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Preface

This volume contains tutorial papers prepared for the 10th Reasoning Web Sum-
mer School (RW 2014) held during September 8–13, 2014, in Athens, Greece.

The Reasoning Web series of annual summer schools started in 2005 by the
European Network of Excellence REWERSE. Since 2005, the school has become
the prime educational event in the field of reasoning techniques on the Web, at-
tracting both young and established researchers. The 2014 edition of the school
was organized by the Department of Informatics and Telecommunications, Na-
tional and Kapodistrian University of Athens (Prof. Manolis Koubarakis) and
the Institute for Communication and Computer Systems of the National Tech-
nical University of Athens (Prof. Giorgos Stamou and Dr. Giorgos Stoilos). As
with previous editions, this year’s summer school was co-located with the 8th
International Conference on Web Reasoning and Rule Systems (RR 2014).

The research area of the Semantic Web and Linked Data has been covered
comprehensively by recent editions of the Reasoning Web Summer School since
many advanced capabilities required by Semantic Web and Linked Data appli-
cation scenarios call for reasoning. In 2014, the theme of the school was:

“Reasoning on the Web in the Big Data Era.”

The invention of new technologies such as sensors, social networks platforms,
and smart phones has enabled organizations to tap a huge amount of data that
traditionally has not been available to them, and to combine it with in-house
proprietary data. At the same time, enabling technologies (e.g., elastic cloud
computing platforms) have made strong progress enabling the implementation
of data management and knowledge discovery techniques that work on terabytes
or petabytes of data. In 2014, the lecture program of the Reasoning Web school
reflected this industrial reality, and introduced students to recent advances in
Big Data aspects of Semantic Web and Linked Data, and the fundamentals of
reasoning techniques that can be used to tackle Big Data applications.

The tutorial papers are in-depth surveys of the research topics covered in
lectures by the distinguished invited speakers of the school. They have been
written as accompanying material for the students of the summer school, to
deepen their understanding and to serve as a reference for further detailed study.

The accompanying lecture slides of all tutorials are available on the summer
school web-site: http://rw2014.di.uoa.gr/.

We would like to thank everybody who made this event possible. First and
foremost, the presenters of the lectures and their co-authors. Secondly, the mem-
bers of our scientific advisory board (Profs. Ian Horrocks, Phokion Kolaitis,
Georg Lausen, and Gerhard Weikum) and our reviewers. We are thankful for
their advice and feedback and their timely reviews of the papers. Furthermore,
we would like to thank the local organization team at the National and Kapodis-
trian University of Athens and the Institute for Communication and Computer
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Systems, especially Kalliroi Dogani, Maria Karpathiotaki, Lydia Themeli, and
Eleni Iskou. We would also like to thank our sponsors: the Artificial Intelligence
journal, the European project Optique (http://www.optique-project.eu/),
the National Science Foundation (NSF), the Institut national de recherche en
informatique et en automatique (Inria), the Hellenic Artificial Intelligence Soci-
ety (EETN), ORACLE Greece, Siemens, and Google Inc.

Last but not least, we would like to thank the chairs of RR 2014, Prof.
Axel Polleres, Dr. Roman Kontchakov, Prof. Marie-Laure Mugnier, and Prof.
Francesco Ricca for a great collaboration in putting together all the details of
the two events.

June 2014 Manolis Koubarakis
Giorgos Stamou
Giorgos Stoilos
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Introduction to Linked Data and Its Lifecycle
on the Web

Axel-Cyrille Ngonga Ngomo, Sören Auer, Jens Lehmann, and Amrapali Zaveri

AKSW, Institut für Informatik, Universität Leipzig, Pf 100920, 04009 Leipzig
lastname@informatik.uni-leipzig.de

http://aksw.org

Abstract. With Linked Data, a very pragmatic approach towards achieving the
vision of the Semantic Web has gained some traction in the last years. The term
Linked Data refers to a set of best practices for publishing and interlinking struc-
tured data on the Web. While many standards, methods and technologies devel-
oped within by the Semantic Web community are applicable for Linked Data,
there are also a number of specific characteristics of Linked Data, which have
to be considered. In this article we introduce the main concepts of Linked Data.
We present an overview of the Linked Data life-cycle and discuss individual ap-
proaches as well as the state-of-the-art with regard to extraction, authoring, link-
ing, enrichment as well as quality of Linked Data. We conclude the chapter with a
discussion of issues, limitations and further research and development challenges
of Linked Data. This article is an updated version of a similar lecture given at
Reasoning Web Summer School 2013.

1 Introduction

One of the biggest challenges in the area of intelligent information management is the
exploitation of the Web as a platform for data and information integration as well as for
search and querying. Just as we publish unstructured textual information on the Web as
HTML pages and search such information by using keyword-based search engines, we
are already able to easily publish structured information, reliably interlink this informa-
tion with other data published on the Web and search the resulting data space by using
more expressive querying beyond simple keyword searches. The Linked Data paradigm
has evolved as a powerful enabler for the transition of the current document-oriented
Web into a Web of interlinked Data and, ultimately, into the Semantic Web. The term
Linked Data here refers to a set of best practices for publishing and connecting struc-
tured data on the Web. These best practices have been adopted by an increasing number
of data providers over the past three years, leading to the creation of a global data space
that contains many billions of assertions – the Web of Linked Data (cf. Figure 1).

In this chapter we give an overview of recent development in the area of Linked
Data management. The different stages in the linked data life-cycle [11] are depicted in
Figure 2. Information represented in unstructured form or adhering to other structured
or semi-structured representation formalisms must be mapped to the RDF data model
(Extraction). Once there is a critical mass of RDF data, mechanisms have to be in place
to store, index and query this RDF data efficiently (Storage & Querying). Users must

M. Koubarakis et al. (Eds.): Reasoning Web 2014, LNCS 8714, pp. 1–99, 2014.
c© Springer International Publishing Switzerland 2014

http://aksw.org


2 A.-C. Ngonga Ngomo et al.

Fig. 1. Overview of some of the main Linked Data knowledge bases and their interlinks available
on the Web. (This overview is published regularly at http://lod-cloud.net and generated
from the Linked Data packages described at the dataset metadata repository ckan.net.)

have the opportunity to create new structured information or to correct and extend exist-
ing ones (Authoring). If different data publishers provide information about the same or
related entities, links between those different information assets have to be established
(Linking). Since Linked Data primarily comprises instance data we observe a lack of
classification, structure and schema information. This deficiency can be tackled by ap-
proaches for enriching data with higher-level structures in order to be able to aggregate
and query the data more efficiently (Enrichment). As with the Document Web, the Data
Web contains a variety of information of different quality. Hence, it is important to
devise strategies for assessing the quality of data published on the Data Web (Quality
Analysis). Once problems are detected, strategies for repairing these problems and sup-
porting the evolution of Linked Data are required (Evolution & Repair). Last but not
least, users have to be empowered to browse, search and explore the structure informa-
tion available on the Data Web in a fast and user friendly manner (Search, Browsing &
Exploration).

These different stages of the linked data life-cycle do not exist in isolation or are
passed in a strict sequence, but support each other. Examples include the following:

– The detection of mappings on the schema level support instance-level matching and
vice versa.

– Ontology schema mismatches between knowledge bases can be compensated for
by learning which concepts of one are equivalent to which concepts of the other
knowledge base.

– Feedback and input from end users can be taken as training input (i.e., as positive or
negative examples) for machine-learning techniques to perform inductive reasoning
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on larger knowledge bases, whose results can again be assessed by end users for
iterative refinement.

– Semantically-enriched knowledge bases improve the detection of inconsistencies
and modelling problems, which in turn results in benefits for linking, fusion, and
classification.

– The querying performance of the RDF data management directly affects all other
components and the nature of queries issued by the components affects the RDF
data management.

As a result of such interdependence, we envision the Web of Linked Data to realize
an improvement cycle for knowledge bases, in which an improvement of a knowledge
base with regard to one aspect (e.g., a new alignment with another interlinking hub)
triggers a number of possible further improvements (e.g., additional instance matches).

The use of Linked Data offers a number of significant benefits:

– Uniformity. All datasets published as Linked Data share a uniform data model, the
RDF statement data model. With this data model all information is represented in
facts expressed as triples consisting of a subject, predicate and object. The elements
used in subject, predicate or object positions are mainly globally unique identifiers
(IRI/URI). Literals, i.e., typed data values, can be used at the object position.

– De-referencability. URIs are not just used for identifying entities, but since they can
be used in the same way as URLs they also enable locating and retrieving resources
describing and representing these entities on the Web.

– Coherence. When an RDF triple contains URIs from different namespaces in sub-
ject and object position, this triple basically establishes a link between the entity

Fig. 2. The Linked Data life-cycle
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identified by the subject (and described in the source dataset using namspace A)
with the entity identified by the object (described in the target dataset using names-
pace B). Through the typed RDF links, data items are effectively interlinked.

– Integrability. Since all Linked Data sources share the RDF data model, which is
based on a single mechanism for representing information, it is very easy to at-
tain a syntactic and simple semantic integration of different Linked Data sets. A
higher level semantic integration can be achieved by employing schema and in-
stance matching techniques and expressing found matches again as alignments of
RDF vocabularies and ontologies in terms of additional triple facts.

– Timeliness. Publishing and updating Linked Data is relatively simple thus facili-
tating a timely availability. In addition, once a Linked Data source is updated it is
straightforward to access and use the updated data source, since time consuming
and error prune extraction, transformation and loading is not required.

Table 1. Juxtaposition of the concepts Linked Data, Linked Open Data and Open Data

Representation \ degree of openness Possibly closed Open (cf. opendefinition.org)
Structured data model Data Open Data
(i.e. XML, CSV, SQL etc.)
RDF data model Linked Data (LD) Linked Open Data (LOD)
(published as Linked Data)

The development of research approaches, standards, technology and tools for
supporting the Linked Data lifecycle data is one of the main challenges. Developing
adequate and pragmatic solutions to these problems can have a substantial impact on
science, economy, culture and society in general. The publishing, integration and aggre-
gation of statistical and economic data, for example, can help to obtain a more precise
and timely picture of the state of our economy. In the domain of health care and life
sciences making sense of the wealth of structured information already available on the
Web can help to improve medical information systems and thus make health care more
adequate and efficient. For the media and news industry, using structured background
information from the Data Web for enriching and repurposing the quality content can
facilitate the creation of new publishing products and services. Linked Data technolo-
gies can help to increase the flexibility, adaptability and efficiency of information man-
agement in organizations, be it companies, governments and public administrations or
online communities. For end-users and society in general, the Data Web will help to ob-
tain and integrate required information more efficiently and thus successfully manage
the transition towards a knowledge-based economy and an information society.

Structure of this chapter. This chapter aims to explain the foundations of Linked Data
and introducing the different aspects of the Linked Data lifecycle by highlighting par-
ticular approaches and providing references to related work and further reading. We
start by briefly explaining the principles underlying the Linked Data paradigm in Sec-
tion 2. The first aspect of the Linked Data lifecycle is the extraction of information from
unstructured, semi-structured and structured sources and their representation according
to the RDF data model (Section 3). We present the user friendly authoring and manual

opendefinition.org
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revision aspect of Linked Data with the example of Semantic Wikis in Section 4. The
interlinking aspect is tackled in Section 5 and gives an overview on the LIMES frame-
work. We describe how the instance data published and commonly found on the Data
Web can be enriched with higher level structures in Section 6. We present an overview
of the various data quality dimensions and metrics along with currently existing tools
for data quality assessment of Linked Data in Section 7. Due to space limitations we
omit a detailed discussion of the evolution as well as search, browsing and exploration
aspects of the Linked Data lifecycle in this chapter. The chapter is concluded by sev-
eral sections on promising applications of Linked Data and semantic technologies, in
particular Open Governmental Data, Semantic Business Intelligence and Statistical and
Economic Data. Overall, this is an updated version of a similar lecture given at Reason-
ing Web Summer School 2013 [13].

2 The Linked Data Paradigm

In this section we introduce the basic principles of Linked Data. The section is partially
based on the Section 2 from [79]. The term Linked Data refers to a set of best practices
for publishing and interlinking structured data on the Web. These best practices were
introduced by Tim Berners-Lee in his Web architecture note Linked Data1 and have
become known as the Linked Data principles. These principles are:

– Use URIs as names for things.
– Use HTTP URIs so that people can look up those names.
– When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL).
– Include links to other URIs, so that they can discover more things.

The basic idea of Linked Data is to apply the general architecture of the World Wide
Web [95] to the task of sharing structured data on global scale. The Document Web
is built on the idea of setting hyperlinks between Web documents that may reside on
different Web servers. It is built on a small set of simple standards: Uniform Resource
Identifiers (URIs) and their extension Internationalized Resource Identifiers (IRIs) as
globally unique identification mechanism [22], the Hypertext Transfer Protocol (HTTP)
as universal access mechanism [56], and the Hypertext Markup Language (HTML) as
a widely used content format [88]. Linked Data builds directly on Web architecture and
applies this architecture to the task of sharing data on global scale.

2.1 Resource Identification with IRIs

To publish data on the Web, the data items in a domain of interest must first be identified.
These are the things whose properties and relationships will be described in the data,
and may include Web documents as well as real-world entities and abstract concepts.
As Linked Data builds directly on Web architecture, the Web architecture term resource
is used to refer to these things of interest, which are in turn identified by HTTP URIs.

1 http://www.w3.org/DesignIssues/LinkedData.html

http://www.w3.org/DesignIssues/LinkedData.html
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Linked Data uses only HTTP URIs, avoiding other URI schemes such as URNs [136]
and DOIs2. The structure of HTTP URIs looks as follows:

[scheme:][//authority][path][?query][#fragment]

A URI for identifying Shakespeare’s ‘Othello’, for example, could look as follows:

http://de.wikipedia.org/wiki/Othello#id

HTTP URIs make good names for two reasons:

1. They provide a simple way to create globally unique names in a decentralized fash-
ion, as every owner of a domain name or delegate of the domain name owner may
create new URI references.

2. They serve not just as a name but also as a means of accessing information describ-
ing the identified entity.

2.2 De-referencability

Any HTTP URI should be de-referencable, meaning that HTTP clients can look up the
URI using the HTTP protocol and retrieve a description of the resource that is identified
by the URI. This applies to URIs that are used to identify classic HTML documents,
as well as URIs that are used in the Linked Data context to identify real-world objects
and abstract concepts. Descriptions of resources are embodied in the form of Web doc-
uments. Descriptions that are intended to be read by humans are often represented as
HTML. Descriptions that are intended for consumption by machines are represented
as RDF data. Where URIs identify real-world objects, it is essential to not confuse the
objects themselves with the Web documents that describe them. It is therefore common
practice to use different URIs to identify the real-world object and the document that
describes it, in order to be unambiguous. This practice allows separate statements to be
made about an object and about a document that describes that object. For example, the
creation year of a painting may be rather different to the creation year of an article about
this painting. Being able to distinguish the two through use of different URIs is critical
to the consistency of the Web of Data.

The Web is intended to be an information space that may be used by humans as
well as by machines. Both should be able to retrieve representations of resources in a
form that meets their needs, such as HTML for humans and RDF for machines. This
can be achieved using an HTTP mechanism called content negotiation [56]. The basic
idea of content negotiation is that HTTP clients send HTTP headers with each request
to indicate what kinds of documents they prefer. Servers can inspect these headers and
select an appropriate response. If the headers indicate that the client prefers HTML then
the server will respond by sending an HTML document If the client prefers RDF, then
the server will send the client an RDF document.

There are two different strategies to make URIs that identify real-world objects de-
referencable [179]. Both strategies ensure that objects and the documents that describe
them are not confused and that humans as well as machines can retrieve appropriate
representations.

2 http://www.doi.org/hb.html

http://www.doi.org/hb.html
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303 URIs. Real-world objects can not be transmitted over the wire using the HTTP
protocol. Thus, it is also not possible to directly de-reference URIs that identify real-
world objects. Therefore, in the 303 URI strategy, instead of sending the object itself
over the network, the server responds to the client with the HTTP response code 303
See Other and the URI of a Web document which describes the real-world object.
This is called a 303 redirect. In a second step, the client de-references this new URI and
retrieves a Web document describing the real-world object.

Hash URIs. A widespread criticism of the 303 URI strategy is that it requires two HTTP
requests to retrieve a single description of a real-world object. One option for avoiding
these two requests is provided by the hash URI strategy. The hash URI strategy builds
on the characteristic that URIs may contain a special part that is separated from the base
part of the URI by a hash symbol (#). This special part is called the fragment identifier.
When a client wants to retrieve a hash URI the HTTP protocol requires the fragment
part to be stripped off before requesting the URI from the server. This means a URI that
includes a hash cannot be retrieved directly, and therefore does not necessarily identify
a Web document. This enables such URIs to be used to identify real-world objects and
abstract concepts, without creating ambiguity [179].

Both approaches have their advantages and disadvantages. Section 4.4. of the
W3C Interest Group Note Cool URIs for the Semantic Web compares the two ap-
proaches [179]: Hash URIs have the advantage of reducing the number of necessary
HTTP round-trips, which in turn reduces access latency. The downside of the hash URI
approach is that the descriptions of all resources that share the same non-fragment URI
part are always returned to the client together, irrespective of whether the client is inter-
ested in only one URI or all. If these descriptions consist of a large number of triples,
the hash URI approach can lead to large amounts of data being unnecessarily transmit-
ted to the client. 303 URIs, on the other hand, are very flexible because the redirection
target can be configured separately for each resource. There could be one describing
document for each resource, or one large document for all of them, or any combination
in between. It is also possible to change the policy later on.

2.3 RDF Data Model

The RDF data model [1] represents information as sets of statements, which can be
visualized as node-and-arc-labeled directed graphs. The data model is designed for the
integrated representation of information that originates from multiple sources, is hetero-
geneously structured, and is represented using different schemata. RDF can be viewed
as a lingua franca, capable of moderating between other data models that are used on
the Web.

In RDF, information is represented in statements, called RDF triples. The three parts
of each triple are called its subject, predicate, and object. A triple mimics the basic
structure of a simple sentence, such as for example:

Burkhard Jung is the mayor of Leipzig
(subject) (predicate) (object)
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The following is the formal definition of RDF triples as it can be found in the W3C
RDF standard [1].

Definition 1 (RDF Triple). Assume there are pairwise disjoint infinite sets I, B, and
L representing IRIs, blank nodes, and RDF literals, respectively. A triple (v1, v2, v3) ∈
(I ∪ B) × I × (I ∪ B ∪ L) is called an RDF triple. In this tuple, v1 is the subject, v2 the
predicate and v3 the object. We call T = I ∪ B ∪ L the set of RDF terms.

The main idea is to use IRIs as identifiers for entities in the subject, predicate and
object positions in a triple. Data values can be represented in the object position as
literals. Furthermore, the RDF data model also allows in subject and object positions
the use of identifiers for unnamed entities (called blank nodes), which are not globally
unique and can thus only be referenced locally. However, the use of blank nodes is
discouraged in the Linked Data context as we discuss below. Our example fact sentence
about Leipzig’s mayor would now look as follows:

<http://leipzig.de/id>
<http://example.org/p/hasMayor>

<http://Burkhard-Jung.de/id> .
(subject) (predicate) (object)

This example shows that IRIs used within a triple can originate from different names-
paces thus effectively facilitating the mixing and mashing of different RDF vocabular-
ies and entities from different Linked Data knowledge bases. A triple having identifiers
from different knowledge bases at subject and object position can be also viewed as
an typed link between the entities identified by subject and object. The predicate then
identifies the type of link. If we combine different triples we obtain an RDF graph.

Definition 2 (RDF Graph). A finite set of RDF triples is called RDF graph. The RDF
graph itself represents an resource, which is located at a certain location on the Web
and thus has an associated IRI, the graph IRI.

An example of an RDF graph is depicted in Figure 3. Each unique subject or object
contained in the graph is visualized as a node (i.e. oval for resources and rectangle
for literals). Predicates are visualized as labeled arcs connecting the respective nodes.
There are a number of synonyms being used for RDF graphs, all meaning essentially
the same but stressing different aspects of an RDF graph, such as RDF document (file
perspective), knowledge base (collection of facts), vocabulary (shared terminology),
ontology (shared logical conceptualization).

Problematic RDF features in the Linked Data Context. Besides the features mentioned
above, the RDF Recommendation [1] also specifies some other features. In order to
make it easier for clients to consume data only the subset of the RDF data model de-
scribed above should be used. In particular, the following features are problematic when
publishing RDF as Linked Data:

– RDF reification (for making statements about statements) should be avoided if pos-
sible, as reified statements are rather cumbersome to query with the SPARQL query



Introduction to Linked Data and Its Lifecycle on the Web 9

Fig. 3. Example RDF graph describing the city of Leipzig and its mayor

language. In many cases using reification to publish metadata about individual RDF
statements can be avoided by attaching the respective metadata to the RDF docu-
ment containing the relevant triples.

– RDF collections and RDF containers are also problematic if the data needs to be
queried with SPARQL. Therefore, in cases where the relative ordering of items
in a set is not significant, the use of multiple triples with the same predicate is
recommended.

– The scope of blank nodes is limited to the document in which they appear, meaning
it is not possible to create links to them from external documents. In addition, it
is more difficult to merge data from different sources when blank nodes are used,
as there is no URI to serve as a common key. Therefore, all resources in a data set
should be named using IRI references.

2.4 RDF Serializations

The initial official W3C RDF standard [1] comprised a serialization of the RDF data
model in XML called RDF/XML. Its rationale was to integrate RDF with the existing
XML standard, so it could be used smoothly in conjunction with the existing XML tech-
nology landscape. However, RDF/XML turned out to be difficult to understand for the
majority of potential users because it requires to be familiar with two data models (i.e.,
the tree-oriented XML data model as well as the statement oriented RDF datamodel)
and interactions between them, since RDF statements are represented in XML. As a
consequence, with N-Triples, Turtle and N3 a family of alternative text-based RDF seri-
alizations was developed, whose members have the same origin, but balance differently
between readability for humans and machines. Later in 2009, RDFa (RDF Annotations,
[3]) was standardized by the W3C in order to simplify the integration of HTML and
RDF and to allow the joint representation of structured and unstructured content within
a single source HTML document. Another RDF serialization, which is particularly ben-
eficial in the context of JavaScript web applications and mashups is the serialization of
RDF in JSON. In the sequel we present each of these RDF serializations in some more
detail. Figure 5 presents an example serialized in the most popular serializations.

N-Triples. This serialization format was developed specifically for RDF graphs. The
goal was to create a serialization format which is very simple. N-Triples are easy to
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Fig. 4. Various textual RDF serializations as subsets of N3 (from [170])

parse and generate by software. An N-Triples document consists of a set of triples,
which are separated ‘.’ (lines 1-2, 3-4 and 5-6 in Figure 5 contain one triple each). URI
components of a triple are written in full and enclosed by ‘<’ and ‘>’. Literals are
enclosed in quotes, datatypes can be appended to a literal using ‘g (line 6), language
tags using ‘@’ (line 4). They are a subset of Notation 3 and Turtle but lack, for example,
shortcuts such as CURIEs. This makes them less readable and more difficult to create
manually. Another disadvantage is that N-triples use only the 7-bit US-ASCII character
encoding instead of UTF-8.

Turtle. Turtle (Terse RDF Triple Language) is a subset of Notation 3 (and is conse-
quently compatible with Notation 3)and a superset of the minimal N-Triples format (cf.
Figure 4). The goal was to use the essential parts of Notation 3 for the serialization of
RDF models and omit everything else. Turtle became part of the SPARQL query lan-
guage for expressing graph patterns. Compared to N-Triples, Turtle introduces a num-
ber of shortcuts, such as namespace definitions (lines 1-5 in Figure 5), the semicolon
as a separator between triples sharing the same subject (which then does not have to be
repeated in subsequent triples) and the comma as a separator between triples sharing
the same subject and predicate. Turtle, just like Notation 3, is human-readable, and can
handle the "%" character in URIs (required for encoding special characters) as well as
IRIs due to its UTF-8 encoding.
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Notation 3. N3 (Notation 3) was devised by Tim Berners-Lee and developed for the
purpose of serializing RDF. The main aim was to create a very human-readable serial-
ization. Hence, an RDF model serialized in N3 is much more compact than the same
model in RDF/XML but still allows a great deal of expressiveness even going beyond
the RDF data model in some aspects. Since the encoding for N3 files is UTF-8, the use
of IRIs is natively supported by this format.

RDF/XML. The RDF/XML syntax [130] is standardized by the W3C and is widely
used to publish Linked Data on the Web. However, the syntax is also viewed as difficult
for humans to read and write, and therefore consideration should be given to using
other serializations in data management and curation workflows that involve human
intervention, and to the provision of alternative serializations for consumers who may
wish to eyeball the data. The MIME type that should be used for RDF/XML within
HTTP content negotiation is application/rdf+xml.

RDFa. RDF in Attributes (RDFa, [3]) was developed for embedding RDF into XHTML
pages. Since it is an extension to the XML based XHTML, UTF-8 and UTF-16 are
used for encoding. The "%" character for URIs in triples can be used because RDFa
tags are not used for a part of a RDF statement. Thus IRIs are usable, too. Because
RDFa is embedded in XHTML, the overhead is higher compared to other serialization
technologies and also reduces the readability. The basic idea of RDFa is enable an RDFa
processor to extract RDF statements from an RDFa enriched HTML document. This is
achieved by defining the scope of a certain resource description, for example, using the
‘about’ attribute (cf. line 10 in Figure 5). Within this scope, triples can now be extracted
from links having an additional ‘rel’ attribute (line 13) or other tags having a ‘property
attribute’ (lines 11 and 14).

JSON-LD. JavaScript Object Notation (JSON) was developed for easy data interchange
between applications. JSON, although carrying JavaScript in its name and being a sub-
set of JavaScript, meanwhile became a language independent format which can be used
for exchanging all kinds of data structures and is widely supported in different program-
ming languages. Compared to XML, JSON-LD requires less overhead with regard to
parsing and serializing. JSON-LD has been developed by the JSON for Linking Data
Community Group and been transferred to the RDF Working Group for review, im-
provement, and publication along the Recommendation track. JSON-LD’s design goals
are simplicity, compatibility, expressiveness, terseness, zero edits and one-pass pro-
cessing. As a result, JSON-LD documents are basically standard attribute-value JSON
documents with an additional context section (lines 2-7 in Figure 5) establishing map-
pings to RDF vocabularies. Text in JSON and, thus, also RDF resource identifiers are
encoded in Unicode and hence can contain IRIs.

3 Extraction

Information represented in unstructured form or adhering to a different structured repre-
sentation formalism must be mapped to the RDF data model in order to be used within
the Linked Data life-cycle. In this section, we give an overview on some relevant ap-
proaches for extracting RDF from unstructured and structured sources.
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N-Triples

1 <http://dbpedia.org/resource /Leipzig> <http://dbpedia.org/property/hasMayor >

2 <http://dbpedia.org/resource /Burkhard_Jung > .

3 <http://dbpedia.org/resource /Leipzig> <http://www.w3.org/2000/01/ rdf-schema#label>

4 "Leipzig"@de .

5 <http://dbpedia.org/resource /Leipzig> <http://www.w3.org/2003/01/ geo/wgs84_pos #lat>

6 "51.333332"^^< http://www.w3.org/2001/ XMLSchema #float> .

Turtle

1 @prefix rdf: <http://www.w3.org/1999/02/22- rdf-syntax-ns#> .

2 @prefix rdfs="http://www.w3.org/2000/01/ rdf-schema#> .

3 @prefix dbp="http://dbpedia.org/resource/> .

4 @prefix dbpp="http://dbpedia.org/property/> .

5 @prefix geo="http://www.w3.org/2003/01/ geo/wgs84_pos #> .

6

7 dbp:Leipzig dbpp:hasMayor dbp:Burkhard_Jung ;

8 rdfs:label "Leipzig"@de ;

9 geo:lat "51.333332"^^ xsd:float .

RDF/XML

1 <?xml version ="1.0"?>

2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22- rdf-syntax-ns#"

3 xmlns:rdfs="http://www.w3.org/2000/01/ rdf-schema#"

4 xmlns:dbpp="http://dbpedia.org/property /"

5 xmlns:geo="http://www.w3.org/2003/01/ geo/wgs84_pos #">

6 <rdf:Description rdf:about="http://dbpedia.org/resource /Leipzig">

7 <property :hasMayor rdf:resource ="http://dbpedia.org/resource /Burkhard_Jung " />

8 <rdfs:label xml:lang="de">Leipzig </rdfs:label>

9 <geo:lat rdf:datatype ="http://www.w3.org/2001/ XMLSchema #float">51.3333</geo:lat>

10 </rdf:Description >

11 </rdf:RDF>

RDFa

1 <?xml version ="1.0" encoding ="UTF-8"?>

2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.0//EN"

3 "http://www.w3.org/MarkUp/DTD/xhtml-rdfa -1.dtd">

4 <html version="XHTML+RDFa 1.0" xml:lang="en" xmlns="http://www.w3.org/1999/ xhtml"

5 xmlns:rdf="http://www.w3.org/1999/02/22- rdf-syntax-ns#"

6 xmlns:rdfs="http://www.w3.org/2000/01/ rdf-schema#"

7 xmlns:dbpp="http://dbpedia.org/property /"

8 xmlns:geo="http://www.w3.org/2003/01/ geo/wgs84_pos #">

9 <head ><title>Leipzig </title></head >

10 <body about="http://dbpedia.org/resource /Leipzig">

11 <h1 property ="rdfs:label" xml:lang="de">Leipzig </h1>

12 <p>Leipzig is a city in Germany. Leipzig’s mayor is

13 <a href="Burkhard_Jung " rel="dbpp:hasMayor">Burkhard Jung </a>. It is located

14 at latitude <span property ="geo:lat" datatype ="xsd:float">51.3333</span >.</p>

15 </body >

16 </html >

JSON-LD

1 {

2 "@context ": {

3 "rdfs": "http://www.w3.org/2000/01/ rdf-schema#",

4 "hasMayor ": { "@id": "http://dbpedia.org/property /hasMayor ", "@type": "@id" },

5 "Person": "http://xmlns.com/foaf/0.1/Person",

6 "lat": "http://www.w3.org/2003/01/ geo/wgs84_pos #lat"

7 },

8 "@id": "http://dbpedia.org/resource /Leipzig",

9 "rdfs:label": "Leipzig",

10 "hasMayor ": "http://dbpedia.org/resource/Burkhard_Jung ",

11 "lat": { "@value": "51.3333", "@type": "http://www.w3.org/2001/XMLSchema #float"

12 }

Fig. 5. Different RDF serializations of three triples from Figure 3
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3.1 From Unstructured Sources

The extraction of structured information from unstructured data sources (especially
text) has been a central pillar of natural language processing (NLP) and Informa-
tion Extraction (IE) for several decades. With respect to the extraction of RDF data
from unstructured data, three sub-disciplines of NLP play a central role: Named En-
tity Recognition (NER) for the extraction of entity labels from text, Keyword/Keyphrase
Extraction (KE) for the recognition of central topics and Relationship Extraction (RE,
also called relation mining) for mining the properties which link the entities and key-
words described in the data source. A noticeable additional task during the migration
of these techniques to Linked Data is the extraction of suitable IRIs for the discovered
entities and relations, a requirement that was not needed before. In this section, we give
a short overview of approaches that implement the required NLP functionality. Then
we present a framework that applies machine learning to boost the quality of the RDF
extraction from unstructured data by merging the results of NLP tools.

Named Entity Recognition. The goal of NER is to discover instances of a prede-
fined classes of entities (e.g., persons, locations, organizations) in text. NER tools and
frameworks implement a broad spectrum of approaches, which can be subdivided into
three main categories: dictionary-based, rule-based, and machine-learning approaches.
The first systems for NER implemented dictionary-based approaches, which relied on
a list of NEs and tried to identify these in text [199,6]. Following work that showed that
these approaches did not perform well for NER tasks such as recognizing proper names
[178], rule-based approaches were introduced. These approaches rely on hand-crafted
rules [42,189] to recognize NEs. Most rule-based approaches combine dictionary and
rule-based algorithms to extend the list of known entities. Nowadays, handcrafted rules
for recognizing NEs are usually implemented when no training examples are available
for the domain or language to process [141].

When training examples are available, the methods of choice are borrowed from
supervised machine learning. Approaches such as Hidden Markov Models [213], Max-
imum Entropy Models [47] and Conditional Random Fields [57] have been applied
to the NER task. Due to scarcity of large training corpora as necessitated by machine
learning approaches, semi-supervised [162,140] and unsupervised machine learning ap-
proaches [142,53] have also been used for extracting NER from text. [140] gives an
exhaustive overview of approaches for NER.

Keyphrase Extraction. Keyphrases/Keywords are multi-word units (MWUs) which
capture the main topics of a document. The automatic detection of such MWUs has
been an important task of NLP for decades but due to the very ambiguous defini-
tion of what an appropriate keyword should be, current approaches to the extraction
of keyphrases still display low F-scores [99]. From the point of view of the Semantic
Web, the extraction of keyphrases is a very similar task to that of finding tags for a given
document. Several categories of approaches have been adapted to enable KE, of which
some originate from research areas such as summarization and information retrieval
(IR). Still, according to [98], the majority of the approaches to KE implement combina-
tions of statistical, rule-based or heuristic methods [60,157] on mostly document [128],
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keyphrase [192] or term cohesion features [161]. [99] gives a overview of current tools
for KE.

Relation Extraction. The extraction of relations from unstructured data builds upon
work for NER and KE to determine the entities between which relations might exist.
Most tools for RE rely on pattern-based approaches. Some early work on pattern extrac-
tion relied on supervised machine learning [72]. Yet, such approaches demanded large
amount of training data, making them difficult to adapt to new relations. The subse-
quent generation of approaches to RE aimed at bootstrapping patterns based on a small
number of input patterns and instances. For example, [35] presents the Dual Iterative
Pattern Relation Expansion (DIPRE) and applies it to the detection of relations between
authors and titles of books. This approach relies on a small set of seed patterns to max-
imize the precision of the patterns for a given relation while minimizing their error rate
of the same patterns. Snowball [4] extends DIPRE by a new approach to the generation
of seed tuples. Newer approaches aim to either collect redundancy information from the
whole Web [160] or Wikipedia [201,208] in an unsupervised manner or to use linguistic
analysis [75,156] to harvest generic patterns for relations.

URI Disambiguation. One important problem for the integration of NER tools for
Linked Data is the retrieval of IRIs for the entities to be manipulated. In most cases,
the URIs can be extracted from generic knowledge bases such as DBpedia [118,112]
by comparing the label found in the input data with the rdfs:label or dc:title of
the entities found in the knowledge base. Furthermore, information such as the type of
NEs can be used to filter the retrieved IRIs via a comparison of the rdfs:label of
the rdf:type of the URIs with the name of class of the NEs. Still in many cases (e.g.,
Leipzig, Paris), several entities might bear the same label.

The FOX Framework

Several frameworks have been developed to implement the functionality above for the
Data Web including OpenCalais3 and Alchemy4. Yet, these tools rely mostly on one
approach to perform the different tasks at hand. In this section, we present the FOX
(Federated knOwledge eXtraction) framework5. FOX differs from the state of the art
by making use of several NER algorithms at once and combining their results by using
ensemble learning techniques. FOX’s NED is implemented by the AGDISTIS frame-
work6, which combines graph search with the HITS algorithm to detect resources that
match a set of strings.

Named Entity Recognition in FOX. The basic intuition behind the FOX framework
is that while manifold approaches have been devised for the purpose of NER, they

3 http://www.opencalais.com
4 http://www.alchemyapi.com
5 http://aksw.org/projects/fox
6 http://aksw.org/projects/agdistis

http://www.opencalais.com
http://www.alchemyapi.com
http://aksw.org/projects/fox
http://aksw.org/projects/agdistis
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mostly rely on one algorithm. However, it is known that each algorithm has intrinsic
limitations by virtue of the model that it relies on. For example, polynomial classifiers
cannot model decision planes that are non-polynomial. FOX makes use of the diversity
of the algorithms available for NER approaches by combining their results within the
ensemble learning setting. Formally, the idea is the following: Let C1 . . .Cn be classi-
fiers that values between 0 and 1 when given a string s and an entity type t as input, i.e.,
Ci(s, t) ∈ [0, 1]. Then, we can always train a novel classifier C that performs at least as
well as any of the Ci on an training dataset D. To this end, we consider the supervised
ensemble learning problem where the input data for C is the vector V = (vi)i=1...n with
vi = Ci(s, t) and the output must be the expected score for (s, t). Learning the classifier
C can be carried by using any supervised machine-learning approach that can deal with
non-binary data.

The architecture of FOX consists of three main layers as shown in Figure 6. The
machine learning layer implements interfaces for accommodating ensemble learning
techniques such as simple veto algorithms but also neural networks. It consists of two
main modules. The training module allows to load training data so as to enable FOX
to learn the best combination of tools and categories for achieving superior recall and
precision on the input training data. Depending on the training algorithm used, the user
can choose to tune the system for either precision or recall. When using neural networks
for example, the user can decide to apply a higher threshold for the output neurons,
thus improving the precision but potentially limiting the recall. The prediction module
allows to run FOX by loading the result of a training session and processing the input
data according to the tool-category combination learned during the training phase. Note
that the same learning approach can by applied to NER, KE, RE and URI lookup as they
call all be modelled as classification tasks. The second layer of FOX is the controller,
which coordinates the access to the modules that carry out the language processing. The
controller is aware of each of the modules in its backend and carries out the initialisation
of these modules once FOX is started. Furthermore, it collects the results from the
backend modules and invokes the results of a training instance to merge the results of
these tools. The final layer of FOX is the tool layer, wherein all NLP tools and services
integrated in FOX can be found. It is important to notice that the tools per se are not
trained during the learning phase of FOX. Rather, we learn of the models already loaded
in the tools to allow for the best prediction of named entities in a given domain.

Currently, FOX includes Stanford NER, Illinois NER, Balie and OpenNLP. In an
effort to quantify the gain in accuracy of FOX, we integrated the Waikato Environ-
ment for Knowledge Analysis (Weka) [74] and the implemented classifiers with default
parameters: AdaBoostM1 (ABM1) [61] and Bagging (BG) [32] with J48 [165] as base
classifier, Decision Table (DT) [101], Functional Trees (FT) [65,105], J48 [165], Logis-
tic Model Trees (LMT) [105], Logistic Regression (Log) [106], Additive Logistic Re-
gression (LogB) [63], Multilayer Perceptron (MLP), Naïve Bayes [96], Random Forest
(RF) [33], Support Vector Machine (SVM) [38] and Sequential Minimal Optimization
(SMO) [78]. In addition, we used voting at entity level (CVote) and a simple voting
(Vote) approach [206] with equal weights for all NER tools. CVote selects the NER
tool with the highest prediction performance for each type according to the evaluation
and uses that particular tool for the given class. Vote as naive approach combines the
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results of the NER tools with the Majority Vote Rule [100] and was the baseline ensem-
ble learning technique in our evaluation. In Table 2, the comparison of fifteen different
types of classifiers in a ten-fold cross validation over a dataset extracted from online
newspapers and containing 150 locations, 139 organizations and 178 persons is shown.
Like in previous works [150], these results suggest that multi-layer perceptrons tend to
perform well on this task. Interestingly, learning on this small dataset already pushes the
overall F-measure of FOX to 95.23% while the best single algorithm achieves 91.01%
F-measure.

Named Entity Disambiguation: AGDISTIS. The goal of AGDISTIS is to detect cor-
rect resources from a KB K for a vector N of n a-priori determined named entities
N1, . . . ,Nn extracted from a certain input text T . In general, several resources from a
given knowledge base K can be considered as candidate resources for a given entity Ni.
For the sake of simplicity and without loss of generality, we will assume that each of
the entities can be mapped to m distinct candidate resources. Let C be the matrix which
contains all candidate-entity mappings for a given set of entities. The entry Ci j stands
for the jth candidate resource for the ith named entity. Let μ be a family of functions
which maps each entity Ni to exactly one candidate Ci j. We call such functions assign-
ments. The output of an assignment is a vector of resources of length |N| that is such
that the ith entry of the vector maps with Ni.

Let ψ be a function which computes the similarity between an assignment μ(C,N)
and the vector of named entities N. The coherence function φ calculates the similarity of
the knowledge base K and an assignment μ [169] to ensure the topical consistency of μ.
The coherence function φ is implemented by the HITS algorithm, which calculates the
most pertinent entities while the similarity function ψ is, e.g., string similarity. Given
this formal model, the goal is to find the assignment μ� with

μ� = arg max
μ

(ψ(μ(C,N),N) + φ(μ(C,N),K)) .
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Table 2. The News data set

S Recall Precision F1 error MCC
MLP 95.19 95.28 95.23 0.32 0.951
RF 95.15 95.28 95.21 0.32 0.951

ABM1.J48 94.82 95.18 95.00 0.33 0.948
SVM 94.86 95.09 94.97 0.33 0.948

BG.J48 94.76 94.93 94.84 0.34 0.947
J48 94.78 94.98 94.88 0.34 0.947
DT 94.63 94.95 94.79 0.34 0.946

LMT 94.68 94.95 94.82 0.34 0.946
FT 94.30 95.15 94.72 0.35 0.945

LogB 93.54 95.37 94.44 0.37 0.943
Log 94.05 94.75 94.40 0.37 0.942

SMO 94.01 94.37 94.19 0.39 0.940
Naïve Bayes 94.61 92.64 93.60 0.42 0.934

Stanford 92.36 91.01 91.68 0.53 0.914
CVote 92.02 90.84 91.42 0.54 0.911
Vote 89.98 82.97 85.92 0.94 0.857

Illinois 82.79 87.35 84.95 0.92 0.845
OpenNLP 71.42 90.47 79.57 1.13 0.797

Balie 77.68 82.05 79.8 1.21 0.792

The formulation of the problem given above has been proven to be NP-hard [46].
Thus, for the sake of scalability, AGDISTIS computes an approximation μ+ by using
HITS, a fast graph algorithm which runs with an upper bound of Θ(k · |V |2) with k the
number of iterations and |V | the number of nodes in the graph. Furthermore, using HITS
leverages 1) scalability, 2) well-researched behaviour and 3) the ability to explicate
semantic authority.

For each named entity, candidates resources from the input knowledge base can be
detected by the labels of the resources in the knowledge base with the named entity.
Here, resources such as surface forms can also be used. Given a set of candidate nodes,
we begin the computation of the optimal assignment by constructing a disambiguation
graph Gd with search depth d. To this end, we regard the input knowledge base as a
directed graph GK = (V, E) where the vertices V are resources of K, the edges E are
properties of K and x, y ∈ V, (x, y) ∈ E ⇔ ∃p : (x, p, y) is an RDF triple in K. Given
the set of candidates C, we begin by building an initial graph G0 = (V0, E0) where V0

is the set of all resources in C and E0 = ∅. Starting with G0 we extend the graph in a
breadth-first search manner. Therefore, we define the extension of a graph Gi = (Vi, Ei)
to a graph ρ(Gi) = Gi+1 = (Vi+1, Ei+1) where i = 0, . . . , d as follows:

Vi+1 = Vi ∪ {y : ∃x ∈ Vi ∧ (x, y) ∈ E} (1)

Ei+1 = {(x, y) ∈ E : x, y ∈ Vi+1} (2)

We iterate the ρ operator d times on the input graph G0 to compute the initial disam-
biguation graph Gd.
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After constructing the disambiguation graph Gd we need to identify the correct can-
didate node for a given named entity. Using the graph-based HITS algorithm we calcu-
late authoritative values xa, ya and hub values xh, yh for all x, y ∈ Vd. We initialize the
authoritative and hub values as follows:

∀x ∈ Vd, xa = xh =
1
|Vd| . (3)

Afterwards, we iterate k times the following equations:

xa ←−
∑

(y,x)∈Ed

yh, yh ←−
∑

(y,x)∈Ed

xa. (4)

We choose k = 20 iterations, which suffices to achieve convergence in general. After-
wards we identify the most authoritative candidate Ci j among the set of candidates Ci as
correct disambiguation for a given named entity Ni. When using DBpedia as KB and Ci j

is a redirect AGDISTIS uses the target resource. As can be seen, we calculate μ+ solely
by using algorithms with a polynomial time complexity. The evaluation of AGDISTIS
shown in Table 3 on datasets by [45] shows clearly that AGIDISTIS outperforms the
state of the art in 3 out of 4 cases.

Table 3. Performance of AGDISTIS, DBpedia Spotlight and TagMe2 on four different datasets
using micro F-meassure

Dataset Approach F1 Precision Recall

AIDA/CO-NLL-TestB
TagMe 2 0.565 0.58 0.551

DBPedia Spotlight 0.341 0.308 0.384
AGDISTIS 0.596 0.642 0.556

AQUAINT
TagMe 2 0.457 0.412 0.514

DBPedia Spotlight 0.26 0.178 0.48
AGDISTIS 0.547 0.777 0.422

IITB
TagMe 2 0.408 0.416 0.4

DBPedia Spotlight 0.46 0.434 0.489
AGDISTIS 0.31 0.646 0.204

MSNBC
TagMe 2 0.466 0.431 0.508

DBPedia Spotlight 0.331 0.317 0.347
AGDISTIS 0.761 0.796 0.729

3.2 From Structured Sources

Structured knowledge, e.g. relational databases and XML, is the backbone of many
(web) applications. Extracting or converting this knowledge to RDF is a long-standing
research goal in the Semantic Web community. A conversion to RDF allows to integrate
the data with other sources and perform queries over it. In this lecture, we focus on the
conversion of relational databases to RDF (see Figure 7). In the first part, we summarize
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Fig. 7. Illustration of RDB to RDF conversion. Source: http://www.w3.org/2001/sw/
rdb2rdf/use-cases/.

Fig. 8. Table comparing relevant approaches from [8]

material from a recent relational database to RDF (RDB2RDF) project report. After
that, we describe the mapping language R2RML, which is a language for expressing
database to RDF conversion mappings. While we focus on relational date, we also want
to note that extraction from CSV files is also highly important as illustrated in use cases
in the financial [127] and health sector [211].

Triplify and RDB2RDF Survey Report. The table displayed in Figure 8 is taken
from the Triplify WWW paper [8]. The survey report [177] furthermore contained a
chart(see Figure 9) showing the reference framework for classifying the approaches
and an extensive table classifying the approaches (see Figure 10). Another recent survey
is [187].

http://www.w3.org/2001/sw/rdb2rdf/use-cases/
http://www.w3.org/2001/sw/rdb2rdf/use-cases/
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The following criteria can be extracted:

Automation Degree. Degree of mapping creation automation.
Values: Manual, Automatic, Semi-Automatic.

Domain or Database Semantics Driven. Some approaches are tailored to model a do-
main, sometimes with the help of existing ontologies, while others attempt to extract
domain information primarily from the given database schema with few other resources
used (domain or database semantics-driven). The latter often results in a table-to-class,
column-to-predicate mapping.Some approaches also use a (semi) automatic approach
based on the database, but allow manual customization to model domain semantics.
Values: Domain, DB (database), DB+M (database and later manual customisation),
Both (Domain and DB)

Access Paradigm. Resulting access paradigm (ETL [extract transform load], Linked
Data, SPARQL access). Note that the access paradigm also determines whether the
resulting RDF model updates automatically. ETL means a one time conversion, while
Linked Data and SPARQL always process queries versus the original database.
Values: SPARQL, ETL, LD

Mapping Language. The used mapping language as an important factor for reusability
and initial learning cost.
Values: Visual Tool, intern (internal self-designed language), FOL, n/a (no information
available), R2O, XSLT, D2RQ, proprietary, SQL

Domain reliance. Domain reliance (general or domain-dependent): requiring a pre-
defined ontology is a clear indicator of domain dependency.
Values: Dependent, General

Type. Although not used in the table the paper discusses four different classes:
Values: Alignment, Database Mining, Integration, Languages/Servers

Fig. 9. Reference framework by [177]



Introduction to Linked Data and Its Lifecycle on the Web 21

Fig. 10. Comparison of approaches from [177]
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R2RML - RDB to RDF Mapping Language. The R2RML W3C recommendation7

specifies an RDF notation for mapping relational tables, views or queries into RDF.
The primary area of applicability of this is extracting RDF from relational databases,
but in special cases R2RML could lend itself to on-the-fly translation of SPARQL into
SQL or to converting RDF data to a relational form. The latter application is not the
primary intended use of R2RML but may be desirable for importing linked data into re-
lational stores. This is possible if the constituent mappings and underlying SQL objects
constitute updateable views in the SQL sense.

Data integration is often mentioned as a motivating use case for the adoption of RDF.
This integration will very often be between relational databases which have logical en-
tities in common, each with its local schema and identifiers.Thus, we expect to see
relational to RDF mapping use cases involving the possibility of a triple coming from
multiple sources. This does not present any problem if RDF is being extracted but does
lead to complications if SPARQL queries are mapped into SQL. In specific, one will
end up with potentially very long queries consisting of joins of unions. Most of the joins
between terms of the unions will often be provably empty and can thus be optimized
away. This capability however requires the mapping language to be able to express
metadata about mappings, i.e. that IRIs coming from one place are always disjoint from
IRIs coming from another place. Without such metadata optimizing SPARQL to SQL
translation is not possible, which will significantly limit the possibility of querying col-
lections of SQL databases through a SPARQL end point without ETL-ing the mapped
RDF into an RDF store.

RDF is emerging as a format for interoperable data publishing. This does not entail
that RDF were preferable as a data warehousing model. Besides, for large warehouses,
RDF is not cost competitive with relational technology, even though projects such as
LOD2 and LDBC expect to narrow this gap (see, e.g., [137,138] for recent SPARQL
benchmarks). Thus it follows that on the fly mapping of SPARQL to SQL will be im-
portant. Regardless of the relative cost or performance of relational or RDF technology,
it is not a feasible proposition to convert relational warehouses to RDF in general, rather
existing investments must be protected and reused. Due to these reasons, R2RML will
have to evolve in the direction of facilitating querying of federated relational resources.

Supervised Extraction Example: Sparqlify. The challenges encountered with large
scale relational data sources LinkedGeoData [12,188] indicate that ETL style ap-
proaches based on the conversion of all underlying data to RDF have severe deficien-
cies. For instance, the RDF conversion process is very time consuming for large-scale,
crowdsourced data. Furthermore, changes in data modelling require many changes in
the extracted RDF data or the creation of a completely new dump. In summary, the
ETL approach is not sufficiently flexible for very large and frequently changing data. It
seems preferable to establish virtual RDF views over the existing relational database. In
contrast to other tools, such as D2R and Virtuoso RDF views, Sparqlify converts each
SPARQL query to a single SQL query. This allows all optimisations of the underlying
database to be applied and can lead to better scalability.

7 http://www.w3.org/TR/r2rml/

http://www.w3.org/TR/r2rml/
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Fig. 11. The Sparqlify concepts and query rewriting workflow

Figure 11 shows the query rewriting workflow in Sparqlify. The rationale of Spar-
qlify is to leave the schema of the underlying relational database schema unmodified
and define RDF views over it. SPARQL queries can then be written against those views,
which are expressed in the Sparqlify-ML (mapping language). Sparqlify-ML is easy to
learn for users, who are experienced in SPARQL and SQL and more compact than other
syntactic variants such as R2RML. The left part of Figure 11 shows all steps, which are
performed to answer a query. First, the query is converted into an algebra expression.
This expression is subsequently converted to a normal form. Given the query patterns,
relevant Sparqlify-ML views need to be detected. After this is done, the algebra expres-
sion is rewritten to include those relevant views. In a next step, optimisations on the
algebra expression are performed to improve efficiency. Finally, this algebra expression
can be transformed to an SQL algebra expression. For accomplishing this, we define
a general relational algebra for RDB-to-RDF mappings. The SQL query, which was
obtained, is executed against the relational database. Using the defined mappings, the
SQL result set returned by the relational database can be converted to a SPARQL result
set.

All of the above steps are explained in detail throughout the next sections.The main
contribution of the Sparqlify project is a formalization, which goes beyond previous
work by being capable to push the complete query execution using a single SQL query
into the DBMS.

4 Authoring with Semantic Wikis

Semantic Wikis are an extension to conventional, text-based Wikis. While in conven-
tional Wikis pages are stored as blocks of text using a special Wiki markup for structur-
ing the display of the text and adding links to other pages, semantic Wikis aim at adding
rich structure to the information itself. To this end, two initially orthogonal approaches
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Table 4. Conceptual differences between Semantic MediaWiki and OntoWiki

Semantic MediaWiki OntoWiki

Managed entities Articles Resources
Editing Wiki markup Forms
Atomic element Text blob Statement

have been used: a) extending the markup language to allow semantic annotations and
links with meaning or b) building the Wiki software directly with structured information
in mind. Nowadays, both approaches have somewhat converged, for instance Seman-
tic MediaWiki [103] also provides forms for entering structured data (see Figure 12).
Characteristics of both approaches are summarized in Table 4 for the two prototypical
representatives of both approaches, i.e. Semantic MediaWiki and OntoWiki.

Extending Wikis with Semantic Markup. The benefit of a Wiki system comes from
the amount of interlinking between Wiki pages. Those links clearly state a relationship
between the linked-to and the linking page. However, in conventional Wiki systems this
relationship cannot be made explicit. Semantic Wiki systems therefore add a means to
specify typed relations by extending the Wiki markup with semantic (i.e. typed) links.
Once in place, those links form a knowledge base underlying the Wiki which can be
used to improve search, browsing or automatically generated lists and category pages.
Examples of approaches for extending Wikis with semantic markup can be found in
[103,180,15,159,186]. They represent a straightforward combination of existing Wiki
systems and the Semantic Web knowledge representation paradigms. Yet, we see the
following obstacles:

Usability: The main advantage of Wiki systems is their unbeatable usability. Adding
more and more syntactic possibilities counteracts ease of use for editors.

Redundancy: To allow the answering of real-time queries to the knowledge base, state-
ments have to be additionally kept in a triple store. This introduces a redundancy,
which complicates the implementation.

Evolution: As a result of storing information in both Wiki texts and triple store, sup-
porting evolution of knowledge is difficult.

Wikis for Editing Structured Data. In contrast to text-based systems, Wikis for struc-
tured data – also called Data Wikis – are built on a structured model of the data being
edited. The Wiki software can be used to add instances according to the schema or (in
some systems) edit the schema itself. One of those systems is OntoWiki8 [9] which
bases its data model on RDF. This way, both schema and instance data are represented
using the same low-level model (i.e. statements) and can therefore be handled identi-
cally by the Wiki.

8 Available at: http://ontowiki.net

http://ontowiki.net
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Fig. 12. Comparison of Semantic MediaWiki and OntoWiki GUI building blocks
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Fig. 13. Overview of OntoWiki’s architecture with extension API and Zend web framework
(modified according to [80])

4.1 OntoWiki - A Semantic Data Wiki

OntoWiki started as an RDF-based data wiki with emphasis on collaboration but has
meanwhile evolved into a comprehensive framework for developing Semantic Web ap-
plications [80]. This involved not only the development of a sophisticated extension
interface allowing for a wide range of customizations but also the addition of several ac-
cess and consumption interfaces allowing OntoWiki installations to play both a provider
and a consumer role in the emerging Web of Data.

OntoWiki is inspired by classical Wiki systems, its design, however, (as men-
tioned above) is independent and complementary to conventional Wiki technologies. In
contrast to other semantic Wiki approaches, in OntoWiki text editing and knowledge
engineering (i. e. working with structured knowledge bases) are not mixed. Instead, On-
toWiki directly applies the Wiki paradigm of “making it easy to correct mistakes, rather
than making it hard to make them” [121] to collaborative management of structured
knowledge. This paradigm is achieved by interpreting knowledge bases as information
maps where every node is represented visually and interlinked to related resources.
Furthermore, it is possible to enhance the knowledge schema gradually as well as the
related instance data agreeing on it. As a result, the following requirements and corre-
sponding features characterize OntoWiki:

Intuitive display and editing of instance data should be provided in generic ways, yet
enabling domain-specific presentation of knowledge.

Semantic views allow the generation of different views and aggregations of the knowl-
edge base.

Versioning and evolution provides the opportunity to track, review and roll-back
changes selectively.
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Semantic search facilitates easy-to-use full-text searches on all literal data, search re-
sults can be filtered and sorted (using semantic relations).

Community support enables discussions about small information chunks. Users are
encouraged to vote about distinct facts or prospective changes.

Online statistics interactively measures the popularity of content and activity of users.
Semantic syndication supports the distribution of information and their integration

into desktop applications.

OntoWiki enables the easy creation of highly structured content by distributed com-
munities. The following points summarize some limitations and weaknesses of On-
toWiki and thus characterize the application domain:

Environment: OntoWiki is a Web application and presumes all collaborators to work
in a Web environment, possibly distributed.

Usage Scenario: OntoWiki focuses on knowledge engineering projects where a single,
precise usage scenario is either initially (yet) unknown or not (easily) definable.

Reasoning: Application of reasoning services was (initially) not the primary focus.

4.2 Generic and Domain-Specific Views

OntoWiki can be used as a tool for presenting, authoring and managing knowledge
bases adhering to the RDF data model. As such, it provides generic methods and views,
independent of the domain concerned. Two generic views included in OntoWiki are the
resource view and the list view. While the former is generally used for displaying all
known information about a resource, the latter can present a set of resources, typically
instances of a certain concept. That concept must not necessarily be explicitly defined as
rdfs:Class or owl:Class in the knowledge base. Via its faceted browsing, OntoWiki
allows the construction of complex concept definitions, with a pre-defined class as a
starting point by means of property value restrictions. These two views are sufficient for
browsing and editing all information contained in a knowledge base in a generic way.
For domain-specific use cases, OntoWiki provides an easy-to-use extension interface
that enables the integration of custom components. By providing such a custom view, it
is even possible to hide completely the fact that an RDF knowledge base is worked on.
This permits OntoWiki to be used as a data-entry frontend for users with a less profound
knowledge of Semantic Web technologies.

4.3 Workflow

With the use of RDFS [34] and OWL [163] as ontology languages, resource defini-
tion is divisible into different layers: a terminology box for conceptual information
(i. e. classes and properties) and an assertion box for entities using the concepts defined
(i. e. instances). There are characteristics of RDF which, for end users, are not easy to
comprehend (e. g. classes can be defined as instances of owl:Class). OntoWiki’s user
interface, therefore, provides elements for these two layers, simultaneously increasing
usability and improving a user’s comprehension for the structure of the data. After start-
ing and logging in into OntoWiki with registered user credentials, it is possible to select
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one of the existing ontologies. The user is then presented with general information about
the ontology (i. e. all statements expressed about the knowledge base as a resource) and
a list of defined classes, as part of the conceptual layer.

After starting and logging in into OntoWiki with registered user credentials, it is
possible to select one of the existing knowledge bases. The user is then presented with
general information about the ontology (i. e. all statements expressed about the knowl-
edge base as a resource) and a list of defined classes, as part of the conceptual layer. By
selecting one of these classes, the user obtains a list of the class’ instances. OntoWiki
applies basic rdfs:subClassOf reasoning automatically. After selecting an instance
from the list – or alternatively creating a new one – it is possible to manage (i. e. insert,
edit and update) information in the details view.OntoWiki focuses primarily on the as-
sertion layer, but also provides ways to manage resources on the conceptual layer. By
enabling the visualization of schema elements, called System Classes in the OntoWiki
nomenclature, conceptional resources can be managed in a similar fashion as instance
data.

4.4 Authoring

Semantic content in OntoWiki is represented as resource descriptions. Following the
RDF data model representing one of the foundations of the Semantic Web vision, re-
source descriptions are represented (at the lowest level) in the form of statements. Each
of these statements (or triples) consist of a subject which identifies a resource as well as
a predicate and an object which together represent data about said resource in a fashion
reminiscent of key-value pairs. By means of RDFa [3], these statements are retained in
the HTML view (i.e. user interface) part and are thus accessible to client-side techniques
like JavaScript.

Authoring of such content is based on said client-side representation by employ-
ing the RDFauthor approach [191]: views are declared in terms of the model language
(RDF) which allows the underlying model be restored. Based on this model, a user
interface can be generated with the model being providing all the domain knowledge
required to do so. The RDFauthor system provides an extensible set of authoring wid-
gets specialized for certain editing tasks. RDFauthor was also extended by adding ca-
pabilities for automatically translating literal object values between different languages.
Since the semantic context is known to the system, these translation functionality can
be bound to arbitrary characteristics of the data (e. g. to a certain property or a missing
language).

Versioning& Evolution. As outlined in the wiki principles, keeping track of all changes
is an important task in order to encourage user participation. OntoWiki applies this
concept to RDF-based knowledge engineering in that all changes are tracked on the
statement level [10]. These low-level changes can be grouped to reflect application-
and domain-specific tasks involving modifications to several statements as a single ver-
sioned item. Provenance information as well as other metadata (such as time, user or
context) of a particular changeset can be attached to each individual changeset. All
changes on the knowledge base can be easily reviewed and rolled-back if needed. The
loosely typed data model of RDF encourages continuous evolution and refinement of
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Fig. 14. OntoWiki views: (background) A tabular list view, which contains a filtered list of re-
sources highlighting some specific properties of those resources and (foreground) a resource view
which allows to tag and comment a specific resource as well as editing all property values

knowledge bases. With EvoPat, OntoWiki supports this in a declarative, pattern-based
manner (see section on evolution).

4.5 Access Interfaces

In addition to human-targeted graphical user interfaces, OntoWiki supports a number
of machine-accessible data interfaces. These are based on established Semantic Web
standards like SPARQL or accepted best practices like publication and consumption of
Linked Data.

SPARQL Endpoint. The SPARQL recommendation not only defines a query language
for RDF but also a protocol for sending queries to and receiving results from remote
endpoints9. OntoWiki implements this specification, allowing all resources managed in
an OntoWiki be queried over the Web. In fact, the aforementioned RDFauthor authoring
interface makes use of SPARQL to query for additional schema-related information,
treating OntoWiki as a remote endpoint in that case.

9 http://www.w3.org/TR/rdf-sparql-protocol/

http://www.w3.org/TR/rdf-sparql-protocol/
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Linked Data. Each OntoWiki installation can be part of the emerging Linked Data Web.
According to the Linked Data publication principles (cf. section 2), OntoWiki makes all
resources accessible by its IRI (provided, the resource’s IRI is in the same namespace
as the OntoWiki instance). Furthermore, for each resource used in OntoWiki additional
triples can be fetches if the resource is de-referenceable.

Semantic Pingback. Pingback is an established notification system that gained wide
popularity in the blogsphere. With Semantic Pingback [190], OntoWiki adapts this idea
to Linked Data providing a notification mechanism for resource usage. If a Pingback-
enabled resource is mentioned (i. e. linked to) by another party, its pingback server is no-
tified of the usage. Provided, the Semantic Pingback extension is enabled all resources
used in OntoWiki are pinged automatically and all resources defined in OntoWiki are
Pingback-enabled.

4.6 Exploration Interfaces

For exploring semantic content, OntoWiki provides several exploration interfaces that
range from generic views over search interfaces to sophisticated querying capabilities
for more RDF-knowledgable users. The subsequent paragraphs give an overview of
each of them.

Knowledge base as an information map. The compromise between, on the one hand,
providing a generic user interface for arbitrary RDF knowledge bases and, on the other
hand, aiming at being as intuitive as possible is tackled by regarding knowledge bases
as information maps. Each node at the information map, i. e. RDF resource, is repre-
sented as a Web accessible page and interlinked to related digital resources. These Web
pages representing nodes in the information map are divided into three parts: a left side-
bar, a main content section and a right sidebar. The left sidebar offers the selection of
content to display in the main content section. Selection opportunities include the set of
available knowledge bases, a hierarchical browser and a full-text search.

Full-text search. The full-text search makes use of special indexes (mapped to propri-
etary extensions to the SPARQL syntax) if the underlying knowledge store provides
this feature, else, plain SPARQL string matching is used. In both cases, the resulting
SPARQL query is stored as an object which can later be modified (e. g. have its filter
clauses refined). Thus, full-text search is seamlessly integrated with faceted browsing
(see below).

Content specific browsing interfaces. For domain-specific use cases, OntoWiki pro-
vides an easy-to-use extension interface that enables the integration of custom compo-
nents. By providing such a custom view, it is even possible to hide completely the fact
that an RDF knowledge base is worked on. This permits OntoWiki to be used as a data-
entry frontend for users with a less profound knowledge of Semantic Web technologies.

Faceted-browsing. Via its faceted browsing, OntoWiki allows the construction of
complex concept definitions, with a pre-defined class as a starting point by means of
property value restrictions. These two views are sufficient for browsing and editing all
information contained in a knowledge base in a generic way.
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Query-builder. OntoWiki serves as a SPARQL endpoint, however, it quickly turned out
that formulating SPARQL queries is too tedious for end users. In order to simplify the
creation of queries, we developed the Visual Query Builder10 (VQB) as an OntoWiki
extension, which is implemented in JavaScript and communicates with the triple store
using the SPARQL language and protocol. VQB allows to visually create queries to the
stored knowledge base and supports domain experts with an intuitive visual representa-
tion of query and data. Developed queries can be stored and added via drag-and-drop to
the current query. This enables the reuse of existing queries as building blocks for more
complex ones.

4.7 Applications

Catalogous Professorum. The World Wide Web, as an ubiquitous medium for pub-
lication and exchange, already significantly influenced the way historians work: the
online availability of catalogs and bibliographies allows to efficiently search for content
relevant for a certain investigation; the increasing digitization of works from histori-
cal archives and libraries, in addition, enables historians to directly access historical
sources remotely. The capabilities of the Web as a medium for collaboration, however,
are only starting to be explored. Many, historical questions can only be answered by
combining information from different sources, from different researchers and organiza-
tions. Also, after original sources are analyzed, the derived information is often much
richer, than can be captured by simple keyword indexing. These factors pave the way for
the successful application of knowledge engineering techniques in historical research
communities.

In [172] we report about the application of an adaptive, semantics-based knowl-
edge engineering approach using OntoWiki for the development of a prosopographical
knowledge base. In prosopographical research, historians analyze common character-
istics of historical groups by studying statistically relevant quantities of individual bi-
ographies. Untraceable periods of biographies can be determined on the basis of such
accomplished analyses in combination with statistically examinations as well as pat-
terns of relationships between individuals and their activities.

In our case, researchers from the historical seminar at Universität Leipzig aimed
at creating a prosopographical knowledge base about the life and work of professors
in the 600 years history of Universität Leipzig ranging from the year 1409 till 2009
- the Catalogus Professorum Lipsiensis (CPL). In order to enable historians to collect,
structure and publish this prosopographical knowledge an ontological knowledge model
was developed and incrementally refined over a period of three years. The community
of historians working on the project was enabled to add information to the knowledge
base using an adapted version of OntoWiki. For the general public, a simplified user
interface11 is dynamically generated based on the content of the knowledge base. For
access and exploration of the knowledge base by other historians a number of access
interfaces was developed and deployed, such as a graphical SPARQL query builder, a
relationship finder and plain RDF and Linked Data interfaces. As a result, a group of

10 http://aksw.org/Projects/OntoWiki/Extension/VQB
11 Available at: http://www.uni-leipzig.de/unigeschichte/professorenkatalog/

http://aksw.org/Projects/OntoWiki/Extension/VQB
http://www.uni-leipzig.de/unigeschichte/professorenkatalog/
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10 historians supported by a much larger group of volunteers and external contributors
collected information about 1,300 professors, 10,000 associated periods of life, 400
institutions and many more related entities.

The benefits of the developed knowledge engineering platform for historians are
twofold: Firstly, the collaboration between the participating historians has significantly
improved: The ontological structuring helped to quickly establish a common under-
standing of the domain. Collaborators within the project, peers in the historic commu-
nity as well as the general public were enabled to directly observe the progress, thus
facilitating peer-review, feedback and giving direct benefits to the contributors. Sec-
ondly, the ontological representation of the knowledge facilitated original historical in-
vestigations, such as historical social network analysis, professor appointment analysis
(e.g. with regard to the influence of cousin-hood or political influence) or the relation
between religion and university. The use of the developed model and knowledge en-
gineering techniques is easily transferable to other prosopographical research projects
and with adaptations to the ontology model to other historical research in general. In
the long term, the use of collaborative knowledge engineering in historian research
communities can facilitate the transition from largely individual-driven research (where
one historian investigates a certain research question solitarily) to more community-
oriented research (where many participants contribute pieces of information in order
to enlighten a larger research question). Also, this will improve the reusability of the
results of historic research, since knowledge represented in structured ways can be used
for previously not anticipated research questions.

OntoWiki Mobile. As comparatively powerful mobile computing devices are becom-
ing more common, mobile web applications have started gaining in popularity. An im-
portant feature of these applications is their ability to provide offline functionality with
local updates for later synchronization with a web server. The key problem here is the
reconciliation, i. e. the problem of potentially conflicting updates from disconnected
clients. Another problem current mobile application developers face is the plethora
of mobile application development platforms as well as the incompatibilities between
them. Android (Google), iOS (Apple), Blackberry OS (RIM), WebOS (HP/Palm), Sym-
bian (Nokia) are popular and currently widely deployed platforms, with many more
proprietary ones being available as well. As a consequence of this fragmentation, real-
izing a special purpose application, which works with many or all of these platforms
is extremely time consuming and inefficient due to the large amount of duplicate work
required.

The W3C addressed this problem, by enriching HTML in its 5th revision with ac-
cess interfaces to local storage (beyond simple cookies) as well as a number of devices
and sensors commonly found on mobile devices (e. g. GPS, camera, compass etc.). We
argue, that in combination with semantic technologies these features can be used to re-
alize a general purpose, mobile collaboration platform, which can support the long tail
of mobile special interest applications, for which the development of individual tools
would not be (economically) feasible.

In [51] we present the OntoWiki Mobile approach realizing a mobile semantic
collaboration platform based on the OntoWiki. It comprises specifically adopted user
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interfaces for browsing, faceted navigation as well as authoring of knowledge bases.
It allows users to collect instance data and refine the structured knowledge bases on-
the-go. OntoWiki Mobile is implemented as an HTML5 web application, thus being
completely mobile device platform independent. In order to allow offline use in cases
with restricted network coverage (or in order to avoid roaming charges) it uses the novel
HTML5 local storage feature for replicating parts of the knowledge base on the mobile
device. Hence, a crucial part of OntoWiki Mobile is the advanced conflict resolution
for RDF stores. The approach is based on a combination of the EvoPat [173] method
for data evolution and ontology refactoring along with a versioning system inspired
by distributed version control systems like Git. OntoWiki Mobile is a generic, appli-
cation domain agnostic tool, which can be utilized in a wide range of very different
usage scenarios ranging from instance acquisition to browsing of semantic data on the
go. Typical OntoWiki Mobile usage scenarios are settings where users need to author
and access semantically structured information on the go or in settings where users are
away from regular power supply and restricted to light-weight equipment (e. g. scientific
expeditions).

Semantics-Based Requirements Engineering. Semantic interoperability, linked data,
and a shared conceptual foundation become increasingly important prerequisites in soft-
ware development projects that are characterized by spatial dispersion, large numbers
of stakeholders, and heterogeneous development tools. The SoftWiki OntoWiki exten-
sion [124] focuses specifically on semantic collaboration with respect to requirements
engineering. Potentially very large and spatially distributed groups of stakeholders, in-
cluding developers, experts, managers, and average users, shall be enabled to collect,
semantically enrich, classify, and aggregate software requirements. OntoWiki is used
to support collaboration as well as interlinking and exchange of requirements data. To
ensure a shared conceptual foundation and semantic interoperability, we developed the
SoftWiki Ontology for Requirements Engineering (SWORE) that defines core concepts
of requirement engineering and the way they are interrelated. For instance, the ontol-
ogy defines frequent relation types to describe requirements interdependencies such as
details, conflicts, related to, depends on, etc. The flexible SWORE design allows for
easy extension. Moreover, the requirements can be linked to external resources, such as
publicly available domain knowledge or company-specific policies. The whole process
is called semantification of requirements. It is envisioned as an evolutionary process:
The requirements are successively linked to each other and to further concepts in a
collaborative way, jointly by all stakeholders. Whenever a requirement is formulated,
reformulated, analyzed, or exchanged, it might be semantically enriched by the respec-
tive participant.

5 Linking

The fourth Linked Data Principle, i.e., “Include links to other URIs, so that they can
discover more things” (cf. section 2) is the most important Linked Data principle as it
enables the paradigm change from data silos to interoperable data distributed across the
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Web. Furthermore, it plays a key role in important tasks such as cross-ontology ques-
tion answering [23,125], large-scale inferences [194,131] and data integration [126,21].
Yet, while the number of triples in Linked Data sources increases steadily and has sur-
passed 31 billions12, links between knowledge bases still constitute less than 5% of
these triples. The goal of linking is to tackle this sparseness so as to transform the Web
into a platform for data and information integration as well as for search and querying.

5.1 Link Discovery

Linking can be generally defined as connecting things that are somehow related. In the
context of Linked Data, the idea of linking is especially concerned with establishing
typed links between entities (i.e., classes, properties or instances) contained in knowl-
edge bases. Over the last years, several frameworks have been developed to address
the lack of typed links between the different knowledge bases on the Linked Data web.
Overall, two main categories of frameworks that aim to achieve this goal can be dif-
ferentiated. The first category implements ontology matching techniques and aims to
establish links between the ontologies underlying two data sources. The second and
more prominent category of approaches, dubbed instance matching approaches (also
called linking or link discovery approaches), aims to discover links between instances
contained in two data sources. It is important to notice that while ontology and instance
matching are similar to schema matching [167,166] and record linkage [205,50,27] re-
spectively (as known in the research area of databases), linking on the Web of Data is
a more generic and thus more complex task, as it is not limited to finding equivalent
entities in two knowledge bases. Rather, it aims at finding semantically related entities
and establishing typed links between them, most of these links being imbued with for-
mal properties (e.g., transitivity, symmetry, etc.) that can be used by reasoners and other
application to infer novel knowledge. In this section, we will focus on the discovery of
links between instances and use the term link discovery as name for this process. An
overview of ontology matching techniques is given in [54].

Formally, link discovery can be defined as follows:

Definition 3 (Link Discovery). Given two sets S (source) and T (target) of instances
and a relation R, find the set M ⊆ S × T that is such that ∀(s, t) ∈ M : R(s, t).

Solving this problem is obviously not trivial. Declarative frameworks thus reduce this
problem to a similarity computation problem and try to approximate M by a set M̃ for
which the following holds:

Definition 4 (Link Discovery as Similarity Computation). Given two sets S (source)
and T (target) of instances, a (complex) semantic similarity measure σ : S ×T → [0, 1]
and a threshold θ ∈ [0, 1], the goal of link discovery task is to compute the set M̃ =
{(s, t), σ(s, t) ≥ θ}.

In general, the similarity function used to carry out a link discovery task is described
by using a link specification (sometimes called linkage decision rule [91]).

12 http://lod-cloud.net/

http://lod-cloud.net/
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5.2 Challenges

Two key challenges arise when trying to discover links between two sets of instances:
the computational complexity of the matching task per se and the selection of an appro-
priate link specification. The first challenge is intrinsically related to the link discovery
process. The time complexity of a matching task can be measured by the number of
comparisons necessary to complete this task. When comparing a source knowledge
base S with a target knowledge base T , the completion of a matching task requires
a-priori O(|S ||T |) comparisons, an impractical proposition as soon as the source and
target knowledge bases become large. For example, discovering duplicate cities in DB-
pedia [7] alone would necessitate approximately 0.15 × 109 similarity computations.
Hence, the provision of time-efficient approaches for the reduction of the time com-
plexity of link discovery is a key requirement to instance linking frameworks for Linked
Data.

The second challenge of the link discovery process lies in the selection of an ap-
propriate link specification. The configuration of link discovery frameworks is usually
carried out manually, in most cases simply by guessing. Yet, the choice of a suitable link
specification measure is central for the discovery of satisfactory links. The large num-
ber of properties of instances and the large spectrum of measures available in literature
underline the complexity of choosing the right specification manually13. Supporting the
user during the process of finding the appropriate similarity measure and the right prop-
erties for each mapping task is a problem that still needs to be addressed by the Linked
Data community. Methods such as supervised and active learning can be used to guide
the user in need of mapping to a suitable linking configuration for his matching task. In
the following, we give a short overview of existing frameworks for Link Discovery on
the Web of Data. Subsequently, we present a time-efficient framework for link discovery
in more detail and show how it can detect link specifications using active learning.

5.3 Approaches to Link Discovery

Current frameworks for link discovery can be subdivided into two main categories:
domain-specific and universal frameworks. Domain-specific link discovery frameworks
aim at discovering links between knowledge bases from a particular domain. One of
the first domain-specific approaches to carry out instance linking for Linked Data was
implemented in the RKBExplorer14 [69] with the aim of discovering links between en-
tities from the domain of academics. Due to the lack of data available as Linked Data,
the RKBExplorer had to extract RDF from heterogeneous data source so as to popu-
late its knowledge bases with instances according to the AKT ontology15. Especially,
instances of persons, publications and institutions were retrieved from several major
metadata websites such as ACM and DBLP. The linking was implemented by the so-
called Consistent Reference Service (CRS) which linked equivalent entities by com-
paring properties including their type and label. So far, the CRS is limited to linking

13 The SimMetrics project (http://simmetrics.sf.net) provides an overview of strings sim-
ilarity measures.

14 http://www.rkbexplorer.com
15 http://www.aktors.org/publications/ontology/

http://simmetrics.sf.net
http://www.rkbexplorer.com
 http://www.aktors.org/publications/ontology/
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objects in the knowledge bases underlying the RKBExplorer and cannot be used for
other tasks without further implementation.

Another domain-specific tool is GNAT [168], which was developed for the music
domain. It implements several instance matching algorithms of which the most sophis-
ticated, the online graph matching algorithm (OGMA), applies a similarity propagation
approach to discover equivalent resources. The basic approach implemented by OGMA
starts with a single resource s ∈ S . Then, it retrieves candidate matching resources
t ∈ T by comparing properties such as foaf:name for artists and dc:title for al-
bums. If σ(s, t) ≥ θ, then the algorithm terminates. In case a disambiguation is needed,
the resourced related to s and t in their respective knowledge bases are compared and
their similarity value is cumulated to recompute σ(s, t). This process is iterated until a
mapping resource for s is found in T or no resource matches.

Universal link discovery frameworks are designed to carry out mapping tasks in-
dependently from the domain of the source and target knowledge bases. For exam-
ple, RDF-AI [181], a framework for the integration of RDF data sets, implements a
five-step approach that comprises the preprocessing, matching, fusion, interlinking and
post-processing of data sets. RDF-AI contains a series of modules that allow for com-
puting instances matches by comparing their properties. Especially, it contains trans-
lation modules that allow to process the information contained in data sources before
mapping. By these means, it can boost the precision of the mapping process. These
modules can be configured by means of XML-files. RDF-AI does not comprise means
for querying distributed data sets via SPARQL16. In addition, it suffers from not being
time-optimized. Thus, mapping by using this tool can be very time-consuming.

A time-optimized approach to link discovery is implemented by the LIMES frame-
work [148,147,153] (Link Discovery Framework for metric spaces) .17 The idea behind
the LIMES framework is to use the mathematical characteristics of similarity and dis-
tance measures to reduce the number of computations that have to be carried out by
the system without losing any link. For example, LIMES can make use of the fact that
the edit distance is a distance metric to approximate distances without having to com-
pute them [148]. Moreover, it implements the reductio-ratio-optimal space tiling algo-
rithmHR3 to compute similarities in affine spaces with Minkowski measures [146]. In
contrast to other frameworks (of which most rely on blocking), LIMES relies on time-
efficient set operators to combine the results of these algorithms efficiently and has
been shown to outperform the state of the art by these means [147]. Moreover, LIMES
implements unsupervised and supervised machine learning approaches for detecting
high-quality link specifications [153,154].

Another link discovery framework is SILK [198]. SILK implements several ap-
proaches to minimize the time necessary for mapping instances from knowledge bases.
In addition to implementing rough index pre-matching to reach a quasi-linear time-
complexity, SILK also implements a lossless blocking algorithm called MultiBlock [92]
to reduce its overall runtime. The approach relies on generating overlapping blocks of
instances and only comparing pairs of instances that are located in the same block.

16 http://www.w3.org/TR/rdf-sparql-query/
17 http://limes.sf.net. A graphical user interface can be found at
http://saim.aksw.org

http://www.w3.org/TR/rdf-sparql-query/
http://limes.sf.net
http://saim.aksw.org
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Moreover, SILK provides supervised machine learning approaches for link discov-
ery [93].

It is important to notice that the task of discovering links between knowledge bases is
related with record linkage [205,50] and de-duplication [27]. The database community
has produced a vast amount of literature on efficient algorithms for solving these prob-
lems. Different blocking techniques such as standard blocking, sorted-neighborhood,
bigram indexing, canopy clustering and adaptive blocking [20,24,102] have been devel-
oped to address the problem of the quadratic time complexity of brute force comparison
methods. The idea is to filter out obvious non-matches efficiently before executing the
more detailed and time-consuming comparisons. In the following, we present a state-of-
the-art framework that implements lossless instance matching based on a similar idea
in detail.

5.4 The LIMES Algorithm

The original LIMES algorithm described in [148] addresses the scalability problem
of link discovery by utilizing the triangle inequality in metric spaces to compute pes-
simistic estimates of instance similarities. Based on these approximations, LIMES can
filter out a large number of instance pairs that cannot suffice the matching condition set
by the user. The real similarities of the remaining instances pairs are then computed and
the matching instances are returned.

Mathematical Framework. In the remainder of this section, we use the following
notations:

1. A is an affine space,
2. m, m1, m2, m3 symbolize metrics on A,
3. x, y and z represent points from A and
4. α, β, γ and δ are scalars, i.e., elements of R.

Definition 5 (Metric space). A metric space is a pair (A,m) such that A is an affine
space and m : A × A→ R is a function such that for all x, y and z ∈ A

1. m(x, y) ≥ 0 (M1) (non-negativity),
2. m(x, y) = 0⇔ x = y (M2) (identity of indiscernibles),
3. m(x, y) = m(y, x) (M3) (symmetry) and
4. m(x, z) ≤ m(x, y) + m(y, z) (M4) (triangle inequality).

Note that the definition of a matching based on a similarity function σ can be rewritten
for metrics m as follows:

Definition 6 (Instance Matching in Metric Spaces). Given two sets S (source) and T
(target) of instances, a metric m : S × T → [0,∞[ and a threshold θ ∈ [0,∞[, the goal
of instance matching task is to compute the set M = {(s, t)|m(s, t) ≤ θ}.

Example of metrics on strings include the Levenshtein distance and the block dis-
tance. However, some popular measures such as JaroWinkler [204] do not satisfy the
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Fig. 15. Approximation of distances via exemplars. The lower bound of the distance from x to z
can be approximated by m(x, y) − m(y, z).

triangle inequality and are consequently not metrics. The rationale behind the LIMES
framework is to make use of the boundary conditions entailed by the triangle inequality
(TI) to reduce the number of comparisons (and thus the time complexity) necessary to
complete a matching task. Given a metric space (A,m) and three points x, y and z in A,
the TI entails that

m(x, y) ≤ m(x, z) + m(z, y). (5)

Without restriction of generality, the TI also entails that

m(x, z) ≤ m(x, y) + m(y, z), (6)

thus leading to the following boundary conditions in metric spaces:

m(x, y) − m(y, z) ≤ m(x, z) ≤ m(x, y) + m(y, z). (7)

Inequality 7 has two major implications. The first is that the distance from a point x
to any point z in a metric space can be approximated given the distance from x to a
reference point y and the distance from the reference point y to z. Such a reference point
is called an exemplar following [62]. The role of an exemplar is to be used as a sample
of a portion of the metric space A. Given an input point x, knowing the distance from
x to an exemplar y allows to compute lower and upper bounds of the distance from x
to any other point z at a known distance from y. An example of such an approximation
is shown in Figure 20. In this figure, all the points on the circle are subject to the
same distance approximation. The distance from x to z is close to the lower bound of
inequality 7, while the distance from x to z′ is close to the upper bound of the same
inequality.

The second implication of inequality 7 is that the distance from x to z can only be
smaller than θ if the lower bound of the approximation of the distance from x to z via
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any exemplar y is also smaller than θ. Thus, if the lower bound of the approximation of
the distance m(x, z) is larger than θ, then m(x, z) itself must be larger than θ. Formally,

m(x, y) − m(y, z) > θ ⇒ m(x, z) > θ. (8)

Supposing that all distances from instances t ∈ T to exemplars are known, reducing
the number of comparisons simply consists of using inequality 8 to compute an approx-
imation of the distance from all s ∈ S to all t ∈ T and computing the real distance only
for the (s, t) pairs for which the first term of inequality 8 does not hold. This is the core
of the approach implemented by LIMES.

Computation of Exemplars The core idea underlying the computation of exemplars
in LIMES is to select a set of exemplars in the metric space underlying the matching
task in such a way that they are distributed uniformly in the metric space. One way
to achieve this goal is by ensuring that the exemplars display a high dissimilarity. The
approach used by LIMES to generate exemplars with this characteristic is shown in
Algorithm 1.

