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Abstract. RDF has become recently a very popular data model used
in a variety of applications and use cases in both academia and industry.
Query processing and evaluation is a central component in data man-
agement in general and is, thus, unsurprisingly one of the most active
areas of research in the field of RDF data management. In this chap-
ter we provide an overview of query processing techniques for the RDF
data model using different system architectures. We survey techniques
for both centralized and distributed RDF stores, including peer-to-peer,
federated and cloud-based systems.

1 Introduction

Query processing and evaluation is such a central component of data manage-
ment that unsurprisingly is one of the most active areas of research in this field.
As databases evolve and new architectures or models emerge, efficient query
processing becomes probably the most pressing problem to address in these
new environments. One has to just consider the move from centralized to dis-
tributed [59] or streaming [24] sources, or the emergence of new models like
XML [60] or RDF [62] and notice the corresponding jump in research works
in conferences and workshops on this topic. In spite of this large body of past
works, there is always room for improvement or for the generation of new tech-
niques. Each new environment (be it an architecture or a model) carries its own
set of assumptions and requirements that necessitate a revision of past query
processing techniques, or in the worst case lead to the development of new ones.

In what follows, we provide an overview of query processing techniques in the
context of the RDF data model and the SPARQL query language [31]. To put
things in perspective and present techniques and architectures in an organized
fashion, we are going to use the virtual system overview of Figure 1 as a guide to
our presentation. Our system consists of two layers, a decentralized layer and a
individual source layer. There are many architectures that one can use to build
a decentralized layer for RDF sources, and in the figure we list the three we
are covering in this chapter, namely, federated, peer-to-peer, and cloud systems.
Any of these system architectures assumes that it is built on top of a set of RDF
sources where each source in the set provides, as a minimum requirement, a data
access entry, e.g., a SPARQL endpoint service. Now, internally each individual
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Fig. 1. Virtual RDF system overview

RDF source can have its own architecture which can range from a native RDF
store, to a relational store appropriately configured to store RDF data, or even
to a relational store with relational data served as RDF through a front-end.
Irrespectively of the particular architecture used in either layer, there are a
number of research topics that are common across the architectures within each
layer, and we list those adjacent to each layer in the figure. Though this is clearly
not an exhaustive list of topics, they constitute the minimal topics a system
should address to have a workable solution in this space. We briefly review the
relevance and importance of each topic in the following paragraphs.

1.1 Decentralized Layer Topics

– Metadata: In decentralized systems, there is a well-known trade-off between
query performance and source autonomy. At one end of the spectrum, one
can consider a system where the sources only provide a SPARQL endpoint
service and no other metadata (e.g., statistics, indexes) is known about
them [75]. Since query processing relies heavily on knowledge about such
metadata, when no such information is available to a decentralized system,
the system must try to dynamically compute the necessary metadata. This
process is bound to have an impact on end-to-end query performance since
additional work must be performed before the processing of the actual query
is initiated. At the other end of the spectrum, one can consider a system with
tighter control of the sources where each source is required to generate appro-
priate metadata and provide them to the decentralized system [4, 28]. This
clearly facilitates query processing but requires that the sources themselves
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are willing to do work for the decentralized system (in addition to query
answering) by regularly updating their metadata to reflect the changes in
their data.

– Source selection: Not all sources in a decentralized system contain data that
are relevant to the query at hand. Figuring out which sources are relevant
is another factor affecting query performance since incorrectly identified
sources might incur additional costs (both in terms of processing time and
communication overhead) without contributing to the end result. There is a
close relationship between the topic of source selection and that of metadata,
since often the latter is used to provide an answer for the former.

– Data partitioning: Another area where source autonomy is a key factor is in
the distribution of data across the decentralized system. At one extreme one
can envision a federated system in which data partitioning comes naturally
as sources join the federation with their own data. At the other extreme, one
can envision a P2P-style system in which sources join the system and it is
the decentralized layer that is responsible for assigning which source is going
to store which data. While there is not much to be said about partitioning in
the former scenario, in the latter scenario partitioning requires an algorithm
to partition and distribute the data evenly across the sources. Ideally, other
than data load, the algorithm should aim to minimize communication costs
during query evaluation.

– Query planning: Once the sources relevant for a query have been identified,
and relevant metadata have been computed or retrieved, query planning is a
common next step. The type of planning available to a decentralized system
also depends on the level of autonomy of the underlying sources. In one
extreme case, one can think of a system with fairly uncooperative sources
where the sources only provide a SPARQL endpoint service. In such a setting,
the results from individual sources must be sent to a central location where
the actual query evaluation takes place. It is not hard to see that in such
a setting the communication cost may far outweigh actual query evaluation
costs. In a more collaborative setting, the sources of the decentralized system
might be willing to cooperate in performing distributed query evaluation.
Query planning becomes more central at this setting since it specifies the
order (as in the centralized case) with which results would be computed and
propagated.

– Query evaluation: More often than not, there are multiple ways to combine
results from different sources to compute an answer to an input query. Each
of these ways generates its own plan and results in a query. All these queries
must be evaluated to guarantee the completeness of query answers (i.e., that
all the results of the query are retrieved and none is missed). Executing
all these queries (and in parallel) poses its own challenges. Clearly, one can
evaluate each of these queries independently, but when there is sharing of
sub-queries across the different queries, there is the potential for optimiza-
tion [50] (e.g., by executing these common sub-queries only once and sharing
their results across the different plans).
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1.2 Individual Source Layer Topics

– Storage: The storage strategy, or how an individual RDF source decides to
internally represent RDF data, is a central topic which influences every as-
pect of the source, from indexing, to planning and evaluation. There are
multiple alternatives here with some sources using novel native representa-
tions for RDF data (e.g., Jena TDB [39], RDF-3X [58]), while others using
relational databases as the back-end (e.g., Jena SDB [39], DB2RDF [17],
C-Store [1]) and designing appropriate schemas to store the RDF data.

– Indexing: Indexing plays a key role in query evaluation in general but in
the context of RDF this role becomes even more central since indexes some-
times morph into an actual storage strategy (e.g., Jena TDB uses a custom
implementation of B+-trees as central component of its storage strategy).
This interplay between storage and indexes results in some novel strategies
in terms of query evaluation (e.g., [58]).

– Query planning: Unlike query planning in the decentralized setting which
focuses on reducing communication costs (mostly through join ordering),
planning at the individual source level is typically more complex and has
a larger search space of alternatives to consider. One reason for this added
complexity comes from the multitude of access methods that are usually
available to the planner, which opens up the way for accessing source data
and combining intermediate query results using a host of techniques.

– Query evaluation: In traditional DBMSs, there is a tight coupling between
the planner and the query evaluation module in the sense that they are both
part of the same system (and are often developed by the same group of peo-
ple). However, this is not always the case with RDF sources, and especially
with those that use relational databases as the back-end. In such sources, the
RDF query planner might be built as a separate component on top of any
existing relational back-end (e.g., see Jena SDB [39] or DB2RDF [17]). Since
planning happens outside the relational engine, the planner can dictate the
order with which different sub-queries are executed, but it has little control
over the actual evaluation by the back-end. Therefore, in such settings, the
efficiency of query evaluation is largely determined by how well the plan-
ner can predict the efficiency of queries before these are evaluated by the
underlying relational store.

