An Introduction to Ontology-Based Query
Answering with Existential Rules

Marie-Laure Mugnier! and Michaél Thomazo?
! Université Montpellier 2, France
mugnier@lirmm.fr
2 TU Dresden, Germany
michael.thomazo@tu-dresden.de

Abstract. The need for an ontological layer on top of data, associated
with advanced reasoning mechanisms able to exploit ontological knowl-
edge, has been acknowledged in the database, knowledge representation
and Semantic Web communities. We focus here on the ontology-based
data querying problem, which consists in querying data while taking on-
tological knowledge into account. To tackle this problem, we consider a
logical framework based on existential rules, also called Datalog™.

In this course, we introduce fundamental notions on ontology-based
query answering with existential rules. We present basic reasoning tech-
niques, explain the relationships with other formalisms such as lightweight
description logics, and review decidability results as well as associated al-
gorithms. We end with ongoing research and some challenging issues.

1 Ontology-Based Query Answering

Novel intelligent methods are required to manage and exploit the huge amounts
of data nowadays available. The interest of considering ontological knowledge
when accessing data has been widely acknowledged, both in the database and
knowledge representation communities. Indeed, ontologies', which typically en-
code general domain knowledge, can be used to infer data that are not explicitely
stored, hence palliating incompleteness in databases. They can also be used to
enrich the vocabulary of data sources, which allows a user to abstract from the
specific way data are stored. Finally, when several data sources use different
vocabularies, ontologies can be used to unify these vocabularies.

Ezample 1. In this simple example, we consider data on movies, described with
unary relations MovieTitle (titles of movies) and MovieActor (movie actors),
and a binary relation Play, encoding that a given person plays a role in a movie
identified by its title. Let ¢ be a query asking if a given person, whose identifier
is B, plays in a movie. If the data do not explicitely contain the information
that B plays in a movie, the answer to ¢ will be no. Now, assume that the

1 'We will reserve the term “ontology” to general domain knowledge—also called termi-
nological knowledge—in order to clearly distinguish it from the data—or assertional
knowledge—called here facts.

M. Koubarakis et al. (Eds.): Reasoning Web 2014, LNCS 8714, pp. 245-278, 2014.
© Springer International Publishing Switzerland 2014

246 M.-L. Mugnier and M. Thomazo

data contain the information that B is a movie actor (B is in the extension of
MovieActor relation) and we have the knowledge that “every movie actor plays
a role in some movie”. We can infer that B plays in a movie. Hence, the answer
to ¢ should be yes. In the following, we will encode knowledge in First-Order
logic. Then, the query will be encoded as ¢ = Jy Play(B,y) and the piece of
ontological knowledge as the following rule:

R = Va(MovieActor(x) — Jy(Play(z,y) N MovieTitle(y)))

We can check that the ground atom MowvieActor(B) and the rule R entail g,
hence the positive answer to q.

The issue of proposing formalisms able to express ontological knowledge, as-
sociated with querying mechanisms able to exploit this knowledge when access-
ing data, is known as ontology-based data access. In this paper, we will more
precisely consider the following problem, called ontology-based query answering:
given a knowledge base composed of an ontology and facts, and a query, compute
the set of answers to the query on the facts, while taking implicit knowledge rep-
resented in the ontology into account. We will consider the basic queries called
conjunctive queries.

In the Semantic Web, ontological knowledge is usually represented with for-
malisms based on description logics (DLs). However, DLs are restricted in terms
of expressivity, in the sense that terminological knowledge can only be expressed
by tree-like structures. Moreover, only unary and binary predicates are gener-
ally supported. Historically, DLs focused on reasoning tasks about the termi-
nology itself, for instance classifying concepts; querying tasks were restricted to
ground atom entailment [BCM™07]. Conjunctive query answering with classi-
cal DLs appeared to be extremely complex (e.g., for the classical DL ALCZ, it
is 2ExPTIME-complete, and still NP-complete in the size of the data). Hence,
less expressive DLs specially devoted to conjunctive query answering on large
amounts of data have been designed, beginning with the DL-Lite family. An-
other family of lightweight DLs used for query answering is the £L£ family, which
was originally designed for polynomial time terminological reasoning. These DLs
form the core of so-called tractable profiles of the Semantic Web language OWL
2, namely OWL 2 QL and OWL2 EL (the third tractable profile being OWL 2
RL, which is closely related to the rule-based language Datalog).

On the other hand, querying large amounts of data is the fundamental task
of databases. Therefore, the challenge in this domain is now to access data while
taking ontological knowledge into account. The deductive database language
Datalog allows to express some ontological knowledge. However, in Datalog rules,
variables are range-restricted, i.e., all variables in the rule head necessarily occur
in the rule body. Therefore, these rules can produce knowledge about already
known individuals, but cannot infer the existence of unknown individuals, a
feature sometimes called “value invention” in databases. This feature has been
recognized as crucial in an open-domain perspective, where it cannot be assumed
that all individuals are known in advance.

Ontology-Based Query Answering with Existential Rules 247

Ezistential rules have been proposed to meet these two requirements, i.e.,
value invention and the ability to express complex structures. Existential rules
extend First-Order Horn clauses, i.e., plain Datalog rules, by allowing to intro-
duce new existentially quantified variables. They are also known as Datalog®
family, in reference to Datalog. More preciselly, an existential rule is a positive
rule of the form body — head, where body and head are any conjunctions of
atoms, and variables occurring only in the head are existentially quantified. The
rule in Example 1 is an existential rule; it allows to infer the existence of a movie
in which B plays a role, even if this movie is not identified.

This paper provides an introduction to ontological query answering with ex-
istential rules. In Section 2, we present basic logical foundations for representing
and reasoning with facts, conjunctive queries and plain Datalog rules. Section
3 is devoted to existential rules and their relationships with other formalisms
(tuple-generating dependencies in databases, conceptual graph rules, positive
logic progams via skolemization, lightweight description logics). Section 4 in-
troduces the main approaches to solve the problem. Entailment with general
existential rules being undecidable, Section 5 presents the main decidability cri-
teria currently known, as well as associated algorithmic techniques. Section 6
ends with ongoing research and open issues.

We purposely omitted bibliographical references in this introductive section.
References will be given later, in the appropriate sections.

2 Fundamental Notions on Conjunctive Query Answering
and Positive Rules

Data can be stored in various forms, for instance in a relational database, an
RDF triple store or a graph database. We abstract from a specific language or
technology by considering first-order logic (FOL). Ontological knowledge will
also be expressed as first-order logical formulas. In this section, we present basic
theoretical notions for representing and reasoning with facts, conjunctive queries,
as well as simple positive rules, namely Datalog rules.

2.1 Basic Logical Notions

We consider first-order vocabularies with constants but no other function sym-
bols. A wocabulary is a pair V = (P,C), where P is a finite set of predicates
(or relations) and C is a possibly infinite set of constants. Each predicate has an
arity, which is its number of arguments. A term (on V) is a variable or a constant
(in C). An atom (on V) is of the form p(t1,...,t;) where p is a predicate of arity
k (from P) and the ¢; are terms (on V). An atom is ground if it has no variable.
A formula on V has all its atoms on V. A variable in a formula is free if it is not
in the scope of a quantifier. A formula is closed if it has no free variable.

Given a formula F', we note terms(F') (respectively vars(F'), csts(F')) the set
of terms (respectively variables, constants) that occur in F'. In the following, we

248 M.-L. Mugnier and M. Thomazo

always assume that distinct formulas (representing facts, queries or rules) have
disjoint sets of variables.

An interpretation I of a vocabulary V = (P,C) is a pair (D,.T), where D is
a non-empty (possibly infinite) set, called the domain of I, and . defines the
semantics of the elements in V with respect to D:

—VeeC,c'eD
— Vp € P with arity k, p! C DF.

An interpretation I of V is a model of a formula F on V if F is true in I. A
formula G entails a formula F (we also say that F is a semantic consequence of
G) if every model of G is a model of F, which is denoted by G = F. We note
G=FifGEFand F E=G.

2.2 The Positive Existential Conjunctive Fragment of FOL

The positive existential conjunctive fragment of first-order logic, denoted by
FOL(A,3), is composed of formulas built with the single connector A and the
single quantifier 3. Without loss of generality, we consider that these formulas
are in prenex form, i.e., all existential quantifiers are in front of the formula.
Then, it is often convenient to see them as sets of atoms. As we will see later
on, this fragment allows to represent facts and conjunctive queries.

A fundamental notion in FOL(A,3) is that of a homomorphism. We recall
that a substitution s of a set of variables V' by a set of terms T is a mapping
from V to T. Given a set of atoms F', s(F') denotes the set obtained from F by
applying s, i.e., by replacing each variable v € V' with s(v).

Definition 1 (Homomorphism, notation >). Given two sets of atoms F
and G, a homomorphism h from F' to G is a substitution of vars(F') by terms(QG)
such that, for all atom p(t1...tx) € F, p(h(t1)...h(tx)) € G, i.e., h(F) C G.
We note F > G if there is a homomorphism from F to G, and say that F is
more general than G.

Ezample 2. Let us consider the facts Fi = {p(z1,v1),p(y1,21),p(21,21)} and
Fy, = {p(z2,y2),p(y2, 22), p(22,u2)}, where all terms are variables. There are
three homomorphisms from F; to Fi. For instance, h = {x2 — z1,y2 — y1, 22 —
21,U2 F> X1}

Homomorphism can also be defined among interpretations. Given two inter-
pretations I; = (Dy,.7t) and Iy(Ds, .”2) of a vocabulary V = (P,C), a homomor-
phism from I to I is a mapping from D; to D5 such that:

— for all ¢ € C, h(clt) = c2;
— for allp € P and (t1...t) € plt, (h(t1) ... h(tx)) € p™.

We first point out that an interpretation I is a model of a FOL(A, 3) formula,
if and only if there is a mapping v from terms(F') to D such that:

Ontology-Based Query Answering with Existential Rules 249
— for all ¢ € consts(F), v(c) = cl;
— for all atom p(e; ...ex) € F, (v(er)...v(ex)) € p.

Such a mapping is called a good assignment of F to I.

A nice property of FOL(A,3) is that each formula has a canonical model,
which is a representative of all its models, and can be used to check entailment,
as we will see below. This model has the same structure as F', hence the name
“isomorphic model”.

