
Introduction to Graph Databases

Josep Llúıs Larriba-Pey1, Norbert Mart́ınez-Bazán2,
and David Domı́nguez-Sal2

1 DAMA-UPC, BarcelonaTech, Barcelona, Spain
larri@ac.upc.edu

2 Sparsity Technologies, Barcelona, Spain
{nortbert,david}@spartisty-technologies.com

Abstract. The use of graphs in analytic environments is getting more
and more widespread, with applications in many different environments
like social network analysis, fraud detection, industrial management,
knowledge analysis, etc. Graph databases are one important solution
to consider in the management of large datasets. The course will be ori-
ented to tackle four important aspects of graph management. First, to
give a characterization of graphs and the most common operations ap-
plied on them. Second, to review the technologies for graph management
and focus on the particular case of Sparksee. Third, to analyze in depth
some important applications and how graphs are used to solve them.
Fourth, to understand the use of benchmarking to make the requirements
of the user compatible with the growth of the technologies for graph
management.

1 Introduction to Graphs

A graph G is an ordered pair G = (V,E) consisting of a set V of nodes (vertices)
together with a set E of relationships (edges), where E ⊆ V × V . In addition to
the plain definition of graph, there are some characteristics that are relevant to
mention and that will be useful for defining graph data models upon which we
develop this paper. We summarize them in the following points.

– Attributes: Different types of information may be associated to nodes and
edges in order to enrich the graph-based representation. Such information is
typically a string or numerical values, which indicate some properties of the
nodes or their edges. However any other type of information such as enumer-
ated values or vectors might be also used. For instance, for the particular
case of edges, some graphs include numerical attributes that quantify the re-
lationship, which is usually interpreted as its corresponding length, weight,
cost or intensity. Moreover, many applications assign a unique identifier for
each node and edge of the graph (this could be interpreted as an attribute
called ”ID”), useful for enumeration purposes. The information attached to
nodes and edges can be very influential in the result of an algorithm or
analysis, thus taking into account this information is very critical.

M. Koubarakis et al. (Eds.): Reasoning Web 2014, LNCS 8714, pp. 171–194, 2014.
c© Springer International Publishing Switzerland 2014

172 J.L. Larriba-Pey, N. Mart́ınez-Bazán, and D. Domı́nguez-Sal

– Directed: The relation between two nodes can be symmetric or not, depend-
ing on the problem at hand. If the relation is symmetric, it has no particular
direction, it is then called undirected. On the contrary, if the relation is not
symmetric, edges differentiate between the head and the tail. The tail of the
edge is the node from which the edge starts, and the head of the edge is the
node which the edge points to. In this case the edges are said directed. Since
an undirected edge can be always represented as two directed edges, each
one in a reverse direction of the other, undirected graphs are a particular
case of directed graphs. This property will determine some measures over
graphs, such as connectivity or path lengths are computed.

– Labels: In certain applications, different labels (or types) of nodes and edges
may be considered. Such labeling or typing impacts the result of operations.
For example, in a social network scenario, friendship relationships may be ei-
ther “positive” or “negative” [1], drastically changing the outcome of certain
algorithms.

– Multigraphs: Multigraphs are graphs in which two nodes can be connected
by more than one edge. This situation commonly appears when two nodes
are connected through different types of relationships. For instance, in a
mobile telephone network, where phone numbers are represented by nodes
and telephone calls by edges, each call between two phones (nodes) might
be represented by a particular edge, thus leading to nodes connected with
more than one edge when more than one call exists between two telephone
numbers.

– Hypergraphs: Hypergraphs are a generalization of graphs, where edges are
substituted by hyperedges. In contrast to regular edges, a hyperedge connects
an arbitrary number of nodes instead of two. Hypergraphs are used, for ex-
ample, for building artificial intelligence models [2]. Although Hypergraphs
appear commonly along different types of networks, in practice they are usu-
ally represented as bipartite networks [3], since it facilitates its representation
and posterior treatment by the algorithms.

– Hypernodes: A hypernode graph is another graph generalization, where
nodes are substituted by hypernodes. A hypernode is an entity that con-
tains a set of nodes and edges (i.e. a graph). A regular node is equivalent to
an hypernode that contains a single node and no edges [4]. Hypernodes are
used to nest graphs inside graphs. They represent both simple and complex
objects such as hierarchical, composite and cyclic objects, as well as map-
pings and records. A key feature is that they have the inherent ability to
encapsulate information.

Hypergraphs and hypernodes are formally well defined, but their popularity
is limited because of their additional complexity. Unless otherwise stated, in
this paper we will suppose directed attributed multigraphs. We will denote the
number of nodes in a graph by n and the number of edges by m.

Introduction to Graph Databases 173

1.1 Graph Characterization

Real graphs are typically very different from graphs following the Erdös-Renyi
model (random graphs) [5]. Leskovec et al. [6], analyzed over 100 real-world
networks belonging to the following fields: social networks, information/citation
networks, collaboration networks, web graphs, Internet networks, bipartite net-
works, biological networks, low dimensional networks, actor networks, and
product-purchaser networks. The size of those networks varied from a few hun-
dred nodes to millions of nodes, and from hundreds to more than one hundred
million edges. We note that although they might seem large, the graph data
sets of some current real applications are significantly larger: for example Flickr
accounts more than 6 billion photographs that can be tagged and rated [7], and
Facebook is publishing more than 25 billion pieces of content each month. For
these large graphs, one of the most interesting aspects is that in general most
graph metrics (such as the node degree or the edge weight) follow power law
distributions [6, 8, 9], and hence some areas of the graph are significantly denser
than others.

With respect to the characterization of graphs, we summarize some properties
that often appear in these real graphs [10], and that will be useful to characterize
the graphs from in the use cases below.

– Large Component: This property states that for undirected graphs, there
is typically a large component that fills most of the network (usually more
than 50% and not infrequently 90%), while the rest of the network is divided
into a large number of small components disconnected from the rest. There
can be networks where there is only one component filling all the network
(for instance Internet, or WWW if acquired from one single crawler). For
directed networks, there is usually one large weakly connected component
and other small ones in a similar way as in the undirected case. For strongly
connected components there is typically one strongly connected component
and a selection of small ones (for instance, in WWW network, the largest
strongly connected component fills about 25% of the network). Associated
with each strongly connected component there is an out-component and an
in-component. Acyclic networks do not have strongly connected components.
Citation networks for instance, which are considered almost acyclic, have few
small strongly connected components of 2-3 nodes but not larger ones.

– Small-World Property: A small-world network is a type of network in
which most nodes are not neighbors of one another, but most nodes can be
reached from every other by a small number of hops or steps. In other words,
the average diameter of each connected component is small. That is, from
a given node there is a short path to reach the majority of the remaining
nodes in the connected component. One interesting property of the small-
world networks is that the distance L between two randomly chosen nodes
in the same component grows proportionally to the logarithm of the number
of nodes n in the network, i.e. L ∝ log(n), which means that even for huge
networks the diameter remains very low compared to the number of nodes
in the network.