Algorithm 1. Computation of Exemplars
Require: Number of exemplars n
Require: Target knowledge base T

1. Pick random point e1 ∈ T
2. Set E = E ∪ {e1};
3. Compute the distance from e1 to all t ∈ T
while |E| < n do

4. Get a random point e′ such that e′ ∈ argmaxt
∑
t∈T
∑
e∈E

m(t, e)

5. E = E ∪ {e′};
6. Compute the distance from e′ to all t ∈ T

end while
7. Map each point in t ∈ T to one of the exemplars e ∈ E such that m(t, e) is minimal
return E

Let n be the desired number of exemplars and E the set of all exemplars. In step 1
and 2, LIMES initializes E by picking a random point e1 in the metric space (T,m) and
setting E = {e1}. Then, it computes the similarity from the exemplar e1 to every other
point in T (step 3). As long as the size of E has not reached n, LIMES repeats steps 4 to
6: In step 4, a point e′ ∈ T such that the sum of the distances from e′ to the exemplars
e ∈ E is maximal (there can be many of these points) is chosen randomly. This point is
chosen as new exemplar and consequently added to E (step 5). Then, the distance from
e′ to all other points in T is computed (step 6). Once E has reached the size n, LIMES
terminates the iteration. Finally, each point is mapped to the exemplar to which it is
most similar (step 7) and the exemplar computation terminates (step 8). This algorithm
has a constant time complexity of O(|E||T |).

An example of the results of the exemplar computation algorithm (|E| = 3) is shown
in Figure 16. The initial exemplar was the leftmost exemplar in the figure.
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Fig. 16. Mapping of points to three exemplars in a metric space. The exemplars are displayed as
gray disks.

Matching Based on Exemplars. The instances associated with an exemplar e ∈ E in
step 7 of Algorithm 1 are stored in a list Le sorted in descending order with respect to
the distance to e. Let λe

1...λ
e
m be the elements of the list Le. The goal of matching an

instance s from a source knowledge base to a target knowledge base w.r.t. a metric m is
to find all instances t of the target knowledge source such that m(s, t) ≤ θ, where θ is
a given threshold. LIMES achieves this goal by using the matching algorithm based on
exemplars shown in Algorithm 2.

LIMES only carries out a comparison when the approximation of the distance is less
than the threshold. Moreover, it terminates the similarity computation for an exemplar e
as soon as the first λe is found such that the lower bound of the distance is larger than θ.
This break can be carried out because the list Le is sorted, i.e., if m(s, e) − m(e, λe

i ) > θ
holds for the ith element of Le, then the same inequality holds for all λe

j ∈ Le with
j > i. In the worst case, LIMES’ matching algorithm has the time complexity O(|S ||T |),
leading to a total worst time complexity of O((|E|+ |S |)|T |), which is larger than that of
brute force approaches. However, as the results displayed in Figure 17 show, a correct
parameterization of LIMES leads to significantly smaller numbers of comparisons and
runtimes.

5.5 TheHR3 Algorithm

Let S resp. T be the source and target of a Link Discovery task. One of the key ideas
behind time-efficient Link Discovery algorithmsA is to reduce the number of compar-
isons that are effectively carried out to a number C(A) < |S ||T |. The reduction ratio RR
of an algorithmA is given by

RR(A) = 1 − C(A)
|S ||T | . (9)

RR(A) captures how much of the Cartesian product |S ||T | was not explored before the
output of A was reached. It is obvious that even an optimal lossless solution which
performs only the necessary comparisons cannot achieve a RR of 1. Let Cmin be the
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Algorithm 2. LIMES’ Matching algorithm
Require: Set of exemplars E
Require: Instance s ∈ S
Require: Metric m
Require: threshold θ

1. M = ∅
for e ∈ |E| do

if m(s, e) ≤ θ then
2. M = M ∪ {e}
for i = 1...|Le| do

if (m(s, e) − m(e, λe
i )) ≤ θ then

if m(s, λe
i ) ≤ θ then

3. M = M ∪ {(s, λe
i })

end if
else

break
end if

end for
end if

end for
return M

minimal number of comparisons necessary to complete the Link Discovery task without
losing recall, i.e., Cmin = |M|. The relative reduction ratio RRR(A) is defined as the
portion of the minimal number of comparisons that was carried out by the algorithmA
before it terminated. Formally

RRR(A) =
1 − Cmin

|S ||T |
1 − C(A)

|S ||T |
=
|S ||T | −Cmin

|S ||T | −C(A)
. (10)

RRR(A) indicates how closeA is to the optimal solution with respect to the number of
candidates it tests. Given that C(A) ≥ Cmin, RRR(A) ≥ 1. Note that the larger the value
of RRR(A), the poorer the performance ofA with respect to the task at hand.

The main observation that led HR3 is that while most algorithms aim to optimize
their RR (and consequently their RRR), most approaches do not provide any guarantee
with respect to the RR (and consequently the RRR) that they can achieve. The approach
is the first mathematically optimal algorithm w.r.t the reduction ratio that it can achieve,
i.e., the first approach such that given any relative reduction ratio r, there is always a
setting that leads HR3 achieving a relative reduction ratio r′ with r′ ≤ r. To achieve
this goalHR3 relies on space tiling as introduced by the HYPPO algorithm [145].

Space Tiling for Link Discovery. HYPPO addresses the problem of efficiently map-
ping instance pairs (s, t) ∈ S × T described by using exclusively numeric values in a
n-dimensional metric space and has been shown to outperform the state of the art in
previous work [145]. The observation behind space tiling is that in spaces (Ω, δ) with
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Fig. 17. Comparisons required by LIMES for different numbers of exemplars on knowledge bases
of different sizes. The x-axis shows the number of exemplars, the y-axis the number of compar-
isons in multiples of 105.

orthogonal, (i.e., uncorrelated) dimensions18, common metrics for Link Discovery
can be decomposed into the combination of functions φi,i∈{1...n} which operate on ex-
actly one dimension of Ω : δ = f (φ1, ..., φn). For Minkowski distances of order p,

φi(x, ω) = |xi − ωi| for all values of i and δ(x, ω) = p

√
n∑

i=1
φ

p
i (x, ω)p. A direct conse-

quence of this observation is the inequality φi(x, ω) ≤ δ(x, ω). The basic insight that
results this observation is that the hypersphere H(ω, θ) = {x ∈ Ω : δ(x, ω) ≤ θ} is a
subset of the hypercube V defined as V(ω, θ) = {x ∈ Ω : ∀i ∈ {1...n}, φi(xi, ωi) ≤ θ}.
Consequently, one can reduce the number of comparisons necessary to detect all ele-
ments of H(ω, θ) by discarding all elements which are not in V(ω, θ) as non-matches.
Let Δ = θ/α, where α ∈ N is the granularity parameter that controls how fine-grained
the space tiling should be (see Figure 18 for an example). We first tile Ω into the adja-
cent hypercubes (short: cubes) C that contain all the points ω such that

∀i ∈ {1...n}, ciΔ ≤ ωi < (ci + 1)Δ with (c1, ..., cn) ∈ Nn. (11)

We call the vector (c1, ..., cn) the coordinates of the cube C. Each pointω ∈ Ω lies in the
cube C(ω) with coordinates (�ωi/Δ�)i=1...n. Given such a space tiling, it is obvious that
V(ω, θ) consists of the union of the cubes such that ∀i ∈ {1...n} : |ci − c(ω)i| ≤ α.

18 Note that in all cases, a space transformation exists that can map a space with correlated di-
mensions to a space with uncorrelated dimensions.
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(a) α = 1 (b) α = 2 (c) α = 4

Fig. 18. Space tiling for different values of α. The colored squares show the set of elements that
must be compared with the instance located at the black dot. The points within the circle lie
within the distance θ of the black dot. Note that higher values of α lead to a better approximation
of the hypersphere but also to more hypercubes.

HR3’s Indexing Scheme. Let ω ∈ Ω = S ∪ T be an arbitrary reference point. Fur-
thermore, let δ be the Minkowski distance of order p. The index function is defined as
follows:

index(C, ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if ∃i : |ci − c(ω)i| ≤ 1 with i ∈ {1, ..., n},
n∑

i=1
(|ci − c(ω)i| − 1)p else,

(12)

where C is a hypercube resulting from a space tiling and ω ∈ Ω. Figure 19 shows an
example of such indexes for p = 2 with α = 2 (Figure 19a) and α = 4 (Figure 19b).
Note that the blue square with index 0 contains the reference pointω. All elements of C
must only be compared with the elements of cubes C′ such that index(C,C′) ≤ αp. The
authors of [146] prove formally that given this approach to space tiling, the following
theorem holds:

Theorem 1. lim
α→∞RRR(HR3, α) = 1.

This conclusion is illustrated by Figure 20, which shows the space tiling computed
by HR3 for different values of α with p = 2 and n = 2. The higher α, the closer
the approximation is to a circle. Note that these results allow to conclude that for any
RRR-value r larger than 1, there is a setting ofHR3 that can compute links with a RRR
smaller or equal to r.

Evaluation. HR3 was evaluated against HYPPO w.r.t. to the number of comparisons
that it has to carry out in several settings. In the first and second experiments, the goal
was to deduplicate DBpedia places by comparing their names (rdfs:label), minimum
elevation, elevation and maximum elevation. 2988 entities possessed all four properties.
The Euclidean metric was applied to the last three values with the thresholds 49 meters
resp. 99 meters for the first resp. second experiment. The third and fourth experiments
aimed to discover links between Geonames and LinkedGeoData. This experiment was
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Fig. 19. Space tiling and resulting index for a two-dimensional example. Note that the index in
both subfigures was generated for exactly the same portion of space. The black dot stands for the
position of ω.

of considerably larger scale than the first one, as we compared 74458 entities in Geon-
ames with 50031 entities from LinkedGeoData. Again, the number of comparisons nec-
essary to complete the task by using the Euclidean metric was measured. The distance
thresholds were set to 1 resp. 9◦ in experiment 3 resp. 4. We ran all experiments on
the same Windows 7 Enterprise 64-bit computer with a 2.8GHz i7 processor with 8GB
RAM. The JVM was allocated 7GB RAM to ensure that the runtimes were not influ-
enced by swapping. Only one of the kernels of the processors was used.

The results (see Figure 21) show that HR3 can reduce the overhead in comparisons
(i.e., the number of unnecessary comparisons divided by the number of necessary com-
parisons) from approximately 24% for HYPPO to approximately 6% (granularity= 32).
In experiment 2, the overhead is reduced from 4.1% to 2%. This difference in overhead
reduction is mainly due to the data clustering around certain values and the clusters
having a radius between 49 meters and 99 meters. Thus, running the algorithms with
a threshold of 99 meters led to only a small a-priori overhead and HYPPO performing
remarkably well. Still, even on such data distributions, HR3 was able to discard even
more data and to reduce the number of unnecessary computations by more than 50%
relative. In the best case (Exp. 4, α = 32, see Figure 21d),HR3 required approximately
4.13 × 106 less comparisons than HYPPO for α = 32. Even for the smallest setting
(Exp. 1, see Figure 21a),HR3 still required 0.64 × 106 less comparisons.

5.6 Active Learning of Link Specifications

The second challenge of Link Discovery is the time-efficient discovery of link specifi-
cations for a particular linking task. Several approaches have been proposed to achieve
this goal, of which most rely on genetic programming [93,154,152]. The COALA
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(a) α = 4 (b) α = 8 (c) α = 10

(d) α = 25 (e) α = 50 (f) α = 100

Fig. 20. Space tilings generated by HR3 for different values of α. The white squares are selected
for comparisons with the elements of the square in the middle of the figure whilst the colored
ones are discarded.

(Correlation-Aware Active Learning) approach was implemented on top of the genetic
programming approach EAGLE [153] with the aim of improving the selection of posi-
tive and negative examples during active learning. In the following, we give an overview
of COALA.

Intuition. Let N be the set of most informative negative and P the set of most in-
formative negative examples w.r.t. an informativeness function ifm (e.g., the distance
from the decision boundary).used by a curious classifier [183] The basic insight behind
COALA is that the correlation between the features of the elements ofN and P should
play a role when computing the sets I+ and I− of positive resp. negative queries for the
oracle. In particular, two main factors affect the information content of a link candidate:
its similarity to elements of its presumed class and to elements of the other class. For
the sake of simplicity, we will assume that the presumed class of the link candidate of
interest is +1, i.e., that the link candidate was classified as positive by the current curi-
ous classifier. Our insights yet hold symmetrically for link candidates whose presumed
class is −1.

Let A = (sA, tA), B = (sB, tB) ∈ P to be two link candidates which are equidistant
from C’s boundary. Consider Figure 22a, where P = {A, B,C} and N = {D}. The link
candidate B is on on average most distant from any other elements ofP. Thus, it is more
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(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

Fig. 21. Number of comparisons forHR3 and HYPPO

(a) Intra-correlation (b) Inter-correlation

Fig. 22. Examples of correlations within classes and between classes. In each subfigure, the gray
surface represent N while the white surface stands for P. The oblique line is C’s boundary.

likely to be a statistical outlier than A. Hence, making a classification error on B should
not have the same impact as an erroneous classification of link candidate A, which
is close to another presumably positive link candidate, C. Consequently, B should be
considered less informative than A. Approaches that make use of this information are
said to exploit the intra-class correlation. Now, consider Figure 22b, where P = {A, B}
and N = {C,D}. While the probability of A being an outlier is the same as B’s, A is
still to be considered more informative than B as it is located closer to elements of
N and can thus provide more information on where to set the classifier boundary.
This information is dubbed inter-class correlation. Several approaches that make use
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of these two types of correlations can be envisaged. In the following, we present two
approaches for these purposes. The first makes use of intra-class correlations and relies
on graph clustering. The second approach relies on the spreading activation principle
in combination with weight decay. We assume that the complex similarity function σ
underlying C is computed by combining n atomic similarity functions σ1, . . . , σn. This
combination is most commonly carried out by using metric operators such as min, max
or linear combinations.19 Consequently, each link candidate (s, t) can be described by
a vector (σ1(s, t), . . . , σn(s, t)) ∈ [0, 1]n. We define the similarity of link candidates
sim : (S ×T )2 → [0, 1] to be the inverse of the Euclidean distance in the space spawned
by the similarities σ1 to σn. Hence, the similarity of two link candidates (s, t) and (s′, t′)
is given by:

sim((s, t), (s′, t′)) =
1

1 +

√
n∑

i=1
(σi(s, t) − σi(s′, t′))2

. (13)

Note that we added 1 to the denominator to prevent divisions by 0.

Graph Clustering. The basic intuition behind using clustering for COALA is that
groups of very similar link candidates can be represented by a single link candidate.
Consequently, once a representative of a group has been chosen, all other elements of
the group become less informative. An example that illustrates this intuition is given in
Figure 23. We implemented COALA based on clustering as follows: In each iteration,
we begin by first selecting two sets S+ ⊆ P resp. S− ⊆ N that contain the positive resp.
negative link candidates that are most informative for the classifier at hand. Formally,
S+ fulfills

∀x ∈ S+ ∀y ∈ P, y � S+ → ifm(y) ≤ ifm(x). (14)

The analogous equation holds for S−. In the following, we will explain the further steps
of the algorithm for S+. The same steps are carried out for S−.

Fig. 23. Example of clustering. One of the most informative single link candidate is selected from
each cluster. For example, d is selected from the cluster {d, e}.
19 See [147] for a more complete description of a grammar for link specifications.
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First, we compute the similarity of all elements of S+ by using the similarity function
shown in Equation 13. In the resulting similarity matrix, we set all elements of the
diagonal to 0. Then, for each x ∈ S+, we only retain a fixed number ec of highest
similarity values and set all others to 0. The resulting similarity matrix is regarded as
the adjacency matrix of an undirected weighted graph G = (V, E, sim). G’s set of nodes
V is equal to S+. The set of edges E is a set of 2-sets20 of link candidates. Finally, the
weighted function is the similarity function sim. Note that ec is the minimal degree of
nodes in G.

In a second step, we use the graph G as input for a graph clustering approach. The
resulting clustering is assumed to be a partition V of the set V of vertices of G. The
informativeness of partition Vi ∈ V is set to max

x∈Vi

ifm(x). The final step of our approach

consists of selecting the most informative node from each of the k most informative
partitions. These are merged to generate I+, which is sent as query to the oracle. The
computation of I−is carried out analogously. Note that this approach is generic in the
sense that it can be combined with any graph clustering algorithm that can process
weighted graphs as well as with any informativeness function ifm. Here, we use Border-
Flow [155] as clustering algorithm because (1) it has been used successfully in several
other applications such as the creation of SPARQL benchmarks [137] and the analysis
of protein-protein interactions [144]. and (2) it is parameter-free and does not require
any tuning.

Spreading Activation with Weight Decay. The idea behind spreading activation with
weight decay (WD) is to combine the intra- and inter-class correlation to determine
the informativeness of each link candidate. Here, we begin by computing the set S =
S+∪S−, whereS+ andS− are described as above. Let si and s j be the ith and jth elements
of S. We then compute the quadratic similarity matrixM with entries mi j = sim(si, s j)
for i � j and 0 else. Note that both negative and positive link candidates belong to S.
Thus,M encodes both inter- and intra-class correlation. In addition toM, we compute
the activation vector A by setting its entries to ai =ifm(si). In the following, A is
considered to be a column vector.

In a first step, we normalize the activation vector A to ensure that the values con-
tained therein do not grow indefinitely. Then, in a second step, we setA = A+M×A.
This has the effect of propagating the activation of each s to all its neighbors according
to the weights of the edges between s and its neighbors. Note that elements of S+ that
are close to elements of S− get a higher activation than elements of S+ that are further
away from S− and vice-versa. Moreover, elements at the center of node clusters (i.e.,
elements that are probably no statistical outliers) also get a higher activation than ele-
ments that are probably outliers. The idea behind the weight decay step is to update the
matrix by setting each mi j to mr

i j, where r > 1 is a fix exponent. This is the third step of
the algorithm. Given that ∀i∀ j mi j ≤ 1, the entries in the matrix get smaller with time.
By these means, the amount of activation transferred across long paths is reduced. We
run this three-step procedure iteratively until all non-1 entries of the matrix are less or
equal to a threshold ε = 10−2. The k elements of S+ resp. S− with maximal activation
are returned as I+ resp. I−. In the example shown in Figure 24, while all nodes from S+
20 A n-set is a set of magnitude n.
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Fig. 24. Example of weight decay. Here r was set to 2. The left picture shows the initial activations
and similarity scores while the right picture shows the results after 3 iterations. Note that for the
sake of completeness the weights of the edges were not set to 0 when they reached ε.

and S− start with the same activation, two nodes get the highest activation after only 3
iterations.

Evaluation. COALA was evaluated by running weight decay and clustering in combi-
nation with EAGLE, an active genetic programming approach for learning link specifi-
cations. Throughout the following experiments, EAGLE’s mutation and crossover rates
were set to 0.6. Individuals were given a 70% chance to get selected for reproduction.
The population sizes were set to 20 and 100. We set k = 5 and ran our experiments
for 10 iterations. Between each iteration we evolved the populations for 50 generations.
We ran our experiments on two real-world datasets and three synthetic datasets. The
synthetic datasets consisted of the Persons1, Person2 and Restaurants datasets from the
OAEI 2010 benchmark21. The real-world datasets consisted of the ACM-DBLP and
Abt-Buy datasets, which were extracted from websites or databases [102]22. Given that
genetic programming is non-deterministic, all results presented below are the means
of 5 runs. Each experiment was ran on a single thread of a server running JDK1.7
on Ubuntu 10.0.4 and was allocated maximally 2GB of RAM. The processors were
2.0GHz Quadcore AMD Opterons. An excerpt of the results is shown in Figure 25.
While the results show that COALA outperform EAGLE, it remains unclear whether
WD or CL is the best approach to achieving a faster convergence towards the optimal
solution.

5.7 Conclusion

We presented and discussed linking approaches for Linked Data and the challenges they
face. In addition, we gave an overview of several state-of-the-art approaches for instance
matching for Linked Data. We then presented time-efficient approaches for link discov-
ery. Finally, we presented a state-of-the-art approach for the active learning of link spec-
ifications. This approach can be easily extended to learn specifications automatically.23

21 http://oaei.ontologymatching.org/2010/
22 http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/
benchmark_datasets_for_entity_resolution

23 Such an extension is the basis of the self-configuration algorithm of the SAIM framework.

http://oaei.ontologymatching.org/2010/
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
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(a) Population = 20 individuals. (b) Population = 100 individuals.

Fig. 25. F-score and runtime on the ACM-DBLP dataset. f(X) stands for the F-score achieved by
algorithm X, while d(X) stands for the total duration required by the algorithm.

Novel challenges that need to be addressed include the automatic management of re-
sources for link specifications. First works on running link discovery in parallel have
shown that using massively parallel hardware such as GPUs can lead to better results
that using cloud implementations even on considerably large datasets [151]. Detecting
the right resources for linking automatically given a hardware landscape is yet still a
dream to achieve.

6 Enrichment

The term enrichment in this chapter refers to the (semi-)automatic extension of a knowl-
edge base schema. It describes the process of increasing the expressiveness and se-
mantic richness of a knowledge base. Usually, this is achieved by adding or refining
terminological axioms.

Enrichment methods can typically be applied in a grass-roots approach to knowl-
edge base creation. In such an approach, the whole ontological structure is not created
upfront, but evolves with the data in a knowledge base. Ideally, this enables a more ag-
ile development of knowledge bases. In particular, in the context of the Web of Linked
Data such an approach appears to be an interesting alternative to more traditional on-
tology engineering methods. Amongst others, Tim Berners-Lee advocates to get “raw
data now”24 and worry about the more complex issues later.

Knowledge base enrichment can be seen as a sub-discipline of ontology learning.
Ontology learning is more general in that it can rely on external sources, e.g. written
text, to create an ontology. The term knowledge base enrichment is typically used when
already existing data in the knowledge base is analysed to improve its schema.

24 http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html

http://www.ted.com/talks/tim_berners_lee_on_the_next_web.html
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Enrichment methods span several research areas like knowledge representation and
reasoning, machine learning, statistics, natural language processing, formal concept
analysis and game playing. Considering the variety of methods, we structure this sec-
tion as follows: First, we give an overview of different types of enrichment and list some
typical methods and give pointers to references, which allow the reader to obtain more
information on a topic. In the second part, we describe a specific software – the ORE
tool – in more detail.

6.1 State of the Art and Types of Enrichment

Ontology enrichment usually involves applying heuristics or machine learning tech-
niques to find axioms, which can be added to an existing ontology. Naturally, different
techniques have been applied depending on the specific type of axiom.

One of the most complex tasks in ontology enrichment is to find definitions of
classes. This is strongly related to Inductive Logic Programming (ILP) [158] and more
specifically supervised learning in description logics. Research in those fields has many
applications apart from being applied to enrich ontologies. For instance, it is used in
the life sciences to detect whether drugs are likely to be efficient for particular diseases.
Work on learning in description logics goes back to e.g. [43,44], which used so-called
least common subsumers to solve the learning problem (a modified variant of the prob-
lem defined in this article). Later, [19] invented a refinement operator for ALER and
proposed to solve the problem by using a top-down approach. [52,89,90] combine both
techniques and implement them in the YINYANG tool. However, those algorithms tend
to produce very long and hard-to-understand class expressions. The algorithms imple-
mented in DL-Learner [115,116,107,117,109] overcome this problem and investigate
the learning problem and the use of top down refinement in detail. DL-FOIL [55] is
a similar approach, which is based on a mixture of upward and downward refinement
of class expressions. They use alternative measures in their evaluation, which take the
open world assumption into account, which was not done in ILP previously. Most re-
cently, [111] implements appropriate heuristics and adaptations for learning definitions
in ontologies. The focus in this work is efficiency and practical application of learning
methods. The article presents plugins for two ontology editors (Protégé and OntoWiki)
as well stochastic methods, which improve previous methods by an order of magnitude.
For this reason, we will analyse it in more detail in the next subsection. The algorithms
presented in the article can also learn super class axioms.

A different approach to learning the definition of a named class is to compute the
so called most specific concept (msc) for all instances of the class. The most specific
concept of an individual is the most specific class expression, such that the individual is
instance of the expression. One can then compute the least common subsumer (lcs) [18]
of those expressions to obtain a description of the named class. However, in expressive
description logics, an msc does not need to exist and the lcs is simply the disjunction
of all expressions. For light-weight logics, such as EL, the approach appears to be
promising.

Other approaches, e.g. [122] focus on learning in hybrid knowledge bases combining
ontologies and rules. Ontology evolution [123] has been discussed in this context. Usu-
ally, hybrid approaches are a generalisation of concept learning methods, which enable
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powerful rules at the cost of efficiency (because of the larger search space). Similar as
in knowledge representation, the tradeoff between expressiveness of the target language
and efficiency of learning algorithms is a critical choice in symbolic machine learning.

Another enrichment task is knowlege base completion. The goal of such a task is to
make the knowledge base complete in a particular well-defined sense. For instance, a
goal could be to ensure that all subclass relationships between named classes can be
inferred. The line of work starting in [174] and further pursued in e.g. [17] investigates
the use of formal concept analysis for completing knowledge bases. It is promising,
although it may not be able to handle noise as well as a machine learning technique. A
Protégé plugin [182] is available. [196] proposes to improve knowledge bases through
relational exploration and implemented it in the RELExO framework25. It focuses on
simple relationships and the knowledge engineer is asked a series of questions. The
knowledge engineer either must positively answer the question or provide a counterex-
ample.

[197] focuses on learning disjointness between classes in an ontology to allow for
more powerful reasoning and consistency checking. To achieve this, it can use the ontol-
ogy itself, but also texts, e.g. Wikipedia articles corresponding to a concept. The article
includes an extensive study, which shows that proper modelling disjointness is actually
a difficult task, which can be simplified via this ontology enrichment method.

Another type of ontology enrichment is schema mapping. This task has been widely
studied and will not be discussed in depth within this chapter. Instead, we refer to [41]
for a survey on ontology mapping.

There are further more light-weight ontology enrichment methods. For instance, tax-
onomies can be learned from simple tag structures via heuristics [36,195]. Similarly,
“properties of properties” can be derived via simple statistical analysis. This includes
the detection whether a particular property might be symmetric, function, reflexive, in-
verse functional etc. Similarly, domains and ranges of properties can be determined
from existing data. Enriching the schema with domain and range axioms allows to find
cases, where properties are misused via OWL reasoning.

Table 5. Work in ontology enrichment grouped by type or aim of learned structures

Type/Aim References
Taxonomies [207,36,195]
Definitions often done via ILP approaches such as [115,116,117,111,55,52,89,90,19],

genetic approaches [107] have also been used
Super Class Axioms [111,195,36]
Rules in Ontologies [122,123]
Disjointness [197]
Properties of properties [36,58]
Alignment challenges: [185], recent survey: [41]
Completion formal concept analysis and relational exploration [17,196,182]

25 http://code.google.com/p/relexo/

http://code.google.com/p/relexo/
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In the following subsection, we describe an enrichment approach for learning defini-
tions and super class axioms in more detail. The algorithm was recently developed by
the first authors and is described in full detail in [111].

6.2 Class Expression Learning in DL-Learner

The Semantic Web has recently seen a rise in the availability and usage of knowledge
bases, as can be observed within the Linking Open Data Initiative, the TONES and
Protégé ontology repositories, or the Watson search engine. Despite this growth, there
is still a lack of knowledge bases that consist of sophisticated schema information and
instance data adhering to this schema. Several knowledge bases, e.g. in the life sciences,
only consist of schema information, while others are, to a large extent, a collection
of facts without a clear structure, e.g. information extracted from data bases or texts.
The combination of sophisticated schema and instance data allows powerful reasoning,
consistency checking, and improved querying possibilities. We argue that being able to
learn OWL class expressions26 is a step towards achieving this goal.

Example 1. As an example, consider a knowledge base containing a class Capital
and instances of this class, e.g. London, Paris, Washington, Canberra etc. A machine
learning algorithm could, then, suggest that the class Capitalmay be equivalent to one
of the following OWL class expressions in Manchester OWL syntax27:

City and isCapitalOf at least one GeopoliticalRegion
City and isCapitalOf at least one Country

Both suggestions could be plausible: The first one is more general and includes cities
that are capitals of states, whereas the latter one is stricter and limits the instances to
capitals of countries. A knowledge engineer can decide which one is more appropriate,
i.e. a semi-automatic approach is used, and the machine learning algorithm should guide
her by pointing out which one fits the existing instances better. Assuming the knowledge
engineer decides for the latter, an algorithm can show her whether there are instances
of the class Capital which are neither instances of City nor related via the property
isCapitalOf to an instance of Country.28 The knowledge engineer can then continue
to look at those instances and assign them to a different class as well as provide more
complete information; thus improving the quality of the knowledge base. After adding
the definition of Capital, an OWL reasoner can compute further instances of the class
which have not been explicitly assigned before.

Using machine learning for the generation of suggestions instead of entering them
manually has the advantage that 1.) the given suggestions fit the instance data,
i.e. schema and instances are developed in concordance, and 2.) the entrance barrier
for knowledge engineers is significantly lower, since understanding an OWL class ex-
pression is easier than analysing the structure of the knowledge base and creating a

26 http://www.w3.org/TR/owl2-syntax/#Class_Expressions
27 For details on Manchester OWL syntax (e.g. used in Protégé, OntoWiki) see [87].
28 This is not an inconsistency under the standard OWL open world assumption, but rather a hint

towards a potential modelling error.

http://www.w3.org/TR/owl2-syntax/#Class_Expressions
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class expression manually. Disadvantages of the approach are the dependency on the
availability of instance data in the knowledge base and requirements on the quality of
the ontology, i.e. modelling errors in the ontology can reduce the quality of results.

Overall, we describe the following in this chapter:

– extension of an existing learning algorithm for learning class expressions to the
ontology engineering scenario,

– presentation and evaluation of different heuristics,
– showcase how the enhanced ontology engineering process can be supported with

plugins for Protégé and OntoWiki,
– evaluation of the presented algorithm with several real ontologies from various do-

mains.

The adapted algorithm for solving the learning problems, which occur in the ontol-
ogy engineering process, is called CELOE (Class Expression Learning for Ontology
Engineering). It was implemented within the open-source framework DL-Learner.29

DL-Learner [108,109] leverages a modular architecture, which allows to define differ-
ent types of components: knowledge sources (e.g. OWL files), reasoners (e.g. DIG30

or OWL API based), learning problems, and learning algorithms. In this overview, we
focus on the latter two component types, i.e. we define the class expression learning
problem in ontology engineering and provide an algorithm for solving it.

Learning Problem. The process of learning in logics, i.e. trying to find high-level ex-
planations for given data, is also called inductive reasoning as opposed to inference or
deductive reasoning. The main difference is that in deductive reasoning it is formally
shown whether a statement follows from a knowledge base, whereas in inductive learn-
ing new statements are invented. Learning problems, which are similar to the one we
will analyse, have been investigated in Inductive Logic Programming [158] and, in fact,
the method presented here can be used to solve a variety of machine learning tasks apart
from ontology engineering.

In the ontology learning problem we consider, we want to learn a formal description
of a class A, which has (inferred or asserted) instances in the considered ontology. In the
case that A is already described by a class expression C via axioms of the form A � C
or A ≡ C, those can be either refined, i.e. specialised/generalised, or relearned from
scratch by the learning algorithm. To define the class learning problem, we need the
notion of a retrieval reasoner operation RK (C). RK (C) returns the set of all instances of
C in a knowledge base K . If K is clear from the context, the subscript can be omitted.

Definition 7 (class learning problem). Let an existing named class A in a knowl-
edge base K be given. The class learning problem is to find an expression C such that
RK (C) = RK (A).

Clearly, the learned expression C is a description of (the instances of) A. Such an
expression is a candidate for adding an axiom of the form A ≡ C or A � C to the

29 http://dl-learner.org
30 http://dl.kr.org/dig/

http://dl-learner.org
http://dl.kr.org/dig/
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knowledge base K . If a solution of the learning problem exists, then the used base
learning algorithm (as presented in the following subsection) is complete, i.e. guar-
anteed to find a correct solution if one exists in the target language and there are
no time and memory constraints (see [116,117] for the proof). In most cases, we
will not find a solution to the learning problem, but rather an approximation. This
is natural, since a knowledge base may contain false class assignments or some ob-
jects in the knowledge base are described at different levels of detail. For instance,
in Example 1, the city “Apia” might be typed as “Capital” in a knowledge base, but
not related to the country “Samoa”. However, if most of the other cities are related
to countries via a role isCapitalOf, then the learning algorithm may still suggest
City and isCapitalOf at least one Country since this describes the majority
of capitals in the knowledge base well. If the knowledge engineer agrees with such a
definition, then a tool can assist him in completing missing information about some
capitals.

According to Occam’s razor [29] simple solutions of the learning problem are to
be preferred over more complex ones, because they are more readable. This is even
more important in the ontology engineering context, where it is essential to suggest
simple expressions to the knowledge engineer. We measure simplicity as the length of
an expression, which is defined in a straightforward way, namely as the sum of the
numbers of concept, role, quantifier, and connective symbols occurring in the expres-
sion. The algorithm is biased towards shorter expressions. Also note that, for simplicity
the definition of the learning problem itself does enforce coverage, but not prediction,
i.e. correct classification of objects which are added to the knowledge base in the future.
Concepts with high coverage and poor prediction are said to overfit the data. However,
due to the strong bias towards short expressions this problem occurs empirically rarely
in description logics [117].

Fig. 26. Outline of the gen-
eral learning approach in
CELOE: One part of the
algorithm is the generation
of promising class expres-
sions taking the available
background knowledge into
account. Another part is a
heuristic measure of how
close an expression is to be-
ing a solution of the learn-
ing problem. Figure adapted
from [81].
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Base Learning Algorithm. Figure 26 gives a brief overview of the CELOE algorithm,
which follows the common “generate and test“ approach in ILP. This means that learn-
ing is seen as a search process and several class expressions are generated and tested
against a background knowledge base. Each of those class expressions is evaluated us-
ing a heuristic, which is described in the next section. A challenging part of a learning
algorithm is to decide which expressions to test. In particular, such a decision should
take the computed heuristic values and the structure of the background knowledge into
account. For CELOE, we use the approach described in [116,117] as base, where this
problem has already been analysed, implemented, and evaluated in depth. It is based on
the idea of refinement operators:

Definition 8 (refinement operator). A quasi-ordering is a reflexive and transitive re-
lation. In a quasi-ordered space (S ,�) a downward (upward) refinement operator ρ is a
mapping from S to 2S , such that for any C ∈ S we have that C′ ∈ ρ(C) implies C′ � C
(C � C′). C′ is called a specialisation (generalisation) of C.

Refinement operators can be used for searching in the space of expressions. As order-
ing we can use subsumption. (Note that the subsumption relation � is a quasi-ordering.)
If an expression C subsumes an expression D (D � C), then C will cover all exam-
ples which are covered by D. This makes subsumption a suitable order for searching
in expressions as it allows to prune parts of the search space without losing possible
solutions.

Fig. 27. Illustration of a search tree in a top down refinement approach

The approach we used is a top-down algorithm based on refinement operators as
illustrated in Figure 27 (more detailed schemata can be found in the slides31 of the on-
tology learning lecture of Reasoning Web 2010 [110]). This means that the first class ex-
pression, which will be tested is the most general expression (�), which is then mapped
to a set of more specific expressions by means of a downward refinement operator. Nat-
urally, the refinement operator can be applied to the obtained expressions again, thereby

31 http://reasoningweb.org/2010/teaching-material/lehmann.pdf

http://reasoningweb.org/2010/teaching-material/lehmann.pdf
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spanning a search tree. The search tree can be pruned when an expression does not cover
sufficiently many instances of the class A we want to describe. One example for a path
in a search tree spanned up by a downward refinement operator is the following (�
denotes a refinement step):

�� Person� Person � takesPartinIn.�
� Person � takesPartIn.Meeting

The heart of such a learning strategy is to define a suitable refinement operator and
an appropriate search heuristics for deciding which nodes in the search tree should be
expanded. The refinement operator in the considered algorithm is defined in [117]. It
is based on earlier work in [116] which in turn is built on the theoretical foundations
of [115]. It has been shown to be the best achievable operator with respect to a set of
properties (not further described here), which are used to assess the performance of
refinement operators. The learning algorithm supports conjunction, disjunction, nega-
tion, existential and universal quantifiers, cardinality restrictions, hasValue restrictions
as well as boolean and double datatypes.

6.3 Finding a Suitable Heuristic

A heuristic measures how well a given class expression fits a learning problem and is
used to guide the search in a learning process. To define a suitable heuristic, we first
need to address the question of how to measure the accuracy of a class expression. We
introduce several heuristics, which can be used for CELOE and later evaluate them.

We cannot simply use supervised learning from examples directly, since we do not
have positive and negative examples available. We can try to tackle this problem by us-
ing the existing instances of the class as positive examples and the remaining instances
as negative examples. This is illustrated in Figure 28, where K stands for the knowl-
edge base and A for the class to describe. We can then measure accuracy as the number
of correctly classified examples divided by the number of all examples. This can be
computed as follows for a class expression C and is known as predictive accuracy in
Machine Learning:

predacc(C) = 1 − |R(A) \ R(C)| + |R(C) \ R(A)|
n

n = |Ind(K)|
Here, Ind(K) stands for the set of individuals occurring in the knowledge base. R(A)\

R(C) are the false negatives whereas R(C) \ R(A) are false positives. n is the number of
all examples, which is equal to the number of individuals in the knowledge base in this
case. Apart from learning definitions, we also want to be able to learn super class axioms
(A � C). Naturally, in this scenario R(C) should be a superset of R(A). However, we
still do want R(C) to be as small as possible, otherwise � would always be a solution.
To reflect this in our accuracy computation, we penalise false negatives more than false
positives by a factor of t (t > 1) and map the result to the interval [0, 1]:

predacc(C, t) = 1 − 2 · t · |R(A) \ R(C)| + |R(C) \ R(A)|
(t + 1) · n n = |Ind(K)|
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While being straightforward, the outlined approach of casting class learning into a stan-
dard learning problem with positive and negative examples has the disadvantage that
the number of negative examples will usually be much higher than the number of posi-
tive examples. As shown in Table 6, this may lead to overly optimistic estimates. More
importantly, this accuracy measure has the drawback of having a dependency on the
number of instances in the knowledge base.

Therefore, we investigated further heuristics, which overcome this problem, in par-
ticular by transferring common heuristics from information retrieval to the class learn-
ing problem:

1. F-Measure: Fβ-Measure is based on precision and recall weighted by β. They can
be computed for the class learning problem without having negative examples. In-
stead, we perform a retrieval for the expression C, which we want to evaluate. We
can then define precision as the percentage of instances of C, which are also in-
stances of A and recall as percentage of instances of A, which are also instances of
C. This is visualised in Figure 28. F-Measure is defined as harmonic mean of pre-
cision and recall. For learning super classes, we use F3 measure by default, which
gives recall a higher weight than precision.

2. A-Measure: We denote the arithmetic mean of precision and recall as A-Measure.
Super class learning is achieved by assigning a higher weight to recall. Using the
arithmetic mean of precision and recall is uncommon in Machine Learning, since
it results in too optimistic estimates. However, we found that it is useful in super
class learning, where Fn is often too pessimistic even for higher n.

3. Generalised F-Measure: Generalised F-Measure has been published in [48] and
extends the idea of F-measure by taking the three valued nature of classification
in OWL/DLs into account: An individual can either belong to a class, the negation
of a class or none of both cases can be proven. This differs from common binary
classification tasks and, therefore, appropriate measures have been introduced (see
[48] for details). Adaption for super class learning can be done in a similar fashion
as for F-Measure itself.

4. Jaccard Distance: Since R(A) and R(C) are sets, we can use the well-known Jaccard
coefficient to measure the similarity between both sets.

We argue that those four measures are more appropriate than predictive accuracy
when applying standard learning algorithms to the ontology engineering use case. Ta-
ble 6 provides some example calculations, which allow the reader to compare the dif-
ferent heuristics.

Efficient Heuristic Computation. Several optimisations for computing the heuristics are
described in [111]. In particular, adapted approximate reasoning and stochastic approx-
imations are discussed. Those improvements have shown to lead to order of magnitude
gains in efficiency for many ontologies. We refrain from describing those methods in
this chapter.

The Protégé Plugin. After implementing and testing the described learning algorithm,
we integrated it into Protégé and OntoWiki. Together with the Protégé developers, we
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Fig. 28. Visualisation of different accuracy measurement approaches. K is the knowledge base,
A the class to describe and C a class expression to be tested. Left side: Standard supervised
approach based on using positive (instances of A) and negative (remaining instances) examples.
Here, the accuracy of C depends on the number of individuals in the knowledge base. Right side:
Evaluation based on two criteria: recall (Which fraction of R(A) is in R(C)?) and precision (Which
fraction of R(C) is in R(A)?).

Table 6. Example accuracies for selected cases (eq = equivalence class axiom, sc = super class
axiom). The images on the left represent an imaginary knowledge base K with 1000 individuals,
where we want to describe the class A by using expression C. It is apparent that using predictive
accuracy leads to impractical accuracies, e.g. in the first row C cannot possibly be a good descrip-
tion of A, but we still get 80% accuracy, since all the negative examples outside of A and C are
correctly classified.

illustration pred. acc. F-Measure A-Measure Jaccard
eq sc eq sc eq sc

80% 67% 0% 0% 0% 0% 0%

90% 92% 67% 73% 75% 88% 50%

70% 75% 40% 48% 63% 82% 25%

98% 97% 90% 90% 90% 90% 82%

95% 88% 67% 61% 75% 63% 50%
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extended the Protégé 4 plugin mechanism to be able to seamlessly integrate the DL-
Learner plugin as an additional method to create class expressions. This means that
the knowledge engineer can use the algorithm exactly where it is needed without any
additional configuration steps. The plugin has also become part of the official Protégé 4
repository, i.e. it can be directly installed from within Protégé.

A screenshot of the plugin is shown in Figure 29. To use the plugin, the knowledge
engineer is only required to press a button, which then starts a new thread in the back-
ground. This thread executes the learning algorithm. The used algorithm is an anytime
algorithm, i.e. at each point in time we can always see the currently best suggestions.
The GUI updates the suggestion list each second until the maximum runtime – 10 sec-
onds by default – is reached. This means that the perceived runtime, i.e. the time after
which only minor updates occur in the suggestion list, is often only one or two seconds
for small ontologies. For each suggestion, the plugin displays its accuracy.

When clicking on a suggestion, it is visualized by displaying two circles: One stands
for the instances of the class to describe and another circle for the instances of the
suggested class expression. Ideally, both circles overlap completely, but in practice this
will often not be the case. Clicking on the plus symbol in each circle shows its list of
individuals. Those individuals are also presented as points in the circles and moving
the mouse over such a point shows information about the respective individual. Red
points show potential problems detected by the plugin. Please note that we use closed
world reasoning to detect those problems. For instance, in our initial example, a capital
which is not related via the property isCapitalOf to an instance of Country is marked
red. If there is not only a potential problem, but adding the expression would render the
ontology inconsistent, the suggestion is marked red and a warning message is displayed.
Accepting such a suggestion can still be a good choice, because the problem often lies
elsewhere in the knowledge base, but was not obvious before, since the ontology was
not sufficiently expressive for reasoners to detect it. This is illustrated by a screencast
available from the plugin homepage,32 where the ontology becomes inconsistent after
adding the axiom, and the real source of the problem is fixed afterwards. Being able to
make such suggestions can be seen as a strength of the plugin.

The plugin allows the knowledge engineer to change expert settings. Those settings
include the maximum suggestion search time, the number of results returned and set-
tings related to the desired target language, e.g. the knowledge engineer can choose
to stay within the OWL 2 EL profile or enable/disable certain class expression con-
structors. The learning algorithm is designed to be able to handle noisy data and the
visualisation of the suggestions will reveal false class assignments so that they can be
fixed afterwards.

The OntoWiki Plugin. Analogous to Protégé, we created a similar plugin for On-
toWiki (cf. section 4). OntoWiki is a lightweight ontology editor, which allows dis-
tributed and collaborative editing of knowledge bases. It focuses on wiki-like, simple
and intuitive authoring of semantic content, e.g. through inline editing of RDF content,
and provides different views on instance data.

32 http://dl-learner.org/wiki/ProtegePlugin

http://dl-learner.org/wiki/ProtegePlugin
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Fig. 29. A screenshot of the
DL-Learner Protégé plugin. It
is integrated as additional tab
to create class expressions in
Protégé. The user is only re-
quired to press the “suggest
equivalent class expressions”
button and within a few sec-
onds they will be displayed or-
dered by accuracy. If desired,
the knowledge engineer can
visualize the instances of the
expression to detect potential
problems. At the bottom, op-
tional expert configuration set-
tings can be adopted.

Fig. 30. The DL-Learner plugin can be invoked from the context menu of a class in OntoWiki

Recently, a fine-grained plugin mechanism and extensions architecture was added to
OntoWiki. The DL-Learner plugin is technically realised by implementing an OntoWiki
component, which contains the core functionality, and a module, which implements the
UI embedding. The DL-Learner plugin can be invoked from several places in OntoWiki,
for instance through the context menu of classes as shown in Figure 30.

The plugin accesses DL-Learner functionality through its WSDL-based web service
interface. Jar files containing all necessary libraries are provided by the plugin. If a user
invokes the plugin, it scans whether the web service is online at its default address. If
not, it is started automatically.

A major technical difference compared to the Protégé plugin is that the knowledge
base is accessed via SPARQL, since OntoWiki is a SPARQL-based web application. In
Protégé, the current state of the knowledge base is stored in memory in a Java object. As
a result, we cannot easily apply a reasoner on an OntoWiki knowledge base. To over-
come this problem, we use the DL-Learner fragment selection mechanism described in
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Fig. 31. Extraction with three starting instances. The circles represent different recursion depths.
The circles around the starting instances signify recursion depth 0. The larger inner circle rep-
resents the fragment with recursion depth 1 and the largest outer circle with recursion depth 2.
Figure taken from [81].

[81,82,40]. Starting from a set of instances, the mechanism extracts a relevant fragment
from the underlying knowledge base up to some specified recursion depth. Figure 31
provides an overview of the fragment selection process. The fragment has the property
that learning results on it are similar to those on the complete knowledge base. For a
detailed description we refer the reader to the full article.

The fragment selection is only performed for medium to large-sized knowledge
bases. Small knowledge bases are retrieved completely and loaded into the reasoner.
While the fragment selection can cause a delay of several seconds before the learning
algorithm starts, it also offers flexibility and scalability. For instance, we can learn class
expressions in large knowledge bases such as DBpedia in OntoWiki.33

Figure 32 shows a screenshot of the OntoWiki plugin applied to the SWORE [171]
ontology. Suggestions for learning the class “customer requirement” are shown in
Manchester OWL Syntax. Similar to the Protégé plugin, the user is presented a table
of suggestions along with their accuracy value. Additional details about the instances
of “customer requirement”, covered by a suggested class expressions and additionally
contained instances can be viewed via a toggle button. The modular design of OntoWiki
allows rich user interaction: Each resource, e.g. a class, property, or individual, can be
viewed and subsequently modified directly from the result table as shown for “design
requirement” in the screenshot. For instance, a knowledge engineer could decide to
import additional information available as Linked Data and run the CELOE algorithm
again to see whether different suggestions are provided with additional background
knowledge.

33 OntoWiki is undergoing an extensive development, aiming to support handling such large
knowledge bases. A release supporting this is expected for the first half of 2012.
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Fig. 32. Screenshot of the result table of the DL-Learner plugin in OntoWiki

Evaluation. To evaluate the suggestions made by our learning algorithm, we tested it
on a variety of real-world ontologies of different sizes and domains. Please note that we
intentionally do not perform an evaluation of the machine learning technique as such
on existing benchmarks, since we build on the base algorithm already evaluated in de-
tail in [117]. It was shown that this algorithm is superior to other supervised learning
algorithms for OWL and at least competitive with the state of the art in ILP. Instead, we
focus on its use within the ontology engineering scenario. The goals of the evaluation
are to 1. determine the influence of reasoning and heuristics on suggestions, 2. to eval-
uate whether the method is sufficiently efficient to work on large real-world ontologies.

To perform the evaluation, we wrote a dedicated plugin for the Protégé ontology
editor. This allows the evaluators to browse the ontology while deciding whether the
suggestions made are reasonable. The plugin works as follows: First, all classes with
at least 5 inferred instances are determined. For each such class, we run CELOE with
different settings to generate suggestions for definitions. Specifically, we tested two
reasoners and five different heuristics. The two reasoners are standard Pellet and Pellet
combined with approximate reasoning (not described in detail here). The five heuristics
are those described in Section 6.3. For each configuration of CELOE, we generate at
most 10 suggestions exceeding a heuristic threshold of 90%. Overall, this means that
there can be at most 2 * 5 * 10 = 100 suggestions per class – usually less, because
different settings of CELOE will still result in similar suggestions. This list is shuffled
and presented to the evaluators. For each suggestion, the evaluators can choose between
6 options (see Table 8):

1 The suggestion improves the ontology (improvement),
2 The suggestion is no improvement and should not be included (not acceptable) and
3 Adding the suggestion would be a modelling error (error).

In the case of existing definitions for class A, we removed them prior to learning. In this
case, the evaluator could choose between three further options:
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Table 7. Statistics about test ontologies
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DL expressivity
SC Ontology34 20081 28 8 5 3542 AL(D)
Adhesome35 12043 40 33 37 2032 ALCHN(D)
GeoSkills36 14966 613 23 21 2620 ALCHOIN(D)
Eukariotic37 38 11 1 0 11 ALCON
Breast Cancer38 878 196 22 3 113 ALCROF (D)
Economy39 1625 339 45 8 482 ALCH(D)
Resist40 239 349 134 38 75 ALUF (D)
Finance41 16014 323 247 74 2466 ALCROIQ(D)
Earthrealm42 931 2364 215 36 171 ALCHO(D)

4 The learned definition is equal to the previous one and both are good (equal +),
5 The learned definition is equal to the previous one and both are bad (equal -) and
6 The learned definition is inferior to the previous one (inferior).

We used the default settings of CELOE, e.g. a maximum execution time of 10 sec-
onds for the algorithm. The knowledge engineers were five experienced members of our
research group, who made themselves familiar with the domain of the test ontologies.
Each researcher worked independently and had to make 998 decisions for 92 classes
between one of the options. The time required to make those decisions was approxi-
mately 40 working hours per researcher. The raw agreement value of all evaluators is
0.535 (see e.g. [5] for details) with 4 out of 5 evaluators in strong pairwise agreement
(90%). The evaluation machine was a notebook with a 2 GHz CPU and 3 GB RAM.

Table 8 shows the evaluation results. All ontologies were taken from the Protégé
OWL43 and TONES44 repositories. We randomly selected 5 ontologies comprising in-
stance data from these two repositories, specifically the Earthrealm, Finance, Resist,
Economy and Breast Cancer ontologies (see Table 7).

34 http://www.mindswap.org/ontologies/SC.owl
35 http://www.sbcny.org/datasets/adhesome.owl
36 http://i2geo.net/ontologies/current/GeoSkills.owl
37 http://www.co-ode.org/ontologies/eukariotic/2005/06/01/eukariotic.owl
38 http://acl.icnet.uk/%7Emw/MDM0.73.owl
39 http://reliant.teknowledge.com/DAML/Economy.owl
40 http://www.ecs.soton.ac.uk/~aoj04r/resist.owl
41 http://www.fadyart.com/Finance.owl
42 http://sweet.jpl.nasa.gov/1.1/earthrealm.owl
43 http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
44 http://owl.cs.manchester.ac.uk/repository/

http://www.mindswap.org/ontologies/SC.owl
http://www.sbcny.org/datasets/adhesome.owl
http://i2geo.net/ontologies/current/GeoSkills.owl
http://www.co-ode.org/ontologies/eukariotic/2005/06/01/eukariotic.owl
http://acl.icnet.uk/%7Emw/MDM0.73.owl
http://reliant.teknowledge.com/DAML/Economy.owl
http://www.ecs.soton.ac.uk/~aoj04r/resist.owl
http://www.fadyart.com/Finance.owl
http://sweet.jpl.nasa.gov/1.1/earthrealm.owl
http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library
http://owl.cs.manchester.ac.uk/repository/
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Table 8. Options chosen by evaluators aggregated by class. FIC stands for the fast instance
checker, which is an approximate reasoning procedure.
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Pellet/F-Measure 16.70 0.44 0.66 0.00 64.66 17.54 14.95 2.82 ± 2.93 96.91
Pellet/Gen. F-Measure 15.24 0.44 0.66 0.11 66.60 16.95 16.30 2.78 ± 3.01 92.76
Pellet/A-Measure 16.70 0.44 0.66 0.00 64.66 17.54 14.95 2.84 ± 2.93 98.59
Pellet/pred. acc. 16.59 0.44 0.66 0.00 64.83 17.48 15.22 2.69 ± 2.82 98.05
Pellet/Jaccard 16.81 0.44 0.66 0.00 64.66 17.43 14.67 2.80 ± 2.91 95.26
Pellet FIC/F-Measure 36.30 0.55 0.55 0.11 52.62 9.87 1.90 2.25 ± 2.74 95.01
Pellet FIC/Gen. F-M. 33.41 0.44 0.66 0.00 53.41 12.09 7.07 1.77 ± 2.69 89.42
Pellet FIC/A-Measure 36.19 0.55 0.55 0.00 52.84 9.87 1.63 2.21 ± 2.71 98.65
Pellet FIC/pred. acc. 32.99 0.55 0.55 0.11 55.58 10.22 4.35 2.17 ± 2.55 98.92
Pellet FIC/Jaccard 36.30 0.55 0.55 0.11 52.62 9.87 1.90 2.25 ± 2.74 94.07

The results in Table 8 show which options were selected by the evaluators. It clearly
indicates that the usage of approximate reasoning is sensible. The results are, however,
more difficult to interpret with regard to the different employed heuristics. Using predic-
tive accuracy did not yield good results and, surprisingly, generalised F-Measure also
had a lower percentage of cases where option 1 was selected. The other three heuristics
generated very similar results. One reason is that those heuristics are all based on pre-
cision and recall, but in addition the low quality of some of the randomly selected test
ontologies posed a problem. In cases of too many very severe modelling errors, e.g. con-
junctions and disjunctions mixed up in an ontology or inappropriate domain and range
restrictions, the quality of suggestions decreases for each of the heuristics. This is the
main reason why the results for the different heuristics are very close. Particularly, gen-
eralised F-Measure can show its strengths mainly for properly designed ontologies. For
instance, column 2 of Table 8 shows that it missed 7% of possible improvements. This
means that for 7% of all classes, one of the other four heuristics was able to find an ap-
propriate definition, which was not suggested when employing generalised F-Measure.
The last column in this table shows that the average value of generalised F-Measure is
quite low. As explained previously, it distinguishes between cases when an individual is
instance of the observed class expression, its negation, or none of both. In many cases,
the reasoner could not detect that an individual is instance of the negation of a class ex-
pression, because of the absence of disjointness axioms and negation in the knowledge
base, which explains the low average values of generalised F-Measure. Column 4 of
Table 8 shows that many selected expressions are amongst the top 5 (out of 10) in the
suggestion list, i.e. providing 10 suggestions appears to be a reasonable choice.
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In general, the improvement rate is only at about 35% according to Table 8 whereas it
usually exceeded 50% in preliminary experiments with other real-world ontologies with
fewer or less severe modelling errors. Since CELOE is based on OWL reasoning, it is
clear that schema modelling errors will have an impact on the quality of suggestions.
As a consequence, we believe that the CELOE algorithm should be combined with
ontology debugging techniques. We have obtained first positive results in this direction
and plan to pursue it in future work. However, the evaluation also showed that CELOE
does still work in ontologies, which probably were never verified by an OWL reasoner.

Summary. We presented the CELOE learning method specifically designed for extend-
ing OWL ontologies. Five heuristics were implemented and analysed in conjunction
with CELOE along with several performance improvements. A method for approxi-
mating heuristic values has been introduced, which is useful beyond the ontology en-
gineering scenario to solve the challenge of dealing with a large number of examples
in ILP [203]. Furthermore, we biased the algorithm towards short solutions and im-
plemented optimisations to increase readability of the suggestions made. The resulting
algorithm was implemented in the open source DL-Learner framework. We argue that
CELOE is the first ILP based algorithm, which turns the idea of learning class expres-
sions for extending ontologies into practice. CELOE is integrated into two plugins for
the ontology editors Protégé and OntoWiki and can be invoked using just a few mouse
clicks.

7 Linked Data Quality

Linked Open Data (LOD) has provided, over the past several years, an unprecedented
volume of structured data currently amount to 50 billion facts, represented as RDF
triples. Although publishing large amounts of data on the Web is certainly a step in the
right direction, the published data is only as useful as its quality. On the Data Web we
have very varying quality of information covering various domains since data is merged
together from different autonomous evolving data sources on the Web. For example,
data extracted from semi-structured or even unstructured sources, such as DBpedia,
often contains inconsistencies as well as mis-represented and incomplete information.
Despite data quality in LOD being an essential concept, the autonomy and openness of
the information providers makes the web vulnerable to missing, inaccurate, incomplete,
inconsistent or outdated information.

Data quality is commonly conceived as fitness for use [97,202] for a certain appli-
cation or use case. However, even datasets with quality problems might be useful for
certain applications, as long as the quality is in the required range. For example, in the
case of DBpedia the data quality is perfectly sufficient for enriching Web search with
facts or suggestions about common sense information, such as entertainment topics. In
such a scenario, DBpedia can be used to show related movies and personal information,
when a user searches for an actor. In this case, it is rather neglectable, when in relatively
few cases, a related movie or some personal fact is missing. For developing a medical
application, on the other hand, the quality of DBpedia is probably completely insuffi-
cient. It should be noted that even the traditional, document-oriented Web has content
of varying quality and is still perceived to be extremely useful by most people.
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Consequently, one of the key challenges is to determine the quality of datasets pub-
lished on the Web and making this quality information explicitly available. Assuring
data quality is particularly a challenge in LOD as it involves a set of autonomously
evolving data sources. Other than on the document Web, where information quality
can be only indirectly (e.g. via page rank) or vaguely defined, there are much more
concrete and measurable data quality metrics available for structured information such
as accuracy of facts, completeness, adequacy of semantic representation or degree of
understandability.

In this chapter, we first define the basic concepts of data quality ( subsection 7.1),
then report the formal definitions of a set of 18 different dimensions along with their
respective metrics identified in [212] ( subsection 7.2). Thereafter, we compare a set
of currently available tools specially designed to assess the quality of Linked Data
( subsection 7.7).

7.1 Data Quality Concepts

In this section, we introduce the basic concepts of data quality to help the readers un-
derstand these terminologies in their consequent usage.

Data Quality. The term data quality is commonly conceived as a multi-dimensional
construct with a popular definition as the "fitness for use" [97]. In case of the Semantic
Web, there are varying concepts of data quality such as the semantic metadata on the
one hand and the notion of link quality on the other. There are several characteristics of
data quality that should be considered i.e. the completeness, accuracy, consistency and
validity on the one hand and the representational consistency, conciseness as well as the
timeliness, understandability, availability and verifiability on the other hand.

Data Quality Problems. A set of issues that can affect the potentiality of the appli-
cations that use the data are termed as data quality problems. The problems may vary
from the incompleteness of data, inconsistency in representation, invalid syntax or in-
accuracy.

Data Quality Dimensions and Metrics. Data quality assessment involves the measure-
ment of quality dimensions (or criteria) that are relevant to the user. A data quality
assessment metric (or measure) is a procedure for measuring an information quality di-
mension [26]. The metrics are basically heuristics designed to fit a specific assessment
situation [120]. Since the dimensions are rather abstract concepts, the assessment met-
rics rely on quality indicators that can be used for the assessment of the quality of a
data source w.r.t the criteria [59].

Data Quality Assessment Method. A data quality assessment methodology is the pro-
cess of evaluating if a piece of data meets the information consumers need for a specific
use case [26]. The process involves measuring the quality dimensions that are relevant
to the user and comparing the assessment results with the users quality requirements.
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7.2 Linked Data Quality Dimensions

In [212], a core set of 18 different data quality dimensions were reported that can be
applied to assess the quality of Linked Data. These dimensions are divided into the
following groups:

– Accessibility dimensions
– Intrinsic dimensions
– Contextual dimensions
– Representational dimensions

Figure 33 shows the classification of the dimensions into these four different groups as
well as the relations between them.
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Fig. 33. Linked data quality dimensions and the relations between them [Source: [212].]

Use Case Scenario. Since data quality is conceived as “fitness for use”, we introduce a
specific use case that will allow us to illustrate the importance of each dimension with
the help of an example. The use case is about an intelligent flight search engine, which
relies on aggregating data from several datasets. The search engine obtains information
about airports and airlines from an airline dataset (e.g. OurAirports45, OpenFlights46).
45 http://thedatahub.org/dataset/ourairports
46 http://thedatahub.org/dataset/open-flights

http://thedatahub.org/dataset/ourairports
http://thedatahub.org/dataset/open-flights
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Information about the location of countries, cities and particular addresses is obtained
from a spatial dataset (e.g. LinkedGeoData47). Additionally, aggregators pull all the
information related to flights from different booking services (e.g., Expedia48) and rep-
resent this information as RDF. This allows a user to query the integrated dataset for
a flight between any start and end destination for any time period. We will use this
scenario throughout as an example to explain each quality dimension through a quality
issue.

7.3 Accessibility Dimensions

The dimensions belonging to this category involve aspects related to the access, authen-
ticity and retrieval of data to obtain either the entire or some portion of the data (or from
another linked dataset) for a particular use case. There are five dimensions that are part
of this group, which are availability, licensing, interlinking, security and performance.

Availability. Bizer [25] adopted the definition of availability from Pipino et al. [164] as
“the extent to which information is available, or easily and quickly retrievable”. Flem-
ming [59] referred to availability as the proper functioning of all access methods. How-
ever, the definition by Pipino et al. is more related to the measurement of available
information rather than to the method of accessing the information as implied in the
latter explanation by Flemming.

Definition 9 (Availability). Availability of a dataset is the extent to which data (or
some portion of it) is present, obtainable and ready for use.

Metrics. The metrics identified for availability are:

– A1: checking whether the server responds to a SPARQL query [59]
– A2: checking whether an RDF dump is provided and can be downloaded [59]
– A3: detection of dereferencability of URIs by checking:
• for dead or broken links [85], i.e. that when an HTTP-GET request is sent, the

status code 404 Not Found is not returned [59]
• that useful data (particularly RDF) is returned upon lookup of a URI [85]
• for changes in the URI, i.e. compliance with the recommended way of imple-

menting redirections using the status code 303 See Other [59]
– A4: detect whether the HTTP response contains the header field stating the appro-

priate content type of the returned file, e.g. application/rdf+xml [85]
– A5: dereferncability of all forward links: all available triples where the local URI

is mentioned in the subject (i.e. the description of the resource) [86]

Example. Let us consider the case in which a user looks up a flight in our flight search
engine. She requires additional information such as car rental and hotel booking at the
destination, which is present in another dataset and interlinked with the flight dataset.
However, instead of retrieving the results, she receives an error response code 404 Not
Found. This is an indication that the requested resource cannot be dereferenced and is
therefore unavailable. Thus, with this error code, she may assume that either there is no
information present at that specified URI or the information is unavailable.
47 linkedgeodata.org
48 http://www.expedia.com/

linkedgeodata.org
http://www.expedia.com/
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Licensing. Licensing is a new quality dimensions not considered for relational
databases but mandatory in the data world such as LD. Flemming [59] and Hogan et
al. [86] both stated that each RDF document should contain a license under which the
content can be (re-)used, in order to enable information consumers to use the data un-
der clear legal terms. Additionally, the existence of a machine-readable indication (by
including the specifications in a VoID49 description) as well as a human-readable in-
dication of a license are important not only for the permissions a licence grants but
as an indication of which requirements the consumer has to meet [59]. Although both
these studies do not provide a formal definition, they agree on the use and importance
of licensing in terms of data quality.

Definition 10 (Licensing). Licensing is defined as the granting of permission for a
consumer to re-use a dataset under defined conditions.

Metrics. The metrics identified for licensing are:

– L1: machine-readable indication of a license in the VoID description or in the
dataset itself [59,86]

– L2: human-readable indication of a license in the documentation of the
dataset [59,86]

– L3: detection of whether the dataset is attributed under the same license as the
original [59]

Example. Since our flight search engine aggregates data from several existing data
sources, a clear indication of the license allows the search engine to re-use the data
from the airlines websites. For example, the LinkedGeoData dataset is licensed under
the Open Database License50, which allows others to copy, distribute and use the data
and produce work from the data allowing modifications and transformations. Due to the
presence of this specific license, the flight search engine is able to re-use this dataset to
pull geo-spatial information and feed it to the search engine.

Interlinking. Interlinking is a relevant dimension in LD since it supports data inte-
gration. Interlinking is provided by RDF triples that establish a link between the entity
identified by the subject with the entity identified by the object. Through the typed
RDF links, data items are effectively interlinked. The importance of interlinking, also
know as “mapping coherence” can be classified in one of the four scenarios: (i) Frame-
works; (ii) Terminological Reasoning; (iii) Data Transformation; (iv) Query Processing,
as identified in [133]. Even though the core articles in this survey do not contain a for-
mal definition for interlinking, they provide metrics on how to measure this dimension.

Definition 11 (Interlinking). Interlinking refers to the degree to which entities that
represent the same concept are linked to each other, be it within or between two or
more data sources.

49 http://vocab.deri.ie/void
50 http://opendatacommons.org/licenses/odbl/

http://vocab.deri.ie/void
http://opendatacommons.org/licenses/odbl/
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Metrics. The metrics identified for interlinking are:

– I1: detection of:
• interlinking degree: how many hubs there are in a network51 [73]
• clustering coefficient: how dense is the network [73]
• centrality: indicates the likelihood of a node being on the shortest path between

two other nodes [73]
• whether there are open sameAs chains in the network [73]
• how much value is added to the description of a resource through the use of

sameAs edges [73]
– I2: detection of the existence and usage of external URIs (e.g. using owl:sameAs

links) [85,86]
– I3: detection of all local in-links or back-links: all triples from a dataset that have

the resource’s URI as the object [86]

Example. In our flight search engine, the instance of the country “United States”
in the airline dataset should be interlinked with the instance “America” in the spatial
dataset. This interlinking can help when a user queries for a flight, as the search engine
can display the correct route from the start destination to the end destination by correctly
combining information for the same country from both the datasets. Since names of
various entities can have different URIs in different datasets, their interlinking can help
in disambiguation.

Security. Flemming [59] referred to security as “the possibility to restrict access to the
data and to guarantee the confidentiality of the communication between a source and its
consumers”. Additionally, Flemming referred to the verifiability dimension as the mean
a consumer is provided with to examine the data for correctness. Bizer [25] adopted the
definition of verifiability from Naumann et al. [143] as the “degree and ease with which
the information can be checked for correctness”. Without such means, the assurance
of the correctness of the data would come from the consumer’s trust in that source. It
can be observed here that on the one hand Naumann et al. provided a formal definition
whereas Flemming described the dimension by providing its advantages and metrics.
Thus, security and verifiability point towards the same quality dimension i.e. to avoid
alterations of the dataset and verify its correctness.

Definition 12 (Security). Security is the extent to which data is protected against al-
teration and misuse.

Metrics. The metrics identified for security are:

– S1: degree of using digital signatures to sign documents containing an RDF serial-
ization, a SPARQL result set or signing an RDF graph [37,59]

– S2: verifying authenticity of the dataset based on provenance information such as
the author and his contributors, the publisher of the data and its sources, if present
in the dataset [59]

51 In [73], a network is a set of facts provided by the graph of the Web of Data, excluding the
blank nodes.
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Example: In our use case, if we assume that the flight search engine obtains flight infor-
mation from arbitrary airline websites, there is a risk for receiving incorrect information
from malicious websites. For instance, an airline or sales agency website can pose as its
competitor and display incorrect expensive flight fares. Thus, by this spoofing attack,
this airline can prevent users to book with the competitor. In that case, the use of digital
signatures for published RDF data allows to verify the identity of the publisher.

Performance. Performance is a dimension that has an influence on the quality of the
information system or search engine, however not on the data set itself. Flemming [59]
states that “the performance criterion comprises aspects of enhancing the performance
of a source as well as measuring of the actual values”. Flemming [59] gave a general
description of performance without explaining the meaning while Hogan et al. [86]
described the issues related to performance. Moreover, Bizer [25], defined response-
time as “the delay between submission of a request by the user and reception of the
response from the system”. Thus, response-time and performance point towards the
same quality dimension.

Definition 13 (Performance). Performance refers to the efficiency of a system that
binds to a large dataset, that is, the more performant a data source is the more effi-
ciently a system can process data.

Metrics. The metrics identified for performance are:

– P1: checking for usage of slash-URIs where large amounts of data is pro-
vided52 [59]

– P2: low latency53: (minimum) delay between submission of a request by the user
and reception of the response from the system [25,59]

– P3: high throughput: (maximum) number of answered HTTP-requests per sec-
ond [59]

– P4: scalability - detection of whether the time to answer an amount of ten requests
divided by ten is not longer than the time it takes to answer one request [59]

Example. In our use case, the performance may depend on the type and complexity
of the query by a large number of users. Our flight search engine can perform well by
considering response-time when deciding which sources to use to answer a query.

Intra-relations. The dimensions in this group are related with each other as follows:
performance (response-time) of a system is related to the availability dimension. Only if
a dataset is available and has low response time, it can perform well. Also, interlinking
is related to availability because only if a dataset is available, it can be interlinked and
the interlinks can be traversed. Additionally, the dimensions security and licensing are
related since providing a license and specifying conditions for re-use helps secure the
dataset against alterations and misuse.

52 http://www.w3.org/wiki/HashVsSlash
53 Latency is the amount of time from issuing the query until the first information reaches the

user [143].

http://www.w3.org/wiki/HashVsSlash
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7.4 Intrinsic Dimensions

Intrinsic dimensions are those that are independent of the user’s context. There are five
dimensions that are part of this group, which are syntactic validity, semantic accuracy,
consistency, conciseness and completeness. These dimensions focus on whether infor-
mation correctly (syntactically and semantically), compactly and completely represents
the real world data and whether information is logically consistent in itself.

Syntactic Validity. Flemming [59] defined the term validity of documents as “the valid
usage of the underlying vocabularies and the valid syntax of the documents”. Fürber et
al. [64] classified accuracy into syntactic and semantic accuracy. He explained that a
“value is syntactically accurate, when it is part of a legal value set for the represented
domain or it does not violate syntactical rules defined for the domain”. We associate
the validity of documents defined by Flemming to syntactic validity. We distinguish
between the two types of accuracy defined by Fürber et al. and form two dimensions:
Syntactic validity (syntactic accuracy) and Semantic accuracy. Additionally, Hogan et
al. [85] identify syntax errors such as RDF/XML syntax errors, malformed datatype
literals and literals incompatible with datatype range, which we associate with syntactic
validity.

Definition 14 (Syntactic validity). Syntactic validity is defined as the degree to which
an RDF document conforms to the specification of the serialization format.

Metrics. The metrics identified for syntactic validity are:

– SV1: detecting syntax errors using validators [59,85]
– SV2: detecting use of:
• explicit definition of the allowed values for a certain datatype [64]
• syntactic rules (type of characters allowed and/or the pattern of literal val-

ues) [64]
– SV3: detection of ill-typed literals which do not abide by the lexical syntax for their

respective datatype that can occur if a value is (i) malformed or (ii) is a member of
an incompatible datatype [85]

Example. In our use case, let us assume that the ID of the flight between Paris and
New York is A123 while in our search engine the same flight instance is represented as
A231. Since this ID is included in one of the datasets, it is considered to be syntactically
accurate since it is a valid ID (even though it is incorrect).

Semantic Accuracy. Bizer [25] adopted the definition of accuracy from Wang et
al. [200] as the “degree of correctness and precision with which information in an in-
formation system represents states of the real world”. Furthermore, Furber et al. [64]
classified accuracy into syntactic and semantic accuracy. He explained that values are
semantically accurate when they represent the correct state of an object. Based on this
definition, we also considered the problems of spurious annotation and inaccurate an-
notation (inaccurate labeling and inaccurate classification) identified in Lei et al. [119]
related to the semantic accuracy dimension.
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Definition 15 (Semantic accuracy). Semantic accuracy is defined as the degree to
which data values correctly represent the real world facts.

Metrics. The metrics identified for semantic accuracy are:

– SA1: detection of outliers by using distance-based, deviations-based and
distribution-based methods [26]

– SA2: detection of inaccurate values by using functional dependency
rules54 [64,209]

– SA3: detection of inaccurate annotations55, labellings56 or classifications57 using
the formula:
1 − inaccurate instances

total no. of instances * balanced distance metric
total no. of instances

58 [119]
– SA4: verifying correctness of the dataset with the help of unbiased trusted third

party (humans) [25]
– SA5: detection of misuse of properties59 by using profiling statistics, which support

the detection of discordant values or misused properties and facilitate to find valid
values for specific properties [30]

– SA6: ratio of the number of semantically valid rules 60 to the number of nontrivial
rules61 [39]

Example. In our use case, let us assume that the ID of the flight between Paris and
New York is A123 while in our search engine the same flight instance is represented as
A231. In this case, the instance is semantically inaccurate since the flight ID does not
represent its real-world state i.e. A123.

Consistency. Bizer [25] adopted the definition of consistency from Mecella et al., [132]
as when “two or more values do not conflict with each other”. Similarly, Hogan et
al. [85] defined consistency as “no contradictions in the data”. Another definition was
given by Mendes et al. [134] where “a dataset is consistent if it is free of conflicting
information”. Additionally, Böhm et al. [30] and Mostafavi et al. [139] present metrics
to assess consistency. However, it should be noted that for some languages such as OWL
DL, there are clearly defined semantics, including clear definitions what inconsistency
means. In description logics, model based semantics are used: A knowledge base is a

54 Functional dependencies are dependencies between the values of two or more different prop-
erties.

55 where an instance of the semantic metadata set can be mapped back to more than one real
world object or in other cases, where there is no object to be mapped back to an instance.

56 where mapping from the instance to the object is correct but not properly labeled.
57 in which the knowledge of the source object has been correctly identified by not accurately

classified.
58 Balanced distance metric is an algorithm that calculates the distance between the extracted (or

learned) concept and the target concept [129]
59 Properties are often misused when no applicable property exists.
60 valid rules are generated from the real data and validated against a set of principles specified

in the semantic network
61 The intuition is that the larger a dataset is, the more closely it should reflect the basic domain

principles and the less semantically incorrect rules will be generated.
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set of axioms. A model is an interpretation, which satisfies all axioms in the knowledge
base. A knowledge base is consistent if and only if it has a model [16].

Definition 16 (Consistency). Consistency means that a knowledge base is free of (log-
ical/formal) contradictions with respect to particular knowledge representation and in-
ference mechanisms.

Metrics. A straighforward way to check for consistency is to load the knowledge base
into a reasoner and check whether it is consistent. However, for certain knowledge
bases (e.g. very large or inherently inconsistent ones) this approach is not feasible. For
such cases, specific aspects of consistency can be checked individually. Some important
metrics identified in the literature are:

– CS1: detection of use of entities as members of disjoint classes using the formula:
no. of entities described as members of disjoint classes

total no. of entities described in the dataset [85]
– CS2: detection of misplaced classes or properties62 using entailment rules that in-

dicate the position of a term in a triple [85]
– CS3: detection of misuse of owl:DatatypeProperty or owl:ObjectProperty

through the ontology maintainer63 [85]
– CS4: detection of use of members of owl:DeprecatedClass or
owl:DeprecatedProperty through the ontology maintainer or by specify-
ing manual mappings from deprecated terms to compatible terms [85]

– CS5: detection of bogus owl:InverseFunctionalProperty values by checking
the uniqueness and validity of the inverse-functional values [85]

– CS6: detection of the re-definition by third parties of external classes/ properties
(ontology hijacking) such that reasoning over data using those external terms is
affected [85]

– CS7: detection of negative dependencies/correlation among properties using asso-
ciation rules [30]

– CS8: detection of inconsistencies in spatial data through semantic and geometric
constraints [139]

Example. Let us assume a user looking for flights between Paris and New York on the
21st of December, 2013. Her query returns the following results:

Flight From To Arrival Departure
A123 Paris NewYork 14:50 22:35
A123 Paris London 14:50 22:35

The results show that the flight number A123 has two different destinations64 at the same
date and same time of arrival and departure, which is inconsistent with the ontology
definition that one flight can only have one destination at a specific time and date. This
contradiction arises due to inconsistency in data representation, which is detected by
using inference and reasoning.

62 For example, a URI defined as a class is used as a property or vice-a-versa.
63 For example, attribute properties used between two resources and relation properties used with

literal values.
64 Under the assumption that we can infer that NewYork and London are different entities or,

alternatively, make the unique names assumption.
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Conciseness. Mendes et al. [134] classified conciseness into schema and instance level
conciseness. On the schema level (intensional), “a dataset is concise if it does not con-
tain redundant attributes (two equivalent attributes with different names)”. Thus, inten-
sional conciseness measures the number of unique schema elements (i.e. properties and
classes) of a dataset in relation to the overall number of schema elements in a schema.
On the data (instance) level (extensional), “a dataset is concise if it does not contain
redundant objects (two equivalent objects with different identifiers)”. Thus, extensional
conciseness measures the number of unique objects in relation to the overall number
of objects in the dataset. This definition of conciseness is very similar to the definition
of ‘uniqueness’ defined by Fürber et al. [64] as the “degree to which data is free of re-
dundancies, in breadth, depth and scope”. This comparison shows that uniqueness and
conciseness point to the same dimension. Redundancy occurs when there are equivalent
schema elements with different names/identifiers (in case of intensional conciseness)
and when there are equivalent objects (instances) with different identifiers (in case of
extensional conciseness) in a dataset.

Definition 17 (Conciseness). Conciseness refers to the minimization of redundancy of
entities at the schema and the data level. Conciseness is classified into (i) intensional
conciseness (schema level) which refers to the case when the data does not contain
redundant schema elements (properties and classes) and (ii) extensional conciseness
(data level) which refers to the case when the data does not contain redundant objects
(instances).

Metrics. The metrics identified for conciseness are:

– CN1: intensional conciseness measured by no. of unique properties/classes of a dataset
total no. of properties/classes in a target schema [134]

– CN2: extensional conciseness measured by:
• no. of unique instances of a dataset

total number of instances representations in the dataset [134] or

• 1 − total no. of instances that violate the uniqueness rule
total no. of relevant instances [64,119]

– CN3: detection of unambiguous annotations using the formula:
1 − no. of ambiguous instances

no. of the instances contained in the semantic metadata set
65 [119]

Example. In our flight search engine, an example of intensional conciseness
would be a particular flight, say A123, being represented by two different
properties in the same dataset, such as http://flights.org/airlineID and
http://flights.org/name. This redundancy (‘airlineID’ and ‘name’ in this case)
can ideally be solved by fusing the two properties and keeping only one unique iden-
tifier. On the other hand, an example of extensional conciseness is when both these
identifiers of the same flight have the same information associated with them in both
the datasets, thus duplicating the information.

Completeness. Bizer [25] adopted the definition of completeness from Pipino et
al. [164] as “the degree to which information is not missing”. Fürber et al. [64] further
classified completeness into: (i) Schema completeness, which is the degree to which

65 detection of an instance mapped back to more than one real world object leading to more than
one interpretation.
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classes and properties are not missing in a schema; (ii) Column completeness, which
is a function of the missing property values for a specific property/column; and (iii)
Population completeness, which refers to the ratio between classes represented in an
information system and the complete population. Mendes et al. [134] distinguish com-
pleteness on the schema and the data level. On the schema level, a dataset is complete if
it contains all of the attributes needed for a given task. On the data (i.e. instance) level, a
dataset is complete if it contains all of the necessary objects for a given task. As can be
observed, Pipino et al. provided a general definition whereas Fürber et al. provided a set
of sub-categories for completeness. On the other hand, the two types of completeness
defined in Mendes et al. can be mapped to the two categories (i) Schema completeness
and (iii) Population completeness provided by Fürber et al.

Definition 18 (Completeness). Completeness refers to the degree to which all required
information is present in a particular dataset. In terms of LD, completeness comprises
of the following aspects: (i) Schema completeness, the degree to which the classes and
properties of an ontology are represented, thus can be called “ontology completeness”,
(ii) Property completeness, measure of the missing values for a specific property, (iii)
Population completeness is the percentage of all real-world objects of a particular type
that are represented in the datasets and (iv) Interlinking completeness, which has to be
considered especially in LD, refers to the degree to which instances in the dataset are
interlinked.

Metrics. The metrics identified for completeness are:

– CM1: schema completeness - no. of classes and properties represented / total no.
of classes and properties [25,64,134]

– CM2: property completeness - no. of values represented for a specific property /
total no. of values for a specific property [25,64]

– CM3: population completeness - no. of real-world objects are represented / total
no. of real-world objects [25,64,134]

– CM4: interlinking completeness - no. of instances in the dataset that are interlinked
/ total no. of instances in a dataset [73]

It should be noted, that in this case, users should assume a closed-world-assumption
where a gold standard dataset is available and can be used to compare against the con-
verted dataset.

Example. In our use case, the flight search engine contains complete information to
include all the airports and airport codes such that it allows a user to find an optimal
route from the start to the end destination (even in cases when there is no direct flight).
For example, the user wants to travel from Santa Barbara to San Francisco. Since our
flight search engine contains interlinks between these close airports, the user is able to
locate a direct flight easily.

Intra-relations. The dimensions in this group are related to each other as follows:
Data can be semantically accurate by representing the real world state but still can be
inconsistent. However, if we merge accurate datasets, we will most likely get fewer in-
consistencies than merging inaccurate datasets. On the other hand, being syntactically
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valid does not necessarily mean that the value is semantically accurate. Moreover, if a
dataset is complete, syntactic validity, semantic accuracy and consistency checks need
to be performed to determine if the values have been completed correctly. Addition-
ally, conciseness is related to completeness since both point towards the dataset having
all, however unique (non-redundant) information. However, if data integration leads to
duplication of instances, it may lead to contradictory values thus leading to inconsis-
tency [28].

7.5 Contextual Dimensions

Contextual dimensions are those that highly depend on the context of the task at hand.
There are four dimensions that are part of this group, namely relevancy, trustworthiness,
understandability and timeliness.

Relevancy. Bizer [25] adopted the definition of relevancy from Pipino et al. [164]
as “the extent to which information is applicable and helpful for the task at hand”.
Additionally, Bizer [25] adopted the definition for the amount-of-data dimension from
Pipino et al. [164] as “the extent to which the volume of data is appropriate for the
task at hand”. Thus, since the amount-of-data dimension is similar to the relevancy
dimension, we merge both dimensions. Flemming [59] defined amount-of-data as the
“criterion influencing the usability of a data source”. While Pipino et al. provided a
formal definition, Flemming and Chen et al. explained the dimension by mentioning its
advantages.

Definition 19 (Relevancy). Relevancy refers to the provision of information which is
in accordance with the task at hand and important to the users’ query.

Metrics. The metrics identified for relevancy are:

– R1: obtaining relevant data by:
• counting the occurrence of relevant terms (keywords) within meta-data at-

tributes (e.g. title, description, subject) [25]
• using a combination of hyperlink analysis and information retrieval methods

such as the vector space model that assigns higher weight to terms (keywords)
that appear within the meta-data attribuftes [25]

• ranking (a numerical value similar to PageRank), which determines the cen-
trality of RDF documents and statements [31])

– R2: measuring the coverage (i.e. number of entities described in a dataset) and
level of detail (i.e. number of properties) in a dataset to ensure that there exists an
appropriate volume of relevant data for a particular task [59]

Example. When a user is looking for flights between any two cities, only relevant infor-
mation i.e. departure and arrival airports and starting and ending time, duration and cost
per person should be provided. Some datasets, in addition to relevant information, also
contain much irrelevant data such as car rental, hotel booking, travel insurance etc. and
as a consequence a lot of irrelevant extra information is provided. Providing irrelevant
data distracts service developers and potentially users and wastes network resources.
Instead, restricting the dataset to only flight related information, simplifies application
development and increases the likelihood to return only relevant results to users.
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Trustworthiness. Trustworthiness is a crucial topic due to the availability and the high
volume of data from varying sources on the Web of Data. Bizer [25] adopted the defi-
nition of trust from Pipino et al. [164] as “the extent to which information is regarded
as true and credible”. Jacobi et al. [94], similar to Pipino et al., referred to trustwor-
thiness as a subjective measure of a user’s belief that the data is “true”. Gil et al. [67]
used reputation of an entity or a dataset either as a result from direct experience or
recommendations from others to establish trust. Additionally, Bizer [25] adopted the
definition of objectivity from Pipino et al. [164] as “the extent to which information is
unbiased, unprejudiced and impartial." Thus, reputation as well as objectivity are part
of the trustworthiness dimension. Other articles [31,66,68,70,71,76,134,184] provide
metrics for assessing trustworthiness.

Definition 20 (Trustworthiness). Trustworthiness is defined as the degree to which the
information is accepted to be correct, true, real and credible.