Using Figure 1 as a guide for our presentation, we organize the remainder of
this chapter in the following manner. For completeness, the next section presents
some necessary preliminaries in terms of the RDF model and the SPARQL query
language. Then in Section 3, we provide an overview of existing single-source
systems that constitute our building blocks in Figure 1 towards constructing any
of the decentralized systems shown there. Sections 4, 5 and 6 present respectively
existing P2P, federated and cloud-based systems. Not all the topics we covered
briefly in the introduction are of equal importance for each presented system and
not all systems provide novel solutions across all the topics. Therefore throughout
the sections as we describe a (single-source or decentralized) system we make



Query Processing for RDF Databases 145

certain that we highlight the topics that are of most notable and novel about the
system. The paper concludes with a summary of the work and a short discussion
regarding open research directions in the field of RDF query processing.

2 Preliminaries

In this section we introduce the Resource Description Framework (RDF) to-
gether with its accompanying schema language RDFS. In addition, we present
SPARQL, the standardized query language for querying RDF and RDFS data.

2.1 RDF

The emergence of RDF originated from the Semantic Web vision, where anything
in the Web can be interpreted by machines, converting the Web of documents
to a Web of data. RDF is the main data model used to achieve this goal.

RDF offers the following basic constructs:

– URIs : Universal Resource Identifiers are used to represent resources, e.g.,
a Web page, a book, an author, a paper or a computer file. In addition,
URIs are used to identify properties, which are the attributes of a resource
or connect two resources. For example, hasName may be used for describing
the name of an author or isAuthorOf may be used to connect a book resource
with an author resource.

– Literals : Literals are constant values of any property. For example, "John

Doe" may be the value of the property hasName.
– Blank nodes : Blank nodes are anonymous resources which are not expressed

by a URI but in the form of :bnodeID. The purpose of blank nodes is to
encode n-ary relationships and/or to make statements about resources that
might not have global URIs but can be described in terms of their relation-
ship with other resources.

Facts in RDF are represented by sets of triples. Each triple consists of the
resource the fact is about (subject), the property of the resource the statement
refers to (predicate), and the value of that property (object). Another represen-
tation of RDF data is that of labelled graphs where the subject and object is
depicted as a node and the property as a directed labelled edge from the subject
node to the object node labelled by the predicate name. More formally:

Definition 1 (RDF triple). Let U , L and B denote three pairwise disjoint
sets of URIs, literals, and blank nodes, respectively. A triple is a tuple (s, p, o)
from (U ∪B)×U × (U ∪L∪B), where s is the subject, p is the predicate (a.k.a.
property) and o is the object of the triple.

Definition 2 (RDF term and element). An RDF term is any value from
(U ∪L∪B) and an RDF element is any among the subject, predicate and object
of an RDF triple.
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:bob : bobaddress

:db

“Bob” “Panepistimiou”

:athens

15784

:name

:address

:interest

:street

:city

:zipcode

Fig. 2. RDF graph example

Definition 3 (RDF graph). An RDF graph is a set of RDF triples.

For example, the following set of triples state that the resource http://tiny/bob
named "Bob" has as research interest databases and lives in a specified address in
the city of Athens. The constant : bobaddress denotes a blank node to describe
the address of Bob.

http://tiny/bob http://tiny/name "Bob" .

http://tiny/bob http://tiny/interest http://tiny/db .

http://tiny/bob http://tiny/address :_bobaddress .

:_bobaddress http://tiny/street "Panepistimiou" .

:_bobaddress http://tiny/postalCode 15784 .

:_bobaddress http://tiny/city http://tiny/athens .

Figure 2 shows the same RDF information in an RDF graph. We depict a
resource with an oval circle and a literal with a rectangle. The labeled arcs
represent the properties of the RDF graph. For clarity reasons, we attach the
empty prefix ‘:’ for all URIs to distinguish them from the corresponding literals.

2.2 RDF Schema (RDFS)

The RDF data model offers a simple way for describing relationships among
resources in terms of named properties and values, but does not provide mech-
anisms for declaring these properties, nor does it provide ways for defining the
relationships between these properties and other resources. This is the role of
RDF Schema (RDFS) [18]. RDFS is the vocabulary of RDF; it provides the
means to a user to define terms that will be used in RDF statements and give
specific meaning to them. RDFS defines not only the properties of a resource
(e.g., title, author, subject etc.) but also the kinds of resources being described
(people, paper, Web pages, books etc.). Resources having similar characteristics
can be divided into groups called RDFS classes. We will refer to both RDF and
RDFS information with the term RDF(S).

Figure 3 shows an RDF(S) graph which defines the relationships between
classes and assigns the resource http://tiny/bob to a certain class. The property
rdfs:subClassOf is a predefined property in RDFS and denotes a specialization
relationship between two classes. For example, http://tiny/graduateStudent is a
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:graduateStudent :undergraduateStudent

:student

:person

:bob

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

rdf:type

Fig. 3. An RDF(S) graph example

class which defines a specialized type of class http://tiny/student. Another pre-
defined property commonly used in RDF is rdf:type. This property defines the
members of a certain class. For example, resource http://tiny/bob is a member
of class http://tiny/graduateStudent. The members of a class are also known as
instances of the class. Namespaces rdf and rdfs are the namespaces of the core
RDF and RDFS vocabulary defined by the URIs http://www.w3.org/1999/02/

22-rdf-syntax-ns# and http://www.w3.org/2000/01/rdf-schema# respectively.
Another feature of RDFS is that it also provides vocabulary for describing how

properties and classes are intended to be connected in an RDF(S) graph. The
most important information of this kind is supplied by using the RDF Schema
properties rdfs:domain and rdfs:range. The rdfs:domain property is used to
indicate that a particular property applies to a specific class. The rdfs:range

property is used to indicate that the values of a particular property are in-
stances of a specific class or are types of specific literals. For example, in the
RDF graph of Figure 2 we could add the following RDFS triples for properties
http://tiny/name and http://tiny/interest:

http://tiny/name rdfs:domain http://tiny/person .

http://tiny/interest rdfs:domain http://tiny/student .

http://tiny/name rdfs:range string .

This means that the property http://tiny/name applies to instances of class
http://tiny/person, while the property http://tiny/interest applies to instances
of class http://tiny/student. In addition, the last triple states that property
http://tiny/name takes values that are strings.

The most important functionality of RDFS is the ability to make inferences
using the RDFS entailment rules [32]. This means that one can infer new triples
from an RDF schema and the set of rules. Such triples are often called implicit
or inferred triples. For example, the RDFS property rdfs:subClassOf is defined
as a transitive property in the rule rdfs11 of the RDFS Semantics [32]:

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema#
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(a, rdfs:subClassOf, b), (b, rdfs:subClassOf, c)

(a, rdfs:subClassOf, c)

This rule says that if class a is a subclass of class b and class b is a subclass of
class c, then we infer that class a is a subclass of class c. Thus, in the example of
Figure 3, we can infer that class :graduateStudent is a subclass of class :person.
Then, using this inferred triple and rule rdfs9 from [32]:

(a, rdfs:subClassOf, b), (r, rdf:type, a)

(r, rdf:type, b)

we infer that http://tiny/bob in Figure 3 is also an instance of http://tiny/
person. The complete set of the RDFS entailment rules can be found in [32].