174 J.L. Larriba-Pey, N. Mart́ınez-Bazán, and D. Domı́nguez-Sal

– Scale-Free Networks: Although the exact connection patterns between
nodes may differ between graphs, the macroscopic structure of the degrees
is often very regular and fits known statistical distributions. We denote the
degree of a node as k, or in other words the number of edges attached to
that node. Then, the proportion of nodes of the graph that have degree k is
pk = # nodes with degree k

n . Thus, pk can also be seen as the probability that
a randomly chosen node has degree k.
Degree distributions from graphs typically follow power law distributions,
that correlate exponentially the number of nodes with a given degree to its
frequency. The most popular statistical distribution is the Zipf that defines
pk = C ·k−α, where C is a normalization factor. These distributions are often
plot in logarithmic scale because they trace a straight line since ln(pk) =
−α · ln(k) + ln(C). The most common values for α are between 2 ≤ α ≤ 3
(see [3] for a complete list of networks with the corresponding values of α).
We note that, for some graphs, the Zipf distribution does not model well
the nodes with few connections (do not fit well the straight line), and an
alternate process called Zipf with cut-off is used. This procedure removes
the small degree nodes when the α for a Zipf is estimated.
Networks that follow power-law degree distributions are called scale-free net-
works because their degree distribution look similar for all graph sizes. To
give an example, in the Internet network[3], most of the nodes have small
degrees but there is a tail containing some nodes with high degree (the high-
est degree is 2407, which means that such node is connected to about 12%
of the nodes in the network). Such well connected nodes are called hubs.

– Small Average Degree: The maximum average degree of a graph is (n−
1) = O(n), which corresponds to a structure called clique that connects all
pairs of nodes. These graphs are described as dense because they have many
edges. However, the study of real graphs has determined that such dense
graphs are not common for real datasets [11]. Graphs that represent real
world data have an average degree that is small compared to the number of
nodes in the graph. The average degree typically remains in the range be-
tween 3 and 100, even for graphs with millions of nodes [12]. For graphs that
grow over time, it has been found that the average degree tends to increase
slightly faster than the number of nodes [11], but the growth is so slow that
it is rare to find real graphs with average degrees over a thousand [12].
Graphs with small average degree are also referred as sparse graphs. The
notion of sparse comes from the matrix representation of the graph, which
indicates with one the presence of an edge, and zero otherwise. Sparse matri-
ces are those that have a large number of zeros, and similarly, sparse graphs
are those whose matrix representation has a large number of zeroes.

– Large Clustering Coefficient: Graphs from real datasets have often a
clustering coefficient larger than expected by pure chance. This is an effect
of transitive relations among members of the network. In other words, “the
friends of my friends are also my friends”. Graphs usually have observable
communities that are groups of nodes structurally strongly related among
them, but not structurally related to the rest of the graph.

Introduction to Graph Databases 175

1.2 Graph Operations and Queries

A graph operation is a computation on the graph that is directly interpreted by
the engine of the GDB. A graph query is a user statement that requests a piece
of information from the database, which requires one or more operations to be
computed.

There is a set of basic operations that is available in most GDBs, which
includes: (i) get atomic information from the graph such as getting a node,
getting the value of an attribute of an edge, or getting the neighbor nodes of
a specific node; and (ii) create/update/delete the nodes/edges/attributes of the
graph.

Then, there are graph queries that are more complex and which are built on
top of those basic operations. Some GDBs implement subsets of graph queries,
such as graph traversals, as operations that are directly interpreted by the GDB.
Therefore, depending on the software under analysis some queries can be referred
as operations, too. The most common families of graph queries are the following:

– Traversals: Traversals are queries that, given a set of starting nodes, explore
recursively the neighborhood of those nodes until a terminating condition,
such as a fixed number of steps or the arrival to a target node, is fulfilled.
Consider for instance, the computation of the shortest path between two
nodes, which is the shortest sequence of edges (or the smallest addition of
edge weights in the case of weighted graphs) that connects two nodes. In a
directed graph the direction is restricted to outgoing edges from the tail to
the head. Note that shortest paths may be constrained by the value of some
node or edge labels/attributes, as in the case of finding the shortest route
from two points, avoiding a certain type of road, for instance. Another typical
traversal query is the computation of k-hops. That is the query returns all
the nodes that are at a distance of k edges given a source node. A particular
case that is worth to mention because it is widely used in other queries is
the 1-hops (i.e k = 1). In this case, the query returns all the neighbors of the
source node, also known as the neighbors of the node. Examples of queries
using 1-hops include calculating the nearest neighborhood in recommender
systems, obtaining a particular user’s neighborhood with similar interest, or
in web ranking using hubs and authorities.

– Graph Metrics: The objective is basically the study of the topology of the
graph in order to analyze their complexity and to characterize graph objects.
It is used for instance to verify some specific data distributions, to evaluate
a potential match of a specific pattern, or to get detailed information of
the role of nodes and edges. In several situations graph measurement is the
first step of the analytical process and it is widely used in social network
analysis and protein interaction analysis. Typical graph metrics include: the
hop-plot, which, given a source node, measures the rate of increase of the
neighborhood depending on the distance to such source node; the diameter,
that is, the largest distance between any pair of vertices in the graph; the
effective diameter, which is defined as the minimum number of hops in which

176 J.L. Larriba-Pey, N. Mart́ınez-Bazán, and D. Domı́nguez-Sal

90% of all connected pairs of nodes can reach each other; the density, i.e. the
portion of all possible edges currently present in the graph; or the clustering
coefficient, which measures the degree of transitivity of the graph.

– Component Finding: A connected component is a subgraph of the original
graph in which there exists a path between any pair of its nodes. With this
definition at hand, it is straightforward to see that a node only belongs to
a single connected component of the graph. Finding the connected compo-
nents of a graph is of capital importance in many queries, and it is usually
used during pre-processing steps in order to help further computations. Re-
lated to connected components, there are some helpful queries to study the
vulnerability of a graph, or the probability to separate a connected compo-
nent into two other components. For instance, finding bridges, that are edges
whose removal would imply separating a connected component, is important
in many applications. Another example is the cohesion of the graph which
can be computed by finding the minimum number of nodes that disconnect
the component if removed.

– Community Detection: A community (or cluster) is generally considered
to be a set of nodes densely connected among them and poorly connected to
nodes outside the community. This effect has been found in many real-world
graphs, especially social networks, where people tend to form compact groups
having similar profiles in terms of hobbies, jobs, etc. Algorithms for finding
communities include the minimum-cut method, dendograms (communities
formed through hierarchical clustering), methods based on clique detection
or other clustering techniques, such as the k -means clustering algorithm.

– Centrality Calculation: Within the scope of graph theory and network
analysis, centrality measures aim at determining the relative importance of
a vertex within the graph, based on how well this node connects the network.
For instance, in a social network, the centrality of a node would mean how
influential a person is within the social network, or how well-used a road is
within an urban network. The most well-known centrality measures are the
degree (number of links incident upon a node), closeness (which measures
the mean distance from a vertex to other vertices) and betweenness (that
quantifies the number of times a node acts as a bridge along the shortest
path between two other nodes) centrality.

– Pattern Matching: Graph matching is the specific process of evaluating
the structural similarity of two graphs, and is usually categorized into ex-
act and approximate graph matching. Exact matchings may include finding
homomorphisms or (subgraph) isomorphisms. Approximate matchings may
include error-correcting (subgraph) isomorphisms, distance-based matching,
etc. Thus pattern matching queries aim at answering whether a given pat-
tern (graph), matches (in one of the different matching variants) a part of
another graph.

– Graph Anonymization: The anonymization process generates a new graph
with properties similar to the original one, avoiding potential intruders to rei-
dentify nodes or edges. This problem gets more complex when the nodes and
edges contain attributes. The anonymization of graphs becomes important

Introduction to Graph Databases 177

when several actors exchange datasets that include personal information. To
give a couple of examples, two anonymization procedures are the k -degree
anonymity of vertices, or the k -neighborhood anonymity, which guarantees
that each node must have k others with the same (one step) neighborhood
characteristics.