Metrics. The metrics identified for trustworthiness are:

– T1: computing statement trust values based on:
• provenance information which can be either unknown or a value in the interval

[-1,1] where 1: absolute belief, -1: absolute disbelief and 0: lack of belief/dis-
belief [76]

• opinion-based method, which use trust annotations made by several individu-
als [68,76]

• provenance information and trust annotations in Semantic Web-based social-
networks [70]

– T2: using annotations for data to encode two facets of information:
• blacklists (indicates that the referent data is known to be harmful) [31] and
• authority (a boolean value which uses the Linked Data principles to conserva-

tively determine whether or not information can be trusted) [31]
– T3: using trust ontologies that assigns trust values that can be transferred from

known to unknown data [94] using:
• content-based methods (from content or rules) and
• metadata-based methods (based on reputation assignments, user ratings, and

provenance, rather than the content itself)
– T4: computing trust values between two entities through a path by using:
• a propagation algorithm based on statistical techniques [184]
• in case there are several paths, trust values from all paths are aggregated based

on a weighting mechanism [184]
– T5: computing trustworthiness of the information provider by:
• construction of decision networks informed by provenance graphs [66]
• checking whether the provider/contributor is contained in a list of trusted

providers [25]
• indicating the level of trust for the publisher on a scale of 1 − 9 [67,71]
• no bias or opinion expressed when a data provider interprets or analyses

facts [25]
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– T6: checking content trust66 based on associations (e.g. anything having a relation-
ship to a resource such as author of the dataset) that transfer trust from content to
resources [67]

– T7: assignment of explicit trust ratings to the dataset by humans or analyzing ex-
ternal links or page ranks [134]

Example. In our flight search engine use case, if the flight information is provided
by trusted and well-known airlines then a user is more likely to trust the information
then when it is provided by an unknown travel agency. Generally information about a
product or service (e.g. a flight) can be more trusted, when it is directly published by
the producer or service provider (e.g. the airline). On the other hand, if a user retrieves
information from a previously unknown source, she can decide whether to believe this
information by checking whether the source is well-known or if it is contained in a list
of trusted providers.

Understandability. Bizer [25] adopted the definition of understandability from Pipino
et al. [164] stating that “understandability is the extent to which data is easily compre-
hended by the information consumer”. Flemming [59] related understandability also
to the comprehensibility of data i.e. the ease with which human consumers can under-
stand and utilize the data. Thus, comprehensibility can be interchangeably used with
understandability.

Definition 21 (Understandability). Understandability refers to the ease with which
data can be comprehended without ambiguity and be used by a human information
consumer.

Metrics. The metrics identified for understandability are:

– U1: detection of human-readable labelling of classes, properties and entities as well
as indication of metadata (e.g. name, description, website) of a dataset [59,86]

– U2: detect whether the pattern of the URIs is provided [59]
– U3: detect whether a regular expression that matches the URIs is present [59]
– U4: detect whether examples of SPARQL queries are provided [59]
– U5: checking whether a list of vocabularies used in the dataset is provided [59]
– U6: checking the effectiveness and the efficiency of the usage of the mailing list

and/or the message boards [59]

Example. Let us assume that a user wants to search for flights between Boston and
San Francisco using our flight search engine. Data related to Boston in the integrated
dataset, for the required flight is represented as follows:

– http://rdf.freebase.com/ns/m.049jnng
– http://rdf.freebase.com/ns/m.043j22x
– “Boston Logan Airport”@en

66 Context trust is a trust judgment on a particular piece of information in a given context [67].

http://rdf.freebase.com/ns/m.049jnng
http://rdf.freebase.com/ns/m.043j22x
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For the first two items no human-readable label is available, therefore the machine is
only able to display the URI as a result of the users query. This does not represent
anything meaningful to the user besides perhaps that the information is from Freebase.
The third entity, however, contains a human-readable label, which the user can easily
understand.

Timeliness. Gamble et al. [66] defined timeliness as “a comparison of the date the
annotation was updated with the consumer’s requirement”. The timeliness dimension
is motivated by the fact that it is possible to have current data that is actually useless
because it reflects a too old state of the real world for a specific usage. According to the
timeliness dimension, data should ideally be recorded and reported as frequently as the
source values change and thus never become outdated.

Definition 22. Timeliness measures how up-to-date data is relative to a specific task.

Metrics. The metrics identified for timeliness are:

– TI1: detecting freshness of datasets based on currency and volatility using the for-
mula:
max{0, 1−currency/volatility} [77], which gives a value in a continuous scale from
0 to 1, where data with 1 is timely and 0 is unacceptable. In the formula, volatility
is the length of time the data remains valid [64] and currency is the age of the data
when delivered to the user [134,176].

– TI2: detecting freshness of datasets based on their data source by measuring the
distance between last modified time of the data source and last modified time of the
dataset [64,135]

Measuring currency of arbitrary documents or statements in LD presents several chal-
lenges: (i) it is unlikely that temporal metadata (e.g., the last modification date) are
associated with statements; (ii) temporal metadata are not always available and (iii)
LD is characterized by autonomous providers which use different vocabularies and dif-
ferent patterns for representing temporal metadata. In a recent study [175], the authors
described the approaches used for representing temporal metadata associated with state-
ments or documents and also showed the scarce availability of temporal metadata which
impact the assessment of currency.

Example. Consider a user checking the flight timetable for her flight from a city A to
a city B. Suppose that the result is a list of triples comprising of the description of the
resource A such as the connecting airports, the time of arrival, the terminal, the gate, etc.
This flight timetable is updated every 10 minutes (volatility). Assume there is a change
of the flight departure time, specifically a delay of one hour. However, this information
is communicated to the control room with a slight delay. They update this information
in the system after 30 minutes. Thus, the timeliness constraint of updating the timetable
within 10 minutes is not satisfied which renders the information out-of-date.

Intra-relations. Data is of high relevance if data is current for the user needs. The
timeliness of information thus influences its relevancy. On the other hand, if a dataset
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has current information, it is considered to be trustworthy. Moreover, to allow users
to properly understand information in a dataset, a system should be able to provide
sufficient relevant information.

7.6 Representational Dimensions

Representational dimensions capture aspects related to the design of the data such as the
representational-conciseness, interoperability, interpretability as well as the versatility.

Representational-conciseness. Bizer [25], adopted the definition of representational-
conciseness from Pipino et al. [164] as “the extent to which information is compactly
represented”. This is the only article that describes this dimension (from the core set of
articles included in this survey).

Definition 23 (Representational-conciseness). Representational-conciseness refers
to the representation of the data which is compact and well formatted on the one hand
and clear and complete on the other hand.

Metrics. The metrics identified for representational-conciseness are:

– RC1: detection of long URIs or those that contain query parameters [86]
– RC2: detection of RDF primitives i.e. RDF reification, RDF containers and RDF

collections [86]

Example. Our flight search engine represents the URIs for the destination compactly
with the use of the airport codes. For example, LEJ is the airport code for Leipzig,
therefore the URI is http://airlines.org/LEJ. This short representation of URIs
helps users share and memorize them easily.

Interoperability. Bizer [25] adopted the definition of representational-consistency
from Pipino et al. [164] as “the extent to which information is represented in the same
format”. We use the term “interoperability” for this dimension. In addition, the defini-
tion of “uniformity”, which refers to the re-use of established formats to represent data
as described by Flemming [59], can be associated to the interoperability of the dataset.
Additionally, as stated in Hogan et al. [86], the re-use of well-known terms to describe
resources in a uniform manner increases the interoperability of data published in this
manner and contributes towards the interoperability of the entire dataset.

Definition 24 (Interoperability). Interoperability is the degree to which the format
and structure of the information conforms to previously returned information as well as
data from other sources.

Metrics. The metrics identified for interoperability are:

– IO1: detection of whether existing terms from all relevant vocabularies for that
particular domain have been reused [86]

– IO2: usage of relevant vocabularies for that particular domain [59]

http://airlines.org/LEJ
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Example. Let us consider different airline datasets using different notations for rep-
resenting temporal data, e.g. one dataset uses the time ontology while another dataset
uses XSD notations. This makes querying the integrated dataset difficult as it requires
users to understand the various heterogeneous schema. Additionally, with the differ-
ence in the vocabularies used to represent the same concept (in this case time), the
consumers are faced with problem of how the data can be interpreted and displayed. In
order to avoid these interoperability issues, we provide data based on the Linked Data
principles, which are designed to support heterogeneous description models necessary
to handle different formats of data.

Interpretability. Bizer [25] adopted the definition of interpretability from Pipino et
al. [164] as the “extent to which information is in appropriate languages, symbols and
units and the definitions are clear”. This is the only article that describes this dimension
(from the core set of articles included in this survey).

Definition 25 (Interpretability). Interpretability refers to technical aspects of the
data, that is, whether information is represented using an appropriate notation and
whether the machine is able to process the data.

Metrics. The metrics identified for interpretability are:

– IN1: identifying objects and terms used to define these objects with globally unique
identifiers67 [25]

– IN2: detecting the use of appropriate language, symbols, units, datatypes and clear
definitions [25,164,59]

– IN3: detection of invalid usage of undefined classes and properties (i.e. those with-
out any formal definition) [85]

– IN4: detecting the use of blank nodes68 [86]

Example. Consider our flight search engine and a user that is looking for a flight from
Mumbai to Boston with a two day stop-over in Berlin. The user specifies the dates
correctly. However, since the flights are operated by different airlines, thus different
datasets, they have a different way of representing the date. In the first leg of the trip,
the date is represented in the format dd/mm/yyyy whereas in the other case, date is
represented as mm/dd/yy. Thus, the machine is unable to correctly interpret the data
and cannot provide an optimal result for this query. This lack of consensus in the format
of the date hinders the ability of the machine to interpret the data and thus provide the
appropriate flights.

Versatility. Flemming [59] defined versatility as the “alternative representations of the
data and its handling.” This is the only article that describes this dimension (from the
core set of articles included in this survey).

Definition 26 (Versatility). Versatility refers to the availability of the data in an inter-
nationalized way and alternative representations of data.

67 www.w3.org/TR/webarch/
68 Blank nodes are not recommended since they cannot be externally referenced.

www.w3.org/TR/webarch/
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Metrics. The metrics identified for versatility are:

– V1: checking whether data is available in different serialization formats [59]
– V2: checking whether data is available in different languages [14,59,104]

Example. Consider a user who does not understand English but only Spanish and wants
to use our flight search engine. In order to cater to the needs of such a user, the dataset
should provide labels and other language-dependent information in Spanish so that any
user has the capability to understand it.

Intra-relations. The dimensions in this group are related as follows: Interpretability
is related to the the interoperability of data since the consistent representation (e.g.
re-use of established vocabularies) ensures that a system will be able to interpret the
data correctly [49]. Versatility is also related to the interpretability of a dataset as the
more versatile forms a dataset is represented in (e.g. in different languages), the more
interpretable a dataset is. Additionally, concise representation of the data allows the data
to be interpreted correctly.

7.7 Data Quality Assessment Frameworks

In Table 9, we compare the tools proposed by eight of the 21 core articles, identified in
the survey, based on eight different attributes. These tools implement the methodologies
and metrics defined in the respective approaches.

Table 9. Comparison of quality assessment tools according to several attributes

Trellis, Gil
et al., 2002

TrustBot,
Golbeck et
al., 2003

tSPARQL,
Hartig,
2008

WIQA, Bizer
et al., 2009

ProLOD,
Böhm et al.,
2010

Flemming,
2010

LinkQA,
Gueret et al.,
2012

Sieve,
Mendes
et al.,
2012

Accessibility/
Availability

− − ✔ − − ✔ ✔ ✔

Licensing Open-
source

− GPL v3 Apache v2 − − Open-source Apache

Automation Semi-
automated

Semi-
automated

Semi-
automated

Semi-
automated

Semi-
automated

Semi-
automated

Automated Semi-
automated

Collaboration Allows
users to add
observa-
tions and
conclusions

No No No No No No No

Customizability✔ ✔ ✔ ✔ ✔ ✔ No ✔

Scalability − No Yes − − No Yes Yes
Usability/
Documenta-
tion

2 4 4 2 2 3 2 4

Maintenance
(Last up-
dated)

2005 2003 2012 2006 2010 2010 2011 2012

Accessibility/Availability. In Table 9, only the tools marked with a tick are available to
be used for quality assessment. The other tools are either available only as a demo or
screencast (Trellis, ProLOD) or not available at all (TrustBot, WIQA).



Introduction to Linked Data and Its Lifecycle on the Web 85

Licensing. Each of the tools is available using a particular software license, which spec-
ifies the restrictions with which it can be redistributed. The Trellis and LinkQA tools
are open-source and as such by default they are protected by copyright which is All
Rights Reserved. Also, WIQA and Sieve are both available with open-source license:
the Apache Version 2.069 and Apache licenses respectively. tSPARQL is distributed un-
der the GPL v3 license70. However, no licensing information is available for TrustBot,
ProLOD and Flemming’s tool.

Automation. The automation of a system is the ability to automatically perform its in-
tended tasks thereby reducing the need for human intervention. In this context, we clas-
sify the eight tools into semi-automated and automated approaches. As seen in Table 9,
all the tools are semi-automated except for LinkQA, which is completely automated as
there is no user involvement. LinkQA automatically selects a set of resources, informa-
tion from the Web of Data (i.e. SPARQL endpoints and/or dereferencable resources)
and a set of new triples as input and generates the respective quality assessment reports.

On the other hand, the WIQA and Sieve tools require a high degree of user involve-
ment. Specifically in Sieve, the definition of metrics has to be done by creating an XML
file which contains specific configurations for a quality assessment task. Although it
gives the users the flexibility of tweaking the tool to match their needs, it requires much
time for understanding the required XML file structure and specification. The other
semi-automated tools, Trellis, TrurstBot, tSPARQL, ProLOD and Flemming’s tool re-
quire a minimum amount of user involvement. For example, Flemming’s Data Quality
Assessment Tool requires the user to answer a few questions regarding the dataset (e.g.
existence of a human-readable license) or they have to assign weights to each of the
pre-defined data quality metrics.

Collaboration. Collaboration is the ability of a system to support co-operation between
different users of the system. None of the tools, except Trellis, support collaboration
between different users of the tool. The Trellis user interface allows several users to
express their trust value for a data source. The tool allows several users to add and store
their observations and conclusions. Decisions made by users on a particular source are
stored as annotations, which can be used to analyze conflicting information or handle
incomplete information.

Customizability. Customizability is the ability of a system to be configured according
to the users’ needs and preferences. In this case, we measure the customizability of a
tool based on whether the tool can be used with any dataset that the user is interested
in. Only LinkQA cannot be customized since the user cannot add any dataset of her
choice. The other seven tools can be customized according to the use case. For example,
in TrustBot, an IRC bot that makes trust recommendations to users (based on the trust
network it builds), the users have the flexibility to submit their own URIs to the bot at
any time while incorporating the data into a graph. Similarly, Trellis, tSPARQL, WIQA,
ProLOD, Flemming’s tool and Sieve can be used with any dataset.

69 http://www.apache.org/licenses/LICENSE-2.0
70 http://www.gnu.org/licenses/gpl-3.0.html

http://www.apache.org/licenses/LICENSE-2.0
http://www.gnu.org/licenses/gpl-3.0.html


86 A.-C. Ngonga Ngomo et al.

Scalability. Scalability is the ability of a system, network, or process to handle a growing
amount of work or its ability to be enlarged to accommodate that growth. Out of the
eight tools only three, the tSPARQL, LinkQA and Sieve, tools are scalable, that is,
they can be used with large datasets. Flemming’s tool and TrustBot are reportedly not
scalable for large datasets [71,59]. Flemming’s tool, on the one hand, performs analysis
based on a sample of three entities whereas TrustBot takes as input two email addresses
to calculate the weighted average trust value. Trellis, WIQA and ProLOD do not provide
any information on the scalability.

Usability/Documentation. Usability is the ease of use and learnability of a human-made
object, in this case the quality assessment tool. We assess the usability of the tools
based on the ease of use as well as the complete and precise documentation available
for each of them. We score them based on a scale from 1 (low usability) – 5 (high
usability). TrustBot, tSPARQL and Sieve score high in terms of usability and documen-
tation followed by Flemming’s data quality assessment tool. Trellis, WIQA, ProLOD
and LinkQA rank lower in terms of ease of use since they do not contain useful docu-
mentation of how to use the tool.

Maintenance/Last Updated. While TrustBot, Trellis and WIQA have not been updated
since they were first introduced in 2003, 2005 and 2006 respectively, ProLOD and
Flemming’s tool have been updated in 2010. The recently updated tools are LinkQA
(2011), tSRARQL (2012) and Sieve (2012) and are currently being maintained.

8 Outlook and Future Challenges

Although the different approaches for aspects of the Linked Data life-cycle as presented
in this chapter are already working together, more effort must be done to further inte-
grate them in ways that they mutually fertilize themselves. The discovery of new links
or the authoring of new resource descriptions, for example, should automatically trigger
the enrichment of the linked knowledge bases. The enrichment in turn can trigger the
application of inconsistency detection and repair techniques. This leads to recognizing
data quality problems and their consequent assessment and improvement. The brows-
ing and exploration paths followed by end-users can be taken into account for machine
learning techniques to refine the knowledge bases etc. Ultimately, when the different
aspects of Linked Data management are fully integrated we envision the Web of Data
becoming a washing machine for knowledge. A progress in one particular aspect will
automatically trigger improvements in many other ones as well. In the following we
outline some research challenges and promising research directions regarding some of
the Linked Data management aspects.

Extraction. One promising research direction with regard to the extraction from
unstructured sources is the development of standardized, LOD enabled integration in-
terfaces between existing NLP tools. An open question is whether and how efficient bi-
directional synchronization between extraction source and target knowledge base can
be established. With regard to the extraction from structured sources (e.g. relational,
XML) we need a declarative syntax and semantics for data model transformations.
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Some orthogonal challenges include the use of LOD as background knowledge and
the representation and tracing of provenance information.

Authoring. Current Semantic Wikis still suffer from a lack of scalability. Hence, an
important research and development target are large-scale Semantic Wikis, which in-
clude functionality for access control and provenance. In order to further flexibilize and
simplify the authoring an adaptive choreography of editing widgets based on underly-
ing data structures is needed. Also, the joint authoring of unstructured and structured
sources (i.e. HTML/RDFa authoring) and better support for the integrated semantic an-
notation of other modalities such as images, audio, video is of paramount importance.

Natural Language Queries. One of the future challenges for Linked Data is to create
user interfaces, which are able to hide the complexity of the underlying systems. A
possible path towards this goal is question answering, e.g. converting natural language
queries to SPARQL [193,114]. In order to allow users to interact with such systems,
there is ongoing work on converting the created SPARQL queries back to natural lan-
guage [149] and employ feedback mechanisms [113,83]. Ultimately, a goal is to provide
users enhanced functionality without the need to adapt to different kinds of interface.

Automatic Management of Resources for Linking. With the growth of the Cloud and of
the datasets that need to be interlinked, the use of parallel hardware has been studied
over the last few years [84,151]. The comparative study of parallel hardware for link
discovery yet shows surprising results and suggests that the use of massively parallel
yet local hardware can lead to tremendous runtime improvements. Still, when result
sets go beyond sizes of 1010, the higher amount of resources available on remote de-
vices in the Cloud is still to be used. Devising automatic solutions for selecting the right
hardware to run a linking task is one of the most interesting research areas pertaining
to the efficient execution of link specifications. In addition, developing reduction-ratio
optimal algorithms for spaces other than Minkowski spaces promises to ensure the best
possible use of available hardware. Finally, devising more efficient means to combine
single algorithms is the third open area of research in this domain. The challenges faces
with regard to learning link specifications are also manifold and include devising ap-
proaches that can efficiently detected most informative positive and negative examples
as well even running in a fully unsupervised manner on properties that are not one-to-
one relations.

Linked Data Visualization. The potential of the vast amount of Linked Data on the Web
is enormous but in most cases it is very difficult and cumbersome for users to visualize,
explore and use this data, especially for lay users without experience with Semantic
Web technologies. Visualizations are useful for obtaining an overview of the datasets,
their main types, properties and the relationships between them. Compared to prior in-
formation visualization strategies, we have a unique opportunity on the Data Web. The
unified RDF data model being prevalent on the Data Web enables us to bind data to vi-
sualizations in an unforeseen and dynamic way. An information visualization technique
requires certain data structures to be present. When we can derive and generate these
data structures automatically from reused vocabularies or semantic representations, we
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are able to realize a largely automatic visualization workflow. Ultimately, various visu-
alizations techniques can develop an ecosystem of data extractions and visualizations,
which can be bound together in a dynamic and unforeseen way. This will enable users
to explore datasets even if the publisher of the data does not provide any exploration or
visualization means. Yet, most existing work related to visualizing RDF is focused on
concrete domains and concrete datatypes.

Linked Data Quality. With the amount of Linked Data on the Web growing at an ex-
ponential rate, assessing the quality of the datasets is of utmost importance in order to
ensure reliability of the applications built using that data. However, currently there are
few methodologies in place to perform this assessment. Also, the tools currently avail-
able are either not scalable for large datasets or do not cover all the data quality aspects
for assessing the quality of Linked Data, in particular. Moreover, these tools provide
results that are difficult to interpret, in certain cases do not allow a user to choose the
input dataset or require considerable amount of user involvement. Currently, crowd-
sourcing based approaches for quality assessment are being explored, which prove
to be cost-effective and accurate when used in combination with semi-automated ap-
proaches [210,2]. Thus, one of the main challenges is to device such a methodology
supported by a tool to perform quality assessment for large datasets. Additionally, the
tools should provide features that allow dataset owners to amend the quality aspects that
are detected during the quality assessment.
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Abstract. While the amount of knowledge available as linked data
grows, so does the need for providing end users with access to this
knowledge. Especially question answering systems are receiving much
interest, as they provide intuitive access to data via natural language
and shield end users from technical aspects related to data modelling,
vocabularies and query languages. This tutorial gives an introduction to
the rapidly developing field of question answering over linked data. It
gives an overview of the main challenges involved in the interpretation
of a user’s information need expressed in natural language with respect
to the data that is queried. The paper summarizes the main existing
approaches and systems including available tools and resources, bench-
marks and evaluation campaigns. Finally, it lists the open topics that will
keep question answering over linked data an exciting area of research in
the years to come.

1 Introduction

The amount of structured knowledge available on the web is growing steadily.
The linked data cloud, consisting of a large amount of interlinked RDF (Resource
Description Framework1) datasets, now comprises more than 30 billion RDF
triples2. Knowledge bases such as Freebase3 and DBpedia4 are huge and become
more and more popular for various applications. Structured data is by now also
collected and exploited by search engines such as Google, e.g. in the form of
knowledge graphs5 that are used to enhance search results.

As the amount of available structured knowledge keeps growing, intuitive and
effective paradigms for accessing and querying this knowledge become more and
more important. Over the past years, there has been a growing amount of re-
search on interaction paradigms that allow end users to profit from the expressive
power of Semantic Web standards while at the same time hiding their complexity
behind an intuitive and easy-to-use interface. Especially natural language inter-
faces such as question answering systems have received wide attention [30], as
1 http://www.w3.org/TR/rdf-primer/
2 http://www4.wiwiss.fu-berlin.de/lodcloud/state/
3 http://www.freebase.com/
4 http://dbpedia.org/
5 http://www.google.com/insidesearch/features/search/knowledge.html
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they allow users to express arbitrarily complex information needs in an intuitive
fashion and, at least in principle, in their own language. In contrast to tradi-
tional search engines, question answering systems allow users to pose a (possibly
complex) full fledged question, instead of merely a list of keywords, and return
precise answers, instead of documents in which the answer can be potentially
found. Prominent examples of question answering systems are Wolfram Alpha6

and IBM’s Watson7, which won the game show Jeopardy! in 2011 against two
of the best human players.

Originally, question answering had a strong focus on textual data sources to
find answers, relying mostly on information retrieval techniques. In the early
70’s, question answering then started to incorporate structured data, developing
natural language interfaces to databases [1]. Nowadays, with the growing amount
of knowledge in the linked open data cloud, interest in question answering over
structured data is quickly regaining interest.

The key challenge for question answering over linked data is to translate the
users’ information needs into a form such that they can be evaluated using
standard Semantic Web query processing and inferencing techniques. Over the
past years, a range of approaches have been developed to address this challenge,
showing significant advances towards answering natural language questions with
respect to large, heterogeneous sets of structured data. In this tutorial, we give
an introduction to this exciting, growing field of research.

We start with an overview of the challenges involved in answering questions
over linked data in Section 2. Then, Section 3 provides the anatomy of a typi-
cal question answering system over linked data, presenting the components that
most systems implement in one way or another. Equipped with this general ar-
chitecture, Section 4 summarizes some of the prominent approaches to question
answering over linked data, describing existing systems that are representative
for these approaches in more detail. In Section 5 we then list tools and resources
that proved useful for question answering over linked data and that can get you
started in building your own system. Next, Section 6 mentions measures for eval-
uating question answering systems and points to some important benchmarking
campaigns. Finally, Section 7 reviews the open topics and challenges for future
research.

Throughout the tutorial we assume that you have a working knowledge of
RDF and its query language SPARQL. For an introduction or refresher, we rec-
ommend the W3C primers http://www.w3.org/TR/rdf11-primer/ and
http://www.w3.org/TR/rdf-sparql-query/.

2 Main Challenges

If a common web end user wanted to access information in the linked data cloud,
he would face two obstacles. First, the amount of available datasets is huge and
it is by no means trivial to identify and find those datasets that contain the
6 https://www.wolframalpha.com/
7 http://researcher.ibm.com/researcher/view_project.php?id=2099
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information he is looking for. Second, once he found a relevant dataset, he would
need to formulate a query that retrieves the information, e.g. in SPARQL8, the
standard query language for RDF data. To this end, he needs to speak SPARQL
and he needs to know the vocabulary and schema underlying the dataset he
wants to query.

Since the common web user is usually not familiar with Semantic Web lan-
guages or the structure of the linked data cloud and the available datasets,
question answering systems aim to bridge the gap between the user and the
(structure of the) data, by translating between an information need expressed
in natural language on the one hand side and structured queries and answers
on the other hand side. In the following, we describe the major challenges in
doing so.

2.1 Bridging the Gap between Natural Language and Linked Data

The major task for question answering systems is to interpret the user’s informa-
tion need expressed in natural language with respect to the data that is queried.
Consider a simple example: With respect to DBpedia, the question 1a can be
expressed by means of the SPARQL query 1b:9

1. (a) What is the currency of the Czech Republic?

(b) SELECT DISTINCT ?uri
WHERE {

res: Czech_Republic dbo:currency ?uri .
}

In order to get from the question to the query, we need to know that the name
the Czech Republic corresponds to the resource res:Czech_Republic, that the
expression currency corresponds to the property dbo:currency, and we need to
know the structure of the query, i.e. that the entity res:Czech_Republic is the
subject of the property and that the object is to be returned as answer.

While constructing the SPARQL query from the question is (relatively)
straightforward in this particular example, very often the process is much more
involved. In most cases it involves two challenges: mapping natural language ex-
pressions to the vocabulary elements used by the data, accounting for lexical and
structural mismatches in doing so, and handling meaning variations introduced
by ambiguous and vague expressions, anaphoric expressions, and so on. Let us
look at both challenges in turn.

Mapping Natural Language Expressions to Vocabulary Elements. URIs
are language-independent identifiers. Although they usually bear mnemonic
8 http://www.w3.org/TR/rdf-sparql-query/
9 Throughout the tutorial, we will use the following prefixes: dbo for
http://dbpedia.org/ontology/, dbp for http://dbpedia.org/property/, and res
for http://dbpedia.org/resource/

http://www.w3.org/TR/rdf-sparql-query/
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names, their only actual connection to natural language is by the labels that
are attached to them. These labels often provide a canonical way to refer to the
URI, but usually do not account for lexical variation. The class dbo:Film, for
example, has the English label film but does not capture other variants such as
movie. Similarly, the property dbo:spouse bears the English label spouse, while
natural language knows a wide varierty of ways of expressing this relationship,
among them wife of, husband of, and to be married to, which are more likely to
occur in a user question than the somehwat more formal term spouse.

So although the vocabulary of natural language and the vocabulary used by
the data overlap, the expressions a user uses often differ from the labels attached
to the data. Bridging the resulting lexical gap is thus one of the challenges that a
question answering system needs to address. The following example 2 illustrates
vocabulary similarities and differences.

2. (a) Which Greek cities have more than 1 million inhabitants?

(b) SELECT DISTINCT ?uri
WHERE {

?uri rdf:type dbo:City .
?uri dbo:country res:Greece .
?uri dbo:populationTotal ?p .
FILTER (?p > 1000000)

}

It is more or less straightforward to match the expression cities to the class
dbo:City having the label city. Less straightforward is matching have inhabitants
to the property populationTotal; here the similarity between both exists only
on the semantic level but not on the string level. Furthermore, Greek needs to be
matched with the property dbo:country with fixed object Greece. This already
points to another difficulty: differences in the structure of the question and the
query.

Structural differences are due to the fact that the conceptual granularity of
language does often not coincide with that of the schema underlying a particular
dataset. On the one hand side it can be that natural language is more granular
than the data, as in the following example 3, where the structure of the natural
language questions suggests a relation join that relates two entities, Germany and
the EU, while the required property is dbp:accessioneudate, relating a country
to the date when it joined the EU.

3. (a) When did Germany join the EU?

(b) SELECT DISTINCT ?date
WHERE {

res: Germany dbp: accessioneudate ?date .
}

On the other hand side it can be that the data is more granular than natural
language. In the following example 4, there is one natural language expressions
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great-grandchildren that corresponds to a property chain consisting of three times
the property dbo:child.

4. (a) Who are the great-grandchildren of Bruce Lee?

(b) SELECT DISTINCT ?uri
WHERE {

res: Bruce_Lee dbo:child ?c1 .
?c1 dbo:child ?c2 .
?c2 dbo:child ?uri .

}

In addition to mapping natural language expressions to vocabulary elements
underlying a particular dataset, there are expressions that do not correspond to
any vocabulary element but rather have a fixed, dataset-independent meaning.
Examples are quantifiers like the most (see example 5), comparative expressions
like more than (see example 6) and less than, cardinals and superlatives (see
example 7). These expressions correspond to aggregation operations in SPARQL,
such as filtering, ordering and limits.

5. (a) Who produced the most films?

(b) SELECT DISTINCT ?uri
WHERE {

?x rdf:type dbo:Film .
?x dbo:producer ?uri .

}
ORDER BY DESC (COUNT(?x))
LIMIT 1

6. (a) Which cities have more than three universities?

(b) SELECT DISTINCT ?uri
WHERE {

?x rdf:type dbo:University .
?x dbo:city ?uri .

}
HAVING (COUNT(?x) > 3)

7. (a) What is the second highest mountain on Earth?

(b) SELECT DISTINCT ?uri
WHERE {

?uri rdf:type dbo:Mountain .
?uri dbo:elevation ?x .

}
ORDER BY DESC (?x)
OFFSET 1 LIMIT 1

Meaning Variation. Question answering systems involve processing natural
language and thus inherit the challenges involved in processing natural language
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in general. On of these challenges is dealing with ambiguities. Ambiguity covers
all cases in which a natural language expression can have more than one meaning,
in our case can map to more than one vocabulary element in the target dataset.
For instance, different vocabularies usually offer different ways of answering an
information need. In 8, having adopted the Euro can be expressed either by
means of the property dbo:currency with the object resource res:Euro, or by
means of the property dbp:currency with the object literal ’EUR’. In this case,
both mappings are appropriate; we thus constructed a query taking the union
of the results of both mappings.

8. (a) Which countries adopted the Euro?

(b) SELECT DISTINCT ?uri
WHERE {

?uri rdf:type dbo:Country .
{ ?uri dbo:currency res:Euro . }
UNION
{ ?uri dbp:currencyCode ’EUR ’@en . }

}

In other cases only one mapping is appropriate, often depending on the con-
text. For example, to retrieve the mayor of a city from DBpedia, the correspond-
ing property is dbo:mayor in the case of Lyon, dbo:leader in the case of Berlin,
and dbo:leaderName in the case of Tel Aviv.

A more extreme form of ambiguity arises from semantically light expressions,
such as the verbs to be and to have, and prepositions like of, with, etc. What
vocabulary element they need to be mapped to strongly depends on the lin-
guistic context they occur in. Consider the verb to have. In 9, have corresponds
to the property dbo:exhibits, while in 10, have corresponds to the property
dbo:location. The only difference between both questions is that the former is
about museums and painting, and the latter is about countries and caves.

9. (a) Which museum has the most paintings?

(b) SELECT DISTINCT ?uri
WHERE {

?uri rdf:type dbo:Museum .
?x rdf:type dbo:Painting .
?uri dbo:exhibits ?x .

}
ORDER BY DESC (COUNT(?x))
LIMIT 1

10. (a) Which country has the most caves?

(b) SELECT DISTINCT ?uri
WHERE {

?uri rdf:type dbo:Country .
?x rdf:type dbo:Cave .
?x dbo:location ?uri .
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}
ORDER BY DESC (COUNT(?x))
LIMIT 1

Of course, semantically light expressions can in one context also be mapped
to different vocabulary elements, as the preposition in in the following example.

11. (a) Give me all companies in Munich.

(b) SELECT DISTINCT ?uri
WHERE {

?uri rdf:type dbo:Company .
{ ?uri dbo:location res:Munich . }
UNION
{ ?uri dbo:headquarter res:Munich . }
UNION
{ ?uri dbo:locationCity res:Munich . }

}

2.2 Multilinguality

Multilinguality has become an issue of major interest for the Semantic Web com-
munity, as both the number of actors creating and publishing data in languages
other than English, as well as the amount of users that access this data and speak
native languages other than English is growing substantially. In order to achieve
the goal that users from all countries have access to the same information, there
is an impending need for systems that can help in overcoming language barri-
ers by facilitating multilingual access to semantic data originally produced for a
different culture and language.

In principle, the Semantic Web is very well suited for multilinguality, as URIs
are language-independent identifiers. However, in order to access and use these
identifiers in different language contexts, it is important to have labels in these
languages. But adding multilingual labels is not common practice. A recent
study [21] has shown that the majority of datasets is monolingual: Less than a
quarter of the RDF literals have language tags, and most of those tags are in
English.

In the context of question answering over linked data, a challenge is to inter-
pret questions in multiple languages. For example, all the questions in 12 taken
from the QALD-4 benchmarking dataset express the same information need and
thus should be mapped to the same SPARQL query 13.

12. – English: Which German cities have more than 250000 inhabitants?
– German: Welche deutschen Städte haben mehr als 250000 Einwohner?
– Spanish: ¿Qué ciudades alemanas tienen más de 250000 habitantes?
– Italian: Quali città tedesche hanno più di 250000 abitanti?
– French: Quelles villes allemandes ont plus de 250000 habitants?
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– Dutch: Welke Duitse steden hebben meer dan 250000 inwoners?
– Romanian: Ce oraşe germane au mai mult de 250000 de locuitori?

13. PREFIX dbo: <http :// dbpedia .org/ontology />
PREFIX res: <http :// dbpedia .org/resource />
PREFIX rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#>
SELECT DISTINCT ?uri
WHERE {

{ ?uri rdf:type dbo:City . }
UNION
{ ?uri rdf:type dbo:Town . }

?uri dbo:country res:Germany .
?uri dbo:populationTotal ?population .
FILTER ( ?population > 250000 ) }

2.3 Data Quality and Data Heterogeneity

Strong requirements on question answering systems are completeness and accu-
racy (wrong answers are often worse than no answers). In the context of linked
data, this especially requires a system to deal with heterogeneous and imperfect
data. First of all, the knowledge available on the linked data cloud is incom-
plete, so question answering systems should be able to detect when the queried
data sources do not contain the answer. Second, the datasets sometimes contain
duplicate information, with different datasets using different vocabularies even
when talking about the same things. Possibly, datasets also contain conflicting
information and inconsistencies, which have to be dealt with.

2.4 Performance and Scalability

The temporal performance of question answering systems over linked data is
rarely reported in the literature. In [28], FREyA is reported to require 36 seconds
on average to answer questions over DBpedia, while Aqualog reports an average
of 20 seconds on the same dataset, and these are figures for one dataset only.
This shows that yielding performant systems that provide timely answers is
challenging. The challenge here is to cope with large datasets comprising billions
of triples. Performance in real time, which we regard as processing a question
in under a second, can only be obtained by using appropriate index structures,
search heuristics and possibly adopting distributed computing principles. Also,
systems are often considered scalable only if the response time is not proportional
to the size of data being accessed.

2.5 Coping with Distributed and Linked Datasets

Only few systems yet address the fact that the structured data available nowa-
days is distributed among a large collection of interconnected datasets, and that
answers to questions can often only be provided if information from several
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sources are combined. In fact, the issue of how to evaluate natural language
questions of distributed but linked datasets has not been investigated extensively
yet. Exceptions are PowerAqua (see Section 4.1) and the system by Ngonga et
al. [34], which builds on federation and attempts to decompose a question into
several parts that can be answered with respect to different datasets.

Consider the example query What are side effects of drugs used for the treat-
ment of Tuberculosis? (taken in modified form from [34]), which can be answered
using three different (linked) datasets, i.e. the Sider dataset10 (containing infor-
mation about drugs and their side effects), the Diseasome dataset11 (containing
information about diseases and genes associated with these diseases) and Drug-
bank 12 (containing comprehensive knowledge base containing information about
drugs, drug target (i.e. protein) information, interactions and enzymes, etc.).

2.6 Integrating Structured and Unstructured Data

In addition, a lot of information is still available only in textual form, both on
the web and in the form of labels and abstracts in linked data sources. Therefore
approaches are needed that can not only deal with the specific character of
structured data but also with finding information in several sources, processing
both structured and unstructured information, and combining such gathered
information into one answer.

An example for a question requiring both structured and unstructured data
when being answered over DBpedia is the following one. Here, the information
that needs to be extracted from free text is marked by the prefix text.

14. (a) Where did the first man in space die?

(b) SELECT DISTINCT ?uri
WHERE {

?x text :"is" text :"first man in space" .
?x dbo:deathPlace ?uri .

}

Identifying the person that was the first man in space is possible only by means
of the free text abstract, while his death place is encoded only in the RDF data.

Approaches that exploit both structured and unstructured data are very rare
so far. A notable exception is the system by Fader et al. [14].

3 The Anatomy of a Question Answering System

All approaches to question answering over linked data share the challenges men-
tioned in the previous section, and most of the systems rely on the same kind of

10 http://sideeffects.embl.de/
11 http://diseasome.kobic.re.kr/
12 http://www.drugbank.ca/

http://sideeffects.embl.de/
http://diseasome.kobic.re.kr/
http://www.drugbank.ca/
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components to address them, although they often differ in their particular im-
plementation. This section introduces the subtasks involved in the overall task
of answering questions, and then presents the general architecture of a proto-
typical question answering system over linked data, explaining the components
that most existing systems employ.

3.1 Dimensions of Question Answering

Question answering is a complex and multi-dimensional task. Categorizing the
different dimensions of question answering is fundamental for understanding the
different phenomena and challenges involved in a question answering task. Ad-
ditionally, the categorization helps in the definition of the scope of a question
answering system and to set up a proper evaluation. This section describes the
most important dimensions involved in question answering and their associated
elements, including types of questions and answers, data source types, and key
functionalities.

Question and Answer Type. Question classification is often done based on
a categorization of the answers that are expected, based either on their form
or their type. Classifying questions with respect to the answer form results in a
question taxonomy roughly along the following lines:

– Factoid questions, including
Predicative questions, e.g.

Who was the first man in space?
What is the highest mountain in Korea?
How far is it from Earth to Mars?
When did the Jurassic Period end?
Where is Taj Mahal?

List questions, e.g.
Give me all cities in Germany.

Yes/No questions, e.g.
Was Margaret Thatcher a chemist?

– Definition questions, e.g.
Who was Tom Jobim?

– Evaluative or comparative questions, e.g.
What is the difference between impressionism and expressionism?

– Association questions, e.g.
What is the connection between Barack Obama and Indonesia?

– Explanation/Justification questions, e.g.
Why did the revenue of IBM drop?

– Process questions, e.g.
How do I make a cheese cake?

– Opinion question, e.g.
What do most Americans think of gun control?
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Question answering systems often focus on factoid and definition questions.
In the context of the linked data cloud this is mainly due to this being the kind
of information represented in the available datasets.

Classifying questions with respect to the type of the expected answer leads to
answer taxonomies such as the one proposed by Li & Roth [26]. The following
list gives their five high-level categories together with examples of the more
fine-grained subcategories:

– Abbreviation
– Entity: event, color, animal, plant,. . .
– Description: definition, manner, reason,. . .
– Human: group, individual,. . .
– Location: city, country, mountain,. . .
– Numeric: count, date, distance, size,. . .

In addition to the form or type of answer, a more fine-grained question clas-
sification is possible by means of question focus and topic, representing what
the question is about. For example, in the question What is the height of Mount
Everest?, the focus is the property height, and the topic is, more generally, geog-
raphy. In the question What is the best height increasing drug?, the focus looks
similar, while the topic is medicine.

Data Sources. Question answering systems differ with respect to the data
source(s) they are able to process to derive an answer. On the one hand side,
they usually consume a specific type of data:

– Structured data, e.g. relational databases and linked data
– Semi-structured data, e.g. XML documents
– Unstructured data, e.g. text documents

Hybrid question answering systems are able to process a combination of two or
more of the types of data mentioned above.

On the other hand side, question answering systems differ with respect to the
number of data sources they consider:

– a single dataset
– an enumerated list of multiple, distributed datasets
– all datasets available on a large scale, i.e. considering all datasets of a certain

kind (e.g. structured or text) available on the web or in the linked data cloud

Furthermore, a question answering system can be either domain-specific, ad-
dressing very specific knowledge in a particular domain, e.g. the biomedical or
financial domain, or open-domain, addressing general knowledge, especially en-
cylopaedic knowledge, common-sense knowledge, news or trivia.

Finally, the modality of the data that is considered is often text or structured
knowledge, but can also include other modalities such as images, sound, and
video.
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Complexity of the Question Answering Task. The complextiy of the ques-
tion answering task can be classified according to different dimensions involved
in interpreting the question and processing the data, such as the following ones:

– Semantic tractability [32], specifying the closeness between the natural lan-
guage question and the formal query or answer in terms of lexical and struc-
tural similarity

– Semantic complexity, comprising the level of complexity of the domain, the
amount of ambiguity and vagueness in the question, as well as data hetero-
geneity

– Answer locality, specifying whether the answer is wholly contained in one
dataset, or snippets from which the answer can be composed are distributed
across different datasets

– Derivability, specifying whether the answer is explicit or implicit, in the latter
case, e.g., requiring additional reasoning

3.2 Components of a Question Answering System

Despite the architectural particularities of different question answering systems,
there are high-level functionalities and components which are present in most of
them. These components are depicted in Figure 1 and described in the following.

Fig. 1. High-level components of question answering systems over linked data
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Data Preprocessing: Preprocessing the information present in a dataset helps
to reduce the runtime of a system. For example, systems often rely on an index
of the dataset in order to match natural language expressions with labels of
vocabulary elements. This also speeds up processing.

Question Analysis: The first step of a question answering system often con-
sists in the linguistic analysis of the question, as well as the detection and ex-
traction of question features. The linguistic analysis can involve both a syntactic
and a semantic analysis, commonly relying on tools such as part-of-speech tag-
gers and parsers, on resources such as dictionaries, e.g. WordNet or Wiktionary,
and possibly some logical representation formalism to capture the meaning of
a question. It also involves steps like Named Entity Recognition. In addition,
a question can be analysed with respect to the categories mentioned above, in
particular detecting the question type, the focus and the expected answer type.

Data Matching: In order to deal with the lexical and structural differences
between the question vocabulary and the dataset elements, a component is re-
quired that matches question terms with the dataset terminology. It can range
from simple term look-up to more sophisticated semantic matching strategies.

Query Construction: Based on the results of the first two components, the
input question is transformed into a structured query.

Scoring: Usually, both the data matching and the query construction compo-
nents output several candidates that need to be scored and ranked. Criteria for
scoring can include different similarity measures (e.g. string similarity and se-
mantic relatedness), popularity of data elements (e.g. based on their frequency),
and coherence of the candidates and their combinations with the data schema.

Answer Retrieval and Assessment: Next, the constructed structured query
needs to be executed over the database, extracting the answer to the input
question. This component possibly also comprises an assessment of the answers,
e.g. checking whether the type of the answer fits the expected answer type.

Especially if several datasets are queried that provide either different parts of
an answer or overlapping and conflicting answers, the scoring and integration of
answers becomes crucial, taking into account information provenance and relia-
bility, i.e. how trust-worthy the source is from which the answer was extracted.

Answer Presentation: Finally, the answer needs to be presented to the user.
Especially for question answering systems over linked data aiming at making
structured data accessible for common end users not familiar with Semantic
Web languages, it is important to not return answers as URIs or triples but in
a more comprehensible format, e.g. in natural language or as a visual graph.
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4 Overview of State-of-the-Art Systems

There is a range of approaches to meeting the challenges we described in Sec-
tion 2. They vary in several aspects, e.g. being domain-specific or schema-
agnostic, relying on a deep linguistic analysis, on statistical methods, or on graph
exploration algorithms, and involving different resources. In general, approaches
to question answering over linked data can be classified into the following types
of systems.

Approaches Based on Controlled Natural Languages. Approaches based
on controlled natural languages, e.g. GiNSENG [3], typically consider a well-
defined restricted subset of natural language that can be unambiguously inter-
preted by a given system.

Approaches Based on Formal Grammars: Systems based on formal gram-
mars, such as ORAKEL and Pythia (see Section 4.2 below), typically rely on
linguistic grammars that assign a syntactic and semantic representation to lex-
ical units, and exploit the principle of compositional semantics to compute an
overall semantic representation of a question by combining the meaning of the
parts as specified in the grammar. The benefit of such systems is that, if the cor-
responding constructs are covered by the grammar, they can deal with questions
of arbitrary complexity. The clear drawback is their brittleness, as they fail if a
certain question can not be parsed by the grammar.

Approaches Based on Mapping Linguistic Structures to Ontology-
Compliant Semantic Structures: Systems such as Aqualog and PowerAqua
(see Section 4.1 below) in contrast adopt a more shallow strategy and try to
directly match linguistic structures to semantic triples. To this end, they rely
on a measure of similarity that determines the similarity between elements in
the query and predicates, subjects or objects in the knowledge base, more or
less aiming at computing a bijective mapping between the elements of the query
and resources or predicates. QAKIS [5], for instance, tries to establish a match
between fragments in the natural language question and textual patterns that
were automatically collected from Wikipedia. Other systems along these lines
are FREyA [10] and Querix [23]. While such approaches are more robust than
approaches based on formal grammars, they suffer from the fact that there needs
to be a one-to-one correspondence between the syntactic structure of the ques-
tion and the semantic representation. An approach aims to remedy this is [40],
which generates relaxed query variants that cover the user question to differ-
ent extents, especially leaving out intractable parts and instead adding them
as textual conditions that are then used in determining mappings from natural
language expressions to URIs and for disambiguation.

Template-Based Approaches. Template-based approaches, such as LODQA
and TBSL (see Section 4.3 below) implement a two-stage process for transforming
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a natural language question into a SPARQL query. First, they construct a tem-
plate (or pseudo-query) on the basis of a linguistic analysis of the input question.
Second, this template is instantiated by matching the natural language expres-
sions occuring in the question with elements form the queried dataset. The main
weakness of such approaches is that often the templates closely correspond to the
linguistic structure of the question, thus failing in cases of structural mismatches
between natural language and the dataset. While structural variations can be in-
cluded in the templates, this usually explodes the number of possible queries to
build and score.

Graph Exploration Approaches. Graph exploration approaches, such as
Treo (see Section 4.4 below), Top-k exploration [35] and the approach by Ngonga
et al. [34], interpret a natural language question by mapping elements of the
question to entities from the knowledge base, and then proceeding from these
pivot elements to navigate the graph, seeking to connect the entities to yield
a connected query. The main bottleneck of graph-based approaches is that an
exhaustive search of the graph is unfeasible, so that approaches typically ex-
plore the graph up to a certain depth or implement some heuristics to make
the search over the graph more efficient. This is particularly relevant when the
data is not available locally but needs to be explored via HTTP-requests, as is
the case for linked data. Treo for example implements a heuristic search over
linked data, relying on spreading activation guided by a measure of semantic
relatedness. Another drawback of graph-based approaches is that more complex
queries involving aggregation, e.g. Which researcher has written the most papers
in the Semantic Web area? cannot be answered as they do not have a one-to-one
correspondence to a path in the graph.

Machine Learning Approaches. A number of recent approaches consider
question answering as a machine learning problem. Examples are [33], who pro-
pose a model for joint query interpretation and response ranking, [2] and [25],
who aim at learning semantic parsers given a knowledge base and a set of ques-
tion/answer pairs, and [6], who combine a standard supervised algorithm for
learning semantic parsers with an algorithm for matching natural language ex-
pressions and ontology concepts, and an algorithm for storing matches in a parse
lexicon.

In the following, we will discuss a subset of the above mentioned systems in
more detail, in particular PowerAqua, one of the first question answering systems
for RDF knowledge bases, our own systems Pythia, TBSL, and Treo, as well as
the DeepQA approach developed by IBM Watson.

4.1 Aqualog and PowerAqua: Querying on a Semantic Web Scale

PowerAqua [27] is a question answering system focusing on querying multi-
ple datasets on the Semantic Web. PowerAqua is an evolution of the AquaLog
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Fig. 2. Architecture of PowerAqua

system [29], one of the first question answering systems targeting Semantic Web
data.

Figure 2 depicts the high-level architecture of the PowerAqua system, de-
scribed in more detail in the following. The first step consists in a linguistic
analysis of the question using GATE13, in order to detect the question type and
to translate the natural language question into a triple-based representation, into
so-called query triples. Here are two examples of question and the corresponding
query triples that are generated:

15. Give me actors starring in movies directed by Clint Eastwood.
– 〈actors, starring,movies〉
– 〈actors/movies, directed,Clint Eastwood〉

16. Find me university cities in Japan.
– 〈university cities, ?, Japan〉

13 https://gate.ac.uk/

https://gate.ac.uk/
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The subject of the second triple in 15, actors/movies, represents an ambiguity
with respect to which of both terms fulfil the role. The property in 16, on the
other hand, is unknown, as it stems from the semantically light preposition in.

The second step then searches for candidate instantiations of the occurring
terms. This involves detecting ontologies on the Semantic Web that are likely
to contain the information requested in the question, and finding vocabulary
elements that match the terms. Matching natural language terms and vocabu-
lary elements relies both on string-based similarity measures, allowing for exact
matches (Japan) and approximate matchings (CountryJapan), and on WordNet
synonyms, hypernyms and hyponyms as well as on owl:sameAs links. Moreover,
this component uses word sense disambiguation techniques to disambiguate dif-
ferent interpretations of the question terms across ontologies. The output is a set
of tables containing matching semantic elements for each term occurring in the
query triples. These mappings can be used to turn query triples into ontology
triples. For example, given the mappings found in DBpedia for the terms in the
first query triple in 15, this triple can be transformed into the following ontology
triples:

– 〈Actor, starring, Film〉
– 〈Actor, starring, American_movie〉
Next, the relation similarity service (RSS) component determines the most

likely interpretation both of the terms in the query triples and the question as a
whole, on the basis of the linguistic analysis of the question and the ontological
context. This can also involve modifying query triples, e.g. by splitting compound
terms. The term university cities, for example, can be split, yielding a new query
triple:

17. 〈cities/universities, ?, Japan〉
Finally, given a ranked list of ontology triples, answers are retrieved from the

involved data sources. Since these can be multiple different sources, this step
also involves identifying semantically equivalent or overlapping information in
the answer set, in order to avoid duplicate results, a ranking of answers, as well
as integrating answer fragments from different sources.

PowerAqua’s main strength is that it locates and integrates information from
different, heterogeneous semantic resources, relying on query disambiguation,
ranking and fusion of answers. Its main weakaness, on the other hand, is that due
to limitations in GATE it cannot cope with aggregation, i.e. questions involving
counting (e.g. how many), comparisons (such as higher than or more than), and
superlatives (such as the highest and the most).

4.2 ORAKEL and Pythia: Ontology-Specific Question Answering

ORAKEL [9] and Pythia [38] are ontology-based question answering systems.
This means that ontologies play a central role in interpreting user questions.
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For example, ontological knowledge is used for drawing inferences, e.g. in or-
der to resolve ambiguities or to interpret semantically light expressions. But
most importantly, user questions are interpreted with respect to an ontology
underlying the dataset that is queried. Unlike systems that first construct gen-
eral, dataset-independent meaning representations (like the triple representa-
tions built by PowerAqua) and only subsequently try to match this with the
target data, ORAKEL and Pythia construct meaning representations whose vo-
cabulary is already aligned to the vocabulary of the ontology. To this end, they
rely on ontology-lexica that make the possible linguistic realizations of ontology
concepts in a particular language explicit, e.g. in lemon [31] format. lemon is a
model for the declarative specification of multilingual, machine-readable lexica
in RDF that capture syntactic and semantic aspects of lexical items relative to
some ontology. The meaning of a lexical item is given by reference to an ontology
element, i.e. a class, property or individual, thereby ensuring a clean separation
between the ontological and lexical layer. Since lemon abstracts from specific
linguistic theories and grammar formalisms, all linguistic categories such as part
of speeches, syntactic roles and frames have to be defined in an external linguistic
ontology, such as LexInfo [8].

Fig. 3. Architecture of ORAKEL and Pythia
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Both ORAKEL and Pythia implement the architecture depicted in Figure 3.
First, the ontology lexicon is used to automatically construct principled linguis-
tic representations. ORAKEL relies on Logical Description Grammars (LDG) as
syntactic formalism and an extended version of lambda calculus for specifying
semantic representations; Pythia builds on Lexicalized Tree Adjoining Gram-
mars [36] (LTAG) as syntactic formalism and Dependency-based Underspecified
Discourse Representation Structures [7] (DUDES) for specifying semantic repre-
sentations. Those linguistic representations – together with domain-independent
representations, e.g. for determiners and auxiliary verbs – constitute the gram-
mar that is used for parsing and interpreting an input question. Syntactic and
semantic analysis work in parallel. In particular, the interpretation process is
compositional, meaning that the semantic representation of the input is recur-
sively computed on the basis of the meaning of the words in the input as well
as the way the words are connected syntactically. Finally, the resulting meaning
representations are transformed into formal queries, in particular F-Logic and
SPARQL queries.

For instance, for the question Which cities have more than three universities?,
the following processing would take place. First of all, ORAKEL and Pythia
require an ontology-lexicon. This lexicon would specify the English lexicalizations
university and alma mater for the ontology class University, the lexicalization
city for the ontology class City, and, for example, the lexicalization located in
for the ontology property city. On the basis of these lexicalization, syntactic
and semantic representations are constructed. Here we only show the ones that
are relevant for the interpretation of the questions:

18. a. 9

��	��������
������������	(x)

b. 9

������
���
��	(x)

The meaning representations can be viewed as first-order logic like representa-
tion. Note that they already use the vocabulary of the ontology.

In addition, the grammar contains entries for domain-independent expres-
sions, in particular which, more than, three, and to have:
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19. a. ��
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n = 3

Tree nodes marked with ↓ constitute so-called substitution nodes, which can be
replaced by a tree having a root node of the specified category. The meaning
representations consist of three parts: a set of variables (where variables marked
with a question mark will be returned by the final SPARQL query), a set of first-
order logic like conditions, and a set of pairs specifying the role that the meaning
contributions of the arguments play (e.g. (x,N) means that the meaning of the
N node will be unified with x). The meaning repesentation of the semantically
light verb to have moreover contains a predicate variable P , which will need to be
resolved with respect to the ontology vocabulary later. Both the lexicon and the
generated domain-specific grammar entries as well as the domain-independent
grammar entries are constructed offline and then used during the run-time of
the systems. Using the trees in 18 and 19 for parsing yields the tree shown in
20a. In parallel to the syntactic analysis, the semantic representations in 18 and
19 are combined into the resulting meaning given in 20b.
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In order to resolve P , the disambiguation and reasoning steps retrieve all those
properties from the ontology that are compatible with domain University and
range City. In the case of DBpedia, these are the properties city, location,
and a few more. At this point, Pythia would assume that all of them are valid
instantiations of P , and it would retrieve answers for all possible interpretations.
So one of the queries resulting from converting the meaning representation of
the question into SPARQL would be the following one:

21. SELECT DISTINCT ?x
WHERE {

?x rdf:type dbo:City .
?y rdf:type dbo:University .
?y dbo:city ?x .

}
GROUP BY ?y
HAVING (COUNT(?y) > 3)

Implementing a principled, deep linguistic analysis allows ORAKEL and
Pythia to construct formal queries even for complex natural language ques-
tions, e.g. involving quantification and superlatives. Moreover, since the resulting
meaning representations are built from atomic building blocks that were gener-
ated from an ontology lexicon, they use a vocabulary that is aligned to the
vocabulary of the ontology. This ensures a precise and correct mapping of natu-
ral language terms to corresponding ontology concepts. The use of an ontology
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lexicon therefore offers a very precise way of matching natural expressions with
ontology concepts.

ORAKEL and Pythia thus are in this sense question answering systems spe-
cific for a given ontology that require an ontology lexicon for the ontology that
models the data that is queried. The bottleneck here consists in the effort re-
quired for building such lexica, either manually or semi-automatically [39]. And
although a grammar-based interpretation process offers high precision, systems
relying on domain grammars usually suffer from limited coverage.

4.3 TBSL and LODQA: Template-Based Question Answering

TBSL [37] and LODQA [24] are template-based approaches that rely on a parse
of the user question to produce a query template. This template mirrors the
linguistic structure of the question and is, in a second step, instantiated by
mapping the occurring natural language expressions to the domain vocabulary.
The main intuition is that the linguistic structure of a question together with
expressions like more than and the most already determine part of the query
that is needed in order to retrieve answers. This part is domain-independent
and provides a skeleton structure of the query that then needs to be filled in
with domain-specific vocabulary elements.

More specifically, TBSL implements the architecture depicted in Figure 4.
For linguistic analysis, TBSL relies on a parsing and interpretation step just
like Pythia (described above). The only difference is that no domain-specific
lexicon is required. Instead, the input question is first processed by a part-
of-speech tagger. The resulting part-of-speech tags are used to create general
linguistic representations on the fly. These representations are underspecified in
the sense that their meaning with respect to the queried data is still unknown.
Like in the case of Pythia, these representations are, together with pre-defined
domain-independent representations, used for parsing, which leads to an under-
specified semantic representation of the natural language question (still without
specific domain vocabulary elements) that is then converted into a SPARQL
query template. This conversion relies on heuristic rules specifying that verbs
usually correspond to properties, that nouns and adjectives correspond to classes
or properties, and that proper names correspond to resources.

The query templates that TBSL builds for the question Who produced the
most films, for example, are given in 22. They consist of a SPARQL query con-
taining slots for all missing elements that need to be filled based on the domain
vocabulary. The slots contain information about the type of missing element
(class, property or resource) and the natural language expressions it should cor-
respond to. The latter are the words that are contained in the input question
together with synonyms retrieved from WordNet.

22. (a) SELECT DISTINCT ?x
WHERE {

?y rdf:type ?c .
?y ?p ?x .
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Fig. 4. Architecture of TBSL

}
ORDER BY DESC (COUNT(?y))
LIMIT 1

– (?c,Class,[films])
– (?p,Property,[produced])

SELECT DISTINCT ?x
WHERE {

?x ?p ?y .
}
ORDER BY DESC (COUNT(?y))
LIMIT 1

(b) – (?p,Property,[films])

In order to obtain URIs that fill the slots, TBSL uses an index to look up en-
tities that match with the required class and given natural language expressions.
The matching relies on string similarity, matching with WordNet synonyms, and
on an existing collection of natural language patterns, BOA [19]. The basic idea
behind BOA is to use the instance knowledge available in a dataset to compute
natural language expressions that stand for properties from the underlying ontol-
ogy. To this end, for any given property, BOA first retrieves pairs of those entities
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that the property relates. The labels of those entities are then used to search a
text corpus for sentences in which they occur, from which possible natural lan-
guage verbalizations of the property are extracted. Similarly, an ontology-lexicon
as used by ORAKEL and Pythia could be employed as pattern collection.

The result of the entity identification step is a list of URI candidates for filling
the slots, ranked regarding their string similarity values and prominence values
(i.e. their frequency in the dataset). For our example question and considering
DBpedia as dataset, candidates for filling the class slot would include the classes
Film and FilmFestival, and candidates for filling the property slot would in-
clude the properties producer and wineProduced, among a range of others.

These candidates are used to construct all possible query instantiations, rep-
resenting potential translations of the input question. These queries are ranked
with respect to the rank of the entities occurring in them. Moreover, TBSL per-
forms a schema conformance check, in particular checking whether the types
of the occuring entities are compatible with the domain and range of those
properties that relate the entities. For example, the class candiates Film and
FilmFestival are incomaptible with the property candidate wineProduced, as
the domain of the latter is WineRegion.

Finally, the highest ranked queries are tested against the underlying triple
store and the best answer is returned to the user. For the question Who produced
the most films, for example, the highest ranked query is the following one (with
a score of 0.76).

23. SELECT DISTINCT ?x
WHERE {
?x <http :// dbpedia.org/ontology /producer > ?y .
?y rdf:type <http :// dbpedia .org/ontology /Film > .
}
ORDER BY DESC (COUNT(?y))
LIMIT 1

An enhancement of TBSL and LODQA is the question answering system plat-
form developed in the context of the OKBQA hackathon14 in 2014, open and
freely accessible on GitHub: https://github.com/okbqa. Some of the main im-
provements concern the template generation component, which relies on a more
robust linguistic analysis using dependency parsing and semantic role labeling
instead of grammars. Also, the main problem that TBSL faces is that the con-
structed query templates are too fixed. In order to cover all possible template
structures as well as all possibilities of filling the slots of those templates with
all possible entity candidates, a huge set of candidate queries needs to be con-
sidered. Instead, it is desirable not to fix the triple structured of the query body
but rather determine it by means of dataset exploration, e.g. relation finding.

14 http://www.okbqa.org

https://github.com/okbqa
http://www.okbqa.org
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4.4 Treo: Schema-agnostic Querying Using Distributional Semantics

Addressing the vocabulary mismatch problem for databases is central to query-
ing large schema and heterogeneous linked datasets. One of the main chal-
lenges in addressing the vocabulary mismatch problem is its dependency on
large-scale common-sense or domain-specific knowledge. As an example, suppose
we want to interpret the question Is Chelsea Clinton married? to the associated
data (:Chelsea_Clinton :spouse :Marc_Mezvinsky). Mapping the query to
the data depends on semantically matching married to spouse. Representing
common-sense knowledge using structured large-scale knowledge bases comes
with the price of data acquisition (manually or through automated information
extraction methods), data representation and reasoning over large-scale knowl-
edge bases. These are on their own right major challenges in artificial intelligence
research. Existing structured resources such as WordNet do not fully address the
vocabulary problem [16].

The Treo approach focuses on addressing this challenge using distributional
semantic models. Distributional semantics is defined upon the assumption that
the context surrounding a given word in a text provides important informa-
tion about its meaning [22]. Distributional semantics focuses on the automatic
construction of a semantic model based on the statistical distribution of word
co-occurrence in texts, allowing the creation of an associational and quantitative
model which captures the degree of semantic relatedness between words. Dis-
tributional semantic models are represented by Vector Space Models (VSMs),
where the meaning of a word is represented by a weighted vector which captures
the patterns of co-occurrence with other words in the corpus. Distributional mod-
els focus on complementing approaches such as WordNet and ontology-based
approaches, trading structure for volume of commonsense knowledge [18] and
automatic construction capabilities. In the Treo system, a distributional seman-
tic model is used as a core element to address the query-dataset vocabulary gap
together with a compositional model based query patterns.

Figure 5 depicts the high-level workflow behind Treo using the question Who
is the daughter of Bill Clinton married to? as example. The first step (step 1) is the
construction of a distributional semantic model based on the extraction of co-
occurrence patterns from large corpora, which defines a distributional semantic
vector space. The distributional semantic vector space uses concept vectors to
semantically represent data and queries, by mapping dataset elements and query
terms to concepts in the distributional space. Once the space is built, the RDF
graph data is embedded into the space (step 2), defining the τ −Space, a struc-
tured distributional semantic vector space. The alignment between structured
data and the distributional model allows the use of the large-scale common-sense
information embedded in the distributional model (extracted from text) to be
used in the semantic matching/approximation process.

After the data is indexed into the τ − Space, it is ready to be queried.
The query processing starts with the analysis of the natural language question,
from which a set of query features and a semi-structured query representation
is extracted (step 3). After the query is analyzed, a query processing plan is
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Fig. 5. Example of the vocabulary gap between query and data representation

generated, which maps the set of features and the semi-structured query into a
set of search, navigation and transformation operations (step 5) over the data
graph embedded in the τ−Space. These operations define the semantic matching
between the query and the data, using the distributional semantic information.
This corresponds to the compositional model associated to the distributional
model.

Question Analysis. The question analysis step consists in recognizing and clas-
sifying entities and operations in the question, as well as in mapping the natural
language question into a partial and ordered dependency structure (PODS), a
triple-like pattern, and a set of query features, see Figure 6. The specific ques-
tion analysis operations are the following ones.

– Question parsing consists in the parsing of the question according to its
dependency structure and the occurring parts of speech, see Figure 6.

– Question/answer feature detection and classification consists in the
detection of the query focus and answer type based on rules over part-of-
speech tags.

– Entity detection and classification uses part-of-speech tag pattern rules
to determine the type of detected entity candidates (instances, classes and
properties). Examples of those rules ares the following ones:
• NNP+ → Instance
• {RB* JJ*} NN(S)* {IN NNP}* → Class OR Property
• BE* VB {IN NN}* → Property

– Operation detection uses part-of-speech tags and keyword patterns to de-
tect operations and associated parameters in the question. While the lexical
and structural variation for dataset elements is large, the vocabulary for typ-
ical database operations can be enumerated in a knowledge base of lexical
expressions of operations Op.
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– Triple-pattern ordering reduces the dependency structure constructed
when parsing the input question to a set of PODS by applying two sets of
operations: the removal of stopwords and their associated dependencies, and
the re-ordering of the dependencies based on the core entity position in the
query (where the core entity becomes the first query term and the topological
relations given by the dependencies are preserved). For the example question,
the PODS is Bill Clinton – daughter – married to. A detailed description of
the triple-pattern processing rules can be found in [17].

– Query classification classifies the query according to query features that
represent database primitives on the schema level (instances, properties,
classes), on the operational level (e.g. aggregation and ordering), and on the
structural level (conjuction, disjunction, property composition). The query
features for the example question are shown in Figure 6.

Fig. 6. Question analysis features for the example queries

After the query analysis, the PODS and the query features are sent to the
query planner, which generates a query processing plan, involving the application
of a sequence of search, navigation and transformation operations over the τ -
Space:

– Search operations consist of keyword and distributional search operations
over the data graph in the τ−Space, in particular instance term search (over
a term space), distributional class search, and property search.

– Graph navigation and transformation operations consist of graph
composition and on the application of ordering, user feedback, aggregation
and conditional operators.

The query planning algorithm, described in [15], orchestrates the search and
graph navigation and transformation operations defined above. A query plan
defines multiple operations over the index.
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Fig. 7. Execution of a query processing plan for the query Who is the daughter of Bill
Clinton married to?

With the PODS and the query features, the query processing approach starts
by resolving the core (pivot) entity in the query (in this case Bill Clinton) to the
corresponding database entity (res:Bill_Clinton), see Figure 7. The pivot de-
termination depends on heuristics which take into account the query features and
target the element which is less vague or ambiguous, and consequently presents
a higher probability of a correct matching.

After Bill Clinton is resolved, the subspace of the entity res:Bill_Clinton is
selected, constraining the search space to elements associated with this entity,
and the next term in the PODS (daughter) is used as a query term for a distri-
butional semantic search over the neighboring elements of res:Bill_Clinton.
The distributional semantic search is equivalent to computing the distributional
semantic relatedness between the query term (daughter) and all predicates asso-
ciated with res:Bill_Clinton (dbo:religion, dbo:child, dbo:almaMater, etc).
The semantic equivalence between daughter and dbo:child is determined by us-
ing corpus-based distributional common-sense information, capturing that the
words daughter and child occur in similar contexts. A threshold filters out un-
related relations. After daughter and dbo:child have been aligned, the query
processing navigates to the entity associated with the property dbo:child,
res:Chelsea_Clinton, and the next query term, i.e. married in our example,
is considered. At this point the entity res:Chelsea_Clinton defines the search
subspace (properties associated with res:Chelsea_Clinton) and a semantic
search for predicates which are semantically related to married is conducted.
The query term married is matched to dbo:spouse and the answer to the query
is found: the entity dbpedia:Mark_Mezvinsky. Figure 7 depicts the query pro-
cessing steps for the example question. The high-level workflow and main com-
ponents for the query approach are given in Figure 8.
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Fig. 8. High-level components diagram of the vocabulary-independent query approach
and distributional inverted index structure

4.5 IBM Watson’s DeepQA

The IBM Watson DeepQA system is a question answering system designed to
be a machine contestant in the Jeopardy! quiz show, where three contestants
compete against each another on answering open domain questions. The infor-
mation sources for the DeepQA system are both unstructured and structured
data. Despite the fact that the DeepQA approach focuses on extracting and scor-
ing evidence from unstructured data, structured data sources (in particular in
RDF format) play an important role. This section provides a high-level overview
of the DeepQA system, focusing on the role of structured data in its question
answering pipeline.

The DeepQA system is a massively parallel probabilistic evidence-based ar-
chitecture which uses more than 100 different techniques for analyzing natural
language, finding, merging scoring and ranking hypotheses. Below we describe
the main components of the DeepQA platform, as depicted in Figure 9.

– Question analysis: consists of a mixture of question analysis methods in-
cluding shallow and deep parsing, extraction of logical forms, semantic role
labelling, coreference resolution, relation extraction, named entity recogni-
tion, among others.

– Question decomposition: consists in the decomposition of the question
into separate phrases, which will generate constraints that need to be satis-
fied by evidence from the data.

– Hypothesis generation: consists of two steps: primary search and can-
didate answer generation. The primary search step focuses on finding all
content that can support the question (maximizing recall). Different infor-
mation retrieval techniques for document and passage retrieval are used over
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Fig. 9. Architecture of the IBM Watson DeepQA system

unstructured data sources and SPARQL queries are used over triple stores.
Triple store queries in the primary search step are based on detected named
entities, relations or lexical answer types in the question. The second step
consists of the candidate answer generation, where information extraction
techniques are applied to the search results to generate candidate answers
(for example, for document search results from ‘title-oriented’ resources, the
title is extracted as a candidate answer).

– Soft filtering: Consists in the application of lightweight (less resource in-
tensive) scoring algorithms to a larger set of initial candidates to prune the
list of candidates before the more intensive scoring components [13].

– Hypothesis and evidence scoring: consists of two steps: supporting evi-
dence retrieval and deep evidence scoring. The supporting evidence retrieval
step seeks additional evidence for each candidate answer from the data
sources while the deep evidence scoring step determines the degree of cer-
tainty that the retrieved evidence supports the candidate answers. The sys-
tem uses more than 50 scoring components that produce scores which range
from probabilities and counts to categorical features. Scores are then com-
bined into an overall evidence profile [13] which groups individual features
into aggregate evidence dimensions.

– Answer merging: is a step that merges answer candidates (hypotheses)
with different surface forms but with related content, combining their scores.

– Ranking and confidence estimation: is the last step, in which the system
ranks the hypotheses and estimates their confidence based on the scores, us-
ing machine learning approaches over a training set. Multiple trained models
cover different question types.

All of the components in DeepQA are implemented as Apache UIMA an-
notators. Apache UIMA15 is a framework implementation of the Unstructured
Information Management Architecture. UIMA also supports the parallelization
of the pipeline components using asynchronous messages.
15 http://uima.apache.org

http://uima.apache.org
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Despite the fact that most of the evidence analysis in the IBM Watson DeepQA
system is based on unstructured data, different components of the system rely
on structured and semi-structured data and certain question types are answered
by structured data sources. In particular, the DeepQA system uses three types
of structured data sources:

– structured data available online (entity and associated types, movie
databases)

– specific structured data extracted from unstructured data
– curated data providing additional information to the system (e.g. question

and answer types)

RDF datasets such as DBpedia, Freebase and YAGO are used in the system.
DBpedia is used to support the integration between unstructured and structured
data and to assist information extraction tasks such as entity disambiguation and
relation detection. Data cleaning techniques are used to normalize geospatial and
temporal data in DBpedia into a common format. Freebase is used for geospatial
data and YAGO as an entity type system. Disjointness properties are manually
assigned at the higher level types in the YAGO taxonomy.

The DeepQA system processes a large set of questions that depend on tem-
poral or geospatial evidence. Structured data sources play a fundamental role to
provide geospatial and temporal evidence to the system. For example, temporal
references detected at the question analysis step can be used to target specific
temporal evidence over structured data sources. Structured data is also used
for taxonomic reasoning and type coercion [12], checking whether a particular
candidate answer’s type matches the lexical answer type of the question [13].

Finally, structured data is also used in a separate complementary pipeline, for
questions which require a more narrow but more precise answer, providing an
incremental improvement in accuracy on the very small subset of questions for
which it is applicable [12].

4.6 Other Approaches

Exploring user interaction techniques, FREyA [10], an extension of the QuestIO
system [11], is a question answering system which employs feedback and clarifi-
cation dialogs to resolve ambiguities and improve the domain lexicon with the
help of users. User feedback is used to enrich the semantic matching process by
allowing manual query-vocabulary mappings.

RTV [20] is a system that integrates lexical semantic modelling and statistical
inferences within an architecture that exploits Hidden Markov Models to select
ontological triples matching the input question. The natural language interpre-
tation task is decomposed into three different stages. First, salient linguistic
information from the question, such as predicates, their arguments and proper-
ties, are extracted from the question. Second, this salient information is located
in the ontology through joint disambiguation of all candidates. In particular, for
each query a Hidden Markov Model is produced whose Viterbi solution is the
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comprehensive joint disambiguation across the sentence elements. Finally, the
final query is executed against the RDF dataset. A similar system along these
lines is the one by Ngonga et al. [34].

5 Do-It-Yourself: Resources and Tools

The following datasets play an import role for question answering over linked
data, as they provide large amounts of cross-domain knowlegde:

– DBpedia
http://dbpedia.org/

– Freebase
http://www.freebase.com/

– YAGO and YAGO2
http://www.mpi-inf.mpg.de/yago-naga/yago/

– Wikipedia dumps
http://dumps.wikimedia.org/

Prominent tools for indexing and searching such datasets and text collections
are the following ones:

– Lucene and Solr
http://lucene.apache.org/
http://lucene.apache.org/solr/

– Terrier
http://terrier.org/

Building question answering systems is a complex task; it thus helps to exploit
high-level tools for component integration as well as existing architectures for
question answering systems:

– Apache UIMA
http://uima.apache.org

– Open Advancement of Question Answering Systems (OAQA)
http://oaqa.github.io

– Open Knowledgebase and Question Answering (OKBQA)
http://www.okbqa.org
https://github.com/okbqa

In the remainder of the section we provide a list of resources and tools that can
be exploited especially for the linguistic analysis of a question and the matching
of natural language expressions with vocabulary elements from a dataset.

Lexical Resources

– WordNet
http://wordnet.princeton.edu/

http://dbpedia.org/
http://www.freebase.com/
http://www.mpi-inf.mpg.de/yago-naga/yago/
http://dumps.wikimedia.org/
http://lucene.apache.org/
http://lucene.apache.org/solr/
http://terrier.org/
http://uima.apache.org
http://oaqa.github.io
http://www.okbqa.org
https://github.com/okbqa
http://wordnet.princeton.edu/
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– Wiktionary
http://www.wiktionary.org/
API: https://www.mediawiki.org/wiki/API:Main_page

– BabelNet
http://babelnet.org/

– FrameNet
https://framenet.icsi.berkeley.edu/fndrupal/

– VerbNet
http://verbs.colorado.edu/~mpalmer/projects/verbnet.html

– English lexicon for DBpedia 3.8 (in lemon16 format)
http://lemon-model.net/lexica/dbpedia_en/

– PATTY (collection of semantically-typed relational patterns)
http://www.mpi-inf.mpg.de/yago-naga/patty/

Text Processing Tools
– GATE (General Architecture for Text Engineering)

http://gate.ac.uk/
– NLTK (Natural Language Toolkit)

http://nltk.org/
– Stanford NLP

http://www-nlp.stanford.edu/software/index.shtml
– LingPipe

http://alias-i.com/lingpipe/index.html

Dependency Parsers
– MALT

http://www.maltparser.org/
Languages (pre-trained): English, French, Swedish

– Stanford parser
http://nlp.stanford.edu/software/lex-parser.shtml
Languages: English, German, Chinese, and others

– CHAOS
http://art.uniroma2.it/external/chaosproject/
Languages: English, Italian

Named Entity Recognition
– NERD (Named Entity Recognition and Disambiguation)

http://nerd.eurecom.fr/
– Stanford Named Entity Recognizer

http://nlp.stanford.edu/software/CRF-NER.shtml
– FOX (Federated Knowledge Extraction Framework)

http://fox.aksw.org
– DBpedia Spotlight

http://spotlight.dbpedia.org
16 http://lemon-model.net

http://www.wiktionary.org/
https://www.mediawiki.org/wiki/API:Main_page
http://babelnet.org/
https://framenet.icsi.berkeley.edu/fndrupal/
http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
http://lemon-model.net/lexica/dbpedia_en/
http://www.mpi-inf.mpg.de/yago-naga/patty/
http://gate.ac.uk/
http://nltk.org/
http://www-nlp.stanford.edu/software/index.shtml
http://alias-i.com/lingpipe/index.html
http://www.maltparser.org/
http://nlp.stanford.edu/software/lex-parser.shtml
http://art.uniroma2.it/external/chaosproject/
http://nerd.eurecom.fr/
http://nlp.stanford.edu/software/CRF-NER.shtml
http://fox.aksw.org
http://spotlight.dbpedia.org
http://lemon-model.net
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String Similarity and Semantic Relatedness

– Wikipedia Miner
http://wikipedia-miner.cms.waikato.ac.nz/

– WS4J (Java API for several semantic relatedness algorithms)
https://code.google.com/p/ws4j/

– SecondString (string matching)
http://secondstring.sourceforge.net

– EasyESA (semantic relatedness)
http://treo.deri.ie/easyESA

Textual Entailment

– DIRT
Paraphrase Collection: http://aclweb.org/aclwiki/index.php?title=
DIRT_Paraphrase_Collection
Demo: http://demo.patrickpantel.com/demos/lexsem/paraphrase.htm

– PPDB (The Paraphrase Database)
http://www.cis.upenn.edu/~ccb/ppdb/

6 Evaluation Campaigns

The two most prominent criteria for assessing the quality of an answer that a
question answer system provides are:

– Correctness, i.e. whether the answer is factually correct.
– Completeness, i.e. whether the answer is complete (especially in the context

of list or definition questions).

The following evaluation campaigns provide benchmarks for evaluating and
comparing question answering systems over linked data with respect to these
two criteria.

QALD. The Question Answering over Linked Data (QALD) challenge17 [28]
aims to bring together researchers and developers from different communities,
including NLP, Semantic Web, human-computer interaction, and databases. The
core task of QALD is multilingual question answering over linked data, targeting
all question answering systems that mediate between a user, expressing his or
her information need in natural language, and semantic data. Given an RDF
dataset and a natural language question or set of keywords in one of several
languages (in QALD-4: English, Spanish, German, Italian, French, Dutch, and
Romanian), participating systems are required to return either the correct an-
swers or a SPARQL query that retrieves these answers.

For the first instantiations of the challenge, the answers were to be retrieved
from a single RDF dataset, in particular DBpedia and (although attracting a
17 http://www.sc.cit-ec.uni-bielefeld.de/qald/

http://wikipedia-miner.cms.waikato.ac.nz/
https://code.google.com/p/ws4j/
http://secondstring.sourceforge.net
http://treo.deri.ie/easyESA
http://aclweb.org/aclwiki/index.php?title=DIRT_Paraphrase_Collection
http://aclweb.org/aclwiki/index.php?title=DIRT_Paraphrase_Collection
http://demo.patrickpantel.com/demos/lexsem/paraphrase.htm
http://www.cis.upenn.edu/~ccb/ppdb/
http://www.sc.cit-ec.uni-bielefeld.de/qald/


134 C. Unger, A. Freitas, and P. Cimiano

bit less interest) MusicBrainz. The fourth installment of the challenge, QALD-
4, started to extend the task also to multiple, interlinked datasets, including
questions that can only be answered by aggregating information from different
biomedical RDF datasets, as well as hybrid question answering, including ques-
tions that require information from both structured RDF data and free text in
order to be answered.

QALD evaluates systems with respect to a manually constructed gold stan-
dard that specifies SPARQL queries for each question. The answers a participat-
ing system provides are compared to the answers that the gold standard query
retrieves. For each question q, precision, recall and F-measure are computed as
follows:

Recall(q) =
number of correct system answers for q

number of gold standard answers for q

Precision(q) =
number of correct system answers for q

number of system answers for q

F-Measure(q) =
2 ∗ Precision(q)× Recall(q)

Precision(q) + Recall(q)

On the basis of these measures, overall precision and recall values as well as an
overall F-measure value is computed as the average mean of the precision, recall
and F-measure values for all questions.

INEX Linked Data. The goal of the Linked Data track of INEX18 is to investi-
gate retrieval techniques over a combination of textual and structured data, aim-
ing to close the gap between key word search exploited in information retrieval
and the reasoning techniques available for Semantic Web data. INEX Linked
Data thus focuses on typical information retrieval questions, where structured
data can be exploited to improve retrieval performance, e.g. because RDF prop-
erties provide additional information about semantic relations among objects
that cannot be captured by keywords alone.

BioASQ. The BioASQ project19 organizes a challenge on biomedical semantic
indexing and question answering. This includes a variety of tasks from differ-
ent areas, such as hierarchical text classification, machine learning, information
retrieval, question answering from text as well as structured data, and multi-
document summarization.

Although the scope is much wider than just question answering over linked
data, a lot of the assessed functionalities play an either directly or indirect role
for question answering, such as large-scale classification of biomedical documents
and questions with respect to relevant ontology concepts, retrieval of relevant
document snippets, concepts and knowledge base triples, as well as delivery of
the retrieved information in a concise and user-understandable form.
18 https://inex.mmci.uni-saarland.de/tracks/lod/
19 http://www.bioasq.org/

https://inex.mmci.uni-saarland.de/tracks/lod/
http://www.bioasq.org/


An Introduction to Question Answering over Linked Data 135

Joint Question Answering Lab at CLEF 2014. The above mentioned chal-
lenges – QALD, BioASQ and INEX Linked Data – recently joined forces in a
joint question answering lab20 at CLEF 2014. They all start from an informa-
tion need expressed in natural language and build on the insight that the data
sources required to answer that question could differ. Some questions might
need to query structured data, especially if aggregations or logical inferences are
required, whereas other questions might need querying free text and drawing
textual inferences, and some questions may need both. By joining challenges on
these different aspects, they aim to foster the general vision that question an-
swering systems can find, process and integrate information from all available
sources, no matter how diverse.

7 Trends and Open Topics

We showed the challenges involved in question answering over linked data as
well as how state-of-the-art approaches address them. Despite the significant
advances achieved in recent years, there is still a wide range of open topics that
require future research.

Querying Distributed Linked Data. In the context of the Web, it can not
be assumed that all relevant data is available on one site, so that answers to
questions have to be found in scenarios where the data is distributed. While
there are first approaches to this, they still assume that data is integrated locally
and there is a central index that can be used to query data (e.g. Poweraqua).
First approaches to federated and distributed querying exist (Treo, Ngonga et
al), but the question of how to scale QA to the distributed Web of (linked) data
is unanswered. A further challenge is related to yielding near real-time query
processing, which state-of-the-art systems are still quite far away from.

Integration of Structured and Unstructured Data. A lot of information is
still available only in textual form, both on the web and in the form of labels and
abstracts in linked data sources. Therefore approaches are needed that can not
only deal with the specific character of structured data but also with extracting
information from several sources, processing both structured and unstructured
information and combining such gathered information into one answer. Systems
such as IBM’s Watson have largely benefited from the integration of diverse data
sources, including both unstructured and structured data [13,14].

The integration of structured and unstructured data can benefit from both
structured and unstructured resources and approaches. For example, named en-
tities from linked RDF datasets can be used to support named entity recognition
approaches over text sources by providing a first level structure for the domain,
serving as a kind of indexing mechanism for unstructured resources in the con-
text of question answering. From the opposite perspective, the information scale
20 http://nlp.uned.es/clef-qa/

http://nlp.uned.es/clef-qa/
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of unstructured data can make question answering systems over linked data
much more useful in the short term and in industrial settings. Additionally, us-
ing structured resources to support more sophisticated information extraction
approaches (such relation extraction) in the context of question answering can
support the enrichment of structured datasets from unstructured data.

User Interaction and Context Mechanisms. Some of the question answer-
ing tasks can benefit from an interaction between the user and the system. For
example, when interpreting the user’s information need with respect to a par-
ticular dataset, user feedback can be used to remove ambiguity and vagueness,
or to support co-reference resolution. In addition, allowing for a question an-
swering dialog instead of single questions and answers would allow users to pose
questions in a dialog context, e.g. referring to previous questions or answers, as
in the following example:

– User: Who killed Martin Luther King?
– System: James Earl Ray.
– User: Was he captured?
– System: Yes.

Furthermore, the investigation of different interaction modalities may improve
the efficiency of the question answering process, in particular in a dialog context.
For example, speech recognition and synthesis may complement the text input,
pointing gestures may provide specific references (see e.g. [4]) and cues, and
data visualization techniques can provide data consumers with a more efficient
interpretation of the answer.

Incorporating Reasoning. Despite the support of Semantic Web standards
for deductive reasoning by grounding RDF graph data in Description Logics,
logical reasoning is still very dependent on logically consistent knowledge bases,
which is an unfeasible constraint for most datasets in the linked data cloud.
However, allowing reasoning over inconsistent knowledge bases can strongly im-
prove question answering over linked data. Additionally, investigating the role
and the impact of different reasoning approaches (deductive, inductive, abduc-
tive, counterfactual, among others) under the question answering task is a long
term and high impact research direction.