2.3 SPARQL

SPARQL [31] is the standard query language for RDF recommended by W3C
and has the ability to extract information about both the data and the schema.
A core concept of SPARQL is that of a triple pattern, which is a triple with the
possibility of a variable in any of the subject, predicate or object positions. A
query that contains a conjunction of triple patterns is called basic graph pattern
(BGP) query, and is the conjunctive fragment of SPARQL allowing to express
the core select-project-join queries. More formally:

Definition 4 (Triple pattern). Let U , L, B and V denote the pairwise dis-
joint sets of URIs, literals, blank nodes, and variables respectively. A triple pat-
tern is a tuple (s, p, o) from (U ∪B ∪ V )× (U ∪ V )× (U ∪ L ∪B ∪ V ).

Definition 5 (Basic Graph Pattern). A basic graph pattern query is a con-
junction of triple patterns.

A basic graph pattern matches a subgraph of the RDF data when RDF terms
from the subgraph can be substituted with the variables of the graph pattern.

The syntax of SPARQL follows an SQL-like select-from-where paradigm.
The select clause specifies the variables that should appear in the query re-
sults. Each variable in SPARQL is prefixed with ?. The from clause specifies
the RDF(S) graph that should be used for answering the query. If not used,
the query runs over the whole RDF(S) triples stored in the system. The graph
patterns of the query are set in the where clause. The following SPARQL query
asks for all resources which have a name and a research interest.

Listing 1.1. A simple SPARQL query

SELECT *

WHERE {

?x http ://tiny/name ?y .

?x http ://tiny/interest ?z

}

http://tiny/person
http://tiny/person
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The answer of a SPARQL query with a select clause is a bag of variable bind-
ings. If the above SPARQL query is posed over the RDF graph of Figure 2, the
variable bindings of the answer would be:

?x ?y ?z
http://tiny/bob "Bob" http://tiny/db

SPARQL also supports more complex queries than simple BGPs with features
such as the OPTIONAL operation. The optional functionality allows for patterns
that might not match for every part in an RDF graph. In this case, the optional
part creates no bindings but does not eliminate the entire solution. Keyword
OPTIONAL is used with a graph pattern such as the ones in the WHERE clause.

In addition, one can use filter expressions with operators such as <, =, and
> for numerical values (range constraints) and string functions such as regular
expressions. Multiple BGPs can be combined through a UNION operation. Order
constraints are also possible through ORDERBY and LIMIT operators.

Apart from the SELECT clause, SPARQL also allows CONSTRUCT, DESCRIBE

and ASK clauses. In the case of a SELECT query, the result set is a set of variables
and their possible bindings. On the other hand, if we have a CONSTRUCT query,
the result is an RDF graph constructed by substituting variables in a set of triple
templates. Finally, a DESCRIBE query returns an RDF graph that describes the
resources found and an ASK query returns yes or no depending on whether a
query pattern matches or not. In this chapter, we focus only on SELECT queries.

The latest SPARQL 1.1 proposal [31] also supports property paths, negation,
aggregates etc. We do not consider these features in the present chapter since
most existing works focus on BGP queries. The formal semantics of SPARQL
can be found in [63].

3 Single-Source RDF Stores

The storage strategy is probably the defining component of a single-source RDF
store, and therefore we structure this section around the storage strategies used
by existing stores. Clearly, there are several alternatives to store RDF data, and
at a high level we can classify existing strategies into two categories, namely,
those using novel native representations for RDF data (e.g., Jena TDB [39],
RDF-3X [58]), and those using relational databases as the back-end (e.g., Jena
SDB [39], DB2RDF [17], C-Store [1]). While there is usually little information
available regarding the internals of the former type of stores, the representations
used by the latter stores is commonly explained in detail, and this is where we
are going to focus our attention in this section.

3.1 “Monolithic” Triple Stores

The simplest and most straightforward representation of RDF data into a rela-
tional store is to create a single SPO relation with columns to store the subject,
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SPO
subj pred obj

http://tiny/me http://tiny/name “Tasos”
http://tiny/me http://tiny/attend “RW 2014”
http://tiny/you http://tiny/name “Zoi”
http://tiny/me http://tiny/friend http://tiny/you

(a) One version of the “monolithic” store

Dictionary
id uri-literal

1 http://tiny/me
2 http://tiny/name
3 “Tasos”
4 http://tiny/attend
5 “RW 2014”
6 http://tiny/you
7 “Zoi”
8 http://tiny/friend

SPO
subj pred obj

1 2 3
1 4 5
6 2 7
1 8 6

(b) A second version

Fig. 4. The “monolithic” store

predicate and object of each triple. There are multiple ways to implement such
a store (e.g., see [7]) and Figure 4 shows two alternative versions. In the first
version, the URIs and literals are stored directly into the single relation. In the
second version, we create a “dictionary” in which we assign an id to each URI
or literal. Then, in the main relation we store triples created out of these ids,
instead of the actual URIs or literals. It is not hard to see that the second version
requires less storage space since multiple occurrences of a URI are replaced by a
reference to a single id. However, the second version incurs additional costs dur-
ing query processing since it requires joining the dictionary and SPO relations
in order to (re-)establish at query time the relationship between ids and URIs
or literals.

Both versions of the store have the desirable characteristic that the schema
of the store does not change as we encounter new (types of) triples (in the
following sections, we see that this is not a characteristic shared by all the
relational representations of RDF). On the negative side, it is clear that the size
of the relation storing the triples increases linearly with the number of triples
and can very quickly include millions (or billions) of triples/tuples. Managing
such a huge relation is bound to have an impact on the evaluation of queries
and indeed in “monolithic” stores query performance and scalability do not go
hand-in-hand [17]. Therefore, multiple indexes [58] over the single SPO relation
are often necessary to support efficient query evaluation.

3.2 Property-Table Stores

The idea behind property tables [83] is the simple observation that entities that
are of the same (or similar) type(s) share similar sets of predicates. So, for
example, all book entities whose information is represented in RDF are expected
to have at least the predicates title, author, and year of copyright. Similarly, all
compact-disc entities are expected to also have the predicates of title, artist and
year of copyright. Therefore, while designing a schema to store the RDF data
for these entities, one can take advantage of these common predicates to create
appropriate tables with columns for these common predicates. Figure 5 shows the
basic idea through an example. On the left of the figure, we show some sample
RDF data pertaining to books, CD’s and DVD’s. Then, in Figure 5(b) we show
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an implementation of the property tables idea, called property-class tables, where
given a type in the RDF data we create a table with all the common predicates
that appear in the instances of this type. So, one table is created in the figure for
the BookType entities, and one table is created for the CDType entities. Notice
that the common predicates among the instances of these types are selected and
become the columns of the created tables. Inspired by the monolithic approach,
the schema also contains an SPO relation storing the remaining less common
predicates for the various entities.