Definition 2 (Isomorphic model). Let F' be a FOL(A,3)-formula built on
the vocabulary V = (P,C). The isomorphic model of F, denoted by M(F), :

— D is in bijection® with terms(F)UC (to simplify notations, we consider that
this bijection is the identity);

— forallceC, M(c)=c;

— forallpe P, M(p) ={(t1...tx)|p(t1...tx) € F} if p occurs in F, otherwise
M(p) =0.

We check that M (F') is indeed a model of F', by choosing the identity as good
assignment.

Property 1. For any FOL(A,3) formula F, M(F), the model isomorphic to F,
is a universal model, i.e., for all model M’ of F, it holds that M (F) > M'.

Proof. If M’ is a model of I, then there is a good assignment v from F to M’.
Since M (F) is isomorphic to F', v defines a homomorphism from M (F') to M’.

Given two interpretations I; and Is, with Iy > Io, if I; is a model of F', then
I also is. Indeed, the composition of a homomorphism from I; to Iy and of a
good assignment from F' to I yields a good assignment. Hence, to check if G
entails F', it is sufficient to check that M (G) is a model of F, i.e., there is a good
assignment from F to M(QG).

Note that a good assignment from F to M (G) defines a homomorphism from
F to G. Reciprocally, a homomorphism from F' to G defines a good assignment
from F to M(G). It follows that checking entailment in the FOL(A, 3) fragment
amounts to a homomorphism check:

Theorem 1. Let F and G be two FOL(A,3) formulas. It holds that G |= F iff
there is a homomorphism from F to G (i.e., F > G).

Proof. Follows from previous definitions and Property 1.

If F > G and G > F, we say that F and G are (homomorphically) equiva-
lent. According to the preceding theorem, this equivalence notion corresponds
to logical equivalence.

Definition 3 (Core). Given a set of atoms F, the core of F is a minimal
subset of F equivalent to F.

2 A bijection is a one-to-one correspondence.

250 M.-L. Mugnier and M. Thomazo

It is well-known that among all equivalent sets of atoms on a vocabulary,
there is a unique core, up to variable renaming (where a variable renaming, or
isomorphism, from F to F’, is a bijective substitution s of vars(F') by vars(F")
such that F' = F").

2.3 Facts and Conjunctive Queries

Classically, a fact is a ground atom. We extend this notion, so that a fact may
contain existentially quantified variables and not only constants. Hence, a fact
becomes a closed FOL(A, 3) formula. This allows to represent in a natural way
null values in relational databases or blank nodes in RDF. Moreover, this is in
line with existential rules, which produce existential variables. It follows that a
conjunction of facts can be seen as a single fact when it is put in prenex form.

Ezample 3. Let Fy = Jx3y(p(x,y) A q(y,a)), where a is a constant, and Fp =
Jzp(x,z). Fy and Fy are facts. The formula Fy A F5 can be seen as a single fact
obtained by considering a prenex form, which involves renaming the variable x
in Fy or in Fy. One obtains for instance Jx3y3Iz(p(x, y) Aq(y, a) Ap(z, z)), which
can also be seen as the set of atoms {p(z,y), q(y, a),p(z, 2)}.

Conjunctive queries are the basic and more frequent queries in databases.
There can be expressed in FOL(A,3). They correspond to SELECT-FROM-
WHERE queries in SQL and to basic pattern queries in SPARQL.

Definition 4 (Facts, queries, answers). A fact is an existentially closed
conjunction of atoms. A conjunctive query (CQ) is an existentially quantified
conjunction of atoms with possibly free variables. A Boolean conjunctive query
(BCQ) has no free variable. Let {x1...xz1} be the free variables in a CQ q; an
answer to q in a fact F is a substitution s of {1 ...z} by constants in F, such
that F' = s(q) (in other words, s is the restriction to {1 ...z} of a homomor-
phism from q to F). Given an ordering (x1 ...xx) of the free variables in q, we
often denote an answer s by (s(z1)...s(xz)). A Boolean query q has only the
empty substitution as possible answer, in which case q is said to have a positive
answer, otherwise q has a negative answer.

Several equivalent basic decision problems can be considered. Let K be a
knowledge base (composed of facts for now, but later enriched with rules); then
the following decision problems are polynomially equivalent (see e.g. [BLMS11]):

— CQ ANSWERING decision problem: given a KB I and a CQ g, is there an
answer to ¢ in K7

— CQ EVALUATION decision problem: given a KB K, a CQ ¢ and a list of
constants ¢, is ¢ an answer to ¢ in K7

— BCQ ANSWERING problem: given a KB K and a BCQ ¢, is () an answer to
qin K7

— BCQ ENTAILMENT problem: given a KB K and a BCQ ¢, is ¢ entailed
by K?

Ontology-Based Query Answering with Existential Rules 251

In the following, we consider BCQ ENTAILMENT as a reference problem.

Checking homomorphism is an NP-complete problem. Hence, BCQ ENTAIL-
MENT is NP-complete. Instead of the classical complexity measure, also called
combined complexity, we may also consider data complexity, in which case only
the data are part of the problem input. Then, BCQ ENTAILMENT becomes poly-
nomial: indeed, a naive algorithm for checking if there is a homomorphism from
q to F is in O(|F|l9l).

2.4 Adding Positive Range-Restricted Rules

A basic kind of ontological knowledge is that of range-restricted positive rules,
where “range-restricted” means that all variables in the head of a rule also
occur in the body of this rule [AHV95]. It follows that such rules allows to entail
knowledge on individuals that already exist in the data. In ontologies, such rules
typically express taxonomies (like a schema in RDFS), or properties of relations
(like symmetry or transitivity). We will also refer to these rules as Datalog rules,
as they exactly correspond to plain Datalog rules (i.e., without negation).

Definition 5 (Range-restricted rule, Datalog rule). A range-restricted
(positive) rule, or (plain) Datalog rule, is a formula R = VaVy(B[x,y] — Hly]),
where ¢,y are sets of variables, B and H are conjunctions of atoms, respectively
called the body and the head of R, also denoted by body(R) and head(R).

A rule R is applicable to a fact F' if there is a homomorphism h from body(R)
to F. Applying R to F' with respect to h consists in adding h(head(R)) to F. By
iteratively applying rules in all possible ways, one obtain a unique fact, called
the saturation of F, and denoted by F*. The process stops in finite time since
no new variable is created.

Let us now consider a knowledge base composed of facts (seen as a single
fact) and range-restricted rules, K = (F,R). To check if K = ¢, we can rely on
notions similar to the positive existential case. Indeed, the model isomorphic to
F* is a model of (F,R) and it keeps the property of being a universal model.

Hence, K | ¢ if and only if there is a homomorphism from ¢ to F*. In
combined complexity, this test is still NP-complete if the arity of the predicates
is bounded (then the size of F* is polynomial in the size of F), otherwise it is
EXPTIME-complete [AHV95]. It is polynomial with respect to data complexity.

In the next section, we extend positive rules to existential rules, by relaxing
the constraint of being range-restricted.

3 Existential Rules

In this section, we present existential rules, as well as their relationships to other
database or KR formalisms.

252 M.-L. Mugnier and M. Thomazo

3.1 The Framework of Existential Rules

Definition 6 (Existential rule). An existential rule (or simply a rule here-
after) is a formula R = VaVy(B|x,y] — 3zH[y, z]), where ¢,y and z are sets
of variables, B and H are conjunctions of atoms, respectively called the body
and the head of R, also denoted by body(R) and head(R). The frontier of R, de-
noted by fr(R), is the set vars(B)Nvars(H) = y. The set of existential variables
in R is the set vars(H) \ fr(R) = z.

In the following, we will omit quantifiers in rules since there is no ambiguity.
For instance, p(z,y) — q(y, z) denotes the rule R = VaVy (p(z,y) — 3z q(y, 2)).

Example 4. Consider the following predicates, with their arity mentioned in
parentheses; unary predicates can be seen as concept names, i.e. types of entities,
and the other predicates as relation names: Area(1l), Project(1), Researcher(1),
isProject(3), hasExpertise(2), isMember(2)

Here are some examples of existential rules composing the ontology:

“The relation isProject associates a project, the area of this project and the leader
of this project, who is a researcher” [signature of isProject]

Ry = isProject(x,y,z) — Project(z) A Area(y) A Researcher(z)

“Fvery leader of a project is a member of this project”

Ry = isProject(x,y, z) — isMember(z, x)

“Every researcher expert in an area is member of a project in this area”

Ry = Researcher(x) A hasExpertise(x,y) — isProject(u,y, z) NisMember(x,u)
“Fvery researcher is expert in an area”

Rs = Researcher(x) — hasExpertise(x,y)

Ry and R; are range-restricted, but not Re and Rs.

Definition 7 (Application of an existential rule). An existential rule R
is applicable to a fact F if there is a homomorphism h from body(R) to F;
the result of the application of R to F' with respect to h is a fact a(F,R,7) =
F U m2(head(R)) where ¢ is a substitution of head(R), that replaces each
x € fr(R) with h(zx), and each other variable with a “fresh” variable, i.e., not
introduced before.

Ezxample 5. We consider the vocabulary and rules from Example 4. Let F =
{Researcher(a), Researcher(b), hasExpertise(a, “KR"), Area(“KR”)} be a
fact. Ry is applicable to F with respect to hg = {(z,a), (y, “K R”)}, which yields
atoms {isProject(ug,” KR”, 2p),isMember(a,uo)}, where uy and zg are fresh
existential variables. Rs is applicable to F' as well, with h; = {(z,b)}, which
produces the atom hasExpertise(b, yo). Then, Ry could be applied again, to the
obtained fact, with respect to he = {(z,b), (y,%0)}, which would produce atoms
{isProject(ui,yo, 21),isMember(b,uy)}.

Existential rules have a double origin. On the one hand, they can be seen as
an extension of plain Datalog to enable value invention, yielding the Datalog®
family [CGKO08, CGL09]. It is important to note, however, that rules make a
query in Datalog, while, in Datalog™ (and in the present framework), they form

Ontology-Based Query Answering with Existential Rules 253

an ontology, and the query itself does not embed deductive knowledge. On the
other hand, existential rules come from earlier studies on a graph-based knowl-
edge representation framework, inspired by conceptual graphs [CMO09]; indeed,
the logical translation of conceptual graph rules yields exactly existential rules,
as defined in [SM96].

We also point out that existential rules have the same form as a very general
kind of dependencies, which has long been studied in databases, namely Tuple-
Generating Dependencies (TGD) [AHV95]. Intuitively, a database instance D
satisfies a TGD ¢t if, each time the body of ¢ is found in D, the head of t is
found in D as well; formally, if ¢ is applicable to D by homomorphism A, then
h has to be extensible to a homomorphism A’ from head(t) to D, i.e., such that
h(x) = h'(z) for each x € fr(t). Existential rules benefit from theoretical results
obtained on TGDs (such as results on the chase and on decidability issues, see
Sections 4 and 5).