– Other Queries: There are other queries related to the applications pre-
sented later in this paper. For instance, finding similarity between nodes in
a graph has shown to be very important in social network analysis. An ex-
ample of this is structural equivalence, which refers to the extent to which
nodes have a common set of linkages to other nodes in the system. Also,
specially for recommendation systems, ranking the nodes of a graph is an
important issue (for instance PageRank).

We summarize the previously described operations and queries in Table 1.
We note that these graphs operations and queries are not homogeneous from
the computational complexity point of view, because they range from constant
time to NP-complete complexity. We observe that applications compute a rich
set of complex graph queries, using a small set of basic operations that are shared
by all scenarios.

2 Graph Databases

A graph database (GDB) is any storage system that uses graph structures with
nodes, edges, and properties to represent and store data. Some graph database
industrial projects are, for example, Neo4J1, a Java-based open-source graph
database engine; Sparksee2, a multi-platform graph database management sys-
tem for efficient graph management in memory constrained environments; Hy-
perGraphDB3, an embeddable graph database with generalized hypergraphs;
OrientDB4, an open source document-graph database; or InfiniteGraph5, a dis-
tributed and cloud-enabled graph database. In these systems, data manipulation
is performed by means of graph operations and types. Operations are character-
ized by different aspects ranging from the extension of the graph being accessed
to the answer they give.

2.1 Operation Categorization

The computational requirements of graph queries are characterized by their het-
erogeneity. For instance, some queries may access the full graph, while others
may only request the degree of a single node. In this section, we build up a set
of categories to classify the different operations that can be issued to a graph
database.
1 http://neo4j.org
2 http://www.sparsity-technologies.com/
3 http://www.hypergraphdb.org/index
4 http://www.orientdb.org/index.htm
5 http://www.infinitegraph.com/

http://neo4j.org
http://www.sparsity-technologies.com/
http://www.hypergraphdb.org/index
http://www.orientdb.org/index.htm
http://www.infinitegraph.com/

178 J.L. Larriba-Pey, N. Mart́ınez-Bazán, and D. Domı́nguez-Sal

T
a
b
le

1
.
G
ra
p
h
o
p
er
a
ti
o
n
s
a
n
d
q
u
er
ie
s

G
ra

p
h

O
p
e
ra

ti
o
n
s

C
a
te

g
o
ri
z
a
ti
o
n

G
ro
u
p

O
p
er
a
ti
o
n

A
n
a
ly
ti
ca
l
C
a
sc
a
d
ed

S
ca
le

a
A
tt
r.

b
R
es
u
lt

c

B
a
si
c
O
p
e
ra

ti
o
n
s

L
o
ca
l
In
fo
rm

a
ti
o
n
E
x
tr
a
ct
io
n

G
et

N
o
d
e/
E
d
g
e

✓
✗

N
✗

S
G
et

N
o
d
e/
E
d
g
e
A
tt
ri
b
u
te

✓
✗

N
✗

S
G
et

N
ei
g
h
b
o
rh
o
o
d

✓
✗

N
✗

S
N
o
d
e
d
eg
re
e

✓
✗

N
✗

A

T
ra
n
sf
o
rm

a
ti
o
n
s

A
d
d
/
d
el
et
e
n
o
d
e/
ed

g
e

✗
✗

N
✗

S
A
d
d
/
d
el
et
e/
u
p
d
a
te

a
tt
ri
b
u
te

✗
✗

N
✓

S

C
o
m
p
le
x

o
p
e
ra

ti
o
n
s
/
Q
u
e
ri
e
s

T
ra
v
er
sa
ls

(C
o
n
st
ra
in
ed

)
S
h
o
rt
es
t
P
a
th

✓
✓

G
E

G
k
-h
o
p
s

✓
✓

G
/
N

✗
G

G
ra
p
h
M
et
ri
cs

H
o
p
-p
lo
t

✓
✗

G
✗

A
D
ia
m
et
er

✓
✓

G
E

S
E
cc
en

tr
ic
it
y

✓
✓

G
E

A
D
en

si
ty

✓
✗

G
✗

A
C
lu
st
er
in
g
co
effi

ci
en

t
✓

✓
G

✗
A

C
o
m
p
o
n
en

ts
C
o
n
n
ec
te
d
co
m
p
o
n
en

ts
✓

✓
G

✗
G

B
ri
d
g
es

✓
✓

G
✗

S
C
o
h
es
io
n

✓
✓

G
✗

S

C
o
m
m
u
n
it
ie
s

D
en

d
o
g
ra
m

✓
✓

G
✗

G
M
a
x
-fl
ow

m
in
-c
u
t

✓
✓

G
E

G
C
lu
st
er
in
g

✓
✓

G
✗

G

C
en

tr
a
li
ty

M
ea
su
re
s

D
eg
m
o
re

re
e
ce
n
tr
a
li
ty

✓
✗

G
✗

S
C
lo
se
n
es
s
ce
n
tr
el
it
y

✓
✓

G
✗

S
B
et
w
ee
n
es
s
ce
n
tr
a
li
ty

✓
✓

G
✗

S

P
a
tt
er
n
M
a
tc
h
in
g

G
ra
p
h
/
su
b
g
ra
p
h
m
a
tc
h
in
g

✓
✓

N
✗

G

G
ra
p
h
A
n
o
n
y
m
iz
a
ti
o
n

k
-d
eg
re
e
a
n
o
n
y
m
iz
a
ti
o
n

✓
✗

G
✗

G
k
-n
ei
g
h
b
o
rh
o
o
d
a
n
o
n
y
m
iz
a
ti
o
n

✓
✓

G
✗

G

O
th
er

Q
u
er
ie
s

S
tr
u
ct
u
ra
l
eq

u
iv
a
le
n
ce

✓
✓

G
✗

G
P
a
g
eR

a
n
k

✓
✗

G
N

S

a
N
=
N
ei
g
h
b
o
rh
o
o
d
,
G
=
G
lo
b
a
l

b
✓
=
N
o
d
e
a
n
d
ed

g
e,

✗
=
N
ei
th
er

n
o
d
es

n
o
r
ed

g
es
,
N
=
N
o
d
es
,
E
=
E
d
g
es

c
S
=
S
et
,
A
=
A
g
g
re
g
a
te
,
G
=
G
ra
p
h

Introduction to Graph Databases 179

– Transformation (mutating)/Analysis (non-mutating):We distinguish
between two types of operations to access the database: transformations and
analysis operations. The first group comprise operations that alter the graph
database: bulk loads of a graph, adding/removing nodes or edges to the
graphs, create new types of nodes/edges/attributes or modify the value of
an attribute. The rest of queries are considered analysis queries. Although
an analysis operation does not modify the graph, it may need access to sec-
ondary storage because the graph or the temporary results generated during
the operation resolution are too large to fit in memory.

– Cascaded/Non-cascaded Access: We differentiate two access patterns to
the graph: cascaded and not cascaded. We say that an operation follows a
cascaded pattern if the operation performs neighbor operations with a depth
at least two. For example, a 2-hop operation follows a cascaded pattern.
Thus, a non cascaded operation may access a node, an edge or the neighbors
of a node. Besides, an operation that does not request the neighbors of a
node, though it may access the full graph, is a non cascaded operation. For
instance, an operation that returns the node with the largest value of an
attribute accesses all nodes, but since it does not follow the graph structure
is a non-cascaded operation.

– Global/Neighborhood Scale: Depending on the number of nodes ac-
cessed, we distinguish two types of queries: global and neighborhood queries.
The former type corresponds to queries that access the complete graph struc-
ture. In other words, we consider as global queries those that access to all
the nodes and/or the edges of the graph. The latter queries only access to
a (small) portion of the graph. Examples of global operations may include
finding the node with the highest degree, or the number of edges in the
graph. Neighborhood operations may include a k-hop operation from one
node, for instance.