An alternative way to implement property tables is shown in Figure 5(c),
through the use of cluster property tables. In a nutshell, in this implementation
we create a table that contains common predicates between entities, irrespec-
tively of their types. In our example, these are the title and copyright predicates
which seem to be present across all BookType, CDType and DVDType entities.
Predicates that are not part of the cluster in this example end up in a monolithic
SPO table, as it is shown.

Notice that unlike the monolithic schema which is independent of the data
being stored, for the creation of property tables we rely heavily on characteristics
of the data. However, as the data change through time, so do their characteristics.
For example, a predicate that was not as common at some stage in a dataset,
it might end up becoming extremely common later on. This would necessitate a
change in the schema of the property tables to reflect the fact. However, such data
reorganization is usually extremely costly and undesirable. One might consider
the monolithic and property table designs as being the two ends of the design
spectrum. At one end, we create schemas that closely fit the data and have
an associated high cost of periodic reorganization but also hold the promise of
efficient query processing. At the other end, we create schemas that are generic
and unchanged but are not as efficient in terms querying. There is an interesting
challenge here in figuring out whether there are alternative designs where the
schema is both unchanged and does not require reorganization, but efficient
query processing is not sacrifice. Indeed, in the following sections we show that
such designs are possible.

3.3 Vertically Partitioned Stores

The advent of column-oriented DBMS (e.g., see C-store [49], or more recently the
BLU feature of IBM DB2 [66]) gave rise to another alternative representation of
RDF data, one in which separate tables are created for each predicate appearing
in the RDF data. Figure 6 shows the result of vertically partitioning the data of
Figure 5(a).

One of the advantages of vertically partitioned stores is efficient query process-
ing. Since SPARQL queries often bind the predicates of triple patterns, during
the evaluation of SPARQL queries over vertically partitioned stores the opti-
mizer only accesses the tables corresponding to the predicates mentioned in the
query. So, for example if a SPARQL query requires the entities (subjects) that
have a copyright predicate, the optimizer only needs to perform a select-* query
over the copyright relation of Figure 6. In contrast to this approach, in the
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id1 type BookType
id1 title “XYZ”
id1 author “Fox, Joe”
id1 copyright “2001”
id2 type CDType
id2 title “ABC”
id2 artist “Orr, Tim”
id2 copyright “1985”
id2 language “French”
id3 type BookType
id3 title “MNO
id3 language “English”
id4 type DVDType
id4 title “DEF”
id5 type CDType
id5 title “GHI”
id5 copyright “1995”
id6 type BookType
id6 copyright “2004”

(a) Sample data

BookType
subj title author copyright

id1 “XYZ” “Fox, Joe” “2001”
id3 “MNO” NULL NULL
id6 NULL NULL “2004”

CDType
subj title artist copyright

id2 “ABC” “Orr, Tim” “1985”
id5 “GHI” NULL “1995”

SPO
subj pred obj

id2 language “French”
id3 language “English”
id4 type DVDType
id4 title “DEF”

(b) Property-class tables

Cluster
subject type title copyright

id1 BookType “XYZ” “2001”
id2 CDType “ABC” “1985”
id3 BookType “MNO” NULL
id4 DVDType “DEF” NULL
id5 CDType “GHI” “1995”
id6 BookType NULL “2004”

SPO
subj pred obj

id1 author “Fox, Joe”
id2 artist “Orr, Tim”
id2 language “French”
id3 language “English”

(c) Cluster property tables

Fig. 5. Property tables

type
subj obj

id1 BookType
id2 CDType
id3 BookType
id4 DVDType
id5 CDType
id6 BookType

title
subj obj

id1 “XYZ”
id2 “ABC”
id3 “MNO
id4 “DEF”
id5 “GHI”

copyright
subj obj

id1 “2001”
id2 “1985”
id5 “1995”
id6 “2004”

language
subj obj

id2 “French”
id3 “English”

artist
subj obj

id2 “Orr, Tim”

author
subj obj

id1 “Fox, Joe”

Fig. 6. Vertically partitioned data

evaluation of the same query over a monolithic store all the triples in the mono-
lithic relation must be accessed, unless an index on the pred column is provided
to avoid a sequential scan. On the negative side, the strongest point of the ver-
tically partitioned store is also its weakest. If SPARQL queries do not bind the
predicate of triple patterns, then all the relations in the store might need to be
accessed to evaluate the query. At the same time, this type of RDF representa-
tion suffers from the same shortcoming as the one observed in property tables.
As the data evolve over time and, say, a new predicate is added in some entity
that was never seen before, the schema of the underlying store must change and
a new table must be created. This, coupled with the need to often create indexes
for the new tables results in a potentially costly operation.

3.4 Entity-Oriented Stores

The last part of this section covers a novel representation for RDF data that
attempts to address the shortcomings of past representations [17]. In more detail,
the entity-oriented store uses a representation that similar to the monolithic store
does not change over the lifetime of the data. However, unlike the monolithic
store and like the property and vertically-partitioned stores, it supports efficient
evaluation of SPARQL queries across a wide spectrum of queries.
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entity spill pred1 val1 pred2 val2 pred3 val3

id1 1 title “XYZ” type BookType author “Fox, Joe”
id1 1 copyright “2001” NULL NULL NULL NULL
id2 1 title “ABC” type CDType artist “Orr, Tim”
id2 1 copyright “1985” NULL NULL language “French”
id3 0 title “MNO type BookType language “English”
id4 0 title “DEF” type DVDType NULL NULL
id5 1 title “GHI” type CDType NULL NULL
id5 1 copyright “1995” NULL NULL NULL NULL
id6 0 copyright “2004” type BookType NULL NULL

Fig. 7. Entity-oriented store

Figure 7 shows the entity-oriented representation for the data shown in Fig-
ure 5(a). The first thing to observe in this representation is that unlike any of
the previous representations the columns of the relation has no pre-assigned se-
mantics. That is, the table in the particular example has 3 pairs of (predi, vali)
without specifying which predicate-object pairs are to be stored there. Indeed,
the assignment of predicate-object pairs to (predi, vali) columns happens dy-
namically by the system, during data loading, and is one of the distinguishing
characteristics of the representation. During this assignment, a predicate will
always be hashed to the same column. So, predicate title is always hashed to
column pred1 for any entity having this predicate, while predicate artist is always
hashed to column pred3. However, notice that multiple predicates can be hashed
to the same column. For example, predicate author is also hashed to pred3. The
entity oriented store provides a host of alternative strategies so as to optimize
this assignment of predicates to columns with the main objective to avoid col-
lisions (i.e., multiple predicates being hashed to the same column for the same
entity) while at the same time maximizing compression (i.e., allowing multiple
predicates to be hashed to the same column when these predicates are not co-
occurring in entities). The end result is a representation that has both a small
footprint in terms of space requirements and offers superior query performance
when compared with other representations (for more details see [17]).

4 P2P-Based RDF Stores

Peer-to-peer (P2P) networks had initially emerged as a natural way for file shar-
ing in a decentralized manner. Popular systems such as Napster1, Gnutella2,
Freenet3, Kazaa4, Morpheus5 had made this model of interaction popular. In
P2P systems a very large number of autonomous computing nodes (the peers)
pool together their resources and rely on each other for data and services. In
contrast with a client-server architecture, P2P nodes serve as both a provider

1 http://www.napster.com
2 There are various clients implementing the Gnutella protocol or variations. See for
example, http://www.limewire.com.