Note that an existential rule is not a Horn clause because of existential vari-
ables in its head. However, both are closely related, since by skolemisation, an
existential rule can be transformed into a set of Horn clauses with functions.
The skolemization of a rule R is a rule skolem(R) built from R by replacing
each occurrence of an existential variable y with a functional term ff(:c), where
x = fr(R). We remind that skolemization does not produce an equivalent for-
mula, however a formula is (un)satisfiable if and only if its skolem form is.

Ezample 6 (Skolemization). Let R = Researcher(z) A hasExpertise(x,y) —
isProject(u,y,z) N isMember(z,u) (Rule Ry in Example 4). The frontier of
Ry is {z,y}. Then, skolem(R) = Researcher(z) A hasExpertise(z,y) —
isProject(fE(x,y),y, fE(x,y)) AisMember(z, fE(z,y)), which yields two Horn
clauses.

A set of skolemized existential rules can be seen as a specific positive logic
program, hence nonmonotonic negation can be added while benefitting from
results obtained in logic programming. For instance, if nonmonotonic negation
is added with stable model semantics, one obtains a specific case of Answer Set
Programming.

This framework can be extended to equality rules and negative constraints.
An equality rule is a rule of the form B — x = t, where x and t are distinct
terms, x € vars(B) and t € vars(B) or is a constant. When the unique name
assumption is made, i.e., distinct constants refer to distinct individuals, the
application of an equality rule is said to fail if it leads to set the equality between
distinct constants. This kind of failure corresponds to an inconsistency of the
knowledge base. Equality rules generalize functional dependencies, which are
widely used in conceptual modeling.

Constraints are another kind of construct specifically devoted to the definition
of the consistency or inconsistency of the knowledge base. A negative constraint
is a rule of the form C' — L, where L denotes the absurd symbol (i.e., a propo-
sitional atom whose value is false). It is satisfied if C' is not entailed by (F,R).
Negative constraints are typically used to express disjointness of concepts/classes

254 M.-L. Mugnier and M. Thomazo

or incompatibility of relations. See [CGL09] and [BLMS11] for the integration
of equality rules and negative constraints in the existential rule framework.

3.2 Relationships to Lightweight Description Logics

Interestingly, existential rules generalize lightweight description logics. We focus
here on £L£ [BBL05, LTW09] and DL-Lite [CGL*07, ACKZ09]. For instance,
DL-Liteg, which underlines OWL2 QL profile [OWL09], can be expressed by
linear existential rules (whose body and head are restricted to a single atom) and
negative constraints, see e.g. [CGL09]. Other DL-Lite fragments allow to declare
functional roles, which can be translated by equality rules. Table 1 summarizes
the translation from DL-Lite axioms to existential rules. Example 7 illustrates
this translation on a concrete case. The DL £L can be expressed by “pure”
existential rules, as shown in Table 2.

Table 1. Translation of DL-Lite axioms

DL-Axiom Translated rule
ACB A(z) — B(x)
AC3R A(x) = R(x,y)

JRC3S™ R(z,y) — S(z,z)

BLC 3R.C B(z) — R(z,y) NC(y)
RCS R(z,y) — S(z,y)

funct(R) R(z,y) ANR(z,z) 2 y==z2
BLC -C B(x) ANC(z) —» L

Table 2. Translation of (normal) £L-axioms

DL-Axiom Translated rule

BnCCED B(z)AC(z) — D(x)
BCC B(z) — C(x)

B LC 3R.C B(z) = R(z,y) A C(y)

JR.BC C r(z,y) A B(y) — C(x)

Example 7. This example borrows a DL-Liteg TBox from [CGL107]. Consider
the atomic concepts Professor and Student, and the roles TeachesTo and Has-
Tutor. The TBox is listed below with its translation into existential rules.

DL-Liter TBox Existential rules
Professor C ITeachesTo Professor(x) — TeachesTo(x,y)
Student T 3HasTutor Student(x) — HasTutor(x,y)

dTeachesTo~ C Student TeachsTo(y,x) — Student(x)

JHasTutor™ C Professor HasTutor(y,xz) — Professor(x)
Professor C =Student Professor(x) A Student(x) — L

HasTutor™ C TeachesTo HasTutor(y,x) — TeachesTo(x,y)

Ontology-Based Query Answering with Existential Rules 255

In DL-Liter, the role HasTutor could be declared functional (by the statement
(funct (HasTutor)), which would be translated into the following equality rule:
HasTutor(x,y) AN HasTutor(xz,z) = y = z.

More generally, existential rules allow to overcome some limitations of light-
weight DLs. First, they have unrestricted predicate arity (while DLs consider
unary and binary predicates only), which allows for a natural coupling with
database schemas, in which relations may have any arity. Moreover, adding pieces
of information, for instance to take contextual knowledge into account, such as
data provenance for instance, is made easy by the unrestricted predicate arity,
since these pieces of information can be added as new predicate arguments.
Second, the body and the head of a rule may have any structure, and there is no
constraint on frontier variables, hence rules allow to represent cyclic structures,
while DLs are fundamentally restricted to tree-like structures.

Ezample 8. The following rule cannot be expressed in DLs:

p(x,y) = q(x,2) Na(y, 2)

Unsurprisingly, there is a price to pay for this expressivity. Indeed, BCQ
ENTAILMENT is undecidable for general existential rules (e.g., [BV81, CLM81] for
an equivalent problem on TGDs, and [BM02] for fact entailment with conceptual
graph rules). However, many classes of rules for which it remains decidable have
been studied. The main classes are reviewed in Section 5.

4 Main Approaches to Ontology-Based Query Answering

We now consider a knowledge base (KB) IC = (F, R), composed of a set of facts,
seen as a single fact F', and a finite set of existential rules R. We recall that the
BCQ ENTAILMENT PROBLEM takes as input a KB K = (F,R) and a BCQ g¢,
and asks if K = ¢ holds, where K is seen as the conjunction of F' and the rules
in R.

To solve this problem, there are two main approaches, which are related to the
classical paradigms for processing rules, namely forward chaining and backward
chaining. In databases, these paradigms are also called bottom-up and top-down,
respectively. Forward chaining consists in iteratively applying the rules starting
from the initial fact, while trying to produce a fact to which the query can be
mapped by homomorphism. Backward chaining consists in iteratively using the
rules to rewrite the query, starting from the initial query, while trying to produce
a query that can be mapped to the initial fact by homomorphism.

In the OBQA context, these two paradigms are recast as follows. Forward
chaining is used to materialize all inferences in the data, then the query is
evaluated against this materialization. Backward chaining is decomposed into
two steps as well. First, the query is rewritten into another query using the rules.
Then, the rewritten query is evaluated against the initial data. Both approaches
can be seen as ways of integrating the rules, respectively into the data and

256 M.-L. Mugnier and M. Thomazo

into the query, in order to come back to a classical database query evaluation
problem.

Materialization has the advantage of enabling efficient query answering but
may be not appropriate, because the saturated data may be too large, but also
because of data access rights or data maintenance reasons. Query rewriting has
the advantage of avoiding changes in the data, however its drawback is that the
rewritten query may be large, even exponential in the size of initial query, hence
less efficiently processed, at least with current database techniques.

Since BCQ ENTAILMENT is not decidable, none of these techniques leads to a
procedure that terminates in all cases. Various conditions on rules ensuring the
decidability of BCQ ENTAILMENT have been exhibited. These conditions ensure
the termination of algorithms based on materialization or on query rewriting, or
on a combination of both. See the next section for an overview.

We now present the main notions and results that underly these two
approaches.

4.1 Materialization-Based Approach

We already pointed out that existential rules have the same form as TGDs.
Forward chaining on TGDs is known as the chase. It was initially designed to
repair a database that violates some TGDs. Indeed, when the database does not
satisfy a TGD (according to homomorphism k), this TGD can be applied to the
database (according to h) to add missing data. However, these local repairs may
lead to a new TGD violation, hence the forward chaining process.

Definition 8 (Derivation Sequence). Let F' be a fact, and R be a set of
rules. An R-derivation of F' is a finite sequence (Foy = F), ..., F}, such that for
all 0 < i < k, there is R; € R and a homomorphism h from body(R;) to F; such
that FiJrl = O[(FZ‘, RZ‘, h)

Theorem 2 (Soundness and completeness of R-derivation). Let K =
(F,R) be a KB and q be a Boolean conjunctive query. Then K |= q iff there
exists an R-derivation (Fy = F), ..., Fy such that Fy, |= q.

It follows that a breadth-first forward chaining mechanism yields a positive
answer in finite time when IC |= ¢. This mechanism, called the saturation here-
after (and the chase in databases) works as follows. Let Fy = F' be the initial
fact. Each step is as follows: (1) check if ¢ maps to the current fact, say F;_1 at
step i (¢ > 0): if it is the case, ¢ has a positive answer; (2) otherwise, produce a
fact F; from F;_1, by computing all new homomorphisms from each rule body
to F;_1, then performing all corresponding rule applications. A homomorphism
to F;_1 is said to be new if it has not been already computed at a previous step,
i.e., it uses at least an atom added at step ¢ — 1. The fact Fj obtained after the
step k is called the k-saturation of F' and is denoted by ay(F,R). Formally: let
a(F,R) = FU{msase(head(R)), VR € R and homomorphism 7 : body(R) — F'};
then, ag(F,R) = F and for i > 0, a;(F,R) = a(a;—1(F,R), R).

Ontology-Based Query Answering with Existential Rules 257

We define aoo (F, R) = Ug>oai(F, R) and we denote it by F};, and simply F*
when there is no doubt on R. F* can be infinite, as illustrated by the following
example.

Ezample 9. Let F = p(a) and R = p(x) — q(x,y) Ap(y). ceo(F,R) is infinite,
since each application of R leads to a new application of R. Note that for all
i >0, a;11(F, R) is not equivalent to o;(F,R).

We recall the nice property that holds for range-restricted rules: M*, the
interpretation isomorphic to F'*, is a representative of all models of (F, R). More
precisely, M* is a universal model of (F,R). This property is kept for existential
rules. The difference with the range-restricted rule case is that M* can be infinite.

Theorem 3 (Soundness and completeness of saturation). Let (F,R) be
a KB and q be a Boolean conjunctive query. Let F* = ao(F,R). The following
four statements are equivalent:

F.REq;

— M™ is a model of q;

— there is a homomorphism from q to F*

there is an integer k > 0 and a homomorphism from q to ay(F,R).