Moreover, the integration of common-sense knowledge external to the target
datasets can be beneficial for addressing vocabulary variations and for supporting
the reasoning behind the answer processing. The use of structured and unstruc-
tured common-sense resources such as Cyc21, ConceptNet22 and Wikipedia23 in
question answering is a fundamental component to improve the semantic flexi-
bility of question answering systems.
21 http://www.cyc.com/platform/opencyc
22 http://conceptnet5.media.mit.edu/
23 http://www.wikipedia.org/

http://www.cyc.com/platform/opencyc
http://conceptnet5.media.mit.edu/
http://www.wikipedia.org/
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Measuring Confidence and Answer Uncertainty. The complexity of the
question answering task is associated with the variability and openness of the
questions and the data. Providing confidence or uncertainty measures at each
step of the question answering processing allows for an estimation of the quality
of the final answer and can be used as a heuristic for the selection of different
query processing strategies.

Multilinguality. Current question answering systems over linked data are typ-
ically monolingual and there are so far no systems that are able to answer ques-
tions in more than one language. Extending QA systems over linked data to work
for multiple languages involves bridging a severe vocabulary gap, as adding addi-
tional languages other than English exacerbates the lexical gap. In order to pro-
cess questions in multiple languages, lexical knowledge about how a certain data
property or class is expressed in the relevant languages is needed, capturing all
the intra-lingual and inter-lingual variance in how a vocabulary element can be
expressed. A further bottleneck is that most QALD system require some prepro-
cessing that is language-specific. Aqualog for example relies on JAPE-grammars
that work for English only and extending the system to other languages requires
the availability of grammars in multiple languages. Similar comments apply to
Pythia and ORAKEL, as they rely both on language-specific grammars. The
templates used by TBSL are also to some extent language-specific. Overall, all
the systems discussed here are thus in general language-specific and substantial
effort would be required to extend them to other languages. Treo would re-
quire semantic relatedness measures in different languages. Overall, developing
systems that can answer questions in different languages is indeed a challenge
which currently remains at the research frontier and has not been yet tackled.

Machine Learning. A new field dubbed semantic parsing has emerged recently
that applies machine learning techniques to learn the mapping from natural
language to semantics from training data. It is thinkable that such approaches
are also applicable to the task of learning to map natural language questions
to a SPARQL query, but so far Semantic Parsing approaches have not been
thoroughly investigated in this setting. This remains for future work.

8 Conclusion

In this tutorial overview paper, we have introduced the problem of question
answering over linked data. We have further presented the main challenges in-
volved in the task and presented the typical architecture or anatomy of systems
addressing the task. We have further provided an overview of state-of-the-art
approaches to the problem, highlighting their features and drawbacks. Finally,
we have described a selected set of systems, comprising those developed by our-
selves, in more detail and concluded with a summary of open issues that need
to be addressed in future research.
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Abstract. RDF has become recently a very popular data model used
in a variety of applications and use cases in both academia and industry.
Query processing and evaluation is a central component in data man-
agement in general and is, thus, unsurprisingly one of the most active
areas of research in the field of RDF data management. In this chap-
ter we provide an overview of query processing techniques for the RDF
data model using different system architectures. We survey techniques
for both centralized and distributed RDF stores, including peer-to-peer,
federated and cloud-based systems.

1 Introduction

Query processing and evaluation is such a central component of data manage-
ment that unsurprisingly is one of the most active areas of research in this field.
As databases evolve and new architectures or models emerge, efficient query
processing becomes probably the most pressing problem to address in these
new environments. One has to just consider the move from centralized to dis-
tributed [59] or streaming [24] sources, or the emergence of new models like
XML [60] or RDF [62] and notice the corresponding jump in research works
in conferences and workshops on this topic. In spite of this large body of past
works, there is always room for improvement or for the generation of new tech-
niques. Each new environment (be it an architecture or a model) carries its own
set of assumptions and requirements that necessitate a revision of past query
processing techniques, or in the worst case lead to the development of new ones.

In what follows, we provide an overview of query processing techniques in the
context of the RDF data model and the SPARQL query language [31]. To put
things in perspective and present techniques and architectures in an organized
fashion, we are going to use the virtual system overview of Figure 1 as a guide to
our presentation. Our system consists of two layers, a decentralized layer and a
individual source layer. There are many architectures that one can use to build
a decentralized layer for RDF sources, and in the figure we list the three we
are covering in this chapter, namely, federated, peer-to-peer, and cloud systems.
Any of these system architectures assumes that it is built on top of a set of RDF
sources where each source in the set provides, as a minimum requirement, a data
access entry, e.g., a SPARQL endpoint service. Now, internally each individual
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Fig. 1. Virtual RDF system overview

RDF source can have its own architecture which can range from a native RDF
store, to a relational store appropriately configured to store RDF data, or even
to a relational store with relational data served as RDF through a front-end.
Irrespectively of the particular architecture used in either layer, there are a
number of research topics that are common across the architectures within each
layer, and we list those adjacent to each layer in the figure. Though this is clearly
not an exhaustive list of topics, they constitute the minimal topics a system
should address to have a workable solution in this space. We briefly review the
relevance and importance of each topic in the following paragraphs.

1.1 Decentralized Layer Topics

– Metadata: In decentralized systems, there is a well-known trade-off between
query performance and source autonomy. At one end of the spectrum, one
can consider a system where the sources only provide a SPARQL endpoint
service and no other metadata (e.g., statistics, indexes) is known about
them [75]. Since query processing relies heavily on knowledge about such
metadata, when no such information is available to a decentralized system,
the system must try to dynamically compute the necessary metadata. This
process is bound to have an impact on end-to-end query performance since
additional work must be performed before the processing of the actual query
is initiated. At the other end of the spectrum, one can consider a system with
tighter control of the sources where each source is required to generate appro-
priate metadata and provide them to the decentralized system [4, 28]. This
clearly facilitates query processing but requires that the sources themselves
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are willing to do work for the decentralized system (in addition to query
answering) by regularly updating their metadata to reflect the changes in
their data.

– Source selection: Not all sources in a decentralized system contain data that
are relevant to the query at hand. Figuring out which sources are relevant
is another factor affecting query performance since incorrectly identified
sources might incur additional costs (both in terms of processing time and
communication overhead) without contributing to the end result. There is a
close relationship between the topic of source selection and that of metadata,
since often the latter is used to provide an answer for the former.

– Data partitioning: Another area where source autonomy is a key factor is in
the distribution of data across the decentralized system. At one extreme one
can envision a federated system in which data partitioning comes naturally
as sources join the federation with their own data. At the other extreme, one
can envision a P2P-style system in which sources join the system and it is
the decentralized layer that is responsible for assigning which source is going
to store which data. While there is not much to be said about partitioning in
the former scenario, in the latter scenario partitioning requires an algorithm
to partition and distribute the data evenly across the sources. Ideally, other
than data load, the algorithm should aim to minimize communication costs
during query evaluation.

– Query planning: Once the sources relevant for a query have been identified,
and relevant metadata have been computed or retrieved, query planning is a
common next step. The type of planning available to a decentralized system
also depends on the level of autonomy of the underlying sources. In one
extreme case, one can think of a system with fairly uncooperative sources
where the sources only provide a SPARQL endpoint service. In such a setting,
the results from individual sources must be sent to a central location where
the actual query evaluation takes place. It is not hard to see that in such
a setting the communication cost may far outweigh actual query evaluation
costs. In a more collaborative setting, the sources of the decentralized system
might be willing to cooperate in performing distributed query evaluation.
Query planning becomes more central at this setting since it specifies the
order (as in the centralized case) with which results would be computed and
propagated.

– Query evaluation: More often than not, there are multiple ways to combine
results from different sources to compute an answer to an input query. Each
of these ways generates its own plan and results in a query. All these queries
must be evaluated to guarantee the completeness of query answers (i.e., that
all the results of the query are retrieved and none is missed). Executing
all these queries (and in parallel) poses its own challenges. Clearly, one can
evaluate each of these queries independently, but when there is sharing of
sub-queries across the different queries, there is the potential for optimiza-
tion [50] (e.g., by executing these common sub-queries only once and sharing
their results across the different plans).
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1.2 Individual Source Layer Topics

– Storage: The storage strategy, or how an individual RDF source decides to
internally represent RDF data, is a central topic which influences every as-
pect of the source, from indexing, to planning and evaluation. There are
multiple alternatives here with some sources using novel native representa-
tions for RDF data (e.g., Jena TDB [39], RDF-3X [58]), while others using
relational databases as the back-end (e.g., Jena SDB [39], DB2RDF [17],
C-Store [1]) and designing appropriate schemas to store the RDF data.

– Indexing: Indexing plays a key role in query evaluation in general but in
the context of RDF this role becomes even more central since indexes some-
times morph into an actual storage strategy (e.g., Jena TDB uses a custom
implementation of B+-trees as central component of its storage strategy).
This interplay between storage and indexes results in some novel strategies
in terms of query evaluation (e.g., [58]).

– Query planning: Unlike query planning in the decentralized setting which
focuses on reducing communication costs (mostly through join ordering),
planning at the individual source level is typically more complex and has
a larger search space of alternatives to consider. One reason for this added
complexity comes from the multitude of access methods that are usually
available to the planner, which opens up the way for accessing source data
and combining intermediate query results using a host of techniques.

– Query evaluation: In traditional DBMSs, there is a tight coupling between
the planner and the query evaluation module in the sense that they are both
part of the same system (and are often developed by the same group of peo-
ple). However, this is not always the case with RDF sources, and especially
with those that use relational databases as the back-end. In such sources, the
RDF query planner might be built as a separate component on top of any
existing relational back-end (e.g., see Jena SDB [39] or DB2RDF [17]). Since
planning happens outside the relational engine, the planner can dictate the
order with which different sub-queries are executed, but it has little control
over the actual evaluation by the back-end. Therefore, in such settings, the
efficiency of query evaluation is largely determined by how well the plan-
ner can predict the efficiency of queries before these are evaluated by the
underlying relational store.

Using Figure 1 as a guide for our presentation, we organize the remainder of
this chapter in the following manner. For completeness, the next section presents
some necessary preliminaries in terms of the RDF model and the SPARQL query
language. Then in Section 3, we provide an overview of existing single-source
systems that constitute our building blocks in Figure 1 towards constructing any
of the decentralized systems shown there. Sections 4, 5 and 6 present respectively
existing P2P, federated and cloud-based systems. Not all the topics we covered
briefly in the introduction are of equal importance for each presented system and
not all systems provide novel solutions across all the topics. Therefore throughout
the sections as we describe a (single-source or decentralized) system we make
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certain that we highlight the topics that are of most notable and novel about the
system. The paper concludes with a summary of the work and a short discussion
regarding open research directions in the field of RDF query processing.

2 Preliminaries

In this section we introduce the Resource Description Framework (RDF) to-
gether with its accompanying schema language RDFS. In addition, we present
SPARQL, the standardized query language for querying RDF and RDFS data.

2.1 RDF

The emergence of RDF originated from the Semantic Web vision, where anything
in the Web can be interpreted by machines, converting the Web of documents
to a Web of data. RDF is the main data model used to achieve this goal.

RDF offers the following basic constructs:

– URIs : Universal Resource Identifiers are used to represent resources, e.g.,
a Web page, a book, an author, a paper or a computer file. In addition,
URIs are used to identify properties, which are the attributes of a resource
or connect two resources. For example, hasName may be used for describing
the name of an author or isAuthorOf may be used to connect a book resource
with an author resource.

– Literals : Literals are constant values of any property. For example, "John

Doe" may be the value of the property hasName.
– Blank nodes : Blank nodes are anonymous resources which are not expressed

by a URI but in the form of :bnodeID. The purpose of blank nodes is to
encode n-ary relationships and/or to make statements about resources that
might not have global URIs but can be described in terms of their relation-
ship with other resources.

Facts in RDF are represented by sets of triples. Each triple consists of the
resource the fact is about (subject), the property of the resource the statement
refers to (predicate), and the value of that property (object). Another represen-
tation of RDF data is that of labelled graphs where the subject and object is
depicted as a node and the property as a directed labelled edge from the subject
node to the object node labelled by the predicate name. More formally:

Definition 1 (RDF triple). Let U , L and B denote three pairwise disjoint
sets of URIs, literals, and blank nodes, respectively. A triple is a tuple (s, p, o)
from (U ∪B)×U × (U ∪L∪B), where s is the subject, p is the predicate (a.k.a.
property) and o is the object of the triple.

Definition 2 (RDF term and element). An RDF term is any value from
(U ∪L∪B) and an RDF element is any among the subject, predicate and object
of an RDF triple.
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:bob : bobaddress

:db

“Bob” “Panepistimiou”

:athens

15784

:name
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:interest

:street

:city

:zipcode

Fig. 2. RDF graph example

Definition 3 (RDF graph). An RDF graph is a set of RDF triples.

For example, the following set of triples state that the resource http://tiny/bob
named "Bob" has as research interest databases and lives in a specified address in
the city of Athens. The constant : bobaddress denotes a blank node to describe
the address of Bob.

http://tiny/bob http://tiny/name "Bob" .

http://tiny/bob http://tiny/interest http://tiny/db .

http://tiny/bob http://tiny/address :_bobaddress .

:_bobaddress http://tiny/street "Panepistimiou" .

:_bobaddress http://tiny/postalCode 15784 .

:_bobaddress http://tiny/city http://tiny/athens .

Figure 2 shows the same RDF information in an RDF graph. We depict a
resource with an oval circle and a literal with a rectangle. The labeled arcs
represent the properties of the RDF graph. For clarity reasons, we attach the
empty prefix ‘:’ for all URIs to distinguish them from the corresponding literals.

2.2 RDF Schema (RDFS)

The RDF data model offers a simple way for describing relationships among
resources in terms of named properties and values, but does not provide mech-
anisms for declaring these properties, nor does it provide ways for defining the
relationships between these properties and other resources. This is the role of
RDF Schema (RDFS) [18]. RDFS is the vocabulary of RDF; it provides the
means to a user to define terms that will be used in RDF statements and give
specific meaning to them. RDFS defines not only the properties of a resource
(e.g., title, author, subject etc.) but also the kinds of resources being described
(people, paper, Web pages, books etc.). Resources having similar characteristics
can be divided into groups called RDFS classes. We will refer to both RDF and
RDFS information with the term RDF(S).

Figure 3 shows an RDF(S) graph which defines the relationships between
classes and assigns the resource http://tiny/bob to a certain class. The property
rdfs:subClassOf is a predefined property in RDFS and denotes a specialization
relationship between two classes. For example, http://tiny/graduateStudent is a
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:graduateStudent :undergraduateStudent

:student

:person

:bob

rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

rdf:type

Fig. 3. An RDF(S) graph example

class which defines a specialized type of class http://tiny/student. Another pre-
defined property commonly used in RDF is rdf:type. This property defines the
members of a certain class. For example, resource http://tiny/bob is a member
of class http://tiny/graduateStudent. The members of a class are also known as
instances of the class. Namespaces rdf and rdfs are the namespaces of the core
RDF and RDFS vocabulary defined by the URIs http://www.w3.org/1999/02/

22-rdf-syntax-ns# and http://www.w3.org/2000/01/rdf-schema# respectively.
Another feature of RDFS is that it also provides vocabulary for describing how

properties and classes are intended to be connected in an RDF(S) graph. The
most important information of this kind is supplied by using the RDF Schema
properties rdfs:domain and rdfs:range. The rdfs:domain property is used to
indicate that a particular property applies to a specific class. The rdfs:range

property is used to indicate that the values of a particular property are in-
stances of a specific class or are types of specific literals. For example, in the
RDF graph of Figure 2 we could add the following RDFS triples for properties
http://tiny/name and http://tiny/interest:

http://tiny/name rdfs:domain http://tiny/person .

http://tiny/interest rdfs:domain http://tiny/student .

http://tiny/name rdfs:range string .

This means that the property http://tiny/name applies to instances of class
http://tiny/person, while the property http://tiny/interest applies to instances
of class http://tiny/student. In addition, the last triple states that property
http://tiny/name takes values that are strings.

The most important functionality of RDFS is the ability to make inferences
using the RDFS entailment rules [32]. This means that one can infer new triples
from an RDF schema and the set of rules. Such triples are often called implicit
or inferred triples. For example, the RDFS property rdfs:subClassOf is defined
as a transitive property in the rule rdfs11 of the RDFS Semantics [32]:

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema#
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(a, rdfs:subClassOf, b), (b, rdfs:subClassOf, c)

(a, rdfs:subClassOf, c)

This rule says that if class a is a subclass of class b and class b is a subclass of
class c, then we infer that class a is a subclass of class c. Thus, in the example of
Figure 3, we can infer that class :graduateStudent is a subclass of class :person.
Then, using this inferred triple and rule rdfs9 from [32]:

(a, rdfs:subClassOf, b), (r, rdf:type, a)

(r, rdf:type, b)

we infer that http://tiny/bob in Figure 3 is also an instance of http://tiny/
person. The complete set of the RDFS entailment rules can be found in [32].

2.3 SPARQL

SPARQL [31] is the standard query language for RDF recommended by W3C
and has the ability to extract information about both the data and the schema.
A core concept of SPARQL is that of a triple pattern, which is a triple with the
possibility of a variable in any of the subject, predicate or object positions. A
query that contains a conjunction of triple patterns is called basic graph pattern
(BGP) query, and is the conjunctive fragment of SPARQL allowing to express
the core select-project-join queries. More formally:

Definition 4 (Triple pattern). Let U , L, B and V denote the pairwise dis-
joint sets of URIs, literals, blank nodes, and variables respectively. A triple pat-
tern is a tuple (s, p, o) from (U ∪B ∪ V )× (U ∪ V )× (U ∪ L ∪B ∪ V ).

Definition 5 (Basic Graph Pattern). A basic graph pattern query is a con-
junction of triple patterns.

A basic graph pattern matches a subgraph of the RDF data when RDF terms
from the subgraph can be substituted with the variables of the graph pattern.

The syntax of SPARQL follows an SQL-like select-from-where paradigm.
The select clause specifies the variables that should appear in the query re-
sults. Each variable in SPARQL is prefixed with ?. The from clause specifies
the RDF(S) graph that should be used for answering the query. If not used,
the query runs over the whole RDF(S) triples stored in the system. The graph
patterns of the query are set in the where clause. The following SPARQL query
asks for all resources which have a name and a research interest.

Listing 1.1. A simple SPARQL query

SELECT *

WHERE {

?x http ://tiny/name ?y .

?x http ://tiny/interest ?z

}

http://tiny/person
http://tiny/person
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The answer of a SPARQL query with a select clause is a bag of variable bind-
ings. If the above SPARQL query is posed over the RDF graph of Figure 2, the
variable bindings of the answer would be:

?x ?y ?z
http://tiny/bob "Bob" http://tiny/db

SPARQL also supports more complex queries than simple BGPs with features
such as the OPTIONAL operation. The optional functionality allows for patterns
that might not match for every part in an RDF graph. In this case, the optional
part creates no bindings but does not eliminate the entire solution. Keyword
OPTIONAL is used with a graph pattern such as the ones in the WHERE clause.

In addition, one can use filter expressions with operators such as <, =, and
> for numerical values (range constraints) and string functions such as regular
expressions. Multiple BGPs can be combined through a UNION operation. Order
constraints are also possible through ORDERBY and LIMIT operators.

Apart from the SELECT clause, SPARQL also allows CONSTRUCT, DESCRIBE

and ASK clauses. In the case of a SELECT query, the result set is a set of variables
and their possible bindings. On the other hand, if we have a CONSTRUCT query,
the result is an RDF graph constructed by substituting variables in a set of triple
templates. Finally, a DESCRIBE query returns an RDF graph that describes the
resources found and an ASK query returns yes or no depending on whether a
query pattern matches or not. In this chapter, we focus only on SELECT queries.

The latest SPARQL 1.1 proposal [31] also supports property paths, negation,
aggregates etc. We do not consider these features in the present chapter since
most existing works focus on BGP queries. The formal semantics of SPARQL
can be found in [63].

3 Single-Source RDF Stores

The storage strategy is probably the defining component of a single-source RDF
store, and therefore we structure this section around the storage strategies used
by existing stores. Clearly, there are several alternatives to store RDF data, and
at a high level we can classify existing strategies into two categories, namely,
those using novel native representations for RDF data (e.g., Jena TDB [39],
RDF-3X [58]), and those using relational databases as the back-end (e.g., Jena
SDB [39], DB2RDF [17], C-Store [1]). While there is usually little information
available regarding the internals of the former type of stores, the representations
used by the latter stores is commonly explained in detail, and this is where we
are going to focus our attention in this section.

3.1 “Monolithic” Triple Stores

The simplest and most straightforward representation of RDF data into a rela-
tional store is to create a single SPO relation with columns to store the subject,
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SPO
subj pred obj

http://tiny/me http://tiny/name “Tasos”
http://tiny/me http://tiny/attend “RW 2014”
http://tiny/you http://tiny/name “Zoi”
http://tiny/me http://tiny/friend http://tiny/you

(a) One version of the “monolithic” store

Dictionary
id uri-literal

1 http://tiny/me
2 http://tiny/name
3 “Tasos”
4 http://tiny/attend
5 “RW 2014”
6 http://tiny/you
7 “Zoi”
8 http://tiny/friend

SPO
subj pred obj

1 2 3
1 4 5
6 2 7
1 8 6

(b) A second version

Fig. 4. The “monolithic” store

predicate and object of each triple. There are multiple ways to implement such
a store (e.g., see [7]) and Figure 4 shows two alternative versions. In the first
version, the URIs and literals are stored directly into the single relation. In the
second version, we create a “dictionary” in which we assign an id to each URI
or literal. Then, in the main relation we store triples created out of these ids,
instead of the actual URIs or literals. It is not hard to see that the second version
requires less storage space since multiple occurrences of a URI are replaced by a
reference to a single id. However, the second version incurs additional costs dur-
ing query processing since it requires joining the dictionary and SPO relations
in order to (re-)establish at query time the relationship between ids and URIs
or literals.

Both versions of the store have the desirable characteristic that the schema
of the store does not change as we encounter new (types of) triples (in the
following sections, we see that this is not a characteristic shared by all the
relational representations of RDF). On the negative side, it is clear that the size
of the relation storing the triples increases linearly with the number of triples
and can very quickly include millions (or billions) of triples/tuples. Managing
such a huge relation is bound to have an impact on the evaluation of queries
and indeed in “monolithic” stores query performance and scalability do not go
hand-in-hand [17]. Therefore, multiple indexes [58] over the single SPO relation
are often necessary to support efficient query evaluation.

3.2 Property-Table Stores

The idea behind property tables [83] is the simple observation that entities that
are of the same (or similar) type(s) share similar sets of predicates. So, for
example, all book entities whose information is represented in RDF are expected
to have at least the predicates title, author, and year of copyright. Similarly, all
compact-disc entities are expected to also have the predicates of title, artist and
year of copyright. Therefore, while designing a schema to store the RDF data
for these entities, one can take advantage of these common predicates to create
appropriate tables with columns for these common predicates. Figure 5 shows the
basic idea through an example. On the left of the figure, we show some sample
RDF data pertaining to books, CD’s and DVD’s. Then, in Figure 5(b) we show
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an implementation of the property tables idea, called property-class tables, where
given a type in the RDF data we create a table with all the common predicates
that appear in the instances of this type. So, one table is created in the figure for
the BookType entities, and one table is created for the CDType entities. Notice
that the common predicates among the instances of these types are selected and
become the columns of the created tables. Inspired by the monolithic approach,
the schema also contains an SPO relation storing the remaining less common
predicates for the various entities.

An alternative way to implement property tables is shown in Figure 5(c),
through the use of cluster property tables. In a nutshell, in this implementation
we create a table that contains common predicates between entities, irrespec-
tively of their types. In our example, these are the title and copyright predicates
which seem to be present across all BookType, CDType and DVDType entities.
Predicates that are not part of the cluster in this example end up in a monolithic
SPO table, as it is shown.

Notice that unlike the monolithic schema which is independent of the data
being stored, for the creation of property tables we rely heavily on characteristics
of the data. However, as the data change through time, so do their characteristics.
For example, a predicate that was not as common at some stage in a dataset,
it might end up becoming extremely common later on. This would necessitate a
change in the schema of the property tables to reflect the fact. However, such data
reorganization is usually extremely costly and undesirable. One might consider
the monolithic and property table designs as being the two ends of the design
spectrum. At one end, we create schemas that closely fit the data and have
an associated high cost of periodic reorganization but also hold the promise of
efficient query processing. At the other end, we create schemas that are generic
and unchanged but are not as efficient in terms querying. There is an interesting
challenge here in figuring out whether there are alternative designs where the
schema is both unchanged and does not require reorganization, but efficient
query processing is not sacrifice. Indeed, in the following sections we show that
such designs are possible.

3.3 Vertically Partitioned Stores

The advent of column-oriented DBMS (e.g., see C-store [49], or more recently the
BLU feature of IBM DB2 [66]) gave rise to another alternative representation of
RDF data, one in which separate tables are created for each predicate appearing
in the RDF data. Figure 6 shows the result of vertically partitioning the data of
Figure 5(a).

One of the advantages of vertically partitioned stores is efficient query process-
ing. Since SPARQL queries often bind the predicates of triple patterns, during
the evaluation of SPARQL queries over vertically partitioned stores the opti-
mizer only accesses the tables corresponding to the predicates mentioned in the
query. So, for example if a SPARQL query requires the entities (subjects) that
have a copyright predicate, the optimizer only needs to perform a select-* query
over the copyright relation of Figure 6. In contrast to this approach, in the
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id1 type BookType
id1 title “XYZ”
id1 author “Fox, Joe”
id1 copyright “2001”
id2 type CDType
id2 title “ABC”
id2 artist “Orr, Tim”
id2 copyright “1985”
id2 language “French”
id3 type BookType
id3 title “MNO
id3 language “English”
id4 type DVDType
id4 title “DEF”
id5 type CDType
id5 title “GHI”
id5 copyright “1995”
id6 type BookType
id6 copyright “2004”

(a) Sample data

BookType
subj title author copyright

id1 “XYZ” “Fox, Joe” “2001”
id3 “MNO” NULL NULL
id6 NULL NULL “2004”

CDType
subj title artist copyright

id2 “ABC” “Orr, Tim” “1985”
id5 “GHI” NULL “1995”

SPO
subj pred obj

id2 language “French”
id3 language “English”
id4 type DVDType
id4 title “DEF”

(b) Property-class tables

Cluster
subject type title copyright

id1 BookType “XYZ” “2001”
id2 CDType “ABC” “1985”
id3 BookType “MNO” NULL
id4 DVDType “DEF” NULL
id5 CDType “GHI” “1995”
id6 BookType NULL “2004”

SPO
subj pred obj

id1 author “Fox, Joe”
id2 artist “Orr, Tim”
id2 language “French”
id3 language “English”

(c) Cluster property tables

Fig. 5. Property tables

type
subj obj

id1 BookType
id2 CDType
id3 BookType
id4 DVDType
id5 CDType
id6 BookType

title
subj obj

id1 “XYZ”
id2 “ABC”
id3 “MNO
id4 “DEF”
id5 “GHI”

copyright
subj obj

id1 “2001”
id2 “1985”
id5 “1995”
id6 “2004”

language
subj obj

id2 “French”
id3 “English”

artist
subj obj

id2 “Orr, Tim”

author
subj obj

id1 “Fox, Joe”

Fig. 6. Vertically partitioned data

evaluation of the same query over a monolithic store all the triples in the mono-
lithic relation must be accessed, unless an index on the pred column is provided
to avoid a sequential scan. On the negative side, the strongest point of the ver-
tically partitioned store is also its weakest. If SPARQL queries do not bind the
predicate of triple patterns, then all the relations in the store might need to be
accessed to evaluate the query. At the same time, this type of RDF representa-
tion suffers from the same shortcoming as the one observed in property tables.
As the data evolve over time and, say, a new predicate is added in some entity
that was never seen before, the schema of the underlying store must change and
a new table must be created. This, coupled with the need to often create indexes
for the new tables results in a potentially costly operation.

3.4 Entity-Oriented Stores

The last part of this section covers a novel representation for RDF data that
attempts to address the shortcomings of past representations [17]. In more detail,
the entity-oriented store uses a representation that similar to the monolithic store
does not change over the lifetime of the data. However, unlike the monolithic
store and like the property and vertically-partitioned stores, it supports efficient
evaluation of SPARQL queries across a wide spectrum of queries.
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entity spill pred1 val1 pred2 val2 pred3 val3

id1 1 title “XYZ” type BookType author “Fox, Joe”
id1 1 copyright “2001” NULL NULL NULL NULL
id2 1 title “ABC” type CDType artist “Orr, Tim”
id2 1 copyright “1985” NULL NULL language “French”
id3 0 title “MNO type BookType language “English”
id4 0 title “DEF” type DVDType NULL NULL
id5 1 title “GHI” type CDType NULL NULL
id5 1 copyright “1995” NULL NULL NULL NULL
id6 0 copyright “2004” type BookType NULL NULL

Fig. 7. Entity-oriented store

Figure 7 shows the entity-oriented representation for the data shown in Fig-
ure 5(a). The first thing to observe in this representation is that unlike any of
the previous representations the columns of the relation has no pre-assigned se-
mantics. That is, the table in the particular example has 3 pairs of (predi, vali)
without specifying which predicate-object pairs are to be stored there. Indeed,
the assignment of predicate-object pairs to (predi, vali) columns happens dy-
namically by the system, during data loading, and is one of the distinguishing
characteristics of the representation. During this assignment, a predicate will
always be hashed to the same column. So, predicate title is always hashed to
column pred1 for any entity having this predicate, while predicate artist is always
hashed to column pred3. However, notice that multiple predicates can be hashed
to the same column. For example, predicate author is also hashed to pred3. The
entity oriented store provides a host of alternative strategies so as to optimize
this assignment of predicates to columns with the main objective to avoid col-
lisions (i.e., multiple predicates being hashed to the same column for the same
entity) while at the same time maximizing compression (i.e., allowing multiple
predicates to be hashed to the same column when these predicates are not co-
occurring in entities). The end result is a representation that has both a small
footprint in terms of space requirements and offers superior query performance
when compared with other representations (for more details see [17]).

4 P2P-Based RDF Stores

Peer-to-peer (P2P) networks had initially emerged as a natural way for file shar-
ing in a decentralized manner. Popular systems such as Napster1, Gnutella2,
Freenet3, Kazaa4, Morpheus5 had made this model of interaction popular. In
P2P systems a very large number of autonomous computing nodes (the peers)
pool together their resources and rely on each other for data and services. In
contrast with a client-server architecture, P2P nodes serve as both a provider

1 http://www.napster.com
2 There are various clients implementing the Gnutella protocol or variations. See for
example, http://www.limewire.com.

3 http://freenet.sourceforge.net
4 http://www.kazaa.com
5 http://www.musiccity.com

http://www.napster.com
http://www.limewire.com
http://freenet.sourceforge.net
http://www.kazaa.com
http://www.musiccity.com


154 Z. Kaoudi and A. Kementsietsidis

and a consumer of resources. P2P networks are typically distinguished into three
different classes according to their topology: unstructured, structured and hier-
archical networks.

In unstructured networks all peers are equal and form an overlay network
with no restrictions on topology and no centralized source of information. Such
systems are highly resilient to churn, i.e., when peers join and leave the net-
work. However, they flood the network with messages to find a piece of data
and cannot guarantee to find it in a reasonable amount of hops. Gnutella and
Kazaa form examples of such networks. On the contrary, structured networks
have a regular topology, e.g., rings or hypercubes, and were devised as a remedy
for the routing and object location inefficiencies of unstructured networks. A
very popular class of structured networks is the distributed hash tables (DHTs).
Hierarchical networks partition the nodes into two categories: super-peers and
clients. In such a network, all super-peers are equal and have the same respon-
sibilities: serving a fraction of the clients and keeping indices of the resources of
those clients. Super-peers interact by following a protocol of their choice (e.g., a
symmetric one like Gnutella, a structured one like Napster or a DHT protocol).
Clients can run on user computers and are equal to each other running the same
software. Clients learn about resources by querying super-peers and downloading
resources directly from other clients.

The combination of Semantic Web technologies (i.e., RDF, RDFS and ontolo-
gies) and P2P systems provided accurate data retrieval and efficient search in
distributed application scenarios, thus, it has been the focus of many research
works the past few years. In the following, we present representative works in
this research area where peers are organized in a structured overlay network or a
schema-based network. We mainly focus on how query processing is performed in
such distributed settings. The local data access at each peer can be achieved by
the various techniques proposed in the previous section. A more comprehensive
survey of on P2P-based RDF management can be found in [79].

4.1 Structured Overlay Networks

Distributed hash tables (DHTs) is a prominent class of structured overlays that
attempt to solve the object lookup problem: given a data item x, find the node
which holds x. Each node and each data item is assigned a uniquem-bit identifier
by using a hashing function such as SHA-1 [76]. The identifier of a node can be
computed by hashing its IP address. For data items, we first have to compute a
key and then hash this key to obtain an identifier id. The node with identifier
that is numerically closest to id is responsible for storing the data item x. The
lookup problem is then solved in O(log(n)) hops in a network of n peers by
providing a simple interface of two requests: Put(id, x) and Get(id).

We focus on representative RDF stores that use an underlying DHT to store
and query RDF data. These include RDFPeers [22], Atlas [40], BabelPeers [15],
UniStore [43], RDFCube [53] and GridVine [3].
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Fig. 8. RDFPeers data partitioning example from [20]

Data Partitioning. In the distributed environment of a DHT, one has to
decide how to partition the RDF data. A commonly used data partitioning
scheme in DHT-based systems is achieved through the hashing of some or all
RDF elements of the triples. RDFPeers [20,22] is the first system that came up
with this partitioning scheme and has influenced significantly many follow-up
works. RDFPeers is implemented on top of MAAN [21], a self-organized DHT
network which extends the well-known DHT protocol of Chord [81] to efficiently
answer multi-attribute and range queries.

In RDFPeers, each node uses the RDF data model to create descriptions of
resources that it wants to make available to the rest of the network nodes. Each
RDF triple in RDF document is indexed to three different network nodes: it is
stored once in the node responsible for the identifier that is computed by hashing
the subject value of the triple, and twice more by using the predicate and object
values of the triple. The SHA-1 hash function [76] is used if the value is a string.
If the value is a numeric one then an order preserving hash function is used,
which allows efficient evaluation of range queries. Figure 8 shows the indexing
of some triples in a network of 8 nodes with a 4-bit identifier space.

GridVine uses P-Grid [2], a structured overlay network based on the prin-
ciples of DHTs with lexicographic key ordering. Peers in GridVine are able to
publish available resources by creating RDF triples (metadata). An RDF triple
is stored three times in the network using three different keys based on its sub-
ject, predicate and object values, as in [22]. In addition, prefix indexing, e.g., on
the beginning of a string representing an object value, can be easily supported
using P-Grid routing mechanisms.

BabelPeers [15,33,34] and Atlas [40,41], two more recent systems built on top
of Pastry [70] and BambooDHT [68] respectively, also use the triple indexing
scheme, storing each triple three times in the network once for each RDF element,
as initially proposed in [22]. Unistore [43,44] can index each triple multiple times,
using different (combinations of) triple elements in P-Grid [2].
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Metadata and Source Selection. In structured overlay networks, and specif-
ically in DHTs, there is no need to keep metadata about identifying which piece
of data is located in which node. This is implicitly done by the distributed in-
dex they provide for the lookup problem. The problem of source selection is then
tackled easily and efficiently by the use of hash functions: the hash value of a key
is used to retrieve the node that keeps the data item with this key. DHT-based
RDF stores use the constant part(s) of triple patterns involved in the query to
compute the identifiers that lead to the nodes storing matching triples.

Query Planning and Evaluation. After the peers that contain matching
triples for a triple pattern have been identified, a single triple pattern query can
be easily answered by contacting this peer and retrieving the triples that match
the triple pattern. Single triple pattern queries require O(log(n)) routing hops
in a network of n peers, except for the triple pattern without any constant, i.e.,
(?x, ?y, ?z), where all n peers need to be contacted.

RDFPeers [20] support single triple pattern queries, disjunctive and range
queries and conjunctive multi-predicate queries, i.e., conjunctive queries with the
join variable on the subject value and the predicate constant. Query execution is
performed sequentially at the peers that contain matching triples for the triple
patterns of the query and the results are returned to the peer that posed the
query. The algorithm finds candidate subjects on each triple pattern recursively
and intersects the candidate subjects found at the peer with the found candidate
sets for the previously evaluated triple patterns, before returning the search
results to the query requestor.

In Atlas [40] the query processing algorithm, QC, works sequentially at the
peers containing matching triples, extending the one proposed in [20] for any
kind of conjunctive query. With QC the query is evaluated by a chain of nodes.
Intermediate results flow through the nodes of this chain and finally the last
node in the chain delivers the result back to the node that submitted the query.
In [52], an additional query processing algorithm, SBV, is described where the
values found to match a triple pattern are used to rewrite the following patterns.
SBV achieves a better distribution of the query processing load. It does not
create a single chain for a query as QC, but by exploiting the values of matching
triples found while processing the query incrementally, it rewrites the query and
distributes the responsibility of evaluating it to more nodes than QC (in other
words, SBV is constructing multiple chains for each query). Obviously, the order
in which the triple patterns are evaluated affects the query performance and
in [41] some query optimization techniques are proposed to achieve better query
response times.

In BabelPeers [15, 33, 34], query planning and evaluation is performed at a
single peer, the one that receives the query request, and includes two phases. In
the first phase, all candidate sets for all triples and variables are retrieved from
the various nodes of the network to the node that receives the query request. The
second phase of the query evaluation, includes local processing of the candidate
sets to find the actual answer to the query. The disadvantage of this approach is
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that the node that receives the query request has to do all the computation and
suffers a lot of query processing load. In addition, the candidate sets transferred
through the network might contain results that will never be used in the final
answer of the query. This causes unnecessary traffic to the network. The authors
of [33,34] propose some methods to remove the amount of the useless information
from the candidate sets using Bloom filters. Finally, [14] addresses the problem
of uneven load among the nodes of BabelPeers due to the skewness of the RDF
datasets and proposes several techniques for load balancing.

GridVine [3] follows the principles of data independency and separates the
logical from the physical layer. The logical layer consists of the semantic over-
lay for managing and mapping data and metadata schemas, while the physical
layer consists of a structured P2P overlay network that efficiently routes mes-
sages. The latter is used to implement various functions at the logical layer, like
attribute-based search, schema management and schema mapping management.
GridVine allows peers to derive new schemas from well-known base schemas (us-
ing RDFS), providing schema inheritance. Each peer has also the possibility to
create a mapping between two schemas, in which case translation links among
network peers are created (using OWL). In this way, queries are propagated from
one semantic domain to another. There are two approaches used for resolving
translation links, the iterative and the recursive resolution. With iterative reso-
lution, the peer issuing an RDF query tries to find and process all translation
links by itself, while with recursive resolution more than one peers are involved
by delegating the query and its translations.

In Unistore [43,44] each query is transformed into a logical query plan which
is in turn transformed into a physical query plan using operators defined in [43].
Query planning is performed dynamically at each peer involved in the query
evaluation. Unistore uses a cost-based optimizer which estimates the cost of
physical operators in terms of the number of hops and messages required for
each operator.

4.2 Schema-Based P2P Architectures

In contrast to the RDF stores based on a structured overlay architecture, where
data is partitioned among the peers in a specific way and a distributed index
is used to locate data, in schema-based P2P systems peers keep the data they
have locally and they work collaboratively by exploiting their schemas to tackle
the query processing problem. Two influential schema-based P2P for storing and
querying RDF data are Edutella [55–57] and SQPeer [46].

Edutella [55–57] is built on top of a super-peer topology, where there are two
kind of peers: the super-peers and the clients. The super-peers are organized
under the HyperCup topology [74], while clients are connected to super-peers in
a star-like fashion. Each client connects to one super-peer only, while a super-
peer can have multiple clients and is used to efficiently handle all the requests
of clients.

SQPeer [46, 47, 78] is a middleware for routing and planning complex queries
in P2P database systems, exploiting the schemas of peers. SQPeer has two
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different architecture alternatives: it can be organized in a super-peer network
or in DHT-based one. Peers that employ the same RDFS schema belong to the
same semantic overlay network (SON) [82] and queries posed by peers should
conform to the RDFS schema of the SON they belong.

Metadata and Source Selection. In Edutella [26], when a peer joins the
network, it provides its super-peer with its metadata information, i.e., a descrip-
tion of the metadata that has been created by this client (supported schema,
used values etc.). The actual metadata remains in the client peer. Each super-
peer employs two routing indices: The super-peer/peer (SP/P) indices that con-
tain information about each peer that is connected to the super-peer, and the
super-peer/super-peer (SP/SP) indices that are extracted summaries from all
local SP/P indices. The SP/P indices keep information about peers at different
granularities: schemas, schema properties, property value ranges and individual
property values. Both types of indices also contain statistics for optimization
purposes (size of documents, network characteristics, etc.). This information is
used to efficiently route queries only to super-peers and clients that may contain
an answer to the query.

In SQPeer, each peer provides the RDFS about the resources that wants to
make available in the network. Peers that employ the same schema belong es-
sentially to the same semantic overlay network (SON) [82]. Each peer advertises
the content (the data values or the schema) of its local database. The RDF
Schema defining a SON may contain numerous classes and properties not nec-
essarily populated in a peer’s database. For this reason, a peer uses virtual or
materialized views to specify the fragment of the schema for which all classes
and properties are (in the materialized scenario) or can be (in the virtual sce-
nario) described in a peer’s local database. These views may be broadcast to
(or requested by) other peers, thus informing the rest of the P2P system of the
information available in the peers’ databases.

The view propagation in SQPeer depends on the underlying architecture
(super-peer or DHT). In the super-peer architecture, a peer that connects to
a super-peer forwards its corresponding view and all super-peers are aware of
each other. This enables the processing of queries expressed in terms of differ-
ent RDFS schemata (or fragments). Source selection in a DHT-based SQPeer is
done as follows. Unique keys are assigned to each view pattern and hence peers,
whose hash values match those keys, are aware of the peer bases that are pop-
ulated with data answering of a specific schema fragment. An appropriate key
assignment and hash function is used for neighbor peers to hold successive view
patterns with respect to the class/property hierarchy defined in the employed
RDF Schema.

Query Planning and Evaluation. Query planning in Edutella is performed
dynamically and not at a single site because super-peers have a very limited
view of the whole P2P network (only the neighbors are known), and thus, no
comprehensive static plan in the traditional sense can be produced. The query
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plan chosen by the optimizer is split into a local plan and multiple remote query
plans. The remote plans are shipped to the referenced hosts where the opti-
mization process continues on the smaller query plans. The local query plan is
instantiated and combines the results of the remote query plans.

Queries in SQPeer are formulated according to the RDF schema that the
requester peer supports. The proposed query routing and query processing algo-
rithm can find the relevant peers that actually answer each query and generate
query plans by taking into account statistics on data distributions. SQPeer sup-
ports two kinds of query optimization for query planning, i.e., compile-time and
run-time optimization. The former uses heuristics and statistics to push as much
as possible processing to the same peers and decide at compile time among data,
query or hybrid shipping execution strategies. On the other hand, run-time op-
timization includes deciding at execution time on altering the data or query
shipping decision or discovering alternative peers for answering a certain part of
a query plan.

5 Federated RDF Stores

Probably one of the most distinguishing characteristics of a federated RDF store
is that the system is built in a bottom-up fashion. That is, existing pre-populated
stores come together in order to provide a way to evaluate queries across all of
them. Therefore, in federated systems data partitioning is essentially a non-issue
and the system has no control as to where data will reside.

Although, there is a considerable number of systems in this category, we are
going to limit our presentation to only a subset of them and try to highlight the
main design choices through them. So, in the following paragraphs we focus our
presentation to a handful of systems including FedX [75], SPLENDID [28] and
ANAPSID [4]. For a more extended and in-depth description of the systems,
including an evaluation of their performance the reader is encourage to consider
related surveys in this space [65, 72].

Metadata and Source Selection. Federated systems have no control or a
priori knowledge as to where data reside. Still, this information is critical for
the evaluation of queries since the system must be able to locate the data that
is relevant to the query at hand. In a nutshell, given a query there are two al-
ternative approaches in acquiring the necessary metadata and guiding source
selection. The first approach is to determine the metadata at query time. This
is mostly done by forming appropriate polling queries, usually in the form of
SPARQL ASK (boolean) queries and using the results of these queries to deter-
mine sources that are relevant to a query. The clear benefit of this approach is
that no additional metadata are maintained by the federated system (which may
need to be updated/maintained as the data in the underlying source change).
On the negative side, end-to-end query evaluation time might increase since in
addition to the actual query, metadata computation happens at query time and
the cost of evaluating ASK queries is not negligible. FedX [75] is an example
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of a system that maintains no metadata and uses query-time determination of
sources (though the system does provide an option for caching to avoid some of
the query time costs).

The second approach relies on actually maintaining in the federation some
form of description for the contents of the underlying sources. Such metadata can
take the form of voiD [6] descriptions used by SPLENDID [28], and can include
from high level information like the location of a dataset, to low level information
like statistics about the number of triples in a dataset or the number of instances
of a property in the data. Other metadata representations, like the one used by
ANAPSID [4], are inspired by work in relational databases and employ Local-
as-View (LAV) definitions [30] to describe the data stores in individual sources.
Yet another alternative includes building summarized indexes [51] describing the
contents of the underlying RDF sources, and using such indexes to guide query
evaluation [35].

What metadata is available to each system, and how well the system takes
advantage of the available metadata are both factors that influence the effective-
ness of a source selection strategy. In more detail, using the available metadata,
the objective of a source selection strategy is to be both sound and complete. In
this context, completeness is used to denote the desirable property that a source
selection strategy identifies all the sources that contain data relevant to the
query (and thus does not miss any query results). Unfortunately, not all systems
are complete with FedX being probably one of the few popular systems having
this property [72]. In terms of soundness, the term denotes the desirable prop-
erty that a source selection strategy should ideally involve only the sources that
contain data relevant to the query, and no other irrelevant sources. Soundness
is a property that is closely tied to performance. If a system is not sound then
it is bound to contact a lot of irrelevant sources, which results in unnecessary
work and prolongs query evaluation time. Not surprisingly, it is particularly hard
to achieve soundness in a federated environment and indeed all of the systems
do some amount of unnecessary work. Therefore, in the context of soundness,
the objective in most systems is minimizing this amount of work, ideally with-
out sacrificing completeness (see [72] for a study of how well existing systems
perform in terms of soundness).

Query Planning and Evaluation. Similarly to the centralized setting where
once we identify the relations that participate in a query we have to decide
the order with which the relations will be joined, in the federated setting once
the sources to be involved in the query evaluation are selected, the order with
which these sources will be processed needs to be determined. One of the main
objectives while deciding the proper ordering is to minimize the intermediate
results computed as the results from different sources are correlated (joined). The
available metadata, as well as statistics from the evaluated ASK queries during
source selection are commonly used to decide this ordering. As the ordering is
determined, each system must also decide the join strategy to be used. Bind
joins [29], hash joins and nested loop joins are typical strategies used across
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a variety of systems, with many systems offering more than one strategy. For
example, while FedX supports bind joins, SPLENDID supports both hash and
bind joins.

As the last step, the actual evaluation of the query takes place. There are still
several challenges to be addressed even at this point in the process. For exam-
ple, a single input query might spawn multiple sub-queries over the federated
data. Some of these sub-queries might retrieve the same result and therefore
one of the challenges is whether the federated system can actually detect these
duplicate answers. As another example, being by nature a distributed system,
the federation should be able to handle source failures. So, if in the middle of a
query evaluation one of the sources leaves the federation (by choice or due to a
crash), the system should be able to detect this failure and inform the remaining
sources that participate in the federated query.

6 Cloud-Based RDF Stores

The recent explosion in the size of data that is generated and used in various
applications, also termed as big data, has led to the emergence of new technolo-
gies that (i) can scale to large amounts of data, (ii) provide fault-tolerance, (iii)
allow for elastic allocation of machines and (iv) free the developer/user from
the burden of hardware and software administration. These technologies enable
the easy deployment of distributed architectures and are often termed as cloud
computing. Example systems offering such features, either as a service in the
cloud or in a private cluster, are the reputed NoSQL key-value stores [23]. At
the same time, interest in massively parallel processing has been renewed by
the MapReduce proposal [25] and many follow-up works, which aim at solving
large-volume data management tasks based in a cloud environment, or more
generally-speaking in a large-scale distributed platform. We first briefly describe
the functionalities offered by MapReduce and distributed key-value stores.

MapReduce. Interest in massively parallel processing has been renewed recently
since the emergence of the MapReduce framework [25] and its open source imple-
mentation Hadoop [10]. MapReduce has become popular in various computer-
science fields as it provides a simple programming paradigm which frees the
developer from the burden of handling parallelization, scalability, load balanc-
ing and fault-tolerance. MapReduce processing is organized in jobs. Each job
consists of a map and a reduce phase, separated by a shuffle (data transfer)
phase. The map phase is specified by a user-defined function which takes as
input (key, value) pairs, performs some tasks on these (if needed) and outputs
intermediate pairs (ikey, ivalue). These pairs are shuffled through the network
and are given as input to the reduce phase. The distributed file system (DFS) of
Hadoop, HDFS, splits data into blocks and each map task operates on a separate
block of data. The nodes of the cluster run in parallel one or more map/reduce
tasks. A comprehensive survey on MapReduce and its extensions can be found
in [27, 71].
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Key-value stores. Distributed key-value stores provide very simple data struc-
tures based on the concept of (key, value) pairs. Such stores typically handle
items, each of which consist of a key and several attributes; in turn, an attribute
consists of a name and one or several values. For convenience, most key-value
stores also support named collections of items, which are typically called tables.
An overview of various key-value stores can be found in [23].

In the rest of the section we give an overview of the most recent advances in
cloud-based RDF stores with a focus on systems that store data in the MapRe-
duce file system, in NoSQL key-value stores, in multiple centralized RDF stores
or in a commercial cloud. A more detailed survey in this research area can be
found in [42].

6.1 RDF Stores on MapReduce and DFS

This category includes works that use MapReduce and its underlying distributed
file system. These systems are built to make the most out of the parallel process-
ing capacities provided by the underlying MapReduce paradigm. RDF data is
stored in files which are split by the distributed file system in the cluster nodes.
Their negative aspect from the perspective of the data store is that they do not
have efficient fine-grained data stores to rely on. Representative works include
SHARD [69], HadoopRDF [38], RAPID+ [45,67] and PigSPARQL [73].Metadata
collection and source selection in these systems is handled by the MapReduce
framework (the namenode and scheduler) and thus, is a non-issue.

Data Partitioning. In these systems the user specifies how the data is parti-
tioned at the file level: the user/system uploads to the system files which contain
the RDF triples. There are two commonly used ways to store the data in a file
system. In the first one, the data stored in the files are stored based on the triple
model, i.e., one triple per line in each file. The second approach contains works
that organize the data in predicate-based files. Each predicate file contains the
subjects and objects of triples with a specific predicate. Conceptually the first
approach resembles the monolithic approach used in single-source approaches,
while the latter resembles the vertical partitioning where one relation is created
per predicate (see Section 3). As MapReduce does not provide fine-grained in-
dices, the latter way is preferred because it decreases the amount of data that
need to be scanned during query evaluation. [69,73] belong to the first category,
while [38, 67, 86] belong to the second one. Note that the placement of the data
blocks is performed by the underlying distributed file system.

A different approach is followed in EAGRE [85] where the goal is to reduce
the I/O cost during query processing. First, the RDF graph is compressed to
an entity-based graph where entities (subjects of triples) with similar proper-
ties are grouped in class entities. Then, the compressed graph is partitioned
with METIS [54], a graph partitioning tool, into equal to the size of the cluster
partitions. Triples are placed in the partition their entity class belongs to.
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Query Planning and Evaluation. Usually query planning takes place at a
client node and concerns the query decomposition of a query into subqueries
to be processed in parallel. The query decomposition can lead to either left-
deep or bushy query plans being built. Bushy query plans are better suited
for parallel query evaluation as they can exploit both intra- and inter-operator
parallelism. However, their search space is very large compared to the one of left-
deep trees and for this reason most works build simple left-deep trees, such as
SHARD [69] and PigSPARQL [73], or use a hybrid approach where the leaves of
the query plan is in bushy shape while the intermediate results are processed in
a left-deep manner such as RAPID+ [67]. The only work that builds fully bushy
plans is HadoopRDF [38] using a heuristic approach to minimize the number of
MapReduce jobs for pruning the search space.

Then, query evaluation is performed using MapReduce jobs. For left-deep
query plans one job is performed per join. Since MapReduce does not provide a
join functionality, the system has to implement its own join operators. There is
wide literature on how to implement a join in MapReduce with the repartition
and broadcast join to be the most common ones. The interested reader may refer
to [5, 16].

6.2 RDF Stores on Top of NoSQL Key-Value Stores

There are many works that use NoSQL key-value stores as back-ends for storing
and indexing RDF data. These systems benefit from the efficient and fine-grained
storage and retrieval of the key-value stores, however, they suffer in more com-
plex functionalities such as joins. Representatives of the second category include
systems such as Rya [64] which uses Apache Accumulo [8], Trinity.RDF [84]
which is built on top of a in-memory key-value store [77], CumulusRDF [48]
based on Apache Cassandra [9], and H2RDF+ [61] built on top of HBase [11].
Similarly with the previous set of works on MapReduce, metadata collection and
source selection is performed by the key-value store opaquely to the user and we
thus, omit any discussion about them.

Data Partitioning. Data partitioning in key-value stores amounts to the choice
of indices that will be build by each system. As shown in Section 3, centralized
RDF stores usually use extensive indexing schemes that enable fast data access
for all triple patterns and efficient performing of merge-joins. This extensive
indexing scheme has a significant storage overhead which is amplified in a cloud
environment where data is also replicated for fault-tolerance reasons. For this rea-
son, most RDF stores built on top of key-value stores employ a subset of these
indices which is sufficient for matching efficiently all possible triple patterns. The
three permutationsmassively used are subject-predicate-object (SPO), predicate-
object-subject (POS) and object-subject-predicate (OSP). Typically systemsma-
terialize each of one of these indices in a separate table in the key-value store. The
choice of the keys and values highly depends on the underlying functionality of the
key-value store, e.g., if it provides a range scan over the key space. For instance,
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each of the subject, predicate, object can be mapped to a key in the key value
store, or a concatenation of two or three of the RDF elements can be used as key
if a range scan is supported by the key-value store.

Query Planning and Evaluation. As key-value stores do not allow for per-
forming joins on the server-side, query planning and query evaluation is often
performed at a single site. This is simply done by fetching the triples from the
key-value store that match the individual triple patterns and performing the join
locally at the client-side. This approach is followed by most systems, e.g., [48,64].
A hybrid approach is proposed in H2RDF+ [61] where either a centralized local
join is performed at the client side or a MapReduce job is instantiated depending
on the selectivity of the join. Trinity.RDF [84] uses a graph-based approach by
navigating the RDF graph and finding matches to the query.

6.3 Approaches Using Multiple Centralized RDF Stores

Within the third category, centralized RDF stores distributed among multiple
nodes are used to exploit parallelization such as in [36, 37]. These systems are
based on a master/slave architecture, where the master partitions and places
the RDF triples in the slave nodes. Each slave node stores its local RDF triples
in a centralized RDF store such as RDF-3X.

Data Partitioning. The goal is a data partitioning scheme that enables high
parallelization during query evaluation while striving to minimize communica-
tion among the slave nodes. In [37] a graph partitioning tool, called METIS [54],
is used to partition the RDF graph into as many partitions as the number of
nodes so that a minimum number of edges is cut, i.e., the minimum number of
triples have their subject and object in different partitions. Placement is done
by assigning each triple in the partition its subject belongs to, termed as 1-hop
directed guarantee, or to the partitions that both the subject and object belongs
to, termed as 1-hop undirected guarantee. This leads to replicating the triples
that are on the edge cuts. There is also the possibility to allow for further repli-
cation of those triples that are at partition boundaries. A directed (undirected)
n-hop guarantee is achieved when any triples forming a directed (undirected)
path of length n will be located within the same partition. A similar approach
is followed in [36] with the difference that replication occurs only in the parts of
data that are certain to be accessed for a given query workload.

Metadata and Source Selection. Although data is partitioned following a
specific scheme, in [36, 37] there is no metadata information for mapping the
triples to the nodes they are stored. Therefore, a subquery is sent to all the
sources to be answered.
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Query Planning and Evaluation. Query planning and execution is per-
formed by decomposing the query to subqueries that can be completely answered
by the underlying RDF store. If a query can be completely answered by the un-
derlying RDF store then no communication is required. The answers of the query
is the union of the individual results. In any other case, network communication
is necessary to join the intermediate results of the query which is done in the
MapReduce framework.

6.4 RDF Stores in Commercial Clouds

The first store that proposed an RDF store built in a commercial cloud is Stratu-
store [80] which relies on Amazons SimpleDB [13], an early developed key-value
store of Amazon Web Services. In Stratustore, RDF data is indexed in the key-
value store and query processing is performed at the client side running at an
EC2 machine.

In AMADA [12, 19], a cloud-resident RDF store, a different approach is fol-
lowed. Raw RDF data reside in Amazon’s storage service (S3) as simple files and
a file index built in Amazon’s key-value store keeps metadata on which data can
be found in which files. Source selection is performed by consulting the indices
built to retrieve the files that contain triples that match the query. During query
evaluation the triples contained in the files selected by the index are cached in
a centralized RDF store where query answering is performed.

7 Conclusions

We have presented an overview of query processing techniques for RDF
databases. We identified a set of tasks that are of great importance for RDF
query processing and that a system should address. These include metadata col-
lection, source selection, data partitioning and query planning and execution in
a decentralized environment and storage/indexing and query planning and eval-
uation in a centralized system. We analyzed each one of these tasks in different
architectures. We first discussed issues related to single-source RDF stores and
then navigated through P2P systems, federated architectures and cloud-based
proposals.

There are numerous of open problems that are yet to be solved. These range
from more advanced techniques for query optimization (query decomposition,
join ordering, etc.), to building more sophisticated indices or materialized views
for speeding up query performance. An important aspect that is usually ne-
glected in the works we have presented in this chapter is RDFS reasoning. RDFS
reasoning is an essential functionality of the RDF model and should, therefore,
be taken into account when building systems for answering SPARQL queries.
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Abstract. The use of graphs in analytic environments is getting more
and more widespread, with applications in many different environments
like social network analysis, fraud detection, industrial management,
knowledge analysis, etc. Graph databases are one important solution
to consider in the management of large datasets. The course will be ori-
ented to tackle four important aspects of graph management. First, to
give a characterization of graphs and the most common operations ap-
plied on them. Second, to review the technologies for graph management
and focus on the particular case of Sparksee. Third, to analyze in depth
some important applications and how graphs are used to solve them.
Fourth, to understand the use of benchmarking to make the requirements
of the user compatible with the growth of the technologies for graph
management.

1 Introduction to Graphs

A graph G is an ordered pair G = (V,E) consisting of a set V of nodes (vertices)
together with a set E of relationships (edges), where E ⊆ V × V . In addition to
the plain definition of graph, there are some characteristics that are relevant to
mention and that will be useful for defining graph data models upon which we
develop this paper. We summarize them in the following points.

– Attributes: Different types of information may be associated to nodes and
edges in order to enrich the graph-based representation. Such information is
typically a string or numerical values, which indicate some properties of the
nodes or their edges. However any other type of information such as enumer-
ated values or vectors might be also used. For instance, for the particular
case of edges, some graphs include numerical attributes that quantify the re-
lationship, which is usually interpreted as its corresponding length, weight,
cost or intensity. Moreover, many applications assign a unique identifier for
each node and edge of the graph (this could be interpreted as an attribute
called ”ID”), useful for enumeration purposes. The information attached to
nodes and edges can be very influential in the result of an algorithm or
analysis, thus taking into account this information is very critical.
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– Directed: The relation between two nodes can be symmetric or not, depend-
ing on the problem at hand. If the relation is symmetric, it has no particular
direction, it is then called undirected. On the contrary, if the relation is not
symmetric, edges differentiate between the head and the tail. The tail of the
edge is the node from which the edge starts, and the head of the edge is the
node which the edge points to. In this case the edges are said directed. Since
an undirected edge can be always represented as two directed edges, each
one in a reverse direction of the other, undirected graphs are a particular
case of directed graphs. This property will determine some measures over
graphs, such as connectivity or path lengths are computed.

– Labels: In certain applications, different labels (or types) of nodes and edges
may be considered. Such labeling or typing impacts the result of operations.
For example, in a social network scenario, friendship relationships may be ei-
ther “positive” or “negative” [1], drastically changing the outcome of certain
algorithms.

– Multigraphs: Multigraphs are graphs in which two nodes can be connected
by more than one edge. This situation commonly appears when two nodes
are connected through different types of relationships. For instance, in a
mobile telephone network, where phone numbers are represented by nodes
and telephone calls by edges, each call between two phones (nodes) might
be represented by a particular edge, thus leading to nodes connected with
more than one edge when more than one call exists between two telephone
numbers.

– Hypergraphs: Hypergraphs are a generalization of graphs, where edges are
substituted by hyperedges. In contrast to regular edges, a hyperedge connects
an arbitrary number of nodes instead of two. Hypergraphs are used, for ex-
ample, for building artificial intelligence models [2]. Although Hypergraphs
appear commonly along different types of networks, in practice they are usu-
ally represented as bipartite networks [3], since it facilitates its representation
and posterior treatment by the algorithms.

– Hypernodes: A hypernode graph is another graph generalization, where
nodes are substituted by hypernodes. A hypernode is an entity that con-
tains a set of nodes and edges (i.e. a graph). A regular node is equivalent to
an hypernode that contains a single node and no edges [4]. Hypernodes are
used to nest graphs inside graphs. They represent both simple and complex
objects such as hierarchical, composite and cyclic objects, as well as map-
pings and records. A key feature is that they have the inherent ability to
encapsulate information.

Hypergraphs and hypernodes are formally well defined, but their popularity
is limited because of their additional complexity. Unless otherwise stated, in
this paper we will suppose directed attributed multigraphs. We will denote the
number of nodes in a graph by n and the number of edges by m.
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1.1 Graph Characterization

Real graphs are typically very different from graphs following the Erdös-Renyi
model (random graphs) [5]. Leskovec et al. [6], analyzed over 100 real-world
networks belonging to the following fields: social networks, information/citation
networks, collaboration networks, web graphs, Internet networks, bipartite net-
works, biological networks, low dimensional networks, actor networks, and
product-purchaser networks. The size of those networks varied from a few hun-
dred nodes to millions of nodes, and from hundreds to more than one hundred
million edges. We note that although they might seem large, the graph data
sets of some current real applications are significantly larger: for example Flickr
accounts more than 6 billion photographs that can be tagged and rated [7], and
Facebook is publishing more than 25 billion pieces of content each month. For
these large graphs, one of the most interesting aspects is that in general most
graph metrics (such as the node degree or the edge weight) follow power law
distributions [6, 8, 9], and hence some areas of the graph are significantly denser
than others.

With respect to the characterization of graphs, we summarize some properties
that often appear in these real graphs [10], and that will be useful to characterize
the graphs from in the use cases below.

– Large Component: This property states that for undirected graphs, there
is typically a large component that fills most of the network (usually more
than 50% and not infrequently 90%), while the rest of the network is divided
into a large number of small components disconnected from the rest. There
can be networks where there is only one component filling all the network
(for instance Internet, or WWW if acquired from one single crawler). For
directed networks, there is usually one large weakly connected component
and other small ones in a similar way as in the undirected case. For strongly
connected components there is typically one strongly connected component
and a selection of small ones (for instance, in WWW network, the largest
strongly connected component fills about 25% of the network). Associated
with each strongly connected component there is an out-component and an
in-component. Acyclic networks do not have strongly connected components.
Citation networks for instance, which are considered almost acyclic, have few
small strongly connected components of 2-3 nodes but not larger ones.

– Small-World Property: A small-world network is a type of network in
which most nodes are not neighbors of one another, but most nodes can be
reached from every other by a small number of hops or steps. In other words,
the average diameter of each connected component is small. That is, from
a given node there is a short path to reach the majority of the remaining
nodes in the connected component. One interesting property of the small-
world networks is that the distance L between two randomly chosen nodes
in the same component grows proportionally to the logarithm of the number
of nodes n in the network, i.e. L ∝ log(n), which means that even for huge
networks the diameter remains very low compared to the number of nodes
in the network.
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– Scale-Free Networks: Although the exact connection patterns between
nodes may differ between graphs, the macroscopic structure of the degrees
is often very regular and fits known statistical distributions. We denote the
degree of a node as k, or in other words the number of edges attached to
that node. Then, the proportion of nodes of the graph that have degree k is
pk = # nodes with degree k

n . Thus, pk can also be seen as the probability that
a randomly chosen node has degree k.
Degree distributions from graphs typically follow power law distributions,
that correlate exponentially the number of nodes with a given degree to its
frequency. The most popular statistical distribution is the Zipf that defines
pk = C ·k−α, where C is a normalization factor. These distributions are often
plot in logarithmic scale because they trace a straight line since ln(pk) =
−α · ln(k) + ln(C). The most common values for α are between 2 ≤ α ≤ 3
(see [3] for a complete list of networks with the corresponding values of α).
We note that, for some graphs, the Zipf distribution does not model well
the nodes with few connections (do not fit well the straight line), and an
alternate process called Zipf with cut-off is used. This procedure removes
the small degree nodes when the α for a Zipf is estimated.
Networks that follow power-law degree distributions are called scale-free net-
works because their degree distribution look similar for all graph sizes. To
give an example, in the Internet network[3], most of the nodes have small
degrees but there is a tail containing some nodes with high degree (the high-
est degree is 2407, which means that such node is connected to about 12%
of the nodes in the network). Such well connected nodes are called hubs.

– Small Average Degree: The maximum average degree of a graph is (n−
1) = O(n), which corresponds to a structure called clique that connects all
pairs of nodes. These graphs are described as dense because they have many
edges. However, the study of real graphs has determined that such dense
graphs are not common for real datasets [11]. Graphs that represent real
world data have an average degree that is small compared to the number of
nodes in the graph. The average degree typically remains in the range be-
tween 3 and 100, even for graphs with millions of nodes [12]. For graphs that
grow over time, it has been found that the average degree tends to increase
slightly faster than the number of nodes [11], but the growth is so slow that
it is rare to find real graphs with average degrees over a thousand [12].
Graphs with small average degree are also referred as sparse graphs. The
notion of sparse comes from the matrix representation of the graph, which
indicates with one the presence of an edge, and zero otherwise. Sparse matri-
ces are those that have a large number of zeros, and similarly, sparse graphs
are those whose matrix representation has a large number of zeroes.

– Large Clustering Coefficient: Graphs from real datasets have often a
clustering coefficient larger than expected by pure chance. This is an effect
of transitive relations among members of the network. In other words, “the
friends of my friends are also my friends”. Graphs usually have observable
communities that are groups of nodes structurally strongly related among
them, but not structurally related to the rest of the graph.
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1.2 Graph Operations and Queries

A graph operation is a computation on the graph that is directly interpreted by
the engine of the GDB. A graph query is a user statement that requests a piece
of information from the database, which requires one or more operations to be
computed.

There is a set of basic operations that is available in most GDBs, which
includes: (i) get atomic information from the graph such as getting a node,
getting the value of an attribute of an edge, or getting the neighbor nodes of
a specific node; and (ii) create/update/delete the nodes/edges/attributes of the
graph.

Then, there are graph queries that are more complex and which are built on
top of those basic operations. Some GDBs implement subsets of graph queries,
such as graph traversals, as operations that are directly interpreted by the GDB.
Therefore, depending on the software under analysis some queries can be referred
as operations, too. The most common families of graph queries are the following:

– Traversals: Traversals are queries that, given a set of starting nodes, explore
recursively the neighborhood of those nodes until a terminating condition,
such as a fixed number of steps or the arrival to a target node, is fulfilled.
Consider for instance, the computation of the shortest path between two
nodes, which is the shortest sequence of edges (or the smallest addition of
edge weights in the case of weighted graphs) that connects two nodes. In a
directed graph the direction is restricted to outgoing edges from the tail to
the head. Note that shortest paths may be constrained by the value of some
node or edge labels/attributes, as in the case of finding the shortest route
from two points, avoiding a certain type of road, for instance. Another typical
traversal query is the computation of k-hops. That is the query returns all
the nodes that are at a distance of k edges given a source node. A particular
case that is worth to mention because it is widely used in other queries is
the 1-hops (i.e k = 1). In this case, the query returns all the neighbors of the
source node, also known as the neighbors of the node. Examples of queries
using 1-hops include calculating the nearest neighborhood in recommender
systems, obtaining a particular user’s neighborhood with similar interest, or
in web ranking using hubs and authorities.

– Graph Metrics: The objective is basically the study of the topology of the
graph in order to analyze their complexity and to characterize graph objects.
It is used for instance to verify some specific data distributions, to evaluate
a potential match of a specific pattern, or to get detailed information of
the role of nodes and edges. In several situations graph measurement is the
first step of the analytical process and it is widely used in social network
analysis and protein interaction analysis. Typical graph metrics include: the
hop-plot, which, given a source node, measures the rate of increase of the
neighborhood depending on the distance to such source node; the diameter,
that is, the largest distance between any pair of vertices in the graph; the
effective diameter, which is defined as the minimum number of hops in which
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90% of all connected pairs of nodes can reach each other; the density, i.e. the
portion of all possible edges currently present in the graph; or the clustering
coefficient, which measures the degree of transitivity of the graph.

– Component Finding: A connected component is a subgraph of the original
graph in which there exists a path between any pair of its nodes. With this
definition at hand, it is straightforward to see that a node only belongs to
a single connected component of the graph. Finding the connected compo-
nents of a graph is of capital importance in many queries, and it is usually
used during pre-processing steps in order to help further computations. Re-
lated to connected components, there are some helpful queries to study the
vulnerability of a graph, or the probability to separate a connected compo-
nent into two other components. For instance, finding bridges, that are edges
whose removal would imply separating a connected component, is important
in many applications. Another example is the cohesion of the graph which
can be computed by finding the minimum number of nodes that disconnect
the component if removed.

– Community Detection: A community (or cluster) is generally considered
to be a set of nodes densely connected among them and poorly connected to
nodes outside the community. This effect has been found in many real-world
graphs, especially social networks, where people tend to form compact groups
having similar profiles in terms of hobbies, jobs, etc. Algorithms for finding
communities include the minimum-cut method, dendograms (communities
formed through hierarchical clustering), methods based on clique detection
or other clustering techniques, such as the k -means clustering algorithm.

– Centrality Calculation: Within the scope of graph theory and network
analysis, centrality measures aim at determining the relative importance of
a vertex within the graph, based on how well this node connects the network.
For instance, in a social network, the centrality of a node would mean how
influential a person is within the social network, or how well-used a road is
within an urban network. The most well-known centrality measures are the
degree (number of links incident upon a node), closeness (which measures
the mean distance from a vertex to other vertices) and betweenness (that
quantifies the number of times a node acts as a bridge along the shortest
path between two other nodes) centrality.

– Pattern Matching: Graph matching is the specific process of evaluating
the structural similarity of two graphs, and is usually categorized into ex-
act and approximate graph matching. Exact matchings may include finding
homomorphisms or (subgraph) isomorphisms. Approximate matchings may
include error-correcting (subgraph) isomorphisms, distance-based matching,
etc. Thus pattern matching queries aim at answering whether a given pat-
tern (graph), matches (in one of the different matching variants) a part of
another graph.

– Graph Anonymization: The anonymization process generates a new graph
with properties similar to the original one, avoiding potential intruders to rei-
dentify nodes or edges. This problem gets more complex when the nodes and
edges contain attributes. The anonymization of graphs becomes important
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when several actors exchange datasets that include personal information. To
give a couple of examples, two anonymization procedures are the k -degree
anonymity of vertices, or the k -neighborhood anonymity, which guarantees
that each node must have k others with the same (one step) neighborhood
characteristics.

– Other Queries: There are other queries related to the applications pre-
sented later in this paper. For instance, finding similarity between nodes in
a graph has shown to be very important in social network analysis. An ex-
ample of this is structural equivalence, which refers to the extent to which
nodes have a common set of linkages to other nodes in the system. Also,
specially for recommendation systems, ranking the nodes of a graph is an
important issue (for instance PageRank).

We summarize the previously described operations and queries in Table 1.
We note that these graphs operations and queries are not homogeneous from
the computational complexity point of view, because they range from constant
time to NP-complete complexity. We observe that applications compute a rich
set of complex graph queries, using a small set of basic operations that are shared
by all scenarios.

2 Graph Databases

A graph database (GDB) is any storage system that uses graph structures with
nodes, edges, and properties to represent and store data. Some graph database
industrial projects are, for example, Neo4J1, a Java-based open-source graph
database engine; Sparksee2, a multi-platform graph database management sys-
tem for efficient graph management in memory constrained environments; Hy-
perGraphDB3, an embeddable graph database with generalized hypergraphs;
OrientDB4, an open source document-graph database; or InfiniteGraph5, a dis-
tributed and cloud-enabled graph database. In these systems, data manipulation
is performed by means of graph operations and types. Operations are character-
ized by different aspects ranging from the extension of the graph being accessed
to the answer they give.

2.1 Operation Categorization

The computational requirements of graph queries are characterized by their het-
erogeneity. For instance, some queries may access the full graph, while others
may only request the degree of a single node. In this section, we build up a set
of categories to classify the different operations that can be issued to a graph
database.
1 http://neo4j.org
2 http://www.sparsity-technologies.com/
3 http://www.hypergraphdb.org/index
4 http://www.orientdb.org/index.htm
5 http://www.infinitegraph.com/

http://neo4j.org
http://www.sparsity-technologies.com/
http://www.hypergraphdb.org/index
http://www.orientdb.org/index.htm
http://www.infinitegraph.com/
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– Transformation (mutating)/Analysis (non-mutating):We distinguish
between two types of operations to access the database: transformations and
analysis operations. The first group comprise operations that alter the graph
database: bulk loads of a graph, adding/removing nodes or edges to the
graphs, create new types of nodes/edges/attributes or modify the value of
an attribute. The rest of queries are considered analysis queries. Although
an analysis operation does not modify the graph, it may need access to sec-
ondary storage because the graph or the temporary results generated during
the operation resolution are too large to fit in memory.

– Cascaded/Non-cascaded Access: We differentiate two access patterns to
the graph: cascaded and not cascaded. We say that an operation follows a
cascaded pattern if the operation performs neighbor operations with a depth
at least two. For example, a 2-hop operation follows a cascaded pattern.
Thus, a non cascaded operation may access a node, an edge or the neighbors
of a node. Besides, an operation that does not request the neighbors of a
node, though it may access the full graph, is a non cascaded operation. For
instance, an operation that returns the node with the largest value of an
attribute accesses all nodes, but since it does not follow the graph structure
is a non-cascaded operation.

– Global/Neighborhood Scale: Depending on the number of nodes ac-
cessed, we distinguish two types of queries: global and neighborhood queries.
The former type corresponds to queries that access the complete graph struc-
ture. In other words, we consider as global queries those that access to all
the nodes and/or the edges of the graph. The latter queries only access to
a (small) portion of the graph. Examples of global operations may include
finding the node with the highest degree, or the number of edges in the
graph. Neighborhood operations may include a k-hop operation from one
node, for instance.

– Attributes Accessed: Graph databases do not only have to manage the
structural information of the graph, but also the data associated to the
entities of the graph. Here, we classify the queries according to the attribute
set that it accesses: edge attribute set, node attribute set, mixed attribute
set or no attributes accessed.

– Result: We differentiate three different types of results: graphs, aggregated
results, and sets. The most distinctive output for a graph database opera-
tion is another graph, which is ordinarily a transformation, a selection or a
projection of the original graph, which includes nodes and edges. An exam-
ple of this type of result is getting the minimum spanning tree of a graph,
or finding the minimum length path that connects two nodes. The second
type of results build up aggregates, whose most common application is to
summarize properties of the graph. For instance, a histogram of the degree
distribution of the nodes, or a histogram of the community size are com-
puted as aggregations. Finally, a set is an output that contains either atomic
entities or result sets that are not structured as graphs. For example, the
selection of one node of a graph or finding the edges with the greatest weight
are set results.
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3 Case Study: The Sparksee Graph Database

Sparksee6 is an efficient GDB implementation based on bitmap representations
of the entities. It is devised to directly handle labeled and directed multigraphs
containing an undetermined number of attributes in both nodes and edges. In [13,
14], the authors propose a logic bitmap-based organization to store a graph that
does not fit in memory and has to be handled out-of-core. In this scenario, several
aspects must hold:

– Computing an operation should not imply loading the whole graph into
memory.

– The graph organization must be as compact as possible in order to fit as
many graph structures in memory as possible.

– The most commonly used graph-oriented operations, such as edge naviga-
tion, should be executed as efficiently as possible.

– Attributes in the graph should be accessed very fast.

In Sparksee, all the nodes and edges are encoded as collections of objects, each
of which has a unique oid that is a logical identifier. Sparksee converts a logical
adjacency matrix into multiple small indexes to improve the management of
out-of-core workloads, with the use of efficient I/O and cache policies. It encodes
the adjacency list of each node in a bitmap, which for the adjacent nodes has
the corresponding bit set. Given that bitmaps of graphs are typically sparse, the
bitmaps are compressed, and hence are more compact than traditional adjacency
matrices.

3.1 Sparksee Structures

The basic logical data structure in Sparksee is a labeled and directed attributed
multigraph. In this system, nodes and edges are uniquely identified by a set of
ids separated into two disjoint domains (oids and eids), and the whole graph
is built using a combination of two different types of structures: bitmaps and
maps.

A bitmap or bit-vector is a variable-length sequence of presence bits that
denotes which objects are selected or related to other objects. They are essential
for speeding-up the query execution and reducing the amount of space required
to store and manipulate the graph. In a bitmap, each bit is only set to 1 if
the corresponding oid is selected. The first bit in a bitmap is always considered
to be in position 1 (the first valid oid) and the last one is the last bit set (the
highest oid considered in the bitmap). In order to know the length of the bitmap,
the number of actual bits set to 1 in the structure is kept updated. The main
advantage of this structure is that it is very easy to manage, operate, compress,
iterate, etc.

A map is an inverted index with key values associated to bitmaps, and it is
used as an auxiliary structure to complement bitmaps, providing full indexed
access to all the data stored in the graph.

6 Available at http://www.sparsity-technologies.com/

http://www.sparsity-technologies.com/
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These two types of structures are combined to build a more complex one: the
link. A link is a binary association between unique identifiers and data values. It
provides two basic functionalities: given an identifier, it returns the value; and
given a value, it returns all the identifiers associated to it.

3.2 Graph Representation Using Bitmaps

A Sparksee graph is built using a combination of links, maps and bitmaps to
provide a logical view of a labeled and directed attributed multigraph.: each
node or edge type has a bitmap which contains the oids of all the objects (nodes
or edges) that belong to the type; each attribute of a type is a link; and, finally,
the edges are decomposed into two different links, one for the tails, where for
each node contains all the edges outgoing connected to it, when this node acts
as their tail or origin, and in the same way another one for the heads which
contains the ingoing edges. Thus, an edge is represented as a double join, one
between the tail and the edge, and the other one between the head and the edge.
If the edge is undirected, then both nodes of the edge are set as tails and heads
for the edge.

All Sparksee graphs are built as a collection of bitmaps: one for each type to
store the objects in the database, one for each distinct value of each attribute,
one for each node that is the tail of one or more edges, and finally one for each
node that is the head of one or more edges. With these bitmaps, solving distinct
operations such as selecting all the objects of a type, retrieving the objects that
have a specific value for an attribute or finding the number of edges or degree
of a node, becomes straightforward.

4 Limitations of Graph Databases

Though graph databases offer a very rich data model and, as illustrated in Sec-
tion 2.1, support diverse query types, they are not without limitations. The
following list highlights the limitations that apply to graph databases (from one
or more vendors) today.

– Declarative interface:most commercial graph databases can not be queried
using a declarative language. All vendors provide an imperative program-
ming interface, often with multiple bindings in different languages, but few
also offer a declarative query interface.

– Vectored operations (e.g. scatter/gather, map/reduce, etc.): a method
of input and output by which a procedure sequentially writes data from
multiple buffers to a single data stream or reads data from a data stream to
multiple buffers. To horizontally scale it is essential that a database supports
this type of data access.
To our knowledge, no graph databases support vectored operations today.
Current graph databases (like relational databases) tend to prioritize low-
latency query execution over high-throughput data analytics. As such, the
omission of this functionality is likely the result of a conscious design decision.
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Fig. 1. Sample representation of a graph in Sparksee

Graph analytics frameworks [15–19] - designed for high-throughput process-
ing of large data volumes - do offer this functionality. However, these systems
are never transactional, rarely persistent, and most often prioritize through-
put at the cost of latency - they are therefore not considered graph databases.

– Data partitioning: most graph databases do not include the functionality
to partition and distribute data across multiple networked computers. This
is essential for supporting horizontal scalability, too.
There are many reasons for this [20] , including the rapidly reducing cost of
main memory, making vertical scaling a viable solution for larger installa-
tions than was previously possible. Many of the other reasons can be reduced
to the non-functional requirement of providing low-latency query execution.
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As, by definition, graph data has a significant amount of data dependencies,
it is difficult to partition a graph in a way that would not result in most
queries having to access multiple partitions.

In contrast nearly all graph analytics frameworks do have inbuilt support
for partitioning. This is largely due to the workloads they target. Whereas
graph databases aim to provide low-latency query execution, graph analytics
frameworks are optimized for high-throughput processing of massive data
volumes, making it significantly easier for the latter to mask the cost of
network latency.

– High throughput data ingestion: due to lacking support for vectored
operations and data partitioning, the data ingest performance of most graph
databases is limited by the write throughput of a single storage device (either
a hard drive, a RAID or any distributed storage).

– Query optimization: the ability of the system to transparently optimize
the execution plan for any given query. Naturally, most graph databases can
not do this as they lack a declarative interface.

– Data schema and constraints: the schema of a database system is its
structure described in a formal language. Schema refers to the organization
of data, which describes how the database will be constructed. The formal
definition of schema is a set of formulas, a language, which describes the
integrity constraints imposed on a database. In effect, a populated database
can be considered an instance of its schema.

Schema can make application development a less error-prone task, but is
also beneficial as it enables a number of other powerful features, including
the ability for the database to perform enhanced query optimization. On the
other hand, strict schema enforcement is sometimes considered disadvanta-
geous by those who develop applications for dynamic domains - for example,
domains dealing with user-generated content, where the structure of data
may change from one day to the next. For precisely this reason, many graph
database vendors have opted to either support a weaker notion of schema or
to avoid it entirely.

4.1 Sparksee Example

Figure 1 shows an example of a graph extracted from a bibliographic data source
(upper side), and the mapping of the previous graph into the internal structures
as defined above (lower side).

The graph contains four object types: author (ovals) and paper (boxes) nodes,
writes and references edges. These types are represented in the gray boxes at the
right, where each type has one bitmap with its collection of objects, represented
in the lighter gray frame, and their inner boxes represent the attributes, with
one link each. Bitmaps are variable length sequences of 0’s and 1’s prefixed with
the number of bits set. Links have the name, the collection of distinct values and
the bitmap for each value. Maps are hidden in this representation because they
are only used to index collections, for example the types or the attribute values.
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For example, if we look at the node type paper, we can see that there are 3
bits set in bitmap B5, one for each node. There is also a bitmap for each distinct
attribute value (L1 to L5 in the example) which indicates the oids of the objects
containing this value in the attribute. If an object does not have any value then
it will not appear in any bitmap of the attribute. Thus, the union of all the
bitmaps of all the values of an attribute is equal to or a subset of the bitmap
of the objects of the type. For example, (B6 ∪B7 ∪B8) = B5 in attribute title
of paper, (B11 ∪ B12) ⊂ B5 but because node 5 has no value for the attribute
year.

There are two extra links at the rightmost side: one for the tails and the other
for the heads. Each one has one value for each node that has edges, with its
corresponding bitmap containing the edges where the node is connected. Again,
the union of all the bitmaps of each of these links is equal to the union of all the
collections of edge types, because all edges have one tail and one head. We can
verify that (B17 ∪B18 ∪B19 ∪B20) = (B21 ∪B22 ∪B23) = (B13 ∪B16).

As an example of the meaning of the structures, in the bitmaps we have
marked all the occurrences of the oid 6, which identifies the node of the PAPER
with title ’TITLE-Z’. These are the value ’6’ in L6 and L7, and the bit ’6’ in
bitmaps B5, B8, B9 and B12. Note that B5 tells us it is a node PAPER; and
B8, B9 and B12 show which are the values for the attributes of this node (title,
conference and year respectively). Finally, L6 has the edges where this node is
the tail, and L7 which are the edges where it is the head.