3 http://freenet.sourceforge.net
4 http://www.kazaa.com
5 http://www.musiccity.com

http://www.napster.com
http://www.limewire.com
http://freenet.sourceforge.net
http://www.kazaa.com
http://www.musiccity.com
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and a consumer of resources. P2P networks are typically distinguished into three
different classes according to their topology: unstructured, structured and hier-
archical networks.

In unstructured networks all peers are equal and form an overlay network
with no restrictions on topology and no centralized source of information. Such
systems are highly resilient to churn, i.e., when peers join and leave the net-
work. However, they flood the network with messages to find a piece of data
and cannot guarantee to find it in a reasonable amount of hops. Gnutella and
Kazaa form examples of such networks. On the contrary, structured networks
have a regular topology, e.g., rings or hypercubes, and were devised as a remedy
for the routing and object location inefficiencies of unstructured networks. A
very popular class of structured networks is the distributed hash tables (DHTs).
Hierarchical networks partition the nodes into two categories: super-peers and
clients. In such a network, all super-peers are equal and have the same respon-
sibilities: serving a fraction of the clients and keeping indices of the resources of
those clients. Super-peers interact by following a protocol of their choice (e.g., a
symmetric one like Gnutella, a structured one like Napster or a DHT protocol).
Clients can run on user computers and are equal to each other running the same
software. Clients learn about resources by querying super-peers and downloading
resources directly from other clients.

The combination of Semantic Web technologies (i.e., RDF, RDFS and ontolo-
gies) and P2P systems provided accurate data retrieval and efficient search in
distributed application scenarios, thus, it has been the focus of many research
works the past few years. In the following, we present representative works in
this research area where peers are organized in a structured overlay network or a
schema-based network. We mainly focus on how query processing is performed in
such distributed settings. The local data access at each peer can be achieved by
the various techniques proposed in the previous section. A more comprehensive
survey of on P2P-based RDF management can be found in [79].

4.1 Structured Overlay Networks

Distributed hash tables (DHTs) is a prominent class of structured overlays that
attempt to solve the object lookup problem: given a data item x, find the node
which holds x. Each node and each data item is assigned a uniquem-bit identifier
by using a hashing function such as SHA-1 [76]. The identifier of a node can be
computed by hashing its IP address. For data items, we first have to compute a
key and then hash this key to obtain an identifier id. The node with identifier
that is numerically closest to id is responsible for storing the data item x. The
lookup problem is then solved in O(log(n)) hops in a network of n peers by
providing a simple interface of two requests: Put(id, x) and Get(id).

We focus on representative RDF stores that use an underlying DHT to store
and query RDF data. These include RDFPeers [22], Atlas [40], BabelPeers [15],
UniStore [43], RDFCube [53] and GridVine [3].
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Fig. 8. RDFPeers data partitioning example from [20]

Data Partitioning. In the distributed environment of a DHT, one has to
decide how to partition the RDF data. A commonly used data partitioning
scheme in DHT-based systems is achieved through the hashing of some or all
RDF elements of the triples. RDFPeers [20,22] is the first system that came up
with this partitioning scheme and has influenced significantly many follow-up
works. RDFPeers is implemented on top of MAAN [21], a self-organized DHT
network which extends the well-known DHT protocol of Chord [81] to efficiently
answer multi-attribute and range queries.

In RDFPeers, each node uses the RDF data model to create descriptions of
resources that it wants to make available to the rest of the network nodes. Each
RDF triple in RDF document is indexed to three different network nodes: it is
stored once in the node responsible for the identifier that is computed by hashing
the subject value of the triple, and twice more by using the predicate and object
values of the triple. The SHA-1 hash function [76] is used if the value is a string.
If the value is a numeric one then an order preserving hash function is used,
which allows efficient evaluation of range queries. Figure 8 shows the indexing
of some triples in a network of 8 nodes with a 4-bit identifier space.

GridVine uses P-Grid [2], a structured overlay network based on the prin-
ciples of DHTs with lexicographic key ordering. Peers in GridVine are able to
publish available resources by creating RDF triples (metadata). An RDF triple
is stored three times in the network using three different keys based on its sub-
ject, predicate and object values, as in [22]. In addition, prefix indexing, e.g., on
the beginning of a string representing an object value, can be easily supported
using P-Grid routing mechanisms.

BabelPeers [15,33,34] and Atlas [40,41], two more recent systems built on top
of Pastry [70] and BambooDHT [68] respectively, also use the triple indexing
scheme, storing each triple three times in the network once for each RDF element,
as initially proposed in [22]. Unistore [43,44] can index each triple multiple times,
using different (combinations of) triple elements in P-Grid [2].
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Metadata and Source Selection. In structured overlay networks, and specif-
ically in DHTs, there is no need to keep metadata about identifying which piece
of data is located in which node. This is implicitly done by the distributed in-
dex they provide for the lookup problem. The problem of source selection is then
tackled easily and efficiently by the use of hash functions: the hash value of a key
is used to retrieve the node that keeps the data item with this key. DHT-based
RDF stores use the constant part(s) of triple patterns involved in the query to
compute the identifiers that lead to the nodes storing matching triples.

Query Planning and Evaluation. After the peers that contain matching
triples for a triple pattern have been identified, a single triple pattern query can
be easily answered by contacting this peer and retrieving the triples that match
the triple pattern. Single triple pattern queries require O(log(n)) routing hops
in a network of n peers, except for the triple pattern without any constant, i.e.,
(?x, ?y, ?z), where all n peers need to be contacted.

RDFPeers [20] support single triple pattern queries, disjunctive and range
queries and conjunctive multi-predicate queries, i.e., conjunctive queries with the
join variable on the subject value and the predicate constant. Query execution is
performed sequentially at the peers that contain matching triples for the triple
patterns of the query and the results are returned to the peer that posed the
query. The algorithm finds candidate subjects on each triple pattern recursively
and intersects the candidate subjects found at the peer with the found candidate
sets for the previously evaluated triple patterns, before returning the search
results to the query requestor.

In Atlas [40] the query processing algorithm, QC, works sequentially at the
peers containing matching triples, extending the one proposed in [20] for any
kind of conjunctive query. With QC the query is evaluated by a chain of nodes.
Intermediate results flow through the nodes of this chain and finally the last
node in the chain delivers the result back to the node that submitted the query.
In [52], an additional query processing algorithm, SBV, is described where the
values found to match a triple pattern are used to rewrite the following patterns.
SBV achieves a better distribution of the query processing load. It does not
create a single chain for a query as QC, but by exploiting the values of matching
triples found while processing the query incrementally, it rewrites the query and
distributes the responsibility of evaluating it to more nodes than QC (in other
words, SBV is constructing multiple chains for each query). Obviously, the order
in which the triple patterns are evaluated affects the query performance and
in [41] some query optimization techniques are proposed to achieve better query
response times.