Obviously, the saturation terminates when F* is finite. Further work has
proposed mechanisms related to forward chaining to build a finite representation
of F*, even when F™* is infinite, for restricted classes of existential rules [CGKO08,
TBMRI12]. The developed techniques are close in spirit to blocking techniques
in DL tableau procedures [BCM™07].

4.2 Query Rewriting Approach

In the OBQA context, query rewriting was first proposed for DL-Lite [CGL™05]:
the ontology is used to rewrite the initial conjunctive query into a union of con-
junctive queries, which can then be passed to a relational database management
system. More generally, the input query can be rewritten into a first-order query
(e.g., a union of semi-conjunctive queries [Thol3]). First-order queries are ex-
actly the logical counterpart of SQL queries. Query rewriting has been further
generalized by considering rewriting into a Datalog query (a UCQ can be seen
as a specific case of such a query). See the last section for more details.

We focus here on the basic rewriting technique, which outputs a UCQ, seen
as a set of CQs. We present a conceptually simple and generic approach to query
rewriting with existential rules, namely piece-based query rewriting, which can
be applied to any kind of existential rule (but, of course, it is ensured to stop
only for some classes of rules). This technique has been introduced in [BLMS09)
(and [BLMS11] for the journal version). A slightly different technique has been
proposed in [GOP11].

For simplicity reasons, we focus on Boolean conjunctive queries hereafter. To
be applicable to arbitrary CQs, the definitions should be extended to process free

258 M.-L. Mugnier and M. Thomazo

variables in a special way. However, considering BCQs only is not a restriction,
since we can use a simple transformation from any CQ to a BCQ: let ¢ be
a CQ with free variables x1...x4; ¢ is translated into a BCQ ¢ by adding
an atom ans(xy ...xq), where ans is a special predicate not occurring in the
knowledge base; the technique presented hereafter ensures that, if we rewrite ¢’
into a UCQ ¢”, then remove from ¢” the atoms with predicate ans (and consider
their arguments as free variables), we get the UCQ that should be obtained by
rewriting q.

Ezample 10. Consider again Example 4. Let ¢ = 3x; isProject(z1, “KR”, x2)
asking for the leaders of projects in KR. The associated Boolean query is ¢’ =
dx13xe(ans(ze) AisProject(xy, “K R”, x2)). The key point is that the predicate
ans does not appear in the knowledge base, hence the added atom will never be
rewritten and its variables will be correctly processed (as detailed in following
Example 15).

Query rewriting relies on the notion of a unification between a query and a rule
head. We first recall here the usual definition of unification, used for instance in
plain Datalog (or range-restricted rules), then explain why it has to be extended
in the case of existential rules.

Definition 9 (Datalog Unification). Let ¢ be a Boolean conjunctive query,
and R be a Datalog rule. A unifier of ¢ with R is a pair p = (a,w), where a is an
atom of ¢ and u is a substitution of vars(a)U vars(head(R)) by terms(head(R))U
consts(a) such that u(a) = u(head(R)).

When a query and a rule unify, it is possible to rewrite the query with respect
to that unification, as specified in Definition 10.

Definition 10 (Datalog rewriting). Let ¢ be a Boolean conjunctive query, R
be a Datalog rule and p = (a,u) be a unifier of ¢ with R. The rewriting of q
according to p, denoted by (g, R,), is u(body(R) U q"), where ¢' = q\ ¢'.

Please note that these classical notions have been formulated in order to stress
similarities with the notions we introduce hereafter.

Ezample 11 (Datalog Unification and Rewriting). Let us consider ¢, = t(z1, z2) A
s(z1,23) As(z2,x3) and R = s1(z,y) — s(x,y). A Datalog unifier of ¢ with R
is pg = (s(x1,23), {u(r1) = z,u(xs) = y}). The rewriting of g, according to p is
the following query:

t(z,z2) A si(z,y) A s(ze,y).

Let us stress that this query is equivalent to the following query:

t(z1,22) A s1(x1,x3) A s(z2,23),

where z has been renamed by z; and y by z3. In the following, we will allow
ourselves to use such a variable renaming without prior notice.

Ontology-Based Query Answering with Existential Rules 259

Applying the same steps without paying attention to the existential vari-
ables in existential rule heads would lead to erroneous rewritings, as shown by
Example 12.

Ezample 12 (Wrong Unification). Let us consider q. = t(z1,z2) A s(x1,x3) A
s(z2,23) and R = f(xz) — s(x,y). A Datalog unification of g, with R is pierror =
(s(z1,23), {u(z1) = z,u(xs) = y}). According to Definition 10, the rewriting of
ge with R would be ¢,:

qr = t(l‘,l‘g) A f(.%‘) A S(l‘g,y)~

However, g, is not a sound rewriting of g., which can be checked by considering
the following fact (obtained by instantiating g.):

F =t(a,b) A f(a) A s(b,c).

We have F [= g, however F,R [~ ¢.. Indeed, F; = F and g. cannot be
mapped by homomorphism to F'.

For that reason, the notion of piece unifier has been introduced, originally
in the context of conceptual graph rules [SM96], then recast in the framework
of existential rules [BLMS09]. Instead of unifying only one atom at once, one
may have to unify a whole “piece”, that is, a set of atoms that should have
been created by the same rule application. The following definitions and the
algorithm are mainly taken from [KLMT12]. Alternative definitions can be found
in [KLMT13]. Given a Boolean conjunctive query g and ¢’ C ¢, we call separating
variables of ¢’ (w.r.t. ¢) the set of variables that belong to both ¢’ and ¢\ ¢/,
and we denote this set by sep,(¢'). The other variables of ¢’ are said to be
non-separating variables.

Definition 11 (Piece Unifier). Let g be a Boolean conjunctive query and R
be an existential rule. A piece unifier of ¢ with R is a pair p = (¢',u) with ¢ C
q,q # 0, and u is a substitution of fr(R)Uvars(q') by terms(head(R))Uconsts(q’)
such that:

1. for all x € fr(R), u(x) € fr(R) or u(x) is a constant
(for technical convenience, we allow u(zx) = x);

2. for all x € sep,(q'),u(x) € fr(R) or u(x) is a constant;

3. u(q") C u(head(R));

It follows from this definition that existential variables from R can only be
unified with non-separating variables of ¢’. In other words, when a variable x
of ¢’ is unified with an existential variable of R, all the atoms in which z occur
must be part of the unification (i.e., z cannot be a separating variable).

Let us consider the unification attempted in Example 12 from this point of
view.

260 M.-L. Mugnier and M. Thomazo

x3
/‘ b\
/ \
s/ N S
’ \
/ \
, \
’ \
, \
’ \
, \
—— po
T T
t 2

Fig.1. Since z3 is unified with an existential variable (Example 13), dashed atoms
must be part of the unification

Ezample 13 (Piece Unifier). We consider again g. = t(z1,22) A s(z1,22) A
s(z2,23) and R = f(z) — s(z,9y). perror = (¢’ = {s(@1,23)}, {u(21) = z, u(z3) =
y}) is not a piece unifier. Indeed, x3 belongs to sep, (¢') since it appears in
s(x2,x3), which does not belong to ¢’, hence violating the second condition of
the piece unifier definition.

A correct choice of piece is illustrated by Figure 1. Indeed, let us define p by
(({s(z1,x3), s(x2,z3)}, {u(z1) = z,u(xs) = y,u(xz) = x}). p is a piece unifier of
g with R, which can be checked by verifying that Conditions 1 to 3 are fulfilled.

Given the above definition of piece unifiers, the definition of rewritings remains
syntactically the same as in the Datalog case.

Definition 12 (Rewriting). Given a Boolean conjunctive query q, an existen-
tial rule R and a piece unifier p = (¢',u) of ¢ with R, the direct rewriting of ¢
according to u, denoted by B(q, R, 1) is u(body(R) U ¢"), where ¢ = ¢\ ¢'.

Ezample 14 (Direct rewriting). Let p be the unifier of g. with R defined in
Example 13. The direct rewriting of ¢, with respect to p is:

B(QevRQau) = t(l‘,.’L‘) A f(.’L‘)

The notion of R-rewriting allows to denote queries that are obtained thanks
to successive rewriting operations.

Definition 13 (R-rewriting of ¢). Let q be a Boolean conjunctive query and
R be a set of existential rules. An R-rewriting of q is a conjunctive query g
obtained by a finite sequence qo = q,q1,...,qr such that for all i such that
0 < i <k, there is R; € R and a piece unifier p; of q; with R; such that
Giv1 = B(qis R, 1)

We are now able to illustrate how non-Boolean queries can be processed by
translation into Boolean queries, thus avoiding to consider answer variables in a
specific way (see the discussion associated with Example 10).

Example 15. Consider the set of rules R from Example 4.
Let ¢ = JxyisProject(xy, “KR”, x5), which asks for the leaders of projects in
KR. Let ¢’ = 3zq3x2(ans(z2) AisProject(x1, “KR”,x2)) be the Boolean query

Ontology-Based Query Answering with Existential Rules 261

obtained from ¢. The only rule that contains an atom with predicate isProject is
Ry = Researcher(x) A hasExpertise(x,y) —isProject(u,y, z) NisMember(z,).
However, ¢’ cannot be piece-unified with the head of Ry because x5 would be
unified with the existential variable z, whereas it also appears in ans(zz) which
cannot be unified. In this case, the only R-rewriting of ¢’ with the rules from
Example 4 is ¢’ itself. Hence, the only rewriting of the original query g would be
q itself, obtained from ¢’ by removing the ans atom and making o free.

We now present the fundamental theorem justifying the notion of R-rewriting.
This theorem was originally written in the framework of conceptual graph rules
[SM96]. Since the logical translation of conceptual graph rules is exactly exis-
tential rules, it can be immediately recast in the framework of existential rules.

Theorem 4 (Soundness and completeness of R-rewriting). Let F' be a
fact, R be a set of existential rules, and q be a Boolean conjunctive query. Then
F, R |= q iff there is an R-rewriting ¢’ of q such that F |= ¢'.

Of course, this does not always provide a halting procedure since there may
be an infinite number of R-rewritings, as illustrated by the following example.
Note that this example actually considers a Datalog rule.