– Attributes Accessed: Graph databases do not only have to manage the
structural information of the graph, but also the data associated to the
entities of the graph. Here, we classify the queries according to the attribute
set that it accesses: edge attribute set, node attribute set, mixed attribute
set or no attributes accessed.

– Result: We differentiate three different types of results: graphs, aggregated
results, and sets. The most distinctive output for a graph database opera-
tion is another graph, which is ordinarily a transformation, a selection or a
projection of the original graph, which includes nodes and edges. An exam-
ple of this type of result is getting the minimum spanning tree of a graph,
or finding the minimum length path that connects two nodes. The second
type of results build up aggregates, whose most common application is to
summarize properties of the graph. For instance, a histogram of the degree
distribution of the nodes, or a histogram of the community size are com-
puted as aggregations. Finally, a set is an output that contains either atomic
entities or result sets that are not structured as graphs. For example, the
selection of one node of a graph or finding the edges with the greatest weight
are set results.

180 J.L. Larriba-Pey, N. Mart́ınez-Bazán, and D. Domı́nguez-Sal

3 Case Study: The Sparksee Graph Database

Sparksee6 is an efficient GDB implementation based on bitmap representations
of the entities. It is devised to directly handle labeled and directed multigraphs
containing an undetermined number of attributes in both nodes and edges. In [13,
14], the authors propose a logic bitmap-based organization to store a graph that
does not fit in memory and has to be handled out-of-core. In this scenario, several
aspects must hold:

– Computing an operation should not imply loading the whole graph into
memory.

– The graph organization must be as compact as possible in order to fit as
many graph structures in memory as possible.

– The most commonly used graph-oriented operations, such as edge naviga-
tion, should be executed as efficiently as possible.

– Attributes in the graph should be accessed very fast.

In Sparksee, all the nodes and edges are encoded as collections of objects, each
of which has a unique oid that is a logical identifier. Sparksee converts a logical
adjacency matrix into multiple small indexes to improve the management of
out-of-core workloads, with the use of efficient I/O and cache policies. It encodes
the adjacency list of each node in a bitmap, which for the adjacent nodes has
the corresponding bit set. Given that bitmaps of graphs are typically sparse, the
bitmaps are compressed, and hence are more compact than traditional adjacency
matrices.

3.1 Sparksee Structures

The basic logical data structure in Sparksee is a labeled and directed attributed
multigraph. In this system, nodes and edges are uniquely identified by a set of
ids separated into two disjoint domains (oids and eids), and the whole graph
is built using a combination of two different types of structures: bitmaps and
maps.

A bitmap or bit-vector is a variable-length sequence of presence bits that
denotes which objects are selected or related to other objects. They are essential
for speeding-up the query execution and reducing the amount of space required
to store and manipulate the graph. In a bitmap, each bit is only set to 1 if
the corresponding oid is selected. The first bit in a bitmap is always considered
to be in position 1 (the first valid oid) and the last one is the last bit set (the
highest oid considered in the bitmap). In order to know the length of the bitmap,
the number of actual bits set to 1 in the structure is kept updated. The main
advantage of this structure is that it is very easy to manage, operate, compress,
iterate, etc.

A map is an inverted index with key values associated to bitmaps, and it is
used as an auxiliary structure to complement bitmaps, providing full indexed
access to all the data stored in the graph.

6 Available at http://www.sparsity-technologies.com/

http://www.sparsity-technologies.com/

Introduction to Graph Databases 181

These two types of structures are combined to build a more complex one: the
link. A link is a binary association between unique identifiers and data values. It
provides two basic functionalities: given an identifier, it returns the value; and
given a value, it returns all the identifiers associated to it.

3.2 Graph Representation Using Bitmaps

A Sparksee graph is built using a combination of links, maps and bitmaps to
provide a logical view of a labeled and directed attributed multigraph.: each
node or edge type has a bitmap which contains the oids of all the objects (nodes
or edges) that belong to the type; each attribute of a type is a link; and, finally,
the edges are decomposed into two different links, one for the tails, where for
each node contains all the edges outgoing connected to it, when this node acts
as their tail or origin, and in the same way another one for the heads which
contains the ingoing edges. Thus, an edge is represented as a double join, one
between the tail and the edge, and the other one between the head and the edge.
If the edge is undirected, then both nodes of the edge are set as tails and heads
for the edge.

All Sparksee graphs are built as a collection of bitmaps: one for each type to
store the objects in the database, one for each distinct value of each attribute,
one for each node that is the tail of one or more edges, and finally one for each
node that is the head of one or more edges. With these bitmaps, solving distinct
operations such as selecting all the objects of a type, retrieving the objects that
have a specific value for an attribute or finding the number of edges or degree
of a node, becomes straightforward.

4 Limitations of Graph Databases

Though graph databases offer a very rich data model and, as illustrated in Sec-
tion 2.1, support diverse query types, they are not without limitations. The
following list highlights the limitations that apply to graph databases (from one
or more vendors) today.

– Declarative interface:most commercial graph databases can not be queried
using a declarative language. All vendors provide an imperative program-
ming interface, often with multiple bindings in different languages, but few
also offer a declarative query interface.

– Vectored operations (e.g. scatter/gather, map/reduce, etc.): a method
of input and output by which a procedure sequentially writes data from
multiple buffers to a single data stream or reads data from a data stream to
multiple buffers. To horizontally scale it is essential that a database supports
this type of data access.
To our knowledge, no graph databases support vectored operations today.
Current graph databases (like relational databases) tend to prioritize low-
latency query execution over high-throughput data analytics. As such, the
omission of this functionality is likely the result of a conscious design decision.

182 J.L. Larriba-Pey, N. Mart́ınez-Bazán, and D. Domı́nguez-Sal

Fig. 1. Sample representation of a graph in Sparksee

Graph analytics frameworks [15–19] - designed for high-throughput process-
ing of large data volumes - do offer this functionality. However, these systems
are never transactional, rarely persistent, and most often prioritize through-
put at the cost of latency - they are therefore not considered graph databases.

– Data partitioning: most graph databases do not include the functionality
to partition and distribute data across multiple networked computers. This
is essential for supporting horizontal scalability, too.
There are many reasons for this [20] , including the rapidly reducing cost of
main memory, making vertical scaling a viable solution for larger installa-
tions than was previously possible. Many of the other reasons can be reduced
to the non-functional requirement of providing low-latency query execution.

Introduction to Graph Databases 183

As, by definition, graph data has a significant amount of data dependencies,
it is difficult to partition a graph in a way that would not result in most
queries having to access multiple partitions.

In contrast nearly all graph analytics frameworks do have inbuilt support
for partitioning. This is largely due to the workloads they target. Whereas
graph databases aim to provide low-latency query execution, graph analytics
frameworks are optimized for high-throughput processing of massive data
volumes, making it significantly easier for the latter to mask the cost of
network latency.

– High throughput data ingestion: due to lacking support for vectored
operations and data partitioning, the data ingest performance of most graph
databases is limited by the write throughput of a single storage device (either
a hard drive, a RAID or any distributed storage).

– Query optimization: the ability of the system to transparently optimize
the execution plan for any given query. Naturally, most graph databases can
not do this as they lack a declarative interface.

– Data schema and constraints: the schema of a database system is its
structure described in a formal language. Schema refers to the organization
of data, which describes how the database will be constructed. The formal
definition of schema is a set of formulas, a language, which describes the
integrity constraints imposed on a database. In effect, a populated database
can be considered an instance of its schema.

