time point of
their wedding till the end time point of their divorce.

MarriageT(P1, P2, Tb,1, Te,2)←

⎛
⎝

WeddingT(P1, P2, Tb,1, Te,1) ∧
DivorceT(P1, P2, Tb,2, Te,2) ∧

Te,1<
T Tb,2

⎞
⎠ (12)

Thereby, we consider only weddings that took place before divorces as stated by
the condition Te,1<

T Tb,2.
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4.6 Lineage and Deduplication

As in Section 3.4, we trace the deduction history of tuples via lineage, however,
with the additional twist that lineage may now also vary over time. Since tem-
poral deduction rules are safe, the groundings G(D, T ) of Definition 4 and the
new tuples IntensionalTuples(D, T ) of Definition 5 apply to temporal deduction
rules as well. Hence, at first glance lineage tracing according to Definition 11
works in a temporal context, but with one random variable for each tuple with
its time interval. However, if we execute temporal deduction rules, the newly
derived tuples may not necessarily define a duplicate-free relation instance. We
illustrate this issue by the following example.

Example 25. Let the deduction rules of Example 24 and the tuples of Figure 2
be given. Now, in Figure 3, we visualize both the tuples from database (at the
bottom) and the deduced tuples (in the middle). Inspecting the deduced tuples,
we realize that they have equivalent non-temporal arguments, i.e., DeNiro and
Abbott, but their time intervals are overlapping, which contradicts Definition 16
of duplicate-free relation instances.

Hence, in order to convert a temporal relation instance with duplicates (as
shown in the middle of Figure 3) into a duplicate-free temporal relation (as
shown on the top of Figure 3), we provide the following definition.

Fig. 3. Deducing and Deduplicating Tuples with Time Intervals
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Definition 20. Let a temporal relation RT , non-temporal constants ā, a time
point t ∈ UT , and a set of tuples T be given. Then, L is defined as the set of
lineages of tuples RT (ā, tb, te) that are valid at time point t:

L(RT , ā, t, T ) := {λ(I ) | I = RT (ā, tb, te) ∈ T , tb ≤ t < te}

We create duplicate free tuples I ′ = RT (ā, tb, te) such that for any pair of time
points t0, t1 ∈ [tb, te) it holds that:

L(RT , ā, t0, T ) = L(RT , ā, t1, T ) (13)

Furthermore, we define the new tuples’ lineage to be:

λ(I ′) :=
∨

φi∈L(RT ,ā,tb,T )

φi (14)

In short, for each time point t, we create the disjunction of all tuples being
valid at t (see Equation 14). More detailed, for a given relation instance and the
non-temporal arguments of a tuple, L is the set of all tuples’ lineages that share
the same non-temporal arguments and which are valid at time point t. Hence,
consecutive time points for which L contains the same lineage formulas form the
new intervals (see Equation (13)).

We remark that for the equality of Equation (13), we focus on syntactical
equivalence checks between the lineage formulas. We thus refrain from full (i.e.,
logical) equivalence checks, as they are known to be co-NP-complete [11].

Example 26. Applying Definition 20 to the tuples in the middle of Figure 3
yields the tuples shown at the top of the figure. For instance, if we inspect L at
the time points 1976-07-28 and 1976-07-29, we notice that {I3 ∧ I5, I3 ∧ ¬I5} 	=
{I3 ∧ I5, I3 ∧ ¬I5, I4 ∧ I5, I4 ∧ ¬I5}, so two different result tuples I6 and I7 have
to be kept in the relation. In total, the resulting duplicate-free tuples are:

Marriage
Subject Object Valid Time

I6 DeNiro Abbott [1936-11-01, 1976-07-29)
I7 DeNiro Abbott [1976-07-29, 1988-12-01)
I8 DeNiro Abbott [1988-12-01, tmax)

Following Equation (14), their respective lineages are:

λ(I6) = (I3 ∧ I5) ∨ (I3 ∧ ¬I5)
λ(I7) = (I3 ∧ I5) ∨ (I3 ∧ ¬I5) ∨ (I4 ∧ I5) ∨ (I4 ∧ ¬I5)
λ(I8) = (I3 ∧ ¬I5) ∨ (I4 ∧ ¬I5)

Hence, for temporal deduction rules the combination of Definitions 11 and 20
creates the lineage formulas. We want to remark that these lineage formulas
are guaranteed to yield purely propositional formulas, as it is captured by the
following observation.
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Observation 12. Temporal deduction rules and temporal deduplication produce
propositional lineage formulas without any explicit mentioning of time.

Hence, any work on PDBs with lineage can be applied to TPDBs as well,
especially also works on efficient probability computations (see Section 3.5).

4.7 Queries and Query Answers

As a final step, we introduce temporal queries which extend Definition 6 by a
temporal component. Thus, in analogy to the atemporal case, a temporal query
again resembles the body of a temporal deduction rule.

Definition 21. Given temporal deduction rules D with their intensional rela-
tions a temporal query Q is a conjunction:

Q(X̄, T̄ ) :=
∧

i=1,...,n

RTi (X̄i, Ti,b, Ti,e) ∧
∧

j=1,...,m

¬RTj (X̄j , Tj,b, Tj,e) ∧ Φ(X̄A, T̄A)

where

1. all requirements of Definition 6 hold;
2. T̄ , Ti,b, Ti,e, Tj,b, Tj,e and T̄A are temporal constants and variables, which

satisfy:

(a) Var(T̄ ) =
⋃
i=1,...,nVar(Ti,b, Ti,e);

(b) Var(T̄A) ⊆
⋃
i=1,...,nVar(Ti,b, Ti,e);

(c) for all j ∈ {1, . . . ,m} it holds that
Var(Tj,b, Tj,e) ⊆

⋃
i=1,...,nVar(Ti,b, Ti,e);

3. Var(X̄) ∪ Var(T̄ ) denote the query variables;

4. Φ(X̄A, T̄A) is a conjunction of (temporal) arithmetic literals.

Temporal queries thus inherit all properties from their non-temporal counter-
parts (see Definition 6), in particular that all relations occurring in the query
are intensional. The first and second condition above ensure safe queries [2]. In
this section, the query variables are formed by both the variables in X̄ and in
T̄ . With respect to arithmetic predicates, we support both non-temporal ones
as in Section 2.4 and additionally the temporal ones from Definition 18.

Example 27. If we are interested in people who were married before 1980, we
write the query

Marriage(P1, P2, Tb, Te) ∧ Tb <
T 1980-01-01

where the intensional relation Marriage is defined as in Example 24.

Since the restrictions on variables of Definition 6 and Definition 21 coincide,
query answers can be obtained as in the non-temporal case of Definition 7.
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4.8 Temporal Consistency Constraints

In Subsection 3.6, we introduced constraints as propositional lineage formula
φc. Following Definition 14, we can create constraints via deduction rules. For
this, we keep two sets of literals Cp and Cn which again relate to constraints
that must always hold and must never hold, respectively. Then, the literals of
both sets induce the lineage formula φc (see Definition 14). Hence, in this section
constraints are formulated as temporal deduction rules. As we support temporal-
arithmetic predicates (see Definition 18) in the temporal deduction rules, we can
express any temporal precedence (i.e., ordering) constraint, and any temporal
disjointness or containment constraint.

Example 28. If we intend to enforce that persons are born before their marriage
starts, we write

Constraint(P1, P2, Tb, Te, T
′
b, T

′
e)←

(
BornT(P1, Tb, Te)∧

MarriageT(P1, P2, T
′
b, T
′
e)∧

T ′b <
T Te

)

(15)
and add Constraint(P1, P2, Tb, Te, T

′
b, T
′
e) to Cn. To abbreviate this notation, we

also write the above constraint as:

¬(BornT(P1, Tb, Te) ∧MarriageT(P1, P2, T
′
b, T
′
e) ∧ T ′b <T Te)

Here, the negation resembles that the head literal of Equation (15) is in Cn, i.e., it
should never hold. When we ground the above constraint, all pairs of MarriageT

and BornT tuples contradicting the correct temporal ordering are excluded
by φc.