In BabelPeers [15, 33, 34], query planning and evaluation is performed at a
single peer, the one that receives the query request, and includes two phases. In
the first phase, all candidate sets for all triples and variables are retrieved from
the various nodes of the network to the node that receives the query request. The
second phase of the query evaluation, includes local processing of the candidate
sets to find the actual answer to the query. The disadvantage of this approach is
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that the node that receives the query request has to do all the computation and
suffers a lot of query processing load. In addition, the candidate sets transferred
through the network might contain results that will never be used in the final
answer of the query. This causes unnecessary traffic to the network. The authors
of [33,34] propose some methods to remove the amount of the useless information
from the candidate sets using Bloom filters. Finally, [14] addresses the problem
of uneven load among the nodes of BabelPeers due to the skewness of the RDF
datasets and proposes several techniques for load balancing.

GridVine [3] follows the principles of data independency and separates the
logical from the physical layer. The logical layer consists of the semantic over-
lay for managing and mapping data and metadata schemas, while the physical
layer consists of a structured P2P overlay network that efficiently routes mes-
sages. The latter is used to implement various functions at the logical layer, like
attribute-based search, schema management and schema mapping management.
GridVine allows peers to derive new schemas from well-known base schemas (us-
ing RDFS), providing schema inheritance. Each peer has also the possibility to
create a mapping between two schemas, in which case translation links among
network peers are created (using OWL). In this way, queries are propagated from
one semantic domain to another. There are two approaches used for resolving
translation links, the iterative and the recursive resolution. With iterative reso-
lution, the peer issuing an RDF query tries to find and process all translation
links by itself, while with recursive resolution more than one peers are involved
by delegating the query and its translations.

In Unistore [43,44] each query is transformed into a logical query plan which
is in turn transformed into a physical query plan using operators defined in [43].
Query planning is performed dynamically at each peer involved in the query
evaluation. Unistore uses a cost-based optimizer which estimates the cost of
physical operators in terms of the number of hops and messages required for
each operator.

4.2 Schema-Based P2P Architectures

In contrast to the RDF stores based on a structured overlay architecture, where
data is partitioned among the peers in a specific way and a distributed index
is used to locate data, in schema-based P2P systems peers keep the data they
have locally and they work collaboratively by exploiting their schemas to tackle
the query processing problem. Two influential schema-based P2P for storing and
querying RDF data are Edutella [55–57] and SQPeer [46].

Edutella [55–57] is built on top of a super-peer topology, where there are two
kind of peers: the super-peers and the clients. The super-peers are organized
under the HyperCup topology [74], while clients are connected to super-peers in
a star-like fashion. Each client connects to one super-peer only, while a super-
peer can have multiple clients and is used to efficiently handle all the requests
of clients.

SQPeer [46, 47, 78] is a middleware for routing and planning complex queries
in P2P database systems, exploiting the schemas of peers. SQPeer has two
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different architecture alternatives: it can be organized in a super-peer network
or in DHT-based one. Peers that employ the same RDFS schema belong to the
same semantic overlay network (SON) [82] and queries posed by peers should
conform to the RDFS schema of the SON they belong.

Metadata and Source Selection. In Edutella [26], when a peer joins the
network, it provides its super-peer with its metadata information, i.e., a descrip-
tion of the metadata that has been created by this client (supported schema,
used values etc.). The actual metadata remains in the client peer. Each super-
peer employs two routing indices: The super-peer/peer (SP/P) indices that con-
tain information about each peer that is connected to the super-peer, and the
super-peer/super-peer (SP/SP) indices that are extracted summaries from all
local SP/P indices. The SP/P indices keep information about peers at different
granularities: schemas, schema properties, property value ranges and individual
property values. Both types of indices also contain statistics for optimization
purposes (size of documents, network characteristics, etc.). This information is
used to efficiently route queries only to super-peers and clients that may contain
an answer to the query.

In SQPeer, each peer provides the RDFS about the resources that wants to
make available in the network. Peers that employ the same schema belong es-
sentially to the same semantic overlay network (SON) [82]. Each peer advertises
the content (the data values or the schema) of its local database. The RDF
Schema defining a SON may contain numerous classes and properties not nec-
essarily populated in a peer’s database. For this reason, a peer uses virtual or
materialized views to specify the fragment of the schema for which all classes
and properties are (in the materialized scenario) or can be (in the virtual sce-
nario) described in a peer’s local database. These views may be broadcast to
(or requested by) other peers, thus informing the rest of the P2P system of the
information available in the peers’ databases.

The view propagation in SQPeer depends on the underlying architecture
(super-peer or DHT). In the super-peer architecture, a peer that connects to
a super-peer forwards its corresponding view and all super-peers are aware of
each other. This enables the processing of queries expressed in terms of differ-
ent RDFS schemata (or fragments). Source selection in a DHT-based SQPeer is
done as follows. Unique keys are assigned to each view pattern and hence peers,
whose hash values match those keys, are aware of the peer bases that are pop-
ulated with data answering of a specific schema fragment. An appropriate key
assignment and hash function is used for neighbor peers to hold successive view
patterns with respect to the class/property hierarchy defined in the employed
RDF Schema.

Query Planning and Evaluation. Query planning in Edutella is performed
dynamically and not at a single site because super-peers have a very limited
view of the whole P2P network (only the neighbors are known), and thus, no
comprehensive static plan in the traditional sense can be produced. The query
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plan chosen by the optimizer is split into a local plan and multiple remote query
plans. The remote plans are shipped to the referenced hosts where the opti-
mization process continues on the smaller query plans. The local query plan is
instantiated and combines the results of the remote query plans.

Queries in SQPeer are formulated according to the RDF schema that the
requester peer supports. The proposed query routing and query processing algo-
rithm can find the relevant peers that actually answer each query and generate
query plans by taking into account statistics on data distributions. SQPeer sup-
ports two kinds of query optimization for query planning, i.e., compile-time and
run-time optimization. The former uses heuristics and statistics to push as much
as possible processing to the same peers and decide at compile time among data,
query or hybrid shipping execution strategies. On the other hand, run-time op-
timization includes deciding at execution time on altering the data or query
shipping decision or discovering alternative peers for answering a certain part of
a query plan.

5 Federated RDF Stores

Probably one of the most distinguishing characteristics of a federated RDF store
is that the system is built in a bottom-up fashion. That is, existing pre-populated
stores come together in order to provide a way to evaluate queries across all of
them. Therefore, in federated systems data partitioning is essentially a non-issue
and the system has no control as to where data will reside.

Although, there is a considerable number of systems in this category, we are
going to limit our presentation to only a subset of them and try to highlight the
main design choices through them. So, in the following paragraphs we focus our
presentation to a handful of systems including FedX [75], SPLENDID [28] and
ANAPSID [4]. For a more extended and in-depth description of the systems,
including an evaluation of their performance the reader is encourage to consider
related surveys in this space [65, 72].

Metadata and Source Selection. Federated systems have no control or a
priori knowledge as to where data reside. Still, this information is critical for
the evaluation of queries since the system must be able to locate the data that
is relevant to the query at hand. In a nutshell, given a query there are two al-
ternative approaches in acquiring the necessary metadata and guiding source
selection. The first approach is to determine the metadata at query time. This
is mostly done by forming appropriate polling queries, usually in the form of
SPARQL ASK (boolean) queries and using the results of these queries to deter-
mine sources that are relevant to a query. The clear benefit of this approach is
that no additional metadata are maintained by the federated system (which may
need to be updated/maintained as the data in the underlying source change).
On the negative side, end-to-end query evaluation time might increase since in
addition to the actual query, metadata computation happens at query time and
the cost of evaluating ASK queries is not negligible. FedX [75] is an example
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of a system that maintains no metadata and uses query-time determination of
sources (though the system does provide an option for caching to avoid some of
the query time costs).