Schema can make application development a less error-prone task, but is
also beneficial as it enables a number of other powerful features, including
the ability for the database to perform enhanced query optimization. On the
other hand, strict schema enforcement is sometimes considered disadvanta-
geous by those who develop applications for dynamic domains - for example,
domains dealing with user-generated content, where the structure of data
may change from one day to the next. For precisely this reason, many graph
database vendors have opted to either support a weaker notion of schema or
to avoid it entirely.

4.1 Sparksee Example

Figure 1 shows an example of a graph extracted from a bibliographic data source
(upper side), and the mapping of the previous graph into the internal structures
as defined above (lower side).

The graph contains four object types: author (ovals) and paper (boxes) nodes,
writes and references edges. These types are represented in the gray boxes at the
right, where each type has one bitmap with its collection of objects, represented
in the lighter gray frame, and their inner boxes represent the attributes, with
one link each. Bitmaps are variable length sequences of 0’s and 1’s prefixed with
the number of bits set. Links have the name, the collection of distinct values and
the bitmap for each value. Maps are hidden in this representation because they
are only used to index collections, for example the types or the attribute values.

184 J.L. Larriba-Pey, N. Mart́ınez-Bazán, and D. Domı́nguez-Sal

For example, if we look at the node type paper, we can see that there are 3
bits set in bitmap B5, one for each node. There is also a bitmap for each distinct
attribute value (L1 to L5 in the example) which indicates the oids of the objects
containing this value in the attribute. If an object does not have any value then
it will not appear in any bitmap of the attribute. Thus, the union of all the
bitmaps of all the values of an attribute is equal to or a subset of the bitmap
of the objects of the type. For example, (B6 ∪B7 ∪B8) = B5 in attribute title
of paper, (B11 ∪ B12) ⊂ B5 but because node 5 has no value for the attribute
year.

There are two extra links at the rightmost side: one for the tails and the other
for the heads. Each one has one value for each node that has edges, with its
corresponding bitmap containing the edges where the node is connected. Again,
the union of all the bitmaps of each of these links is equal to the union of all the
collections of edge types, because all edges have one tail and one head. We can
verify that (B17 ∪B18 ∪B19 ∪B20) = (B21 ∪B22 ∪B23) = (B13 ∪B16).

As an example of the meaning of the structures, in the bitmaps we have
marked all the occurrences of the oid 6, which identifies the node of the PAPER
with title ’TITLE-Z’. These are the value ’6’ in L6 and L7, and the bit ’6’ in
bitmaps B5, B8, B9 and B12. Note that B5 tells us it is a node PAPER; and
B8, B9 and B12 show which are the values for the attributes of this node (title,
conference and year respectively). Finally, L6 has the edges where this node is
the tail, and L7 which are the edges where it is the head.

As we can see, with these structures now it is very easy to define graph-
based operations just by combining one or more bitmap and map operations.
For example:

– Number of authors: |B1| = 3
– Papers in conference ’CONF-R’ of year 2007: B9 ∩B11 = 4.
– In-degree of paper ’TITLE-Y’: |B22| = 2

In conclusion, this representation presents some advantages inherent to the
structures and others more subtle that appear as a consequence of how the
structures are being used. For example, the use of bitmaps directly provides
some statistics without extra penalties, like the number of objects for each type,
or the number of objects that have the same value for an attribute, the equivalent
of a clustering or a GROUP BY / COUNT(*) operation of the relational model.
The out-degree and in-degree of nodes are also the count of a bitmap stored into
the tails or heads collections respectively. Also, the capability to add or remove
attributes becomes easier because they are independent from the object storage.
This is crucial for graph mining algorithms that typically require the creation of
temporary attributes like weights or distances.

5 Use Case 1: Social Network Analysis

In this section, we introduce the first of our use cases, the Social Network Anal-
ysis (SNA). First, we give a brief introduction about SNA. After that, we char-
acterize the use case, giving the underlying graph model and its characteristics,

Introduction to Graph Databases 185

and introducing the types of operations performed on social networks. This way,
we fully characterize the use case in order to better understand which charac-
teristics a benchmark should have when run on this kind of data.

5.1 Introduction

In social networks nodes typically represent people and edges represent some
form of social interaction between them, such as friendship, co-authorship, etc.
Although the study of the characteristics of social networks known as Social Net-
works Analysis (SNA) (formerly known as sociometry), has its starting point in
the early 30s, it has become very popular in recent years because of the digital
techniques and internet. SNA techniques have been effectively used in several
areas of interest like social interaction and network evolution analysis, counter-
terrorism and covert networks, or even viral marketing. Due to the Web and
increasing use of Internet applications, which facilitate interactive collaboration
and information sharing, many social networks of different kinds have appeared,
like Facebook and LinkedIn for social interaction, or Flickr for multimedia shar-
ing. Other web portals that contain human interactions can also be considered
social networks, like in bibliographic catalogs such as Scopus, ACM or IEEE,
where the scientific community is sharing information and establishing de facto
relationships. In all these cases, there is an increasing interest in the analysis of
the underlying networks, to obtain a better knowledge of the patterns and the
topological properties. This may be used to improve services to users or even to
provide more profit to the information providers in the form of direct advertising
or personalized services.

5.2 Graph Model

As we have seen before, there are many different kinds of social networks. There-
fore, the nature of the underlying graph model of these networks may differ from
one to another. However, the following characteristics are common to many of
the existing social networks:

– Attributed: Graphs belonging to social networks are attributed graphs. We
can find attributes both in the nodes and in the edges. Node attributes may
include personal data about the user, their preferences, activity log, com-
ments, etc. Edges may be attributed with the number of times two persons
have interacted, comments, etc.

– Labeled: Social graphs may be labeled in both the nodes and the edges. For
example, interactions between two different users may have different forms,
such as like/dislike something, request for something, comments about a
post, etc. In the same way, nodes may represent different entities, such as
persons or companies in a professional social network.

– Directed: Graphs representing social networks are usually directed graphs,
since the interactions between the actors in the network are not always sym-
metric. For instance, a user may like/dislike a comment of another user, and

186 J.L. Larriba-Pey, N. Mart́ınez-Bazán, and D. Domı́nguez-Sal

this is a form of asymmetric or directed interaction, since the user of the
comment has no activity in the opposite direction.

– Multigraph: Social interactions are usually recurrent. That is, people linked
through a social network usually have more than a single interaction, more-
over their interactions are unlikely to be limited to the same types. For
instance, two friends may have several interactions, some of them being com-
ments about one user post and some of them sending a private message. This
multiplicity in the interactions may be represented in a multigraph.

5.3 Statistical Properties

In the following, we summarize the statistical properties that characterizes the
graph. Since social networks are essentially evolving networks, we distinguish
between static and dynamic properties.

Static Properties: Static properties are those appearing in snapshots of the
network at a certain point in time.

– Community structure: Real-world social graphs are found to exhibit a
modular structure, with nodes forming groups, and possibly groups within
groups [21–23]. In addition to that, in [3], it is shown along several social net-
work examples, that in most cases there is a large component which includes
more than 80% of the total nodes of the network. An efficient algorithm to
locate communities is available in [24].

– Small-world property: Social networks exhibit the small-world property.
That is, even in the case where the network is composed of millions (or even
billions) of nodes, the average geodesic distance between connected vertex
pairs is relatively very low, approximately log the number of nodes in the
network (around 5 in most of the examples given in [3]).