4.9 Closure and Completeness

Generally, a representation formalism is called complete [31] if it can represent
any finite instance of data, which in our case is temporal and probabilistic.
Furthermore, a representations system is closed [31] if all query results can be
expressed in the representation itself.

Theorem 1. A TPDB (T , p,UT ) with lineage is closed and complete under all
relational operations which are expressible by the temporal deduction rules D.

Because completeness is the stronger requirement, which also implies closure,
we next provide a proof for the completeness of our TPDB model.

Proof. We show that, when given any finite instance T of temporal and prob-
abilistic relational data, we can represent it in our TPDB model. Without loss
of generality, we are given only one relation instance RT along with its possible
worlds W1, . . . ,Wn and a probability P (Wi) for each of them. Now, to encode
these in a TPDB (T , p,UT ), there are three points to show, namely (1) setting
UT , (2) ensuring that RT is duplicate free, and (3) determining T and p.
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First, we select the earliest and latest time points tmin and tmax , respectively,
which occur in RT . From this, we create the sequence UT := 〈tmin , . . . , tmax 〉
where each time point is of the smallest granularity of time points that occurs
in RT . Second, to guarantee that each RT is duplicate-free (see Definition 16),
we create a new relation instance RT ′

which extends each tuple by a unique
id, e.g., if RT (ā, tb, te) ∈ RT , then RT

′
(id , ā, tb, te) ∈ RT

′
. Third, regarding the

probabilistic data, we follow [7,63] by proving the statement via induction over
the number of possible worlds. Let the possible worlds Wi range over RT ′

.

Basis n = 1:

In this case, there is only one possible world W1 with P (W1). We store W1 in

the deterministic relation RT
′,d

1 and create an uncertain relation Ru(X) holding
exactly one tuple Ru(1) with p(Ru(1)) = 1. Then, the rule

RT
′

1 (X̄)← RT
′,d

1 (X̄) ∧Ru(1)

along with T1 :=W1 encodes the TPDB. Now, queries posed on RT
′

1 deliver the
correct semantics.

Step n→ n+ 1:

We want to extend the TPDB by a possible world Wn+1 which should have

P (Wn+1) = pn+1. For this, we create the deterministic relation RT
′,d

n+1 containing
the tuples of Wn+1. Then, we insert the tuple Ru(n + 1) into Ru and set its
probability value to pn+1. Now, we add the rules:

RT
′

n+1(X̄)← RT
′,d

n+1(X̄) ∧Ru(n+ 1)

RT
′

n+1(X̄)← RT
′

n (X̄) ∧ ¬Ru(n+ 1)

Next, we set Tn+1 := Tn ∪ Wn+1 to finalize the construction of the resulting
TPDB. Again, queries formulated on RT

′
n+1 yield the intended semantics.

5 Top-k Query Processing

Motivated by queries whose probability computations entail #P-hard [16,15]
instances, the query evaluation problem in PDBs has been studied very inten-
sively [16,15,17,36,40,51,57]. Except for two works [48,49], which we are aware
of, each of these approaches aims for computing all answers along with their
probabilities. Still, among these answers many of them may exhibit low proba-
bilities, thus indicating, for example, that we are not very confident in them or
that they are unlikely to exist. To avoid this, in our recent work [23], we opt for
returning only the top-k query answers, ranked by their probabilities. Besides
the benefit of presenting only the high-probability answers to the user, top-k ap-
proaches allow for significant runtime speed-ups. The reason is that we can save
on computations for the neglected low-probability answers. Thus, an algorithmic
approach for bounding the probabilities of the top-k answers represented via a
novel notion of first-order lineage formulas is developed in this section.
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Example 29. Figure 4 depicts a probabilistic database in the movie domain.
By the given deduction rules we intend to derive actors and directors who are
known for working on movies in the crime genre as expressed by the query
KnownFor(X,Crime).

Query:
KnownFor(X,Crime)

Deduction Rules:

KnownFor(X,Y ) ← BestDirector (X,Z) ∧ Category(Z, Y )
KnownFor(X,Y ) ←WonAward(Z,BestPicture)∧ActedOnly(X,Z)∧Category (Z, Y )
BestDirector (X,Z) ← Director (X,Z) ∧WonAward(Z,BestDirector )
ActedOnly(X,Z) ← ActedIn(X,Z) ∧ ¬Directed(X,Z)

Probabilistic Database Tuples:

Directed ActedIn
Director Movie p Actor Movie p

I1 Coppola ApocalypseNow 0.8 I4 Brando ApocalypseNow 0.6
I2 Coppola Godfather 0.9 I5 Pacino Godfather 0.3
I3 Tarantino PulpFiction 0.7 I6 Tarantino PulpFiction 0.4

WonAward Category
Movie Award p Movie Category p

I7 ApocalypseNow BestScript 0.3 I11 ApocalypseNow War 0.9
I8 Godfather BestDirector 0.8 I12 Godfather Crime 0.5
I9 Godfather BestPicture 0.4 I13 PulpFiction Crime 0.9
I10 PulpFiction BestPicture 0.9 I14 Inception Drama 0.6

Fig. 4. Example PDB with a Query and Deduction Rules

When we execute the query, we obtain the following three answers together
with their lineages:

Answer Lineage Probability
KnownFor(Coppola ,Crime) I2 ∧ I8 ∧ I12 0.36
KnownFor(Tarantino,Crime) I10 ∧ I6 ∧ ¬I3 ∧ I13 0.10
KnownFor(Pacino,Crime) I9 ∧ I5 ∧ I12 0.06

Now, imagine we are not interested in all answers, as in the table above, but
rather in the most probable answer, e.g., KnownFor(Coppola,Crime). This is
the setting of the present section. We will elaborate on how to compute the
k most likely answers efficiently by (1) not fully computing lineage and (2)
pruning other less probable answers, such as KnownFor(Tarantino,Crime) and
KnownFor(Pacino,Crime), as early as possible.
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5.1 First-Order Lineage

To handle partial grounding states, we next extend the definition of propositional
lineage from Subsection 3.4 to a new notion of first-order lineage [23], which
hence can contain variables and quantifiers. In contrast to propositional lineage,
a first-order lineage formula does not necessarily represent a single query answer,
but may rather represent entire sets of answers via variables that have not been
bound to constants by the grounding procedure yet. Each distinct query answer
in such a set will thus be characterized by constants once the query variables
become bound by the grounding procedure.

Throughout this section, we assume the extensional relations to be duplicate-
free. That is, there is no pair of tuples having the same arguments. This as-
sumption facilitates the theoretical analysis which follows. Still, in practice, we
could always remove potential duplicates by an independent-or projection over
the input relations as a preprocessing step.

Deduction Rules with Quantifiers. To facilitate the construction of first-
order lineage, we will write out the existential quantifiers that occur only in the
bodies of the deduction rules explicitly, which is captured more precisely by the
following definition.

Definition 22. A first-order deduction rule is a logical rule of the form

R(X̄) ← ∃X̄e

∧
i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄A)

where

1. all requirements of Definition 2 hold;

2. X̄e = (
⋃
i=1,...,nVar(X̄i))\Var(X̄)

The difference to Definition 2 might seem subtle, but we this time explicitly
enforce all variables X̄e, which occur in positive literals Ri(X̄i), but not in the
head R(X̄), to be existentially quantified. This still is in accordance to stan-
dard Datalog semantics [2]. Later however, when constructing first-order lineage
formulas, we will need to trace and maintain the existential quantifiers in the
lineage formulas explicitly.