As we can see, with these structures now it is very easy to define graph-
based operations just by combining one or more bitmap and map operations.
For example:

– Number of authors: |B1| = 3
– Papers in conference ’CONF-R’ of year 2007: B9 ∩B11 = 4.
– In-degree of paper ’TITLE-Y’: |B22| = 2

In conclusion, this representation presents some advantages inherent to the
structures and others more subtle that appear as a consequence of how the
structures are being used. For example, the use of bitmaps directly provides
some statistics without extra penalties, like the number of objects for each type,
or the number of objects that have the same value for an attribute, the equivalent
of a clustering or a GROUP BY / COUNT(*) operation of the relational model.
The out-degree and in-degree of nodes are also the count of a bitmap stored into
the tails or heads collections respectively. Also, the capability to add or remove
attributes becomes easier because they are independent from the object storage.
This is crucial for graph mining algorithms that typically require the creation of
temporary attributes like weights or distances.

5 Use Case 1: Social Network Analysis

In this section, we introduce the first of our use cases, the Social Network Anal-
ysis (SNA). First, we give a brief introduction about SNA. After that, we char-
acterize the use case, giving the underlying graph model and its characteristics,
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and introducing the types of operations performed on social networks. This way,
we fully characterize the use case in order to better understand which charac-
teristics a benchmark should have when run on this kind of data.

5.1 Introduction

In social networks nodes typically represent people and edges represent some
form of social interaction between them, such as friendship, co-authorship, etc.
Although the study of the characteristics of social networks known as Social Net-
works Analysis (SNA) (formerly known as sociometry), has its starting point in
the early 30s, it has become very popular in recent years because of the digital
techniques and internet. SNA techniques have been effectively used in several
areas of interest like social interaction and network evolution analysis, counter-
terrorism and covert networks, or even viral marketing. Due to the Web and
increasing use of Internet applications, which facilitate interactive collaboration
and information sharing, many social networks of different kinds have appeared,
like Facebook and LinkedIn for social interaction, or Flickr for multimedia shar-
ing. Other web portals that contain human interactions can also be considered
social networks, like in bibliographic catalogs such as Scopus, ACM or IEEE,
where the scientific community is sharing information and establishing de facto
relationships. In all these cases, there is an increasing interest in the analysis of
the underlying networks, to obtain a better knowledge of the patterns and the
topological properties. This may be used to improve services to users or even to
provide more profit to the information providers in the form of direct advertising
or personalized services.

5.2 Graph Model

As we have seen before, there are many different kinds of social networks. There-
fore, the nature of the underlying graph model of these networks may differ from
one to another. However, the following characteristics are common to many of
the existing social networks:

– Attributed: Graphs belonging to social networks are attributed graphs. We
can find attributes both in the nodes and in the edges. Node attributes may
include personal data about the user, their preferences, activity log, com-
ments, etc. Edges may be attributed with the number of times two persons
have interacted, comments, etc.

– Labeled: Social graphs may be labeled in both the nodes and the edges. For
example, interactions between two different users may have different forms,
such as like/dislike something, request for something, comments about a
post, etc. In the same way, nodes may represent different entities, such as
persons or companies in a professional social network.

– Directed: Graphs representing social networks are usually directed graphs,
since the interactions between the actors in the network are not always sym-
metric. For instance, a user may like/dislike a comment of another user, and
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this is a form of asymmetric or directed interaction, since the user of the
comment has no activity in the opposite direction.

– Multigraph: Social interactions are usually recurrent. That is, people linked
through a social network usually have more than a single interaction, more-
over their interactions are unlikely to be limited to the same types. For
instance, two friends may have several interactions, some of them being com-
ments about one user post and some of them sending a private message. This
multiplicity in the interactions may be represented in a multigraph.

5.3 Statistical Properties

In the following, we summarize the statistical properties that characterizes the
graph. Since social networks are essentially evolving networks, we distinguish
between static and dynamic properties.

Static Properties: Static properties are those appearing in snapshots of the
network at a certain point in time.

– Community structure: Real-world social graphs are found to exhibit a
modular structure, with nodes forming groups, and possibly groups within
groups [21–23]. In addition to that, in [3], it is shown along several social net-
work examples, that in most cases there is a large component which includes
more than 80% of the total nodes of the network. An efficient algorithm to
locate communities is available in [24].

– Small-world property: Social networks exhibit the small-world property.
That is, even in the case where the network is composed of millions (or even
billions) of nodes, the average geodesic distance between connected vertex
pairs is relatively very low, approximately log the number of nodes in the
network (around 5 in most of the examples given in [3]).

– Degree distribution:The degree distribution of many social networks obey
a power law of the form f(d) ∝ dβ , with the exponent β < 0, and f(d) being
the fraction of nodes with degree d. Therefore, they can be considered scale-
free networks.

– Sparse: Real social networks are almost always sparse, meaning that only
a small portion of the total possible number of edges appear in the network.
The examples given in [3], show that the portion of existing edges with
respect to the total possible edges is less than 1%.

Dynamic Properties: Dynamic properties are those characteristics that the
graph exhibits with respect to a change in time. These are typically studied by
looking at a series of static snapshots and seeing how measurements of these
snapshots compare.

– Shrinking diameter: Leskovec. et al. [11] showed that not only the diame-
ter of real social graphs is small, but it also shrinks and then stabilizes along
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time [11]. Briefly, at the beginning of time, the network is composed by sev-
eral small components. As time evolves those small components grow and
connections between them lead to bigger connected components and a grow-
ing diameter. At some point (the gelling point), many of these components
merge and the large component emerges and the diameter spikes. After this
point, the diameter keeps shrinking until it reaches an equilibrium.

– Densification power law: Time-evolving social graphs show the following
relation between the number n of nodes and the number m of edges at all
time ticks t: m(t) ∝ n(t)β , with β > 1, which is known as the densification
power law. Examples of social networks shown in [3], discover a mean value
of β around 1.12.

5.4 Graph Operations and Queries

One characteristic of social networks is that the operations performed on them
are extremely diverse, they cover much of the spectrum of operations known to
be performed on graphs. Some examples in different workflows are:

– Transactional: Insertions, updates and deletions are usually small and af-
fect a few entities (nodes) and relationships (edges). The most usual opera-
tion is the insertion of new data, a very frequent action with a high degree of
isolation with respect other update operations. Updates are not frequent be-
cause the SN grows and information is more evolving than changing. Deletes
are also not usual and, in general, information is timestamped when it is
deleted to denote the end of its availability instead of begin removed.

– Lookups: The basic queries are the most frequent: look for a node, look
for the neighbors (1-hop), scan edges in several hops (layers), retrieve an
attribute, etc. In general, these operations are small and affect only a few
nodes, edges and attributes in the graph. When the graph schema is complex,
most of the lookup queries follow a few operation patterns where the under-
lying lookup operations are in general the same with different arguments.
Concurrency is one of the most important issues due to the high amount of
small queries executed at the same time in sparse areas of the graph.

– BI:While the SN graph data contains a lot of useful information for business
intelligence, this is not usually explored due to privacy concerns and restric-
tions. Aggregate computations or multidimensional analysis using edge adja-
cencies as dimensions are in general only performed after an anonymization
process.

– Analytics: Graphs metrics, centrality measures or community finding are
tools used to analyze the SN to observe the behavior, predict the evolution
or to identify the shape in order to split a very large graph in smaller units,
easier to manage. Pattern matching is often used to extract groups of nodes
and edges that match a specific pattern, for example for marketing purposes,
data cleansing or integrity validation.
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6 Use Case 2: Information Technologies Analysis

Organizations use a significant amount of internal and external data to obtain
added value information that provides them with an understanding of the po-
sitioning of the world in relation to their knowledge and objectives. However,
they employ a significant amount of time to complete this search and analysis
cycle because of the lack of quality in the data and the lack of flexible tech-
nologies to extract and integrate multimedia and multilingual features from the
sources, having to use the skills of experts in a slow, error prone and inspiration
dependent process.

6.1 Introduction

Knowledge, which sits in the digital core of organizations like SMEs, large
companies and public institutions, is not fully exploited because data inside
the organization is stored in separate unconnected repositories: the documents
written (internal reports, patents filed, meeting minutes, usage manuals, papers
published, collaboration reports of funded projects, etc.), strategy reports, finan-
cial audits, managerial structure, the electronic mail generated, the relationships
with other organizations expressed by means of contracts and agreements and by
means of IP ownership and mercantile transactions, the media content produced
through courseware and marketing material, and more. Moreover, the interna-
tional nature of many organizations implies that multiple languages are used in
the data they generate. The dispersion and unlinked multimodal nature of those
sources leads to a significant lack of corporate self-knowledge7 that is hidden
behind the internal repositories. On the other hand, the Internet offers a huge
amount of relevant outside data about the organization: web pages, social net-
works, product opinions, cloud services... Although organizations usually know
which are those interesting data sources, they currently need huge human driven
efforts to retrieve and analyse them in the multiple languages and multiple for-
mats they are provided: textual and video blogs and microblogs criticizing or
praising their achievements, other companies assessing their performance, news-
papers telling stories about them, open data in the form of patents or scientific
papers explaining inventions related to their knowledge, videos and images mak-
ing apparent to the eye events where the organizations are involved, etc. The
use of the Internet content in many cases is not only enriching but necessary for
the adequate growth of those organizations, and in particular for SMEs.

The integration of inside and outside organization data can merge in a single
vision the collection of internal partial perspectives of the company business de-
partments as well as the view of the company in the external world. Corporate
data can be analyzed and information can be extracted, interpreted and sum-
marized in the form of added value knowledge and linked relationships among

7 By self-knowledge, we understand the analytical capability that allows an organiza-
tion to extract added value information from the integrated view of the data in their
different applications and repositories.
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documents (either textual or media), people in the organization, concepts and
keywords in the different languages of the organization providing a network be-
tween the sources of knowledge and the actual linked information that describes
them. Moreover, from the linked relationships, further analysis can be done to
create multilingual ontologies that organize the knowledge of the organization.
In all those cases, the relationships and ontologies can be exploited to obtain
added value information like, for instance, who knows more and is more reputed
within or outside the organization about a topic to find are placement for a per-
son who quit the company, what is the most relevant internal and external IP
and how they are related for a specific research being done and who are the most
relevant inventors, what internal and external media content is available for the
next marketing campaign, what are the documents that describe the products
to be announced better and who are the employees with better knowledge for
those, etc.

6.2 Dataset Integration

When integrated in a single graph-based framework, the information extracted
from the multimedia and multilingual repositories is merged in such a way that
the identification of relations and similarities within and across different media
will be easier. This way, the internal data sources can be linked, and enriched
information is extracted providing added value ground information to increase
the ability to detect and exploit meaning from where it was hidden before with
analytical queries. The linked information and ontologies created is constantly
enriched by the new documents being created within the organization providing
a circle of constant improvement of the corporate self-knowledge.

Integration techniques are applied to intelligently aggregate the result sets
of the different data providers by means of entity identification techniques [25].
Data linkage typically uses weak identifiers (name, family name, country, etc.)
to link data across different data sources. In the case of graphs the integration
target are the vertices of the graph, and hence, the entity data linkage deals with
finding those vertices that represent the same entity. In order to obtain a perfect
recall, the problem becomes quadratic because it is necessary to perform all pair-
wise comparisons. Since this is prohibitive for large volumes of information one
of the main research topics is finding techniques on how to scale them [26]. Some
data integration frameworks are available from the research community that fa-
cilitate the integration of data. They can be classified in three main groups,
based on the interface of the framework: rule, numerical and workflow based.
Rule based approaches give users the freedom to state sets of rules that are
applied sequentially to integrate datasets [27]. Such rules are not a static set,
and can change over time in order to increase the flexibility of the system [28].
Furthermore, such rules can express even exceptions to stated rules, which fa-
cilitate the design of the system and the resolution of inconsistencies among
previously ingested rules [29]. Numerical approaches compute complex similar-
ity functions based on a set of features among a pair of entities. Those entities
with a numerical value over certain threshold are considered as the same entity.
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The construction of the numerical function and the threshold setting can be
programmed by the users of the system [30], or helped with the aid of a training
set [31]. Workflows allow users to define complex data flows where combinations
of matchers, conditions and loops [32]. A graph-based framework include func-
tionalities to integrate easily graph features (such as transitive relations or graph
patterns among others) during the integration process to compute the similarity
of entities that are in a graph. It allows also the scalability of the system in order
to support the large graphs coming from different data sources

6.3 Graph Analytics

Once the datasets have been integrated inside a single graph. the goal is to
provide a set of techniques to analyze the relationships among the entities. Some
examples of self-knowledge services are:

– A document search engine that is be able to return the most relevant docu-
ments for a given topic. It allow the analysts to explore the contents of the
documental data stored in the graph. The result is a set of documents that
had been obtained from outside or inside the information network.

– A reputation algorithm to rank the most relevant persons and organizations
in a network according to a search topic. The algorithms take into account
that real networks are not hierarchic and consider the cycle shapes to deduce
the most reputed individuals. The results are able to return people that are
relevant for a query with respect to the information extracted from the graph.

– A sentiment analysis summarization procedure to evaluate multimodal data
that talks about a brand name. The query aggregates the sentiment analysis
results obtained for a brand name, in order to show to the analysts which is
the perception of a product among customers.

In particular, for the different workflows some of the required graph query
capabilities are:

– Transactional: The graph is built like a large data warehouse of entities and
relationships. There are few updates and, in general, all new data is inserted
in massive bulk loads of preprocessed, deduplicated and interrelated data.
This process can be executed also over a snapshot in such a way that updates
are not in conflict with read-only operations. This relaxes the locking and
concurrency requirements of the graph database engine.

– Lookups: Queries are more analytical than exploratory. Simple lookup
queries are used only to validate the content of the generated graph or to
generate reports of the data.

– Analytics: This represents the most important group of queries for this use
case. Analysis is made in several steps by combining different techniques.
For example, reputation requires the construction of communities or clusters
based on search topic; then the graph is improved with weighted relation-
ships of the involved people; finally, a recommendation algorithm based on
connectivity returns the relevant nodes.



Introduction to Graph Databases 191

7 Graph Database Benchmarking

Early efforts: Popular database benchmarks, such as TPC-C or TPC-H [33],
focus on evaluating relational database queries that are typical of a business
application. These benchmarks emphasize queries with joins, projections, se-
lections, aggregations and sorting operations. However, since Graph Databases
aim at different types of queries, these widespread benchmarks are not adequate
for evaluating their performance. Graph use cases often involve recursive steps,
e.g. graph neighborhoods within n steps or even an undetermined number of
steps. Graph queries may involve structural similarity, e.g. comparing structures
of chemical compounds for similarity with a similarity score quantifying the
deviations. Graph analytics often produce large intermediate results with com-
plex structure, e.g. edge weights or iteratively calculated ranks (e.g. Page rank).
Widespread relational benchmarks do not contain such operations. All those are
operations that, in some cases, are difficult to imagine in RDBMSs and that find
a good alliance in the RDF area and GDB area since the former adhere to a
graph data model.

Object oriented databases (OODB) share some similarities with GDBs. The
data of an OODB also conforms a graph structure, where the entities that are
represented as objects draw [34] relationships among them. The OO1 benchmark,
one of the earliest proposals, is a very simple benchmark that emphasizes three
basic operations for OODB: (a) lookup, which finds the set of objects for a given
object identifier; (b) traversal, which performs a 7-hop operation starting from a
random node; and (c) insertion, which adds a set of objects and relations to the
database. OO1 defines a dataset that only contains one type of objects with a
fixed number of outgoing edges per object. Since the links mostly go to objects
with a similar document identifier, the graphs are very regular. Another popular
benchmark for OODB is the OO7 [35] proposed by Carey et al. In OO7, the
database contains three types of objects, which are organized as a tree of depth
seven. The connectivity of the database is also very regular because objects have
a fixed number of relations. The benchmark is made up by a rich set of queries
that can be clustered into two groups: (a) traversal queries, which scan one type
of objects and then access the nodes connected to them in the tree, and (b)
general queries, which mainly perform selections of objects according to certain
characteristics.

Graph benchmarking: The graphanalysis.org initiative started a project to eval-
uate graph performance. After some preliminary benchmark proposals, which
refined the queries in the system, the project released the final version of the
benchmark as the “HPC Scalable Graph Analysis Benchmark v1.0[36]. The
benchmark is compound by four separated operations on a graph that follows a
power law distribution generated with the R-MAT generator [37]: (a) insert the
graph database as a bulk load; (b) retrieve the set of edges with maximumweight;
(c) perform a k-hops operation; and (d) calculate the betweenness centrality of
a graph, whose performance is measured as the number of edges traversed per
second. However, this benchmark does not evaluate some features expected from
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a GDB such as object labeling or attribute management. In [38], this benchmark
is evaluated on four representative graph data management alternatives (Neo4j,
DEX, Jena and HypergraphDB) giving some insights about the strengths and
weakness of each system. A recent survey has [39] reviewed some of the main
operations and uses cases of graph databases, and thus, is a good starting point
for the development of graph benchmarks. Other open source initiatives have
proposed simple benchmarks to evaluate the performance of graph databases.
For instance, Ciglan published a set of traversal oriented queries [40], or Tin-
kerpop initiated a project (currently stopped) to build a framework for running
benchmarks on graph databases [41]. Nevertheless, these initiatives lack a wide
acceptance because of their individual approach and limited resources.

Graphs in supercomputers: The performance of supercomputers has been tradi-
tionally tested using the Linpack benchmark, which is derived from the Linpack
library that computes linear algebra operations. According to the Linpack re-
sults, a list of the top 500 computers is published biannually, which determines
the most powerful computers in the world. Nevertheless, the use of supercomput-
ers has spread from computationally intensive integer and floating point compu-
tation, to memory intensive applications. For such applications, the Linpack is
not a good reference and other evaluation methods have been proposed, includ-
ing graph related computation. Since 2010 an alternative top 500 list is published
using the traversed edges per second of a Breadth First Search in a graph [42].

Linked Data Benchmark Council (LDBC): LDBC is a EU funded project that
is creating a non profit organization similar to TPC, which will design and sup-
port graph database and RDF benchmarks. LDBC benchmarks are innovative
because: (i) they will be based on real use cases, and thus be meaningful for users
to fairly compare graph databases; (ii) they will motivate graph database vendors
to innovate in the development of graph databases to improve its performance
and scalability; (iii) they will compile a repository of supporting knowledge for
the area of graph database benchmarks that will be used as a reference in the
design of benchmarks in this field; and, (iv) they will generate benchmark ex-
pertises and rules of fair practice for carrying out and auditing the benchmark
of database instances by vendors. The first set of LDBC benchmarks will be
published in 2014.

8 Conclusions

We have been describing important aspects of graph charateristics, database
implementation, use cases and benchmarking. There is no doubt about the fact
that many other aspects concur in the graph area, i.e. graphical representation of
large and small graphs, use of graphs in complex systems analysis, etc. However,
the objective of this paper was to give a broad overview of the knowledge behind
graph management and the technologies around graphs. In the course, we will
provide a similar overview with a set of slides provided to the students and the
general public through the course web page and through DAMA-UPC web page
(www.dama.upc.edu).

www.dama.upc.edu
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and Query Rewriting
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Abstract. This chapter gives an overview of the description logics un-
derlying the OWL2 Web Ontology Language and its three tractable
profiles, OWL2RL, OWL2EL and OWL2QL. We consider the syntax
and semantics of these description logics as well as main reasoning tasks
and their computational complexity. We also discuss the semantical foun-
dations for first-order and datalog rewritings of conjunctive queries over
knowledge bases given in the OWL2 profiles, and outline the architecture
of the ontology-based data access system Ontop.

1 Introduction

The first aim of this chapter is to introduce and discuss logic-based formalisms
that underpin the OWL2 Web Ontology Language and its three tractable pro-
files: RL, EL and QL. OWL2 is a rather involved language that was designed to
represent knowledge about various domains of interest in a machine-accessible
form. The diagram in Fig. 1, taken from the official W3C document,1 shows the
general structure of OWL2. As follows from the diagram, there are (at least) five
syntaxes for OWL2 (various tools can use their own versions). In this chapter,
we consider a sixth one, the language of Description Logic (DL). Although not
covering all the bells and whistles of the full OWL2, it will allow the reader to
quickly grasp the meaning of the main modelling constructs that OWL2 pro-
vides. The language of DL is elegant and concise because it stems from the
formalisms that have been developed in mathematical logic since the middle of
the 19th century. It is underpinned by the crystal-clear model-theoretic seman-
tics developed by A. Tarski since the mid 1930s (as shown in the diagram in
Fig. 1, OWL2 has two semantics: RDF-based2 and Direct Semantics3; the latter
is based on the model-theoretic semantics of DLs).

We will introduce, in Section 2, most important modelling constructs of OWL2
and their semantics in terms of the description logics ALCHI and SROIQ and
the model-theoretic semantics. We then explain fundamental reasoning tasks
such as checking consistency (satisfiability), concept and role subsumption, in-
stance checking and conjunctive query answering, and discuss their computa-
tional complexity. Our focus in Section 3 is on the DLs underlying the three

1 www.w3.org/TR/owl2-overview
2 www.w3.org/TR/owl2-rdf-based-semantics
3 www.w3.org/TR/owl2-direct-semantics

M. Koubarakis et al. (Eds.): Reasoning Web 2014, LNCS 8714, pp. 195–244, 2014.
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Fig. 1. General structure of OWL2

profiles (or fragments) of OWL2 that were identified by the OWL2 working
group to ensure tractability of reasoning at the expense of the expressive power.
The Euler diagram in Fig. 2 gives a general overview of the DLs considered in
this chapter (RDFS denotes the RDFS fragment of OWL2DL under the Direct
Semantics).

The second aim of the chapter is to explain, in Section 4, the semantical
foundations for first-order and datalog rewritings of conjunctive queries over
knowledge bases given in the OWL2 profiles. Query rewriting is a fundamental
technique underlying ontology-based data access: it reduces answering queries
over knowledge bases to answering first-order or datalog queries over plain data,
which can be done using conventional database management systems or, re-
spectively, datalog engines. For more expressive languages, ontology-based data
access will be discussed in Chapter 6.

Finally, in Section 5, we give an overview of the architecture of the ontology-
based data access system Ontop4.

2 Description Logics

Description Logic is an area of knowledge representation and reasoning in Ar-
tificial Intelligence and the Semantic Web that studies logic-based formalisms
whose languages operate with concepts to represent classes of individuals in an

4 ontop.inf.unibz.it

ontop.inf.unibz.it
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RDFS

OWL 2 QL OWL 2 EL

OWL 2 RL

OWL 2 DL

Fig. 2. Relationships between the DL fragments of OWL2

application domain, and roles to represent binary relations between the indi-
viduals. Each concrete formalism, called a description logic (DL, for short), is
characterised by its set of constructs that can be used to build complex concepts
and roles from primitive ones.

The zoo of DLs is very big. We begin by defining one particular representative,
which goes in the zoo under the moniker of ALCHI. The example below shows
a simple knowledge base (or an ontology), which is given in the OWL functional-
style syntax (FSS) and the more terse syntax of ALCHI. The reader is invited
to decipher the meaning of the knowledge base before consulting the formal
definitions.

Example 1. The following three statements are written in the FSS:

SubClassOf(ObjectIntersectionOf(Person, (1)

ObjectSomeValuesFrom(takesCourse, Course)), Student),

SubObjectPropertyOf(mastersDegreeFrom, degreeFrom), (2)

SubClassOf(ObjectSomeValuesFrom( (3)

ObjectInverseOf(takesCourse), owl:Thing), Course),

ClassAssertion(Student, john), (4)

ObjectPropertyAssertion(takesCourse, john, sw). (5)

Using the syntax of ALCHI, the same statements can be expressed as follows:

Person � ∃takesCourse.Course � Student, (1′)
mastersDegreeFrom � degreeFrom, (2′)

takesCourse−.� � Course, (3′)
Student(john), (4′)
takesCourse(john, sw). (5′)
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2.1 Syntax

The alphabet of ALCHI contains three pairwise disjoint and countably infinite
sets: concept names A1, A2, . . . , role names P1, P2, . . . and individual names
a1, a2, . . . . An ALCHI role, R, is either a role name Pi or its inverse P−i .ALCHI
concepts, C, are constructed from two special primitive concepts, � (‘top’) and
⊥ (‘bottom’), concept names and roles using the following grammar:

C ::= Ai | � | ⊥ | ¬C | C1 �C2 | C1 �C2 | ∃R.C | ∀R.C.

An ALCHI terminological box (or TBox), T , is a finite set of concept and role
inclusion axioms of the form

C1 � C2 and R1 � R2,

where C1, C2 are concepts and R1, R2 roles. An ALCHI assertion box (or
ABox), A, is a finite set of concept and role assertions of the form

C(a) and R(a, b),

where C is a concept, R a role and a, b are individual names. Given an ABox A,
we denote by ind(A) the set of individual names that occur in A. Taken together,
T and A comprise an ALCHI knowledge base (or KB) K = (T ,A).

Example 1 shows that, in many respects, the DL syntax is simply a less verbose
form of the FSS. Thus, � stands for SubClassOf and SubObjectPropertyOf, and
P− for ObjectInverseOf(P ); the correspondences for concept constructs are listed
below:

DL FSS

⊥ owl:Nothing
� owl:Thing
¬C ObjectComplementOf(C)
C1 � C2 ObjectIntersectionOf(C1, C2)
C1 � C2 ObjectUnionOf(C1, C2)
∃R.C ObjectSomeValuesFrom(R,C)
∀R.C ObjectAllValuesFrom(R,C)

In Section 2.4, we shall see how most of the OWL constructs can be mapped into
the DL syntax. But before that, we need to define the meaning of DL constructs.

2.2 Semantics

As well as all DLs, ALCHI is equipped with a Tarski-style semantics defined
in terms of interpretations (which are a simplified form of interpretations in the
Direct Semantics of OWL). An interpretation I is a pair (ΔI , ·I) that consists
of a non-empty domain of interpretation ΔI and an interpretation function ·I .
The latter assigns
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– an element aIi ∈ ΔI to each individual name ai;

– a subset AIi ⊆ ΔI to each concept name Ai;

– a binary relation P Ii ⊆ ΔI ×ΔI to each role name Pi.

(In ALCHI, distinct individuals are usually assumed to be interpreted by dis-
tinct domain elements—this is called the unique name assumption, or UNA. In
this chapter we follow the convention and assume the UNA for all of our DLs,
which cannot distinguish between models with and without UNA. Note, how-
ever, that OWL2 and its three profiles do not adopt the UNA and use constructs
like SameIndividual and DifferentIndividuals instead.) We extend inductively the
interpretation function ·I to complex roles and concepts by taking

(P−)I = { (v, u) | (u, v) ∈ P I },
�I = ΔI ,

⊥I = ∅,
(¬C)I = ΔI \ CI ,

(C1 � C2)
I = CI1 ∩ CI2 ,

(C1 � C2)
I = CI1 ∪ CI2 ,

(∃R.C)I =
{
u | there is v ∈ CI such that (u, v) ∈ RI

}
,

(∀R.C)I =
{
u | v ∈ CI , for all v with (u, v) ∈ RI

}
.

Having fixed the interpretation of individual names, concepts and roles, we now
define the satisfaction relation |= for inclusions and assertions:

I |= C1 � C2 if and only if CI1 ⊆ CI2 ,

I |= R1 � R2 if and only if RI1 ⊆ RI2 ,

I |= C(a) if and only if aI ∈ CI ,

I |= R(a, b) if and only if (aI , bI) ∈ RI .

We say that an interpretation I is a model of a knowledge base K = (T ,A) if it
satisfies all concept and roles inclusions of T and all concept and role assertions
of A. In this case we write I |= K (and also I |= T and I |= A).

It is to be remembered that (unlike databases) the choice of domains and
interpretation functions is not fixed in the DL semantics, so that every knowledge
base can have many models. This reflects the open world assumption, or OWA,
adopted in DL (and OWL), according to which no single agent can possess
complete knowledge. Thus, we have to consider all possible assignments of truth-
values to assertions—as long as they do not contradict the given knowledge base.
(Databases adopt the closed world assumption, or CWA, that defines everything
unknown as false.)
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Example 2. Consider the following knowledge base K = (T ,A):

T = { GraduateStudent � Student,

GraduateStudent � ∃takesCourse.GraduateCourse },
A = { GraduateStudent(john) }.

Denote by I1 an interpretation with domain ΔI1 = {john, sw} such that

johnI1 = john,

GraduateStudentI1 = {john}, StudentI1 = {john},
GraduateCourseI1 = {sw}, takesCourseI1 = {(john, sw)}.

The reader can readily check that I1 is a model of K; that is, the ‘world’ de-
scribed by I1 satisfies the knowledge and data given in K. Now, take another
interpretation I2 with domain ΔI2 = {a} in which

johnI2 = a,

GraduateStudentI2 = {a}, StudentI2 = {a},
GraduateCourseI2 = {a}, takesCourseI2 = {(a, a)}.

This interpretation does not make much sense from the modelling point of view
(because a takes course a in the world described by I2). Nevertheless, I2 satisfies
all of the inclusions in T and assertions in A, and so is a model of K. Yet another
interpretation, I3, with domain ΔI3 = {john} and

johnI3 = john,

GraduateStudentI3 = {john}, StudentI3 = {john},
GraduateCourseI3 = ∅, takesCourseI3 = ∅

satisfies the assertions in A and the first concept inclusion in T but fails to
satisfy the second concept inclusion, and so is not a model of K.

Intuitively, everything that takes place in each and every model of a knowledge
base is a logical consequence of the KB, not necessarily explicitly presented in
it. Finding logical consequences is usually referred to as reasoning.

2.3 Reasoning Problems

A very basic reasoning problem is to decide whether a given knowledge base is
consistent in the sense that it does not imply mutually contradicting statements.
Formally, we can call a knowledge base K satisfiable (or consistent) if there exists
at least one model of K (which is obviously enough to guarantee that K contains
no contradictions).
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Example 3. Let T be a TBox containing the following concept inclusions:

UndergraduateStudent � ∀takesCourse.UndergraduateCourse,
UndergraduateCourse � GraduateCourse � ⊥,

and A an ABox with the following assertions:

UndergraduateStudent(john),

takesCourse(john, sw),

GraduateCourse(sw).

If we assume that (T ,A) has a model, then the undergraduate student John
in it will only be able to take undergraduate courses that are not graduate
courses such as SW. However, according to the ABox, John takes SW, which is
a contradiction. Thus, (T ,A) is inconsistent.

Another important reasoning problem is entailment. We say that a concept
inclusion C1 � C2 is entailed by a knowledge base K and write K |= C1 � C2 if
I |= C1 � C2 for all models I of K (entailment for role inclusions and concept
and role assertions is defined similarly).

Example 4. Consider a TBox T with the following two concept inclusions:

∀takesCourse.UndergraduateCourse � UndergraduateStudent,

FirstYearStudent � ∃takesCourse.UndergraduateCourse.
In the model I1 of T given below, FirstYearStudent � UndergraduateStudent
holds true. However, T does not entail this concept inclusion because there is
another model, I2, where it is not satisfied:

ΔI1 = {j, s}, ΔI2 = {j, s, �},
takesCourseI1 = {(j, s)}, takesCourseI2 = {(j, s), (j, �)},

FirstYearStudentI1 = {j}, FirstYearStudentI2 = {j},
UndergraduateStudentI1 = {j}, UndergraduateStudentI2 = ∅,
UndergraduateCourseI1 = {s}, UndergraduateCourseI2 = {s}.

Intuitively, in I1, the individual j is a first-year student who takes only one
undergraduate course, and so must be an undergraduate student (to satisfy the
first concept inclusion). In contrast, in I2, the individual j also takes another
course, �, which is not an undergraduate course, and therefore, j does not have
to be an undergraduate student (still satisfying the first concept inclusion); see
Fig. 3.

If C1 � C2 is entailed by K, then we also say that C2 subsumes C1 with
respect to K (or that C1 is subsumed by C2 with respect to K). We note in
passing that if K is inconsistent then any concept is subsumed by any other
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Fig. 3. Interpretations for T in Example 4

concept: indeed, an arbitrary inclusion C1 � C2 is trivially true in every model
of K simply because K has no models. The following proposition, the proof of
which is left to the reader as a simple exercise, shows that concept subsumption
is in fact reducible to consistency.

Proposition 5. (T ,A) |= C1 � C2 if and only if (T ,A ∪ {C1(a),¬C2(a)}) is
not satisfiable, for a fresh individual name a (not occurring in A).

(Note as a warning that not every DL allows negation and complex concepts
in the ABoxes, in which case the reduction may be not so trivial.)

If C(a) is entailed by K (that is, C(a) holds in every model of K), then we also
say that a is an instance of C with respect to K. The problem of checking whether
a is an instance of a given C with respect to K is called instance checking. This
problem is also reducible to knowledge base consistency (provided that complex
concepts are allowed in the ABoxes):

Proposition 6. (T ,A) |= C(a) if and only if (T ,A∪{¬C(a)}) is not satisfiable.
A more general reasoning task is answering conjunctive queries over knowledge

bases. A conjunctive query (CQ for short) q(x) is an expression of the form
∃y ϕ(x,y), where ϕ(x,y) is a conjunction of atoms such as A(z) and P (z1, z2),
for a concept name A, role name P and terms z, z1 and z2, which are individual
names or variables from x and y. The variables xi in x = (x1, . . . , xn) are called
answer variables and the variables in y existentially quantified variables. Given
a tuple a = (a1, . . . , an) of individual names from A, we denote by q(a) the
result of replacing each answer variable xi in ∃y ϕ(x,y) with the respective ai
from a. A tuple a of individual names from A is a certain answer to q(x) over
(T ,A) if, for any model I of (T ,A), the sentence q(a) is true in I (I |= q(a),
in symbols). We write (T ,A) |= q(a) to indicate that a is a certain answer to
q(x) over (T ,A). A CQ q without answer variables is called Boolean, in which
case a certain answer to q over (T ,A) is ‘yes’ if (T ,A) |= q and ‘no’ otherwise.
The problem of answering Boolean CQs is known as CQ entailment.

Example 7. (Andrea’s example (Schaerf, 1993)) Suppose a TBox T contains the
inclusions

� � Male � Female, Male � Female � ⊥
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Fig. 4. Two representative models of (T ,A) in Example 7

and an ABox A contains the assertions

friend(john, susan), friend(john, andrea),

loves(susan, andrea), loves(andrea, bill),

Female(susan), Male(bill).

Consider the CQ

q(x) = ∃y, z (friend(x, y) ∧ Female(y) ∧ loves(y, z) ∧Male(z)
)
,

which asks to find every individual (in the ABox) with a female friend who is in
love with a male. Note that the same CQ can be expressed in the query language
SPARQL5 as follows:

SELECT ?x

WHERE {
?x :friend ?y.

?y a :Female.

?y :loves ?z.

?z a :Male.

}
(Here a is an abbreviation of rdf:type and can be read as ‘is a.’) We invite the
reader to check that the only certain answer to q(x) over (T ,A) is x �→ john.
(Hint: in every model I of (T ,A), either andreaI ∈ FemaleI or andreaI ∈ MaleI ;
see Fig. 4.)

Observe that this particular CQ q(x) can also be represented as an instance
query C(x), where C is the complex concept

∃friend.(Female � ∃loves.Male).

5 www.w3.org/TR/sparql11-query

www.w3.org/TR/sparql11-query
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It is readily seen that, for any individual name a, we have (T ,A) |= C(a) if and
only if (T ,A) |= q(a). However, in general, CQs are not necessarily tree-shaped,
can contain more than one answer variable, and so are more expressive than
instance queries.

2.4 From OWL to DL

The language of OWL2 contains more constructs than any of the DLs, with
many of these constructs being just shortcuts for certain DL expressions. For
example,

ObjectPropertyDomain(takesCourse, Student)

can be represented as the concept inclusion

∃takesCourse.� � Student.

Similarly,
ObjectPropertyRange(takesCourse, Course)

can be represented as
∃takesCourse−.� � Course.

Note that the latter concept inclusion can only be written in the DLs with
inverse roles (such as the RL or QL profiles of OWL2 to be discussed below).
If, however, inverse roles are not available in a DL (for instance, ALC), then one
can use a universal restriction:

� � ∀takesCourse.Course.
One can verify that the two concept inclusions are equivalent in the sense that
they are satisfied by precisely the same interpretations. We have collected stan-
dard equivalencies of this sort in the following proposition:

Proposition 8. The following pairs of (sets of ) concept inclusions have the
same models :

C1 � ∀P.C2 and ∃P−.C1 � C2, (6)

C1 � C2 � C and {Ci � C | i = 1, 2}, (7)

C � C1 � C2 and {C � Ci | i = 1, 2}, (8)

C1 � ¬C2 and C1 � C2 � ⊥. (9)

OWL2 also has a shortcut for equivalent classes and properties: Equivalent-
Classes, EquivalentObjectProperties and EquivalentDataProperties. These can be
represented using �: for example,

EquivalentClasses(C1, C2, . . . , Cn)

can be written in the DL parlance as n concept inclusions

C1 � C2, C2 � C3, . . . , Cn−1 � Cn, Cn � C1.
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Another way is to use a common DL abbreviation ≡, which is defined by taking
A ≡ B if and only if A � B and B � A.

Equivalence (9) provides two alternative ways of expressing disjointness of
concepts C1 and C2 in DL. OWL2 offers a shortcut for pairwise disjointness of
n classes:

DisjointClasses(C1, C2, . . . , Cn),

which can be represented in DLs as n(n− 1)/2 concept inclusions

Ci � Cj � ⊥, for all i, j with 1 ≤ i < j ≤ n.

Yet another shortcut in OWL2 allows one to say that class C is the disjoint
union of C1, . . . , Cn:

DisjointUnion(C,C1, C2, . . . , Cn),

which combines pairwise disjointness of C1, . . . , Cn (see above) with

C ≡ C1 � · · · � Cn.

Object properties can be declared symmetric in OWL2 by using axioms of
the form SymmetricObjectProperty(P ). The same effect can be achieved in DLs
with the help of the role inclusion

P− � P.

More expressive description logics contain additional constructs such as num-
ber restrictions, ∃R.Self, transitive roles, role chains, etc. In particular, the DL
subset of OWL2, known as OWL2DL, is based on the description logic called
SROIQ (Horrocks et al., 2006).

2.5 Complexity of Reasoning

Having formulated the reasoning problems, we are facing the following funda-
mental questions:

– Are these problems decidable in the sense that there exist algorithms which
always halt and return correct answers?

– How complex are such algorithms in terms of the time or memory space they
require?

– Are these algorithms (reasonably) efficient in real-world applications?

The next theorem, which is a compilation of various results from (Tobies, 2001;
Eiter et al., 2009; Horrocks et al., 2006),6 gives answers to the first two questions:

6 See also the DL Complexity Navigator at www.cs.man.ac.uk/~ezolin/dl

www.cs.man.ac.uk/~ezolin/dl
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Theorem 9. (i) The satisfiability problem is ExpTime-complete for ALCHI
KBs and N2ExpTime-complete for SROIQ KBs.

(ii) Concept and role subsumption and instance checking are ExpTime- and
coN2ExpTime-complete for, respectively, ALCHI and SROIQ KBs.

(iii) CQ entailment over ALCHI KBs is 2ExpTime-complete.

Note that full OWL2 under the RDF-based semantics is undecidable (Motik,
2007), while OWL2DL under the direct (model-theoretic) semantics is decid-
able. There is, however, a price to pay for the additional expressive power of
SROIQ underlying OWL2DL: satisfiability is harder than in ALCHI and CQ
entailment is not even known to be decidable.

ExpTime-completeness of satisfiability in ALCHI means, in particular, two
things: first, there exists a satisfiability-checking algorithm that runs in at most
exponential time in the size of the input knowledge base and, second, no algo-
rithm can check satisfiability of any given knowledge base in polynomial time.
This complexity-theoretic result does not suggest that reasoning algorithms can
be efficient in practice. Fortunately, practical reasoners for OWL2DL have been
implemented: FaCT++ (Tsarkov and Horrocks, 2006), HermiT (Horrocks et al.,
2012), Pellet (Sirin et al., 2007), Konclude (Steigmiller et al., 2014). Their effi-
ciency in typical real-world applications (rather than worst-case scenarios) relies
upon sophisticated optimisation techniques and the empirical fact that ontolo-
gies designed by humans for such applications are often simple enough for basic
reasoning techniques. On the other hand, answering instance queries and, more
generally, conjunctive queries over knowledge bases in expressive languages has
not become practical so far, especially for large data sets.

3 Description Logics for the OWL Profiles

The current W3C recommendation OWL2 of the Web Ontology Language iden-
tifies three profiles (fragments or sub-languages) specifically designed to ensure
efficiency (tractability) of reasoning at the expense of expressive power. In this
section, we introduce these profiles in the form of DLs (sacrificing some features
for the clarity of presentation).

We begin with an observation that in order to ensure tractability of reasoning
(that is, the existence of a deterministic polynomial-time algorithm for checking
consistency) one has to avoid using � on the right-hand side of concept in-
clusions. Intuitively, this construct requires (non-deterministic) reasoning about
possible cases such as in Example 7 (case 1: Andrea is a female; case 2: Andrea
is a male), which can be NP-hard; for an introduction on the computational
complexity, consult classical (Garey and Johnson, 1979) or more recent (Kozen,
2006; Arora and Barak, 2009).

We illustrate non-deterministic reasoning by encoding the NP-complete graph
3-colourability problem: given an (undirected) graph G = (V,E), decide whether
each of its vertices can be painted in one of the given three colours in such a way
that no pair of adjacent vertices has the same colour. We represent the input
graph G by means of an ABox AG comprising assertions
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edge(v1, v2), for each {v1, v2} ∈ E.

Consider a TBox T containing the following concept inclusions:

� � C1 �C2 � C3,

Ci � Cj � ⊥, 1 ≤ i < j ≤ 3,

Ci � ∃edge.Ci � ⊥, 1 ≤ i ≤ 3,

where C1, C2 and C3 are concept names representing the given three colours. It
is not hard to see that each model of (T ,AG) gives rise to a 3-colouring of G
and, conversely, each 3-colouring of G can be encoded in a model of (T ,AG). In
other words, (T ,AG) is satisfiable if and only if G is 3-colourable. This means
that the satisfiability problem for knowledge bases in any DL able to express
this TBox is NP-hard (that is, not tractable).

3.1 OWL 2 RL

The OWL2RL profile7 is aimed at applications requiring scalable reasoning that
can be done by rule-based implementations (such as datalog engines). Its design
was inspired by the so-called Description Logic Programs (Grosof et al., 2003)
and pD∗ (ter Horst, 2005). OWL2RL is supported by Oracle Database 11g,
OWLIM, BaseVISor, ELLY, Jena and RDFox (for details and references, see
www.w3.org/2001/sw/wiki/OWL/Implementations).

A key feature of OWL2RL is that it does not allow existential quantifiers
on the right-hand side of concept inclusions. Therefore, when reasoning with an
OWL2RL knowledge base, we do not have to deal with individuals that are not
explicitly present in the knowledge base ABox.

In this section, we consider a somewhat simplified version of OWL2RL, which
will be called RL. Concept and role inclusions in RL take the form

B � A, R1 � R2 and B � ⊥,
where R1 and R2 are roles (role names or their inverses), A is a concept name
and B a concept defined by the following grammar:

B ::= A | ∃R.� | ∃R.B | B1 �B2.

Observe that there is no � in the syntax, and the existential quantifiers occur only
on the left-hand side of concept inclusions. On the other hand, by Proposition 8,
universal restrictions, intersection and complement on the right-hand side of
concept inclusions and union on the left-hand side of concept inclusions are
simply syntactic sugar.

An RL knowledge base (T ,A) comprises a finite set T of inclusions introduced
above and a simple ABox A, which contains only assertions of the form A(a)
and P (a, b), for a concept name A and a role name P .

To understand reasoning in RL (and the other two profiles of OWL2), it is
useful to represent its concept and role inclusions as first-order sentences.

7 www.w3.org/TR/owl2-profiles/#OWL_2_RL

www.w3.org/2001/sw/wiki/OWL/Implementations
www.w3.org/TR/owl2-profiles/#OWL_2_RL
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Example 10. The RL concept inclusions

∃takesCourse.UndergraduateCourse � UndergraduateStudent,

UndergraduateStudent � Student

are equivalent (have the same models) as the first-order sentences

∀x∀y (takesCourse(x, y) ∧ UndergraduateCourse(y)→ UndergraduateStudent(x)
)
,

∀x (UndergraduateStudent(x)→ Student(x)
)
.

More formally, we define a standard translation ST of concepts and roles by
induction on their structure. First, for any concept name A and any role name
P , we set

STx(A) = A(x),

STx,y(P ) = P (x, y),

where the subscript specifies the variables used as arguments of the predicates.
After that, we extend the translation ST to complex roles and concepts by taking

STx,y(P
−) = P (y, x),

STx(∃R.�) = ∃y STx,y(R),

STx(∃R.B) = ∃y (STx,y(R) ∧ STy(B)
)
,

STx(B1 �B2) = STx(B1) ∧ STx(B2).

Finally, we translate concept and role inclusions into universally quantified im-
plications:

(B � A)∗ = ∀x (STx(B)→ STx(A)
)
,

(R1 � R2)
∗ = ∀x∀y (STx,y(R1)→ STx,y(R2)

)
,

(B � ⊥)∗ = ∀x (STx(B)→ ⊥).

As ∃R.� and ∃R.B can occur only on the left-hand side of concept inclusions,
the translation ·∗ of any RL TBox contains only sentences of the form

∀y (
γ1(y) ∧ · · · ∧ γk(y)→ γ0(y)

)
,

∀y (
γ1(y) ∧ · · · ∧ γk(y)→ ⊥

)
,

where γ0(y), . . . , γk(y) are unary or binary predicates with variables in y. Such
sentences are examples of Horn clauses (sets of sentences of the first kind are also
called datalog programs ; see e.g., Ceri et al. (1989)). A very important property
of Horn clauses known from logic and databases is that everything we may want
to know about a knowledge base, whose TBox axioms are Horn clauses, can be
found in the canonical model (or chase), which is constructed by ‘applying’ the
clauses to the ABox. We first illustrate the construction by a simple example.
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Example 11. Consider the TBox T from Example 10 and the following ABox:

A = { takesCourse(john, sp1), UndergraduateCourse(sp1) }.

We begin the construction of the canonical model by representing the ABox as
an interpretation I0 with the domain ΔI0 = {john, sp1} and the interpretation
function given by

takesCourseI0 = {(john, sp1)},
UndergraduateCourseI0 = {sp1},
UndergraduateStudentI0 = ∅,

StudentI0 = ∅.

The interpretation I0 does not satisfy the first concept inclusion in T because
john is related by takesCourse to sp1, which is an UndergraduateCourse, but john
is not an instance of UndergraduateStudent. To repair this ‘defect’, we apply (as
a rule) the first concept inclusion to I0 and obtain an interpretation I1 with the
same domain, ΔI1 = ΔI0 , and the interpretation function ·I1 that expands ·I0
with

UndergraduateStudentI1 = {john}
(all other symbols have the same interpretation as in I0). Now, I1 satisfies the
first concept inclusion of T but fails to satisfy the second one. We repair this
defect by ‘applying’ the second concept inclusion to I1 and obtaining an inter-
pretation I2 with the same domain and the interpretation function expanding
·I1 with

StudentI2 = {john}
(all other symbols keep their interpretation). It is readily seen that now I2 is
a model of (T ,A). Note that we constructed I2 by adding to the given ABox
A only those assertions—UndergraduateStudent(john) and Student(john)—that
were required by the TBox T . That is why I2 is referred to as the minimal
model or canonical model of (T ,A).

The procedure used in the example above is known as forward chaining. For-
mally, it can be described as follows. First, a simple ABox can be regarded as
an interpretation:

Definition 12. The standard model IA of a simple ABox A is defined by taking

ΔIA = ind(A),
aIA = a, for a ∈ ind(A),
AIA = {a | A(a) ∈ A}, for concept name A,

P IA = {(a, b) | P (a, b) ∈ A}, for role name P.
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Thus, the domain of IA is the set of individual names inA, and each individual
name is interpreted in IA by itself, which is often referred to as the standard
name assumption.

Next, given an RL knowledge base (T ,A), we construct a sequence of inter-
pretations I0, I1, . . . , In by setting I0 = IA and then applying the following
rules to each Ik to obtain Ik+1:

(c) if a ∈ BIk , B � A ∈ T but a /∈ AIk , then we add a to AIk+1 ;

(r) if (a, b) ∈ RIk1 , R1 � R2 ∈ T but (a, b) /∈ RIk2 , then we add (a, b) to R
Ik+1

2 ;
(b) if a ∈ BIk and B � ⊥ ∈ T , then the process terminates.

Since the domains of the Ik are finite and all coincide with the set of individ-
uals in A, the process terminates after a finite number of steps either because
neither (c) nor (r) is applicable or because (b) applies. In the former case the
resulting interpretation satisfies all the inclusions in T and all the assertions in
A; it is called the canonical model of (T , A) and denoted by CT ,A. In the latter
case, (T ,A) is inconsistent.

Let T+ be the positive part of an RL TBox T that consists of all role inclusions
in T and all concept inclusions of the form B � A in T . By definition, (T+,A) is
consistent for any A, and so its canonical model CT+,A is defined and can be used
to check consistency of the full knowledge base (see, e.g., Cal̀ı et al. (2012)):

Theorem 13. An RL knowledge base (T ,A) is consistent if and only if we have
CT+,A |= B � ⊥, for all B � ⊥ in T .

Similar results hold for the other two profiles of OWL2 (or indeed for any
Horn DL), and therefore in the following we do not consider negative concept
inclusions (although they are part of both OWL2EL and OWL2QL).

The canonical model CT ,A is universal in the sense that it can be homo-
morphically mapped into any other model of (T ,A) (this notion formalises the
minimality mentioned above).

Definition 14. A homomorphism h from an interpretation I1 to an interpre-
tation I2 is a map from ΔI1 to ΔI2 such that

– h(aI1) = aI2 , for each individual name a,

– h(u) ∈ AI2 , for any u ∈ AI1 and any concept name A,

– (h(u), h(v)) ∈ P I2, for any (u, v) ∈ P I1 and any role name P .

The universality of the canonical models means, in particular, that check-
ing subsumption and answering CQs over RL knowledge bases can be done by
analysing their canonical models:

Theorem 15. Let (T,A) be a consistent RL knowledge base. Then CT,A |=(T,A).
In addition, we have the following :

(i) (T ,A) |= B � A if and only if CT ,A |= B � A;
(ii) (T ,A) |= R1 � R2 if and only if CT ,A |= R1 � R2;
(iii) (T ,A) |= q(a) if and only if CT ,A |= q(a).
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Observe that the forward chaining procedure only requires a polynomial num-
ber of steps to construct the canonical model (more precisely, the number of steps
is bounded by O(m2 × s), where m is the number of individual names in the
ABox and s is the number of concept and role names). Therefore, knowledge
base consistency, subsumption and instance checking are tractable in RL (the
matching lower bound will be discussed in Section 4):

Theorem 16. The problems of knowledge base consistency, concept and role
subsumption and instance checking are P-complete in RL. The problem of CQ
entailment in RL is NP-complete.

Forward chaining can be regarded as a bottom-up saturation procedure. In
datalog, however, more common is the top-down procedure, where a proof is
constructed for a given statement; see e.g., (Ceri et al., 1989). We shall return
to this topic in Section 4.3.

It is important to note that, since the clauses in the standard translation of
RL inclusions contain only universally quantified variables, the canonical model
of any RL knowledge base is finite (forward chaining does not add any new
elements to the individuals in the ABox). We now turn to the profiles where this
is not necessarily the case.

3.2 OWL 2 EL

The design of the OWL2EL profile8 of OWL2 (Baader et al., 2008, 2005) was
based on the observation that biomedical ontologies such as SNOMED CT,9

NCI10 and GO11 essentially use only conjunctions and existential quantifiers.
In this section, we consider a somewhat simplified version of OWL2EL, which

will be called EL. Concept and role inclusions in EL look as follows:

C1 � C2 and P1 � P2,

where P1 and P2 are role names (role inverses are not allowed in EL) and C1,
C2 are concepts defined by the following grammar:

C ::= A | ∃P.� | ∃P.C | C1 � C2

(again, existential restrictions contain only role names). The following are typical
concept inclusions from the SNOMED CT ontology:

Pericardium � Tissue � containedIn.Heart,

Pericarditis � Inflammation � hasLocation.Pericardium,

Inflammation � Disease � actsOn.Tissue,

Disease � hasLocation.containedIn.Heart � HeartDisease � NeedsTreatment.

8 www.w3.org/TR/owl2-profiles/#OWL_2_EL
9 www.ihtsdo.org/snomed-ct

10 www.obofoundry.org/cgi-bin/detail.cgi?id=ncithesaurus
11 www.geneontology.org

www.w3.org/TR/owl2-profiles/#OWL_2_EL
www.ihtsdo.org/snomed-ct
www.obofoundry.org/cgi-bin/detail.cgi?id=ncithesaurus
www.geneontology.org
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ABoxes in EL are simple; see Section 3.1. The language we defined above is
almost identical to ELH: the only difference is that we do not allow � to occur
outside the scope of existential restrictions. Thus, the EL concepts here are
exactly those RL concepts from Section 3.1 that do not contain inverse roles.
Note that EL extended with inverse roles is not tractable; moreover reasoning
becomes as complex as in ALCHI, that is, ExpTime-complete (Baader et al.,
2008).

Since the existential restrictions can also occur on the right-hand side of con-
cept inclusions, the result of translating a given EL TBox into first-order logic
(see Section 3.1) is no longer a datalog program. Instead, it belongs to an exten-
sion of datalog called datalog± (Cal̀ı et al., 2012) or existential rules (Baget et al.,
2011)12; in database theory, this language has been known since the early 1980s
under the name of tuple-generating dependencies (Abiteboul et al., 1995). More
precisely, EL TBoxes can be translated into sets of sentences of the form

∀y (
γ1(y) ∧ · · · ∧ γk(y)→ ∃x γ0(x,y)

)
,

where γ1(y), . . . , γk(y) contain only universally quantified variables y whereas
γ0(x,y) contains both universally quantified variables y and existentially quan-
tified variables x (note that the standard translations of EL TBoxes are in fact
more restricted than this general form, but it suffices for our explanations). Since
these sentences are Horn clauses, we can again apply the forward chaining pro-
cedure (chase). However, in the case of EL TBoxes the chase has to ‘invent’
new domain elements for the existential quantifiers. Following the terminology
of database theory, these fresh (previously not existing) domain elements will be
called labelled nulls. In general, the forward chaining procedure may require in-
finitely many fresh labelled nulls resulting in a possibly infinite canonical model.

The forward chaining construction of the canonical model for an EL knowledge
base (T ,A) can be defined by taking the standard model IA of the ABox as I0
(see Definition 12) and applying inductively the following rules to obtain Ik+1

from Ik:
(c′) if d ∈ CIk and C � A ∈ T , then we add d to AIk+1 ;

(r′) if (d, d′) ∈ P Ik1 and P1 � P2 ∈ T , then we add (d, d′) to P
Ik+1

2 ;
(e) if d ∈ CIk and C � ∃P.D ∈ T , where D is a concept name or �, then we

take a fresh labelled null, d′, and add d′ to DIk+1 and (d, d′) to P Ik+1

(here, we assume that only A, ∃P.A and ∃P.� can occur on the right-hand side of
concept inclusions—this restriction is inessential, as we shall see in Theorem 20).
Note that rules (c′) and (r′) are similar to the rules from Section 3.1 except that
they are applied without checking whether d and (d, d′) are already present in
the interpretation of the concept and role, respectively. This modification of the
chase procedure is usually called the oblivious chase (Johnson and Klug, 1984);
see also (Cal̀ı et al., 2013).

12 See also Chapter 6 in this volume.
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Fig. 5. The infinite canonical model for the KB from Example 17

Example 17. Consider an EL TBox T with the following concept inclusion:

Person � ∃parent.Person.
Let us apply the forward chaining procedure to the ABox A = {Person(john)}.
We begin by setting I0 = IA:

ΔI0 = {john}, PersonI0 = {john} and parentI0 = ∅.
By the concept inclusion in the TBox, there must be some d1 that is parent-
related to john. So, we expand I0 to I1 by taking

ΔI1 = {john, d1}, PersonI1 = {john, d1} and parentI1 = {(john, d1)}.
Now, the concept inclusion is satisfied for john but fails for d1, since there must
be some d2 that is parent-related to d1. So, we expand I1 to I2 by taking

ΔI2 = {john, d1, d2}, PersonI2 = {john, d1, d2}, parentI2 = {(john, d1), (d1, d2)}.
If we take all the newly introduced labelled nulls di to be distinct then, clearly,
this process will continue ad infinitum; see Fig. 5. (A possibility of making some
of the di identical will be discussed later on in this section.)

Since our simplified definition of EL does not involve ⊥ and ¬, every EL
knowledge base (T ,A) is consistent and the (possibly infinite) forward chain-
ing procedure constructs the canonical model CT ,A of (T ,A). As in the case
of RL, the resulting canonical model is universal: it can be homomorphically
mapped into any other model of the knowledge base. Note, however, that uni-
versal models are not uniquely defined (for instance, one can take two identical
fresh labelled nulls instead of one) and, in contrast to RL, some knowledge bases
may only have infinite universal models. For instance, the knowledge base (T ,A)
from Example 17 has no finite universal model. Indeed, suppose, for the sake
of contradiction, that there is a finite universal model U of (T ,A). Then U
must contain a sequence of domain elements connected by parent into a cycle.
However, the (canonical) model constructed in Example 17 does not contain a
homomorphic image of such a cycle, contrary to our assumption.

On the other hand, if we only want to check concept and role subsumption
or find answers to instance queries, then we do not have to consider infinite
models. The ‘folding’ construction we are going describe below re-uses the la-
belled nulls and reminds of the filtration technique known from modal logic; see,
e.g., (Chagrov and Zakharyaschev, 1997).
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Fig. 6. The small canonical model for the KB from Example 17

Example 18. Consider (T ,A) from Example 17 and suppose that, on step 2 of
forward chaining, instead of introducing a fresh labelled null, d2, we take d1
instead. This will result in the following interpretation I∗ (see Fig. 6):

ΔI∗ = {john, d1},
PersonI∗ = {john, d1},
parentI∗ = {(john, d1), (d1, d1)}.

Although the interpretation I∗ makes little sense from the modelling point of
view (it states that d1 is its own parent), it is clearly a model of (T ,A). Moreover,
as we shall see below, this small model is good enough for checking subsumption
and answering instance queries.

To define such small canonical models (also known as generating models)
formally, we first convert EL TBoxes to a normal form.

Definition 19. An EL TBox is said to be in normal form if any of its concept
inclusions looks as follows:

A1 � A2 � A, ∃P.D � A or A � ∃P.D,

where P is a role name, A, A1 and A2 are concept names and D is either a
concept name or �.

By introducing abbreviations for complex concepts, one can transform any
EL TBox to an equivalent one in normal form.

Theorem 20 (Baader et al. (2005)). Every EL TBox T can be transformed
into a TBox T ′ in normal form such that the size of T ′ is linear in the size of
T , and T and T ′ are equivalent in the following sense:

– every model of T can be extended to a model of T ′ by defining interpretations
of the fresh concept names,

– every model of T ′ is a model of T .
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Example 21. Given a concept inclusion ∃P.A � B � ∃R.∃P.A, we first take a
fresh concept name C that will stand for ∃P.A and obtain

C �B � ∃R.C, ∃P.A � C, C � ∃P.A.
︸ ︷︷ ︸

‘C is equivalent to ∃P.A’

Next, we take another fresh concept name D to replace ∃R.C, which results in
the following TBox in normal form:

C �B � D, ∃P.A � C, C � ∃P.A, D � ∃R.C, ∃R.C � D.

We are now in a position to define generating models formally. Let (T ,A) be
an EL knowledge base in normal form. We say that a concept occurs positively
in T if it occurs on the right-hand side of a concept inclusion in T . For each
concept ∃S.D occurring positively in T (where D is either a concept name or �),
we introduce a witness w∃S.D and define a generating relation �T ,A on the set
of these witnesses together with ind(A) by taking:

a �T ,A w∃S.D if a ∈ ind(A) and (T ,A) |= (∃S.D)(a),

w∃P.A �T ,A w∃S.D if T |= A � ∃S.D.

The generating model GT ,A for (T ,A) is defined as follows:

ΔGT ,A = ind(A) ∪ {w∃S.D | ∃S.D occurs positively in T },
aGT ,A = a, for a ∈ ind(A),
AGT ,A = { a ∈ ind(A) | (T ,A) |= A(a) } ∪

{w∃S.D | T |= D � A }, for a concept name A,

PGT ,A = {(a, b) | S(a, b) ∈ A, T |= S � P} ∪
{(w,w∃S.D) | w �T ,A w∃S.D, T |= S � P}, for a role name P.

It should be clear that GT ,A can be constructed in polynomial number of steps
by the modified forward chaining procedure that does not invent fresh labelled
nulls for ∃S.D but instead re-uses the existing element w∃S.D in the domain. The
following theorem shows that GT ,A is indeed a model of (T ,A) and it provides
enough information about all concept and role subsumptions and about instance
queries.

Theorem 22 (Baader et al. (2005)). Let (T ,A) be an EL knowledge base.
Then GT ,A |= (T ,A). In addition, we have the following :

(i) (T ,A) |= C1 � C2 if and only if GT ,A |= C1 � C2;
(ii) (T ,A) |= P1 � P2 if and only if GT ,A |= P1 � P2;
(iii) (T ,A) |= C(a) if and only if GT ,A |= C(a);
(iv) (T ,A) |= P (a, b) if and only if GT ,A |= P (a, b).

Since the generating model GT ,A can be constructed in polynomial time in the
size of (T ,A), concept and role subsumption are tractable; the same concerns
instance checking (matching lower bounds will be discussed in Section 4).
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Theorem 23. The problems of concept and role subsumption and instance
checking are P-complete in EL.

However, the following example shows that GT ,A cannot be directly used to
compute answers to conjunctive queries.13

Example 24. Consider (T ,A) from Example 17 and the CQ

q = ∃x parent(x, x).
It should be clear that the answer to q over (T ,A) is ‘no’ because CT ,A �|= q;
see Fig. 5. On the other hand, since the generating model GT ,A contains a loop
(see Fig. 6), we have GT ,A |= q.

We call GT ,A generating because the standard canonical model CT ,A of (T ,A)
can be generated by unravelling cycles of the generating relation �T ,A into
infinite trees: for example, GT ,A in Fig. 6 can be unravelled into CT ,A in Fig. 5.
We remark that the generating model defined here was initially represented as
a pair functions by Brandt (2004) and later called the canonical model; see
e.g., (Lutz and Wolter, 2007). We prefer the term generating model to avoid
confusion with the (possibly infinite) canonical model (the chase).

In Section 4, we shall return to the problem of answering CQs over EL knowl-
edge bases and revisit the canonical model construction. In the meantime, we
consider the third profile of OWL2.

3.3 OWL 2 QL

The OWL2QL profile14 of OWL2 was designed for ontology-based data access
via query rewriting, where answering CQs over a knowledge base is reduced to
answering first-order queries over a database storing the ABox of the KB (this
will be discussed in Section 4). OWL2QL is based on the logics of the DL-Lite
family (Calvanese et al., 2007; Artale et al., 2009).

In this section, we consider a somewhat simplified version of OWL2QL,
which will be called QL. (It is almost identical to what is known as DL-
LiteR (Calvanese et al., 2007) or DL-LiteHcore (Artale et al., 2009).) Concept and
role inclusions in QL are of the form

B � C and R1 � R2,

where R1 and R2 are roles (role names or their inverses) and B and C are
concepts defined by the following grammar:

B ::= A | ∃R.�,
C ::= A | ∃R.� | ∃R.C.

13 The generating model can be used the for answering CQs but the given query has to
be modified to take account of identifications of the labelled nulls. This is known as
the combined approach to query answering, see (Lutz et al., 2009) for the case of EL
and (Kontchakov et al., 2011) for the case of QL. Alternatively, a special procedure
has to filter out spurious answers resulting from identification (Lutz et al., 2013).

14 www.w3.org/TR/owl2-profiles/#OWL_2_QL

www.w3.org/TR/owl2-profiles/#OWL_2_QL
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ABoxes in QL are simple; see Section 3.1. Note that the universal restrictions are
not allowed at all and the existential restrictions on the left-hand side of concept
inclusions must have � as their filler (such existential restrictions are called
unqualified and the� symbol is often omitted, making ∃R out of ∃R.�); however,
the existential restrictions on the right-hand side of concept inclusions can be
qualified. Similarly to the case of EL, the standard first-order translations of QL
TBoxes require existential quantification, which causes the canonical models to
be infinite.

Analogously to EL TBoxes, one can transform any QL TBox to an equivalent
one in normal form (see Theorem 20).

Definition 25. A QL TBox is said to be in normal form if any concept inclusion
in it looks as follows:

A′ � A, ∃R � A or A � ∃R.D,

where R is a role, A and A′ are concept names and D is either a concept name
or �.

Given a QL knowledge base (T ,A) with T in normal form, we can find all
answers to a CQ q over this KB by evaluating q over the (possibly infinite)
canonical model CT ,A, which can be constructed using forward chaining (cf. Sec-
tion 3.2). We begin by taking the standard model IA of the ABox as I0 (see
Definition 12) and apply inductively the following rules to obtain Ik+1 from Ik:
(c′) if d ∈ BIk and B � A ∈ T , then we add d to AIk+1 ;

(r′) if (d, d′) ∈ RIk1 and R1 � R2 ∈ T , then we add (d, d′) to R
Ik+1

2 ;
(e) if d ∈ BIk and B � ∃R.D ∈ T , where D is a concept name or �, then we

take a fresh labelled null, d′, and add d′ to DIk+1 and (d, d′) to RIk+1.

(These rules are similar to the rules from Section 3.2 except that they refer to
roles with inverses and QL concepts).

The canonical model CT ,A constructed using rules (c′), (r′) and (e) in a
bottom-up fashion can alternatively be defined by unravelling the generating
structure, which is closer to the top-down approach and will be required for query
rewriting in Section 4. There are two key observations that lead us to the alter-
native definition: first, fresh labelled nulls can only be added by applying (e),
and, second, if two labelled nulls, d1 and d2, are introduced by applying (e) with
the same concept inclusion B � ∃R.D then the same rules will be applicable
to d1 and d2 in the continuation of the forward chaining procedure. So, each
labelled null d′ resulting from applying (e) to some B � ∃R.D on a domain
element d can be identified with a pair of the form (d, ∃R.D). More formally, for
each concept ∃R.D that occurs positively in T , we introduce a witness w∃R.D
and define a generating relation �T ,A on the set of these witnesses together
with ind(A) by taking:

a �T ,A w∃R.D if a ∈ ind(A), IA |= B(a) and T |= B � ∃R.D,

w∃S.B �T ,A w∃R.D if T |= ∃S− � ∃R.D or T |= B � ∃R.D.
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A �T ,A-path σ is a finite sequence aw∃R1.D1 · · ·w∃Rn.Dn , n ≥ 0, such that
a ∈ ind(A) and, if n > 0, then

a �T ,A w∃R1.D1 and w∃Ri.Di �T ,A w∃Ri+1.Di+1 , for i < n.

Thus, a path of the form σw∃R.D represents the fresh labelled null introduced
by applying (e) to some B � ∃R.D on the domain element σ (and which cor-
responds to the pair (σ, ∃R.D) mentioned above). Denote by tail(σ) the last
element in σ; as we noted above, the last element in σ uniquely determines all
the subsequent rule applications. The canonical model CT ,A is defined by taking
ΔCT ,A to be the set of all �T ,A-paths and setting

aCT ,A = a, for a ∈ ind(A),
ACT ,A = {a ∈ ind(A) | IA |= B(a) and T |= B � A} ∪

{σw∃R.D | T |= ∃R− � A or T |= D � A}, for a concept name A,

P CT ,A = {(a, b) | IA |= R(a, b) and T |= R � P} ∪
{(σw∃R.D, σ) | tail(σ) �T ,A w∃R.D, T |= R � P−} ∪
{(σ, σw∃R.D) | tail(σ) �T ,A w∃R.D, T |= R � P}, for a role name P.

Intuitively, by the definition of rule (c′), an ABox individual a belongs to ACT ,A

just in case there is a sequence of concepts B0, B1, . . . , Bn such that IA |= B0(a),
the Bi−1 � Bi are in T , for 1 ≤ i ≤ n, and Bn = A; in other words, if
IA |= B0(a) and T |= B0 � A, for some concept B0. Similarly, by the definition
of rules (c′) and (e), a labelled null of the form σw∃R.D belongs to ACT ,A just
in case T |= ∃R− � A or T |= D � A. For a role name P , rules (r′) and (e)
provide an analogous argument. More precisely, by the definition of rule (r′), a
pair (d, d′) of domain elements belongs to P CT ,A just in case there is a sequence of

roles R0, . . . , Rn such that (d, d′) ∈ R
CT ,A
0 , the Ri−1 � Ri are in T , for 1 ≤ i ≤ n,

and Rn = P ; in other words, (d, d′) ∈ R
CT ,A
0 and T |= R0 � P , for some role

R0. It then follows from the definition of rule (e) that a pair (d, d′) belongs to
P CT ,A just in three cases: (i) both elements of the pair are ABox individuals with
IA |= R(d, d′) and T |= R � P (ii) the first component of the pair is created by
an application of (e) to the second component of the pair: d = σw∃R.D, d′ = σ
and T |= R � P− or (iii) the second component of the pair is created by an
application of (e) to the first component: d = σ, d′ = σw∃R.D and T |= R � P .
These three cases are reflected in the three sets in the union in the definition of
P CT ,A .

Example 26. Consider a QL TBox T with the following concept and role
inclusions:

RA � ∃worksOn.Project,
Project � ∃isManagedBy.Prof,

worksOn− � involves,

isManagedBy � involves
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Fig. 7. The canonical model for the knowledge base in Example 26

and an ABox A comprising the following assertions:

RA(chris), worksOn(chris, dyn), Project(dyn),

Lecturer(dave), worksOn(dave, dyn).

Two concepts occur positively in T : ∃worksOn.Project and ∃isManagedBy.Prof.
For brevity, the witnesses for them will be denoted by w1 and w2, respectively.
The generating relation �T ,A is then defined by taking

chris �T ,A w1, dyn �T ,A w2, w1 �T ,A w2.

This gives the following �T ,A-paths:

chris, chrisw1, chrisw1 w2, dyn, dynw2 and dave

(note that if the graph of �T ,A contains a cycle then the set of �T ,A-paths
is infinite; cf. Example 17). The resulting canonical model CT ,A is depicted in
Fig. 7.

For any QL knowledge base, the defined canonical model is universal, and
thus contains all the necessary information for checking concept and role sub-
sumptions, answering instance queries and, more generally, for answering CQs:

Theorem 27. Let (T ,A) be a QL knowledge base. Then CT ,A |= (T ,A) and,
for any CQ q(x) and any tuple a in ind(A), we have

(T ,A) |= q(a) if and only if CT ,A |= q(a).
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Although the canonical models in EL and QL contain all the information re-
quired to compute answers to conjunctive queries, these canonical models are
not necessarily finite (in contrast to RL), and therefore cannot be simply materi-
alised, say, by a datalog engine, a triple store or a database management system.
In the next section, we analyse the problem of answering CQs and develop prac-
tical techniques for dealing with infinite canonical models.

4 Conjunctive Query Answering via Query Rewriting

Database management systems implement sophisticated algorithms for evaluat-
ing SQL queries over relational data instances. The (theoretically and empirically
supported) fact that databases have been very efficient in practice suggests the
following approach to answering queries over knowledge bases. We store the as-
sertions of a given ABox A in a relational database. Given a CQ q(x), we use
the inclusions of the TBox T to ‘rewrite’ q(x) into another query q′(x) that
would return, when evaluated over the data instance A, all the certain answers
to q(x) over (T ,A). It is important to emphasise here that the rewriting q′(x)
must only depend on the TBox T and the given query q(x), and so should work
for all possible ABoxes A. Thus, we arrive to the following definition.

We call a CQ q(x) and a TBox T first-order rewritable (FO-rewritable, for
short) if there exists a first-order formula q′(x) such that, for any ABox A and
any tuple a of individuals in A, we have

(T ,A) |= q(a) if and only if IA |= q′(a), (10)

where IA is the standard model of A (see Definition 12). The formula q′(x) is
called an FO-rewriting of q and T .

This idea of reducing CQ answering over knowledge bases to database query
answering, first formulated by Calvanese et al. (2005), may sound too good to
be applicable in all cases. In fact, there are a few issues in realising this idea.

A minor one is that, from a practical point of view, if an FO-rewriting q′(x)
is to be executed by a relational database engine then q′(x) must be a domain-
independent query (Abiteboul et al., 1995). This is the case, in particular, for
FO-rewritings that contain only conjunction, disjunction and existential quan-
tifiers. Such rewritings (and formulas) are called positive existential rewritings
(PE-rewritings, for short).

A more serious issue is that not all DL constructs can guarantee FO-rewri-
tability of all CQs. To understand why, let us recall (Libkin, 2004) that the
problem of evaluating a first-order formula in a given interpretation belongs the
classAC0 for data complexity. Data complexity is a complexity measure that only
takes account of the size of the data (the interpretation in this case) and regards
the query to be fixed. This measure was suggested by Vardi (1982) who tried to
find a theoretical explanation of the practical efficiency of database management
systems. It is also known from the complexity theory that AC0 is a proper
subclass of LogSpace and that LogSpace ⊆ NLogSpace ⊆ P (Papadimitriou,
1994; Arora and Barak, 2009). It follows that if the problem ‘(T ,A) |= q?’ is
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NLogSpace- or P-hard, for some fixed q and T , then these q and T cannot
be FO-rewritable. This observation allows us to identify the DL constructs that
can ruin FO-rewritability. Here we give two simple examples illustrating this
technique; for more consult, e.g., (Calvanese et al., 2006; Artale et al., 2009).

Example 28. A typical example of an NLogSpace-complete problem is the
reachability problem for directed graphs: given a directed graph G = (V,E) with
vertices V and arcs E and two distinguished vertices s, t ∈ V , decide whether
there is a directed path from s to t in G. We represent the graph and the target
vertex by means of an ABox AG,t comprising

edge(v1, v2), for (v1, v2) ∈ E,

ReachableFromTarget(t).

Consider now a TBox containing concept inclusion

∃edge.ReachableFromTarget � ReachableFromTarget

and the Boolean CQ

q = ReachableFromTarget(s).

It is readily seen that (T ,AG,t) |= q if and only if there is a directed path from
s to t in G. Therefore, the problem ‘(T ,AG,t) |= q?’ is NLogSpace-hard. Since
q and T are fixed (and do not depend on G or t), q and T cannot be FO-
rewritable. In other words, TBoxes capable of computing the transitive closure
of some relations in ABoxes do not allow FO-rewritability.

Example 29. Next, we consider an example of a P-complete problem. Let (V,E)
be a pair that consists of a finite set of vertices V and a relation E ⊆ V ×V ×V .
A vertex v ∈ V is said to be accessible from a set S ⊆ V of source vertices in
(V,E) if either v ∈ S or (v1, v2, v) ∈ E, for some v1 and v2 that are accessible
from S in (V,E) (v1 and v2 are called inputs and v the output; such a triple
can also be thought of as an implication of the form v1 ∧ v2 → v). The path
system accessibility problem is defined as follows: given (V,E) as above, source
vertices S ⊆ V and a terminal vertex t ∈ V , decide whether t is accessible
from S in (V,E). This problem is known to be P-complete (Garey and Johnson,
1979). The path system (V,E) and source vertices S can be encoded by an ABox
AV,E,S in the following way:

Accessible(v), for v ∈ S,

input1(e, v1), input2(e, v2) and output(v, e), for e = (v1, v2, v) ∈ E.

Consider now a TBox T containing

∃input1.Accessible � ∃input2.Accessible � BothInputsAccessible,

∃output.BothInputsAccessible � Accessible
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and the Boolean CQ

q = Accessible(t).

It should be clear that (T ,AV,E,S) |= Accessible(v) if and only if v is accessible
from S in (V,E); and (T ,A) |= BothInputsAccessible(e) if and only if both inputs
of e are accessible, that is, both are instances of Accessible. Therefore, the answer
to q is ‘yes’ if and only if t is accessible from S in (V,E). Thus, the problem
‘(T ,AV,E,S) |= q’ is P-hard, and so these fixed q and T cannot be FO-rewritable.

The OWL2QL profile of OWL2 was designed so that problems such
as graph reachability and path system accessibility above could not be ex-
pressed in it (on the other hand, observe that both of the TBoxes above
belong to RL and EL, which proves the lower complexity bounds in Theo-
rems 16 and 23). A number of various rewriting techniques have been pro-
posed and implemented for OWL2QL: PerfectRef (Poggi et al., 2008), Presto /
Prexto (Rosati and Almatelli, 2010; Rosati, 2012), as well as for extensions
of OWL2QL to datalog± and existential rules: Nyaya (Gottlob et al., 2011)
and PURE (König et al., 2012) and more expressive DLs: Requiem / Black-
out (Pérez-Urbina et al., 2009, 2012), Rapid (Chortaras et al., 2011) and Clip-
per (Eiter et al., 2012), which go beyond FO-rewritability.

In this section, we discuss the tree-witness rewriting (Kikot et al., 2012b).
We require the following definitions in the sequel. Whenever convenient, we
write S(z) for either a unary atom A(z1) or a binary atom P (z1, z2); we also
identify P−(z2, z1) with P (z1, z2). Any CQ q(x) = ∃y ϕ(x,y) is regarded as
the set of atoms in ϕ, so we can write S(z) ∈ q (when referring to the query
as a set of atoms, we often omit the answer variables). Any set q of atoms can
also be viewed as an interpretation over the domain of its terms (variables and
individual names) such that an atom S(z) is true in this interpretation just in
case S(z) ∈ q. We slightly abuse notation and denote by q both the set of atoms
and the corresponding interpretation. The reason behind these definitions and
notations is as follows: it is not hard to see that I |= q(a) if and only if there is
a homomorphism from q(a) to I (see Definition 14).

4.1 PE-Rewriting for Flat QL (and RDFS)

We first consider an important special case of flat QL TBoxes that do not con-
tain existential quantifiers on the right-hand side of concept inclusions. In other
words, flat QL TBoxes in normal form can only contain concept and role inclu-
sions of the form

A � A′, ∃R � A and R � R′,

for concept names A and A′ and roles R and R′. Note that the language of flat
QL TBoxes differs from the language of RDFS15 only in that QL allows inverse
roles in role inclusions whereas RDFS restricts role inclusions to just role names.

15 www.w3.org/TR/rdf-schema

www.w3.org/TR/rdf-schema
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Let T be a flat QL TBox and q(x) a conjunctive query. By Theorem 27,
(T ,A) |= q(a) if and only if q(a) is true in the canonical model CT ,A. Since the
TBox is flat, the generating relation �T ,A is empty, the canonical model CT ,A
contains no labelled nulls, and so, by the definition of CT ,A, we have

CT ,A |= A(a) if and only if IA |= B(a) and T |= B � A, for some B,

CT ,A |= P (a, b) if and only if IA |= R(a, b) and T |= R � P, for some R.

Define a PE-formula qext(x) to be the result of replacing every atom A(z) in
q(x) with Aext(z) and every atom P (z1, z2) in q(x) with Pext(z1, z2), where

Aext(u) =
∨

T |=B�A
STu(B), Pext(u, v) =

∨

T |=R�P
STu,v(R),

and ST is the standard translation defined in Section 3.1. It is not hard to see
that, for any ABox A and any tuple a from ind(A), we have CT ,A |= q(a) if and
only if IA |= qext(a).

Proposition 30. For any CQ q(x) and any flat QL TBox T , qext(x) is a PE-
rewriting of q(x) and T .

Thus, in the case of flat QL TBoxes, it is really easy to construct PE-
rewritings.

Example 31. Consider the CQ

q(x, y) = Student(x) ∧ takesCourse(x, y) ∧ teacherOf(p0, y)

and a flat QL TBox T with the following concept and role inclusions:

UndergraduateStudent � Student,

enrolledAt � Student,

teaches− � teacherOf.

We then define the following formulas for concept and role names from the query:

Studentext(u) = Student(u) ∨ UndergraduateStudent(u) ∨
∃v enrolledAt(u, v),

takesCourseext(u, v) = takesCourse(u, v),

teacherOfext(u, v) = teacherOf(u, v) ∨ teaches(v, u),

and we obtain the following PE-rewriting of q(x, y) and T :

qext(x, y) =
(
Student(x) ∨ UndergraduateStudent(x) ∨ ∃v enrolledAt(x, v)) ∧

takesCourse(x, y) ∧ (
teacherOf(p0, y) ∨ teaches(y, p0)

)
.

Next, we turn to the case of general QL TBoxes.
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4.2 Tree-Witness PE-Rewriting for Full QL

Suppose T is a QL TBox in normal form. By Theorem 27, to compute certain
answers to q(x) over (T ,A), for some A, it is enough to find answers to q(x)
in the canonical model CT ,A. To do this, we have to check, for every tuple a of
elements in ind(A), whether there exists a homomorphism from q(a) to CT ,A.
Thus, as in the case of flat TBoxes, the answer variables take values from ind(A).
However, the existentially quantified variables in q(x) can be mapped both to
ind(A) and to the labelled nulls in CT ,A. In order to define the rewriting that
does not depend on a particular ABox, we need to have a closer look at the
structure of the canonical models CT ,A with fixed T and varying A.

Let ∃R.D be a concept occurring positively in T (recall that D is either a
concept name or �). For an individual name a, we define the ∃R.D-generated T -
tree on a as the restriction of the canonical model of the KB (T , {(∃R.D)(a)}) to
the domain that consists of a and the labelled nulls with the prefix aw∃R.D. We
denote this tree by C∃R.DT (a). (Note that C∃R.DT (a) is not necessarily a model of
T .) Take now any ABox A and any a ∈ ind(A). By the definition of the canonical
model, if a �T ,A w∃R.D then CT ,A contains a sub-tree that is isomorphic to the
∃R.D-generated T -tree on a, excluding possibly the root. Moreover, such sub-
trees may intersect only on their common root a. For instance, the canonical
model in Fig. 7 contains the ∃worksOn.Project-generated T -tree on chris and the
∃isManagedBy.Prof-generated T -tree on dyn. The following example illustrates a
more complex configuration.

Example 32. Consider a TBox T with the following concept inclusions:

A � ∃R.D, D � ∃P1, D � ∃P2,

B � ∃S.C

and suppose that an ABox A contains A(a), P1(a, b), A(b), B(b), P2(b, c). The
canonical model CT ,A is depicted in Fig. 8. The individual a in this canonical
model has a single T -tree generated by ∃R.D. The individual b has two T -trees,
one generated by ∃R.D and another by ∃S.C. These two T -trees intersect only
on their common root b.

For a more formal treatment, we require the following opertation. Given in-
terpretations I1 and I2 (under the standard name assumption), we define their
join, I1 ⊕ I2, by taking

ΔI1⊕I2 = ΔI1 ∪ΔI2 ,

aI1⊕I2 = a, for an individual a in I1 or I2,
AI1⊕I2 = AI1 ∪ AI2 , for a concept name A,

P I1⊕I2 = P I1 ∪ P I2 , for a role name P.
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Fig. 8. The canonical model CT ,A from Example 32

Then the canonical model CT ,A of any QL knowledge base (T ,A), with T in
normal form, can be represented as the following join:

CT ,A = I∗A ⊕
⊕

a∈ind(A)
B�∃R.D∈T with I∗A|=B(a)

C∃R.DT (a), (11)

where I∗A is a model of A with domain ind(A), which will be called the ABox
part of CT ,A; the join of the C∃R.DT (a) will be called the anonymous part of CT ,A.
We are now fully equipped to present the tree-witness rewriting of a CQ q(x)
and a QL TBox T .

Following the divide and conquer strategy, we show how the process of con-
structing FO-rewritings can be split into two steps: the first step considers only
the flat part of the TBox and uses the formulas Aext(u) and Pext(u, v) defined
in Section 4.1; the second step (to be described below) takes account of the
remaining part of the TBox, that is, inclusions of the form B � ∃R.D.

H-completeness. Let T be a (not necessarily flat) QL TBox. A simple ABox
A is said to be H-complete with respect to T if, for all concept names A and role
names P , we have

A(a) ∈ A if IA |= B(a) and T |= B � A, for some B = A′ or B = ∃R,

P (a, b) ∈ A if IA |= R(a, b) and T |= R � P, for some R.

We say that a first-order formula q′(x) is an FO-rewriting of q(x) and T over
H-complete ABoxes if (10) holds for any ABoxA that is H-complete with respect
to T and any tuple a from ind(A); as before, a PE-rewriting is an FO-rewriting
that contains only conjunction, disjunction and existential quantification.

Observe that if an ABox A is H-complete with respect to T then the ABox
part of CT ,A, that is, I∗A in (11), coincides with IA. Thus, if T is flat then q(x)
itself is clearly a PE- and FO-rewriting of q(x) and T over H-complete ABoxes.
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More generally, we can easily obtain rewritings (over arbitrary ABoxes) from
rewritings over H-complete ABoxes:

Proposition 33. If q′(x) is an FO-rewriting (PE-rewriting) of q(x) and T
over H-complete ABoxes, then q′ext(x) is an FO-rewriting (respectively, PE-
rewriting) of q(x) and T .

Thus, we can only focus on constructing PE-rewritings over H-complete
ABoxes.

Tree Witnesses. Consider a CQ q(x) and a knowledge base (T ,A). Suppose
that, for some tuple a in ind(A), there is a homomorphism h from q(a) to CT ,A.
Then h partitions q(a) into the atoms mapped by h to the ABox part and
atoms mapped by h to the ∃R.D-generated T -trees of the anonymous part of
CT ,A. The tree-witness rewriting of q(x) and T we are going to present now lists
all possible partitions of the atoms of q(x) into such subsets. We begin with an
example illustrating this idea.