– Degree distribution:The degree distribution of many social networks obey
a power law of the form f(d) ∝ dβ , with the exponent β < 0, and f(d) being
the fraction of nodes with degree d. Therefore, they can be considered scale-
free networks.

– Sparse: Real social networks are almost always sparse, meaning that only
a small portion of the total possible number of edges appear in the network.
The examples given in [3], show that the portion of existing edges with
respect to the total possible edges is less than 1%.

Dynamic Properties: Dynamic properties are those characteristics that the
graph exhibits with respect to a change in time. These are typically studied by
looking at a series of static snapshots and seeing how measurements of these
snapshots compare.

– Shrinking diameter: Leskovec. et al. [11] showed that not only the diame-
ter of real social graphs is small, but it also shrinks and then stabilizes along

Introduction to Graph Databases 187

time [11]. Briefly, at the beginning of time, the network is composed by sev-
eral small components. As time evolves those small components grow and
connections between them lead to bigger connected components and a grow-
ing diameter. At some point (the gelling point), many of these components
merge and the large component emerges and the diameter spikes. After this
point, the diameter keeps shrinking until it reaches an equilibrium.

– Densification power law: Time-evolving social graphs show the following
relation between the number n of nodes and the number m of edges at all
time ticks t: m(t) ∝ n(t)β , with β > 1, which is known as the densification
power law. Examples of social networks shown in [3], discover a mean value
of β around 1.12.

5.4 Graph Operations and Queries

One characteristic of social networks is that the operations performed on them
are extremely diverse, they cover much of the spectrum of operations known to
be performed on graphs. Some examples in different workflows are:

– Transactional: Insertions, updates and deletions are usually small and af-
fect a few entities (nodes) and relationships (edges). The most usual opera-
tion is the insertion of new data, a very frequent action with a high degree of
isolation with respect other update operations. Updates are not frequent be-
cause the SN grows and information is more evolving than changing. Deletes
are also not usual and, in general, information is timestamped when it is
deleted to denote the end of its availability instead of begin removed.

– Lookups: The basic queries are the most frequent: look for a node, look
for the neighbors (1-hop), scan edges in several hops (layers), retrieve an
attribute, etc. In general, these operations are small and affect only a few
nodes, edges and attributes in the graph. When the graph schema is complex,
most of the lookup queries follow a few operation patterns where the under-
lying lookup operations are in general the same with different arguments.
Concurrency is one of the most important issues due to the high amount of
small queries executed at the same time in sparse areas of the graph.

– BI:While the SN graph data contains a lot of useful information for business
intelligence, this is not usually explored due to privacy concerns and restric-
tions. Aggregate computations or multidimensional analysis using edge adja-
cencies as dimensions are in general only performed after an anonymization
process.

– Analytics: Graphs metrics, centrality measures or community finding are
tools used to analyze the SN to observe the behavior, predict the evolution
or to identify the shape in order to split a very large graph in smaller units,
easier to manage. Pattern matching is often used to extract groups of nodes
and edges that match a specific pattern, for example for marketing purposes,
data cleansing or integrity validation.

188 J.L. Larriba-Pey, N. Mart́ınez-Bazán, and D. Domı́nguez-Sal

6 Use Case 2: Information Technologies Analysis

Organizations use a significant amount of internal and external data to obtain
added value information that provides them with an understanding of the po-
sitioning of the world in relation to their knowledge and objectives. However,
they employ a significant amount of time to complete this search and analysis
cycle because of the lack of quality in the data and the lack of flexible tech-
nologies to extract and integrate multimedia and multilingual features from the
sources, having to use the skills of experts in a slow, error prone and inspiration
dependent process.

6.1 Introduction

Knowledge, which sits in the digital core of organizations like SMEs, large
companies and public institutions, is not fully exploited because data inside
the organization is stored in separate unconnected repositories: the documents
written (internal reports, patents filed, meeting minutes, usage manuals, papers
published, collaboration reports of funded projects, etc.), strategy reports, finan-
cial audits, managerial structure, the electronic mail generated, the relationships
with other organizations expressed by means of contracts and agreements and by
means of IP ownership and mercantile transactions, the media content produced
through courseware and marketing material, and more. Moreover, the interna-
tional nature of many organizations implies that multiple languages are used in
the data they generate. The dispersion and unlinked multimodal nature of those
sources leads to a significant lack of corporate self-knowledge7 that is hidden
behind the internal repositories. On the other hand, the Internet offers a huge
amount of relevant outside data about the organization: web pages, social net-
works, product opinions, cloud services... Although organizations usually know
which are those interesting data sources, they currently need huge human driven
efforts to retrieve and analyse them in the multiple languages and multiple for-
mats they are provided: textual and video blogs and microblogs criticizing or
praising their achievements, other companies assessing their performance, news-
papers telling stories about them, open data in the form of patents or scientific
papers explaining inventions related to their knowledge, videos and images mak-
ing apparent to the eye events where the organizations are involved, etc. The
use of the Internet content in many cases is not only enriching but necessary for
the adequate growth of those organizations, and in particular for SMEs.

The integration of inside and outside organization data can merge in a single
vision the collection of internal partial perspectives of the company business de-
partments as well as the view of the company in the external world. Corporate
data can be analyzed and information can be extracted, interpreted and sum-
marized in the form of added value knowledge and linked relationships among

7 By self-knowledge, we understand the analytical capability that allows an organiza-
tion to extract added value information from the integrated view of the data in their
different applications and repositories.

Introduction to Graph Databases 189

documents (either textual or media), people in the organization, concepts and
keywords in the different languages of the organization providing a network be-
tween the sources of knowledge and the actual linked information that describes
them. Moreover, from the linked relationships, further analysis can be done to
create multilingual ontologies that organize the knowledge of the organization.
In all those cases, the relationships and ontologies can be exploited to obtain
added value information like, for instance, who knows more and is more reputed
within or outside the organization about a topic to find are placement for a per-
son who quit the company, what is the most relevant internal and external IP
and how they are related for a specific research being done and who are the most
relevant inventors, what internal and external media content is available for the
next marketing campaign, what are the documents that describe the products
to be announced better and who are the employees with better knowledge for
those, etc.

6.2 Dataset Integration

When integrated in a single graph-based framework, the information extracted
from the multimedia and multilingual repositories is merged in such a way that
the identification of relations and similarities within and across different media
will be easier. This way, the internal data sources can be linked, and enriched
information is extracted providing added value ground information to increase
the ability to detect and exploit meaning from where it was hidden before with
analytical queries. The linked information and ontologies created is constantly
enriched by the new documents being created within the organization providing
a circle of constant improvement of the corporate self-knowledge.

Integration techniques are applied to intelligently aggregate the result sets
of the different data providers by means of entity identification techniques [25].
Data linkage typically uses weak identifiers (name, family name, country, etc.)
to link data across different data sources. In the case of graphs the integration
target are the vertices of the graph, and hence, the entity data linkage deals with
finding those vertices that represent the same entity. In order to obtain a perfect
recall, the problem becomes quadratic because it is necessary to perform all pair-
wise comparisons. Since this is prohibitive for large volumes of information one
of the main research topics is finding techniques on how to scale them [26]. Some
data integration frameworks are available from the research community that fa-
cilitate the integration of data. They can be classified in three main groups,
based on the interface of the framework: rule, numerical and workflow based.
Rule based approaches give users the freedom to state sets of rules that are
applied sequentially to integrate datasets [27]. Such rules are not a static set,
and can change over time in order to increase the flexibility of the system [28].
Furthermore, such rules can express even exceptions to stated rules, which fa-
cilitate the design of the system and the resolution of inconsistencies among
previously ingested rules [29]. Numerical approaches compute complex similar-
ity functions based on a set of features among a pair of entities. Those entities
with a numerical value over certain threshold are considered as the same entity.