Example 30. Let us adapt the deduction rules of Figure 4 to Definition 22 by
writing the quantifiers explicitly:

KnownFor(X,Y ) ← ∃Z BestDirector(X,Z) ∧ Category(Z, Y )

KnownFor(X,Y ) ← ∃Z
(

WonAward(Z,BestPicture) ∧ActedOnly(X,Z)
∧ Category(Z, Y )

)

BestDirector(X,Z) ← Director(X,Z) ∧WonAward(Z,BestDirector)
ActedOnly(X,Z) ← ActedIn(X,Z) ∧ ¬Directed(X,Z)
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Top-Down Grounding with First-Order Lineage. Our main observation
for this section is that first-order lineage can be constructed from a top-down
grounding procedure in Datalog and can thus capture any intermediate state in
this process. In a top-down approach, we start at the query literals and iteratively
expand the deduction rules until we reach the database tuples. In Section 3.4,
the direction was reversed, since we started at the database until we ended up at
the query. As first theoretical tool, we establish consistent vectors of constants ā
and mixtures of variables and constants X̄. This technique enables us to match
first-order literals against database tuples.

Definition 23. Let Xi and ai denote the i-th entry in the vector of variables
and constants X̄ and the vector of constants ā, respectively. We call X̄ and ā
consistent, if

∀Xi ∈ X̄ : Xi is a constant⇒ Xi = ai

In other words, all constants in the vector X̄ have to match the constant in ā
at the respective position.

Example 31. The vectors (X,Crime) and (Coppola,Crime) are consistent, as the
constant in the second entry occurs in both vectors.

Based on consistent vectors, we gather all constants binding a variable in a
set of tuples. Later, this allows us to collect all tuples from the database, which
match a first-order literal.

Definition 24. Let T be a set of tuples and R(X̄) be a literal with extensional
relation R. Then, the set of constants from T , which bind the variable Xi in X̄
is:

Bindings(Xi, R(X̄), T ) := {ai | R(ā) ∈ T , X̄ and ā consistent}

We note that ai and Xi refer to i-th entry of ā and X̄ , respectively. In general,
the above set can be empty or reach the same cardinality as T .

Example 32. Let the tuples of Figure 4 establish T . Then, considering the literal
Directed(Coppola, Y ) we obtain the following bindings for the variable Y :

Bindings(Y,Directed(Coppola , Y ), T ) = {ApocalypseNow ,Godfather}

The last technical prerequisite before introducing the construction of first-
order lineage are logical equivalences which eliminate quantifiers. For this, as-
suming that a1, . . . , an are all possible constants for the variable X , then the
following two equivalences [2,65] hold:

∃XΦ ≡ σa1(Φ) ∨ · · · ∨ σan(Φ)
∀XΦ ≡ σa1(Φ) ∧ · · · ∧ σan(Φ)

(16)

Here, σai is shorthand for σ(X) = ai. Finally, we establish the top-down coun-
terpart to Definition 11 for first-order lineage. We create first-order lineage by
starting with the query literals and then by iteratively replacing the first-order
literals by the bodies of the respective deduction rules and, finally, by tuples
from the database.
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Definition 25. Let a set of tuples T , a set of deduction rules D, a first-order
lineage formula Φ, and a literal R(X̄) which occurs in Φ be given. We define the
expansion of R(X̄) in Φ by a function:

SLD : Literals × FirstOrderLineage → Set [FirstOrderLineage]

In detail:

1. If R is intensional, then:

SLD(R(X̄), Φ) :=
{
Φ[R(X̄)/

∨
(R(X̄′)←Ψ)∈D σX̄(Ψ)]

}

where σX̄ ’s image coincides with X̄.
2. If R is extensional, we initialize:

S0 := {Φ}

and then iterate over all variables X ∈ Var(X̄):
(a) If X is a query variable:

Si := {σa(Φ′) | Φ′ ∈ Si−1, a ∈ Bindings(X,R(X̄), T )}

where σa(X) = a.
(b) If X is bound by ∃X, then we replace the subformula ∃X Ψ of Φ in Si

by σa1(Ψ) ∨ · · · ∨ σan(Ψ) where all ai ∈ Bindings(X,R(X̄), T ).
(c) If X is bound by ∀X, then we replace the subformula ∀X Ψ of Φ in Si

by σa1(Ψ) ∧ · · · ∧ σan(Ψ) where all ai ∈ Bindings(X,R(X̄), T ).
Finally, we replace all ground literals R(ā) in the last Si by their tuple iden-
tifier I and assign SLD(R(X̄), Φ) := Si.

3. If there is no match to R(X̄), neither in T nor in D, then:

SLD(R(X̄), Φ) := {Φ[R(X̄)/false]}

4. If R is arithmetic and Var(X̄) = ∅, then we evaluate R(X̄) to a constant
truth value V (thus assigning true or false), and we set:

SLD(R(X̄), Φ) := {Φ[R(X̄)/V ]}

The above definition is admittedly more involved than the previous definition
of propositional lineage. In the first case, we address intensional literals R(X̄),
where we exchange R(X̄) for the disjunction of the deduction rules having R in
their head literal. Since X̄ can contain constants, we propagate them to the rules’
bodies by writing σX̄(Ψ). Extensional literals, which are the subject of the second
case, can yield sets of first-order lineage formulas. We proceed by considering
each variable individually and distinguish between query variables (see Defini-
tion 6), existentially bound variables, and universally bound variables. If X is a
query variable, then each constant a that yields a valid binding to X produces
a new distinct set of query answers represented by the lineage formula σa(Φ

′).
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Conversely, if X is existentially quantified, we apply Equation (16) to expand the
formula by introducing a disjunction ranging over the constants a1, . . . , an which
bind X . Analogously, a universally quantified X yields the conjunction over the
constants a1, . . . , an. The third case again reflects a closed-world assumption [2],
where we replace a literal with no match by the constant false. Finally, if we have
an arithmetic literal that has only constants as arguments, we evaluate it to its
truth value. We can safely assume that all arguments of the arithmetic literal are
finally going to be bound to constants, because these must be bound to at least
one positive, relational literal (see Definition 2). What we omitted for brevity
are constants in the head literal of a deduction rule. Since these constants bind
variables as in extensional literals (the second case), a mixture of the first and
second case arises.

Example 33. We illustrate Definition 25 by providing an example for each case.
As for T we assume it to comprise all tuples of Figure 4.

1. We expand the formula Φ := KnownFor(X,Crime) over the deduction rules
of Example 30. Since KnownFor is an intensional relation, we start with
the first case of Definition 25. There, the substitution σX̄ binds the second
argument to Crime:

σX̄(Y ) = Crime

Since there are two rules having KnownFor in the head literal we apply the
substitution to both bodies which then yields:

⎧⎪⎪⎨
⎪⎪⎩

(∃Z BestDirector(X,Z) ∧ Category(Z,Crime))
∨(

∃Z WonAward(Z,BestPicture)∧
ActedOnly(X,Z) ∧ Category(Z,Crime)

)

⎫⎪⎪⎬
⎪⎪⎭

2. (a) Imagine we are given the first-order lineage formula

Φ := BestDirector(X,Z) ∧Category(Z,Crime)

and we intend to expand the literal Category(Z,Crime). Here, Category
is an extensional relation. First, we determine the bindings of Z, which
are Godfather and PulpFiction. Since Z is not quantified, but a query
variable, we obtain several formulas, one for each of the constants:

{
(BestDirector (X,Godfather ) ∧ Category(Godfather ,Crime)),

(BestDirector(X,PulpFiction) ∧ Category(PulpFiction ,Crime))

}

(b) In this case, we quantify Z existentially and otherwise keep the previous
formula:

Φ := ∃Z BestDirector (X,Z) ∧ Category(Z,Crime)
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Then, we expand the Category literal by case 2(b) of Definition 25 which
results in a disjunction over the two constants Godfather and PulpFic-
tion:
⎧⎨
⎩

(BestDirector(X,Godfather ) ∧ Category(Godfather ,Crime))
∨

(BestDirector(X,PulpFiction) ∧ Category(PulpFiction ,Crime))

⎫⎬
⎭

(c) Let us consider a universal quantifier instead:

Φ := ∀Z BestDirector (X,Z) ∧ Category(Z,Crime)

When applying a SLD step to the Category literal, we instantiate Z by
the two constants Godfather and PulpFiction to obtain the conjunction:
⎧⎨
⎩

(BestDirector(X,Godfather ) ∧ Category(Godfather ,Crime))
∧

(BestDirector(X,PulpFiction) ∧ Category(PulpFiction ,Crime))

⎫⎬
⎭

3. Trying to resolve the second literal of

Φ := ∃Z BestDirector(X,Z) ∧ Category(Z,Comedy)

over T delivers no result. Hence, we replace it by false which yields:

{∃Z BestDirector(X,Z) ∧ false}

4. In the last case, we have an arithmetic literal, for example

I1 ∧ I2 ∧ ApocalypseNow 	= Godfather

which we then evaluate to I1 ∧ I2 ∧ true.

Analogously to the Disjunctive Normal Form (DNF) for propositional formu-
las, any first-order formula can equivalently be transformed into prenex form by
pulling all quantifiers in front of the formula. The remaining formula can again
be transformed into DNF, which is then called Prenex Disjunctive Normal Form
(PDNF) [65].

Next, we devise two formal properties of first-order lineage formulas. First, the
existence of at least one proof implies that all query variables are bound. Second,
unbound query variables imply that a first-order lineage formula represents a set
of query answers.

Proposition 6. Expanding a query Q(X̄) with query variables X̄ to first-order
lineage by repeatedly applying Definition 25 has the following properties:

1. If at least one clause in the disjunctive normal form of the lineage formula
is propositional, then all query variables X̄ are bound to constants.

2. If at least one query variable X ∈ X̄ is unbound a lineage formula represents
a (potentially empty) set of query answers.
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Proof. We prove both statements separately.

1. Without loss of generality, we assume the formula to be in PDNF. Then,
every clause stands for one proof of the answer candidate. When one of
these clauses is propositional, all query variables within this clause were
bound and hence become bound in the entire formula.

2. Since a query variable can be bound to many constants, each representing
a different query answer, the first-order lineage formula represents all these
answers.

5.2 Probability Bounds for Lineage Formulas

In this section, we develop lower and upper bounds for the probability of any
query answer that can be obtained from grounding a first-order lineage formula.
We proceed by constructing two propositional lineage formulas φlow and φup
from a given first-order lineage formula Φ. Later, the probabilities of φlow and
φup serve as lower and upper bounds on the probabilities of all query answers
captured by Φ. More formally, if φ1, . . . , φn represent all query answers we would
obtain by fully grounding Φ, then it holds that:

∀i ∈ {1, . . . , n} : P (φlow ) ≤ P (φi) ≤ P (φup)

Building upon results of [26,47,53], we start by considering bounds for propo-
sitional formulas, from which we extend to the more general case of first-order
lineage. Then, we show that these bounds converge monotonically to the prob-
abilities P (φi) of each query answer φi, as we continue to ground Φ.

Bounds for Propositional Lineage. Following [47], we relate the probability
of two propositional lineage formulas φ and ψ via their sets of modelsM(φ) and
M(ψ) (see Equation (4)), i.e., the sets of possible worlds over which φ and ψ
evaluate to true.

Proposition 7. For two propositional lineage formulas φ and ψ it holds that:

M(φ) ⊆M(ψ) ⇒ P (φ) ≤ P (ψ)

Proof.

P (φ)
Equation (5)

=
∑
W∈M(φ) P (W)

≤
∑
W∈M(φ) P (W) +

∑
W∈M(ψ)\M(φ) P (W)

M(φ)⊆M(ψ)
=

∑
W∈M(ψ) P (W)

Equation (5)
= P (ψ)

Since we assumeM(φ) ⊆ M(ψ), the possible worlds satisfying φ fulfill ψ as
well. However, there might be more worlds satisfying ψ but not φ. This might
yield more terms over which the sum of Equation (5) ranges, and thus we obtain
P (φ) ≤ P (ψ).
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Example 34. Consider the two propositional formulas φ ≡ I1 and ψ ≡ I1 ∨ I2.
FromM(I1) ⊆M(I1∨ I2) it follows that P (I1) ≤ P (I1∨ I2), which we can easily
verify by Equation (5).

To turn Proposition 7 into upper and lower bounds, we proceed by considering
conjunctive clauses in the form of conjunctions of propositional literals. Then,
following a result from [47], we obtain the following proposition.

Proposition 8. Let φ, ψ be two propositional, conjunctive clauses. It holds that:

M(φ) ⊆M(ψ) ⇔ Tup(φ) ⊇ Tup(ψ)

The above statement expresses that adding literals to a conjunction φ removes
satisfying worlds fromM(φ).

Example 35. For the two clauses I1∧I2 and I1 it holds that Tup(I1∧I2)⊇Tup(I1)
and thus Proposition 8 yieldsM(I1 ∧ I2)⊆M(I1).

We now establish a relationship between two formulas in Disjunctive Normal
Form (DNF) (see Definition 12) via their conjunctive clauses as in [47,53]. Since
any propositional formula can be transformed equivalently into DNF, this result
is generally applicable.

Lemma 3. For two propositional DNF formulas φ ≡ φ1 ∨ · · · ∨ φn and ψ ≡
ψ1 ∨ · · · ∨ ψn, it holds that:

∀φi∃ψj :M(φi) ⊆M(ψj)⇒M(φ) ⊆M(ψ)

If we can map all clauses φi of a formula φ to a clause ψj of ψ with more
satisfying worlds, i.e.,M(φi) ⊆M(ψj), then ψ has more satisfying worlds than
φ. This mapping of clauses is established via Proposition 8.

Example 36. For the propositional DNF formula φ ≡ (I1 ∧ I2)∨ (I1 ∧ I3)∨ I4, we
can map each conjunctive clause in φ to a clause in ψ ≡ I1 ∨ I4. Hence, ψ has
more models than φ, i.e.,M(φ) ⊆M(ψ).

Thus, Lemma 3 enables us to compare the probabilities of propositional for-
mulas in DNF based on their clause structure.

Converting Formulas to DNF. When transforming any propositional for-
mula into DNF, we can first iteratively apply De Morgan’s law [65] which pushes
negations down in a formula:

¬
∧
i Φi ≡

∨
i ¬Φi

¬
∨
i Φi ≡

∧
i ¬Φi

(17)

Thereafter, we apply the distributive law which allows the following observation.

Observation 13. If a tuple I occurs exactly once in a propositional formula φ,
then all occurrences of I in the DNF of φ have the same sign.
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The reason is that the sign of a tuple I changes only when De Morgan’s law
is applied. However, when applying De Morgan’s law, no tuples are duplicated.
When utilizing the distributive law, tuples are duplicated but preserve their
signs.

Example 37. Applying the distributive law to (I1 ∨ I2) ∧ ¬I3 yields (I1 ∧ ¬I3) ∨
(I2 ∧ ¬I3). Now, I3 occurs twice, but its sign was preserved.

Bounds for First-Order Lineage. For our following constructions on first-
order formulas, we assume the first-order formulas to be given in PDNF. Next,
given a first-order lineage formula Φ, we construct two propositional formulas
φlow and φup whose probabilities then serve as lower and upper bound on Φ,
respectively.