The second approach relies on actually maintaining in the federation some
form of description for the contents of the underlying sources. Such metadata can
take the form of voiD [6] descriptions used by SPLENDID [28], and can include
from high level information like the location of a dataset, to low level information
like statistics about the number of triples in a dataset or the number of instances
of a property in the data. Other metadata representations, like the one used by
ANAPSID [4], are inspired by work in relational databases and employ Local-
as-View (LAV) definitions [30] to describe the data stores in individual sources.
Yet another alternative includes building summarized indexes [51] describing the
contents of the underlying RDF sources, and using such indexes to guide query
evaluation [35].

What metadata is available to each system, and how well the system takes
advantage of the available metadata are both factors that influence the effective-
ness of a source selection strategy. In more detail, using the available metadata,
the objective of a source selection strategy is to be both sound and complete. In
this context, completeness is used to denote the desirable property that a source
selection strategy identifies all the sources that contain data relevant to the
query (and thus does not miss any query results). Unfortunately, not all systems
are complete with FedX being probably one of the few popular systems having
this property [72]. In terms of soundness, the term denotes the desirable prop-
erty that a source selection strategy should ideally involve only the sources that
contain data relevant to the query, and no other irrelevant sources. Soundness
is a property that is closely tied to performance. If a system is not sound then
it is bound to contact a lot of irrelevant sources, which results in unnecessary
work and prolongs query evaluation time. Not surprisingly, it is particularly hard
to achieve soundness in a federated environment and indeed all of the systems
do some amount of unnecessary work. Therefore, in the context of soundness,
the objective in most systems is minimizing this amount of work, ideally with-
out sacrificing completeness (see [72] for a study of how well existing systems
perform in terms of soundness).

Query Planning and Evaluation. Similarly to the centralized setting where
once we identify the relations that participate in a query we have to decide
the order with which the relations will be joined, in the federated setting once
the sources to be involved in the query evaluation are selected, the order with
which these sources will be processed needs to be determined. One of the main
objectives while deciding the proper ordering is to minimize the intermediate
results computed as the results from different sources are correlated (joined). The
available metadata, as well as statistics from the evaluated ASK queries during
source selection are commonly used to decide this ordering. As the ordering is
determined, each system must also decide the join strategy to be used. Bind
joins [29], hash joins and nested loop joins are typical strategies used across
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a variety of systems, with many systems offering more than one strategy. For
example, while FedX supports bind joins, SPLENDID supports both hash and
bind joins.

As the last step, the actual evaluation of the query takes place. There are still
several challenges to be addressed even at this point in the process. For exam-
ple, a single input query might spawn multiple sub-queries over the federated
data. Some of these sub-queries might retrieve the same result and therefore
one of the challenges is whether the federated system can actually detect these
duplicate answers. As another example, being by nature a distributed system,
the federation should be able to handle source failures. So, if in the middle of a
query evaluation one of the sources leaves the federation (by choice or due to a
crash), the system should be able to detect this failure and inform the remaining
sources that participate in the federated query.

6 Cloud-Based RDF Stores

The recent explosion in the size of data that is generated and used in various
applications, also termed as big data, has led to the emergence of new technolo-
gies that (i) can scale to large amounts of data, (ii) provide fault-tolerance, (iii)
allow for elastic allocation of machines and (iv) free the developer/user from
the burden of hardware and software administration. These technologies enable
the easy deployment of distributed architectures and are often termed as cloud
computing. Example systems offering such features, either as a service in the
cloud or in a private cluster, are the reputed NoSQL key-value stores [23]. At
the same time, interest in massively parallel processing has been renewed by
the MapReduce proposal [25] and many follow-up works, which aim at solving
large-volume data management tasks based in a cloud environment, or more
generally-speaking in a large-scale distributed platform. We first briefly describe
the functionalities offered by MapReduce and distributed key-value stores.

MapReduce. Interest in massively parallel processing has been renewed recently
since the emergence of the MapReduce framework [25] and its open source imple-
mentation Hadoop [10]. MapReduce has become popular in various computer-
science fields as it provides a simple programming paradigm which frees the
developer from the burden of handling parallelization, scalability, load balanc-
ing and fault-tolerance. MapReduce processing is organized in jobs. Each job
consists of a map and a reduce phase, separated by a shuffle (data transfer)
phase. The map phase is specified by a user-defined function which takes as
input (key, value) pairs, performs some tasks on these (if needed) and outputs
intermediate pairs (ikey, ivalue). These pairs are shuffled through the network
and are given as input to the reduce phase. The distributed file system (DFS) of
Hadoop, HDFS, splits data into blocks and each map task operates on a separate
block of data. The nodes of the cluster run in parallel one or more map/reduce
tasks. A comprehensive survey on MapReduce and its extensions can be found
in [27, 71].
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Key-value stores. Distributed key-value stores provide very simple data struc-
tures based on the concept of (key, value) pairs. Such stores typically handle
items, each of which consist of a key and several attributes; in turn, an attribute
consists of a name and one or several values. For convenience, most key-value
stores also support named collections of items, which are typically called tables.
An overview of various key-value stores can be found in [23].

In the rest of the section we give an overview of the most recent advances in
cloud-based RDF stores with a focus on systems that store data in the MapRe-
duce file system, in NoSQL key-value stores, in multiple centralized RDF stores
or in a commercial cloud. A more detailed survey in this research area can be
found in [42].

6.1 RDF Stores on MapReduce and DFS

This category includes works that use MapReduce and its underlying distributed
file system. These systems are built to make the most out of the parallel process-
ing capacities provided by the underlying MapReduce paradigm. RDF data is
stored in files which are split by the distributed file system in the cluster nodes.
Their negative aspect from the perspective of the data store is that they do not
have efficient fine-grained data stores to rely on. Representative works include
SHARD [69], HadoopRDF [38], RAPID+ [45,67] and PigSPARQL [73].Metadata
collection and source selection in these systems is handled by the MapReduce
framework (the namenode and scheduler) and thus, is a non-issue.

Data Partitioning. In these systems the user specifies how the data is parti-
tioned at the file level: the user/system uploads to the system files which contain
the RDF triples. There are two commonly used ways to store the data in a file
system. In the first one, the data stored in the files are stored based on the triple
model, i.e., one triple per line in each file. The second approach contains works
that organize the data in predicate-based files. Each predicate file contains the
subjects and objects of triples with a specific predicate. Conceptually the first
approach resembles the monolithic approach used in single-source approaches,
while the latter resembles the vertical partitioning where one relation is created
per predicate (see Section 3). As MapReduce does not provide fine-grained in-
dices, the latter way is preferred because it decreases the amount of data that
need to be scanned during query evaluation. [69,73] belong to the first category,
while [38, 67, 86] belong to the second one. Note that the placement of the data
blocks is performed by the underlying distributed file system.