190 J.L. Larriba-Pey, N. Mart́ınez-Bazán, and D. Domı́nguez-Sal

The construction of the numerical function and the threshold setting can be
programmed by the users of the system [30], or helped with the aid of a training
set [31]. Workflows allow users to define complex data flows where combinations
of matchers, conditions and loops [32]. A graph-based framework include func-
tionalities to integrate easily graph features (such as transitive relations or graph
patterns among others) during the integration process to compute the similarity
of entities that are in a graph. It allows also the scalability of the system in order
to support the large graphs coming from different data sources

6.3 Graph Analytics

Once the datasets have been integrated inside a single graph. the goal is to
provide a set of techniques to analyze the relationships among the entities. Some
examples of self-knowledge services are:

– A document search engine that is be able to return the most relevant docu-
ments for a given topic. It allow the analysts to explore the contents of the
documental data stored in the graph. The result is a set of documents that
had been obtained from outside or inside the information network.

– A reputation algorithm to rank the most relevant persons and organizations
in a network according to a search topic. The algorithms take into account
that real networks are not hierarchic and consider the cycle shapes to deduce
the most reputed individuals. The results are able to return people that are
relevant for a query with respect to the information extracted from the graph.

– A sentiment analysis summarization procedure to evaluate multimodal data
that talks about a brand name. The query aggregates the sentiment analysis
results obtained for a brand name, in order to show to the analysts which is
the perception of a product among customers.

In particular, for the different workflows some of the required graph query
capabilities are:

– Transactional: The graph is built like a large data warehouse of entities and
relationships. There are few updates and, in general, all new data is inserted
in massive bulk loads of preprocessed, deduplicated and interrelated data.
This process can be executed also over a snapshot in such a way that updates
are not in conflict with read-only operations. This relaxes the locking and
concurrency requirements of the graph database engine.

– Lookups: Queries are more analytical than exploratory. Simple lookup
queries are used only to validate the content of the generated graph or to
generate reports of the data.

– Analytics: This represents the most important group of queries for this use
case. Analysis is made in several steps by combining different techniques.
For example, reputation requires the construction of communities or clusters
based on search topic; then the graph is improved with weighted relation-
ships of the involved people; finally, a recommendation algorithm based on
connectivity returns the relevant nodes.

Introduction to Graph Databases 191

7 Graph Database Benchmarking

Early efforts: Popular database benchmarks, such as TPC-C or TPC-H [33],
focus on evaluating relational database queries that are typical of a business
application. These benchmarks emphasize queries with joins, projections, se-
lections, aggregations and sorting operations. However, since Graph Databases
aim at different types of queries, these widespread benchmarks are not adequate
for evaluating their performance. Graph use cases often involve recursive steps,
e.g. graph neighborhoods within n steps or even an undetermined number of
steps. Graph queries may involve structural similarity, e.g. comparing structures
of chemical compounds for similarity with a similarity score quantifying the
deviations. Graph analytics often produce large intermediate results with com-
plex structure, e.g. edge weights or iteratively calculated ranks (e.g. Page rank).
Widespread relational benchmarks do not contain such operations. All those are
operations that, in some cases, are difficult to imagine in RDBMSs and that find
a good alliance in the RDF area and GDB area since the former adhere to a
graph data model.

Object oriented databases (OODB) share some similarities with GDBs. The
data of an OODB also conforms a graph structure, where the entities that are
represented as objects draw [34] relationships among them. The OO1 benchmark,
one of the earliest proposals, is a very simple benchmark that emphasizes three
basic operations for OODB: (a) lookup, which finds the set of objects for a given
object identifier; (b) traversal, which performs a 7-hop operation starting from a
random node; and (c) insertion, which adds a set of objects and relations to the
database. OO1 defines a dataset that only contains one type of objects with a
fixed number of outgoing edges per object. Since the links mostly go to objects
with a similar document identifier, the graphs are very regular. Another popular
benchmark for OODB is the OO7 [35] proposed by Carey et al. In OO7, the
database contains three types of objects, which are organized as a tree of depth
seven. The connectivity of the database is also very regular because objects have
a fixed number of relations. The benchmark is made up by a rich set of queries
that can be clustered into two groups: (a) traversal queries, which scan one type
of objects and then access the nodes connected to them in the tree, and (b)
general queries, which mainly perform selections of objects according to certain
characteristics.

Graph benchmarking: The graphanalysis.org initiative started a project to eval-
uate graph performance. After some preliminary benchmark proposals, which
refined the queries in the system, the project released the final version of the
benchmark as the “HPC Scalable Graph Analysis Benchmark v1.0[36]. The
benchmark is compound by four separated operations on a graph that follows a
power law distribution generated with the R-MAT generator [37]: (a) insert the
graph database as a bulk load; (b) retrieve the set of edges with maximumweight;
(c) perform a k-hops operation; and (d) calculate the betweenness centrality of
a graph, whose performance is measured as the number of edges traversed per
second. However, this benchmark does not evaluate some features expected from

192 J.L. Larriba-Pey, N. Mart́ınez-Bazán, and D. Domı́nguez-Sal

a GDB such as object labeling or attribute management. In [38], this benchmark
is evaluated on four representative graph data management alternatives (Neo4j,
DEX, Jena and HypergraphDB) giving some insights about the strengths and
weakness of each system. A recent survey has [39] reviewed some of the main
operations and uses cases of graph databases, and thus, is a good starting point
for the development of graph benchmarks. Other open source initiatives have
proposed simple benchmarks to evaluate the performance of graph databases.
For instance, Ciglan published a set of traversal oriented queries [40], or Tin-
kerpop initiated a project (currently stopped) to build a framework for running
benchmarks on graph databases [41]. Nevertheless, these initiatives lack a wide
acceptance because of their individual approach and limited resources.

Graphs in supercomputers: The performance of supercomputers has been tradi-
tionally tested using the Linpack benchmark, which is derived from the Linpack
library that computes linear algebra operations. According to the Linpack re-
sults, a list of the top 500 computers is published biannually, which determines
the most powerful computers in the world. Nevertheless, the use of supercomput-
ers has spread from computationally intensive integer and floating point compu-
tation, to memory intensive applications. For such applications, the Linpack is
not a good reference and other evaluation methods have been proposed, includ-
ing graph related computation. Since 2010 an alternative top 500 list is published
using the traversed edges per second of a Breadth First Search in a graph [42].

Linked Data Benchmark Council (LDBC): LDBC is a EU funded project that
is creating a non profit organization similar to TPC, which will design and sup-
port graph database and RDF benchmarks. LDBC benchmarks are innovative
because: (i) they will be based on real use cases, and thus be meaningful for users
to fairly compare graph databases; (ii) they will motivate graph database vendors
to innovate in the development of graph databases to improve its performance
and scalability; (iii) they will compile a repository of supporting knowledge for
the area of graph database benchmarks that will be used as a reference in the
design of benchmarks in this field; and, (iv) they will generate benchmark ex-
pertises and rules of fair practice for carrying out and auditing the benchmark
of database instances by vendors. The first set of LDBC benchmarks will be
published in 2014.