Definition 26. Let Φ be a first-order lineage formula.

1. We construct the propositional lineage formula φup by substituting every lit-
eral R(X̄) in Φ with
– true if R(X̄) occurs positive in the PDNF of Φ, or
– false if R(X̄) occurs negated in the PDNF of Φ.

2. We construct the propositional lineage formula φlow by substituting every
literal R(X̄) in Φ with
– false if R(X̄) occurs positive in the PDNF of Φ, or
– true if R(X̄) occurs negated in the PDNF of Φ.

The idea of the above definition is as follows. If we replace a positive literal
by true, we add models to the resulting formula. Hence, due to Proposition 7
the resulting formula can serve as an upper bound on the probability, which we
show formally later. The remaining three cases are analogous. We note that R
can be intensional, extensional and even arithmetic.

Example 38. We consider Figure 4 and the first-order lineage formula:

Φ := I1 ∧ ∃XWonAward(X,BestPicture)

Then, the upper bound is given by P (φup) = P (I1 ∧ true) = p(I1) = 0.8 and
the lower bound is P (φlow ) = P (I1 ∧ false) = P (false) = 0. If we execute one
SLD step (see Definition 25) on Φ we obtain I1 ∧ (I9 ∨ I10). Its probability is
P (I1∧(I9∨I10) = 0.8 ·(1−(1−0.4) ·(1−0.9) = 0.752 which is correctly captured
by the upper and lower bound.

As a next step, we discuss the application of Definition 26 to general first-order
lineage formulas which do not necessarily adhere any normal form.

Proposition 9. By first exhaustively applying De Morgan’s law of Equation (17)
on a first-order lineage formula Φ, we can apply Definition 26 to Φ, even if Φ is
not in PDNF. Hence, constructing φup and φlow can be done in O(|Φ|).
Proof. We can implement De Morgan by traversing the formula once, which thus
is in O(|Φ|). Subsequently, we traverse the formula again and replace all first-
order literals by true or false as devised in Definition 26. Observation 13 ensures
the replacements to be unique for each literal.
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Convergence of Bounds. Our last step is to show that, when constructing
first-order lineage Φ (see Definition 25) for a fixed query answer φ resulting
from Φ, the probability bounds converge monotonically to the probability of the
propositional lineage formula P (φ) with each SLD step.

Theorem 2. Let Φ1, . . . , Φn denote a series of first-order formulas obtained
from iteratively grounding a conjunctive query via the form of SLD resolution
provided in Definition 25 until we reach the propositional formula φ. Then,
rewriting each Φi to φi,low and φi,up according to Definition 26 creates a mono-
tonic series of lower and upper bounds P (φi,low), P (φi,up) for the probability
P (φ). That is:

0 ≤ P (φ1,low ) ≤ · · · ≤ P (φn,low ) ≤ P (φ)
≤ P (φn,up) ≤ · · · ≤ P (φ1,up) ≤ 1

Proof. The proof proceeds inductively over the structure of Definition 25, where
we show that each SLD step preserves the bounds. We assume the observed
literal R(X̄) to occur positively in the PDNF of Φi. The negated version is
handled analogously.

1. We have an intensional literal R(X̄) which was substituted in Φi by the
disjunction of deduction rules’ bodies, which we call Ψ here, to yield Φi+1.
Because there are only literals and no tuple identifiers in Ψ , Definition 26
yields ψlow ≡ false and ψup ≡ true. Hence, the bounds of Φi+1 are not
altered, which reads as P (φi+1,up) = P (φi,up) and P (φi+1,low ) = P (φi,low ).

2. As in Definition 25, we separate the cases of different variables.

(a) In this case we consider an extensional literal R(X̄) where Var(X̄) are
query variables. Now, SLD(R(X̄), Φi) delivers a set of formulas. Let Φi+1

be an arbitrary formula in this set. We obtain Φi+1 by replacing R(X̄)
in Φi by a tuple identifier I. Hence, in the DNF of φi+1,up we added I to
the clauses, whereas in the DNF of φi,up we replace R(X̄) by true. Thus,
Lemma 3 applies and we have P (φi+1,up) ≤ P (φi,up). The reasoning for
lower bounds is analogous.

(b) Again, we have an extensional literal R(X̄), but all variables Var(X̄)
are bound by an existential quantifier. As a result, each Φi+1 in the set
SLD(R(X̄, Φi) is constructed from Φi by the first line of Equation (16).
Now, the DNF of φi,up has clauses where R(X̄) was substituted by true.
Then, in φi+1,up each clause featuring a new tuple identifier I can be
mapped to one of these clauses in the DNF of φi,up . Therefore, Lemma 3
gives us P (φi+1,up) ≤ P (φi,up). Again, lower bounds are handled analo-
gously.

(c) If the variables X̄ in the extensional literal R(X̄) are universally quan-
tified, then R(X̄) in Φi is replaced by a conjunction (as given in the
second line of Equation (16)) to yield Φi+1. In the DNF of φi,up , we
employed true whenever R(X̄) occurred. Conversely, in φi+1,up we re-
placed R(X̄) by a conjunction of tuple identifiers. The resulting extended
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clauses of φi+1,up can be mapped to a clause of φi,up , so Lemma 3 applies:
P (φi+1,up) ≤ P (φi,up). The lower bounds are addressed analogously.

3. Here, a literal R(X̄) was replaced in Φi by false to yield Φi+1. Hence, for the
lower bounds constructed according to Definition 26, we have P (φi,low ) =
P (φi+1,low ). For the upper bounds Lemma 3 delivers P (φi+1,up) ≤ P (φi,up),
since the PDNF of Φi+1 has fewer clauses as the PDNF of Φi.

4. In the last case, R(X̄) is arithmetic and X̄ consists of constants only. Now,
if R(X̄) evaluates to true, we have φi,up = φi+1,up and hence also P (φi,up) =
P (φi+1,up). For the lower bound, the DNF of φi+1,low can have more clauses
than the DNF of φi,low and so Lemma 3 comes to our rescue again:
P (φi,low ) ≤ P (φi+1,low ). Conversely, if R(X̄) evaluates to false, the rea-
soning for the upper and lower bounds is inverted.

The resulting lower and upper bounds for all answer candidates can be plugged
into any top-k algorithm (see [34] for an extensive overview) that—in our case—
will then iteratively refine these lower and upper bounds via SLD resolution
until a termination condition is reached. The seminal line of threshold algorithms
proposed by Fagin, Lotem and Naor [24], for example, iteratively maintains two
disjoint sets of top-k answers and remaining answer candidates, coined top-k
candidates , respectively, and it terminates when:

min{P (φi,low ) | φi ∈ top-k} ≥ max{P (φi,up) | φi ∈ candidates}

6 Learning Tuple Probabilities

Most works in the context of PDBs assume the database tuples along with their
probabilities to be given as input. Also the preceding sections of this chapter
followed this route. Nevertheless, when creating, updating or cleaning a PDB,
the tuple probabilities have to be altered or even be newly created—in other
words: they have to be learned. Learning the probability values of databases
tuples from labeled lineage formulas thus is the subject of the present section
and is also discussed in more detail in [22].