Ezample 16. Let R = p(z,y) A p(y, z) — p(z, z). Let ¢ = p(a,b), where a and
b are constants. Hence ¢ is a ground atom. A direct rewriting of ¢ with R is
@1 = pla,y) A p(y,b). Each atom of ¢; unifies with head(R), which yields two
isomorphic queries. Let us consider g2 = p(a,y’) Ap(y’,y) A p(y,b). The same
process can be repeated indefinitely, producing increasingly longer “paths” from
a to b. Hence, the set of { R}-rewritings of ¢ is infinite.

For some classes of rules, there exists a finite set of R-rewritings (in other
words a UCQ), which is both sound and complete, as formally defined below:

Definition 14 (Sound and complete set of R-rewritings). Let R be a set
of existential rules and q be a Boolean conjunctive query. Let Q be a set of BCQs.
Q is said to be sound with respect to q and R if, for all fact F, and all ¢’ € Q,
if F = ¢ then F,R = q. Reciprocally, Q is said to be complete with respect to
q and R if, for all fact F, if F,R = q, then there is ¢ € Q such that F = ¢'.

See the next section for conditions on rules ensuring that a finite sound and
complete set of rewritings exists, whatever the input conjunctive query is.

5 Decidable Classes of Rules and Algorithmic Techniques

In this section, we present several criteria that ensures decidability of BCQ
ENTAILMENT. First, we consider the case where the saturation introduced in
Section 4 is equivalent to a finite fact. This allows to apply classical forward
chaining techniques. However, sets of rules ensuring such a property are not
recognizable, hence the definition of several recognizable sufficient conditions,

262 M.-L. Mugnier and M. Thomazo

also known as “concrete” classes. In this paper, we present two of them, and we
provide links to other relevant work. Similarly, we consider the case where query
rewriting into a union of conjunctive queries can be performed, by presenting
a generic algorithm and several concrete cases where it is applicable. Last, we
briefly mention and provide relevant links to other decidable cases.

5.1 Finite Expansion Sets

We have already seen how to compute a saturation by applying rules in a
breadth-first fashion. A set of rules that produces new information in only a
finite number of steps for every initial fact F is called a finite expansion set, as
formalized in Definition 15.

Definition 15 (Finite Expansion Set). A set of rules R is called a finite
expansion set (fes) if and only if, for every fact F, there exists an integer k =
f(E,R) such that ag(F,R) = ac(F,R).

Since one can not decide if a given set of rules is a fes®, it is crucial to
design expressive specific cases. All the cases known so far are based on some
notion of acyclicity. Several of them have been proposed, and we present here
two incomparable notions of acyclicity.

Weak-Acyclicity. The first notion is based on the notion of position of a
predicate.

Definition 16 (Position). Let p be a predicate of arity k. A position of p is a
pair (p,i), with i from 1 to k.

We now present the graph of position dependencies. The vertices of this graph
are all the positions that appear in a rule set. Intuitively, it tracks how variables
are propagated from one position to another one. Moreover, it also tracks how
new existentially quantified variables are introduced, and in which positions.
Definition 17 formalizes this intuition.

Definition 17 (Graph of Position Dependencies [FKMPO05]). Let R be
a set of rules. The (oriented) graph of position dependencies (V, AU A*) of R
is defined as follows:

— V is the set of all positions for all predicates appearing in R;

— there is an arc from (p,i) to (q,j) in A if there exist a rule R € R, and a
variable x € fr(R) such that x appears in position (p,i) in the body of R and
in position (q,j) in the head of R;

— there is an arc from (p,i) to (q,7) in A* if there exist a rule R € R and a
variable x € fr(R) such that x appears in position (p,i) in the body of R and
an existentially quantified variable appears in position (q,j) in the head of
R. The arcs of A* are called special arcs.

3 We say that fes is an abstract class.

Ontology-Based Query Answering with Existential Rules 263

Fig. 2. The graph of position dependencies associated with R (Example 17)

The rank of a position is the mazimum number (possibly infinite) of special arcs
on a path leading to that position.

Example 17 illustrates the construction of the graph of position dependencies.
Example 17. Let R be a set containing the following rules:

- T(.Z‘,y) - S(y,Z)
- s(x,y) - T(yax)
- T(xay) /\T(yaz) — T(:L’,Z)

The graph of position dependencies of R is shown in Figure 2. Special arcs are
labelled by a star.

The graph of position dependencies is used to defined “weak-acyclicity”, where
some cycles are forbidden.

Definition 18 (Weak-Acyclicity [FKMPO5]). Let R be a set of rules. R is
said to be weakly-acyclic if there is no cycle in the graph of position dependencies
of R that goes through a special arc.

Let us point out that a set of rules containing no existentially quantified
variables in rule heads is trivially weakly acyclic (because there is no special
arc). Such sets of rules (which can be seen as Datalog programs) are sometimes
called range-restricted.

Property 2. A weakly-acyclic set of rules is a finite expansion set.

The proof is done by upper-bounding for any fact F' and any weakly-acyclic set
of rules R the number of fresh existential variables in the core of the saturation
of F with R (by a double exponential with respect to R; the upper-bound is
polynomial if R is fixed).

Ezample 18. In the graph of Figure 2 (Example 17), no cycle goes through a
special edge, thus R is weakly acyclic. As such, R is a finite expansion set.

264 M.-L. Mugnier and M. Thomazo

This condition is sufficient to ensure the finiteness of forward chaining, but
not necessary, as witnessed by the following example.

Example 19. Let R be the following rule:

r(z,y) As(z,y) = r(z,v) Ar(w,y) A s(z,w) A s(v,y).

The graph of position dependencies is a clique of special edges, but an ap-
plication of R cannot trigger a novel application of R —hence, {R} is a finite
expansion set.

Acyclic Graph of Rule Dependency. The latter example motivates the
notion of rule dependency [BLMS11], which has originally been introduced for
conceptual graph rules [Bag04]. The main idea here is to characterize which rule
can effectively lead to trigger another rule. Preventing such cycles of dependen-
cies naturally ensures the finiteness of forward chaining.

Definition 19 (Dependency). Let Ry and Ry be two existential rules. Ry
depends on Ry if there exist a fact F, a homomorphism m from body(R;) to
F and a homomorphism mo from body(Rsg) to a(F, Ry, m) such that ma is not a
homomorphism from body(Rs) to F.

This definition means that an application of R; may, on some fact, trigger a
new application of Ry. All rule dependencies are summarized in the graph of rule
dependencies, whose definition is given below. It is possible to decide if a rule
depends on another, by using the notion of piece-unifier introduced in Section 4
[SM96, BLMS11]. The associated decision problem is NP-complete.

Definition 20 (Graph of Rule Dependencies). Let R be a set of rules. The
graph of rule dependencies of R, denoted by GRD(R) is defined as follows:

— its vertices are the rules of R,
— there is an arc from Ry to Ro if and only if Ry depends on Rj.

A set of rules R is said to have an acyclic graph rule of dependencies (aGRD)
if GRD(R) is acyclic. This is in particular the case for Example 20.

Example 20. Let us consider the following two rules:

— Ry =p(x) = r(z,y) Ar(y, 2) Ar(z,2),
— Ry = T(l‘,y) /\r(y,x) —>p(x)

Their graph of rule dependencies is given Figure 3.

Let us last notice that Examples 17 and 20 show that weak-acyclicity and
aGRD are incomparable criteria.

Ontology-Based Query Answering with Existential Rules 265

Fig. 3. The graph of rule dependencies of Example 20

Related Work. The two presented notions are only two examples of the vari-
ous acyclicity notions that have been introduced so-far. They have indeed been
generalized in a variety of ways, such as super-weak acyclicity [Mar09], join-
acyclicity [KR11], aGRD; [BMT11], as well as model-summarizing acyclicity
and model-faithful acyclicity [GHK*12]. The interested reader is invited to con-
sult [GHK™13], which among others contains a nice overview of the introduced
acyclicity notions.

5.2 Finite Unification Sets

As already noticed in Section 4, materializing the saturation, even when it is
theoretically possible, may not be practical due to its large size. Approaches
based on query reformulation have thus been proposed. We rely here on piece-
based query rewriting, presented in Section 4.

We recall that g2 = ¢1 if and only if there is a homomorphism from ¢; to g2,
which we denote by q1 > ¢2. Let ¢ be a BCQ, and Q be a sound and complete
UCQ-rewriting of ¢. If there exist ¢; and ¢» in Q such that ¢; > g2, then
0O\ {g2} is also a sound and complete rewriting of ¢. This observation motivates
the definition of cover of a set of first-order queries.

Definition 21 (Cover). Let Q be a set of Boolean conjunctive queries. A cover
of Q is a set Q° C Q such that:

1. for any q € Q, there is ¢’ € Q° such that ¢’ > q,
2. elements of Q° are pairwise incomparable with respect to >.

Ezample 21. Let Q = {q1 =r(z,y) Nt(y, 2),q2 = r(z,y) ANt(y,y),q3 = r(z,y) A
t(y,z) ANt(u,z)}. A cover of Q is {q1}. Indeed, ¢1 > g2 and ¢1 > g3, because for
1 € {2,3}, m; is a homomorphism from ¢; to ¢; where:

— mi2(z) = 2, T152(y) = mT12(2) =y, and
= m3(2) = 2, mo3(y) =y, mos(2) = 2.
We now define the class of finite unification sets, which is the main focus of

this section.

Definition 22 (Finite unification set). Let R be a set of existential rules. R
1s a finite unification set if it holds for any Boolean conjunctive query q that the
set of R-rewritings of q admits a finite cover.

Algorithm 1 is a generic breadth-first rewriting algorithm, that generates for
any query ¢ and any finite unification set R a sound and complete UCQ-rewriting

266 M.-L. Mugnier and M. Thomazo

of ¢ with respect to R. Generated queries are queries that belong to Q; at some
point; explored queries are queries that belong to Qp at some point, and thus,
for which all one-step rewritings are generated. At each step, a cover of explored
and generated queries is computed. This means that only most general queries
are kept, both in the set of explored queries and in the set of queries remaining
to be explored. If two queries ¢; and g2 are homomorphically equivalent, and
only ¢g; has already been explored, then ¢; is kept and ¢o is discarded. This is
done in order not to explore two queries that are comparable by the most general
relation — which ensures the termination of Algorithm 1.