Example 34. Consider the QL TBox T from Example 26 with the concept and
role inclusions

RA � ∃worksOn.Project, (12)

Project � ∃isManagedBy.Prof, (13)

worksOn− � involves, (14)

isManagedBy � involves (15)

and the CQ asking to find those who work with professors:

q(x) = ∃y, z (worksOn(x, y) ∧ involves(y, z) ∧ Prof(z)
)
.

Recall that if the canonical model CT ,A, for some ABox A, contains some in-

dividuals a ∈ RACT ,A and b ∈ ProjectCT ,A , then CT ,A must also contain the
∃worksOn.Project-generated T -tree on a and the ∃isManagedBy.Prof-generated
T -tree on b; see Fig. 7, where such an a is chris and such a b is dyn. Let us
consider all possible ways of obtaining certain answers to the query, that is,
all possible homomorphisms from atoms of q(x) to CT ,A such that the answer
variable x is mapped to ind(A). First, x, y and z can be mapped to ABox indi-
viduals. Alternatively, x and y can be mapped to ABox individuals, a and b, and
if b belongs to ProjectCT ,A , then there is a homomorphism h1 from the last two
atoms of q(a) to the anonymous part; see Fig. 9. Another option is to map only
x to an ABox individual, a, and if a belongs to RACT ,A then the whole q(a) can
be homomorphically mapped to the anonymous part; see h2 in Fig. 9. Finally,
another homomorphism, h3 in Fig. 9, maps both x and z to a provided that
a is in RACT ,A and Prof CT ,A at the same time. The possible ways of mapping
subsets of a query to the anonymous part of the canonical model are called tree
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Fig. 9. Three homomorphisms from subsets of q to T -trees

witnesses. The three tree witnesses for q(x) and T found above give rise to the
following PE-rewriting qtw(x) of q(x) and T over H-complete ABoxes:

qtw(x) = ∃y, z
[(
worksOn(x, y) ∧ involves(y, z) ∧ Prof(z)

) ∨
(
worksOn(x, y) ∧ Project(y)

) ∨
RA(x) ∨ (

RA(x) ∧ Prof(z) ∧ (x = z)
)]
.

We now give a general definition of the tree-witness rewriting over H-complete
ABoxes. Let T be a QL TBox in normal form and q(x) a CQ. Consider a pair
t = (tr, ti) of disjoint sets of terms in q(x), where ti is non-empty and contains
only existentially quantified variables (tr, on the other hand, can be empty and
can contain answer variables and individual names). Set

qt =
{
S(z) ∈ q | z ⊆ tr ∪ ti and z �⊆ tr

}
.

We say that t is a tree witness for q(x) and T generated by ∃R.D if the following
two conditions are satisfied:

(tw1) there exists a homomorphism h from qt to C∃R.DT (a), for some a, such
that tr = {z | h(z) = a} and ti contains the remaining variables in qt,

(tw2) qt is a minimal subset of q such that, for any y ∈ ti, every atom in q
containing y belongs to qt.

Note that unary atoms with arguments in tr or binary atoms with both arguments
in tr do not belong to qt and, therefore, condition (tw1) does not require them
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to be homomorphically mapped into C∃R.DT (a). The terms in tr (if any) are called
the roots of t and the (existentially quantified) variables in ti the interior of t.
The homomorphism h in condition (tw1) is not necessarily unique; however, it is
important that all roots are mapped to a and all variables of the interior are not
mapped to a. Thus, qt can contain at most one individual name, a; if qt does not
contain an individual name then the choice of a is irrelevant. Condition (tw2)
reflects the fact that if a homomorphism from q to the canonical model of (T ,A),
for some A, maps a variable y of an atom R(y, z) to a non-root of a tree C∃R.DT (a)
then the other variable of the atom must be mapped to the same ∃R.D-generated
T -tree on a.)

Let t = (tr, ti) be a tree witness for q(x) and T . Consider the following formula

twt = ∃u
[∧

x∈tr
(x = u) ∧

∨

B�∃R.D∈T
t generated by ∃R.D

STu(B)
]
, (16)

whose free variables are the roots, tr, of t. The formula twt describes the ABox
individuals that root the trees in the anonymous part of CT ,A into which the
atoms qt of the tree witness t can be homomorphically mapped. More formally, if
IA |= twt(a, . . . , a), for some a ∈ ind(A), then CT ,A contains the ∃R.D-generated
T -tree on a, and so there is a homomorphism from qt to CT ,A that maps all the
roots of t to a. Conversely, if there is a homomorphism from qt to CT ,A such
that all the roots of t are mapped to a (but all the variables from the interior,
ti, of t are mapped to labelled nulls) then IA |= twt(a, . . . , a).

Let Θq
T be the set of tree witnesses for q(x) and T . Tree witnesses t and t′

are said to be conflicting if qt ∩ qt′ �= ∅ (in other words, the interior of one
tree witness, say, t, contains a root or an interior variable of the other, t′, or
the other way round, which makes it impossible to have both tree witnesses
mapped into the anonymous part of CT ,A at the same time). A set Θ ⊆ Θq

T of
tree witnesses is said to be independent if any two distinct tree witnesses in Θ
are non-conflicting. If Θ is independent then we can ‘cut’ the query q(x) into
independent subqueries in the following way. Consider a homomorphism that,
for each t ∈ Θ, maps the subset qt of q to the ∃R.D-generated T -tree on some
a (provided that t is generated by ∃R.D) and maps the remaining atoms in q to
the ABox part of CT ,A. By (11), such a homomorphism is possible if there is a
tuple a in ind(A) such that the formula

qΘcut(x) = ∃y
(
(q \ qΘ) ∧

∧

t∈Θ
twt

)
(17)

holds in IA on a, where q \ qΘ is the conjunction of all the atoms in q that do
not belong to qt, for any t ∈ Θ. (Recall that due to H-completeness of the ABox,
I∗A = IA.) Conversely, if there is a homomorphism from q(a) to CT ,A then there
exists an independent set Θ of tree witnesses such that IA |= qΘcut(a).

The following PE-formula qtw(x) is called the tree-witness rewriting of q(x)
and T over H-complete ABoxes :

qtw(x) =
∨

Θ⊆Θq
T independent

qΘcut(x). (18)



An Introduction to Description Logics and Query Rewriting 229

x

y

z

y′

x′

z′

x′′

y′′

t1

t2

t3

t4

R

T

T

R

S

S

R

C∃R.A
T (a)

a

A

R
T

C∃R−.B
T (a)

a

B

R
−

S

Fig. 10. Tree witnesses in Example 35

Example 35. Consider a TBox with the following concept inclusions:

A0 � ∃R.A, A � ∃T,
B0 � ∃R−.B, B � ∃S

and the following CQ

q(x, y′′) = ∃y, z, y′, x′, z′, x′′ (R(x, y) ∧ T (y, z) ∧ T (y′, z) ∧
R(x′, y′) ∧ S(x′, z′) ∧ S(x′′, z′) ∧R(x′′, y′′)

)

shown in Fig. 10 alongside the ∃R.A-generated T -tree and the ∃R−.B-generated
T -tree. There are four tree witnesses for q(x, y′′) and T :
– t1 = (t1r , t

1
i ) generated by ∃T with t1r = {y, y′} and t1i = {z} and

qt1 = {T (y, z), T (y′, z) };
– t2 = (t2r , t

2
i ) generated by ∃S with t2r = {x′, x′′} and t2i = {z′} and

qt2 = {S(x′, z′), S(x′′, z′) };
– t3 = (t3r , t

3
i ) generated by ∃R.A with t3r = {x, x′} and t3i = {y, y′, z} and

qt3 = {R(x, y), T (y, z), T (y′, z), R(x′, y′) };
– t4 = (t4r , t

4
i ) generated by ∃R−.B with t4r = {y′, y′′} and t4i = {x′, x′′, z′} and

qt4 = {R(x′, y′), S(x′, z′), S(x′′, z′), R(x′′, y′′) }.
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Clearly, t3 and t4 are conflicting; t3 is also conflicting with t1 but not with t2

despite sharing a common root; symmetrically, t4 is conflicting with t2. Thus,
we have the following 8 independent sets of tree witnesses:

∅, {t1}, {t2}, {t3}, {t4}, {t1, t2}, {t1, t4}, {t2, t3},

which result in a tree-witness rewriting of 8 subqueries with the following tree-
witness formulas:

twt1(y, y
′) = ∃u ((u = y) ∧ (u = y′) ∧ A(u)

)
,

twt2(x
′, x′′) = ∃u ((u = x′) ∧ (u = x′′) ∧B(u)

)
,

twt3(x, x
′) = ∃u ((u = x) ∧ (u = x′) ∧ A0(u)

)
,

twt4(y
′, y′′) = ∃u ((u = y′) ∧ (u = y′′) ∧B0(u)

)
.

Theorem 36 (Kikot et al. (2012b)). Let T be a QL TBox and q(x) a CQ.
For any ABox A that is H-complete with respect to T and any tuple a in ind(A),
we have

CT ,A |= q(a) if and only if IA |= qtw(a).

By Proposition 33, to obtain a PE-rewriting of q(x) and T over arbitrary
ABoxes, it is enough to take the tree-witness rewriting qtw(x) over H-complete
ABoxes and replace every atom S(z) in it with Sext(z).

The number of tree witnesses, |Θq
T |, is bounded by 3|q|. On the other hand,

there is a sequence of queries qn and ontologies Tn with exponentially many (in
|qn|) tree witnesses (Kikot et al., 2012b). The length of qtw is O(2|Θ

q
T | · |q| · |T |).

It is to be noted that there exist CQs q and QL TBoxes T any PE-rewritings
of which are of exponential size in |q| provided that the rewritings use the same
symbols as in q and T (Kikot et al., 2012a). One can always reduce the size of
PE-rewritings to polynomial by employing two new constants that do not occur
in q; for details and further references, consult (Gottlob et al., 2014).

If any two tree-witnesses for q(x) and T are compatible—that is, they are
either non-conflicting or one is included in the other—then qtw(x) can be equiv-
alently transformed into the PE-rewriting

q′tw(x) = ∃y
∧

S(z)∈q

(
S(z) ∨

∨

t∈Θq
T with S(z)∈qt

twt

)

of size O(|Θq
T | · |q|2 · |T |); for details we refer the reader to (Kikot et al., 2012b).

As we saw in Example 29, CQ entailment over RL and EL knowledge bases
is P-hard for data complexity, and so some CQs over such knowledge bases do
not have first-order rewritings. In the next two sections, we show that one can
always rewrite CQs over RL or EL TBoxes into datalog queries of polynomial
size.
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4.3 Datalog Rewriting for RL

Recall from Section 3.1 that a datalog program is a set of Horn clauses with one
positive literal, that is, universally quantified sentences of the form

γ0(x)← γ1(x) ∧ · · · ∧ γn(x),

where each variable of the head, γ0(x), occurs in at least one of the atoms in the
body, γ1(x), . . . , γn(x). (Following the datalog tradition, we omit the universal
quantifiers and write the implication from right to left.) Given a datalog program
Π , a set of ground atoms D and a ground atom Q(a), we write (Π,D) |= Q(a)
if Q(a) is true in every interpretation satisfying D and all clauses of Π , or,
equivalently, if Q(a) is true in the minimal (or canonical) model of (Π,D),
which is constructed in the same way as the canonical models of RL knowledge
bases (in general, however, the arity of predicates is not bounded by 2).

We say that a CQ q(x) and a TBox T are datalog-rewritable if there exist a
datalog program Π and a predicate Q(x) such that, for any ABox A and any
tuple a of individuals in A, we have

(T ,A) |= q(a) if and only if (Π,A) |= Q(a). (19)

(In the following two sections we view any ABox as a set of ground atoms: each
concept assertion is a unary ground atom and each role assertion is a binary
ground atom.) In this case, the pair (Π,Q(x)) is called a datalog rewriting of
q(x) and T .

Let T be a positive RL TBox, that is, an RL TBox without negative concept
inclusions of the form B � ⊥ (see Section 3.1). Denote by ΠT the datalog
program that contains the standard translations of all concept and role inclusions
in T :

STu(A)← STu(B), for each B � A in T ,
STu,v(R2)← STu,v(R1), for each R1 � R2 in T .

(Note that B can be a complex RL concept, constructed using � and ∃R.C with
possibly inverse roles.) By Theorem 15, we then obtain the following result:

Corollary 37. For any positive RL TBox T and any CQ q(x) = ∃y ϕ(x,y),

(ΠT ∪ {Q(x)← ϕ(x,y)}, Q(x))

is a datalog rewriting of q(x) and T , where Q is a fresh predicate symbol.

Note that the size of this datalog rewriting is the sum of the sizes of the TBox
and the query (thus, it is linear in both).

4.4 Tree-Witness Datalog Rewriting for EL

Let T be an EL TBox in normal form (Definition 19). As we saw in Section 3.2,
the canonical model of (T ,A) can be defined by unravelling the cycles in the
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generating model GT ,A. So, the domain of the canonical model consists of �T ,A-
paths of the form aw∃P1.D1 · · ·w∃Pn.Dn , n ≥ 0, such that a ∈ ind(A) and, if n > 0,
then

a �T ,A w∃P1.D1 and w∃Pi.Di �T ,A w∃Pi+1.Di+1 , for i < n.

Similarly to the case of QL, we can represent the canonical model as the join of
its ABox and anonymous parts. The latter consists of the trees C∃P.DT (a) defined
in precisely the same way as in Section 4.2: C∃P.DT (a) is the restriction of the
canonical model of (T , {(∃P.D)(a)}) to a and the labelled nulls with the prefix
aw∃P.D. More formally, CT ,A is represented as

CT ,A = I∗A ⊕
⊕

a∈ind(A)
A�∃P.D∈T with I∗A|=A(a)

C∃P.DT (a), (20)

where I∗A is a model of A with domain ind(A). We again follow the divide and
conquer strategy and split the process of query rewiring in two steps: rewriting
over H-complete ABoxes and tree witnesses.

H-completeness. Let T be an EL TBox. A simple ABox A is said to be H-
complete with respect to T if, for all concept names A and role names P , we
have

A(a) ∈ A if IA |= C(a) and T |= C � A, for some EL concept C,

P (a, b) ∈ A if IA |= R(a, b) and T |= R � P, for some role name R.

(Note that the definition is the same as for QL except that now C can be an
arbitrary EL concept, not only A′ or ∃R.) We say that (Π,Q(x)), for a datalog
program Π and an atom Q(x), is a datalog rewriting of q(x) and T over H-
complete ABoxes if (19) holds for any ABox A that is H-complete with respect
to T and any tuple a from ind(A).

Observe that if an ABox A is H-complete with respect to T then the ABox
part of CT ,A, that is, I∗A in (20), coincides with IA. Thus, if T is a flat EL
TBox in normal form (which does not contain concept inclusions of the form
A � ∃P.D) then

({Q(x)← ϕ(x,y)}, Q(x))

is clearly a datalog rewriting of q(x) = ∃y ϕ(x,y) and T over H-complete
ABoxes. Now, any such TBox T can also be seen as a positive RL TBox, and
so, by Corollary 37, the datalog program ΠT defined in Section 4.3 describes
precisely the conditions of H-completeness of A:

A(a) ∈ A if and only if (ΠT ,A) |= A(a),

P (a, b) ∈ A if and only if (ΠT ,A) |= P (a, b).

It follows then that we can easily obtain datalog rewritings (over arbitrary
ABoxes) from datalog rewritings over H-complete ABoxes:
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Proposition 38. If (Π,Q(x)) is a datalog rewriting of q(x) and T over H-
complete ABoxes, then (Π ∪ ΠT , Q(x)) is a datalog rewriting of q(x) and T
over arbitrary ABoxes.

Thus, we can only concentrate on constructing datalog rewritings over H-
complete ABoxes.

Tree Witnesses. Let T be an EL TBox in normal form and let q(x) be a
CQ. Similarly to the case of QL, to construct a rewriting of q(x) and T , we
need to consider all possible subsets of q, the atoms of the query, that can be
homomorphically mapped to the ABox part of the canonical model CT ,A and
subsets of q that can be homomorphically mapped to the anonymous part of
CT ,A. Tree witnesses for q(x) and T are defined in absolutely the same way as
in Section 4.2. A major difference, however, is that EL does not contain inverse
roles, and so each T -tree in the anonymous part is generated by a concept of the
form ∃P.D, where P is a role name. It follows that if a variable, say y, of any
CQ belongs to the interior of some tree witness and the CQ contains an atom of
the form P (y, y′), then y′ must also be in the interior of the same tree witness.
In particular, we have the following:

Proposition 39. Let T be an EL TBox and q(x) a CQ. Then, for any binary
atom P (z1, z2) in q, where P is a role name,

– there is no tree witness for q(x) and T with P (z1, z2) ∈ qt, z2 ∈ tr, z1 ∈ ti;
– there is at most one tree witness t for q(x) and T such that P (z1, z2) ∈ qt,

z1 ∈ tr and z2 ∈ ti.

These observations suggest a simple algorithm for constructing all tree wit-
nesses for any given CQ and EL TBox, which we first illustrate by a concrete
example.

Example 40. Let T be an EL TBox containing the following concept and role
inclusions:

A � ∃S.B, B � ∃R.C, R � T.

Consider the CQ

q(x) = ∃y, z, u, v (S(x, y) ∧ T (y, z) ∧R(u, z) ∧ T (u, v) ∧ C(v)
)
.

The algorithms begins with the smallest tree witnesses. By (tw2), each tree
witness t is uniquely defined by its interior (a non-empty set of existentially
quantified variables): the roots are all the terms that do not belong to ti but
occur in atoms with an argument in ti. The smallest tree witnesses are thus
induced by singleton sets ti. For ti = {v}, we have tr = {u}, which gives the tree
witness t1 with

qt1 = {T (u, v), C(v) },
which is generated by ∃R.C; see h1 in Fig. 11. For ti = {u}, we have tr = {v, z}
but, since EL contains no inverse roles, there can be no homomorphism h that



234 R. Kontchakov and M. Zakharyaschev

q

x

y

S

z

T

u

R

C
v

T

C∃R.C
T (a)

a

C

T R

h
1

h
1

C∃R.C
T (a)

a

C

T R

h2

h
2

h

2

C∃S.B
T (a)

a

B

S

C

RT

h

h

h

Fig. 11. Tree witnesses in Example 40

maps the set of atoms {T (y, z), R(u, z) } into a T -tree in such a way that h
takes tr to an ABox individual and ti to a labelled null. The same argument
applies to ti = {y}. However, t2i = {z} gives rise to another tree witness, t2, with

qt2 = {T (y, z), R(u, z) },

which is again generated by ∃R.C; see h2 in Fig. 11 (note that both variables in
t2r = {y, u} are mapped to a, the root of the ∃R.C-generated T -tree C∃R.CT (a)).
Thus, we have considered all singleton subsets of the existentially quantified
variables and constructed all possible tree witnesses of depth 1. Next, we observe
that larger tree witnesses must contain smaller tree witnesses in their interior.
So, suppose that ti contains both the roots and the interior of tree witness t2,
that is, {y, z, u} ⊆ ti. Then, since EL has no inverse roles, ti must also contain v
(and thus, the whole of tree witness t1). In this way, we obtain a tree witness t
of depth 2 with ti = {y, u, z, v}, tr = {x} and

qt = {S(x, y), T (y, z), R(u, z), T (u, v), C(v) },

which is generated by ∃S.B; see h in Fig. 11. We have covered all possible subsets
of the existentially quantified variables and in this way obtained all tree witnesses
for q(x) and T .

A general algorithm constructing all tree witnesses for any given CQ q(x) and
EL TBox T in normal form works as follows. It begins by identifying tree wit-
nesses that have a single interior variable (these are tree witnesses of depth 1).
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The algorithm then considers each set of tree witnesses t1, . . . , tk sharing com-
mon roots (provided that all their roots are existentially quantified variables)—
the roots and interiors will become the interior of a potential new, larger, tree
witness. In order to satisfy (tw2), the algorithm extends the set of atoms in
q0 = qt1 ∪ · · · ∪ qtk by all atoms incident on the variables in q0 and then, to sat-
isfy (tw1), checks whether this extended set of atoms can be homomorphically
mapped to a T -tree. Since EL contains no inverse roles, any two tree witnesses
ti and tj that share a common root must become part of the interior of a
larger tree witness (if it exists at all) and therefore, the number of sets of tree
witnesses that need consideration is bounded by the number of (existentially
quantified) variables in q. Therefore, this algorithm constructs all tree witnesses
and runs in polynomial time in the size of q and T . (We note in passing that
the presented algorithm resembles the construction of the equivalence relation
∼q defined by Lutz et al. (2009) except that the equivalence relation does not
take account of the TBox and the distinction between answer variables and
existentially quantified variables.)

It follows that the number of tree witnesses for any q(x) and T does not
exceed the number of atoms in q. Moreover, each pair, t and t′, of tree witnesses
for q(x) and T is compatible, that is,

either qt ∩ qt′ = ∅ or qt ⊆ qt′ or qt ⊇ qt′ .

(In other words, the tree witnesses are partially ordered by the ⊆ relation on their
sets of atoms.) It follows that we can use the ‘modified’ tree-witness rewriting
q′tw(x) over H-complete ABoxes defined at the end of Section 4.2, or rather its
datalog representation. Let QS(z), for each atom S(z) in q, and D be fresh k-
ary predicate symbols, for k = |x| + |y|, and let D1 be a fresh unary predicate
symbol. Intuitively, the QS(z) are the rewritings of individual atoms of the query,
the interpretation ofD1 consists of individuals from the ABox that are relevant to
the query and the interpretation of D of all tuples of such individuals. Formally,
let Ωq

T comprise the rule

Q(x)←
∧

S(z)∈q
QS(z)(x,y),

the following rules, for each atom S(z) in q:

QS(z)(x,y)← D(x,y) ∧ S(z),

QS(z)(x,y)← D(x,y) ∧ twt(tr), for t ∈ Θq
T with S(z) ∈ qt,

and the following rules defining D and D1:

D(z1, . . . , zk)← D1(z1) ∧ . . . D1(zk),

D1(z)← A(z), for a concept name A in q or T ,
D1(z)← P (z, y), for a role name P in q or T ,
D1(z)← P (y, z), for a role name P in q or T .
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(Strictly speaking, D1 is not the same as the set of individuals in the ABox
because concept and role names that occur in the ABox but do not occur in
the query or the TBox are not included in the definition above: any individual
that belongs only to such a concept or role is simply not visible to the query.)
Thus we obtain a datalog rewriting (Ωq

T , Q(x)) of q(x) and T over H-complete
ABoxes:

Theorem 41. Let T be an EL TBox and q(x) a CQ. For any ABox A that is
H-complete with respect to T and any tuple a in ind(A), we have

CT ,A |= q(a) if and only if (Ωq
T , IA) |= Q(a).

Finally, since the number of tree witnesses is linear in the size of q, this
datalog rewriting is of polynomial size in the size of q and T . We also note
in passing that the datalog rewriting over H-complete ABoxes is nonrecursive
(none of the predicates is defined, even indirectly, in terms of itself) and the only
recursive component of the rewriting over arbitrary ABoxes is the rules ensuring
H-completeness of the ABox.

5 OBDA with Ontop and Databases

In the final section of this chapter, we briefly describe the ontology-based data
access (OBDA) system Ontop16 (Rodŕıguez-Muro et al., 2013) implemented at
the Free University of Bozen-Bolzano and available as a plugin for the ontology
editor Protégé 4, a SPARQL end-point and OWLAPI and Sesame libraries.
Ontop is the first system to support the W3C recommendations OWL2QL,
R2RML, SPARQL and the OWL2QL direct semantics entailment regime.

We illustrate howOntop works using an example from (Rodŕıguez-Muro et al.,
2013), which involves a (simplified) database IMDb17 (in a typical OBDA sce-
nario data comes from a relational database rather than an ABox). From a
logical point of view, a database schema (Abiteboul et al., 1995) contains predi-
cate symbols (with their arity) for both stored database relations (also known as
tables) and views (with their definitions in terms of stored relations) as well as
a set Σ of integrity constraints (in the form of functional and inclusion depen-
dencies; for example, primary and foreign keys): any instance I of the database
schema must satisfy its integrity constraints Σ.

The schema of IMDb contains relations title[m, t, y] with information about
movies (ID, title, production year), and castinfo[p,m, r] with information about
movies’ cast (person ID, movie ID, person role). Thus, a data instance IIMDb of
this schema may contain the tables

title
m t y
728 ‘Django Unchained’ 2012

castinfo
p m r
n37 728 1
n38 728 1

16 ontop.inf.unibz.it
17 www.imdb.com/interfaces

ontop.inf.unibz.it
www.imdb.com/interfaces
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The integrity constraints ΣIMDb of IMDb include the following foreign key (an
inclusion dependency):

∀m (∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)
)

(21)

(‘each tuple in castinfo must refer to an existing title’) and the following primary
key (a functional dependency with determinant m):

∀m∀t1∀t2
(∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
, (22)

∀m∀y1∀y2
(∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(23)

(‘each title is uniquely determined by its ID m’).
In the framework of OBDA, the users are not supposed to know the structure

of the database. Instead, they are given an ontology, e.g., MO18, which describes
the application domain in terms of concepts and roles. In our example we have
conceptsmo:Movie and mo:Person, and rolesmo:cast, mo:title and mo:year related
by OWL2QL TBox TMO containing, in particular, the following inclusions:

mo:Movie � ∃mo:title, mo:Movie � ∃mo:cast,

mo:Movie � ∃mo:year, ∃mo:title � mo:Movie,

∃mo:cast � mo:Movie, ∃mo:cast− � mo:Person.

The vocabularies of the database schema and the given OWL2QL TBox are
linked together by means of mappings produced by a domain expert or extracted
(semi)automatically. There are different known types of mappings: LAV (local-
as-views), GAV (global-as-views), GLAV, etc.; consult, e.g., (Lenzerini, 2002) for
an overview. Here we concentrate on GAV mappings because they guarantee low
complexity of query answering (in what follows we call them simply mappings)—
Ontop uses R2RML19 to specify them. A mapping, M, is a set of rules of the
form

S(x)← ϕ(x, z),

where S is a concept or role name in the ontology and ϕ(x, z) is a conjunction
of atoms with database relations (both stored and views) and a filter, that is,
a Boolean combination of built-in predicates such as = and <. (Note that, by
including views in the schema, we can express any SQL query in mappings, which
is important from the practical point of view.) In our example, a mappingMMO

that relates the terms of MO to the schema of IMDb contains the following rules:

mo:Movie(m)← title(m, t, y), (24)

mo:title(m, t)← title(m, t, y), (25)

mo:year(m, y)← title(m, t, y), (26)

mo:cast(m, p)← castinfo(p,m, r), (27)

mo:Person(p)← castinfo(p,m, r). (28)

18 www.movieontology.org
19 www.w3.org/TR/r2rml

www.movieontology.org
www.w3.org/TR/r2rml
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Given a mappingM from a database schema to an OWL2QL TBox T and
an instance I of this schema, the ground atoms

S(a), for S(x)← ϕ(x, z) inM and I |= ∃z ϕ(a, z),

comprise the ABox denoted by AI,M and called the virtual ABox for M over
I (Rodŕıguez-Muro and Calvanese, 2011). This ABox is just a convenient pre-
sentational tool and does not have to be materialised by the system. Then the
virtual ABox forMMO over IIMDb consists of the ground atoms

mo:Movie(728), mo:title(728, ‘Django Unchained’), mo:year(728, 2012),

mo:Person(n37), mo:cast(728, n37),

mo:Person(n38), mo:cast(728, n38).

The certain answers to a CQ q(x) over T linked by M to I are defined as
the certain answers to q(x) over (T ,AI,M). In order to find certain answers,
one could first construct a PE-rewriting q′(x) of q(x) and T over arbitrary
ABoxes (in the sequel, it will convenient to represent such a rewriting as a non-
recursive datalog program). The rewriting q′(x) could then be unfolded into
an SQL query using the so-called partial evaluation (Lloyd and Shepherdson,
1991), which exhaustively applies SLD-resolution to q′(x) and the mappingM
and returns those rules whose bodies contain only database atoms. Consider, for
example, CQ q(x) = mo:Movie(x). An obvious rewiring of q(x) and the TBox
TMO (over arbitrary ABoxes) contains the following three rules:

q′(x)← mo:Movie(x), (29)

q′(x)← mo:title(x, y), (30)

q′(x)← mo:cast(x, y). (31)

The unfolding applies the SLD-resolution procedure to these three rules and the
mappingMMO and produces the rules

q′(x)← title(x, t, y), (29+24)

q′(x)← title(x, t, y), (30+25)

q′(x)← castinfo(p, x, r). (31+27)

The resulting union of Select-Project-Join queries could then be forwarded
for execution to a relational database management system (RDBMS).

The same result can be achieved by using the tree-witness rewriting qtw(x)
of q(x) and T over H-complete ABoxes introduced in Section 4.2. An obvious
way to construct H-complete ABoxes is to take the composition of M and the
inclusions in T , that is, a mappingMT given by

A(x)← ϕ(x, z), if A′(x)← ϕ(x, z) ∈M and T |= A′ � A,

A(x)← ϕ(x, y, z), if R(x, y)← ϕ(x, y, z) ∈M and T |= ∃R � A,

P (x, y)← ϕ(x, y, z), if R(x, y)← ϕ(x, y, z) ∈M and T |= R � P.
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(Recall that we do not distinguish between P−(y, x) and P (x, y).) Thus, for any
I and any tuple a of individuals in AI,M, we have:

(T ,AI,M) |= q(a) if and only if AI,MT |= qtw(a). (32)

So, to compute the answers to q(x) over T linked by M to I, one can unfold
the tree-witness rewriting qtw(x) over H-complete ABoxes with the help of the
compositionMT . However, the resulting query will produce duplicating answers
if the ontology axioms express the same properties of the application domain as
the integrity constraints of the database. For example, the IMDb schema ΣIMDb

contains foreign key (21): movie ID in castinfo references movie ID in title, and
therefore the unfolded rewriting above will return the same movie many times—
once from title and once for each of the cast members of the movie in castinfo.
Such a duplication is clearly an undesirable feature of this straightforward ap-
proach.

For this reason, before applying MT to unfold the tree-witness rewriting,
Ontop optimises the mapping using the database integrity constraints Σ. This
allows Ontop to reduce redundancy in answers and substantially shorten the
SQL queries, which makes the OBDA system more efficient.

5.1 T -mappings

We say that a mapping M is a T -mapping over dependencies Σ if the ABox
AI,M is H-complete with respect to T , for any data instance I satisfying Σ.
The compositionMT defined above is trivially a T -mapping over any Σ. Ontop
starts withMT and then applies a series of optimisations to construct a simpler
T -mapping.

Inclusion Dependencies. SupposeM∪ {S(x)← ψ1(x, z)} is a T -mapping over
Σ. If there is a more specific rule than S(x)← ψ1(x, z) inM, thenM itself will
also be a T -mapping. To discover such ‘more specific’ rules, we run the standard
query containment check (Abiteboul et al., 1995) taking account of the inclusion
dependencies. For example, since TMO |= ∃mo:cast � mo:Movie in our running
example, the composition of mapping MMO and ontology TMO contains the
following rules for mo:Movie:

mo:Movie(m) ← title(m, t, y),

mo:Movie(m) ← castinfo(p,m, r).

As we observed above, the latter rule is redundant because ΣIMDb contains
inclusion dependency (21), which is repeated here for reference:

∀m (∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)
)
.

Disjunctions in SQL. Another way to reduce the size of a T -mapping is to
identify pairs of rules whose bodies are equivalent up to filters with respect to



240 R. Kontchakov and M. Zakharyaschev

concept index interval

mo:Actor 1 [1,1]

mo:Artist 2 [1,2]

mo:Director 3 [3,3]

mo:Person 4 [1,4]

4mo:Person [1,4]

3mo:Director [3,3] 2 mo:Artist[1,2]

1 mo:Actor[1,1]

Fig. 12. Semantic Index example

constant values. This optimisation deals with the rules introduced due to the so-
called type (discriminating) attributes (Elmasri and Navathe, 2010) in database
schemas. For example, the mappingMMO contains six rules for sub-concepts of
mo:Person:

mo:Actor(p)← castinfo(c, p,m, r), (r = 1),

mo:Actress(p)← castinfo(c, p,m, r), (v = 2),

· · ·
mo:Editor(p)← castinfo(c, p,m, r), (r = 6).

Thus, the composition ofMMO and TMO contains six rules for mo:Person that
differ only in the last condition (r = k), 1 ≤ k ≤ 6. These can be reduced to a
single rule:

mo:Person(p)← castinfo(c, p,m, r),
(
(r = 1) ∨ · · · ∨ (r = 6)

)
.

Note that such disjunctions lend themselves to efficient evaluation by RDBMSs.

Materialised ABoxes and Semantic Index. In addition to working with proper
relational data sources, Ontop also supports ABox storage in the form of struc-
tureless universal tables : a binary relation CA[id, concept-id] and a ternary re-
lation RA[id1, id2, role-id] represent concept and role assertions. The universal
tables give rise to trivial mappings, and Ontop implements a technique, the se-
mantic index (Rodŕıguez-Muro and Calvanese, 2011), that takes advantage of
SQL features in T -mappings for this scenario. The key observation is that, since
the IDs in the universal tables CA and RA can be chosen by the system, each
concept and role in the TBox T can be assigned a numeric index and a set of
numerical intervals in such a way that the resulting T -mapping contains simple
SQL queries with interval filter conditions. For example, in TMO, we have

mo:Actor � mo:Artist,

mo:Artist � mo:Person,

mo:Director � mo:Person,

so we can choose indexes and intervals for these concepts as in Fig. 12. It can be
seen that these intervals respect the concept inclusions of the TBox: for instance,
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[1,1] formo:Actor is a subset of [1,2] formo:Artist. This will generate a T -mapping
with

mo:Actor(p) ← CA(p, concept-id), (concept-id = 1),

mo:Artist(p) ← CA(p, concept-id), (1 ≤ concept-id ≤ 2),

mo:Director(p) ← CA(p, concept-id), (concept-id = 3),

mo:Person(p) ← CA(p, concept-id), (1 ≤ concept-id ≤ 4).

Thus, by choosing appropriate concept and role IDs, we effectively construct
H-complete ABoxes without the expensive forward chaining procedure (and the
need to store large amounts of the derived assertions and the extra complications
with updating the data). On the other hand, the semantic index T -mappings are
based on range expressions that can be evaluated efficiently by RDBMSs using
standard B-tree indexes (Elmasri and Navathe, 2010).

5.2 Unfolding with Semantic Query Optimisation (SQO)

Ontop applies the Semantic Query Optimisation (Chakravarthy et al., 1986) to
rules obtained at the intermediate steps of unfolding. In particular, this elimi-
nates redundant Join operations caused by reification of database relations by
means of concepts and roles. Consider, for example, the CQ

q(t, y)← mo:Movie(m), mo:title(m, t), mo:year(m, y), (y > 2010).

It has no tree witnesses, and so qtw(t, y) = q(t, y). By straightforwardly applying
the unfolding to qtw(t, y) and the T -mappingMMO, we obtain the query

q′tw(t, y)← title(m, t0, y0), title(m, t, y1), title(m, t2, y), (y > 2010),

which requires two (potentially) expensive Join operations. However, by using
functional dependencies (22) and (23) for the primary key m of title, which are
repeated below:

∀m∀t1∀t2
(∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
,

∀m∀y1∀y2
(∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
,

we can reduce two Join operations in the first three atoms of q′tw(t, y) to a single
atom title(m, t, y):

q′′tw(t, y)← title(m, t, y), (y > 2010).

Note that these two Join operations were introduced to reconstruct the ternary
relation from its reification by means of the roles mo:title and mo:year.

The role of SQO in OBDA systems appears to be much more prominent
than in conventional RDBMSs, where it was initially proposed to optimise SQL
queries. While some of SQO techniques reached industrial RDBMSs, it never
had a strong impact on the database community because it is costly compared
to statistics- and heuristics-based methods, and because most SQL queries are
written by highly-skilled experts (and so are nearly optimal anyway). In OBDA
scenarios, in contrast, SQL queries are generated automatically, and so SQO
becomes the only tool to avoid redundant and expensive Join operations.
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Pérez-Urbina, H., Rodŕıguez-Dı́az, E., Grove, M., Konstantinidis, G., Sirin, E.: Evalu-

ation of query rewriting approaches for OWL 2. In: Proc. of SSWS+HPCSW 2012,
vol. 943, CEUR-WS (2012)



244 R. Kontchakov and M. Zakharyaschev

Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
data to ontologies. J. on Data Semantics, X:133–X:173 (2008)
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Abstract. The need for an ontological layer on top of data, associated
with advanced reasoning mechanisms able to exploit ontological knowl-
edge, has been acknowledged in the database, knowledge representation
and Semantic Web communities. We focus here on the ontology-based
data querying problem, which consists in querying data while taking on-
tological knowledge into account. To tackle this problem, we consider a
logical framework based on existential rules, also called Datalog±.

In this course, we introduce fundamental notions on ontology-based
query answering with existential rules. We present basic reasoning tech-
niques, explain the relationships with other formalisms such as lightweight
description logics, and review decidability results as well as associated al-
gorithms. We end with ongoing research and some challenging issues.

1 Ontology-Based Query Answering

Novel intelligent methods are required to manage and exploit the huge amounts
of data nowadays available. The interest of considering ontological knowledge
when accessing data has been widely acknowledged, both in the database and
knowledge representation communities. Indeed, ontologies1, which typically en-
code general domain knowledge, can be used to infer data that are not explicitely
stored, hence palliating incompleteness in databases. They can also be used to
enrich the vocabulary of data sources, which allows a user to abstract from the
specific way data are stored. Finally, when several data sources use different
vocabularies, ontologies can be used to unify these vocabularies.

Example 1. In this simple example, we consider data on movies, described with
unary relations MovieTitle (titles of movies) and MovieActor (movie actors),
and a binary relation Play, encoding that a given person plays a role in a movie
identified by its title. Let q be a query asking if a given person, whose identifier
is B, plays in a movie. If the data do not explicitely contain the information
that B plays in a movie, the answer to q will be no. Now, assume that the

1 We will reserve the term “ontology” to general domain knowledge—also called termi-
nological knowledge—in order to clearly distinguish it from the data—or assertional
knowledge—called here facts.
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data contain the information that B is a movie actor (B is in the extension of
MovieActor relation) and we have the knowledge that “every movie actor plays
a role in some movie”. We can infer that B plays in a movie. Hence, the answer
to q should be yes. In the following, we will encode knowledge in First-Order
logic. Then, the query will be encoded as q = ∃y P lay(B, y) and the piece of
ontological knowledge as the following rule:

R = ∀x(MovieActor(x)→ ∃y(Play(x, y) ∧MovieT itle(y)))

We can check that the ground atom MovieActor(B) and the rule R entail q,
hence the positive answer to q.

The issue of proposing formalisms able to express ontological knowledge, as-
sociated with querying mechanisms able to exploit this knowledge when access-
ing data, is known as ontology-based data access. In this paper, we will more
precisely consider the following problem, called ontology-based query answering :
given a knowledge base composed of an ontology and facts, and a query, compute
the set of answers to the query on the facts, while taking implicit knowledge rep-
resented in the ontology into account. We will consider the basic queries called
conjunctive queries.

In the Semantic Web, ontological knowledge is usually represented with for-
malisms based on description logics (DLs). However, DLs are restricted in terms
of expressivity, in the sense that terminological knowledge can only be expressed
by tree-like structures. Moreover, only unary and binary predicates are gener-
ally supported. Historically, DLs focused on reasoning tasks about the termi-
nology itself, for instance classifying concepts; querying tasks were restricted to
ground atom entailment [BCM+07]. Conjunctive query answering with classi-
cal DLs appeared to be extremely complex (e.g., for the classical DL ALCI, it
is 2ExpTime-complete, and still NP-complete in the size of the data). Hence,
less expressive DLs specially devoted to conjunctive query answering on large
amounts of data have been designed, beginning with the DL-Lite family. An-
other family of lightweight DLs used for query answering is the EL family, which
was originally designed for polynomial time terminological reasoning. These DLs
form the core of so-called tractable profiles of the Semantic Web language OWL
2, namely OWL 2 QL and OWL2 EL (the third tractable profile being OWL 2
RL, which is closely related to the rule-based language Datalog).

On the other hand, querying large amounts of data is the fundamental task
of databases. Therefore, the challenge in this domain is now to access data while
taking ontological knowledge into account. The deductive database language
Datalog allows to express some ontological knowledge. However, in Datalog rules,
variables are range-restricted, i.e., all variables in the rule head necessarily occur
in the rule body. Therefore, these rules can produce knowledge about already
known individuals, but cannot infer the existence of unknown individuals, a
feature sometimes called “value invention” in databases. This feature has been
recognized as crucial in an open-domain perspective, where it cannot be assumed
that all individuals are known in advance.
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Existential rules have been proposed to meet these two requirements, i.e.,
value invention and the ability to express complex structures. Existential rules
extend First-Order Horn clauses, i.e., plain Datalog rules, by allowing to intro-
duce new existentially quantified variables. They are also known as Datalog±

family, in reference to Datalog. More preciselly, an existential rule is a positive
rule of the form body → head, where body and head are any conjunctions of
atoms, and variables occurring only in the head are existentially quantified. The
rule in Example 1 is an existential rule; it allows to infer the existence of a movie
in which B plays a role, even if this movie is not identified.

This paper provides an introduction to ontological query answering with ex-
istential rules. In Section 2, we present basic logical foundations for representing
and reasoning with facts, conjunctive queries and plain Datalog rules. Section
3 is devoted to existential rules and their relationships with other formalisms
(tuple-generating dependencies in databases, conceptual graph rules, positive
logic progams via skolemization, lightweight description logics). Section 4 in-
troduces the main approaches to solve the problem. Entailment with general
existential rules being undecidable, Section 5 presents the main decidability cri-
teria currently known, as well as associated algorithmic techniques. Section 6
ends with ongoing research and open issues.

We purposely omitted bibliographical references in this introductive section.
References will be given later, in the appropriate sections.

2 Fundamental Notions on Conjunctive Query Answering
and Positive Rules

Data can be stored in various forms, for instance in a relational database, an
RDF triple store or a graph database. We abstract from a specific language or
technology by considering first-order logic (FOL). Ontological knowledge will
also be expressed as first-order logical formulas. In this section, we present basic
theoretical notions for representing and reasoning with facts, conjunctive queries,
as well as simple positive rules, namely Datalog rules.

2.1 Basic Logical Notions

We consider first-order vocabularies with constants but no other function sym-
bols. A vocabulary is a pair V = (P , C), where P is a finite set of predicates
(or relations) and C is a possibly infinite set of constants. Each predicate has an
arity, which is its number of arguments. A term (on V) is a variable or a constant
(in C). An atom (on V) is of the form p(t1, . . . , tk) where p is a predicate of arity
k (from P) and the ti are terms (on V). An atom is ground if it has no variable.
A formula on V has all its atoms on V . A variable in a formula is free if it is not
in the scope of a quantifier. A formula is closed if it has no free variable.

Given a formula F , we note terms(F ) (respectively vars(F ), csts(F )) the set
of terms (respectively variables, constants) that occur in F . In the following, we
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always assume that distinct formulas (representing facts, queries or rules) have
disjoint sets of variables.

An interpretation I of a vocabulary V = (P , C) is a pair (D, .I), where D is
a non-empty (possibly infinite) set, called the domain of I, and .I defines the
semantics of the elements in V with respect to D:

– ∀c ∈ C, cI ∈ D
– ∀p ∈ P with arity k, pI ⊆ Dk.

An interpretation I of V is a model of a formula F on V if F is true in I. A
formula G entails a formula F (we also say that F is a semantic consequence of
G) if every model of G is a model of F , which is denoted by G |= F . We note
G ≡ F if G |= F and F |= G.

2.2 The Positive Existential Conjunctive Fragment of FOL

The positive existential conjunctive fragment of first-order logic, denoted by
FOL(∧, ∃), is composed of formulas built with the single connector ∧ and the
single quantifier ∃. Without loss of generality, we consider that these formulas
are in prenex form, i.e., all existential quantifiers are in front of the formula.
Then, it is often convenient to see them as sets of atoms. As we will see later
on, this fragment allows to represent facts and conjunctive queries.

A fundamental notion in FOL(∧, ∃) is that of a homomorphism. We recall
that a substitution s of a set of variables V by a set of terms T is a mapping
from V to T . Given a set of atoms F , s(F ) denotes the set obtained from F by
applying s, i.e., by replacing each variable v ∈ V with s(v).

Definition 1 (Homomorphism, notation ≥). Given two sets of atoms F
and G, a homomorphism h from F to G is a substitution of vars(F ) by terms(G)
such that, for all atom p(t1 . . . tk) ∈ F , p(h(t1) . . . h(tk)) ∈ G, i.e., h(F ) ⊆ G.
We note F ≥ G if there is a homomorphism from F to G, and say that F is
more general than G.

Example 2. Let us consider the facts F1 = {p(x1, y1), p(y1, z1), p(z1, x1)} and
F2 = {p(x2, y2), p(y2, z2), p(z2, u2)}, where all terms are variables. There are
three homomorphisms from F2 to F1. For instance, h = {x2 
→ x1, y2 
→ y1, z2 
→
z1, u2 
→ x1}.

Homomorphism can also be defined among interpretations. Given two inter-
pretations I1 = (D1, .

I1) and I2(D2, .
I2) of a vocabulary V = (P , C), a homomor-

phism from I1 to I2 is a mapping from D1 to D2 such that:

– for all c ∈ C, h(cI1) = cI2 ;
– for all p ∈ P and (t1 . . . tk) ∈ pI1 , (h(t1) . . . h(tk)) ∈ pI2 .

We first point out that an interpretation I is a model of a FOL(∧, ∃) formula,
if and only if there is a mapping v from terms(F ) to D such that:



Ontology-Based Query Answering with Existential Rules 249

– for all c ∈ consts(F ), v(c) = cI ;
– for all atom p(e1 . . . ek) ∈ F , (v(e1) . . . v(ek)) ∈ pI .

Such a mapping is called a good assignment of F to I.

A nice property of FOL(∧, ∃) is that each formula has a canonical model,
which is a representative of all its models, and can be used to check entailment,
as we will see below. This model has the same structure as F , hence the name
“isomorphic model”.

Definition 2 (Isomorphic model). Let F be a FOL(∧, ∃)-formula built on
the vocabulary V = (P , C). The isomorphic model of F , denoted by M(F ), :

– D is in bijection2 with terms(F )∪C (to simplify notations, we consider that
this bijection is the identity);

– for all c ∈ C, M(c) = c ;
– for all p ∈ P, M(p) = {(t1 . . . tk)|p(t1 . . . tk) ∈ F} if p occurs in F , otherwise

M(p) = ∅.
We check that M(F ) is indeed a model of F , by choosing the identity as good

assignment.

Property 1. For any FOL(∧, ∃) formula F , M(F ), the model isomorphic to F ,
is a universal model, i.e., for all model M ′ of F , it holds that M(F ) ≥M ′.

Proof. If M ′ is a model of F , then there is a good assignment v from F to M ′.
Since M(F ) is isomorphic to F , v defines a homomorphism from M(F ) to M ′.

Given two interpretations I1 and I2, with I1 ≥ I2, if I1 is a model of F , then
I2 also is. Indeed, the composition of a homomorphism from I1 to I2 and of a
good assignment from F to I1 yields a good assignment. Hence, to check if G
entails F , it is sufficient to check that M(G) is a model of F , i.e., there is a good
assignment from F to M(G).

Note that a good assignment from F to M(G) defines a homomorphism from
F to G. Reciprocally, a homomorphism from F to G defines a good assignment
from F to M(G). It follows that checking entailment in the FOL(∧, ∃) fragment
amounts to a homomorphism check:

Theorem 1. Let F and G be two FOL(∧, ∃) formulas. It holds that G |= F iff
there is a homomorphism from F to G (i.e., F ≥ G).

Proof. Follows from previous definitions and Property 1.

If F ≥ G and G ≥ F , we say that F and G are (homomorphically) equiva-
lent. According to the preceding theorem, this equivalence notion corresponds
to logical equivalence.

Definition 3 (Core). Given a set of atoms F , the core of F is a minimal
subset of F equivalent to F .

2 A bijection is a one-to-one correspondence.
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It is well-known that among all equivalent sets of atoms on a vocabulary,
there is a unique core, up to variable renaming (where a variable renaming, or
isomorphism, from F to F ′, is a bijective substitution s of vars(F ) by vars(F ′)
such that F = F ′).

2.3 Facts and Conjunctive Queries

Classically, a fact is a ground atom. We extend this notion, so that a fact may
contain existentially quantified variables and not only constants. Hence, a fact
becomes a closed FOL(∧, ∃) formula. This allows to represent in a natural way
null values in relational databases or blank nodes in RDF. Moreover, this is in
line with existential rules, which produce existential variables. It follows that a
conjunction of facts can be seen as a single fact when it is put in prenex form.

Example 3. Let F1 = ∃x∃y(p(x, y) ∧ q(y, a)), where a is a constant, and F2 =
∃xp(x, x). F1 and F2 are facts. The formula F1 ∧ F2 can be seen as a single fact
obtained by considering a prenex form, which involves renaming the variable x
in F1 or in F2. One obtains for instance ∃x∃y∃z(p(x, y)∧q(y, a)∧p(z, z)), which
can also be seen as the set of atoms {p(x, y), q(y, a), p(z, z)}.

Conjunctive queries are the basic and more frequent queries in databases.
There can be expressed in FOL(∧, ∃). They correspond to SELECT-FROM-
WHERE queries in SQL and to basic pattern queries in SPARQL.

Definition 4 (Facts, queries, answers). A fact is an existentially closed
conjunction of atoms. A conjunctive query (CQ) is an existentially quantified
conjunction of atoms with possibly free variables. A Boolean conjunctive query
(BCQ) has no free variable. Let {x1 . . . xk} be the free variables in a CQ q; an
answer to q in a fact F is a substitution s of {x1 . . . xk} by constants in F , such
that F |= s(q) (in other words, s is the restriction to {x1 . . . xk} of a homomor-
phism from q to F ). Given an ordering (x1 . . . xk) of the free variables in q, we
often denote an answer s by (s(x1) . . . s(xk)). A Boolean query q has only the
empty substitution as possible answer, in which case q is said to have a positive
answer, otherwise q has a negative answer.

Several equivalent basic decision problems can be considered. Let K be a
knowledge base (composed of facts for now, but later enriched with rules); then
the following decision problems are polynomially equivalent (see e.g. [BLMS11]):

– CQ answering decision problem: given a KB K and a CQ q, is there an
answer to q in K?

– CQ evaluation decision problem: given a KB K, a CQ q and a list of
constants t, is t an answer to q in K?

– BCQ answering problem: given a KB K and a BCQ q, is () an answer to
q in K?

– BCQ entailment problem: given a KB K and a BCQ q, is q entailed
by K?
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In the following, we consider BCQ entailment as a reference problem.
Checking homomorphism is an NP-complete problem. Hence, BCQ entail-

ment is NP-complete. Instead of the classical complexity measure, also called
combined complexity, we may also consider data complexity, in which case only
the data are part of the problem input. Then, BCQ entailment becomes poly-
nomial: indeed, a naive algorithm for checking if there is a homomorphism from
q to F is in O(|F ||q|).

2.4 Adding Positive Range-Restricted Rules

A basic kind of ontological knowledge is that of range-restricted positive rules,
where “range-restricted” means that all variables in the head of a rule also
occur in the body of this rule [AHV95]. It follows that such rules allows to entail
knowledge on individuals that already exist in the data. In ontologies, such rules
typically express taxonomies (like a schema in RDFS), or properties of relations
(like symmetry or transitivity). We will also refer to these rules as Datalog rules,
as they exactly correspond to plain Datalog rules (i.e., without negation).

Definition 5 (Range-restricted rule, Datalog rule). A range-restricted
(positive) rule, or (plain) Datalog rule, is a formula R = ∀x∀y(B[x,y]→ H [y]),
where x,y are sets of variables, B and H are conjunctions of atoms, respectively
called the body and the head of R, also denoted by body(R) and head(R).

A rule R is applicable to a fact F if there is a homomorphism h from body(R)
to F . Applying R to F with respect to h consists in adding h(head(R)) to F . By
iteratively applying rules in all possible ways, one obtain a unique fact, called
the saturation of F , and denoted by F ∗. The process stops in finite time since
no new variable is created.

Let us now consider a knowledge base composed of facts (seen as a single
fact) and range-restricted rules, K = (F,R). To check if K |= q, we can rely on
notions similar to the positive existential case. Indeed, the model isomorphic to
F ∗ is a model of (F,R) and it keeps the property of being a universal model.

Hence, K |= q if and only if there is a homomorphism from q to F ∗. In
combined complexity, this test is still NP-complete if the arity of the predicates
is bounded (then the size of F ∗ is polynomial in the size of F ), otherwise it is
EXPTIME-complete [AHV95]. It is polynomial with respect to data complexity.

In the next section, we extend positive rules to existential rules, by relaxing
the constraint of being range-restricted.

3 Existential Rules

In this section, we present existential rules, as well as their relationships to other
database or KR formalisms.
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3.1 The Framework of Existential Rules

Definition 6 (Existential rule). An existential rule (or simply a rule here-
after) is a formula R = ∀x∀y(B[x,y] → ∃zH [y, z]), where x,y and z are sets
of variables, B and H are conjunctions of atoms, respectively called the body
and the head of R, also denoted by body(R) and head(R). The frontier of R, de-
noted by fr(R), is the set vars(B)∩vars(H) = y. The set of existential variables
in R is the set vars(H) \ fr(R) = z.

In the following, we will omit quantifiers in rules since there is no ambiguity.
For instance, p(x, y)→ q(y, z) denotes the rule R = ∀x∀y (p(x, y)→ ∃z q(y, z)).

Example 4. Consider the following predicates, with their arity mentioned in
parentheses; unary predicates can be seen as concept names, i.e. types of entities,
and the other predicates as relation names: Area(1), Project(1), Researcher(1),
isProject(3), hasExpertise(2), isMember(2)
Here are some examples of existential rules composing the ontology:
“The relation isProject associates a project, the area of this project and the leader
of this project, who is a researcher” [signature of isProject]
R0 = isProject(x, y, z)→ Project(x) ∧ Area(y) ∧ Researcher(z)
“Every leader of a project is a member of this project”
R1 = isProject(x, y, z)→ isMember(z, x)
“Every researcher expert in an area is member of a project in this area”
R2=Researcher(x)∧hasExpertise(x, y)→ isProject(u, y, z)∧ isMember(x, u)
“Every researcher is expert in an area”
R3 = Researcher(x)→ hasExpertise(x, y)
R0 and R1 are range-restricted, but not R2 and R3.

Definition 7 (Application of an existential rule). An existential rule R
is applicable to a fact F if there is a homomorphism h from body(R) to F ;
the result of the application of R to F with respect to h is a fact α(F,R, π) =
F ∪ πsafe(head(R)) where πsafe is a substitution of head(R), that replaces each
x ∈ fr(R) with h(x), and each other variable with a “fresh” variable, i.e., not
introduced before.

Example 5. We consider the vocabulary and rules from Example 4. Let F =
{Researcher(a), Researcher(b), hasExpertise(a, “KR”), Area(“KR”)} be a
fact. R2 is applicable to F with respect to h0 = {(x, a), (y, “KR”)}, which yields
atoms {isProject(u0, ”KR”, z0), isMember(a, u0)}, where u0 and z0 are fresh
existential variables. R3 is applicable to F as well, with h1 = {(x, b)}, which
produces the atom hasExpertise(b, y0). Then, R2 could be applied again, to the
obtained fact, with respect to h2 = {(x, b), (y, y0)}, which would produce atoms
{isProject(u1, y0, z1), isMember(b, u1)}.

Existential rules have a double origin. On the one hand, they can be seen as
an extension of plain Datalog to enable value invention, yielding the Datalog±

family [CGK08, CGL09]. It is important to note, however, that rules make a
query in Datalog, while, in Datalog± (and in the present framework), they form
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an ontology, and the query itself does not embed deductive knowledge. On the
other hand, existential rules come from earlier studies on a graph-based knowl-
edge representation framework, inspired by conceptual graphs [CM09]; indeed,
the logical translation of conceptual graph rules yields exactly existential rules,
as defined in [SM96].

We also point out that existential rules have the same form as a very general
kind of dependencies, which has long been studied in databases, namely Tuple-
Generating Dependencies (TGD) [AHV95]. Intuitively, a database instance D
satisfies a TGD t if, each time the body of t is found in D, the head of t is
found in D as well; formally, if t is applicable to D by homomorphism h, then
h has to be extensible to a homomorphism h′ from head(t) to D, i.e., such that
h(x) = h′(x) for each x ∈ fr(t). Existential rules benefit from theoretical results
obtained on TGDs (such as results on the chase and on decidability issues, see
Sections 4 and 5).

Note that an existential rule is not a Horn clause because of existential vari-
ables in its head. However, both are closely related, since by skolemisation, an
existential rule can be transformed into a set of Horn clauses with functions.
The skolemization of a rule R is a rule skolem(R) built from R by replacing
each occurrence of an existential variable y with a functional term fR

y (x), where
x = fr(R). We remind that skolemization does not produce an equivalent for-
mula, however a formula is (un)satisfiable if and only if its skolem form is.

Example 6 (Skolemization). Let R = Researcher(x) ∧ hasExpertise(x, y) →
isProject(u, y, z) ∧ isMember(x, u) (Rule R2 in Example 4). The frontier of
R2 is {x, y}. Then, skolem(R) = Researcher(x) ∧ hasExpertise(x, y)→
isProject(fR

u (x, y), y, fR
z (x, y)) ∧ isMember(x, fR

u (x, y)), which yields two Horn
clauses.

A set of skolemized existential rules can be seen as a specific positive logic
program, hence nonmonotonic negation can be added while benefitting from
results obtained in logic programming. For instance, if nonmonotonic negation
is added with stable model semantics, one obtains a specific case of Answer Set
Programming.

This framework can be extended to equality rules and negative constraints.
An equality rule is a rule of the form B → x = t, where x and t are distinct
terms, x ∈ vars(B) and t ∈ vars(B) or is a constant. When the unique name
assumption is made, i.e., distinct constants refer to distinct individuals, the
application of an equality rule is said to fail if it leads to set the equality between
distinct constants. This kind of failure corresponds to an inconsistency of the
knowledge base. Equality rules generalize functional dependencies, which are
widely used in conceptual modeling.

Constraints are another kind of construct specifically devoted to the definition
of the consistency or inconsistency of the knowledge base. A negative constraint
is a rule of the form C → ⊥, where ⊥ denotes the absurd symbol (i.e., a propo-
sitional atom whose value is false). It is satisfied if C is not entailed by (F,R).
Negative constraints are typically used to express disjointness of concepts/classes
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or incompatibility of relations. See [CGL09] and [BLMS11] for the integration
of equality rules and negative constraints in the existential rule framework.

3.2 Relationships to Lightweight Description Logics

Interestingly, existential rules generalize lightweight description logics. We focus
here on EL [BBL05, LTW09] and DL-Lite [CGL+07, ACKZ09]. For instance,
DL-LiteR, which underlines OWL2 QL profile [OWL09], can be expressed by
linear existential rules (whose body and head are restricted to a single atom) and
negative constraints, see e.g. [CGL09]. Other DL-Lite fragments allow to declare
functional roles, which can be translated by equality rules. Table 1 summarizes
the translation from DL-Lite axioms to existential rules. Example 7 illustrates
this translation on a concrete case. The DL EL can be expressed by “pure”
existential rules, as shown in Table 2.

Table 1. Translation of DL-Lite axioms

DL-Axiom Translated rule

A � B A(x)→ B(x)

A � ∃R A(x)→ R(x, y)

∃R � ∃S− R(x, y)→ S(z, x)

B � ∃R.C B(x)→ R(x, y) ∧ C(y)

R � S R(x, y)→ S(x, y)

funct(R) R(x, y) ∧R(x, z)→ y = z

B � ¬C B(x) ∧ C(x)→ ⊥

Table 2. Translation of (normal) EL-axioms

DL-Axiom Translated rule

B � C � D B(x) ∧ C(x)→ D(x)

B � C B(x)→ C(x)

B � ∃R.C B(x)→ R(x, y) ∧ C(y)

∃R.B � C r(x, y) ∧ B(y)→ C(x)

Example 7. This example borrows a DL-LiteR TBox from [CGL+07]. Consider
the atomic concepts Professor and Student, and the roles TeachesTo and Has-
Tutor. The TBox is listed below with its translation into existential rules.

DL-LiteR TBox Existential rules
Professor � ∃TeachesTo Professor(x)→ TeachesTo(x, y)
Student � ∃HasTutor Student(x)→ HasTutor(x, y)
∃TeachesTo− � Student T eachsTo(y, x)→ Student(x)
∃HasTutor− � Professor HasTutor(y, x)→ Professor(x)
Professor � ¬Student Professor(x) ∧ Student(x)→ ⊥

HasTutor− � TeachesTo HasTutor(y, x)→ TeachesTo(x, y)
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In DL-LiteF , the role HasTutor could be declared functional (by the statement
(funct (HasTutor)), which would be translated into the following equality rule:
HasTutor(x, y) ∧HasTutor(x, z)→ y = z.

More generally, existential rules allow to overcome some limitations of light-
weight DLs. First, they have unrestricted predicate arity (while DLs consider
unary and binary predicates only), which allows for a natural coupling with
database schemas, in which relations may have any arity. Moreover, adding pieces
of information, for instance to take contextual knowledge into account, such as
data provenance for instance, is made easy by the unrestricted predicate arity,
since these pieces of information can be added as new predicate arguments.
Second, the body and the head of a rule may have any structure, and there is no
constraint on frontier variables, hence rules allow to represent cyclic structures,
while DLs are fundamentally restricted to tree-like structures.

Example 8. The following rule cannot be expressed in DLs:

p(x, y)→ q(x, z) ∧ q(y, z)

Unsurprisingly, there is a price to pay for this expressivity. Indeed, BCQ
Entailment is undecidable for general existential rules (e.g., [BV81, CLM81] for
an equivalent problem on TGDs, and [BM02] for fact entailment with conceptual
graph rules). However, many classes of rules for which it remains decidable have
been studied. The main classes are reviewed in Section 5.

4 Main Approaches to Ontology-Based Query Answering

We now consider a knowledge base (KB) K = (F,R), composed of a set of facts,
seen as a single fact F , and a finite set of existential rules R. We recall that the
BCQ entailment problem takes as input a KB K = (F,R) and a BCQ q,
and asks if K |= q holds, where K is seen as the conjunction of F and the rules
in R.

To solve this problem, there are two main approaches, which are related to the
classical paradigms for processing rules, namely forward chaining and backward
chaining. In databases, these paradigms are also called bottom-up and top-down,
respectively. Forward chaining consists in iteratively applying the rules starting
from the initial fact, while trying to produce a fact to which the query can be
mapped by homomorphism. Backward chaining consists in iteratively using the
rules to rewrite the query, starting from the initial query, while trying to produce
a query that can be mapped to the initial fact by homomorphism.

In the OBQA context, these two paradigms are recast as follows. Forward
chaining is used to materialize all inferences in the data, then the query is
evaluated against this materialization. Backward chaining is decomposed into
two steps as well. First, the query is rewritten into another query using the rules.
Then, the rewritten query is evaluated against the initial data. Both approaches
can be seen as ways of integrating the rules, respectively into the data and



256 M.-L. Mugnier and M. Thomazo

into the query, in order to come back to a classical database query evaluation
problem.

Materialization has the advantage of enabling efficient query answering but
may be not appropriate, because the saturated data may be too large, but also
because of data access rights or data maintenance reasons. Query rewriting has
the advantage of avoiding changes in the data, however its drawback is that the
rewritten query may be large, even exponential in the size of initial query, hence
less efficiently processed, at least with current database techniques.

Since BCQ entailment is not decidable, none of these techniques leads to a
procedure that terminates in all cases. Various conditions on rules ensuring the
decidability of BCQ entailment have been exhibited. These conditions ensure
the termination of algorithms based on materialization or on query rewriting, or
on a combination of both. See the next section for an overview.

We now present the main notions and results that underly these two
approaches.

4.1 Materialization-Based Approach

We already pointed out that existential rules have the same form as TGDs.
Forward chaining on TGDs is known as the chase. It was initially designed to
repair a database that violates some TGDs. Indeed, when the database does not
satisfy a TGD (according to homomorphism h), this TGD can be applied to the
database (according to h) to add missing data. However, these local repairs may
lead to a new TGD violation, hence the forward chaining process.

Definition 8 (Derivation Sequence). Let F be a fact, and R be a set of
rules. An R-derivation of F is a finite sequence (F0 = F ), . . . , Fk such that for
all 0 ≤ i < k, there is Ri ∈ R and a homomorphism h from body(Ri) to Fi such
that Fi+1 = α(Fi, Ri, h).

Theorem 2 (Soundness and completeness of R-derivation). Let K =
(F,R) be a KB and q be a Boolean conjunctive query. Then K |= q iff there
exists an R-derivation (F0 = F ), . . . , Fk such that Fk |= q.

It follows that a breadth-first forward chaining mechanism yields a positive
answer in finite time when K |= q. This mechanism, called the saturation here-
after (and the chase in databases) works as follows. Let F0 = F be the initial
fact. Each step is as follows: (1) check if q maps to the current fact, say Fi−1 at
step i (i > 0): if it is the case, q has a positive answer; (2) otherwise, produce a
fact Fi from Fi−1, by computing all new homomorphisms from each rule body
to Fi−1, then performing all corresponding rule applications. A homomorphism
to Fi−1 is said to be new if it has not been already computed at a previous step,
i.e., it uses at least an atom added at step i− 1. The fact Fk obtained after the
step k is called the k-saturation of F and is denoted by αk(F,R). Formally: let
α(F,R) = F ∪{πsafe(head(R)), ∀R ∈ R and homomorphism π : body(R)→ F};
then, α0(F,R) = F and for i > 0, αi(F,R) = α(αi−1(F,R),R).
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We define α∞(F,R) = ∪k≥0αk(F,R) and we denote it by F ∗R, and simply F ∗

when there is no doubt on R. F ∗ can be infinite, as illustrated by the following
example.

Example 9. Let F = p(a) and R = p(x) → q(x, y) ∧ p(y). α∞(F,R) is infinite,
since each application of R leads to a new application of R. Note that for all
i ≥ 0, αi+1(F,R) is not equivalent to αi(F,R).

We recall the nice property that holds for range-restricted rules: M∗, the
interpretation isomorphic to F ∗, is a representative of all models of (F,R). More
precisely, M∗ is a universal model of (F,R). This property is kept for existential
rules. The difference with the range-restricted rule case is thatM∗ can be infinite.

Theorem 3 (Soundness and completeness of saturation). Let (F,R) be
a KB and q be a Boolean conjunctive query. Let F ∗ = α∞(F,R). The following
four statements are equivalent:

– F,R |= q;
– M∗ is a model of q;
– there is a homomorphism from q to F ∗

– there is an integer k ≥ 0 and a homomorphism from q to αk(F,R).
Obviously, the saturation terminates when F ∗ is finite. Further work has

proposed mechanisms related to forward chaining to build a finite representation
of F ∗, even when F ∗ is infinite, for restricted classes of existential rules [CGK08,
TBMR12]. The developed techniques are close in spirit to blocking techniques
in DL tableau procedures [BCM+07].

4.2 Query Rewriting Approach

In the OBQA context, query rewriting was first proposed for DL-Lite [CGL+05]:
the ontology is used to rewrite the initial conjunctive query into a union of con-
junctive queries, which can then be passed to a relational database management
system. More generally, the input query can be rewritten into a first-order query
(e.g., a union of semi-conjunctive queries [Tho13]). First-order queries are ex-
actly the logical counterpart of SQL queries. Query rewriting has been further
generalized by considering rewriting into a Datalog query (a UCQ can be seen
as a specific case of such a query). See the last section for more details.

We focus here on the basic rewriting technique, which outputs a UCQ, seen
as a set of CQs. We present a conceptually simple and generic approach to query
rewriting with existential rules, namely piece-based query rewriting, which can
be applied to any kind of existential rule (but, of course, it is ensured to stop
only for some classes of rules). This technique has been introduced in [BLMS09]
(and [BLMS11] for the journal version). A slightly different technique has been
proposed in [GOP11].

For simplicity reasons, we focus on Boolean conjunctive queries hereafter. To
be applicable to arbitrary CQs, the definitions should be extended to process free
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variables in a special way. However, considering BCQs only is not a restriction,
since we can use a simple transformation from any CQ to a BCQ: let q be
a CQ with free variables x1 . . . xq; q is translated into a BCQ q′ by adding
an atom ans(x1 . . . xq), where ans is a special predicate not occurring in the
knowledge base; the technique presented hereafter ensures that, if we rewrite q′

into a UCQ q′′, then remove from q′′ the atoms with predicate ans (and consider
their arguments as free variables), we get the UCQ that should be obtained by
rewriting q.

Example 10. Consider again Example 4. Let q = ∃x1 isProject(x1, “KR”, x2)
asking for the leaders of projects in KR. The associated Boolean query is q′ =
∃x1∃x2(ans(x2)∧ isProject(x1, “KR”, x2)). The key point is that the predicate
ans does not appear in the knowledge base, hence the added atom will never be
rewritten and its variables will be correctly processed (as detailed in following
Example 15).

Query rewriting relies on the notion of a unification between a query and a rule
head. We first recall here the usual definition of unification, used for instance in
plain Datalog (or range-restricted rules), then explain why it has to be extended
in the case of existential rules.

Definition 9 (Datalog Unification). Let q be a Boolean conjunctive query,
and R be a Datalog rule. A unifier of q with R is a pair μ = (a, u), where a is an
atom of q and u is a substitution of vars(a)∪vars(head(R)) by terms(head(R))∪
consts(a) such that u(a) = u(head(R)).

When a query and a rule unify, it is possible to rewrite the query with respect
to that unification, as specified in Definition 10.

Definition 10 (Datalog rewriting). Let q be a Boolean conjunctive query, R
be a Datalog rule and μ = (a, u) be a unifier of q with R. The rewriting of q
according to μ, denoted by β(q, R, μ), is u(body(R) ∪ q̄′), where q̄′ = q \ q′.

Please note that these classical notions have been formulated in order to stress
similarities with the notions we introduce hereafter.

Example 11 (Datalog Unification and Rewriting). Let us consider qe = t(x1, x2) ∧
s(x1, x3) ∧ s(x2, x3) and R = s1(x, y)→ s(x, y). A Datalog unifier of qe with R
is μd = (s(x1, x3), {u(x1) = x, u(x3) = y}). The rewriting of qe according to μ is
the following query:

t(x, x2) ∧ s1(x, y) ∧ s(x2, y).

Let us stress that this query is equivalent to the following query:

t(x1, x2) ∧ s1(x1, x3) ∧ s(x2, x3),

where x has been renamed by x1 and y by x3. In the following, we will allow
ourselves to use such a variable renaming without prior notice.
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Applying the same steps without paying attention to the existential vari-
ables in existential rule heads would lead to erroneous rewritings, as shown by
Example 12.

Example 12 (Wrong Unification). Let us consider qe = t(x1, x2) ∧ s(x1, x3) ∧
s(x2, x3) and R = f(x)→ s(x, y). A Datalog unification of qe with R is μerror =
(s(x1, x3), {u(x1) = x, u(x3) = y}). According to Definition 10, the rewriting of
qe with R would be qr:

qr = t(x, x2) ∧ f(x) ∧ s(x2, y).

However, qr is not a sound rewriting of qe, which can be checked by considering
the following fact (obtained by instantiating qr):

F = t(a, b) ∧ f(a) ∧ s(b, c).

We have F |= qr, however F,R �|= qe. Indeed, F
∗
R ≡ F and qe cannot be

mapped by homomorphism to F .

For that reason, the notion of piece unifier has been introduced, originally
in the context of conceptual graph rules [SM96], then recast in the framework
of existential rules [BLMS09]. Instead of unifying only one atom at once, one
may have to unify a whole “piece”, that is, a set of atoms that should have
been created by the same rule application. The following definitions and the
algorithm are mainly taken from [KLMT12]. Alternative definitions can be found
in [KLMT13]. Given a Boolean conjunctive query q and q′ ⊆ q, we call separating
variables of q′ (w.r.t. q) the set of variables that belong to both q′ and q \ q′,
and we denote this set by sepq(q

′). The other variables of q′ are said to be
non-separating variables.

Definition 11 (Piece Unifier). Let q be a Boolean conjunctive query and R
be an existential rule. A piece unifier of q with R is a pair μ = (q′, u) with q′ ⊆
q, q′ �= ∅, and u is a substitution of fr(R)∪vars(q′) by terms(head(R))∪consts(q′)
such that:

1. for all x ∈ fr(R), u(x) ∈ fr(R) or u(x) is a constant
(for technical convenience, we allow u(x) = x);

2. for all x ∈ sepq(q
′), u(x) ∈ fr(R) or u(x) is a constant;

3. u(q′) ⊆ u(head(R));

It follows from this definition that existential variables from R can only be
unified with non-separating variables of q′. In other words, when a variable x
of q′ is unified with an existential variable of R, all the atoms in which x occur
must be part of the unification (i.e., x cannot be a separating variable).

Let us consider the unification attempted in Example 12 from this point of
view.
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Fig. 1. Since x3 is unified with an existential variable (Example 13), dashed atoms
must be part of the unification

Example 13 (Piece Unifier). We consider again qe = t(x1, x2) ∧ s(x1, x2) ∧
s(x2, x3) andR = f(x)→ s(x, y). μerror = (q′ = {s(x1, x3)}, {u(x1) = x, u(x3) =
y}) is not a piece unifier. Indeed, x3 belongs to sepqe(q

′) since it appears in
s(x2, x3), which does not belong to q′, hence violating the second condition of
the piece unifier definition.

A correct choice of piece is illustrated by Figure 1. Indeed, let us define μ by
(({s(x1, x3), s(x2, x3)}, {u(x1) = x, u(x3) = y, u(x2) = x}). μ is a piece unifier of
qe with R, which can be checked by verifying that Conditions 1 to 3 are fulfilled.

Given the above definition of piece unifiers, the definition of rewritings remains
syntactically the same as in the Datalog case.

Definition 12 (Rewriting). Given a Boolean conjunctive query q, an existen-
tial rule R and a piece unifier μ = (q′, u) of q with R, the direct rewriting of q
according to μ, denoted by β(q, R, μ) is u(body(R) ∪ q̄′), where q̄′ = q \ q′.
Example 14 (Direct rewriting). Let μ be the unifier of qe with R defined in
Example 13. The direct rewriting of qe with respect to μ is:

β(qe, R2, μ) = t(x, x) ∧ f(x).

The notion of R-rewriting allows to denote queries that are obtained thanks
to successive rewriting operations.

Definition 13 (R-rewriting of q). Let q be a Boolean conjunctive query and
R be a set of existential rules. An R-rewriting of q is a conjunctive query qk
obtained by a finite sequence q0 = q, q1, . . . , qk such that for all i such that
0 ≤ i < k, there is Ri ∈ R and a piece unifier μi of qi with Ri such that
qi+1 = β(qi, R, μi).

We are now able to illustrate how non-Boolean queries can be processed by
translation into Boolean queries, thus avoiding to consider answer variables in a
specific way (see the discussion associated with Example 10).

Example 15. Consider the set of rules R from Example 4.
Let q = ∃x1isProject(x1, “KR”, x2), which asks for the leaders of projects in
KR. Let q′ = ∃x1∃x2(ans(x2) ∧ isProject(x1, “KR”, x2)) be the Boolean query
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obtained from q. The only rule that contains an atom with predicate isProject is
R2=Researcher(x)∧hasExpertise(x, y)→ isProject(u, y, z)∧ isMember(x, u).
However, q′ cannot be piece-unified with the head of R2 because x2 would be
unified with the existential variable z, whereas it also appears in ans(x2) which
cannot be unified. In this case, the only R-rewriting of q′ with the rules from
Example 4 is q′ itself. Hence, the only rewriting of the original query q would be
q itself, obtained from q′ by removing the ans atom and making x2 free.

We now present the fundamental theorem justifying the notion ofR-rewriting.
This theorem was originally written in the framework of conceptual graph rules
[SM96]. Since the logical translation of conceptual graph rules is exactly exis-
tential rules, it can be immediately recast in the framework of existential rules.

Theorem 4 (Soundness and completeness of R-rewriting). Let F be a
fact, R be a set of existential rules, and q be a Boolean conjunctive query. Then
F,R |= q iff there is an R-rewriting q′ of q such that F |= q′.

Of course, this does not always provide a halting procedure since there may
be an infinite number of R-rewritings, as illustrated by the following example.
Note that this example actually considers a Datalog rule.

Example 16. Let R = p(x, y) ∧ p(y, z) → p(x, z). Let q = p(a, b), where a and
b are constants. Hence q is a ground atom. A direct rewriting of q with R is
q1 = p(a, y) ∧ p(y, b). Each atom of q1 unifies with head(R), which yields two
isomorphic queries. Let us consider q2 = p(a, y′) ∧ p(y′, y) ∧ p(y, b). The same
process can be repeated indefinitely, producing increasingly longer “paths” from
a to b. Hence, the set of {R}-rewritings of q is infinite.

For some classes of rules, there exists a finite set of R-rewritings (in other
words a UCQ), which is both sound and complete, as formally defined below:

Definition 14 (Sound and complete set of R-rewritings). Let R be a set
of existential rules and q be a Boolean conjunctive query. Let Q be a set of BCQs.
Q is said to be sound with respect to q and R if, for all fact F , and all q′ ∈ Q,
if F |= q′ then F,R |= q. Reciprocally, Q is said to be complete with respect to
q and R if, for all fact F, if F,R |= q, then there is q′ ∈ Q such that F |= q′.

See the next section for conditions on rules ensuring that a finite sound and
complete set of rewritings exists, whatever the input conjunctive query is.

5 Decidable Classes of Rules and Algorithmic Techniques

In this section, we present several criteria that ensures decidability of BCQ
entailment. First, we consider the case where the saturation introduced in
Section 4 is equivalent to a finite fact. This allows to apply classical forward
chaining techniques. However, sets of rules ensuring such a property are not
recognizable, hence the definition of several recognizable sufficient conditions,
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also known as “concrete” classes. In this paper, we present two of them, and we
provide links to other relevant work. Similarly, we consider the case where query
rewriting into a union of conjunctive queries can be performed, by presenting
a generic algorithm and several concrete cases where it is applicable. Last, we
briefly mention and provide relevant links to other decidable cases.

5.1 Finite Expansion Sets

We have already seen how to compute a saturation by applying rules in a
breadth-first fashion. A set of rules that produces new information in only a
finite number of steps for every initial fact F is called a finite expansion set, as
formalized in Definition 15.

Definition 15 (Finite Expansion Set). A set of rules R is called a finite
expansion set ( fes) if and only if, for every fact F , there exists an integer k =
f(F,R) such that αk(F,R) ≡ α∞(F,R).

Since one can not decide if a given set of rules is a fes3, it is crucial to
design expressive specific cases. All the cases known so far are based on some
notion of acyclicity. Several of them have been proposed, and we present here
two incomparable notions of acyclicity.

Weak-Acyclicity. The first notion is based on the notion of position of a
predicate.

Definition 16 (Position). Let p be a predicate of arity k. A position of p is a
pair (p, i), with i from 1 to k.

We now present the graph of position dependencies. The vertices of this graph
are all the positions that appear in a rule set. Intuitively, it tracks how variables
are propagated from one position to another one. Moreover, it also tracks how
new existentially quantified variables are introduced, and in which positions.
Definition 17 formalizes this intuition.

Definition 17 (Graph of Position Dependencies [FKMP05]). Let R be
a set of rules. The (oriented) graph of position dependencies (V,A ∪ A∗) of R
is defined as follows:

– V is the set of all positions for all predicates appearing in R;
– there is an arc from (p, i) to (q, j) in A if there exist a rule R ∈ R, and a

variable x ∈ fr(R) such that x appears in position (p, i) in the body of R and
in position (q, j) in the head of R;

– there is an arc from (p, i) to (q, j) in A∗ if there exist a rule R ∈ R and a
variable x ∈ fr(R) such that x appears in position (p, i) in the body of R and
an existentially quantified variable appears in position (q, j) in the head of
R. The arcs of A∗ are called special arcs.

3 We say that fes is an abstract class.
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(r, 1) (s, 1)

(r, 2) (s, 2)∗

Fig. 2. The graph of position dependencies associated with R (Example 17)

The rank of a position is the maximum number (possibly infinite) of special arcs
on a path leading to that position.

Example 17 illustrates the construction of the graph of position dependencies.

Example 17. Let R be a set containing the following rules:

– r(x, y)→ s(y, z)
– s(x, y)→ r(y, x)
– r(x, y) ∧ r(y, z)→ r(x, z)

The graph of position dependencies of R is shown in Figure 2. Special arcs are
labelled by a star.

The graph of position dependencies is used to defined “weak-acyclicity”, where
some cycles are forbidden.

Definition 18 (Weak-Acyclicity [FKMP05]). Let R be a set of rules. R is
said to be weakly-acyclic if there is no cycle in the graph of position dependencies
of R that goes through a special arc.

Let us point out that a set of rules containing no existentially quantified
variables in rule heads is trivially weakly acyclic (because there is no special
arc). Such sets of rules (which can be seen as Datalog programs) are sometimes
called range-restricted.

Property 2. A weakly-acyclic set of rules is a finite expansion set.

The proof is done by upper-bounding for any fact F and any weakly-acyclic set
of rules R the number of fresh existential variables in the core of the saturation
of F with R (by a double exponential with respect to R; the upper-bound is
polynomial if R is fixed).

Example 18. In the graph of Figure 2 (Example 17), no cycle goes through a
special edge, thus R is weakly acyclic. As such, R is a finite expansion set.
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This condition is sufficient to ensure the finiteness of forward chaining, but
not necessary, as witnessed by the following example.

Example 19. Let R be the following rule:

r(x, y) ∧ s(x, y)→ r(x, v) ∧ r(w, y) ∧ s(x,w) ∧ s(v, y).

The graph of position dependencies is a clique of special edges, but an ap-
plication of R cannot trigger a novel application of R —hence, {R} is a finite
expansion set.

Acyclic Graph of Rule Dependency. The latter example motivates the
notion of rule dependency [BLMS11], which has originally been introduced for
conceptual graph rules [Bag04]. The main idea here is to characterize which rule
can effectively lead to trigger another rule. Preventing such cycles of dependen-
cies naturally ensures the finiteness of forward chaining.

Definition 19 (Dependency). Let R1 and R2 be two existential rules. R2

depends on R1 if there exist a fact F , a homomorphism π1 from body(R1) to
F and a homomorphism π2 from body(R2) to α(F,R1, π1) such that π2 is not a
homomorphism from body(R2) to F .

This definition means that an application of R1 may, on some fact, trigger a
new application of R2. All rule dependencies are summarized in the graph of rule
dependencies, whose definition is given below. It is possible to decide if a rule
depends on another, by using the notion of piece-unifier introduced in Section 4
[SM96, BLMS11]. The associated decision problem is NP-complete.

Definition 20 (Graph of Rule Dependencies). Let R be a set of rules. The
graph of rule dependencies of R, denoted by GRD(R) is defined as follows:

– its vertices are the rules of R,
– there is an arc from R1 to R2 if and only if R2 depends on R1.

A set of rules R is said to have an acyclic graph rule of dependencies (aGRD)
if GRD(R) is acyclic. This is in particular the case for Example 20.

Example 20. Let us consider the following two rules:

– R1 = p(x)→ r(x, y) ∧ r(y, z) ∧ r(z, x),

– R2 = r(x, y) ∧ r(y, x)→ p(x).

Their graph of rule dependencies is given Figure 3.

Let us last notice that Examples 17 and 20 show that weak-acyclicity and
aGRD are incomparable criteria.
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R1 R2

Fig. 3. The graph of rule dependencies of Example 20

Related Work. The two presented notions are only two examples of the vari-
ous acyclicity notions that have been introduced so-far. They have indeed been
generalized in a variety of ways, such as super-weak acyclicity [Mar09], join-
acyclicity [KR11], aGRDk [BMT11], as well as model-summarizing acyclicity
and model-faithful acyclicity [GHK+12]. The interested reader is invited to con-
sult [GHK+13], which among others contains a nice overview of the introduced
acyclicity notions.

5.2 Finite Unification Sets

As already noticed in Section 4, materializing the saturation, even when it is
theoretically possible, may not be practical due to its large size. Approaches
based on query reformulation have thus been proposed. We rely here on piece-
based query rewriting, presented in Section 4.

We recall that q2 |= q1 if and only if there is a homomorphism from q1 to q2,
which we denote by q1 ≥ q2. Let q be a BCQ, and Q be a sound and complete
UCQ-rewriting of q. If there exist q1 and q2 in Q such that q1 ≥ q2, then
Q\{q2} is also a sound and complete rewriting of q. This observation motivates
the definition of cover of a set of first-order queries.

Definition 21 (Cover). Let Q be a set of Boolean conjunctive queries. A cover
of Q is a set Qc ⊆ Q such that:

1. for any q ∈ Q, there is q′ ∈ Qc such that q′ ≥ q,
2. elements of Qc are pairwise incomparable with respect to ≥.
Example 21. Let Q = {q1 = r(x, y) ∧ t(y, z), q2 = r(x, y) ∧ t(y, y), q3 = r(x, y) ∧
t(y, z) ∧ t(u, z)}. A cover of Q is {q1}. Indeed, q1 ≥ q2 and q1 ≥ q3, because for
i ∈ {2, 3}, π1→i is a homomorphism from q1 to qi where:

– π1→2(x) = x, π1→2(y) = π1→2(z) = y, and
– π1→3(x) = x, π1→3(y) = y, π1→3(z) = z.