8 Conclusions

We have been describing important aspects of graph charateristics, database
implementation, use cases and benchmarking. There is no doubt about the fact
that many other aspects concur in the graph area, i.e. graphical representation of
large and small graphs, use of graphs in complex systems analysis, etc. However,
the objective of this paper was to give a broad overview of the knowledge behind
graph management and the technologies around graphs. In the course, we will
provide a similar overview with a set of slides provided to the students and the
general public through the course web page and through DAMA-UPC web page
(www.dama.upc.edu).

www.dama.upc.edu

Introduction to Graph Databases 193

References

1. Leskovec, J., Huttenlocher, D.P., Kleinberg, J.M.: Signed networks in social media.
In: CHI, pp. 1361–1370 (2010)

2. Goertzel, B.: OpenCogPrime: A cognitive synergy based architecture for artificial
general intelligence. In: IEEE ICCI, pp. 60–68 (2009)

3. Newman, M.: Networks: An Introduction. Oxford University Press, Inc., New York
(2010)

4. Levene, M., Poulovassilis, A.: The hypernode model: A graph-theoretic approach
to integrating data and computation. In: FMLDO, pp. 55–77 (1989)

5. Ërdos, P., Rényi, A.: On random graphs. Mathematicae 6, 290–297 (1959)
6. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of

community structure in large social and information networks. In: WWW, pp.
695–704 (2008)

7. Flickr Blog: Six billion (retrieved on march 2014),
http://blog.flickr.net/en/2011/08/04/6000000000/

8. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the in-
ternet topology. In: SIGCOMM, pp. 251–262 (1999)

9. McGlohon, M., Akoglu, L., Faloutsos, C.: Weighted graphs and disconnected com-
ponents: patterns and a generator. In: KDD, pp. 524–532 (2008)

10. Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms.
ACM Comput. Surv. 38 (2006)

11. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graph evolution: Densification and
shrinking diameters. TKDD 1 (2007)

12. SNAP: (Stanford large network dataset collection),
http://snap.stanford.edu/data/index.html

13. Mart́ınez-Bazan, N., Muntés-Mulero, V., Gómez-Villamor, S., Nin, J., Sánchez-
Mart́ınez, M.-A., Larriba-Pey, J.-L.: Dex: high-performance exploration on large
graphs for information retrieval. In: CIKM, pp. 573–582 (2007)

14. Mart́ınez-Bazan, N., Aguila-Lorente, M.A., Muntés-Mulero, V., Dominguez-Sal,
D., Gómez-Villamor, S., Larriba-Pey, J.-L.: Efficient graph management based on
bitmap indices. In: IDEAS, pp. 110–119 (2012)

15. Nelson, J., Myers, B., Hunter, A.H., Briggs, P., Ceze, L., Ebeling, C., Grossman,
D., Kahan, S., Oskin, M.: Crunching large graphs with commodity processors. In:
HotPar (2011)

16. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD, pp.
135–146 (2010)

17. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In: OSDI, pp. 17–30 (2012)

18. Stutz, P., Bernstein, A., Cohen, W.: Signal/Collect: Graph algorithms for the (Se-
mantic) web. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L.,
Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp.
764–780. Springer, Heidelberg (2010)

19. Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: Wtf: The who to
follow service at twitter. In: WWW, pp. 505–514 (2013)

20. Averbuch, A., Neumann, M.: Partitioning graph databases-a quantitative evalua-
tion. arXiv preprint arXiv:1301.5121 (2013)

21. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization and identifi-
cation of web communities. IEEE Computer 35(3), 66–71 (2002)

http://blog.flickr.net/en/2011/08/04/6000000000/
http://snap.stanford.edu/data/index.html

194 J.L. Larriba-Pey, N. Mart́ınez-Bazán, and D. Domı́nguez-Sal

22. Girvan, M., Newman, M.: Community structure in social and biological networks.
National Academy of Sciences 99(12), 7821–7826 (2002)

23. Schwartz, M., Wood, D.: Discovering shared interests among people using graph
analysis of global electronic mail traffic. Communications of the ACM 36, 78–89
(1992)

24. Prat-Pérez, A., Dominguez-Sal, D., Larriba-Pey, J.-L.: High quality, scalable and
parallel community detection for large real graphs. In: To be published in WWW
(2014)

25. Bleiholder, J., Naumann, F.: Data fusion. ACM Computing Surveys (CSUR) 41,
1 (2008)

26. Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-
plication. IEEE Trans. on Knowledge and Data Engineering 24, 1537–1555 (2012)

27. Arasu, A., Ré, C., Suciu, D.: Large-scale deduplication with constraints using dedu-
palog. In: ICDE, pp. 952–963 (2009)

28. Whang, S.E., Garcia-Molina, H.: Entity resolution with evolving rules. PVLDB 3,
1326–1337 (2010)

29. Whang, S.E., Benjelloun, O., Garcia-Molina, H.: Generic entity resolution with
negative rules. VLDB Journal 18, 1261–1277 (2009)

30. Leitão, L., Calado, P., Weis, M.: Structure-based inference of xml similarity for
fuzzy duplicate detection. In: CIKM, pp. 293–302 (2007)

31. Rastogi, V., Dalvi, N., Garofalakis, M.: Large-scale collective entity matching.
PVLDB 4, 208–218 (2011)

32. Thor, A., Rahm, E.: MOMA - A Mapping-based Object Matching System. In:
CIDR, pp. 247–258 (2007)

33. Transaction Processing Performance Council (TPC): TPC benchmark website,
http://www.tpc.org

34. Cattell, R., Skeen, J.: Object operations benchmark. ACM Trans. Database
Syst. 17, 1–31 (1992)

35. Carey, M.J., DeWitt, D.J., Naughton, J.F.: The oo7 benchmark. In: SIGMOD
Conference, pp. 12–21 (1993)

36. Bader, D., Feo, J., Gilbert, J., Kepner, J., Koetser, D., Loh, E., Madduri, K., Mann,
B., Meuse, T., Robinson, E.: HPC Scalable Graph Analysis Benchmark v1.0. HPC
Graph Analysis (2009)

37. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: A recursive model for graph
mining. In: SDM, pp. 442–446 (2004)

38. Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vañó, A., Gómez-Villamor, S.,
Mart́ınez-Bazan, N., Larriba-Pey, J.-L.: Survey of graph database performance
on the hpc scalable graph analysis benchmark. In: WAIM Workshops, pp. 37–48
(2010)

39. Dominguez-Sal, D., Martinez-Bazan, N., Muntes-Mulero, V., Baleta, P., Larriba-
Pey, J.L.: A discussion on the design of graph database benchmarks. In: Nambiar,
R., Poess, M. (eds.) TPCTC 2010. LNCS, vol. 6417, pp. 25–40. Springer, Heidelberg
(2011)

40. Ciglan, M., Averbuch, A., Hluchý, L.: Benchmarking traversal operations over
graph databases. In: ICDE Workshops, pp. 186–189 (2012)

41. Tinkerpop: Open source property graph software stack,
http://www.tinkerpop.com

42. Graph 500 Website: The graph 500 list, http://www.graph500.org/

http://www.tpc.org
http://www.tinkerpop.com
http://www.graph500.org/

	Introduction to Graph Databases
	1Introduction to Graphs
	1.1Graph Characterization
	1.2Graph Operations and Queries

	2Graph Databases
	2.1Operation Categorization

	3Case Study: The Sparksee Graph Database
	3.1Sparksee Structures
	3.2Graph Representation Using Bitmaps

	4Limitations of Graph Databases
	4.1Sparksee Example

	5Use Case 1: Social Network Analysis
	5.1Introduction
	5.2Graph Model
	5.3Statistical Properties
	5.4Graph Operations and Queries

	6Use Case 2: Information Technologies Analysis
	6.1Introduction
	6.2Dataset Integration
	6.3Graph Analytics

	7Graph Database Benchmarking
	8Conclusions