Example 39. Our running example resembles the information-extraction setting
of Section 1.1, in which we employ a set of textual patterns to extract facts from
various Web domains. However, instead of knowing all probabilities of all tuples
the respective values in the UsingPattern and FromDomain relations are missing
as indicated by the question marks in Figure 5. We thus are unsure about the
reliability—or “trustworthiness”—of the textual patterns and the Web domains
that led to the extraction of our remaining facts, respectively. Grounding the
deduction rules of Equation (1) and Equation (2) against the database tuples of
Figure 5 yields the new tuples BornIn(Spielberg, Cinncinati), BornIn(Spielberg,
LosAngeles), andWonPrize(Spielberg,AcademyAward). Figure 6 shows these new
tuples along with their propositional lineage formulas.
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WonPrizeExtraction
Subject Object Pid Did p

I1 Spielberg AcademyAward 1 1 0.6
I2 Spielberg AcademyAward 2 1 0.3

BornInExtraction
Subject Object Pid Did p

I3 Spielberg Cinncinati 3 1 0.7
I4 Spielberg LosAngeles 3 2 0.4

UsingPattern FromDomain
Pid Pattern p Did Domain p

I5 1 Received ? I8 1 Wikipedia.org ?
I6 2 Won ? I9 2 Imdb.com ?
I7 3 Born ?

Fig. 5. Example Probabilistic Database with Missing Probability Values

A closer look at the new tuples reveals, however, that not all of them are cor-
rect. For instance, BornIn(Spielberg,LosAngeles) is wrong, so we might rather la-
bel it with the probability of 0.0. Moreover,WonPrize(Spielberg,AcademyAward)
is likely correct, but we are unsure, hence we label it with the probability of 0.7,
as shown on top of Figure 6. Given the probability labels of the query answers,
the goal of the learning procedure is to learn the database tuples’ unknown prob-
ability values for UsingPattern and FromDomain, such that the lineage formulas
again produce the given probability labels. The probabilities of the tuples of
WonPrizeExtraction and BornInExtraction, on the other hand, should remain
unchanged.

Fig. 6. Partially Labeled Lineage Formulas
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6.1 Encoding Propositional Lineage into Polynomials

For the theoretical analysis of the learning problem presented in this section,
we devise an alternative way of computing probabilities of lineage formulas via
polynomial expressions. First, we reduce the number of terms in the sum of
Equation (5) by considering just tuples Tup(φ) that occur in the propositional
lineage formula φ.

Proposition 10. We can compute P (φ) relying on tuples in Tup(φ), only, by
writing:

P (φ) =
∑

V∈M(φ,Tup(φ))

P (V ,Tup(φ))︸ ︷︷ ︸
Definition 10

(18)

Proof.

P (φ) =
∑
W∈M(φ,T ) P (W , T )

=
(∑

V∈M(φ,Tup(φ)) P (V ,Tup(φ))
)
·
(∑

V⊆(T \Tup(φ))P (V , T \Tup(φ))
)

︸ ︷︷ ︸
=1 by Proposition 1

Thus, Equation (18) expresses P (φ) as a polynomial. Its terms are defined as in
the third item of Definition 10, and the variables are p(I ) for I ∈ Tup(φ). The
degree of the polynomial is limited as follows.

Corollary 1. The probability P (φ) of a propositional lineage formula φ can be
expressed by a multi-linear polynomial over variables p(I ), for I ∈ Tup(φ), with
a degree of at most |Tup(φ)|.

Proof. By inspecting Proposition 10, we note that the sum ranges over subsets
of Tup(φ) only, hence each term has a degree of at most |Tup(φ)|.

Example 40. Considering the propositional lineage formula φ ≡ I1 ∨ I2, the oc-
curring tuples are Tup(φ) = {I1, I2}. Then, it holds that {I1, I2} |= φ, {I1} |= φ,
and {I2} |= φ. Hence, we can write P (φ) = p(I1) ·p(I2)+p(I1) · (1−p(I2))+ (1−
p(I1)) · p(I2). Thus, P (φ) is a polynomial over the variables p(I1), p(I2) and has
degree 2 = |Tup(φ)| = |{I1, I2}|.

6.2 Learning Problem

We now move away from the case where the probability values of all database tu-
ples are known, which was a basic assumption we made for the previous sections.
Instead, we intend to learn the unknown probability values of (some of) these tu-
ples (e.g., of I5–I9 in Example 39). More formally, for a tuple-independent PDB
(T , p), we consider Tl ⊆ T to be the set of base tuples for which we learn their
probability values. That is, initially p(I ) is unknown for all I ∈ Tl. Conversely,
p(I ) is known and fixed for all I ∈ T \Tl. To be able to complete p(I ), we are
given labels in the form of pairs (φi, li), each containing a propositional lineage
formula φi (i.e., a query answer) and its desired probability li. We formally define
the resulting learning problem as follows.
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Definition 27. We are given a probabilistic database (T , p), a set of tuples Tl ⊆
T with unknown probability values p(Il) and a multi-set of given labels L =
〈(φ1, l1), . . . , (φn, ln)〉, where each φi is a propositional lineage formula over T
and each li ∈ [0, 1] ⊂ R is a probability for φi. Then, the learning problem is
defined as follows:

Determine: p(Il) ∈ [0, 1] ⊂ R for all Il ∈ Tl
such that: P (φi) = li for all (φi, li) ∈ L

Intuitively, we aim to set the probability values of the base tuples Il ∈ Tl such
that the labeled lineage formulas φi again yield the probability li. We want to
remark that all probability values of tuples in T \Tl remain unaltered. Also, we
note that the Boolean labels true and false can be represented as li = 0.0 and
li = 1.0, respectively. Hence, Boolean labels resolve to a special case of the labels
of Definition 27.

Example 41. Formalizing the problem setting of Example 39, we obtain T :=
{I1, . . . , I9}, Tl := {I5, . . . , I9} with labels ((I1 ∧ I5 ∧ I8)∨ (I2 ∧ I6 ∧ I8), 0.7), and
((I3 ∧ I7 ∧ I9), 0.0).

6.3 Properties of the Learning Problem

We next discuss the complexity of solving the learning problem. Unfortunately, it
exhibits hard instances. First, computing P (φi) may be #P-hard (see Lemma 2),
which would require many Shannon expansions to compute an exact probability
P (φi). But even for cases when all P (φi) can be computed in polynomial time
(i.e., when Equation (6) is applicable), there are combinatorially hard cases of
the above learning problem.

Lemma 4. For a given instance of the learning problem of Definition 27, where
all P (φi) with (φi, li) ∈ L can be computed in polynomial time, deciding whether
there exists a solution to the learning problem is NP-hard.

Proof. We encode the 3-Satisfiability Problem (3SAT) [29] for a Boolean formula
ψ ≡ ψ1∧· · ·∧ψn in Conjunctive Normal Form (CNF) into the learning problem
of Definition 27. For each variable Xi ∈ Var(ψ), we create two tuples Ii, I

′
i

whose probability values will be learned. Hence, 2 · |Var(ψ)| = |Tl| = |T |. Then,
for each Xi, we add the label ((Ii ∧ I ′i ) ∨ (¬Ii ∧ ¬I ′i ), 1.0). The corresponding
polynomial equation p(Ii) · p(I ′i ) + (1 − p(Ii)) · (1 − p(I ′i )) = 1.0 has exactly
two possible solutions for p(Ii), p(I

′
i ) ∈ [0, 1], namely p(Ii) = p(I ′i ) = 1.0 and

p(Ii) = p(I ′i ) = 0.0. Next, we replace all variables Xi in ψ by their tuple Ii.
Now, for each clause ψi of ψ, we introduce one label (ψi, 1.0). Altogether, we
have |L| = |Var(ψ)| + n labels for the problem of Definition 27. Each labeled
lineage formula φ has at most three variables, hence P (φ) takes at most 8 steps.
Still, Definition 27 solves 3SAT, where the learned values of each pair of p(Ii),
p(I ′i ) (either 0.0 or 1.0) correspond to a truth value of all Xi for a satisfying
assignment of ψ. From this, it follows that the decision problem formulated in
Lemma 4 is NP-hard.
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After discussing the complexity of the learning problem, we characterize its
solutions. First, there might also be inconsistent instances of the learning prob-
lem. That is, it may be impossible to define p : Tl → [0, 1] such that all labels
are satisfied.