We now define the class of finite unification sets, which is the main focus of
this section.

Definition 22 (Finite unification set). Let R be a set of existential rules. R
is a finite unification set if it holds for any Boolean conjunctive query q that the
set of R-rewritings of q admits a finite cover.

Algorithm 1 is a generic breadth-first rewriting algorithm, that generates for
any query q and any finite unification setR a sound and complete UCQ-rewriting
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of q with respect to R. Generated queries are queries that belong to Qt at some
point; explored queries are queries that belong to QE at some point, and thus,
for which all one-step rewritings are generated. At each step, a cover of explored
and generated queries is computed. This means that only most general queries
are kept, both in the set of explored queries and in the set of queries remaining
to be explored. If two queries q1 and q2 are homomorphically equivalent, and
only q1 has already been explored, then q1 is kept and q2 is discarded. This is
done in order not to explore two queries that are comparable by the most general
relation – which ensures the termination of Algorithm 1.

Algorithm 1. A breadth-first rewriting algorithm

Data: A fus R, a Boolean conjunctive query q
Result: A cover of the set of R-rewritings of q
QF := {q}; // resulting set
QE := {q}; // queries to be explored
while QE 	= ∅ do
Qt := ∅; // queries generated at this rewriting step
for qi ∈ QE do

for R ∈ R do
for μ piece-unifier of qi with R do
Qt := Qt ∪ β(qi, R, μ);

Qc := cover(QF ∪Qt);
QE := Qc\QF ; // select unexplored queries from the cover
QF := Qc;

return QF

Let us provide a step by step application of Algorithm 1.

Example 22. Let Re = {R1, R2, R3, R4, R5}, defined as follows:

– R1 : p(x) ∧ h(x)→ s(x, y);

– R2 : f(x)→ s(x, y);
– R3 : f1(x)→ s1(x, y);
– R4 : t(x, y)→ t(y, x);

– R5 : s1(x, y)→ s(x, y);

and qe be the following Boolean query:

qe = t(x1, x2) ∧ s(x1, x3) ∧ s(x2, x3)

Initially, QF = QE = {qe = t(x1, x2) ∧ s(x1, x3) ∧ s(x2, x3)}. Since QE is not
empty, we initialize Qt to the empty set, and consider every element of QE . The
only element of QE is qe, so we add to Qt all possible rewritings of qe. These
are:
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– q1 = t(x, x) ∧ p(x) ∧ h(x), by unifying with respect μ1, which is defined by
({s(x1, x3), s(x2, x3)}, u1(x1) = u1(x2) = x, u1(x3) = y), and is a unifier of
qe with R1;

– q2 = t(x, x) ∧ f(x), with respect to μ2 = ({s(x1, x3), s(x2, x3)}, u2(x1) =
u2(x2) = x, u2(x3) = y) , unifier of qe with R2;

– q3 = t(x2, x1)∧s(x1, x3)∧s(x2, x3) with respect to μ3 = ({t(x1, x2), u3(x1) =
y, u3(x2) = x), unifier of qe with R4;

– q4 = t(x1, x2)∧s1(x1, x3)∧s(x2, x3) with respect to μ4 = ({s(x1, x3)}, u4(x1)
= x, u4(x3) = y), unifier of qe with R5;

– q5 = t(x1, x2)∧s(x1, x3)∧s1(x2, x3) with respect to μ5 = ({s(x2, x3)}, u5(x2)
= x, u5(x3) = y), unifier of qe with R5;

– q6 = t(x, x)∧ s1(x, x3), with respect to μ6 = ({s(x1, x3), s(x2, x3)}, u6(x1) =
u6(x2) = x, u6(x3) = y), unifier of qe with R5;

Thus Qt = {q1, q2, q3, q4, q5, q6}. Qc is set to {qe, q1, q2, q3, q4, q5, q6}, since
none of the generated queries are comparable. QE is set to {q1, q2, q3, q4, q5, q6}
and QF to Qc.

Algorithm 1 performs once more the while loop. Qt is reinitialized to the
empty set, and all rewritings of QE are rewritten. We thus explore every qi for
i ≤ 5. q1 and q2 are not unifiable with any rule. We then explore rewritings of
q3. The following queries can be obtained by a one step rewriting of q3:

q31 = t(x, x) ∧ p(x) ∧ h(x),

q32 = t(x, x) ∧ f(x),

q33 = t(x1, x2) ∧ s(x1, x3) ∧ s(x2, x3),

q34 = t(x, x) ∧ s1(x, x3),

q35 = t(x2, x1) ∧ s1(x1, x3) ∧ s(x2, x3),

q36 = t(x2, x1) ∧ s(x1, x3) ∧ s1(x2, x3).

As for q4, the following rewritings are generable:

q41 = t(x2, x1) ∧ s1(x1, x3) ∧ s(x2, x3),

q42 = t(x1, x2) ∧ s1(x1, x3) ∧ s1(x2, x3).

From q5:

q51 = t(x2, x1) ∧ s(x1, x3) ∧ s1(x2, x3),

q52 = t(x1, x2) ∧ s1(x1, x3) ∧ s1(x2, x3).
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And from q6:

q61 = t(x, x) ∧ f1(x).

As illustrated by Figure 4, which explicits subsumption relations among
queries, a cover of the queries is {qe, q1, q2, q3, q4, q5, q35 , q36 , q42 , q61}, which is the
new value of Qc. Note that q6 does not belong to Qc, because the newly gener-
ated query q42 is strictly more general than q6. QE is set to {q35 , q36 , q42 , q61}, QF to
Qc, and QE is explored, entering a new iteration of the while loop. Two queries
are generated:

q′ = t(x2, x1) ∧ s1(x1, x3) ∧ s1(x2, x3),

and

q′′ = t(x, x) ∧ f1(x).

At the end of this while loop, we have QE = {q′} and

QF = {qe, q1, q2, q3, q4, q5, q35 , q36 , q42 , q61 , q′}.
Since all queries generable from q′ are covered by QF , the algorithm halts and

outputs:

{qe, q1, q2, q3, q4, q5, q35 , q36 , q42 , q61 , q′}.

qe q1 q2 q3 q4 q5 q35 q36 q42 q61

q31 q32q33 q34 q41 q51 q52
q6

Fig. 4. There is an arrow from q to q′ if and only if q′ is more general than q

The following lemma is crucial for the completeness of Algorithm 1. It ensures
that for any queries q and q′ such that q′ ≥ q, any rewriting that can be obtained
in one step from q is less general than a rewriting that can be obtained in one step
from q′. A detailed discussion of what can happen when considering rewriting
procedures where this lemma does not hold can be found in [KLMT13].

Lemma 1 ([KLMT12]). Let q1 and q2 be two Boolean conjunctive queries such
that q1 ≥ q2. For any rewriting q′2 of q2 such that q1 �≥ q′2, there exists a rewriting
q′1 of q1 such that q′1 ≥ q′2.
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Theorem 5. The output of Algorithm 1 is a sound and complete set of R-
rewritings of q.

Proof. We define a 1-rewriting of q as a direct rewriting, and a k-rewriting of q
as a direct rewriting of a (k− 1)-rewriting for any k ≥ 2. We prove by induction
on k that for any i ≤ k, for any qi that is an i-rewriting of q, there is q∗i ∈ QFi ,

that is, QF after the ith loop such that q∗i ≥ qi. The only 0-rewriting of q is q,
which initially belongs to QF , which proves the claim for k = 0. Let assume that
the claim is true for k, and let us show it for k+1. Let qi+1 be a i+1-rewriting
of q. If i < k, qi+1 is covered by an element of QFi+1 by induction assumption.
Otherwise, let qi be a k-rewriting such that qi+1 is a 1-rewriting of qi. There
exists q∗i ∈ QFi such that q∗i ≥ qi. Lemma 1 ensures that there exists q∗i+1 a
1-rewriting of q∗i such that q∗i+1 ≥ qi+1, which ends the proof.

Backward-Shyness. As for finite expansion sets, the problem of recognizing
finite unification sets is undecidable. Several concrete classes of finite unification
sets are known, the most famous ones being the class of linear rules ([CGK08]
and also [BLMS09], under the name of atomic-hypothesis rules) and the class of
sticky sets of rules [CGP10]. We present both classes of rules under the unifying
concept of “backward shy”4 class of rules. To define that notion, we need the
notion of original and generated variables.

Definition 23 (Original and Generated Variables). Let q be a Boolean
conjunctive query, R be a set of rules, and q′ be an R-rewriting of q, obtained by
a rewriting sequence q = q0, q1, . . . , qn = q′. Original variables of q′ (with respect
to q) are inductively defined as follows:

– all variables of q are original;

– if qi has original variables X, and qi+1 is the rewriting of qi with respect to
μ = (q′i, u), the original variables of qi+1 are the images of the elements of
X by u.

A variable that is not original is generated.

Backward shyness of a set of rules R ensures that any query q admits a finite
set of R-rewritings.

Definition 24 (Backward Shyness). Let R be a set of rules. R is to be said
backward shy if for any Boolean conjunctive query q, for any R-rewriting q′ of
q, no generated variable of q′ appears in two atoms.

Property 3 provides an upper bound on the number of most general rewritings
of a query q with respect to a backward shy set of rules.

4 The term “backward shy” is not standard, and inspired from shy rules [LMTV12].
However, there is no inclusion between shy and backward shy rules.
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Property 3 (Backward Shy Rules are fus). Let R be a set of backward shy

rules, and q a Boolean conjunctive query. There are at most 2p(|terms(q)|+w)w

R-rewritings of q that are not equivalent up to isomorphism, where w is the
maximum arity of a predicate and p is the number of predicates appearing in
the rules.

Proof. The number of distinct atoms with arguments the terms of q and at most
w other terms is upper bounded by p(|terms(q)|+w)w . Since a term that is not
a term of q cannot appear in two different atoms, we obtain the claimed upper
bound.

Linear rules [CGK08, BLMS09] are rules whose body contains only one atom.
Let us observe that linear rules are backward shy.

Property 4. Any set of linear rules is backward shy.

Proof. The claim follows from the following two remarks:

– when a generated variable is introduced by a rewriting step, it appears in
exactly one atom;

– if x appears in k atoms of a query q before a rewriting with respect to
μ = (q′, u), then u(x) appears in at most k atoms in the rewriting of q with
respect to μ.

We now present sticky rules, which have been introduced as a decidability
criterion that may deal with non-guarded rules.

Definition 25 (Sticky Sets of Rules [CGP10]). Let R be a set of rules. We
iteratively mark the variables of the rule bodies of R according to the following
marking procedure. First, for each rule R ∈ R, and each variable v ∈ body(R),
we mark v if there is an atom a of head(R) such that v is not an argument of a.
We then apply until a fixpoint is reached the following step: for each rule R, if
a marked variable appears in body(R) at position (p, i), then we mark for each
rule R′ each occurrence of the variables of body(R′) that appear in head(R′) at
position (p, i). R is said to be sticky if there is no rule R such that a marked
variable appears more than once in body(R).

Example 23 provides an example of sticky and non-sticky rules.

Example 23. Let R1 be a set of rules containing the following rule:

– r(x, y) ∧ t(y, z)→ s(x, z)

R1 is not sticky, since y is marked by the marking procedure, and appears twice
in a rule body. On the other hand, the set containing the following two rules is
sticky:

– r(x1, y1) ∧ t(y1, z1)→ s(y1, u1)
– s(x2, y2)→ r(y2, x2)
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Indeed, x1 and z1 are marked at the initialization step. The propagation step
marks y2, because y2 appears at the first position of r in the head of the second
rule, as x1 which is already marked. Finally, x1, z1 and y2 are marked, and are
the only marked variables. Since none of these variables appears twice in a rule
body, this set of rules is sticky.

Property 5. Any sticky set of rules is backward shy.

Proof. We show Property 5 by induction on the length of the derivation. If q′ is
a one-step rewriting of q, then a generated variable is a variable that has been
created at this rewriting step. By the initialization step of the sticky marking,
such a variable appears at exactly one position, which is marked. Let assume
that the induction assumption holds for any k-rewriting of q, and let q′ be a k+1-
rewriting of q. Let qk be the k-rewriting of q from which q′ has been rewritten.
A generated variable of q′ may appear for two different reasons: either it has
been generated at the last rewriting step, and the same reasoning as before
can be applied. Or it is a generated variable with respect to qk. By induction
assumption, it appears at a marked position. The stickiness property implies
that it appears also only once in q′, and at a marked position.

Related Work. The rewriting algorithm we presented in this section is only
one among several. We give here some pointers to several other rewriting al-
gorithms or rewriting tools. Among implemented tools, we can cite Clipper
[EOS+12], Kyrie [MC13], QuOnto [ACG+05], Nyaya [GOP11], Rapid [CTS11],
Iqaros [VSS12], or the piece-based rewriting algorithm presented in [KLMT12].

5.3 Other Decidable Cases

Presenting algorithms that allow to deal with sets of rules ensuring neither the
finiteness of the canonical model nor the existence of a sound and complete first-
order rewriting is out of the scope of that short course. We give however a quick
overview of topics that have been studied and relevant references.

Bounded Treewidth Sets. Most of the known decidable cases that are neither
finite unification sets nor finite expansion sets are bounded treewidth sets. This
class of rules, once again not recognizable, is based on the structural property
of the facts that are generated starting from any fact. Definition 26 introduces
formally this notion.

Definition 26 (Bounded treewidth set). A set of rules R is called a bounded-
treewidth set (bts) if for any fact F , there exists an integer b = f(F,R) such
that for any R-derivation F ′ of F , the treewidth of core(F ′) is less or equal
to b.

The most prominent example of a bounded treewidth set of rules is that of
a set of guarded rules. A rule is guarded if its body contains a guard, that
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is, an atom that contains all the body variables. The original algorithm for
conjunctive query answering under guarded sets of rules performs a traditional
forward chaining and stops it after a number of steps which is a function of the
sizes of the rule set and the query [CGK08]. Several extensions of the notion of
guarded rules have been proposed in the literature, for instance by exploiting
the graph of position dependencies (Definition 17) in order to restrict the set
of body variables that needs to be guarded. The interested reader can consult
[CGK08, KR11, TBMR12] for more details about these restrictions and associ-
ated algorithms.

Outside of the Classification and Combinations. Even if the three intro-
duced classes cover most of the known decidable class so far, some classes are
outside of this classification. It is in particular the case for parsimonious sets
of rules [LMTV12], which is an abstract class in its own right. Another popular
way of getting sets of rules that do not fall in the afore mentioned classification
is to combine decidable classes of rules. “Raw” combination usually leads to un-
decidability, but several restrictions have been proposed in the literature. One
can distinguish two kinds of combinations: generic combination, which relies on
abstract properties of rule sets and interaction between them, and “built-in”
combination, which looks at specific classes and restrict the way they interact.
In the first case, the already seen graph of rule dependencies may be used to
split the study of a rule set into the study of the sets that are formed by its
strongly connected components. In the second category, weakly-sticky sets of
rules [CGP10] and tameness [GMP13] have been proposed, allowing to combine
(under some restrictions) sticky sets of rules with weakly-acyclic sets of rules for
the former, and with guarded rules for the latter.

6 Ongoing Research and Open Issues

We finish this course by presenting two current research issues, that both need
to be tackled in order to obtain practical systems. The first one deals with the
shortcomings of current query rewriting techniques. Indeed, experiments made
with the first rewriting tools have shown the rewritings to be of enormous size,
which could not even be passed to an RDMS for execution. How to circumvent
that problem? This is an intricate issue, that raises both theoretical and practical
work, and that we will touch upon in Section 6.1.

Then, we will consider the important topic of inconsistent data. Given the
usually cited Semantic Web application area, it is highly probable that the data
a user will want to use is inconsistent with respect to an ontology encompassing
both existential rules and negative constraints. This raises a non-trivial problem,
since the classical semantics of first-order logic does not allow to draw meaning-
ful, or at least intuitive, results in the presence of any inconsistency. We will
present some alternative semantics in Section 6.2.
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6.1 Query Rewriting: Any Useful in Practice?

Behind this rather provocative title hides a serious question: how efficient can
query answering systems based on query rewriting be in practice? It is widely
accepted that RDMS are well optimized and efficient in practice. However, the
use of ontologies in order to perform query rewriting modifies the scope of what
can be called a real-world query. We first quickly exhibit what the problem is,
and present some of the approaches that have been proposed in order to over-
come it. Last, we touch upon benchmarking problems.

Large Size of First-Order Rewritings. Since the evaluation of Boolean con-
junctive queries is a NP-hard problem, stating that RDMS are efficient means
that they are efficient on real-world queries, that is, queries that a user may try
to evaluate. In particular, such queries are usually of easy structure and of small
size. When adding an ontology, even when starting from a simple ontology and
a simple query, one may be led to evaluate a huge union of conjunctive queries,
as can be noticed with the following example.

Example 24. Let R = {Ri}1≤i≤n, where Ri : ri(x, y)→ ri−1(x, y). Let q be the
following query:

r0(x1, x2) ∧ r0(x2, x3).

q has a UCQ-rewriting with (n+1)2 conjunctive queries, which are {ri(x1, x2)∧
rj(x2, x3)}0≤i,j≤n.

Example 24 can be generalized by taking a query of k atoms and classes/roles
having n subclasses/subroles. This would yield an optimal UCQ-rewriting with
(n+1)k conjunctive queries. This cannot be considered as a small query anymore,
and existing systems are not able to deal with such huge queries. Moreover, it has
been shown that the exponential size of the rewritings also holds for so-called
pure first-order rewritings. The interested reader is invited to consult, among
others, [KKPZ12].

Alternative Approaches. Two approaches have been proposed in order to
escape from this problem of rewriting size, with the additional constraint of not
changing the data. First, changing the target language in which rewritings are
expressed. Instead of unions of conjunctive queries, one may use other forms of
first-order formulas [Tho13], or Datalog rewritings [RA10]. This may allow to
reduce the size of the rewritings in some common cases (such as for large class
hierarchies), or for a whole class of ontologies. In particular, it was shown that
for a wide class of ontologies, which in particular include linear and sticky rules,
there exists a polynomial non-recursive Datalog rewriting for any query [GS12].
These rewritings, however, are not claimed to be efficiently evaluable.

Another approach is to reduce the scope of the rewritings: that is, instead
of providing sound and complete answers on any database, the rewriting tech-
nique will provide sound and complete answers only on databases that fulfill
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some additional constraints. In particular, it may be possible in some settings
to assume that the database is already complete with respect to some database
dependencies. In the case of a rewriting taking the form of a set of conjunctive
queries, this would imply that some of the conjunctive queries that are part of
this set are not required, and one could ignore them. The interested reader is
invited to consult [Ros12, RMC12] for more details.

Benchmarking Problems. An additional problem when one wants to evaluate
or compare different approaches is the current lack of benchmarks. Ideally, a test
case would contain an ontology, some data, and a conjunctive query. Unfortu-
nately, such trios are not widely available. The benchmark classically used since
[PUHM09] to evaluate query rewriting algorithms is composed of five ontologies,
with five queries each, and no associated data. The most used ontology is LUBM
5, and several adaptations of it have been proposed [RMC12, LSTW12], together
with data generators. The small number of queries in the benchmark is already
a serious weakness. This has already been noticed, and a recent paper proposed
an automatic generation of relevant queries in order to test soundness and com-
pleteness of algorithms [ISG12]. Recently, more expressive real-world ontologies
(expressed thanks to Description Logics) have been used for the evaluation of
query rewriting [TSCS13]. However, once again queries are hand-crafted and no
data are available.

6.2 Dealing with Inconsistent Data

In a setting where data come from several heterogeneous and possibly unchecked
sources, it is highly probable for the knowledge base to be inconsistent. An
example of inconsistent knowledge base is presented in Example 25.

Example 25. Let us consider the following fact:

F = {cat(Tom), barks(Tom)},
and the following rules:

– barks(x)→ dog(x)
– cat(x)→ animal(x)
– dog(x)→ animal(x)

Last, let us specify that the classes dog and cat are disjoint, thanks to the
following negative constraint:

dog(x) ∧ cat(x)→ ⊥.
According to the classical first-order semantics, the answer to any Boolean

query is yes, since the given knowledge base is inconsistent. This is somehow
counterintuitive, and alternative semantics have been proposed in order to pro-
vide a more intuitive behavior [LLR+10, LMS12]. We present two of them in the
following, which are based on the notion of repair.

5 http://swat.cse.lehigh.edu/projects/lubm/

http://swat.cse.lehigh.edu/projects/lubm/
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Definition 27 (Repair). Let R be a set of rules, C be a set of constraints, and
F be a fact. A repair of F (with respect to R and C) is a maximal subset F ′ of
F such that F ′,R, C �|= ⊥.

Given this definition of a repair, one can define a semantics for consistent
query answering as follows: the query should be entailed by any repair together
with the set of rules.

Definition 28 (AR semantics). Let R be a set of rules, C be a set of con-
straints, F be a fact and q be a Boolean conjunctive query. K entails q for the
AR semantics if for every repair F ′ of F with respect to R and C, it holds that
F ′,R |= q.

A more conservative semantics requires for the query to be entailed by the
intersection of all the repairs together with the set of rules. Intuitively, this
means that any atom that may lead to some contradiction is ignored during the
reasoning.

Definition 29 (IAR semantics). Let R be a set of rules, C be a set of con-
straints, F be a fact and q be a Boolean conjunctive query. K entails q for the
AR semantics if it holds that F∩,R |= q, where F∩ is the intersection of all the
repairs of F with respect to R and C.

Let us exhibit the difference in the behavior of the two semantics on an ex-
ample.

Example 26. Let us consider again the knowledge base of Example 25. There
are two repairs: F1 = {cat(Tom)} and F2 = {barks(Tom)}. Let us consider
the query q = animal(Tom). According to the AR semantics, q is entailed by
the knowledge base, since q is entailed by F1 and R as well as by F2 and R.
However, since the intersection between F1 and F2 is empty, q is not entailed by
K according to the IAR semantics.

Let us note that the problem of consistent conjunctive query answering under
AR semantics is intractable (i.e., not polynomial) with respect to data complex-
ity [LLR+10, Bie12], even for ontology languages as inexpressive as DL-Litecore.
An idea to overcome this hardness result has been to develop “approximation
schemes” for AR-semantics, that is, to provide two families of efficiently com-
putable semantics that upper and lower bound AR-semantics, while converging
towards it [BR13]. However, the design and implementation of efficient consistent
query answering algorithms remains an open issue.
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[MC13] Mora, J., Corcho, Ó.: Engineering optimisations in query rewriting for
obda. In: I-SEMANTICS, pp. 41–48 (2013)

[OWL09] W3C OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation (2009),
http://www.w3.org/TR/owl2-overview/

http://www.w3.org/TR/owl2-overview/


278 M.-L. Mugnier and M. Thomazo
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Abstract. Though processing time-dependent data has been investi-
gated for a long time, the research on temporal and especially stream
reasoning over linked open data and ontologies is reaching its high point
these days. In this tutorial, we give an overview of state-of-the art query
languages and engines for temporal and stream reasoning. On a more
detailed level, we discuss the new language STARQL (Reasoning-based
Query Language for Streaming and Temporal ontology Access). STARQL
is designed as an expressive and flexible stream query framework that
offers the possibility to embed different (temporal) description logics as
filter query languages over ontologies, and hence it can be used within
the OBDA paradigm (Ontology Based Data Access in the classical sense)
and within the ABDEO paradigm (Accessing Big Data over Expressive
Ontologies).
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1 Introduction

Ontology based data access (OBDA) [20] stands for a paradigm of accessing
huge data sets through an interface query language that relies on a signature
for which constraints are modeled in a knowledge base called ontology. Skim-
ming the publications of conferences/journals on description logics, extended
database management systems or the semantic web shows that OBDA has
become an important topic with various subtopics and new slightly deviating
research aims— in particular, widening its original scope from lightweight rep-
resentation languages to more expressive ones (e.g., [58] describes an approach
for accessing big data with expressive ontologies (ABDEO)). Moreover, OBDA
seems to have found its way into industrial applications. In the EU funded FP7
project OPTIQUE [22], an OBDA based software platform is developed to fulfill
the needs of the two industrial stakeholders STATOIL and SIEMENS.
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A look into recent publications [15,8,18] reveals that OBDA is ripe for the
integration of formal approaches dealing with the processing of temporal and
streaming data. Upcoming research in temporalizing and streamifying OBDA is
going to push OBDA’s industrial attractiveness because use cases with some or
other form of processing temporal and/or streaming data abound—be it event
recognition, monitoring, sensor networking, text processing, video processing,
time-series applications, just to name a few.

The rich literature on temporal logics and stream processing on the level of
sensor data and relational stream data management systems (see the following
sections) provide good directions for the actual venture of temporalizing and
streamifying OBDA. The neat semantics of temporal logics combined with the
practical and well-proven sliding window operator for streams founds the basis
on which to built high-level query languages fitting to the OBDA paradigm and
related paradigms such as ABDEO.

Next to a discussion of recent approaches for temporal and streamified OBDA
we are also going to illustrate a new query language framework called STARQL
which can be used within the classical OBDA as well as the ABDEO paradigm.
It heavily relies on a window operator for building sequences of ABoxes; the
sequence structure is used to combine classical intra-ABox reasoning/rewriting
with temporal inter-ABox reasoning.

The paper is structured as follows. Section 2 introduces the paradigm of on-
tology based data access. Discussing in detail classical OBDA centered around
the family of description logics DL-Lite in Sect. 3, we also discuss OBDA in
a broader sense for more expressive logics in Sect. 4. Approaches introducing
a temporal dimension into OBDA are discussed in 5, and, in a more detailed
manner, approaches introducing streams into OBDA are discussed in Section 6.
Section 7 before the conclusion contains an overview of the new stream-temporal
language STARQL framework.

2 Ontology Based Data Access

Ever since its introduction, Ontology Based data Access (OBDA) has become
a widely accepted research topic in different areas such as the semantic web,
database theory, and the description logics, and, moreover, it finds its way into
industrial applications, two of which are the STATOIL and the SIEMENS use
cases in the FP7 framework OPTIQUE http://www.optique-project.eu/.

The driving idea behind ontology based data access is to keep the source
data where they are and access them with a query interface over a declarative
knowledge base called ontology. In description logic speak, the ontology is made
up of a TBox, which models the terminological part of the domain by general
subconcept and subrole axioms and perhaps additional constraints such as func-
tionality assertions, and an ABox, which is the logical presentation of the data
as assertional axioms produced my mappings from the data sources.

In the classical OBDA approach, the ABox representation of the data by
mappings is just for the purpose of defining the semantics of queries w.r.t. an

http://www.optique-project.eu/
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ontology. So, the ABox is not materialized for the purpose of query answering;
instead, complete and correct answering w.r.t. the ontology is handled by com-
piling the knowledge TBox into the given query. Afterwards, the compiled query,
also called the rewritten query, is unfolded w.r.t. the mappings into a query over
the data sources, e.g., an SQL query over a relational database.

What are the benefits of OBDA querying over direct querying within the
language of the data sources? The first aspect is that one has a declarative
language w.r.t. a model described in the TBox and the data in the ABox, thereby
allowing to distinguish between a neat representation of intensional knowledge
and factual knowledge.

The second aspect is that of semantic integration [63]. Different heteroge-
neous sources can be accessed under a common ontological interface. Users of
the query language on the ontological have to consider/use only the language of
the ontology and the associated query language, but do not have to deal with
possibly different languages of different sources. Additionally, different models
can be implemented by different TBoxes without the need to recompile queries.
This offers to set up test scenarios, in which different models (represented by
the TBox) can be tested with the same queries (as long as the TBoxes use the
same signature.) Following this line, if a TBox has proven to be good or useful,
it can be used with various data sources, as long as the mappings are adapted
to the various data source in different use cases.

The OBDA approach offers a way to deal with the indefiniteness and in-
completeness in data that differs radically from the NULL value approach in
relational databases. OBDA abandons the closed world approach by considering
many possible models of the ontology. The role of the axioms in the ontology
then is to minimize the indefiniteness in the data by axioms constraining all
possible models to the intended and most likely ones.

In the classical OBDA approach one has, moreover, the benefit of the rewriting
approach, namely that the huge data set does not have to be transformed into
the working memory; so, one can rely on the optimization and index mechanisms
of the secondary memory data sources, as a query can be compiled directly into
a query over the datasources. Clearly a caveat is that the rewritten query may be
exponentially bigger than the original query, so that additional optimizations al-
ready during the rewriting steps may be necessary. Some optimization strategies
are discussed in [73].

As of the time of writing, OBDA related research has diverged into different
investigations that cannot be labelled as OBDA in the classical sense. So, we
propose the following distinctions in order to get a clear picture. There is, first,
OBDA in a narrow sense by which we mean that there is an access to data with
mappings producing only a virtual or materialized ABox but with no TBox at
all or of expressiveness on the level of RDFS++. Second, OBDA in the classical
sense uses logics in the DL-Lite family that allow for the generation of objects
(true existentials on the right hand sides of general inclusion axioms) but still
allow for a reduction of reasoning w.r.t. the TBox to answering of rewritten
first order logic queries on the original data. For some applications even the
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expressiveness of the classical OBDA paradigm is not sufficient, and hence there
is a need for the even more challenging paradigm of accessing big data w.r.t.
expressive ontologies (ABDEO).

Orthogonally to these categorization one can also observe that the source data
not necessarily have to be relational databases but can equally be RDF triple
sources or other non-relational DBs. More radically, in some approaches the data
of the original sources are imported into an own DB, which then is the proper
source w.r.t. which the queries on the ontological level are queried. A benefit of
this approach is the fact that one can define index structures and optimization
strategies which are more appropriate for the domain and also for the rewriting
strategy one is going to apply. In general, the data may even be preprocessed.
The strategy to actually use the data underlying the ABox during the rewriting
process is also part of a different rewriting strategy called combined rewriting
[48].

Next to this hierarchy of OBDA related approaches one has to consider the
ontology based access on stream data (OBSA) as an extra paradigm category.
The idea of this paradigm is to make the access on big data feasible by first
partitioning the data into small chunks (modules), then, second, ordering them
w.r.t. some priority criterion and third streaming these into the query answer-
ing w.r.t. the fixed ordering (compare the survey [78]). One particular but also
the most common case of (OBSA) is the one where the ordering is given by a
temporal ordering so that the streams are timestamped data.

3 Classical OBDA

We recapitulate the most important notions related to classical OBDA. For a
more detailed view, the reader is referred to [20]. Classical OBDA investigates
query answering over an ontology, using mappings to get the data from the
sources to the ontology level—the main aim being the reduction of the demand-
ing query answering problem to a model checking/query answering problem over
the data sources, which are in many cases relational databases.

The idea of aiming at this reduction is motivated by the demand to enable
computationally feasible reasoning services over large ABoxes. Because the size
of the TBox (and the queries) is small with respect to the size of the ABoxes,
computational feasibility is measured with respect to the size of the ABox alone,
thereby fixing all other parameters (TBox, query respectively). The resulting
type of complexity is called data complexity. Aiming at the reduction, which is
also called first order logic (FOL) rewritability and which is explained in detail
below, is indeed a successful venture with respect to computational feasibility.
This is due to the fact that the data complexity of answering first order logic
queries w.r.t. DL-Lite ontologies is in the low boolean circuits complexity class
AC0, which, roughly, is the class of problems that can be decided in constant
time with the help of polynomially many processors.
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3.1 DL-Lite

Descriptions logics [11] have proven to be an adequate representation language
for ontologies, as they have a formal semantics and show good computation
properties at least w.r.t. various standard reasoning services such as subsump-
tion testing, satisfiability testing, query answering etc. In the center of classical
OBDA stands query answering and also, related to it, satisfiability testing of
ontologies. An ontology is defined as a triple O = (Sig, T ,A) over signature, a
TBox and an ABox. In all DLs the signature is made up by subsets of a set of
concept symbols NC , a set of role symbols NR, and a set of individual constant
symbols Ni. DLs with concrete domains or datatypes also allow for additional
constants (and predicates) with fixed meanings over the concrete domain. The
DLs differ in the set of concept/role constructors they offer and in the constraints
for building TBox and ABox axioms. Typically TBox axioms are concept sub-
sumptions C � D or role subsumptions R � S and ABox axioms have the
form C(a) or R(a, b), where C,D stand for concept descriptions, R,S for role
descriptions and a, b for individual constants.

In the focus of of OBDA stands the family of DLs called DL-Lite [6] as it is
tailored towards FOL rewritability. DL-Lite is the language family underlying
the OWL 2 QL profile of the W3C recommend web ontology language OWL
http://www.w3.org/TR/owl2-profiles/#OWL_2_QL. As FOL rewritability is a
very strong property it should be no surprise that only lightweight logics such as
DL-Lite are considered as representation language for the ontology and moreover
that there are also limitations on the query language, which in this case is unions
of conjunctive queries (UCQs). (But note, that the limits of expressivity under
FOL rewriting can still be pushed a little bit further as shown by the extended
family of Datalog± family [19].)

To make the discussion more concrete we give the syntax of a DL-Lite language
and its semantics in Fig. 1. The TBox axioms are additionally constrained by
the demand that functional roles are not allowed to occur on the right hand side
of role axioms. The semantics of concept descriptions is defined recursively on
the basis of an interpretations I = (ΔI , ·I), which consists of a domain ΔI and
a denotation function ·I . The denotation of concept symbols (atomic concepts)
A are subsets AI ⊆ ΔI of the domain; role symbols P are denoted by binary
relations P I ⊆ ΔI×ΔI , and constants a are denoted by elements of the domain
aI ∈ ΔI . The modeling relation is denoted by |= and one defines that I models
or makes true an axiom ax iff I |= ax. An ontology is called satisfiable if there
is an interpretation I makes all axioms in the TBox and the ABox true. An
ontology O entails an axiom ax, shortly: O � ax iff all models of O are also
models of ax.

3.2 Query Answering and Rewritability

An FOL query Q = ψ(x) is a first-order logic formula ψ(x) whose free variables
are the ones in the n-ary vector of variables x; the variables in x are called
distinguished variables. If x is empty, the query is called boolean. Let a be a

http://www.w3.org/TR/owl2-profiles/#OWL_2_QL
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R −→ P | P−

B −→ A | ∃R
C −→ B | ¬B

TBox: B � C, (func R),

R1 � R2

ABox: A(a),R(a, b)

(P−)I = {(d, e) | (e, d) ∈ P I}
(∃R)I = {d ∈ ΔI | ∃e.(d, e) ∈ RI}
(¬C)I = ΔI \ CI

I |= B � C iff BI ⊆ C

I |= R1 � R2 iff RI
1 ⊆ R2

I |= B(a) iff aI ∈ BI

I |= R(a, b) iff (aI , bI) ∈ RI

I |= (func R) iff RI is a (partial) function

Fig. 1. DL-Lite

vector of constants from the signature of the ontology. The semantics of n-ary
FOL queries with respect to an interpretation I is given by the set QI of n-ary
tuples d over the domain ΔI such that I[x�→d] |= ψ(x). Here, I[x�→d] extends I
by interpreting the variables in x by the elements in d.

The crucial notion of answers w.r.t. an ontology is handled by an certain an-
swer semantics also known from database theory. We are not going to discuss
the appropriateness of this kind of semantics but just state its definition. (For an
adequateness discussion of certain answer semantics in particular w.r.t aggrega-
tion we refer the reader to [49]). Given an ontology (Sig, T ,A), the set of certain
answers is denoted cert(Q, T ∪A) and it consists of n-ary tuples of constants a
from Sig such that ψ[x/a] (i.e. the formula resulting from ψ(x) by applying the
substitution [x/a]) is entailed by the ontology.

cert(ψ(x), T ∪ A) = {a | T ∪ A |= ψ[x/a]}
FOL queries are too complex to be used as queries on the ontological level.

Hence, in order to guarantee FOL rewritability two well known weaker subclasses
of FOL queries are considered, conjunctive queries (CQ) and unions of conjunc-
tive queries (UCQ). A CQ is a FOL query in which ψ(x) is an existentially quan-
tified conjunction of atomic formulas at(·), ψ(x) = ∃y∧

i ati(x,y). The UCQs
allow disjunctions of CQs, i.e., ψ(x) can have the form ∃y1

∧
i1
ati1(x,y1) ∨

· · · ∨ ∃yn

∧
in
atin(x,yn). Note that the existential quantifiers in UCQs are in-

terpreted in the same way as for FOL formulas (natural domain semantics) and
not with respect to a given set of constants mentioned in the signature (active
domain semantics). This is the strength of this query language and the critical
place for weakening it if the OBDA application at hand demands TBox languages
stronger than DL-Lite.

In the following, let the canonical model of an ABoxA, denoted DB(A), be the
minimal Herbrand model of A, i.e. the model, where the domain is made up by
all constants occurring in the ABox, all constants are interpreted by themselves,
and where aDB(A) ∈ ADB(A) iff A(a) ∈ A and (aDB(A), bDB(A) ∈ RDB(A) iff
R(a, b) ∈ A. Checking the satisfiability of ontologies is FOL rewritable iff for all
TBoxes T there is a boolean FOL query QT such that for all A it is the case
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that the ontology T ∪ A is satisfiable just in case the query QT evaluates to
false in the model DB(A). Answering queries from a subclass C of FOL queries
w.r.t. to ontologies is FOL rewritable iff for all TBoxes T and queries Q = ψ(x)
in C there is a FOL query QT such that for all ABoxes A it is the case that
cert(Q, T ∪ A) = Q

DB(A)
T .

For members of the DL-Lite family it can be shown [20] that the satisfi-
ability check is FOL rewritable. As an example take T = {A � ¬B} and
A = {A(a), B(a)}, then satisfiability is tested by answering the query QT =
∃x.A(x) ∧ B(x) w.r.t. DB(A), resulting in the answer yes and indicating that
T ∪ A is unsatisfiable. Moreover, answering UCQs can be shown to be FOL
rewritable [20]. The rewriting technique used in [20] is called perfect rewriting.
It considers the (positive) axioms as rules and uses a backward-chaining method
to blow up the query with new CQ covering the rules’ additional implications.
FOL rewritability of satisfiability is a prerequisite for answering queries because
in case the ontology is not satisfiable the set of certain answers is identical to all
tuples of constants in the signature.

In what sense is the fact that DL-Lite provides existential quantification with
natural domains semantics a benefit over those approaches such as the very nar-
row OBDA approaches using RDFS++? Having such existential quantification
operators means that one can ask for objects which are not mentioned in the
ABox but whose existence is guaranteed w.r.t. the TBox. Let us illustrate this
strength with a risk management scenario for measurement data and event data
from sensors and control units of turbines. The TBox is assumed to contain a
(predictive) subsumption that says that if a turbine shows some anomaly in some
fixed sensor, then there is a risk of a can flame failure.

∃showsAnomalyInTempSens � ∃risk .canFlameFailure

These observations have direct consequences for possible queries. For example,
the engineer might be interested in all turbines for which there is a risk for can
flame failure. This could be formulated in following conjunctive query

Q = ∃y.risk(x , y) ∧ canFlameFailure(y)

The variable y cannot be bound to an object within the data. But nonetheless,
this query may have positive answers due to the predictive subsumption above
which would lead to a reformulation of the query, adding a CQ and giving the
UCQ

Qrew = (∃y.risk(x , y) ∧ canFlameFailure(y)) ∨ showsAnomalyInTempSens(x)

Without the subsumption (resulting from the time series analysis), some turbines
wold not have been identified as being in a risk to run in a can flame failure.

3.3 Mappings

In the classical OBDA setting, the ABox is not given in advanced but produced
by mappings [71]. These are formally represented as rules with queries of the



286 Ö.L. Özçep and R. Möller

SENSOR(SID, CID, Sname, TID, description)
SENSORTYPE(TID, Tname)
COMPONENT(CID, superCID, AID, Cname)
ASSEMBLY(AID, AName, ALocation)
MEASUREMENT(MID, MtimeStamp, SID, Mval)
MESSAGE(MesID, MesTimeStamp, MesAssemblyID,

catID, MesEventText)
CATEGORY(catID, catName)

Fig. 2. Part of the relational schema in a measurement DB

ontological level, called the target, as the head of the rule (here the left-hand
side) and queries in the the data source language (in many cases SQL) as the
body of the rule, which is noted here always on the right-hand side. We are going
to present mappings in the logical notation. A recent W3C recommended map-
ping language in machine readable form is R2RML, a mapping language from
relational databases to RDF (http://www.w3.org/TR/r2rml/). As construct-
ing mappings is a non-trivial task recent research considers also bootstrapping
mappings, see, e.g., the technical report [28] and the papers to be fond therein.

We illustrate mappings within a sensor measurement scenario, assuming that
there is one central DB with sensor measurement data and also sensor de-
scriptions w.r.t. the DB schema in Fig 2. The ontology is assumed to model
sensors, measurements, events etc. in the same manner as the nearly stan-
dard semantic sensor networks (SSN) ontology authored by the members of
the W3C Sensor Network Incubator Group [27]. (See also the final report
at http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/.) A general
ontology of this kind can be extended for specific sensor measurement scenar-
ios by introducing new names to the signature of the ontology and adding new
ontology axioms. Here, we assume that there is a concept symbol Sens (for sen-
sors) and an attribute symbol name. ABox assertions saying which element is a
sensor and what their names are, are produced by the following mapping:

m : Sens(x) ∧ name(x, y)←−
SELECT f(SID) as x, Sname as y FROM SENSOR

The information in the row of the measurement table is mapped to unary facts
(Sens(x)) and binary atomic facts (name(x, y)). If the table SENSOR contains a
row

(123, comp45, TC255, TempSens, ‘A temperature sensor’)

then the mapping produces the conjunction of ABox assertions Sens(f(123))∧
name(f(123), T empSens123).

In the DL-Lite setting, mappings have in general on their left-hand side CQs
and on their right-hand side SQL queries. The mappings are safe in the sense
that all variables used on the left-hand side must occur on the right-hand side
as columns; but the source query may contain additional variables.

http://www.w3.org/TR/r2rml/
http://www.w3.org/2005/Incubator/ssn/XGR-ssn-20110628/
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The term f(SID) denotes an individual constant, constructed as a functional
term indicating the value of the attribute SID of the sensor. All expressions
f(SID) could be mapped to the more convenient atomic names of the form, e.g.,
si. If the ontology language allows for datatypes or concrete domains—as we
assume here—then we can use attribute values directly without the need of an
additional functional symbol. This is demonstrated above for the column Sname
containing strings.

For different purposes mappings can be split up into a simpler form where the
target consist of an atomic query only. Within the splitting the source query is
projected to the variables occurring in the atom; in the case of the query above
the resulting split mappings would be as follows:

m1 : Sens(x) ←− SELECT f(SID) as x,FROM SENSOR
m2 : name(x, y)←− SELECT f(SID) as x, Sname as y FROM SENSOR

For a given database DB and a set of mappings M , the induced ABoxA(M,DB))
is just the union of the ABox assertions produced by the mappings in M over
the DB. The semantics of query answering w.r.t. a set of mappings over a DB
and a TBox is just the certain answer semantics introduced above and applied
to the ontology (Sig, T ,A(M,DB)).

Now the important point is that the induced ABox is not materialized for
query answering but is kept virtual. Queries over the induced ABox are unfolded
to queries over the DB. So, in the classical approach a UCQ over a TBox and
the induced ABox of mappings w.r.t. a DB is first rewritten into a FOL query,
then this query is unfolded into an SQL query over the DB (using the mappings)
and then the unfolded query is evaluated over the DB, given the set of answers
to the original query.

There is no canonical way for unfolding a UCQ into a SQL query, and, indeed,
different strategies for unfolding a UCQ w.r.t DL-Lite ontologies are discussed
in the literature, e.g., one strategy is introduced in[71], another in [74]. The
common idea of both strategies is to view the mappings as logical rules and use
logical programming ideas such as resolution to get the unfolded query. We do
not spell out the procedure but only mention very roughly, that unfolding an
atomic query q results in an SQL query which is a union of all the source queries
Ψi from mappings mi : q ←− Ψi with q as their target. Recursively, if two queries
q1, q2 are unfolded to SQL queries Ψ1 and Ψ2, then conjunctive query q1 ∧ q2 is
mapped to a join of Ψ1 and Ψ2. The disjunction q1 ∨ q2 (if it corresponds to a
UCQ) is unfolded to the union of Ψ1 and Ψ2.

As the rewriting of queries may lead to an exponential blow-up, optimizations
on different levels (rewriting, unfolding and mappings) are a must for OBDA
systems. Different optimization strategies are discussed in [73], [75] and imple-
mented, e.g., in the -ontop- OBDA system (http://ontop.inf.unibz.it/).

4 OBDA in the Broad Sense: ABDEO

Though DL-Lite provides existential quantification with natural domain seman-
tics in the TBox and in the query language, for many use cases it does not have

http://ontop.inf.unibz.it/
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sufficient representation capabilities. For example, qualified existential quantifi-
cation on the left-hand side of TBox axioms is not allowed, though such construc-
tors are necessary for identifying interesting (though still tree-shaped) patterns
and using them to deduce new knowledge.

Another logical constructor which cannot be handled with DL-Lite are tran-
sitive declarations for roles because transitive roles lead directly to non-FOL
rewritability. Transitive relations are useful modeling means for modeling part-
of-relations of components in a complex system such as a turbine. The typi-
cal entity-relationship modeling methodology for representing chains or tree-like
structures by a self-referencing foreign key is illustrated with the COMPONENT
schema of Fig. 2 and picked up here again.

COMPONENT(CID, superCID, AID, Cname)
ASSEMBLY(AID, AName, ALocation)

The superCID column specifies the next upper component at which the compo-
nent with identifier CID is attached (foreign key to attribute CID of COMPONENT
itself). The turbine assembly at which the component is (indirectly) attached is
given by AID (foreign key from COMPONENT to ASSEMBLY).

Every component has a reference to a top component, which again has a
reference to a top component, and so on until the upper most component on
the level directly under the assembly level. A useful qualitative modeling of the
component hierarchy relies on the part-of relation. A mapping, generating the
direct part-of relation between components would be as follows:

partOf (x, y)←− SELECT f(CID) AS x, g(superCID) AS y FROM COMPONENT

That the part-of relation is transitive can be declared by using a TBox ax-
iom inducing further tuples in the part-of relation that are not directly vis-
ible in the SQL schema. So, if for example there are two ABox assertions
partOf (comp1, comp2), partOf (comp2, comp3) induced by the mappings, then
the transitivity condition entails partOf (comp1, comp3). A Boolean query w.r.t.
the ABox and the extended TBox asking whether comp1 is a part of comp3
would thus have to be answered with yes. A similar query could not directly be
formulated in pure SQL, which does not support recursion.

As a resume, many use cases demand transitive roles, qualified existentials
on the left-hand side and also disjunctions, hence there are more than one good
reasons to consider more expressive logics such as SHI [44]. Of course, FOL
rewritability does not hold for SHI ontologies, so a different strategy has to
be invented in order to deal with really large ABoxes. A promising approach
is ABox modularization [79], which uses relevant information from the TBox in
order to built small modules of ABoxes. The relevant TBox information is stored
in a data structure called ∀-info structure. This information is propagated along
the role edges of the ABox as long as necessary. Modules consist of subgraphs
induced by an individual constant and those individuals that are reached by the
propagation.

The benefit of the modularization approach is that reasoning services such as
instance retrieval (asking queries of the form C(x)) over the whole ABox can
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be reduced to a small set of ABox modules, which in turn are small in many
practical applications. In [58], the approach is extended to the reasoning service
of answering grounded CQs, i.e., CQs where the existentials adhere to the active
domain semantics.

5 Temporalizing OBDA

Inspecting the whole life cycle of the query from being issued by a user until
its being answered by an OBDA query answering system hints to the possible
components for extensions w.r.t. temporal or streaming aspects. Though this
observation does not say anything about which components’ extension is appro-
priate for which use case, it provides a good aid which may help in categorizing
the different approaches. So, the approaches may be distinguished w.r.t. the
extensions of the TBox language, the ABox language, the query language, the
language of the mappings, and the presupposed language of the data sources.
In all this cases, the extension concerns syntactical aspects and also semantical
aspects as well as ontological aspects in the original philosophical sense.

Processing time-dependent data has been investigated for a long time. Start-
ing from early approaches in computer vision [61,62,72], temporal data processing
using declarative techniques has been an important research topic in artificial
intelligence (e.g., [50,51,41,40,13,9]). All these approaches use some form of tem-
poral logic. Here we are going to discuss shortly the relevant notions for temporal
extensions of OBDA based on the main ideas of temporal logics and then give
pointers to the state of the art for temporal OBDA. In later sections we go more
into detail w.r.t. the processing of temporal streams.

The simplest way to deal with temporal aspects is to refer to time points just
with a simple attribute (as, e.g., done in the temporal extension of OWL called
tOWL [57]). This is the most conservative strategy where the extension of non-
temporal OBDA concerns only the domain of the models with objects to which
time is attributed. Taking, e.g., the measurement scenario, a time attribute is
attached to measurement (and message event) objects. Consider the following
mapping producing assertions that describe measurements, their attached mea-
sured values and the times attached to them.
⎧
⎨

⎩

meas(x) ∧
val(x, y) ∧
time(x, z)

⎫
⎬

⎭
←− SELECT f(MID) AS m, Mval AS y, MtimeStamp AS z

FROM MEASUREMENT

The mapping is a classical mapping and the assertions induced by it are ordinary
ABox assertions. The crucial point is that there have to be proper objects that
reify temporal events (there was a something measured at that and that time).
This is discussed in the literature under the term temporal reification (e.g. [2]).

Though reification means less adaptation needs, it leads to less control on
the time aspects, as these are hidden in some objects of the domain. Moreover,
reification has in many cases a higher ontological commitment than in the mea-
surement scenario, where the presumption of measurements objects is plausible.
For a discussion of these points we refer the reader to [38].
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Non-reified extensions of OBDA consider time as a necessary dimension in
the model semantics for assertions. Time is modelled with a structure (T,≤),
also called flow of time. Depending on the needs of the use case, the set of
time points T may have different properties, being discrete, such as the natural
numbers, being dense, such as the rational numbers, being (left, right) bounded,
being continuous such as the real numbers, being linear vs. branching etc. For
an in-depth discussion of axiomatization and model theoretic aspects of the time
domain the reader is referred to the early monograph [12].

A very general way to combine the flow of time into a logic is described
in the literature on first-order temporal logic [43]. Instead of considering one
single interpretation, the semantics rests now on a family of interpretations It,
one for each time point t ∈ T on which a formula can be evaluated.1 In many
applications, it is assumed that the domains of all It are the same and that the
individual constants are rigid, i.e., interpreted with the same object in all It.

The decision which semantical objects are becoming temporal (non-sentential
objects such as roles and concept as done in [8] vs. sentential objects such as
ABox and TBox axioms (as done implicitly in [15] or explicitly in [54]) differs
w.r.t. the needs of the use case. In first-order temporal logic one can refer directly
to the time points and express further conditions, in the more state oriented
approach of modal temporal logics, it is possible to talk about the validity of
a formula in some state, referring to other states by modal operators such “In
some state before ”, “In some state in the future” etc.

Referring to the time argument as a time tag, one could formulate that the
assertion of a sensor s0 showing the value 90◦ is true at second 3 as the times-
tamped ABox assertion val(s0, 90

◦)〈3s〉. Such an ABox assertion would be true
in the given family of interpretations (It)t∈T if I3s |= val(s0, 90

◦)〈3s〉.
Approaches for temporalizing OBDA in the very narrow sense can be found

in particular in [77], [68], [39], [54], all describing temporal extensions for RDF
triples. In [54], the W3C recommend query language SPARQL is extended to
work with RDF quadruples, where the fourth component is not only a time point
but may be an interval, the intended meaning being that the interval describes
the time period at which the fact expressed in the RDF triple is valid.

Two recent examples for temporalizing classical OBDA are described in [15]
and [8]. The authors of [15] use a classical temporal logic inspired approach.
The TBox is a classical DL-Lite TBox, in which all axioms are assumed to hold
at all time points. The temporalized ABox is a finite sequence of pure DL-Lite
ABoxes. The real temporal extension concerns the query language TCQ, which
is a combination of embedded CQs with an outer propositional linear temporal
logic template (LTL). To illustrate TCQ, assume, e.g. that there is an infor-
mation need for turbines that have been at least two times in a critical situa-
tion the last three time units before, one would formulate a CQ critical(x, y)
formalizing the critical property and use previous operators ©−1 and the some

1 An alternative approach is to extend one interpretation to a two-sorted interpretation
with a sort for the objects of the domain and a sort for the time points, cf. [43].



Ontology Based Data Access on Temporal and Streaming Data 291

time in the future operator � within an LTL outer template given the TCQ
denoted Q(x, y).

Critical(x, y) = Turbine(x) ∧ showsMessage(x, y) ∧ FailureMessage(y)

Q(x, y) =©−1©−1©−1(�(Critical(x, y) ∧©�Critical(x, y)))

The authors [15] extend the notion of rewritability to sequences of ABoxes,
which is in essence local rewritability w.r.t. each time point, and demonstrate
two different algorithms for answering queries. Mapping aspects are not discussed
in the article.

In the approach of [8], the temporal extension mainly concerns the TBox
language, which allows to use modal logical operators in the front of concept
descriptions and role descriptions. For example, on can express the fact that if
a turbine shows an anomaly at some time, then some time in the future it will
shut down itself:

showsAnomaly � �UnplanedShutDown

ABox assertions are extended with a time argument, so that one can formu-
late val(s0, 90

◦, 3s); the query language is an UCQ language, where the atoms
have also time arguments and where one can quantifiy over the time argument
and also formulate constraints using the ordering relation on the time flow.
For example, one may ask whether there was a time between 3s and 6s where
some turbine showed an anomaly: ∃x∃t.3s ≤ t ≤ 6s∧ showsAnomaly(x, t). The
authors show, that under some completeness assumption regarding ABox asser-
tions, FOL rewritability for consistency checking and query answering holds. As
in [15], mapping and unfolding aspects are not discussed.

Research on temporalizing ABDEO is in the beginning and still there have to
be invented approaches that do 1) temporal query answering over very expressive
TBoxes and 2) very large ABoxes that are 3) either virtually constructed or
at least materialized w.r.t. some set of declarative mappings. So we can only
mention approaches that fulfill a subset of the three conditions above. Similar
to [15], the approach of [10] uses LTL operators in the query language but this
time using TBoxes in the more expressive DL ALC. Mappings and the largeness
of ABoxes are not discuessed. A general overview of temporal DLs can be found
in [7]. OWL related temporalizations are discussed in [42,67,60,57].

6 Stream Processing

Stream processing has strong connections to the processing of temporal data
in a temporal DB using temporal (logic) operators; nonetheless, the scenarios,
the objects of interest, the theoretical and practical challenges are different from
those of temporal logics/ temporal DBs. While query answering on temporal DBs
is a one-step activity on static historical data, answering queries on streams is a
reactive, continuous activity (hence the notion of a continuous query).
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A challenging fact of stream processing is the high frequency of the data in
some application contexts. A second challenging fact is the changing frequency
(burstiness) of incoming data, which is quite a natural phenomenon for event
messages, which are produced in the moment the related events occur. Fur-
thermore, in contrast to temporal DBs settings, stream scenarios come up with
multiple queries as there may be many streams corresponding, e.g., to different
sensors and control units, and as there are many features that one wants to
query, such as different statistical and time-series features.

6.1 Stream Definition

Though there exist various stream definitions over various research communities,
and even even within researcher of the same community, a common aspect of all
streams is that they are constituted by a (potentially infinite) sequence of data
elements from some domain. The sequence is thought to be ordered-isomorphic
to the natural numbers, so that there is always a least element of a subset of the
stream (and additionally there is always a unique predecessor and successor of
an element in the stream). Following usual notation, we will represent streams
in set notation, it being understood that there is an ordering isomorphic to the
ordering of the natural numbers. We denote this ordering by ≤ar, where ar
stands for “arrival”.

Though not restricted to, temporal streams are one of the most common
stream types to occur in applications. A temporal stream is defined to be a set
of timestamped domain elements d〈t〉. The first argument is instantiated by an
object d from a domain D, which we call the domain of streamed objects. The
second argument is instantiated by a timestamp t from a linear time flow (T,≤),
i.e., ≤ is a transitive, reflexive, antisymmetric, and total order on T . In the
examples introduced below, we work with a discrete time flow T , e.g., natural
numbers with the usual ordering. But our model introduced is also applicable
to dense time domains such as the rational numbers Q or even continuos time
domains such as the the real number R, the crucial point being the fact, that
streams have the isomorphism-type of the natural numbers.

According to the definition, a temporal stream may contain two different ob-
jects d1 and d2 with the same timestamp t, and even many different occurrences
of the same time tagged tuple d〈t〉. Moreover, it may be the case that there are
timestamps which do not occur in the stream; the latter is useful in particular for
those situations where there is no information at some time point from T—and
hence this representation is also useful to model varying frequencies of stream
element occurrences.

The elements of the stream are thought to be arriving at the query answering
system in some order, which is inherent in the definition of streams as sequences.
In a synchronized stream setting, one demands that the timestamps in the arrival
ordering make up a monotonically increasing sequence, so that ≤ is conform with
≤ar. In an asynchronous stream setting, it may be the case that elements with
earlier timestamps arrive later than data with later timestamps. In particular,
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in this latter case, the order needed for a stream to be isomorphic to the natural
numbers does not have to adhere to the order ≤ of the flow of time (T,≤).

The distinction regarding synchronicity hints to possible layers of streams.
For example, in [53], the authors distinguish between raw, physical, and logical
streams. Raw streams correspond to temporal streams according to our definition
and are intended to model the streams arriving at a data stream management
system (DSMS). Logical streams are abstractions of raw streams where the order
of the sequence is ignored, so they can be defined as multi-sets of timestamped
tuples.2 Physical streams allow not only for timestamps but also half-open inter-
vals [ts, te) as time annotations, the ordering of the stream being non-decreasing
w.r.t. the start timestamps ts.

The semantics for the relational stream query language CQL [5] is defined on
the basis of synchronized streams. The new query language STARQL (see below)
in its full version also allows asynchronous streams. But here for ease of exposition,
we will assume that STARQL operates on synchronous streams, and even simpler
logical streams (as we do not discuss sequence depending operators in this paper).
It should be stressed, that though a layered approach as that of [53], where all syn-
chronization is handled on the levels below, is in principle adequate it is not a must
when designing a stream processing system on the abstraction level of ontologies.
Regarding the synchronicity aspect, e.g., it is a matter of flexibility to give also
the user of the ontological query language a means to specify the way he wants to
handle asynchronous streams directly, and even doing the specification for each
stream query—independently of the other queries.3

Orthogonally to these layered distinction of stream types, streams are catego-
rized according to the type of the domains. In the context of OBDA for streams,
at least two different domains D of streamed objects have to be taken into con-
sideration. The first domain consists of relational tuples from some schema; in
this case, we call the stream a relational stream. The second domain is made up
by data facts, either represented as ABox assertions or as RDF triples. In this
case we just talk of a stream of ABox assertions, RDF streams resp. In case of
relational streams all tuples adhere to the same schema, hence relational streams
are homogeneous, whilst in the case of streams of ABox assertions/RDF triples
the used logical vocabulary must not be restricted to some relation symbols.
In so far, these streams are inhomogeneous. Nonetheless, one may restrict the
signature of the assertions to a specific signature, thereby replacing the role of
the relational schema in relational streams by a signature.

6.2 Query Constructors over Streams

The idea of a sliding window over a stream is a useful constructor abstraction
for processing streams. In the following, we are going to discuss the window
2 Note that the original definition in [53] would also consider uncountable sets as

streams, if one chooses R as time domain, so that the intuition of a stream as a set
ordered as the natural numbers cannot be applied here.

3 A possibility for this is the use of a slack parameter. And indeed STARQL as defined
in the technical report [66] is intended to handle also these.
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operator and more generally the usual constructs for query languages over re-
lational streams—focussing on one of the early relational query languages, the
continuous query language CQL [5]. As a side effect of this focussing strategy
we will have laid the ground for understanding the unfolding method for trans-
forming STARQL queries into CQL queries.

CQL is a query language for relational streams. Next to streams, CQL pre-
supposes a data structure called relation; this data structure lifts relations of
classical relational algebra to the temporal setting; formally, let be given a clas-
sical relational schema, then a (temporal) relation R is a total function from
the time domain T to the set of finite bags (multi-sets) of tuples over the given
schema. The (classical) relation at time point t ∈ T is called instantaneous
relation.

CQL defines operators that map streams to relations (the most important
being the window operator), operators that map relations to streams, and more-
over relation-to-relation operators, which adapt the usual relational algebra op-
erators to the temporal setting. Stream-to-stream operators can be simulated by
the given operators.

The most important stream-to-relation construct is that of a sliding window.
Let S denote a stream and wr be an element of the time domain T . The time-
based sliding window operator with window range wr is denoted by [Range wr]
and attached to stream arguments in post-fix notation. The relation R denoted
by S [Range wr] is defined for every t ∈ T as follows:

R(t) = {s | (s, t′) ∈ S and (t′ ≤ t) and t′ ≥ max{t− wr, 0}}

So the bag of tuples at time point t consists of all tuples from S whose timestamps
are in the interval [t−wr, t]—with an intuitive handling of the cases of all t with
t ≤ wr. The special case of a window with zero window range is also denoted by
[Now]; the case of an unbounded window by [Unbound].

The following example illustrates the effects of time sliding windows. Let be
given a stream S of timestamped tuples having the form (sensor, value)〈time〉.
The smallest time granularity of time measurements is seconds, so we can presup-
pose that T is given by the natural numbers standing for time points measured
in seconds. Now let the stream S start as follows:

S = {(s0, 80◦)〈0〉, (s1, 93◦)〈0〉, (s0, 81)〈1〉, (s0, 82◦)〈2〉, (s0, 83◦)〈3〉,
(s0, 85

◦)〈5〉, (s0, 86◦)〈6〉....}

Then the relation R = S [Range 2] is given by:

t : 0 1 2 3 4 5 6

R(t) : {(s0, 80),
(s1, 93)}

{(s0, 80),
(s1, 93),
(s0, 81)}

{(s0, 80),
(s1, 93),
(s0, 81),
(s0, 82)}

{(s0, 81),
(s0, 82),
(s0, 83)}

{(s0, 82),
(s0, 83)}

{(s0, 82),
(s0, 83),
(s0, 85)}

{(s0, 83),
(s0, 85),
(s0, 86)}
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Please note, that the bag-approach for defining the relation is not unproblem-
atic; the bags are timestamp agnostic, i.e., the tuples within a bag do not contain
timestamps anymore. Formulating functionality constraints then becomes a de-
manding issue as these are not formulated w.r.t. a specific schema but directly
over the domain. Take, for example, in a measurement scenario the function-
ality dependency (fd) constraint on measurement tuples with the content that
a sensor can have maximally one value for every time point, resp. Applying a
window operator to the stream measurement may lead to a bag of tuples where
the same sensor has more than one value. So, streaming these tuples out again
(with e.g. the RStream operator below) may lead to a stream of tuples violating
the fd constraint.

A generalized version of the sliding window allows the specification of the
sliding parameter, i.e. the frequency at which the window is slided forward in
time. The semantics of the relation R = S [Range wr Slide sl] is as follows:

R(t) =

{∅ if t < sl
{s | (s, t′) ∈ S and max{�t/sl� · sl − wr, 0} ≤ t′ ≤ �t/sl� · sl} else

So the sliding window operator takes snapshots of the stream every sl second; for
all time points in between multiples of sl the snapshot is the same. The relation
of the window range parameter wr and the slide parameter sl determines the
effects of the sliding window; if twr = sl, then the window is tumbling, if wr > sl,
then the window contents are overlapping, an if sl > wr, then the operator has
a sampling effect. For other stream-to-relation operators such as the tuple based
window operators or partition operators, the reader is referred to the original
article [5].

Relation-to-relation operations are the usual ones known form SQL adapted to
the new temporal relation setting by using them time-point wise on the instanta-
neous relations. In particular, the join of (temporal) relations is done pointwise.
For example, the CQL expression in Listing 1.1 joins the relations of the window
application results to a measurement and an event stream, filters a subset out
according to a condition and projects out the sensor IDs.

1 SELECT m.sensorID
2 FROM Msmt [Range 1] as m, Events[Range 2] as e
3 WHERE m.val > 30 AND e.category = Alarm AND
4 m.sensorID = e.sensorID

Listing 1.1. Example relation-to-relation operators in CQL

As relation-to-stream operators, the authors of [5] define Istream (giving a
stream of newly inserted tuples w.r.t. the last time point), Dstream (giving a
stream of newly deleted tuples w.r.t. the last point) and Rstream (returning all
elements in the relation). Assuming that for t < 0 one specifies R(t) = ∅ for
t < 0 the formal definitions are:



296 Ö.L. Özçep and R. Möller

Istream(R) =
⋃

tinT

(R(t) \R(t− 1))× {t}

Dstream(R) =
⋃

t∈T
(R(t− 1) \R(t))× {t}

Rstream(R) =
⋃

t∈T
R(t)× {t}

6.3 Streamifying OBDA

Streamified OBDA approaches, in which the OBDA is to be understood in
the classical sense, presuppose some stream engine on the level below ontolo-
gies which are accessed by mappings. So we first give an overview of the non-
ontological stream processing systems and then discuss higher level (OBDA)
stream processing.

Within stream processing on the level below ontologies two different perspec-
tive exist, the sensor perspective (semantic sensor networks) and the database
perspective used in data stream management systems (DSMS). The sensor per-
spective of stream-based data processing pursues the idea of pushing data pro-
cessing to the sensors and, as a consequence, investigates approximations for
statistical data analysis operations in order to cope with memory and power
limitations of sensors [29]. Query languages for sensor networks are investigated
in [16,37,36,35]. Also here, data processing is pushed to the sensor level.

Stream processing on the level of data management systems has been an
active research field which emerged ten years ago. A well known stream data
management system is the academic prototype STREAM from Stanford which
is based on the relational stream query language CQL [5] discussed above. Other
academic data stream management systems (DSMS) with SQL like query lan-
guages are TelegraphCQ (Berkeley) [26], Aurora/Borealis (Brandeis, Brown and
MIT) [45], or PIPES (Marburg University) [52,24,25,23,53]. To complete the
list with commercial systems, we mention the stand-alone systems StreamBase,
Truviso (extension of TelegraphCQ incorporated into Cisco products), or the
stream add-ons for well known relational DBMSs (MySQL, PostgreSQL, DB2
etc.). Also PIPES now has a commercial successor developed by Software AG.
Though much progress has been achieved on data stream management systems,
there is still no agreement on a common (SQL) standard query language over
streams. (Some first steps are discussed in [46]).

Much of the ideas and methods used in relational have inspired the recent
streamified OBDA systems. Various systems extending the SPARQL language
http://www.w3.org/TR/rdf-sparql-query/ have been developed—prominent
ones being, next to C-SPARQL, the SPARQLstream system [17,18], or CQELS
[69,70]. C-SPARQL and SPARQLstream use a black box approach w.r.t. the
underlying streaming engine, whilst CQELS has whitebox approach.

All these systems use a window operator inspired from CQL, where the win-
dow’s semantics is a bag semantics with tuples of bindings for the query, sub-
queries resp. Hence, as the time attribute is not contained within the tuples

http://www.w3.org/TR/rdf-sparql-query/
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all the approaches have to cope with similar (functional) constraint issues as
discussed for CQL.

The SRBenchmark [81] and also the benchmarks provided in [55] show that
the 2012 versions of the stream engines offer only basic functionalities. In par-
ticular w.r.t. the OBDA related properties one may state that only C-SPARQL
is attributed to incorporate entailments of the TBox represented in an RDFS+
ontology. Only [17,18] discusses mappings, resulting in a new mapping language
S2O, which is applied to map low sensor streams (using the source language Snee
[35]) to RDF streams. But the exact semantics of the produced time stamps in
the RDF streams is not laid out in [18], so that it is not clear how a time stamped
tripled would interact with a temporal ABox and lead to further entailments. In
contrast to the use of time as in STARQL (see below), time is referred to in a
reified manner.

Somewhat related to streamified OBDA but at least clearly to be coined
as high-level stream processing approaches are those using ideas of complex
event processing. Examples are EP-SPARQL/ETALIS [4,3], T-REX using the
event specification language TESLA [30,31,32], or Commonsens [76] and its open
source successor ESPER (esper.codehaus.org). The approach by [56] is more
on the OBDA line; it tries to compute predictions on streams (using autocorre-
lation of ontologies) over the lightweight description logic EL; query answering
is not in the focus of the approach.

7 A New Stream Temporal Query Language: STARQL

STARQL (Streaming and Temporal ontology Access with a Reasoning-based
Query Language, pronounced Star-Q-L) is a query language framework in the
intersection of classical OBDA, ABDEO and OBSA. Considering the fact that
there are already many streaming languages, that, more or less, fit to the OBDA
paradigm for query answering over streams [33,17,18,69], it is a justified question
why to define another query language?

All of the mentioned approaches for stream processing on the RDF level model
the window contents as a multi-set (bag) of variable bindings for the open vari-
ables in the query. But this solution has three main problems. First, the semantics
based on the variable-binding solution presupposes mixed interim states in which
the constraints and consequences of the ontologies (in particular the inconsis-
tencies) are faded out. Second, such solutions do not adhere to the requirements
of an orthogonal query language, according to which the inputs and interim-
outputs are data structures in the same categories. And last but not least, if one
considers KBs that allow for the formulation of persistency assumptions—which
should be possible in the ABDEO paradigm—then one has to keep track of the
time points in the window operators, as facts on previous time points may lead
to consequences on later time points. For example, if a female person gives birth
to a child at some time point, then it is a mother at all following time points.

The resume of these observations is that there is a good justification for defin-
ing a new query language and semantics with a necessary extension on the

esper.codehaus.org
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window concepts, fitting better into the OBDA/ABDEO paradigms. The main
idea of STARQL, described in detail in the technical reports [66,64], is to pro-
vide ABox sequence constructors that group timestamped ABox assertions into
ABoxes. The sequence sets up a nearly standard context in which OBDA (or
ABDEO) reasoning services can be applied.

7.1 An Example from the Measurement Scenario

We are going to illustrate the STARQL constructs in a sensor measurement
scenario where a stream SMsmt of timestamped ABox assertions gives the values
of a sensor s0. The initial part up to second 5 is denoted S≤5Msmt .

S≤5Msmt = {val(s0, 90◦)〈0s〉, val (s0, 93◦)〈1s〉, val (s0, 94◦)〈2s〉
val(s0, 92

◦)〈3s〉, val (s0, 93◦)〈4s〉, val (s0, 95◦)〈5s〉}
The stream may be materialized or virtual. The latter case will be illustrated
below with mappings for timestamped ABox assertions from the stream query
language CQL generating the upper level stream.

Assume that an engineer wants to express his information need for the fact
whether the temperature value in sensor s0 grew monotonically in the last 2
seconds, the information being updated every one second. In STARQL this can
be formulated as follows.

1 CREATE STREAM S_out_1 AS
2 SELECT { s0 rdf:type RecentMonInc }<NOW >
3 FROM S_Msmt [NOW -2s, NOW ]->1s
4 SEQUENCE BY StdSeq AS SEQ
5 HAVING
6 FORALL i < j IN SEQ ,?x,?y:
7 IF ({ s0 val ?x }<i> AND { s0 val ?y }<j>) THEN ?x <= ?y

Listing 1.2. Basic STARQL example

STARQL uses a mixed SQL and domain calculus notation for the realization
of the information need. The window operator works like the window operator
of CQL, but in one important point it differs from it: it does not delete the
timestamps of the incoming ABox assertions. Moreover, the window operator
it is syntactically represented with a suggestive interval notation containing a
variable NOW for the evolving time. The slide parameter of one second is given
by the forward arrow notation ->. The output of the query is a stream of RDF
tuples { s0 rdf:type RecentMonInc }<NOW> (or written as ABox assertion
RecentMonInc(s0)〈NOW 〉) where the evolving time variable NOW is instantiated
with the actual time.

The output of the window operators is a stream of temporal ABoxes, i.e., for
every time point in the time domain T , here the natural numbers, one has a set
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Time Temporal ABox
(in seconds)
0s {val(s0, 90◦)〈0s〉}
1s {val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉}
2s {val(s0, 90◦)〈0s〉, val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉}
3s {val(s0, 93◦)〈1s〉, val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉}
4s {val(s0, 94◦)〈2s〉, val(s0, 92◦)〈3s〉, val(s0, 93◦)〈4s〉}
5s {val(s0, 92◦)〈3s〉, val(s0, 93◦)〈4s〉, val(s0, 95◦)〈5s〉}

Fig. 3. Temporal ABoxes produced by the window operator

of timestamped ABox assertions (resp. timestamped RDF tuples.) The result is
illustrated in Figure for the time up to second 5.

So far, the STARQL query does not quite differ from the stream extended
SPARQL query languages CSPARQL, SPARQLStream or CQELS. The main dif-
ference is the new SEQUENCE BY constructor, which at every time point t merges
the assertions in the temporal ABox for time point t according to a method
given by keyword directly after the constructor, here StdSeq, which denotes the
standard sequencing method. The standard sequencing method gathers all ABox
assertions with the same timestamp into the same (pure) ABox.

The result, here and for other sequencing strategies, is a sequence of pure
ABoxes at every evolving time point NOW. In the example above the sequence at
time point 5 seconds is depicted in Fig. 7.1. In this case, the sequencing is trivial
as there is only one ABox assertion for the timestamps 3s, 4s, 5s, resp.

In STARQL the ABoxes in the sequence are not represented by timestamps
but state numbers in the order of the timestamps. These states can be re-
ferred to by specific variables (i, j above). In case of the ABox sequence above,
the resulting ABox sequencing is depicted in Fig. 7.1. The reason for choosing
the state annotated representation is, first, that it provides the ground for in-
corporating temporal logics in the modal logic traditions such as LTL, which
have proven to be useful specification checking tools. The semantics of modal

Time ABox sequence
(in seconds) (with time stamp annotated ABoxes)
5s {val(s0, 92◦)}〈3s〉, {val (s0, 93◦)}〈4s〉, {val(s0, 95◦)}〈5s〉

Fig. 4. Sequence of ABoxes at time point 5s

Time ABox sequence
(in seconds) (with state annotated ABoxes)
5s {val(s0, 92◦)}〈0〉, {val(s0, 93◦)}〈1〉, {val(s0, 95◦)}〈2〉

Fig. 5. Sequence of ABoxes at time point 5 with state annotation
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temporal logics such as LTL are based on states. In particular, it is also pos-
sible to incorporate the LTL approach for temporal DL-Lite knowledge bases
[15,14] into the HAVING clause fragment. (We note, here, that the semantics of
the HAVING clause is slightly different from the semantics of the query language
TCQ in [15]. But actually, the fragment of HAVING clauses that uses only oper-
ators of [15] is as expressive as TCQ.)

The second reason is that for other sequencing strategies the time annotations
are not unique. For example, in STARQL we foresee sequencing strategies based
on arbitrary equivalence relations over the time domain—with an additional
constraint requiring that the equivalence classes are connected intervals. (So
the equivalence relation can be thought of doing a time roughening.) All time
points in an equivalence class are equally good candidates for the annotation
hence there is no unique timestamp choice. Clearly, one can choose a canonical
candidate (such as the left interval point) or even the whole interval by itself. But
then one has to choose the HAVING language very carefully. Adding, e.g., time
annotations to states in LTLs leads to highly complex logics known as metric
temporal logics [59].

The expressive strength of STARQL lies in its HAVING clause language which
allows to use FOL for querying the ABox sequence. In the example above, the
formula realizes the known condition of monotonicity. The HAVING clause al-
lows for embedding pure (non-temporal) CQs, here represented by binary graph
patterns, and attaches a state to them. Here and in the following we call those
queries occurring with a state tag embedded conditions and the language in which
the are formulated the embedded condition language. In this example, the em-
bedded conditions are val(s0, ?x) and val(s0, ?y) and the embedded condition
language is UCQ.

The intended meaning of the expression val(s0, ?x)〈i〉 is that one wants to
find all ?x that are certain answers of the query Q = val(s0, ?x) w.r.t. the ith

ABox—and also the TBox and the static ABox (see below)— that is, in the
notation introduced above, one calculates cert(Q,Ai ∪ Astatic ∪ T ). Similarly,
val(s0, ?y)〈j〉 finds the values ?y w.r.t. to the jth ABox in the sequence. These
steps in evaluating the HAVING clause are intra-ABox steps, as they are done
locally w.r.t. (pure) ABoxes in the sequence. Though regarding the semantics
intra-ABox query answering is just the one for UCQS over pure DL-Lite on-
tologies, the crucial difference is the fact that the ABoxes are not static but are
updated dynamically. On the top of the intra-ABox step one has an inter-ABox
step, which is realized by the FOL formula around the embedded conditions; in
the case of this example, the FOL formula constrains the variables stemming
from the intra-ABox evaluations to those fulfilling ?x <=?y.

Already in this example we see the subtleties of the HAVING clause language.
For example, if we replaced i < j by i <= j, then the HAVING clause would also
test for every time point i = j whether all values i are smaller or equal than all
values at j = i, which amounts to saying that there can be at most one value
for s0 at every state within the sequence.
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The STARQL semantics, which we have sketched here is similar to the epis-
temic semantics of the query language EQL [21]: At every time point (state)
i one considers only those bindings for which it is (certainly) known that they
make the embedded CQs true. In contrast to EQL, in STARQL we have an
explicit temporal domain, and we have an explicit safety mechanism for the
formulas [65].

7.2 Extended Examples

The information need of the engineer may be more complex in that he asks
for all temperature sensors that show a monotonic increase in the last two sec-
onds. Temperature sensors are assumed to be declared in a static ABox, which is
produced by classical mappings of the data sources (e.g. SQL databases). Tem-
perature sensors found in the static ABox are delegated to the HAVING clause to
specify the monotonicity condition. The sources to be used (such as the static
ABox) are specified after keyword USING.

1 CREATE STREAM S_out_2 AS
2

3 SELECT { ?s rdf :type RecentMonInc }<NOW >
4 FROM S_Msmt [NOW -2s, NOW ]->1s
5 USING STATIC ABOX <http :// Astatic >,
6 TBOX <http :// TBox >
7 WHERE { ?s:type TempSens }
8 SEQUENCE BY StdSeq AS SEQ
9 HAVING

10 FORALL i < j IN SEQ ,?x,?y:
11 IF ({ ?s val ?x }<i> AND { ?s val ?y }<j>) THEN ?x <= ?y

Listing 1.3. STARQL example for using ABox and TBox

Due to possible inferences of the TBox together with the ABox, the query
refers also to the TBox. For example, assume that the TBox contains the axiom
BurnerT ipT empSens� TempSens. A complete answer to the STARQL query
would first have to rewrite the embedded CQs. The embedded TempSens(?s)
would result in the new embedded TempSens(?s) ∨BurnerT ipT empSens(?s).
This type of rewriting uses the rewriting technique appropriate for the underlying
chosen embedded condition language, here perfect rewriting for UCQs. Perfect
rewriting is possible, as in the framework of STARQL, the TBox is assumed to be
a classical TBox without any additional temporal constructors. All subsumptions
in the TBox hold at every time point.

If we were considering a different embedded condition language, for example
grounded CQs within the ABDEO approach [58], then query answering could not
be realized with rewriting but would have to use, e.g., an ABox modularization
approach.
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A more compact formulation of the extended monotonicity query uses a library
entry for the monotonicity condition; after the keyword CREATE AGGREGATE
OPERATOR is given the name of the library entry monInc.

1 CREATE STREAM S_out_3 AS
2

3 SELECT { ?s rdf:type RecentMonInc }<NOW >
4 FROM S_Msmt [NOW -2s, NOW]->1s
5 USING STATIC ABOX <http :// Astatic >,
6 TBOX <http ://TBox >
7 WHERE { ?s :type TempSens }
8 SEQUENCE BY StdSeq AS SEQ
9 HAVING monInc(SEQ , {?s val *})

10

11 CREATE AGGREGATE OPERATOR monInc(seq , f(*)) AS
12 FORALL i <= j in SEQ ,x,y:
13 IF (f(x)<i> AND f(y)<j>) THEN x <= y

Listing 1.4. STARQL example for aggregation definition

The variables that can be selected in the SELECT line (line 3) are not restricted
to those specified within the WHERE clause but may also refer to (open) variables
in the HAVING clause. If, e.g., one wants to know at every second the value for
the sensor s0 in the last two seconds, than this can be queried in STARQL as
depicted in 1.5.

1 CREATE STREAM S_out_4 AS
2 SELECT { s0 :val ?x }<NOW >
3 FROM S_Msmt [NOW -2s, NOW]->1s
4 SEQUENCE BY StdSeq AS SEQ
5 HAVING EXISTS i IN SEQ ({ s0 val ?x }<i>

Listing 1.5. Using variables from the HAVING clause

Let us give an example with a more complex condition in the HAVING clause
using a further constructor, multiple streams and the average operator (Listing
1.6). We are interested in those temperature sensors with a recent monotonic
increase which are known to be in an operational mode (not service maintenance
mode) in the last 2s. Furthermore we want to get the average of the values in the
last 2s. Next to the monotonicity condition we have a further condition using the
FORALL operator. It evaluates the boolean condition in its scope on all ABoxes
in the sequence and outputs the truth value true if the condition holds in all
ABoxes.
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1 CREATE STREAM S_out_5 AS
2

3 SELECT { ?s rdf :type RecentMonInc }<NOW >,
4 { ?s hasMean AVG (? sens val *) }<NOW >
5 FROM SMsmt NOW -2s, NOW ]->1s
6 USING STATIC ABOX <http :// Astatic >,
7 TBOX <http :// TBox >
8 WHERE { ?s rdf:type TempSens }
9 SEQUENCE BY StdSeq as SEQ

10 HAVING monInc (?s val *) AND
11 FORALL i IN SEQ { ?s rdf:type InOperationalMode }<i>

Listing 1.6. STARQL example for complex filter condition

The STARQL stream query language fulfills the desirable orthogonality prop-
erty as it takes streams of timestamped assertions as input and produces again
streams of timestamped assertions. This approach is motivated by the idea that
getting answers to queries is not only an activity of GUI client programs (it is
not only variable bindings that one wants to determine by queries), but query
outcomes are going to be used as input to other queries as well as the generation
of (temporal) ABox assertions in the application scenario itself. The expressions
following the SELECT clause are templates for generating further timestamped
ABox assertions (based on the intended interpretations within the query). The
produced ABox assertions hold only within the output stream in which they are
generated—and not universally. Otherwise we would have to handle recursion
in queries—which, though possible using some kind of fixpoint operator, might
lead to bad performance due to theoretically high complexity of the query an-
swering problem. Hence the stream of ABox assertions generated by a query is
in a different “category” than the assertions in the static ABox and the historical
ABox. This is a kind of a locality principle.

Though the ABox assertions are limited to hold in the output streams, they
may interact with the TBox, leading to entailed assertions. Assume that the
TBox contains the following axiom stating that a sensor with a recent monotonic
increase is a sensor in a critical mode:

RecMonInc � Critical

The engineer could ask for those temperature sensors in a critical mode at every
second on the stream Sout3 generated by one of our queries above. The compo-
nents at which the temperature sensors had been in a critical state are declared
as those ones that have to be removed in the next service maintenance in 104

seconds (see Listing 1.7).
The query is evaluated on the stream Sout3 which contains assertions of the

form RecMonInc(sens)〈t〉. At every second only the actual assertion is put into
the temporal ABox (window range = 0s) so that the sequence contains only a
trivial sequence of length 1 (at most). The EXISTS operator just tests whether the
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1 CREATE STREAM S_out_6 AS
2

3 SELECT { ?comp removeDueToSensor ?s}<NOW + 10^4s>
4 FROM S_out_3 [NOW , NOW]->1s
5 USING STATIC ABOX <http :// Astatic >,
6 TBOX <http ://TBox >
7 WHERE { ?s rdf:type TempSens . ?sens partOf ?comp }
8 SEQUENCE BY StdSeq AS SEQ
9 HAVING EXISTS i IN SEQ { ?sens rdf:type Critical }<i>

Listing 1.7. STARQL example for scope locality

condition Critical(sens) holds in some ABox in the sequence. Now, the stream
Sout3 does not contain any ABox assertions with the concept symbol Critical,
but such assertions are entailed by assertions of the form RecMonInc(sens)〈t〉
in Sout3 and the TBox. Hence, the query above will indeed find those compo-
nents that have to be removed due to a critical sensor. The example might use
oversimplification but the reader should be able to understand the main idea.

Changing the stream from Sout3 to SMsmt and thereby keeping everything else
the same, will lead to a query which does not find any components—as the TBox
and the assertions in SMsmt do not entail assertions of the form Critical(sens).
Hence, the answers of a query really depend on the streams to which the queries
are issued.

The general motivation of this approach is similar to the CONSTRUCT operator
in the SPARQL query language, which provides the means to prescribe the for-
mat in which the bindings of the variables should be outputted. But in contrast,
our approach also considers the outputs as ABox assertions that are part of an
ontology. The idea of viewing the query head as a template for general ABox
assertions was described already in the query language nRQL [80] coming with
the Racer system.