Algorithm 1. A BREADTH-FIRST REWRITING ALGORITHM

Data: A fus R, a Boolean conjunctive query ¢
Result: A cover of the set of R-rewritings of ¢
Or = {q}; // resulting set
Or :={q}; // queries to be explored
while Qg # 0 do

Q. :=0; // queries generated at this rewriting step

for ¢; € O do

for R € R do

for u piece-unifier of ¢ with R do
Qi = Q: U B(qi, R, p);

Q° := cover(Qr U Qy);
Or := Q°\Qr; // select unexplored queries from the cover
Or == Q%

return Qp

Let us provide a step by step application of Algorithm 1.
Ezample 22. Let Re = {R1, Ra, R, R4, R5}, defined as follows:

— Ry :p(x) Ah(z) = s(z,y);
— Ry f(z) = s(z,y);

— Rs: fi(z) — s1(z,y);

— Ry :t(z,y) = Uy, z);

— Rs5:s1(z,y) = s(z,y);

and ¢, be the following Boolean query:
Ge = t(x1,22) A 8(21,23) A s(22,23)

Initially, O = Qp = {¢e = t(x1,22) A s(x1,23) A s(x2,z3)}. Since Qp is not
empty, we initialize Q; to the empty set, and consider every element of Qg. The
only element of Qg is ¢., so we add to Q; all possible rewritings of g.. These
are:

Ontology-Based Query Answering with Existential Rules 267

— q1 = t(z,z) A p(x) A h(z), by unifying with respect p1, which is defined by
({s(z1, z3), s(x2,23)},u1(x1) = ui(x2) = z,u1(z3) = y), and is a unifier of
qe With Ry;

— g2 = t(z,x) A f(x), with respect to pa = ({s(x1,23), s(x2,x3)}, u2(z1) =
us(x2) = x,u2(x3) = y) , unifier of g, with Ra;

— g3 = t(z2, 21) A\s(z1, 23) As(22, x3) with respect to puz = ({t(z1, z2), uz(21) =
y,ug(z2) = x), unifier of g, with Ry;

— qa = t(z1, x2)As1(21, 23) AS(x2, x3) With respect to pg = ({s(x1, z3)}, wa(y)
= z,us(x3) = y), unifier of ¢. with Rs;

— g5 = t(z1, v2)As(z1, x3) As1(x2, x3) with respect to us = ({s(xe, z3)}, us(x2)
= z,us(x3) = y), unifier of ¢. with Rs;

— g6 = t(z,x) As1(x, x3), with respect to pug = ({s(z1, x3), s(x2,x3)}, us(r1) =
ug(x2) = z,ug(xs) = y), unifier of ¢, with Rs;

Thus Q; = {q1.42,¢3,44,05,q6}. Q° is set to {qe,q1,42,93, 4,45, Gs}, since
none of the generated queries are comparable. Qp is set to {q1, 2, g3, ¢4, 5, g6 }
and Qf to Q°.

Algorithm 1 performs once more the while loop. @); is reinitialized to the
empty set, and all rewritings of Qg are rewritten. We thus explore every ¢; for
1 < 5. g1 and g2 are not unifiable with any rule. We then explore rewritings of
q3. The following queries can be obtained by a one step rewriting of gs:

g} = t(z,z) Ap(x) Ah(z),
@ = t(a,z) A f(2),
qg’ = t(x1,22) A s(x1,23) A s(x2, T3),
q =t(x,2) A sz, x3),
qg = t(xo,x1) A s1(x1,23) A s(x2,x3),

qg’ = t(z2, 1) A s(x1, 23) A s1(x2,23).

As for g4, the following rewritings are generable:
qf = t(xa,21) A s1(z1, 23) A s, 23),
g3 = t(x1,29) A s1(x1,23) A 51(2, 23).

From g¢5:

g7 = t(za,21) A s(z1,23) A s1(z2, 23),

qg = t(x1,x2) A s1(x1,23) A s1(22, 23).

268 M.-L. Mugnier and M. Thomazo

And from gg:

@ =t(z,z) A fi(z).

As illustrated by Figure 4, which explicits subsumption relations among
queries, a cover of the queries is {qc, q1, 92, g3, q, 45, G5, G5, 43, ¢5 }, which is the
new value of Q¢. Note that ¢ does not belong to Q¢, because the newly gener-
ated query ¢ is strictly more general than gg. Qp is set to {2, ¢¢, ¢3, 4%}, QF to
Q°, and Qp is explored, entering a new iteration of the while loop. Two queries
are generated:

¢ = t(xa, x1) A sz, 23) A s1(z2, x3),

and

q" = t(z,z) A f1(2).
At the end of this while loop, we have QO = {¢’} and

QF = {Qeaqla 42,493, 44, q5>q§’qg’q§? q?? q/}

Since all queries generable from ¢’ are covered by Q, the algorithm halts and
outputs:

{ge, a1, 92,03, 41, 45, 45, G5, 43, 45, '}

e @ @ B WU G ¢E G ¢ q

3
93 @ ¢ @ g @ @ I

Fig. 4. There is an arrow from ¢ to ¢’ if and only if ¢’ is more general than ¢

The following lemma is crucial for the completeness of Algorithm 1. It ensures
that for any queries ¢ and ¢’ such that ¢’ > ¢, any rewriting that can be obtained
in one step from g is less general than a rewriting that can be obtained in one step
from ¢’. A detailed discussion of what can happen when considering rewriting
procedures where this lemma does not hold can be found in [KLMT13].

Lemma 1 ([KLMT12]). Let ¢1 and g2 be two Boolean conjunctive queries such
that ¢ > g2. For any rewriting g4 of g2 such that g1 7 ¢4, there exists a rewriting
4y of i such that ¢ > ¢b.

Ontology-Based Query Answering with Existential Rules 269

Theorem 5. The output of Algorithm 1 is a sound and complete set of R-
rewritings of q.

Proof. We define a 1-rewriting of ¢ as a direct rewriting, and a k-rewriting of ¢
as a direct rewriting of a (k — 1)-rewriting for any k& > 2. We prove by induction
on k that for any ¢ < k, for any ¢; that is an i-rewriting of ¢, there is ¢f € Qp,,
that is, Qp after the ith loop such that ¢ > ¢;. The only 0-rewriting of ¢ is g,
which initially belongs to Qp, which proves the claim for k = 0. Let assume that
the claim is true for k, and let us show it for £+ 1. Let ¢;+1 be a i + 1-rewriting
of q. If i <k, gi41 is covered by an element of QF,,, by induction assumption.
Otherwise, let ¢; be a k-rewriting such that ¢;11 is a l-rewriting of ¢;. There
exists ¢; € QF, such that ¢ > ¢;. Lemma 1 ensures that there exists ¢j,; a
1-rewriting of ¢; such that g;\ ; > ¢;41, which ends the proof.

Backward-Shyness. As for finite expansion sets, the problem of recognizing
finite unification sets is undecidable. Several concrete classes of finite unification
sets are known, the most famous ones being the class of linear rules ([CGKO0S]
and also [BLMSO09], under the name of atomic-hypothesis rules) and the class of
sticky sets of rules [CGP10]. We present both classes of rules under the unifying
concept of “backward shy”? class of rules. To define that notion, we need the
notion of original and generated variables.

Definition 23 (Original and Generated Variables). Let q be a Boolean
congunctive query, R be a set of rules, and q' be an R-rewriting of q, obtained by
a rewriting sequence ¢ = qo, q1,- - -,qn = ¢ . Original variables of ¢’ (with respect
to q) are inductively defined as follows:

— all variables of q are original;
— if ¢; has original variables X, and q;+1 is the rewriting of q; with respect to

w = (q},u), the original variables of q;+1 are the images of the elements of
X by u.

A variable that is not original is generated.

Backward shyness of a set of rules R ensures that any query ¢ admits a finite
set of R-rewritings.

Definition 24 (Backward Shyness). Let R be a set of rules. R is to be said
backward shy if for any Boolean conjunctive query q, for any R-rewriting q' of
q, no generated variable of ¢’ appears in two atoms.

Property 3 provides an upper bound on the number of most general rewritings
of a query ¢ with respect to a backward shy set of rules.

* The term “backward shy” is not standard, and inspired from shy rules [LMTV12].
However, there is no inclusion between shy and backward shy rules.

270 M.-L. Mugnier and M. Thomazo

Property 3 (Backward Shy Rules are fus). Let R be a set of backward shy
rules, and ¢ a Boolean conjunctive query. There are at most 2P(It€rms(q)|+w)”
R-rewritings of ¢ that are not equivalent up to isomorphism, where w is the
maximum arity of a predicate and p is the number of predicates appearing in
the rules.

Proof. The number of distinct atoms with arguments the terms of ¢ and at most
w other terms is upper bounded by p(|terms(q)|+ w)™. Since a term that is not

a term of ¢ cannot appear in two different atoms, we obtain the claimed upper
bound.

Linear rules [CGK08, BLMS09] are rules whose body contains only one atom.
Let us observe that linear rules are backward shy.

Property 4. Any set of linear rules is backward shy.
Proof. The claim follows from the following two remarks:

— when a generated variable is introduced by a rewriting step, it appears in
exactly one atom;

— if = appears in k atoms of a query g before a rewriting with respect to
u=(q¢',u), then u(x) appears in at most k atoms in the rewriting of ¢ with
respect to p.

We now present sticky rules, which have been introduced as a decidability
criterion that may deal with non-guarded rules.

Definition 25 (Sticky Sets of Rules [CGP10]). Let R be a set of rules. We
iteratively mark the variables of the rule bodies of R according to the following
marking procedure. First, for each rule R € R, and each variable v € body(R),
we mark v if there is an atom a of head(R) such that v is not an argument of a.
We then apply until a fizpoint is reached the following step: for each rule R, if
a marked variable appears in body(R) at position (p,i), then we mark for each
rule R' each occurrence of the variables of body(R') that appear in head(R') at
position (p,i). R is said to be sticky if there is no rule R such that a marked
variable appears more than once in body(R).

Example 23 provides an example of sticky and non-sticky rules.
Example 23. Let Rq be a set of rules containing the following rule:
- T(.’ﬂ, y) A t(ya Z) — S(:Ea Z)

R1 is not sticky, since y is marked by the marking procedure, and appears twice
in a rule body. On the other hand, the set containing the following two rules is
sticky:

— r(z1,y1) ANt(yr, z1) = s(yr, ur)
— 8(w2,y2) = (Y2, 72)

Ontology-Based Query Answering with Existential Rules 271

Indeed, =1 and z; are marked at the initialization step. The propagation step
marks g9, because y, appears at the first position of r in the head of the second
rule, as x; which is already marked. Finally, z1, z; and y» are marked, and are
the only marked variables. Since none of these variables appears twice in a rule
body, this set of rules is sticky.

Property 5. Any sticky set of rules is backward shy.