A different approach is followed in EAGRE [85] where the goal is to reduce
the I/O cost during query processing. First, the RDF graph is compressed to
an entity-based graph where entities (subjects of triples) with similar proper-
ties are grouped in class entities. Then, the compressed graph is partitioned
with METIS [54], a graph partitioning tool, into equal to the size of the cluster
partitions. Triples are placed in the partition their entity class belongs to.
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Query Planning and Evaluation. Usually query planning takes place at a
client node and concerns the query decomposition of a query into subqueries
to be processed in parallel. The query decomposition can lead to either left-
deep or bushy query plans being built. Bushy query plans are better suited
for parallel query evaluation as they can exploit both intra- and inter-operator
parallelism. However, their search space is very large compared to the one of left-
deep trees and for this reason most works build simple left-deep trees, such as
SHARD [69] and PigSPARQL [73], or use a hybrid approach where the leaves of
the query plan is in bushy shape while the intermediate results are processed in
a left-deep manner such as RAPID+ [67]. The only work that builds fully bushy
plans is HadoopRDF [38] using a heuristic approach to minimize the number of
MapReduce jobs for pruning the search space.

Then, query evaluation is performed using MapReduce jobs. For left-deep
query plans one job is performed per join. Since MapReduce does not provide a
join functionality, the system has to implement its own join operators. There is
wide literature on how to implement a join in MapReduce with the repartition
and broadcast join to be the most common ones. The interested reader may refer
to [5, 16].

6.2 RDF Stores on Top of NoSQL Key-Value Stores

There are many works that use NoSQL key-value stores as back-ends for storing
and indexing RDF data. These systems benefit from the efficient and fine-grained
storage and retrieval of the key-value stores, however, they suffer in more com-
plex functionalities such as joins. Representatives of the second category include
systems such as Rya [64] which uses Apache Accumulo [8], Trinity.RDF [84]
which is built on top of a in-memory key-value store [77], CumulusRDF [48]
based on Apache Cassandra [9], and H2RDF+ [61] built on top of HBase [11].
Similarly with the previous set of works on MapReduce, metadata collection and
source selection is performed by the key-value store opaquely to the user and we
thus, omit any discussion about them.

Data Partitioning. Data partitioning in key-value stores amounts to the choice
of indices that will be build by each system. As shown in Section 3, centralized
RDF stores usually use extensive indexing schemes that enable fast data access
for all triple patterns and efficient performing of merge-joins. This extensive
indexing scheme has a significant storage overhead which is amplified in a cloud
environment where data is also replicated for fault-tolerance reasons. For this rea-
son, most RDF stores built on top of key-value stores employ a subset of these
indices which is sufficient for matching efficiently all possible triple patterns. The
three permutationsmassively used are subject-predicate-object (SPO), predicate-
object-subject (POS) and object-subject-predicate (OSP). Typically systemsma-
terialize each of one of these indices in a separate table in the key-value store. The
choice of the keys and values highly depends on the underlying functionality of the
key-value store, e.g., if it provides a range scan over the key space. For instance,



164 Z. Kaoudi and A. Kementsietsidis

each of the subject, predicate, object can be mapped to a key in the key value
store, or a concatenation of two or three of the RDF elements can be used as key
if a range scan is supported by the key-value store.

Query Planning and Evaluation. As key-value stores do not allow for per-
forming joins on the server-side, query planning and query evaluation is often
performed at a single site. This is simply done by fetching the triples from the
key-value store that match the individual triple patterns and performing the join
locally at the client-side. This approach is followed by most systems, e.g., [48,64].
A hybrid approach is proposed in H2RDF+ [61] where either a centralized local
join is performed at the client side or a MapReduce job is instantiated depending
on the selectivity of the join. Trinity.RDF [84] uses a graph-based approach by
navigating the RDF graph and finding matches to the query.

6.3 Approaches Using Multiple Centralized RDF Stores

Within the third category, centralized RDF stores distributed among multiple
nodes are used to exploit parallelization such as in [36, 37]. These systems are
based on a master/slave architecture, where the master partitions and places
the RDF triples in the slave nodes. Each slave node stores its local RDF triples
in a centralized RDF store such as RDF-3X.

Data Partitioning. The goal is a data partitioning scheme that enables high
parallelization during query evaluation while striving to minimize communica-
tion among the slave nodes. In [37] a graph partitioning tool, called METIS [54],
is used to partition the RDF graph into as many partitions as the number of
nodes so that a minimum number of edges is cut, i.e., the minimum number of
triples have their subject and object in different partitions. Placement is done
by assigning each triple in the partition its subject belongs to, termed as 1-hop
directed guarantee, or to the partitions that both the subject and object belongs
to, termed as 1-hop undirected guarantee. This leads to replicating the triples
that are on the edge cuts. There is also the possibility to allow for further repli-
cation of those triples that are at partition boundaries. A directed (undirected)
n-hop guarantee is achieved when any triples forming a directed (undirected)
path of length n will be located within the same partition. A similar approach
is followed in [36] with the difference that replication occurs only in the parts of
data that are certain to be accessed for a given query workload.

Metadata and Source Selection. Although data is partitioned following a
specific scheme, in [36, 37] there is no metadata information for mapping the
triples to the nodes they are stored. Therefore, a subquery is sent to all the
sources to be answered.
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Query Planning and Evaluation. Query planning and execution is per-
formed by decomposing the query to subqueries that can be completely answered
by the underlying RDF store. If a query can be completely answered by the un-
derlying RDF store then no communication is required. The answers of the query
is the union of the individual results. In any other case, network communication
is necessary to join the intermediate results of the query which is done in the
MapReduce framework.

6.4 RDF Stores in Commercial Clouds

The first store that proposed an RDF store built in a commercial cloud is Stratu-
store [80] which relies on Amazons SimpleDB [13], an early developed key-value
store of Amazon Web Services. In Stratustore, RDF data is indexed in the key-
value store and query processing is performed at the client side running at an
EC2 machine.

In AMADA [12, 19], a cloud-resident RDF store, a different approach is fol-
lowed. Raw RDF data reside in Amazon’s storage service (S3) as simple files and
a file index built in Amazon’s key-value store keeps metadata on which data can
be found in which files. Source selection is performed by consulting the indices
built to retrieve the files that contain triples that match the query. During query
evaluation the triples contained in the files selected by the index are cached in
a centralized RDF store where query answering is performed.

7 Conclusions

We have presented an overview of query processing techniques for RDF
databases. We identified a set of tasks that are of great importance for RDF
query processing and that a system should address. These include metadata col-
lection, source selection, data partitioning and query planning and execution in
a decentralized environment and storage/indexing and query planning and eval-
uation in a centralized system. We analyzed each one of these tasks in different
architectures. We first discussed issues related to single-source RDF stores and
then navigated through P2P systems, federated architectures and cloud-based
proposals.

There are numerous of open problems that are yet to be solved. These range
from more advanced techniques for query optimization (query decomposition,
join ordering, etc.), to building more sophisticated indices or materialized views
for speeding up query performance. An important aspect that is usually ne-
glected in the works we have presented in this chapter is RDFS reasoning. RDFS
reasoning is an essential functionality of the RDF model and should, therefore,
be taken into account when building systems for answering SPARQL queries.
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