Example 42. If we consider Tl := {I1, I2} with the labels L := 〈(I1, 0.2), (I2, 0.3),
(I1 ∧ I2, 0.9)〉, then it is impossible to fulfill all three labels at the same time.

From a practical point of view, there remain a number of questions regarding
Definition 27. First, how many labels do we need in comparison to the number
of tuples for which we are learning the probability values (i.e., |L| vs. |Tl|)?
And second, is there a difference in labeling lineage formulas that involve many
tuples or very few tuples (i.e., |Tup(φi)|)? These questions are addressed by the
following theorem. It is based on the computation of probabilities of lineage
formulas via their polynomial representation as in Corollary 1. We write the
conditions of the learning problem P (φi) = li as polynomials over variables p(Il)
of the form P (φi) − li, where Il ∈ Tl and the probability values p(I ) for all
I ∈ T \Tl are fixed and hence represent constants.

Theorem 3. If the labeling is consistent, the problem instances of Definition 27
can be classified as follows:

1. If |L| < |Tl|, the problem has infinitely many solutions.
2. If |L| = |Tl| and the polynomials P (φi) − li have common zeros, then the

problem has infinitely many solutions.
3. If |L| = |Tl| and the polynomials P (φi)− li have no common zeros, then the

problem has at most
∏
i |Tup(φi) ∩ Tl| solutions.

4. If |L| > |Tl|, then the polynomials P (φi) − li have common zeros, thus re-
ducing this to one of the previous cases.

Proof. The first case is a classical under-determined system of equations. In the
second case, without loss of generality, there are two polynomials P (φi)− li and
P (φj)− lj with a common zero, say p(Ik) = ck. Setting p(Ik) = ck satisfies both
P (φi) − li = 0 and P (φj) − lj = 0, hence we have L′ := L\〈(φi, li), (φj , lj)〉
and T ′l := Tl\{Ik} which yields the first case of the theorem again (|L′| < |T ′l |).
Regarding the third case, Bezout’s theorem [18], a central result from algebraic
geometry, is applicable: for a system of polynomial equations, the number of so-
lutions (including their multiplicities) over variables in C is equal to the product
of the degrees of the polynomials. In our case, the polynomials are P (φi)−li with
variables p(Il) where Il ∈ Tl. So, according to Corollary 1 their degree is at most
|Tup(φi)∩Tl|. Since our variables p(Il) range only over [0, 1] ⊂ R, and Corollary 1
is an upper bound only,

∏
i |Tup(φi) ∩ Tl| is an upper bound on the number of

solutions. In the fourth case, the system of equations is over-determined, such
that redundancies like common zeros reduces the problem to one of the previous
cases.

Example 43. We illustrate the theorem by providing examples for each of the
four cases.
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1. In Example 41’s formalization of Example 39, we have |Tl| = 5 and |L| = 2.
So, the problem is under-specified and has infinitely many solutions, since
assigning p(I7) = 0.0 enables p(I9) to take any value in [0, 1] ⊂ R.

2. We assume Tl = {I5, I6, I7}, and L = 〈(I5 ∧¬I6, 0.0), (I5 ∧¬I6 ∧ I7, 0.0), (I5 ∧
I7, 0.0)〉. This results in the equations p(I5) · (1 − p(I6)) = 0.0, p(I5) · (1 −
p(I6)) · p(I7) = 0.0, and p(I5) · p(I7) = 0.0, where p(I5) is a common zero to
all three polynomials. Hence, setting p(I5) = 0.0 allows p(I6) and p(I7) to
take any value in [0, 1] ⊂ R.

3. Let us consider Tl = {I7, I8}.
(a) If L = 〈(I7, 0.4), (I8, 0.7)〉, then there is exactly one solution as predicted

by |Tup(I7)| · |Tup(I8)| = 1.

(b) If L = 〈(I7 ∧ I8, 0.1), (I7 ∨ I8, 0.6)〉, then there are two solutions, namely
p(I7) = 0.2, p(I8) = 0.5 and p(I7) = 0.5, p(I8) = 0.2. Here,

∏
i |Tup(φi)∩

Tl| = |Tup(I7 ∧ I8)| · |Tup(I7 ∨ I8)| = 4 is an upper bound.

4. We extend the second case of this example by the label (I5, 0.0), thus yielding
the same solutions but having |L| > |Tl|.

In general, a learning problem instance has many solutions, where Definition 27
does not specify a precedence, but all of them are equivalent. The number of
solutions shrinks by adding labels to L, or by labeling lineage formulas φi that
involve fewer tuples in Tl (thus resulting in a smaller intersection |Tup(φi)∩Tl|).
Hence, to achieve more uniquely specified probabilities for all tuples Il ∈ Tl, in
practice we should obtain the same number of labels as the number of tuples for
which we learn their probability values, i.e., |L| = |Tl|, and label those lineage
formulas with fewer tuples in Tl.

Now that we characterized the number of solutions, we furthermore provide
an insight on their nature. We give conditions on learning problems which imply
the existence of an integer solution, i.e., that assigns only 0 or 1 as tuple prob-
abilities. Hence, the resulting tuples are either non-existent or deterministic as
in conventional databases.

Proposition 11. For a learning problem, where

1. ∀I ∈ T \Tl : p(I) ∈ {0, 1}
2. (φi, li) ∈ L : li ∈ {0, 1}
3.

∧
(φi,1)∈L φi ∧

∧
(φi,0)∈L ¬φi is satisfiable,

there exists an integer solution p′, that is for all Il ∈ Tl : p′(Il) ∈ {0, 1}.

Proof. Due to the first requirement we can remove all tuples in T \Tl from the
labels’ formulas φ, since these tuples correspond to either true or false. Like-
wise, the second condition allows the construction of the formula

∧
(φi,1)∈L φi ∧∧

(φi,0)∈L ¬φi. As we require the existence of a satisfying assignment for this
formula, precisely this assignment is the integer solution.
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(a) Labels of case 3(a) of Example 43 (b) Labels of case 3(b) Example 43

Fig. 7. Visualization of the Learning Problem

Visual Interpretation. Based on algebraic geometry, the learning problem
allows for a visual interpretation. All possible definitions of probability values
for tuples in Tl, that is, p : Tl → [0, 1], span the hypercube [0, 1]|Tl|. In Exam-
ple 43, cases 3(a) and 3(b), the hypercube has two dimensions, namely p(I7) and
p(I8), as depicted in Figures 7(a) and 7(b). Hence, one definition of p specifies
exactly one point in the hypercube. Moreover, all definitions of p that satisfy a
given label define a curve (or plane) through the hypercube (e.g., the two labels
in Figure 7(a) define two straight lines). Also, the points, in which all labels’
curves intersect, represent solutions to the learning problem (e.g., the solutions
of Example 43, case 3(b), are the intersections in Figure 7(b)). If the learning
problem is inconsistent, there is no point in which all labels’ curves intersect.
Furthermore, if the learning problem has infinitely many solutions, the labels’
curves intersect in curves or planes, rather than points.

6.4 Gradient Based Solutions

We formally characterized the learning problem and devised the basic proper-
ties of its solutions. From a visual perspective, Definition 27 established curves
and planes whose intersections represent the solutions (see, e.g., Figure 7(b)).
We now introduce different objective functions that describe surfaces whose op-
tima correspond to these solutions. For instance, the problem of Figure 7(b) has
the surface of Figure 8(a) if we the employ mean squared error (MSE) as the
objective, which will be defined in this section. Calculating a gradient on such
a surface thus allows the application of an optimization method to solve the
learning problem.