Proof. We show Property 5 by induction on the length of the derivation. If ¢’ is
a one-step rewriting of ¢, then a generated variable is a variable that has been
created at this rewriting step. By the initialization step of the sticky marking,
such a variable appears at exactly one position, which is marked. Let assume
that the induction assumption holds for any k-rewriting of ¢, and let ¢’ be a k+1-
rewriting of q. Let g, be the k-rewriting of ¢ from which ¢’ has been rewritten.
A generated variable of ¢’ may appear for two different reasons: either it has
been generated at the last rewriting step, and the same reasoning as before
can be applied. Or it is a generated variable with respect to gx. By induction
assumption, it appears at a marked position. The stickiness property implies
that it appears also only once in ¢/, and at a marked position.

Related Work. The rewriting algorithm we presented in this section is only
one among several. We give here some pointers to several other rewriting al-
gorithms or rewriting tools. Among implemented tools, we can cite Clipper
[EOST12], Kyrie [MC13], QuOnto [ACGT05], Nyaya [GOP11], Rapid [CTS11],
Iqaros [VSS12], or the piece-based rewriting algorithm presented in [KLMT12].

5.3 Other Decidable Cases

Presenting algorithms that allow to deal with sets of rules ensuring neither the
finiteness of the canonical model nor the existence of a sound and complete first-
order rewriting is out of the scope of that short course. We give however a quick
overview of topics that have been studied and relevant references.

Bounded Treewidth Sets. Most of the known decidable cases that are neither
finite unification sets nor finite expansion sets are bounded treewidth sets. This
class of rules, once again not recognizable, is based on the structural property
of the facts that are generated starting from any fact. Definition 26 introduces
formally this notion.

Definition 26 (Bounded treewidth set). A set of rules R is called a bounded-
treewidth set (bts) if for any fact F, there exists an integer b = f(F,R) such
that for any R-derivation F' of F, the treewidth of core(F') is less or equal
to b.

The most prominent example of a bounded treewidth set of rules is that of
a set of guarded rules. A rule is guarded if its body contains a guard, that

272 M.-L. Mugnier and M. Thomazo

is, an atom that contains all the body variables. The original algorithm for
conjunctive query answering under guarded sets of rules performs a traditional
forward chaining and stops it after a number of steps which is a function of the
sizes of the rule set and the query [CGKO8]. Several extensions of the notion of
guarded rules have been proposed in the literature, for instance by exploiting
the graph of position dependencies (Definition 17) in order to restrict the set
of body variables that needs to be guarded. The interested reader can consult
[CGKO08, KR11, TBMR12] for more details about these restrictions and associ-
ated algorithms.

Outside of the Classification and Combinations. Even if the three intro-
duced classes cover most of the known decidable class so far, some classes are
outside of this classification. It is in particular the case for parsimonious sets
of rules [LMTV12], which is an abstract class in its own right. Another popular
way of getting sets of rules that do not fall in the afore mentioned classification
is to combine decidable classes of rules. “Raw” combination usually leads to un-
decidability, but several restrictions have been proposed in the literature. One
can distinguish two kinds of combinations: generic combination, which relies on
abstract properties of rule sets and interaction between them, and “built-in”
combination, which looks at specific classes and restrict the way they interact.
In the first case, the already seen graph of rule dependencies may be used to
split the study of a rule set into the study of the sets that are formed by its
strongly connected components. In the second category, weakly-sticky sets of
rules [CGP10] and tameness [GMP13] have been proposed, allowing to combine
(under some restrictions) sticky sets of rules with weakly-acyclic sets of rules for
the former, and with guarded rules for the latter.

6 Ongoing Research and Open Issues

We finish this course by presenting two current research issues, that both need
to be tackled in order to obtain practical systems. The first one deals with the
shortcomings of current query rewriting techniques. Indeed, experiments made
with the first rewriting tools have shown the rewritings to be of enormous size,
which could not even be passed to an RDMS for execution. How to circumvent
that problem? This is an intricate issue, that raises both theoretical and practical
work, and that we will touch upon in Section 6.1.

Then, we will consider the important topic of inconsistent data. Given the
usually cited Semantic Web application area, it is highly probable that the data
a user will want to use is inconsistent with respect to an ontology encompassing
both existential rules and negative constraints. This raises a non-trivial problem,
since the classical semantics of first-order logic does not allow to draw meaning-
ful, or at least intuitive, results in the presence of any inconsistency. We will
present some alternative semantics in Section 6.2.

Ontology-Based Query Answering with Existential Rules 273

6.1 Query Rewriting: Any Useful in Practice?

Behind this rather provocative title hides a serious question: how efficient can
query answering systems based on query rewriting be in practice? It is widely
accepted that RDMS are well optimized and efficient in practice. However, the
use of ontologies in order to perform query rewriting modifies the scope of what
can be called a real-world query. We first quickly exhibit what the problem is,
and present some of the approaches that have been proposed in order to over-
come it. Last, we touch upon benchmarking problems.

Large Size of First-Order Rewritings. Since the evaluation of Boolean con-
junctive queries is a NP-hard problem, stating that RDMS are efficient means
that they are efficient on real-world queries, that is, queries that a user may try
to evaluate. In particular, such queries are usually of easy structure and of small
size. When adding an ontology, even when starting from a simple ontology and
a simple query, one may be led to evaluate a huge union of conjunctive queries,
as can be noticed with the following example.

Ezample 24. Let R = {R;}1<i<n, where R; : ri(z,y) — ri—1(z,y). Let ¢ be the
following query:

ro(21,22) Aro(T2, x3).

q has a UCQ-rewriting with (n+1)? conjunctive queries, which are {r;(z1, x2)A
rj (22, 23) fo<i j<n-

Example 24 can be generalized by taking a query of k atoms and classes/roles
having n subclasses/subroles. This would yield an optimal UCQ-rewriting with
(n+1)* conjunctive queries. This cannot be considered as a small query anymore,
and existing systems are not able to deal with such huge queries. Moreover, it has
been shown that the exponential size of the rewritings also holds for so-called
pure first-order rewritings. The interested reader is invited to consult, among
others, [KKPZ12].

Alternative Approaches. Two approaches have been proposed in order to
escape from this problem of rewriting size, with the additional constraint of not
changing the data. First, changing the target language in which rewritings are
expressed. Instead of unions of conjunctive queries, one may use other forms of
first-order formulas [Thol3], or Datalog rewritings [RA10]. This may allow to
reduce the size of the rewritings in some common cases (such as for large class
hierarchies), or for a whole class of ontologies. In particular, it was shown that
for a wide class of ontologies, which in particular include linear and sticky rules,
there exists a polynomial non-recursive Datalog rewriting for any query [GS12].
These rewritings, however, are not claimed to be efficiently evaluable.

Another approach is to reduce the scope of the rewritings: that is, instead
of providing sound and complete answers on any database, the rewriting tech-
nique will provide sound and complete answers only on databases that fulfill

274 M.-L. Mugnier and M. Thomazo

some additional constraints. In particular, it may be possible in some settings
to assume that the database is already complete with respect to some database
dependencies. In the case of a rewriting taking the form of a set of conjunctive
queries, this would imply that some of the conjunctive queries that are part of
this set are not required, and one could ignore them. The interested reader is
invited to consult [Ros12, RMC12] for more details.

Benchmarking Problems. An additional problem when one wants to evaluate
or compare different approaches is the current lack of benchmarks. Ideally, a test
case would contain an ontology, some data, and a conjunctive query. Unfortu-
nately, such trios are not widely available. The benchmark classically used since
[PUHMO9] to evaluate query rewriting algorithms is composed of five ontologies,
with five queries each, and no associated data. The most used ontology is LUBM
5 and several adaptations of it have been proposed [RMC12, LSTW12], together
with data generators. The small number of queries in the benchmark is already
a serious weakness. This has already been noticed, and a recent paper proposed
an automatic generation of relevant queries in order to test soundness and com-
pleteness of algorithms [ISG12]. Recently, more expressive real-world ontologies
(expressed thanks to Description Logics) have been used for the evaluation of
query rewriting [TSCS13|. However, once again queries are hand-crafted and no
data are available.

6.2 Dealing with Inconsistent Data

In a setting where data come from several heterogeneous and possibly unchecked
sources, it is highly probable for the knowledge base to be inconsistent. An
example of inconsistent knowledge base is presented in Example 25.

Example 25. Let us consider the following fact:

F = {cat(Tom), barks(Tom)},
and the following rules:
— barks(z) — dog(x)
— cat(z) — animal(x)
— dog(z) — animal(x)
Last, let us specify that the classes dog and cat are disjoint, thanks to the
following negative constraint:

dog(x) A cat(z) — L.

According to the classical first-order semantics, the answer to any Boolean
query is yes, since the given knowledge base is inconsistent. This is somehow
counterintuitive, and alternative semantics have been proposed in order to pro-
vide a more intuitive behavior [LLR 10, LMS12]. We present two of them in the
following, which are based on the notion of repair.

® http://swat.cse.lehigh.edu/projects/lubm/

http://swat.cse.lehigh.edu/projects/lubm/

Ontology-Based Query Answering with Existential Rules 275

Definition 27 (Repair). Let R be a set of rules, C be a set of constraints, and
F be a fact. A repair of F (with respect to R and C) is a mazimal subset F' of
F such that F',R,C [~ L.

Given this definition of a repair, one can define a semantics for consistent
query answering as follows: the query should be entailed by any repair together
with the set of rules.

Definition 28 (AR semantics). Let R be a set of rules, C be a set of con-
straints, F' be a fact and q be a Boolean conjunctive query. K entails q for the
AR semantics if for every repair F' of F with respect to R and C, it holds that
F''R Eq.

A more conservative semantics requires for the query to be entailed by the
intersection of all the repairs together with the set of rules. Intuitively, this
means that any atom that may lead to some contradiction is ignored during the
reasoning.

Definition 29 (IAR semantics). Let R be a set of rules, C be a set of con-
straints, F' be a fact and q be a Boolean conjunctive query. IC entails q for the
AR semantics if it holds that Frn, R |E q, where Fn is the intersection of all the
repairs of F with respect to R and C.

Let us exhibit the difference in the behavior of the two semantics on an ex-
ample.

Ezxample 26. Let us consider again the knowledge base of Example 25. There
are two repairs: F1 = {cat(Tom)} and F» = {barks(Tom)}. Let us consider
the query ¢ = animal(Tom). According to the AR semantics, ¢ is entailed by
the knowledge base, since ¢ is entailed by F} and R as well as by Fy and R.
However, since the intersection between F; and Fj is empty, ¢ is not entailed by
KC according to the TAR semantics.

Let us note that the problem of consistent conjunctive query answering under
AR semantics is intractable (i.e., not polynomial) with respect to data complex-
ity [LLR ™10, Biel2], even for ontology languages as inexpressive as DL-Litecore.
An idea to overcome this hardness result has been to develop “approximation
schemes” for AR-semantics, that is, to provide two families of efficiently com-
putable semantics that upper and lower bound AR-semantics, while converging
towards it [BR13]. However, the design and implementation of efficient consistent
query answering algorithms remains an open issue.

References

[ACG'05] Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M.,
Palmieri, M., Rosati, R.: Quonto: Querying ontologies. In: AAAI, pp. 1670—
1671 (2005)

276 M.

[ACKZ09]
[AHV95]
[Bag04]
[BBLO3]

[BCM*07]

[Biel2]
[BLMS09)]

[BLMS11]

[BM02]

[BMT11]

[BR13]

[BVS1]

[CGKOS]

[CGL*05]

[CGL*07]

[CGLO0Y]

[CGP10]
[CLMS81]
[CMO09)]

[CTS11]

[EOSt12]

-L. Mugnier and M. Thomazo

Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-
Lite family and relations. J. Artif. Intell. Res (JAIR) 36, 1-69 (2009)
Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-
Wesley (1995)

Baget, J.-F.: Improving the forward chaining algorithm for conceptual
graphs rules. In: KR 2004, pp. 407-414. AAAT Press (2004)

Baader, F., Brandt, S., Lutz, C.: Pushing the ££ envelope. In: IJCAI, pp.
364-369 (2005)

Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M.,
Palmieri, M., Rosati, R.: Quonto: Querying ontologies. In: AAAI, pp. 1670—
1671 (2005)

Bienvenu, M.: On the complexity of consistent query answering in the pres-
ence of simple ontologies. In: AAAT (2012)

Baget, J.-F., Leclere, M., Mugnier, M.-L., Salvat, E.: Extending Decidable
Cases for Rules with Existential Variables. In: IJCAI, pp. 677-682 (2009)
Baget, J.-F., Leclere, M., Mugnier, M.-L., Salvat, E.: On Rules with Ex-
istential Variables: Walking the Decidability Line. Artif. Intell. 175(9-10),
1620-1654 (2011)

Baget, J.-F., Mugnier, M.-L.: The Complexity of Rules and Constraints. J.
Artif. Intell. Res (JAIR) 16, 425-465 (2002)

Baget, J.-F., Mugnier, M.-L., Thomazo, M.: Towards farsighted dependen-
cies for existential rules. In: Rudolph, S., Gutierrez, C. (eds.) RR 2011.
LNCS, vol. 6902, pp. 30-45. Springer, Heidelberg (2011)

Bienvenu, M., Rosati, R.: Tractable approximations of consistent query
answering for robust ontology-based data access. In: IJCAI (2013)

Beeri, C., Vardi, M.: The implication problem for data dependencies. In:
Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73-85. Springer,
Heidelberg (1981)

Cali, A., Gottlob, G., Kifer, M.: Taming the Infinite Chase: Query Answer-
ing under Expressive Relational Constraints. In: KR, pp. 70-80 (2008)
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.:
Dl-lite: Tractable description logics for ontologies. In: AAAI, pp. 602-607
(2005)

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.:
Tractable reasoning and efficient query answering in description logics: The
DL-lite family. J. Autom. Reasoning 39(3), 385-429 (2007)

Cali, A., Gottlob, G., Lukasiewicz, T.: A General Datalog-Based Frame-
work for Tractable Query Answering over Ontologies. In: PODS, pp. 77-86.
ACM (2009)

Cali, A., Gottlob, G., Pieris, A.: Query rewriting under non-guarded rules.
In: AMW (2010)

Chandra, A.K., Lewis, H.R., Makowsky, J.A.: Embedded implicational de-
pendencies and their inference problem. In: STOC, pp. 342-354 (1981)
Chein, M., Mugnier, M.-L.: Graph-based Knowledge Representation: Com-
putational Foundations of Conceptual Graphs, 1st edn. Springer (2009)
Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL
2 QL. In: Bjgrner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS,
vol. 6803, pp. 192-206. Springer, Heidelberg (2011)

Eiter, T., Ortiz, M., Simkus, M., Tran, T.-K., Xiao, G.: Query rewriting
for horn-shiq plus rules. In: AAAT (2012)

[FKMPO5]

[GHK"12]

[GHK'13]

[GMP13]
[GOP11]
[GS12]
1SG12]
[KKPZ12]

[KLMT12]

[KLMT13]

[KR11]

[LLR*10]

[LMS12]
[LMTV12]

[LSTW12]

[LTWO09)]

[Mar09]
MC13]

[OWLOY]

Ontology-Based Query Answering with Existential Rules 277

Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics
and Query Answering. Theor. Comput. Sci. 336(1), 89-124 (2005)

Grau, B.C., Horrocks, 1., Krotzsch, M., Kupke, C., Magka, D., Motik, B.,
Wang, Z.: Acyclicity conditions and their application to query answering
in description logics. In: KR (2012)

Grau, B.C., Horrocks, 1., Krotzsch, M., Kupke, C., Magka, D., Motik, B.,
Wang, Z.: Acyclicity notions for existential rules and their application to
query answering in ontologies. J. Artif. Intell. Res (JAIR) 47, 741-808
(2013)

Gottlob, G., Manna, M., Pieris, A.: Combining decidability paradigms for
existential rules. TPLP 13(4-5), 877-892 (2013)

Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and opti-
mization. In: ICDE, pp. 2-13 (2011)

Gottlob, G., Schwentick, T.: Rewriting ontological queries into small non-
recursive datalog programs. In: KR (2012)

Imprialou, M., Stoilos, G., Grau, B.C.: Benchmarking ontology-based query
rewriting systems. In: AAAT (2012)

Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.: Long
rewritings, short rewritings. In: Description Logics (2012)

Konig, M., Leclere, M., Mugnier, M.-L., Thomazo, M.: A sound and com-
plete backward chaining algorithm for existential rules. In: Krétzsch, M.,
Straccia, U. (eds.) RR 2012. LNCS, vol. 7497, pp. 122-138. Springer, Hei-
delberg (2012)

Konig, M., Leclere, M., Mugnier, M.-L., Thomazo, M.: On the exploration
of the query rewriting space with existential rules. In: Faber, W., Lembo,
D. (eds.) RR 2013. LNCS, vol. 7994, pp. 123-137. Springer, Heidelberg
(2013)

Krétzsch, M., Rudolph, S.: Extending decidable existential rules by joining
acyclicity and guardedness. In: IJCAI, pp. 963-968 (2011)

Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-
tolerant semantics for description logics. In: Hitzler, P., Lukasiewicz, T.
(eds.) RR 2010. LNCS, vol. 6333, pp. 103-117. Springer, Heidelberg (2010)
Lukasiewicz, T., Martinez, M.V., Simari, G.I.: Inconsistency handling in
datalog+/- ontologies. In: ECAI (2012)

Leone, N., Manna, M., Terracina, G., Veltri, P.: Efficiently computable
datalog; programs. In: KR (2012)

Lutz, C., Seylan, I., Toman, D., Wolter, F.: The combined approach to
OBDA: Taming role hierarchies using filters. In: Alani, H., et al. (eds.)
ISWC 2013, Part I. LNCS, vol. 8218, pp. 314-330. Springer, Heidelberg
(2013)

Lutz, C., Toman, D., Wolter, F.: Conjunctive Query Answering in the
Description Logic ££ Using a Relational Database System. In: IJCAI, pp.
2070-2075 (2009)

Marnette, B.: Generalized schema-mappings: from termination to tractabil-
ity. In: PODS, pp. 13-22 (2009)

Mora, J., Corcho, O.: Engineering optimisations in query rewriting for
obda. In: .SEMANTICS, pp. 41-48 (2013)

W3C OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation (2009),
http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/

278 M.-

L. Mugnier and M. Thomazo

[PUHMO09] Pérez-Urbina, H., Horrocks, 1., Motik, B.: Efficient query answering for

[RA10]
[RMC12]

[Ros12]

[SM96]
[TBMR12]
[Thol3]
[TSCS13]

[VSS12]

OWL 2. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., May-
nard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 489-504. Springer, Heidelberg (2009)

Rosati, R., Almatelli, A.: Improving query answering over dl-lite ontologies.
In: KR (2010)

Rodriguez-Muro, M., Calvanese, D.: High performance query answering
over DL-lite ontologies. In: KR (2012)

Rosati, R.: Prexto: Query rewriting under extensional constraints in DL
— lite. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V.
(eds.) ESWC 2012. LNCS, vol. 7295, pp. 360-374. Springer, Heidelberg
(2012)

Salvat, E., Mugnier, M.-L.: Sound and complete forward and backward
chainingd of graph rules. In: ICCS, pp. 248-262 (1996)

Thomazo, M., Baget, J.-F., Mugnier, M.-L., Rudolph, S.: A generic query-
ing algorithm for greedy sets of existential rules. In: KR (2012)

Thomazo, M.: Compact rewriting for existential rules. In: IJCAT (2013)
Trivela, D., Stoilos, G., Chortaras, A., Stamou, G.B.: Optimising
resolution-based rewriting algorithms for dl ontologies. In: Description Log-
ics, pp. 464-476 (2013)

Venetis, T., Stoilos, G., Stamou, G.B.: Incremental query rewriting for
OWL 2 QL. In: Description Logics (2012)

	An Introduction to Ontology-Based Query Answering with Existential Rules
	1
Ontology-Based Query Answering
	2
Fundamental Notions on Conjunctive Query Answering and Positive Rules
	2.1
Basic Logical Notions
	2.2
The Positive Existential Conjunctive Fragment of FOL
	2.3
Facts and Conjunctive Queries
	2.4
Adding Positive Range-Restricted Rules

	3
Existential Rules
	3.1
The Framework of Existential Rules
	3.2
Relationships to Lightweight Description Logics

	4
Main Approaches to Ontology-Based Query Answering
	4.1
Materialization-Based Approach
	4.2
Query Rewriting Approach

	5
Decidable Classes of Rules and Algorithmic Techniques
	5.1
Finite Expansion Sets
	5.2
Finite Unification Sets
	5.3
Other Decidable Cases

	6
Ongoing Research and Open Issues
	6.1
Query Rewriting: Any Useful in Practice?
	6.2
Dealing with Inconsistent Data