Desired Properties. Before we define objective functions for solving the learn-
ing problem, we establish a list of desired properties of these (which we do
not claim to be complete). Later, we judge different objectives based on these
properties.
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Definition 28. An objective function to the learning problem should satisfy the
following three desired properties:

1. All instances of the learning problem of Definition 27 can be expressed, in-
cluding inconsistent ones.

2. If all P (φi) are computable in polynomial time, then also the objective is
computable in polynomial time.

3. The objective is stable, that is L := 〈(φ1, l1), . . . , (φn, ln)〉 and L ∪ 〈(φ′i, li)〉
with φ′i ≡ φi, (φi, li) ∈ L define the same surface.

Here, the first case ensures that the objective can be applied to all instances of
the learning problem. We insist on including inconsistent instances, because they
occur often in practice. The second property restricts a blow-up in computation,
which yields the following useful characteristic: if we can compute P (φ) for all
labels, e.g., for labeled query answers, then we can also compute the objective
function. Finally, the last of the desiderata reflects an objective function’s ability
to detect dependencies between labels. Since φi ≡ φ′i both L and L ∪ 〈(φ′i, li)〉
allow exactly the same solutions, the surface should be the same. Unfortunately,
including convexity of an objective as an additional desired property is not pos-
sible. For example Figure 7(b) has two disconnected solutions, which induce at
least two optima, thus prohibiting convexity. In the following, we establish two
objective functions, which behave very differently with respect to the desired
properties.

Logical Objective. If we restrict the probability labels of the learning prob-
lem to li ∈ {0.0, 1.0}, we can define an objective function based on computing
probabilities of lineage formulas as follows.

Definition 29. Let an instance of the learning problem of Definition 27 be given
by a probabilistic database (T , p), tuples with unknown probability values Tl ⊆ T ,
and labels L = 〈(φ1, l1), . . . , (φn, ln)〉 such that all li ∈ {0.0, 1.0}. Then, the
logical objective is formulated as follows:

Logical (L, p) := P

⎛
⎝ ∧

(φi,li)∈L,li=1.0

φi ∧
∧

(φi,li)∈L,li=0.0

¬φi

⎞
⎠ (19)

The above definition is a maximization problem, and its global optima are iden-
tified by Logical (L, p) = 1.0. Moreover, from Definition 13, we may obtain its
derivative.

Example 44. Let T = Tl := {I1, I2} and L := 〈(I1 ∨ I2, 1.0), (I1, 0.0)〉 be given.
Then, Logical(L, p) is instantiated as P ((I1 ∨ I2) ∧ ¬I1) = P (¬I1 ∧ I2). Visually,
this defines a surface whose optimum lies in p(I1) = 0.0 and p(I2) = 1.0, as
shown in Figure 8(b).

With respect to Definition 28, the third desired property is fulfilled, as P (φ′i ∧
φi) = P (φi). Hence, the surface of the logical objective, shown for instance in
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(a) Example 43: 3(b): MSE objective (b) Example 44: Logical objective

(c) Example 46: MSE objective (d) Example 46: MSE objective, unstable

Fig. 8. Visualization of the MSE and Logical Objective Functions

Figure 8(b), is never altered by adding equivalent labels. Still, the first property
is not given, since the probability labels are restricted to li ∈ {0.0, 1.0} and
inconsistent problem instances collapse Equation (19) to P (false), thus rendering
the objective non-applicable. Also, the second property is violated, because in the
spirit of the proof of Lemma 4, we can construct an instance where for each label
P (φi) on its own is computable in polynomial time, whereas the computation of
the probability for Equation (19) is again #P-hard.

Mean Squared Error Objective. Another approach, which is also common
in machine learning, lies in using the mean squared error (MSE) to define the
objective function.

Definition 30. Let an instance of the learning problem of Definition 27 be given
by a probabilistic database (T , p), tuples with unknown probability values Tl ⊆ T ,
and labels L = 〈(φ1, l1), . . . , (φn, ln)〉. Then, the mean squared error objective is
formulated as:

MSE (L, p) := 1

|L|
∑

(φi,li)∈L
(P (φi)− li)2
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Moreover, its partial derivative with respect to the probability value p(I ) of the
tuple is:

∂MSE (L, p)
∂p(I )

:=
1

|L|
∑

(φi,li)∈L,I∈Tup(φi)

2 · (P (φi)− li) ·
∂P (φi)

∂p(I )︸ ︷︷ ︸
Definition 13

The above formulation is a minimization problem whose solutions have 0.0 as
the target value of the objective function.

Example 45. Example 43, case 3(b), is visualized in Figure 7(b). The correspond-
ing surface induced by the MSE objective is depicted in Figure 8(a) and has its
minima at the solutions of the learning problem.

Judging the above objective by means of Definition 28, we realize that the first
property is met, as there are no restrictions on the learning problem, and incon-
sistent instances can be tackled (but deliver objective values larger than zero).
Furthermore, since the P (φi)’s occur in separate terms of the sum of the ob-
jective, the second desired property is maintained. However, the third desired
property is violated, as illustrated by the following example.

Example 46. In accordance to Example 44 and Figure 8(b), we set T = Tl :=
{I1, I2} and L := 〈(I1 ∨ I2, 1.0), (I1, 0.0)〉. Then, the MSE objective defines the
surface in Figure 8(c). However, if we replicate the label (I1, 0.0), thus resulting in
Figure 8(d) (note the “times two” in the objective), its surface becomes steeper
along the p(I1)-axis, but has the same minimum. Thus, MSE’s surface is not
stable. Instead, it becomes more ill-conditioned [43].

Discussion. Both the logical objective and the MSE objective have optima
exactly at the solutions of the learning problem of Definition 27. With respect
to the desired properties of Definition 28, we summarize the behavior of both
objectives in the following table:

Properties
Objective 1. 2. 3.

Logical × × �
MSE � � ×

The two objectives satisfy opposing desired properties, and it is certainly possi-
ble to define other objectives behaving similarly to one of them. Unfortunately,
there is little hope for an objective that will be adhering to all three proper-
ties. The second property inhibits computational hardness. However, Lemma 4
and the third property’s logical tautology checking (i.e., |= φi ↔ φ′i, which
is co-NP-complete) require this. In this regard the logical objective addresses
both computationally hard problems by computing probabilities, whereas the
MSE objective avoids the latter form of tautology checking.
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7 Conclusions

In recent years, the need to efficiently manage large amounts of uncertain data
has become evident as more and more data arise from various applications such
as information extraction, sensor networks, and scientific data management. As a
result, PDBs have evolved as an establish field of research in recent years [63]. In
this chapter, we provide an overview of the key concepts of PDBs and the main
challenges than need to be addressed. Specifically, we begin by describing the
main characteristics of probabilistic databases assuming tuple independence, and
we present the respective data model and query evaluation strategies. Apart from
being uncertain, data can be annotated by other dimensions such as time and lo-
cation. In this regard, we describe a closed and complete temporal-probabilistic
database model [21], coined TPDB, which allows us to cope with data that is
variable over time as well as uncertain. Complementary to the basics, we review
state-of-the-art methods in this field and also describe some of our own recent
research results including a top-k style evaluation strategy [23]. The latter at-
tempts to tackle the increased complexity of the probability computation step
involved in query evaluation in PDBs. This is achieved by pruning answer candi-
dates without fully grounding the lineage formula and hence saving also on the
data computation step. Last, although most works assume the probabilities are
provided as input along with the data, this assumption often does not hold and a
learning approach is required. As we consider learning to be a key building block
for future probabilistic database engines, we conclude this chapter by discussing
such a learning approach [22] for creating, updating and cleaning of PDBs.

Acknowledgements. This article is based on the doctoral dissertation by Ma-
ximilian Dylla: “Efficient Querying and Learning in Probabilistic and Temporal
Databases”, Saarland University, February 2014.” [20]
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