7.3 Unfolding STARQL into CQL

We are going to illustrate the unfolding mechanism for the monotonicity exam-
ple. Let be given a CQL stream of measurements Msmt, where the tuples adhere
to the schema Msmt(MID, MtimeStamp, SID, Mval). A mapping takes a CQL
query over this stream and produces a stream of timestamped ABox assertions
of the from val(x, y)〈t〉.

val(x, y)〈z〉 ←−
SELECT Rstream(f(SID) as x, Mval as y, MtimeStamp as t)
FROM Msmt[NOW]
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For this example we assume that s0 is a shortcut for the compound individual
constant f(TC255), i.e., s0 is the abstract representation of the sensor named
TC255 in the data.

The stream query language STARQL follows a locality principle that allows
to choose static ABoxes, TBoxes, and also the streams w.r.t. which the query is
evaluated. This means in particular that the streams referred to in a query must
be defined either by mappings or on a higher level by another STARQL query.
So, assume that an input stream S is defined by the following mappings:

ax1〈t〉 ← Ψ1, ax2〈t〉 ← Ψ2, . . . , axn〈t〉 ← Ψn

where for all i axi is an ABox assertion templates (in RDF speak: basic graph
patterns) and Ψi is a CQL query containing all variables in axi within its Select
head. The virtual stream consists of the time wise union of time tagged instan-
tiations of the templates axi〈t〉. Note, that this definition fixes only a logical
stream. If one wants to work with streams having an arrival ordering, than one
has either to fix the ordering according to some method or work with an indeter-
minism given by the query answering system which chooses the exact ordering.
For all our examples, the exact arrival sequence is not relevant as we do not dis-
cuss stream operators that depend on the exact ordering. Hence, we can safely
assume that the stream of timestamped ABox assertions/RDF tuples fixed by
the mappings is a logical stream.

We assume that we have an input stream Smsmt defined exactly by the map-
ping above and take the basic monotonicity query in Listing 1.2.

The main problem for an unfolding strategy for STARQL queries is new data
structure of an ABox sequence, which is not directly representable in CQL. A
further demanding aspect is the fact that the HAVING clause is quite complex.
Regarding the former, we therefore assume that the STARQL queries only use
the standard sequencing, so that for every time point tNOW from every state
i in the sequence associated with tNOW one can reconstruct the timestamps of
the tuples occurring in the ABox Ai.

A second assumption is that all tuples in the input stream contain an at-
tribute timestamp the value of which is the same as the value of the timestamp.
Such a method is also discussed in [5], in order to do computations directly
on the timestamps. So, we may assume a default stream-to-stream operator
implemented into the CQL answering system and applied directly after every
window-to-stream operator. It takes elements d〈t〉 of a stream and returns an
element (d, t)〈t〉, thereby extending the schema of the tuples in the input stream
by a time attribute for the output schema. If d already contains a time attribute,
then it is overwritten by the new values. In the definition of the mapping for
val(x, y)〈t〉, we applied this assumption, where we refer to the time attribute
MtimeStamp of the input stream Msmt. Note that this assumption mitigates the
weakness of time-ignoring bag semantics in the window operators of CQL.

Regarding the complexity of the HAVING clause, the STARQL grammar (see
[64,65]) uses a safety mechanism that restricts the use of variables by adornments.
For example, in the HAVING clause ?y > 3, the variable ?y is not safe, as the set



306 Ö.L. Özçep and R. Möller

1 NOT EXISTS i,j in SEQ ?x,?y:
2 ({ s0 val ?x }<i> AND { s0 val ?y }<j>) AND ?x > ?y

Listing 1.8. Normalized monotonicity condition

1 CREATE VIEW windowRelation as
2 SELECT * FROM Msmt [RANGE 2s Slide 1s];
3

4 SELECT
5 Rstream (’{ s0 rdf:Type RecMonInc }’||’<’|| timestamp ||’>’

)
6 FROM windowRel
7 WHERE windowRel .SID = ‘TC255 ’ AND
8 NOT EXISTS (
9 SELECT * FROM

10 (SELECT timestamp as i, value as x FROM windowRelation )
,

11 (SELECT timestamp as j, value as y FROM windowRelation )
12 WHERE i < j AND x > y );

Listing 1.9. Monotonicity STARQL query unfolded into CQL

of certain answers with bindings for ?y would be infinite. On the other hand, in
val(s0, ?y)〈i〉∧ (?y > 3) the variable ?y is safe, as it is bounded by val(s0, ?y)〈i〉,
which gives a finite set of bindings. Actually, safety has not only to guarantee the
finiteness of the non-bounded variables but also the domain independence [1],
as the target language CQL (as a SQL extension) is also domain independent.
Domain independence ensures that the query language can be evaluated only
on the basis of the constants in the query and the database/streams (thus using
only the active domain) and does not have to incorporate the whole domain.

The safety conditions guarantee, that the HAVING clause can be transformed
into a FOL formula which is in so called safe range normal form. Such formulas
can further be transformed to relational algebraic normal form (RANF), for
which a direct translation into the relational algebra and so also into SQL is
possible. This SQL query depends on the states in the sequence associated with
the evolving time point tNOW . But the association of states and timestamps is
unique: we can refer to states i just by the timestamps stored in the attribute
value of the tuple.

The HAVING clause in the STARQL query of Listing 1.2 is given in relational
algebraic normal form in Listing 1.8. The whole unfolded CQL query for the
STARQL query of Listing 1.2 is given in Listing 1.9. Here, the view windowRe-
lation creates a temporal relation of measurements according to the time win-
dow specified in the mapping. The expression after the RStream constructs (as
a string) the RDF triple as expected by the STARQL query.
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8 Conclusion

Research on temporal and streamified OBDA has just begun. It can profit by the
many ideas, formalisms, and techniques known from the vast literature on tem-
poral logics and relational stream processing. But as the benchmarks in partic-
ular w.r.t. OBDA streaming engines [81] show, the theoretical formalization has
still not settled—not to speak of the implementation and optimization aspects,
in particular the demanding scalability issues for stream processing (number of
continuous queries, number of streams, frequency, size of the static ABox etc.)

As part of a possible theoretical formalization, we introduced the STARQL
query language that uses the crucial data structure of streams of ABox se-
quences. The ABox sequencing strategy can be considered as syntactic sugar
only for those cases where the chosen sequencing strategy is as simple as that
of standard sequencing. For non-standard sequencing strategies, such building
only consistent ABoxes which are queried, a reduction to the standard window
operator is not possible. As of now, STARQL is implemented and tested in the
OPTIQUE project within a prototype that uses a stream extended version of
ADP [47], a highly distributed data management system, as the data source to
which STARQL queries are unfolded.

Next to the in-depth theoretical foundation of streamifying classical OBDA,
further relevant research is going to be in the direction of streamifying and
temporalizing ABDEO. The idea of modularization has to be adapted to handle
fast importing of modules for intra-ABox reasoning, using time as a special
modularization parameter.
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Abstract. Probabilistic Databases (PDBs) lie at the expressive inter-
section of databases, first-order logic, and probability theory. PDBs em-
ploy logical deduction rules to process Select-Project-Join (SPJ) queries,
which form the basis for a variety of declarative query languages such as
Datalog, Relational Algebra, and SQL. They employ logical consistency
constraints to resolve data inconsistencies, and they represent query an-
swers via logical lineage formulas (aka.“data provenance”) to trace the
dependencies between these answers and the input tuples that led to
their derivation. While the literature on PDBs dates back to more than
25 years of research, only fairly recently the key role of lineage for es-
tablishing a closed and complete representation model of relational op-
erations over this kind of probabilistic data was discovered. Although
PDBs benefit from their efficient and scalable database infrastructures
for data storage and indexing, they couple the data computation with
probabilistic inference, the latter of which remains a #P-hard problem
also in the context of PDBs.

In this chapter, we provide a review on the key concepts of PDBs with
a particular focus on our own recent research results related to this field.
We highlight a number of ongoing research challenges related to PDBs,
and we keep referring to an information extraction (IE) scenario as a
running application to manage uncertain and temporal facts obtained
from IE techniques directly inside a PDB setting.

Keywords: Probabilistic and Temporal Databases, Deduction Rules,
Consistency Constraints, Information Extraction.

1 Introduction

Over the past decade, the demand for managing structured, relational data has
continued to increase at an unprecedented rate, as we are crossing the “Big
Data” era. Database architectures of all kinds play a key role for managing this
explosion of data, thus aiming to provide efficient storage, querying, and up-
date functionalities at scale. One of the main initial assumptions in databases,
however, is that all data stored in the database is deterministic. That is, a data
item (or “tuple”) either holds as a real-world piece of truth or it is absent from
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the database. In reality, a large amount of the data that is supposed to be cap-
tured in a database is inherently noisy or otherwise uncertain. Example applica-
tions that deal with uncertain data range from scientific data management and
sensor networks to data integration and knowledge management systems. Any
sensor, for example, can only provide a limited precision, and hence its mea-
surements are inherently uncertain with respect to the precise physical value.
Also, even the currently most sophisticated information extraction (IE) meth-
ods can extract facts with particular degree of confidence. This is partly due to
the ambiguity of sentences formulated in natural language, but mainly due to
the heuristic nature of many extractions tools which often rely on hand-crafted
regular expressions and various other forms of rule- or learning-based extraction
techniques [9,6,62,33].

As a result of the efforts for handling uncertain data directly inside a scalable
database architecture, the field of probabilistic databases (PDBs) has evolved
as an established area of database research in recent years [63]. PDBs lie in the
intersection of database systems [2,32] (for handling large amounts of data), first-
order logic [60,65] (for formulating expressive queries and constraints over the
captured data items), and probability theory [25,58] (for quantifying the uncer-
tainty and coupling the relational operations with different kinds of probabilistic
inference). So far, most research efforts in the field of PDBs have focused on the
representation of uncertain, relational data on the one hand, thus designing ap-
propriate data models, and on efficiently answering queries over this kind of data
on the other hand, thus proposing suitable methods for query evaluation. Re-
garding the data model, a variety of approaches for compactly representing data
uncertainty have been presented. One of the most popular approaches, which
forms also the basis for this chapter, is that of a tuple-independent PDB [15,63],
in which a probability value is attached to each tuple in the database, and all
tuples are assumed to be independent of each other. More expressive models,
such as pc-tables [31], have been proposed as well, where each tuple is annotated
by a logical formula that captures the tuple’s dependencies to other tuples in
the database. Finally, there are also more sophisticated models which capture
statistical correlations among the database tuples [37,52,56].

Temporal-Probabilistic Databases. Besides potentially being uncertain,
data items can also be annotated by other dimensions such as time or location.
Such techniques are already partly supported by traditional database systems,
where temporal databases (TDBs) [35] have been an active research field for
many years. To enable this kind of temporal data and temporal reasoning also
in a PDB context, the underlying probabilistic models need to be extended to
support additional data dimensions. As part of this chapter, we thus also focus
on the intersection of temporal and probabilistic databases, i.e., capturing data
that is valid during a specific time interval with a given probability. In this
context, we present a unified temporal-probabilistic database (TPDB) model [21]
in which both time and probability are considered as first-class citizens.
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Top-k Query Processing. Query evaluation in PDBs involves—apart from
the common data computation step, found also in deterministic databases—an
additional probability computation step for computing the marginal probabilities
of the respective query answers. While the complexity for the data computation
step for any given SQL query is polynomial in the size of the underlying database,
even fairly simple Select-Project-Join (SPJ) queries can involve an exponential
cost in the probability computation step. In fact, the query evaluation problem
in PDBs is known to be #P-hard [16,30]. Thus, efficient strategies for probability
computations and the early pruning of low-probability query answers remains a
key challenge for the scalable management of probabilistic data. Recent works on
efficient probability computation in PDBs have addressed this problem mostly
from two ends. The first group of approaches have restricted the class of queries,
i.e., by focusing on safe query plans [16,14,17], or by considering a specific class
of tuple-dependencies, commonly referred to as read-once functions [57]. In par-
ticular the second group of approaches allows for applying top-k style pruning
methods [49,48,8,23] at the time when the query is processed. This alternative
way of addressing probability computations aims to efficiently identify the top-
k most probable query answers. To achieve this they rely on lower and upper
bounds for the probabilities of these answers, to avoid an exact computation of
their probabilities.

Learning Tuple Probabilities. While most works in PDBs assume that
the initial probabilities are provided as input along with the data items, in
reality, an update or estimation of the tuple’s input probabilities often is highly
desirable. To this end, enabling such a learning approach for tuple probabilities
is an important building block for many applications, such as creating, updating,
or cleaning a PDB. Although this has already been stated as a key challenge by
Dalvi et al. [13], to date, only very few works [61,41] explicitly tackle the problem
of creating or updating a PDB. Our recent work [22], which is also presented
in the context of this chapter, thus can be seen as one of the first works that
addresses the learning of tuple probabilities in a PDB setting.

In brief, this chapter aims to provide an overview of the key concepts of PDB
systems, the main challenges that need to be addressed to efficiently manage
large amounts of uncertain data, and the different methods that have been pro-
posed for dealing with these challenges. In this context, we provide an overview
of our own recent results [23,20,22] related to this field. As a motivating and run-
ning example, we continue to refer to a (simplified) IE scenario, where factual
knowledge is extracted from both structured and semistructured Web sources,
which is a process that inherently results in large amounts of uncertain (and
temporal) facts.

1.1 Running Application: Information Extraction

As a guiding theme for this chapter, we argue that one of the main application
domains of PDBs—and in fact a major challenge for scaling these techniques to
very large relational data collections—is information extraction [68]. The goal
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WonPrizeExtraction
Subject Object Pid Did p

I1 Spielberg AcademyAward 1 1 1.0
I2 Spielberg AcademyAward 2 1 1.0

BornInExtraction
Subject Object Pid Did p

I3 Spielberg Cincinnati 3 1 1.0
I4 Spielberg LosAngeles 3 2 1.0

UsingPattern FromDomain
Pid Pattern p Did Domain p

I5 1 Received 0.8 I8 1 Wikipedia.org 0.9
I6 2 Won 0.5 I9 2 Imdb.com 0.8
I7 3 Born 0.9

Fig. 1. An Example Probabilistic Database for an Information Extraction Setting

of IE is to harvest factual knowledge from semistructured sources, and even
from free-text, to turn this knowledge into a more machine-readable format—
in other words, to “turn text into database tuples”. For example, the sentence
“Spielberg won the Academy Award for Best Director for Schindler’s List (1993)
and Saving Private Ryan (1998)” from Steven Spielberg’s Wikipedia article1,
entails the fact that Spielberg won an AcademyAward, which we could represent
as WonAward(Spielberg , AcademyAward).

Due to the many ways of rephrasing such statements in natural language, an
automatic machinery that mines such facts from textual sources will inherently
produce a number of erroneous extractions. Thus, the resulting knowledge base
is never going to be 100% clean but rather remains to some degree uncertain.
Since the Web is literally full of text and facts, managing the vast amounts of
extracted facts in a scalable way and at the same time providing high-confidence
query answers from potentially noisy and uncertain input data will remain a
major challenge of any knowledge management system, including PDBs.

For an illustration, we model a simple IE workflow in a PDB. Usually, candi-
dates for facts in sentences are detected by textual patterns [9,42]. For instance,
for winning an award, the verb “won” might indeed be a good indicator. In our
PDB, we want to capture the different ingredients that lead to the extraction
of a fact. Besides the textual pattern, this could also involve the Web domain
(such as Wikipedia.org ), where we found the sentence of interest. Hence, we
store these in separate probabilistic relations as shown in Figure 1. Therefore,
the probabilities of the tuples of each domain and each pattern reflect our trust
in this source and pattern, respectively. To reconcile the facts along with their
resulting probabilities from the PDB of Figure 1, we employ two deduction rules.
In essence, they formulate a natural join on the Pid and Did columns of the un-
derlying relations to connect an extraction pattern and an extraction domain to
the actual fact:

1 http://en.wikipedia.org/wiki/Steven_Spielberg (as of December, 2013).

http://en.wikipedia.org/wiki/Steven_Spielberg
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WonPrize(S,O)←
⎛

⎝
WonPrizeExtraction(S,O,Pid ,Did)

∧ UsingPattern(Pid , P )
∧ FromDomain(Did , D)

⎞

⎠ (1)

BornIn(S,O)←
⎛

⎝
BornInExtraction(S,O,Pid ,Did)

∧ UsingPattern(Pid , P )
∧ FromDomain(Did , D)

⎞

⎠ (2)

If we execute a query on the resulting WonPrize or BornIn relations, then the
probabilities of the pattern and domain establish the probability of each answer
fact with respect to the relational operations that were involved to obtain these
query answers.

1.2 Challenges and Outline

A number of PDB systems have been released as open-source prototypes recently.
These include systems like MayBMS [5], MystiQ [8], Orion [59], PrDB [56],
SPROUT [46], and Trio [7], which all allow for storing and querying uncer-
tain, relational data and meanwhile found a wide recognition in the database
community. However, in order to make PDB systems as broadly applicable as
conventional database systems, we would like to highlight the following chal-
lenges.

1. Apart from being uncertain, data can be annotated by other dimensions
such as time or location. These techniques are partly already supported by
traditional DBs, but to enable this kind of data in PDBs, we need to extend
the probabilistic data models to support additional data dimensions.

2. Allowing a wide range of expressive queries, which can be executed efficiently,
was one of the ingredients that made traditional database systems successful.
Even though the query evaluation problem has been studied intensively in
PDBs, for many classes of queries efficient ways of computing answers along
with probabilities are not established yet.

3. Most importantly, the field of creating and updating PDBs still is in an early
stage, where only very few initial results exist so far. Nevertheless, we believe
that supporting the learning or updating of tuple probabilities from labeled
training data and selective user inputs will be a key building block for future
PDB approaches.

The remainder of this chapter thus is structured as follows. In Section 2,
we establish the basic concepts and definitions known from relational databases
which form also the basis for defining PDBs in Section 3. Next, in Section 4, we
describe a closed and complete data model for both temporal and probabilistic
databases (TPDBs), thus capturing data that is not only uncertain but also is
annotated with time information. Section 5 discusses query evaluation in PDBs
and describes an efficient top-k style evaluation strategy in this context. Last, in
Section 6, we introduce the problem of learning tuple probabilities from labeled
query answers, which allows also for updating and cleaning a PDB. Section 7
summarizes and concludes this chapter.
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2 Relational Databases

The primary purpose of our first technical section is to establish the basic con-
cepts and notations known from relational databases, which will form also the
basis for the remainder of this chapter. We use a Datalog-oriented notation to
represent intensional knowledge in the form of logical rules. Datalog thus ful-
fills two purposes in our setting. On the one hand, we employ Datalog to write
deduction rules, from which we derive new intensional tuples from the existing
database tuples for query answering. On the other hand, we also employ Datalog
to encode consistency constraints, which allow us to remove inconsistent tuples
from both the input relations and the query answers. For a broader background
on the theoretical foundations of relational databases, including the relationship
between Datalog, Relational Algebra and SQL, we refer the interested reader to
one of the two standard references [2,32] in this field.

2.1 Relations and Tuples

We start with the two most basic concepts of relational databases, namely rela-
tions and tuples. We consider a relation R as a logical predicate of arity r ≥ 1.
Together with a finite set of attributes A1, . . . , Am ∈ A and a finite set of (po-
tentially infinite) domains Ω1, . . . , Ωm ∈ O, we refer to R(A1, . . . , Ar) also as
the schema of relation R, where dom : A → O is a domain mapping function
that maps the set of attributes onto their corresponding domains.

For a fixed universe of constants U =
⋃
Ωi∈O Ωi, a relation instance R then

is a finite subset R ⊆ Ur. We call the elements of R tuples, and we write R(ā)
to denote a tuple in R, where ā is a vector of constants in U . Furthermore, for a
fixed set of variables V , we use R(X̄) to refer to a first-order literal over relation
R, where X̄ ⊆ U ∪V denotes a vector consisting of both variables and constants.
We will use Var(X̄) ⊆ V to refer to the set of variables in X̄.

Definition 1. Given relations R1, . . . , Rn, a relational database comprises the
relation instances Ri whose tuples we collect in the single set of extensional
tuples T := R1 ∪ · · · ∪ Rn.

In other words, a relation instance can simply be viewed as a table. A tuple
thus denotes a row (or “record”) in such a table. For convenience of notation,
we collect the sets of tuples stored in all relation instances into a single set T .
In a deterministic database setting, we can thus say that a tuple R(ā) that is
composed of a vector of constants in U is true iff R(ā) ∈ T (which we will also
refer to as a “database tuple” in this case). As a shorthand notation, we will
also employ I = {I1, . . . , I|T |} as a set of unique tuple identifiers.

Example 1. We consider a database with two relation instances from the movie
domain, which capture information about the directors of movies and the awards
that various movies may have won.
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Directed WonAward
Director Movie Movie Award

I1 Coppola ApocalypseNow I4 ApocalypseNow BestScript
I2 Coppola Godfather I5 Godfather BestDirector
I3 Tarantino PulpFiction I6 Godfather BestPicture

I7 PulpFiction BestPicture

For example, the tuple Directed(Coppola,ApocalypseNow), which we also abbre-
viate by I1, indicates that Coppola directed the movie ApocalypseNow. Thus, the
above database contains two relation instances with tuples T = {I1, . . . , I7}.

2.2 Deduction Rules

To derive new tuples (and entire relations) from an existing relational database,
we employ deduction rules. These can be viewed as generally applicable “if-then-
rules”. That is, given a condition, its conclusion follows. Formally, we follow
Datalog [2,10] terminology but employ a more logic-oriented notation to express
these rules. Each deduction rule takes the shape of a logical implication, with a
conjunction of both positive and negative literals in the body (the “antecedent”)
and exactly one positive head literal (the “consequent”). Relations occurring
in the head literal of a deduction rule are called intensional relations [2]. In
contrast, relations holding the database tuples, i.e., those from T , are also called
extensional relations. These two sets of relations (and hence logical predicates)
must not overlap and are used strictly differently within the deduction rules.

Definition 2. A deduction rule is a logical rule of the form

R(X̄) ←
∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄A)

where

1. R denotes the intensional relation of the head literal, whereas Ri and Rj may
refer to both intensional and extensional relations;

2. n ≥ 1, m ≥ 0, thus requiring at least one positive relational literal;
3. X̄, X̄i, X̄j, and X̄A denote tuples of both variables and constants, such that

Var(X̄) ∪ Var(X̄j) ∪ Var(X̄A) ⊆
⋃
i Var(X̄i);

4. Φ(X̄A) is a conjunction of arithmetic predicates such as “=” and “ 	=”.

We refer to a set of deduction rules D also as a Datalog program.

By the second condition of Definition 2, we require each deduction rule to have
at least one positive literal in its body. Moreover, the third condition ensures
safe deduction rules [2], by requiring that all variables in the head, Var(X̄), in
negated literals, Var(X̄j), and in arithmetic predicates, Var(X̄A), occur also in
at least one of the positive relational predicates, Var(X̄i), in the body of each
rule. As denoted by the fourth condition, we allow a conjunction of arithmetic
comparisons such as “=” and “ 	=”. All variables occurring in a deduction rule
are implicitly universally quantified.
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Example 2. Imagine we are interested in famous movie directors. To derive these
from the tuples in Example 1, we can reason as follows: “if a director’s movie
won an award, then the director should be famous.” As a logical formula, we
express this as follows.

FamousDirector(X)← Directed(X,Y ) ∧WonAward(Y, Z) (3)

The above rule fulfills all requirements of Definition 2, since (1) all relations
in the body are extensional, (2) there are two positive predicates, n = 2, and no
negative predicate, m = 0, and (3) the single variable X of the head is bound
by a positive relational predicate in the body.

For the remainder of this chapter, we consider only non-recursive Datalog
programs. Thus, our class of deduction rules coincides with the core operations
that are expressible in Relational Algebra and in SQL [2], including selections,
projections, and joins. All operations in Datalog (just like in Relation Algebra,
but unlike SQL) eliminate duplicate tuples from the intensional relation instances
they produce.

2.3 Grounding

The process of applying a deduction rule to a database instance, i.e., employing
the rule to derive new tuples, is called grounding. In the next step, we thus
explain how to instantiate the deduction rules, which we achieve by successively
substituting the variables occurring a rule’s body and head literals with constants
occurring in the extensional relations and in other deduction rules [2,65].

Definition 3. A substitution σ : V → V ∪ U is a mapping from variables V
to variables and constants V ∪ U . A substitution σ is applied to a first-order
formula Φ as follows:

Definition Condition
σ(
∧
i Φi) :=

∧
i σ(Φi)

σ(
∨
i Φi) :=

∨
i σ(Φi)

σ(¬Φ) := ¬σ(Φi)
σ(R(X̄)) := R(Ȳ ) σ(X̄) = Ȳ

In general, substitutions can rename variables or replace variables by con-
stants. If all variables are substituted by constants, then the resulting rule or
literal is called ground.

Example 3. A valid substitution is given by σ(X) = Coppola, σ(Y ) = Godfather,
where we replace the variablesX and Y by the constants Coppola and Godfather,
respectively. If we apply the substitution to the deduction rule of Equation (3),
we obtain

FamousDirector(Coppola)←
(
Directed(Coppola,Godfather)
∧WonAward(Godfather, Z)

)

where Z remains a variable.
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We now collect all substitutions for a first-order deduction rule which are
possible over a given database or a set of tuples to obtain a set of propositional
formulas. These substitutions are called ground rules [2,10].

Definition 4. Given a set of tuples T and a deduction rule D

R(X̄) ←
∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄A)

the ground rules G(D, T ) are all substitutions σ where

1. σ’s preimage coincides with
⋃
iVar(X̄i);

2. σ’s image consists of constants only;

3. ∀i : σ(Ri(X̄i)) ∈ T ;
4. σ(Φ(X̄A)) ≡ true.

The first and second condition requires the substitution to bind all variables
in the deduction rule to constants. In addition, all positive ground literals have
to match a tuple in T . In the case of a deterministic database, negated literals
must not match any tuple. Later, in a probabilistic database context, however,
they may indeed match a tuple, which is why we omit a condition on this case.
The last condition ensures that the arithmetic literals are satisfied.

Example 4. Let the deduction rule of Equation (3) beD. For the tuples of Exam-
ple 1, there are four substitutions G(D, {I1, . . . , I7}) = {σ1, σ2, σ3, σ4}, where:

σ1(X) = Coppola σ2(X) = Coppola
σ1(Y ) = ApocalypseNow σ2(Y ) = Godfather
σ1(Z) = BestScript σ2(Z) = BestDirector

σ3(X) = Coppola σ4(X) = Tarantino
σ3(Y ) = Godfather σ4(Y ) = PulpFiction
σ3(Z) = BestPicture σ4(Z) = BestPicture

All substitutions provide valid ground rules according to Definition 4, because
(1) their preimages coincide with all variables ofD, (2) their images are constants
only, (4) there are no arithmetic literals, and (3) all positive body literals match
the following database tuples:

Literal Tuple Literal Tuple
σ1(Directed(X,Y )) I1 σ1(WonAward(Y, Z)) I4
σ2(Directed(X,Y )) I2 σ2(WonAward(Y, Z)) I5
σ3(Directed(X,Y )) I2 σ3(WonAward(Y, Z)) I6
σ4(Directed(X,Y )) I3 σ4(WonAward(Y, Z)) I7

Finally, we employ the groundings of a deduction rule to derive new tuples
by instantiating the head literal of the rule.
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Definition 5. Given a single deduction rule D := (R(X̄) ← Ψ) ∈ D and a set
of extensional tuples T , the intensional tuples are created as follows:

IntensionalTuples(D, T ) := {σ(R(X̄)) | σ ∈ G(D, T )}

We note that the same new tuple might result from more than one substitu-
tion, as it is illustrated by the following example.

Example 5. Let D be the deduction rule of Equation (3). Continuing Example 4,
there are two new intensional tuples:

IntensionalTuples(D, {I1, . . . , I7}) =
{
FamousDirector(Coppola),
FamousDirector(Tarantino)

}

The first tuple originates from σ1, σ2, σ3 of Example 4, whereas the second tuple
results only from σ4.

2.4 Queries and Query Answers

We now move on to define queries and their answers over a relational database
with deduction rules. Just like the antecedents of the deduction rules, our queries
consist of conjunctions of both positive and negative literals.

Definition 6. Given a set of deduction rules D, which define our intensional
relations, a query Q is a conjunction:

Q(X̄) :=
∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄A)

where

1. all Ri, Rj are intensional relations in D;
2. X̄ are called query variables and it holds that

Var(X̄) =
⋃
i=1,...,nVar(X̄i);

3. all variables in negated or arithmetic literals are bound by positive literals
such that Var(X̄A) ⊆

⋃
i=1,...,nVar(X̄i), and for all j ∈ {1, . . . ,m} it holds

that Var(X̄j) ⊆
⋃
i=1,...,nVar(X̄i);

4. Φ(X̄A) is a conjunction of arithmetic predicates such as “=” and “ 	=”.

The first condition allows us to ask for head literals of any deduction rule. The
set of variables in positive literals are precisely the query variables. The final two
conditions ensure safeness as in deduction rules. We want to remark that for a
theoretical analysis, it suffices to have only one intensional literal as a query, since
the deduction rules allow us to encode any combination of relational operations
such as projections, selections or joins. However, for practical purposes, it is
often useful to combine more than one literal into a query via a conjunction.
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Example 6. Extending Examples 1 and 2, we can formulate the query

Q(X) := FamousDirector(X) ∧ (X 	= Tarantino)

which asks for all famous directors except Tarantino. Thus, the only query vari-
able in this example is X .

Since queries have the same shape as the antecedents of the deduction rules,
we apply Definition 4 also for grounding the queries. Assuming that T ′ comprises
all database tuples and all new intensional tuples resulting from grounding the
deduction rules, we may again rely on G(Q(X̄), T ′) to define the query answers.

Definition 7. For a set of tuples T ′ and a query Q(X̄), the set of query answers
is given by:

QueryAnswers(Q(X̄), T ′) := {σ(Q(X̄)) | σ ∈ G(Q(X̄), T ′)}
Thus, each answer provides a distinct binding of (all of its) query variables to

constants in U .
Example 7. For the query Q(X) of Example 6 and the deduction rule of Exam-
ple 2, there exists only one answer, namely FamousDirector(Coppola).

Again, in a deterministic database setting, we can thus say that a tuple R(ā)
(which may now refer to either a “database tuple” or a “derived tuple”) is true
iff R(ā) ∈ T ′. This assumption will be relaxed in the next section.

3 Probabilistic Databases

We now move on to present a model for probabilistic databases. This model
extends the one for relational databases by using probabilities.

3.1 Possible Worlds

In this subsection, we relax the common assumption in deterministic databases,
namely that all tuples, which are captured in both the extensional and inten-
sional relations of the database, are certainly true. Depending on the existence
(i.e., the “correctness”) of the tuples, a database can be in different states. Each
such state is called a possible world [3,63].

Definition 8. For a relational database with extensional tuples T , a possible
world is a subset W ⊆ T .

The interpretation of a possible world is as follows. All tuples inW exist (i.e.,
they are true in W), whereas all tuples in T \W do not exist (i.e., they are false
in W). In the absence of any constraints that would restrict this set of possible
worlds (see Subsection 3.6), any subset W of tuples in T forms a valid possible
world (aka. “possible instance”) of the probabilistic database. Hence, there are
2|T | possible worlds.

Example 8. Considering the relational database of Example 1, a possible world
is W := {I2, I4, I6}, which hence has only one tuple in the Directed relation and
two tuples in the WonAward relation.
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3.2 Probabilistic Database Model

Based on the possible worlds semantics, we can now formally introduce prob-
abilistic databases [63], which—in their most general form—simply impose a
probability distribution over the set of possible worlds.

Definition 9. Given a set of tuples T with possible worlds W1, . . . ,Wn, a prob-
abilistic database (PDB) assigns a probability P : 2T → [0, 1] to each possible
world W ⊆ T , such that: ∑

W⊆T
P (W) = 1

In other words, in a PDB the probabilities of the possible worlds P (W) form
a probability distribution. Thus, each possible world can be seen as the outcome
of a probabilistic experiment.

Example 9. If we allow only two possible worldsW1 := {I1, I3, I5, I7} andW2 :=
{I2, I4, I6} over the tuples of Example 1, we can set their probabilities to P (W1) =
0.4 and P (W2) = 0.6 to obtain a valid PDB.

We remark that the above possible-worlds semantics, which is the predomi-
nant data model of virtually any recent PDB approach [63], is a very expressive
representation formalism for probabilistic data. By defining a probability distri-
bution over the possible instances of the underlying deterministic database, it in
principle allows us to represent any form of correlation among the extensional
tuples. In practice, however, it is usually not permissible to store an exponential
amount of possible worlds over the set of extensional tuples T . We thus now
move on to the concept of tuple independence.

3.3 Tuple Independence

Since there are exponentially many possible worlds, it is prohibitive to store every
possible world along with its probability in an actual database system. Instead,
we opt for a simpler method by annotating each individual tuple with a probabil-
ity value. By assuming that the probabilities of all tuples are independent [25,58],
we obtain the representation model of tuple-independent PDBs [15,63].

Definition 10. For a set of extensional tuples T , a tuple-independent PDB
(T , p) is a pair, where

1. p is a function p : T → (0, 1], which assigns a non-zero probability value
p(I ) to each tuple I ∈ T ;

2. the probability values of all tuples in T are assumed to be independent;
3. every subset W ⊆ T is a possible world and has probability:

P (W , T ) :=
∏

I∈W
p(I ) ·

∏

I∈T \W
(1 − p(I ))
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The probability p(I ) of a tuple I denotes the confidence in the existence of
the tuple in the database where a higher value p(I ) denotes a higher confidence
in I being valid. However, the probabilities of different tuples do not depend on
each other; that is, they are assumed to be probabilistically independent. This
allows us to multiply the probabilities of the tuples to obtain the probability
of the possible world. From a probabilistic perspective, each extensional tuple
corresponds to an independent binary random variable.

Example 10. Assuming we are unsure about the existence of each of the tuples
in Example 1, we may now annotate them with probabilities as follows.

Directed WonAward
Director Movie p Movie Award p

I1 Coppola ApocalypseNow 0.7 I4 ApocalypseNow BestScript 0.1
I2 Coppola Godfather 0.5 I5 Godfather BestDirector 0.8
I3 Tarantino PulpFiction 0.2 I6 Godfather BestPicture 0.9

I7 PulpFiction BestPicture 0.5

Here, Coppola directed the movie Godfather only with probability 0.5. In addi-
tion, the possible world W := {I1, I3, I5, I7} has the probability:

P (W , {I1, . . . , I9}) = 0.7 · (1− 0.5) · 0.2 · (1− 0.1) · 0.8 · (1− 0.9) · 0.5 = 0.00252

In Subsection 3.2, we required a PDB to form a probability distribution over
its possible worlds. For a tuple-independent PDB, we can now prove that this
condition also holds.

Proposition 1. Given a tuple-independent PDB (T , p), then P (W , T ) of Defi-
nition 10 forms a probability distribution over the possible worlds W ⊆ T , such
that: ∑

W⊆T
P (W , T ) = 1

Proof. We prove the proposition by induction over the cardinality of T .

Basis i = 1:
∑
W⊆{I1} P (W , {I1}) = p(I1) + (1− p(I1)) = 1

Step (i− 1)→ i:

Let T := {I1, . . . , Ii} where Ii is the new tuple.

∑
W⊆T P (W , T )
=
∑
W⊆T

∏
I∈W p(I ) ·∏I∈T \W(1− p(I ))

= (p(Ii) + (1− p(Ii)))︸ ︷︷ ︸
=1

·∑W⊆T \{Ii}
∏

I∈W p(I ) ·∏I∈T \W(1− p(I ))
︸ ︷︷ ︸

=1 by hypothesis

In the remaining parts of this chapter, we will always consider a
tuple-independent PDB when we refer to a PDB.
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3.4 Propositional Lineage

In this subsection, we introduce how to trace the derivation history of intensional
tuples. In database terminology, this concept is commonly referred to as data
lineage [7,12,54], which we represent via propositional (Boolean) formulas. More
specifically, lineage relates each newly derived tuple in T ′\T with the extensional
tuples in T via the three Boolean connectives ∧, ∨ and ¬, which reflect the
semantics of the relational operations that were applied to derive that tuple.

Definition 11. We establish lineage inductively via the function

λ : GroundLiterals → Lineage

which is defined as follows:

1. For tuples T and R(ā) with R being extensional and R(ā) ∈ T , we have

λ(R(ā)) := I

where I is a Boolean (random) variable representing the tuple R(ā).
2. For tuples T , deduction rules D, and R(ā) with R being intensional, lineage

is defined as

λ(R(ā)) :=
∨

D∈D,
σ∈G(D,T ),
σ(X̄)=ā

⎛

⎝
∧

i=1,...,n

λ(σ(Ri(X̄i))) ∧
∧

σ(Rj(X̄j))∈T
¬λ(σ(Rj(X̄j)))

⎞

⎠

where D is a deduction rule having R as its head literal:

R(X̄) ←
∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄)

3. If there is no match to R(ā) in both T and D:
λ(R(ā)) := false

In the first case, we simply replace a ground literal R(ā) by a Boolean ran-
dom variable I that represents this database tuple. The second case however is
slightly more involved. The ground literal R(ā) is replaced by the disjunction
over all deduction rules and all groundings of thereof, where the ground head
literal matched R(ā). Likewise, negative literals are only traced if they occur in
the tuples. In the third case, all literals not being matched at all are replaced by
the constant false, which resembles a closed world assumption that is common
in databases and is known as “negation-as-failure” in Datalog [2]. Finally, arith-
metic literals do not occur in the lineage formulas, since a successful grounding
replaces them with the constant true (see Definition 4). Similarly, because a
query has the same shape as the body of a deduction rule, we write λ(Q(ā)) to
refer to the lineage formula associated with a query answer.
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Example 11. Building on Examples 4 and 5, we determine the lineage of the
tuple FamousDirector(Coppola), which was produced by the three substitutions
σ1, σ2, and σ3. The second case of Definition 11 delivers a disjunction ranging
over both substitutions:

λ(FamousDirector (Coppola)) =(
λ(Directed(Coppola ,ApocalypseNow ))

∧ λ(WonAward(ApocalypseNow ,BestScript))

)
from σ1

∨(
λ(Directed(Coppola ,Godfather ))

∧ λ(WonAward(Godfather ,BestDirector))

)
from σ2

∨(
λ(Directed(Coppola ,Godfather ))

∧ λ(WonAward(Godfather ,BestPicture))

)
from σ3

Then, the first case of Definition 11 replaces all ground literals by their tuple
identifiers:

(I1 ∧ I4)︸ ︷︷ ︸
from σ1

∨ (I2 ∧ I5)︸ ︷︷ ︸
from σ2

∨ (I2 ∧ I6)︸ ︷︷ ︸
from σ3

Next, we study the computational complexity of lineage tracing. It is known
that grounding non-recursive Datalog rules, which coincides with our class of
deduction rules, has polynomial data complexity [39]. Now, we extend this result
to lineage tracing.

Lemma 1. For a fixed set of deduction rules D, grounding with lineage as of
Definition 11 has polynomial data complexity in |T |.

Proof. We have to show that, according to Definition 11, lineage creates an
overhead which is polynomial in |T |. In the first and third case of the definition,
we can see that we solely rely on a look-up in D or T , which is computable
in polynomial time. The second case iterates over all deduction rules D ∈ D.
For each deduction rule D, it performs a number of look-ups which is upper-
bounded by |G(D, T )| · |D|. Since grounding has polynomial data complexity,
G(D, T ) is of polynomial size in T . Thus, also the third case has polynomial
data complexity.

We next introduce a normal form of propositional lineage formulas, which is
very common in logic [60]. Assuming lineage formulas to be in a normal form
will simplify proofs that follow later on.

Definition 12. A propositional lineage formula φ is in Disjunctive Normal Form
(DNF) if φ = ψ1 ∨ · · · ∨ ψn and each clause ψi is of the form

∧
j Ij ∧

∧
k ¬Ik.

As an illustration, the lineage formula of Example 11 is in DNF. In general,
any propositional formula can be transformed into DNF [60], which we rely on
in order to show the following statement.
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Proposition 2. The deduction rules of Definition 2 allow us to express any
propositional lineage formula.

Proof. Consider a probabilistic database (T , p) and an arbitrary propositional
formula φ connecting tuple identifiers. Without loss of generality, let the formula
φ be in DNF and range over only one relation R. First, we introduce one addi-
tional tuple R(0) and set p(R(0)) = 1. Then, for each clause ψi =

∧
j Ij ∧

∧
k ¬Ik

of φ, we create exactly one deduction rule:

R′(0) ← R(0) ∧
∧

j

R(j) ∧
∧

k

¬R(k)

The lineage formula of the intensional tuple R′(0) thus is φ. The reason is that
each rule creates one clause. Then, these clauses are connected by a disjunction
that originates from the second case of Definition 11.

From the above consideration, it follows that the lineage formulas considered
in our context may take more general forms than lineage formulas resulting from
(unions of) conjunctive queries (UCQs) [14,16], which produce only formulas
which are restricted to positive literals.

3.5 Computing Probabilities

Since in a probabilistic database each tuple exists only with a given probability,
we can now quantify the probability that each answer exists. Based on [28,54,63],
we compute probabilities of query answers via their lineage formulas. To achieve
this, we interpret the propositional lineage formulas over a possible world of
a probabilistic database (T , p) as follows. We say that a possible world W is
a model [65] for a propositional lineage formula φ, denoted as W |= φ, if, by
setting all tuples in W to true and all tuples in T \W to false, W represents
a truth assignment that satisfies φ. Moreover, let the set M(φ, T ) contain all
possible worlds W ⊆ T being a model for a propositional lineage formula φ.

M(φ, T ) := {W | W ⊆ T ,W |= φ} (4)

If it is clear from the context, we drop T as an argument ofM. We compute
the probability of any Boolean formula φ over tuples in T as the sum of the
probabilities of all the possible worlds that are a model for φ:

P (φ) :=
∑

W∈M(φ,T )

P (W , T ) (5)

Here, P (W , T ) is as in Definition 10. We can interpret the above probability
as the marginal probability of the lineage formula φ. The above sum can range
over exponentially many terms. However, in practice, we can—at least in many
cases—compute the probability P (φ) directly via the structure of the lineage
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formula φ. Let Tup(φ) ⊆ T denote the set of tuples occurring in φ. Then, the
following computations can be employed:

Definition Condition
P (I ) := p(I ) I ∈ T

P (
∧
i φi) :=

∏
i P (φi) i 	= j ⇒ Tup(φi) ∩ Tup(φj) = ∅

P (
∨
i φi) := 1−∏

i(1− P (φi)) i 	= j ⇒ Tup(φi) ∩ Tup(φj) = ∅
P (φ ∨ ψ) := P (φ) + P (ψ) φ ∧ ψ ≡ false

P (¬φ) := 1− P (φ)
P (true) := 1
P (false) := 0

(6)

The first line captures the case of an extensional tuple I , for which we
return its attached probability value p(I ). The next two lines handle independent-
and and independent-or operations for conjunctions and disjunctions over tuple-
disjoint subformulas φi, respectively. In the fourth line, we address disjunctions
for subformulas φ and ψ that denote disjoint probabilistic events (disjoint-or).
The fifth line handles negation. Finally, the probability of true and false is 1 and
0, respectively.

Example 12. Let us compute the probability P (I1 ∧ I2 ∧ ¬I3) over the tuples of
Example 10. First, the second line of Equation (6) is applicable, which yields
P (I1) ·P (I2) ·P (¬I3). Next, we can replace the negation to obtain P (I1) ·P (I2) ·
(1−P (I3)). Now, looking up the tuples’ probability values in Example 10 yields
0.7 · 0.5 · (1− 0.2) = 0.28.

The definition of P (φ) presented in Equation (6) can be evaluated in linear
time in the size of φ. However, for general lineage formulas, computing P (φ)
is known to be #P-hard [16,15,45]. Here, #P [66] denotes a class of counting
problems. Its prototypical problem, #SAT , asks for the number of satisfying
assignments of a propositional formula and may thus have to consider a number
of satisfying assignment that is exponential in the number of variables in the
formula.

We next present a number of deduction rules which are known to yield lineage
formulas that may exhibit computationally hard instances in terms of probability
computations.

Lemma 2. Let a probabilistic database (T , p) and the following deduction rules
be given:

H (0)← R(X) ∧ S(X,Y ) ∧ T (Y )

H (1)← R(X) ∧ S(X,Y )
H (1)← S(X,Y ) ∧ T (Y )

H (2)← R(X) ∧ S1(X,Y )
H (2)← S1(X,Y ) ∧ S2(X,Y )
H (2)← S2(X,Y ) ∧ T (Y )
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H (3)← R(X) ∧ S1(X,Y )
H (3)← S1(X,Y ) ∧ S2(X,Y )
H (3)← S2(X,Y ) ∧ S3(X,Y )
H (3)← S3(X,Y ) ∧ T (Y )

. . .

Then, for each H(k) the corresponding computations of the probabilities P (λ(Hk))
are #P-hard in |T |.

In the lemma above, k is a constant, hence H(0) is a ground literal resembling
a Boolean query. A formal proof for the above statement can be found in [17].

To be able to address also these hard cases, we employ the following equa-
tion, called Shannon expansion, which is applicable to any propositional lineage
formula:

P (φ) := p(I ) · P (φ[I/true]) + (1− p(I )) · P (φ[I/false ]) (7)

Here, the notation φ[I/true] for a tuple I ∈ Tup(φ) denotes that we replace
all occurrences of I in φ by true. Shannon expansion is based on the following
logical equivalence:

φ ≡ (I ∧ φ[I/true]) ∨ (¬I ∧ φ[I/false ]) (8)

The resulting disjunction fulfills the disjoint-or condition (see Equation (6))
with respect to I . Repeated applications of Shannon expansions may however
increase the size of φ exponentially, and hence do not circumvent the computa-
tional hardness of the problem.

Example 13. We calculate the probability of the lineage formula of Example 11
as follows:

P ((I1 ∧ I4) ∨ (I2 ∧ I5) ∨ (I2 ∧ I6))

The top-level operator is a disjunction where the third line of Equation (6) is not
applicable, since I2 occurs in two subformulas. Hence, we first apply a Shannon
expansion for I2:

p(I2) · P ((I1 ∧ I4) ∨ I5 ∨ I6) + (1 − p(I2)) · P (I1 ∧ I4)

Now, we can resolve the disjunction and the conjunction by independent-or and
independent-and, respectively:

p(I2) · (1− (1− p(I1) · p(I4)) · (1− p(I5)) · (1− p(I6))) + (1− p(I2)) · p(I1) · p(I4)

Partial Derivatives. As introduced in [38,50], we can quantify the impact of
the probability of a tuple p(I ) on the probability P (φ) of a propositional lineage
formula φ by its partial derivative, which has many applications to sensitivity
analysis [38] and gradient-based optimization methods [43] (see also Section 6.4).
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Definition 13. Given a propositional lineage formula φ and a tuple I ∈ Tup(φ),
the partial derivative of P (φ) with respect to p(I ) is

∂P (φ)

∂p(I )
:=

P (φ[I/true])− P (φ[I/false ])

P (true)− P (false)
= P (φ[I/true])− P (φ[I/false ])

Again, φ[I/true] means that all occurrences of I in φ are replaced by true (and
analogously for false).

Example 14. We may determine the derivative of the probability of the propo-
sitional lineage formula φ := I1 ∧ I4 with respect to the tuple I4 as follows:

∂P (φ)
∂p(I4)

= P ((I1 ∧ I4)[I4/true])− P ((I1 ∧ I4)[I4/false])

= p(I1)− P (false)
= p(I1)

3.6 Consistency Constraints

To rule out instances (i.e., possible worlds) of the probabilistic database, which
would be inconsistent with assumptions we may make about the real world, we
support consistency constraints. For instance, if for the same person two places
of birth are stored in the database, then we may intend to remove one of them by
a consistency constraint. In general, we consider the constraints to be presented
in the form of a single propositional lineage formula φc, which connects differ-
ent tuple identifiers. Intuitively, the constraint formula φc describes all possible
worlds that are valid. In contrast, all possible worlds that do not satisfy the con-
straint will be dropped from the probability computations. Because it is tedious
to manually formulate a propositional formula over many database tuples, we
allow φc to be induced by deduction rules Dc and two sets of queries Cp and Cn
as follows. For simplicity, we assume Cp ∩Cn = ∅ and Dc ∩Dq = ∅, where Dq are
the deduction rules related to the query.

Definition 14. Let a set of deduction rules Dc and two sets Cp and Cn of in-
tensional literals from Dc be given. If T contains all tuples deducible by Dc, then
the constraint formula φc is obtained by:

φc :=
∧

Cp(X̄)∈Cp,
Cp(ā)∈Answers(Cp(X̄),T )

λ(Cp(ā)) ∧
∧

Cp(X̄)∈Cn,
Cn(ā)∈Answers(Cn(X̄),T )

¬λ(Cn(ā))

Hence, based on the above definition, we create constraints on probabilis-
tic databases directly via deduction rules. All answers from literals in Cp yield
propositional lineage formulas which must always hold, whereas the lineage for-
mulas being derived from literals in Cn must never hold. We connect all these
ground constraints, i.e., their lineage formulas, by a conjunction to enforce all
of them together. It is important to note that the deduction rules of the con-
straints do not create any new tuples, but merely serve the purpose of creating
the propositional constraint formula φc.
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Example 15. Let us formalize that every movie is directed by only one person.
Suppose we create the following deduction rule

Constraint(P1, P2,M)← (Directed(P1,M) ∧Directed(P2,M) ∧ P1 	= P2)

and insert Constraint(P1, P2,M) into Cn, which hence disallows the existence of
two persons P1 and P2 that both directed the same movie.

Due to the logical implication, we may also abbreviate constraints consisting
of a single deduction rule by the body of the deduction rule only. That is, we
may just omit the head literal in these cases.

Example 16. We can write the constraint of Example 15 without the head literal
as follows:

¬(Directed(P1,M) ∧Directed(P2,M) ∧ P1 	= P2)

Here, the negation indicates that the former head literal was in Cn.
With respect to the probability computations, constraints remove all the pos-

sible worlds from the computations, which violate the constraint. This process
is called conditioning [41], which can be formally defined as follows.

Definition 15. Let constraints be given as a propositional lineage formula φc
over a probabilistic database (T , p). If φc is satisfiable, then the probability P (ψ)
of a propositional lineage formula ψ over T can be conditioned onto φc as follows:

P (ψ | φc) := P (ψ ∧ φc)

P (φc)
(9)

In the above definition, ψ can represent any lineage formula, in particular also
that of a query answer. After removing the possible worlds violating a constraint
from the probabilistic database, conditioning (re-)weights the remaining worlds
such that they again form a probability distribution.

Example 17. We consider the lineage formula ψ = I2 ∧ (I5 ∨ I6) over the tuples
of Example 10. Without any constraints, its probability is computed by Equa-
tion (6) as P (ψ) = 0.5 · (1 − (1 − 0.8) · (1 − 0.9)) = 0.49. If we set φc = I2 as
a constraint, we remove all possible worlds that exclude I2. Consequently, the
probability is updated to:

P (ψ | I2) = P (I2 ∧ (I5 ∨ I6))

P (I2)
=

p(I2) · P (I5 ∨ I6)

p(I2)
= P (I5 ∨ I6) = 0.98

In the following, we characterize a useful property of constraints. If a num-
ber of constraints do not share any tuple with a lineage formula ψ, then the
probability P (ψ) is not affected by the constraints.

Proposition 3. If the constraints φc and the lineage formula ψ are independent
with respect to their database tuples, i.e., Tup(ψ) ∩ Tup(φc) = ∅, then it holds
that:

P (ψ | φc) = P (ψ)
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Proof. Due to the second line of Equation (6) and Tup(ψ) ∩ Tup(φc) = ∅, we
can write P (ψ ∧ φc) = P (ψ) · P (φc) . Therefore, the following equation holds:

P (ψ | φc) = P (ψ ∧ φc)

P (φc)
= P (ψ) · P (φc)

P (φc)
= P (ψ)

Hence, if we have the constraint φc ≡ true, the standard unconditioned prob-
ability computations of Section 3.5 arise as a special case. Finally, since Equa-
tion (9) invokes probability computations on the constraint φc, constraints may
also yield #P-hard computations, which we capture next.

Observation 11. Constraints can cause #P-hard probability computations.

The reason is that one of the lineage formulas described in Lemma 2 could
occur in φc.

Expressiveness of Constraints. The deduction rules of Definition 14, which
we employ to induce the constraints, may yield an arbitrary propositional lineage
formula when grounded. This is formally shown in Proposition 2. We note that
restrictions on the shape of the constraints, i.e., to avoid the #P-hard instances
of Observation 11, should follow work on tractable probability computations in
probabilistic databases. The reason is that the computational complexity arises
from the probability computations. In contrast, when solving constraints over
deterministic databases, the complexity mainly results from finding a single con-
sistent subset of the database, rather than from counting all of these subsets.

4 Temporal-Probabilistic Databases

In recent years, both temporal and probabilistic databases have emerged as
two intensively studied areas of database research. So far, the two fields have
however been investigated largely only in isolation. In this section, we describe a
closed and complete temporal-probabilistic database (TPDB) model [21], which
provides the expressiveness of the afore defined probabilistic database model,
but augments this model with temporal annotations for tuples and temporal
predicates for the rules. To the best of our knowledge, prior to [21], only Sarma
et al. [55] have explicitly modeled time in PDBs. However in the former work
time refers to the “transaction-time” of a tuple insertion or update, thus focusing
on versioning a probabilistic database. Rather, we consider time as the actual
temporal validity of a tuple in the real world (e.g., the time interval of a marriage
in the IE scenario).

Example 18. This time, our running example is centered around the actors
“Robert De Niro” and “Jane Abott” about whom the TPDB of Figure 2 captures
a number of facts. Tuple I1 expresses that DeNiro was born in Greenwich (New
York) on August 17th, 1943, which is encoded into the time interval [1943-08-
17, 1943-08-18) using an ISO style date/time format. The time and probability
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BornIn
Subject Object Valid Time p

I1 DeNiro Greenwich [1943-08-17, 1943-08-18) 0.9
I2 DeNiro Tribeca [1998-01-01, 1999-01-01) 0.6

Wedding
Subject Object Valid Time p

I3 DeNiro Abbott [1936-11-01, 1936-12-01) 0.3
I4 DeNiro Abbott [1976-07-29, 1976-07-30) 0.8

Divorce
Subject Object Valid Time p

I5 DeNiro Abbott [1988-09-01, 1988-12-01) 0.8

Fig. 2. Example Temporal-Probabilistic Database with Tuple Timestamping

annotations together express that this tuple is true for the given time interval
with probability 0.9, and it is false (i.e., it does not exist in the database) for
this interval with probability 0.1. Furthermore, tuples are always false outside
their attached time intervals. Notice that another tuple, I2, states that DeNiro
could have also been born in Tribeca in the interval [1998-01-01, 1999-01-01) with
probability 0.6. In the remainders of this section, we investigate how to evaluate
queries over this kind of data, i.e., how to propagate time and probabilities from
the database to the query answers. We also discuss consistency constraints. For
instance, the two tuples of BornIn state different birth places of DeNiro and
create an inconsistency we should rule out by the use of constraints.

4.1 Time

We start with the most important point, namely our model of time. As in a
calendar, there are a number of choices to make. First, we have to decide on the
granularity of time, which could be days, hours or minutes, for instance. Also,
we should determine whether time is finite, and, if so, when it starts or ends,
e.g., at the first or the last day of a year, respectively.

Technically, we adopt the view of time as points which then can be coalesced
to form intervals [35,67]. We consider the time universe UT as a linearly or-
dered finite sequence of time points, e.g., days, minutes or even milliseconds.
Considering time to be finite and discrete later ensures that there are finitely
many possible worlds. A time interval consists of a contiguous and finite set of
ordered time points over UT , which we denote by a half-open interval [tb, te)
where tb, te ∈ UT and tb < te. For instance, a day can be viewed as an interval of
hours. Moreover, we employ the two constants tmin, tmax to denote the earliest
and latest time point in UT , respectively. Finally, temporal variables are written
as T or [Tb, Te), if we refer to a time interval.

At this point, we want to remark that we do not consider the finiteness of
UT to be any limitation of the above model for time in practice, since we can
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always choose tmin, tmax as the earliest and latest time points we observe among
the tuples and deduction rules. Also, discrete time points of fixed granularity do
not present any restraint, as we could resort to employing time points of smaller
granularity than the ones observed in the input data if needed. The complexity
of the following operations, which we define over this kind of temporally and
probabilistically annotated tuples, will in fact be independent of the granularity
of the underlying time universe UT .
Example 19. Regarding the database of Figure 2, UT comprises the sequence
of days starting at tmin := 1936-11-01 and ending at tmax := 1999-01-01. We
could equally choose any more fine-grained unit for the time points, but for
presentation purposes, we select days.

4.2 Temporal Relations and Tuples

We now relate data to time, that is, tuples are considered to be valid during
a specific time interval, only, and they are invalid outside their attached time
intervals. For this, we extend the relations introduced in Section 2.1 to temporal
relations, following work by [1,35,64]. We annotate each tuple by a time interval
specifying the validity of the tuple over time—a technique, which is commonly
referred to as tuple timestamping [35]. More specifically, a temporal relation RT

is a logical predicate of arity r ≥ 3, whose latter two arguments are temporal.
Hence, an instance of a temporal relation is a finite subsetRT ⊆ Ur−2×UT×UT .
Therein, we interpret the temporal arguments tb, te of a tuple R

T(ā, tb, te) to form
a time interval [tb, te). Choosing intervals over time points has the advantage that
the storage costs are independent of the granularity of the time points.

Example 20. The tuple BornIn(DeNiro,Greenwich, 1943-08-17, 1943-08-18) is va-
lid only at one day, namely on August 17th, 1943.

In general, a temporal relation instance can contain several tuples with equiv-
alent non-temporal arguments ā, but with varying temporal arguments. For
instance, assume we have two tuples describing DeNiro’s birthday, one time-
stamped with the year 1943 and one by the day 1943-08-18. Then, a database
engine might conclude that he was born twice on August 18th, 1943 with dif-
ferent probabilities. To resolve this issue, we enforce the time intervals of tuples
with identical, non-temporal arguments to be disjoint. A relation instance that
adheres to this condition is going to be termed duplicate-free [19].

Definition 16. A temporal relation instance RT is called duplicate-free, if for
all pairs of tuples RT (ā, tb, te), R

T (ā′, t′b, t
′
e) ∈ RT it holds that:

ā = ā′ ⇒ [tb, te) ∩ [t′b, t
′
e) = ∅

We remark that the above definition does not affect tuples of different, non-
temporal arguments or with non-overlapping temporal arguments.

Example 21. In Figure 2 the temporal relation instance Wedding is duplicate-
free, as both tuples have equivalent non-temporal arguments, but their time
intervals are non-overlapping.
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4.3 Temporal-Probabilistic Database Model

In this section, we extend tuple-independent probabilistic databases of Defini-
tion 10 to temporal data as in [21]. Intuitively, each tuple has two annotations:
a temporal and a probabilistic one. Hence, each tuple exists only during a given
time and with a given probability. Supporting both probability and time anno-
tations allows to represent data, where we are unsure whether a tuple is valid at
a given set of time points or during an entire time interval, respectively.

Definition 17. For temporal relations RT1 , . . . , R
T
n a tuple-independent

temporal-probabilistic database (TPDB) (T , p,UT ) is a triple, where

1. T := RT1 ∪ · · · ∪ RTn is a finite set of tuples;

2. ∀i ∈ {1, . . . , n} : RTi is duplicate-free;

3. all tuples RTi (ā, tb, te) of all relation instances RTi share the time universe
UT , that is, tb, te ∈ UT ;

4. p is a function p : T → (0, 1] which assigns a non-zero probability value p(I )
to each tuple I ∈ T ;

5. the probability values of all tuples in T are assumed to be independent.

In the above definition, the first, fourth and fifth condition are analogous to
Definition 10. Still, we here consider temporal relation instances RTi and require
them to be duplicate-free (see Definition 16). Additionally, all time points occur-
ring in any relation instance RTi must be contained in the time universe UT . We
highlight that the probabilities of two tuples R(ā, tb, te) and R(ā, t′b, t

′
e), even if

they share ā, are independent due to the fifth condition. In the remaining parts
of this chapter, we will thus again drop the attribute “tuple-independent” when
we refer to a TPDB. As in Section 3, dependencies among tuples will be induced
by constraints and queries.

Example 22. The temporal relation instances of Figure 2, together with their
time universe defined in Example 19 form the TPDB ({I1, I2, I3, I4, I5}, p, 〈1936-
11-01, . . . , 1999-01-01〉).

Since tuple probabilities here are defined as in PDBs, and UT is finite as well
as discrete, the possible-worlds semantics of Subsection 3.1 applies to TPDBs as
well. Next, we thus more formally characterize the relationship between TPDBs
and (non-temporal) PDBs.

Proposition 4. Every PDB instance (T , p) can be encoded in a TPDB instance
(T ′, p,UT ).

Proof. To achieve the encoding, we create the time universe UT := 〈1, 2〉, expand
each relationR in T by two temporal arguments, and set T ′ := {RT (ā, 1, 2) | R(ā)
∈ T }.
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4.4 Temporal Arithmetic Predicates

To express temporal statements, it is necessary to be able to compare tempo-
ral annotations in the form of time points. Hence, we support two temporal-
arithmetic predicates “=T ” and “<T ” [27,44], which each check for the equality
and precedence of two time points, respectively.

Definition 18. For t1, t2 ∈ UT the temporal-arithmetic predicates =T and <T

are evaluated as follows:

t1 =T t2 ≡
{
true if t1 = t2,
false otherwise,

t1 <T t2 ≡
{
true if t1 strictly before t2 in UT ,
false otherwise.

In other words, “=T ” is satisfied, whenever two time points are identical,
whereas “<T ” compares the order of two time points in UT .
Example 23. Since 1998-01-01 is before 1999-01-01, we have 1998-01-01 <T

1999-01-01≡ true.

By utilizing conjunctions of “<T ” and “=T ” predicates over the temporal ar-
guments, we are able to express all of the 13 relationships between time intervals
defined in the seminal work of Allen [4], such as overlaps, disjoint or starts.

Proposition 5. We can express all the 13 relationships between two time in-
tervals as defined by Allen [4] by relying solely on conjunctions of “=T” and
“<T”.

Proof.

Allen’s Relation Encoding
[Tb, Te) before [T ′b, T

′
e) Te <

T T ′b
[Tb, Te) equal [T

′
b, T
′
e) Tb =

T T ′b ∧ Te =
T T ′e

[Tb, Te) meets [T ′b, T
′
e) Te =

T T ′b
[Tb, Te) overlaps [T

′
b, T
′
e) Tb <

T T ′b ∧ T ′b <
T Te ∧ Te <

T T ′e
[Tb, Te) during [T ′b, T

′
e) T ′b <

T Tb ∧ Te <
T T ′e

[Tb, Te) starts [T
′
b, T

′
e) Tb =

T T ′b ∧ Te <
T T ′e

[Tb, Te) finishes [T
′
b, T
′
e) T ′b <

T Tb ∧ Te =
T T ′e

The remaining 6 relationships are the inverse of one of the above ones, except
for equality which is symmetric.

4.5 Temporal Deduction Rules

Next, we devise temporal deduction rules, that is, general “if-then” rules which
mention time. Formally, our temporal deduction rules [21] are logical implications
over temporal relations and temporal arithmetic predicates, defined as follows.
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Definition 19. A temporal deduction rule is a logical rule of the form

RT (X̄, Tb, Te)←
∧

i=1,...,n

RTi (X̄i, Ti,b, Ti,e) ∧
∧

j=1,...,m

¬RTj (X̄j , Tj,b, Tj,e) ∧ Φ(X̄A, T̄A)

(10)
where

1. all requirements of Definition 2 hold;
2. Tb, Te, Ti,b, Ti,e, Tj,b, Tj,e and T̄A are temporal constants and variables,

where Var(Tb, Te),Var(Tj,b, Tj,e),Var(T̄A) ⊆
⋃
i Var(Ti,b, Ti,e);

3. Φ(X̄A, T̄A) is a conjunction of literals over the arithmetic predicates, such as
“=” and “ 	=”, and the temporal arithmetic predicates “=T ” and “<T”.

With respect to non-temporal arguments, all restrictions of non-temporal de-
duction rules (see Definition 2) hold. Combining this observation with the sec-
ond requirement above, we conclude that temporal deduction rules are safe [2].
Furthermore, the third condition allows the temporal-arithmetic predicates of
Definition 18 to occur in temporal deduction rules. Of course, also non-temporal
relations are allowed in temporal deduction rules, hence inducing mixtures of
temporal and non-temporal rules. We note that the above class of temporal de-
duction rules is very expressive, as it allows Tb, Te to be constants or to be
variables from different literals RTi . As before, we assume also the temporal
deduction rules to be non-recursive.

Example 24. Given the tuples of Figure 2 about both DeNiro’s wedding and
divorce with Abbott, we aim to deduce the time interval of their marriage by
temporal deduction rules. The first rule states that a couple stays married from
the begin time point of their wedding (denoted by the variable Tb,1) until the
last possible time point we consider (denoted by the constant tmax ), unless there
is a divorce tuple.

MarriageT(P1, P2, Tb,1, tmax )←
(
WeddingT(P1, P2, Tb,1, Te,1) ∧

¬Divorce(P1, P2)

)
(11)

Here, the existence of a divorce independent of time is modeled by the following
projection:

Divorce(P1, P2)← DivorceT(P1, P2, Tb, Te)

The second rule states that a couple stays married from the begin time point of
their wedding till the end time point of their divorce.

MarriageT(P1, P2, Tb,1, Te,2)←
⎛

⎝
WeddingT(P1, P2, Tb,1, Te,1) ∧
DivorceT(P1, P2, Tb,2, Te,2) ∧

Te,1<
T Tb,2

⎞

⎠ (12)

Thereby, we consider only weddings that took place before divorces as stated by
the condition Te,1<

T Tb,2.
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4.6 Lineage and Deduplication

As in Section 3.4, we trace the deduction history of tuples via lineage, however,
with the additional twist that lineage may now also vary over time. Since tem-
poral deduction rules are safe, the groundings G(D, T ) of Definition 4 and the
new tuples IntensionalTuples(D, T ) of Definition 5 apply to temporal deduction
rules as well. Hence, at first glance lineage tracing according to Definition 11
works in a temporal context, but with one random variable for each tuple with
its time interval. However, if we execute temporal deduction rules, the newly
derived tuples may not necessarily define a duplicate-free relation instance. We
illustrate this issue by the following example.

Example 25. Let the deduction rules of Example 24 and the tuples of Figure 2
be given. Now, in Figure 3, we visualize both the tuples from database (at the
bottom) and the deduced tuples (in the middle). Inspecting the deduced tuples,
we realize that they have equivalent non-temporal arguments, i.e., DeNiro and
Abbott, but their time intervals are overlapping, which contradicts Definition 16
of duplicate-free relation instances.

Hence, in order to convert a temporal relation instance with duplicates (as
shown in the middle of Figure 3) into a duplicate-free temporal relation (as
shown on the top of Figure 3), we provide the following definition.

Fig. 3. Deducing and Deduplicating Tuples with Time Intervals
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Definition 20. Let a temporal relation RT , non-temporal constants ā, a time
point t ∈ UT , and a set of tuples T be given. Then, L is defined as the set of
lineages of tuples RT (ā, tb, te) that are valid at time point t:

L(RT , ā, t, T ) := {λ(I ) | I = RT (ā, tb, te) ∈ T , tb ≤ t < te}
We create duplicate free tuples I ′ = RT (ā, tb, te) such that for any pair of time
points t0, t1 ∈ [tb, te) it holds that:

L(RT , ā, t0, T ) = L(RT , ā, t1, T ) (13)

Furthermore, we define the new tuples’ lineage to be:

λ(I ′) :=
∨

φi∈L(RT ,ā,tb,T )

φi (14)

In short, for each time point t, we create the disjunction of all tuples being
valid at t (see Equation 14). More detailed, for a given relation instance and the
non-temporal arguments of a tuple, L is the set of all tuples’ lineages that share
the same non-temporal arguments and which are valid at time point t. Hence,
consecutive time points for which L contains the same lineage formulas form the
new intervals (see Equation (13)).

We remark that for the equality of Equation (13), we focus on syntactical
equivalence checks between the lineage formulas. We thus refrain from full (i.e.,
logical) equivalence checks, as they are known to be co-NP-complete [11].

Example 26. Applying Definition 20 to the tuples in the middle of Figure 3
yields the tuples shown at the top of the figure. For instance, if we inspect L at
the time points 1976-07-28 and 1976-07-29, we notice that {I3 ∧ I5, I3 ∧ ¬I5} 	=
{I3 ∧ I5, I3 ∧ ¬I5, I4 ∧ I5, I4 ∧ ¬I5}, so two different result tuples I6 and I7 have
to be kept in the relation. In total, the resulting duplicate-free tuples are:

Marriage
Subject Object Valid Time

I6 DeNiro Abbott [1936-11-01, 1976-07-29)
I7 DeNiro Abbott [1976-07-29, 1988-12-01)
I8 DeNiro Abbott [1988-12-01, tmax)

Following Equation (14), their respective lineages are:

λ(I6) = (I3 ∧ I5) ∨ (I3 ∧ ¬I5)
λ(I7) = (I3 ∧ I5) ∨ (I3 ∧ ¬I5) ∨ (I4 ∧ I5) ∨ (I4 ∧ ¬I5)
λ(I8) = (I3 ∧ ¬I5) ∨ (I4 ∧ ¬I5)

Hence, for temporal deduction rules the combination of Definitions 11 and 20
creates the lineage formulas. We want to remark that these lineage formulas
are guaranteed to yield purely propositional formulas, as it is captured by the
following observation.
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Observation 12. Temporal deduction rules and temporal deduplication produce
propositional lineage formulas without any explicit mentioning of time.

Hence, any work on PDBs with lineage can be applied to TPDBs as well,
especially also works on efficient probability computations (see Section 3.5).

4.7 Queries and Query Answers

As a final step, we introduce temporal queries which extend Definition 6 by a
temporal component. Thus, in analogy to the atemporal case, a temporal query
again resembles the body of a temporal deduction rule.

Definition 21. Given temporal deduction rules D with their intensional rela-
tions a temporal query Q is a conjunction:

Q(X̄, T̄ ) :=
∧

i=1,...,n

RTi (X̄i, Ti,b, Ti,e) ∧
∧

j=1,...,m

¬RTj (X̄j , Tj,b, Tj,e) ∧ Φ(X̄A, T̄A)

where

1. all requirements of Definition 6 hold;
2. T̄ , Ti,b, Ti,e, Tj,b, Tj,e and T̄A are temporal constants and variables, which

satisfy:

(a) Var(T̄ ) =
⋃
i=1,...,nVar(Ti,b, Ti,e);

(b) Var(T̄A) ⊆
⋃
i=1,...,nVar(Ti,b, Ti,e);

(c) for all j ∈ {1, . . . ,m} it holds that
Var(Tj,b, Tj,e) ⊆

⋃
i=1,...,nVar(Ti,b, Ti,e);

3. Var(X̄) ∪ Var(T̄ ) denote the query variables;

4. Φ(X̄A, T̄A) is a conjunction of (temporal) arithmetic literals.

Temporal queries thus inherit all properties from their non-temporal counter-
parts (see Definition 6), in particular that all relations occurring in the query
are intensional. The first and second condition above ensure safe queries [2]. In
this section, the query variables are formed by both the variables in X̄ and in
T̄ . With respect to arithmetic predicates, we support both non-temporal ones
as in Section 2.4 and additionally the temporal ones from Definition 18.

Example 27. If we are interested in people who were married before 1980, we
write the query

Marriage(P1, P2, Tb, Te) ∧ Tb <
T 1980-01-01

where the intensional relation Marriage is defined as in Example 24.

Since the restrictions on variables of Definition 6 and Definition 21 coincide,
query answers can be obtained as in the non-temporal case of Definition 7.
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4.8 Temporal Consistency Constraints

In Subsection 3.6, we introduced constraints as propositional lineage formula
φc. Following Definition 14, we can create constraints via deduction rules. For
this, we keep two sets of literals Cp and Cn which again relate to constraints
that must always hold and must never hold, respectively. Then, the literals of
both sets induce the lineage formula φc (see Definition 14). Hence, in this section
constraints are formulated as temporal deduction rules. As we support temporal-
arithmetic predicates (see Definition 18) in the temporal deduction rules, we can
express any temporal precedence (i.e., ordering) constraint, and any temporal
disjointness or containment constraint.

Example 28. If we intend to enforce that persons are born before their marriage
starts, we write

Constraint(P1, P2, Tb, Te, T
′
b, T

′
e)←

(
BornT(P1, Tb, Te)∧

MarriageT(P1, P2, T
′
b, T
′
e)∧

T ′b <
T Te

)

(15)
and add Constraint(P1, P2, Tb, Te, T

′
b, T
′
e) to Cn. To abbreviate this notation, we

also write the above constraint as:

¬(BornT(P1, Tb, Te) ∧MarriageT(P1, P2, T
′
b, T
′
e) ∧ T ′b <

T Te)

Here, the negation resembles that the head literal of Equation (15) is in Cn, i.e., it
should never hold. When we ground the above constraint, all pairs of MarriageT

and BornT tuples contradicting the correct temporal ordering are excluded
by φc.

4.9 Closure and Completeness

Generally, a representation formalism is called complete [31] if it can represent
any finite instance of data, which in our case is temporal and probabilistic.
Furthermore, a representations system is closed [31] if all query results can be
expressed in the representation itself.

Theorem 1. A TPDB (T , p,UT ) with lineage is closed and complete under all
relational operations which are expressible by the temporal deduction rules D.

Because completeness is the stronger requirement, which also implies closure,
we next provide a proof for the completeness of our TPDB model.

Proof. We show that, when given any finite instance T of temporal and prob-
abilistic relational data, we can represent it in our TPDB model. Without loss
of generality, we are given only one relation instance RT along with its possible
worlds W1, . . . ,Wn and a probability P (Wi) for each of them. Now, to encode
these in a TPDB (T , p,UT ), there are three points to show, namely (1) setting
UT , (2) ensuring that RT is duplicate free, and (3) determining T and p.
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First, we select the earliest and latest time points tmin and tmax , respectively,
which occur in RT . From this, we create the sequence UT := 〈tmin , . . . , tmax 〉
where each time point is of the smallest granularity of time points that occurs
in RT . Second, to guarantee that each RT is duplicate-free (see Definition 16),
we create a new relation instance RT ′

which extends each tuple by a unique
id, e.g., if RT (ā, tb, te) ∈ RT , then RT

′
(id , ā, tb, te) ∈ RT ′

. Third, regarding the
probabilistic data, we follow [7,63] by proving the statement via induction over
the number of possible worlds. Let the possible worlds Wi range over RT ′

.

Basis n = 1:

In this case, there is only one possible world W1 with P (W1). We store W1 in

the deterministic relation RT
′,d

1 and create an uncertain relation Ru(X) holding
exactly one tuple Ru(1) with p(Ru(1)) = 1. Then, the rule

RT
′

1 (X̄)← RT
′,d

1 (X̄) ∧Ru(1)

along with T1 :=W1 encodes the TPDB. Now, queries posed on RT
′

1 deliver the
correct semantics.

Step n→ n+ 1:

We want to extend the TPDB by a possible world Wn+1 which should have

P (Wn+1) = pn+1. For this, we create the deterministic relation RT
′,d

n+1 containing
the tuples of Wn+1. Then, we insert the tuple Ru(n + 1) into Ru and set its
probability value to pn+1. Now, we add the rules:

RT
′

n+1(X̄)← RT
′,d

n+1(X̄) ∧Ru(n+ 1)

RT
′

n+1(X̄)← RT
′

n (X̄) ∧ ¬Ru(n+ 1)

Next, we set Tn+1 := Tn ∪ Wn+1 to finalize the construction of the resulting
TPDB. Again, queries formulated on RT

′

n+1 yield the intended semantics.

5 Top-k Query Processing

Motivated by queries whose probability computations entail #P-hard [16,15]
instances, the query evaluation problem in PDBs has been studied very inten-
sively [16,15,17,36,40,51,57]. Except for two works [48,49], which we are aware
of, each of these approaches aims for computing all answers along with their
probabilities. Still, among these answers many of them may exhibit low proba-
bilities, thus indicating, for example, that we are not very confident in them or
that they are unlikely to exist. To avoid this, in our recent work [23], we opt for
returning only the top-k query answers, ranked by their probabilities. Besides
the benefit of presenting only the high-probability answers to the user, top-k ap-
proaches allow for significant runtime speed-ups. The reason is that we can save
on computations for the neglected low-probability answers. Thus, an algorithmic
approach for bounding the probabilities of the top-k answers represented via a
novel notion of first-order lineage formulas is developed in this section.
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Example 29. Figure 4 depicts a probabilistic database in the movie domain.
By the given deduction rules we intend to derive actors and directors who are
known for working on movies in the crime genre as expressed by the query
KnownFor(X,Crime).

Query:
KnownFor(X,Crime)

Deduction Rules:

KnownFor(X,Y ) ← BestDirector (X,Z) ∧ Category(Z, Y )
KnownFor(X,Y ) ←WonAward(Z,BestPicture)∧ActedOnly(X,Z)∧Category (Z, Y )
BestDirector (X,Z) ← Director (X,Z) ∧WonAward(Z,BestDirector )
ActedOnly(X,Z) ← ActedIn(X,Z) ∧ ¬Directed(X,Z)

Probabilistic Database Tuples:

Directed ActedIn
Director Movie p Actor Movie p

I1 Coppola ApocalypseNow 0.8 I4 Brando ApocalypseNow 0.6
I2 Coppola Godfather 0.9 I5 Pacino Godfather 0.3
I3 Tarantino PulpFiction 0.7 I6 Tarantino PulpFiction 0.4

WonAward Category
Movie Award p Movie Category p

I7 ApocalypseNow BestScript 0.3 I11 ApocalypseNow War 0.9
I8 Godfather BestDirector 0.8 I12 Godfather Crime 0.5
I9 Godfather BestPicture 0.4 I13 PulpFiction Crime 0.9
I10 PulpFiction BestPicture 0.9 I14 Inception Drama 0.6

Fig. 4. Example PDB with a Query and Deduction Rules

When we execute the query, we obtain the following three answers together
with their lineages:

Answer Lineage Probability
KnownFor(Coppola ,Crime) I2 ∧ I8 ∧ I12 0.36
KnownFor(Tarantino,Crime) I10 ∧ I6 ∧ ¬I3 ∧ I13 0.10
KnownFor(Pacino,Crime) I9 ∧ I5 ∧ I12 0.06

Now, imagine we are not interested in all answers, as in the table above, but
rather in the most probable answer, e.g., KnownFor(Coppola,Crime). This is
the setting of the present section. We will elaborate on how to compute the
k most likely answers efficiently by (1) not fully computing lineage and (2)
pruning other less probable answers, such as KnownFor(Tarantino,Crime) and
KnownFor(Pacino,Crime), as early as possible.



Querying and Learning in Probabilistic Databases 345

5.1 First-Order Lineage

To handle partial grounding states, we next extend the definition of propositional
lineage from Subsection 3.4 to a new notion of first-order lineage [23], which
hence can contain variables and quantifiers. In contrast to propositional lineage,
a first-order lineage formula does not necessarily represent a single query answer,
but may rather represent entire sets of answers via variables that have not been
bound to constants by the grounding procedure yet. Each distinct query answer
in such a set will thus be characterized by constants once the query variables
become bound by the grounding procedure.

Throughout this section, we assume the extensional relations to be duplicate-
free. That is, there is no pair of tuples having the same arguments. This as-
sumption facilitates the theoretical analysis which follows. Still, in practice, we
could always remove potential duplicates by an independent-or projection over
the input relations as a preprocessing step.

Deduction Rules with Quantifiers. To facilitate the construction of first-
order lineage, we will write out the existential quantifiers that occur only in the
bodies of the deduction rules explicitly, which is captured more precisely by the
following definition.

Definition 22. A first-order deduction rule is a logical rule of the form

R(X̄) ← ∃X̄e

∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄A)

where

1. all requirements of Definition 2 hold;

2. X̄e = (
⋃
i=1,...,nVar(X̄i))\Var(X̄)

The difference to Definition 2 might seem subtle, but we this time explicitly
enforce all variables X̄e, which occur in positive literals Ri(X̄i), but not in the
head R(X̄), to be existentially quantified. This still is in accordance to stan-
dard Datalog semantics [2]. Later however, when constructing first-order lineage
formulas, we will need to trace and maintain the existential quantifiers in the
lineage formulas explicitly.

Example 30. Let us adapt the deduction rules of Figure 4 to Definition 22 by
writing the quantifiers explicitly:

KnownFor(X,Y ) ← ∃Z BestDirector(X,Z) ∧ Category(Z, Y )

KnownFor(X,Y ) ← ∃Z
(

WonAward(Z,BestPicture) ∧ActedOnly(X,Z)
∧ Category(Z, Y )

)

BestDirector(X,Z) ← Director(X,Z) ∧WonAward(Z,BestDirector)
ActedOnly(X,Z) ← ActedIn(X,Z) ∧ ¬Directed(X,Z)
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Top-Down Grounding with First-Order Lineage. Our main observation
for this section is that first-order lineage can be constructed from a top-down
grounding procedure in Datalog and can thus capture any intermediate state in
this process. In a top-down approach, we start at the query literals and iteratively
expand the deduction rules until we reach the database tuples. In Section 3.4,
the direction was reversed, since we started at the database until we ended up at
the query. As first theoretical tool, we establish consistent vectors of constants ā
and mixtures of variables and constants X̄. This technique enables us to match
first-order literals against database tuples.

Definition 23. Let Xi and ai denote the i-th entry in the vector of variables
and constants X̄ and the vector of constants ā, respectively. We call X̄ and ā
consistent, if

∀Xi ∈ X̄ : Xi is a constant⇒ Xi = ai

In other words, all constants in the vector X̄ have to match the constant in ā
at the respective position.

Example 31. The vectors (X,Crime) and (Coppola,Crime) are consistent, as the
constant in the second entry occurs in both vectors.

Based on consistent vectors, we gather all constants binding a variable in a
set of tuples. Later, this allows us to collect all tuples from the database, which
match a first-order literal.

Definition 24. Let T be a set of tuples and R(X̄) be a literal with extensional
relation R. Then, the set of constants from T , which bind the variable Xi in X̄
is:

Bindings(Xi, R(X̄), T ) := {ai | R(ā) ∈ T , X̄ and ā consistent}
We note that ai and Xi refer to i-th entry of ā and X̄ , respectively. In general,

the above set can be empty or reach the same cardinality as T .
Example 32. Let the tuples of Figure 4 establish T . Then, considering the literal
Directed(Coppola, Y ) we obtain the following bindings for the variable Y :

Bindings(Y,Directed(Coppola , Y ), T ) = {ApocalypseNow ,Godfather}
The last technical prerequisite before introducing the construction of first-

order lineage are logical equivalences which eliminate quantifiers. For this, as-
suming that a1, . . . , an are all possible constants for the variable X , then the
following two equivalences [2,65] hold:

∃XΦ ≡ σa1(Φ) ∨ · · · ∨ σan(Φ)
∀XΦ ≡ σa1(Φ) ∧ · · · ∧ σan(Φ)

(16)

Here, σai is shorthand for σ(X) = ai. Finally, we establish the top-down coun-
terpart to Definition 11 for first-order lineage. We create first-order lineage by
starting with the query literals and then by iteratively replacing the first-order
literals by the bodies of the respective deduction rules and, finally, by tuples
from the database.
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Definition 25. Let a set of tuples T , a set of deduction rules D, a first-order
lineage formula Φ, and a literal R(X̄) which occurs in Φ be given. We define the
expansion of R(X̄) in Φ by a function:

SLD : Literals × FirstOrderLineage → Set [FirstOrderLineage]

In detail:

1. If R is intensional, then:

SLD(R(X̄), Φ) :=
{
Φ[R(X̄)/

∨
(R(X̄′)←Ψ)∈D σX̄(Ψ)]

}

where σX̄ ’s image coincides with X̄.
2. If R is extensional, we initialize:

S0 := {Φ}
and then iterate over all variables X ∈ Var(X̄):
(a) If X is a query variable:

Si := {σa(Φ′) | Φ′ ∈ Si−1, a ∈ Bindings(X,R(X̄), T )}
where σa(X) = a.

(b) If X is bound by ∃X, then we replace the subformula ∃X Ψ of Φ in Si
by σa1(Ψ) ∨ · · · ∨ σan(Ψ) where all ai ∈ Bindings(X,R(X̄), T ).

(c) If X is bound by ∀X, then we replace the subformula ∀X Ψ of Φ in Si
by σa1(Ψ) ∧ · · · ∧ σan(Ψ) where all ai ∈ Bindings(X,R(X̄), T ).

Finally, we replace all ground literals R(ā) in the last Si by their tuple iden-
tifier I and assign SLD(R(X̄), Φ) := Si.

3. If there is no match to R(X̄), neither in T nor in D, then:

SLD(R(X̄), Φ) := {Φ[R(X̄)/false]}

4. If R is arithmetic and Var(X̄) = ∅, then we evaluate R(X̄) to a constant
truth value V (thus assigning true or false), and we set:

SLD(R(X̄), Φ) := {Φ[R(X̄)/V ]}
The above definition is admittedly more involved than the previous definition
of propositional lineage. In the first case, we address intensional literals R(X̄),
where we exchange R(X̄) for the disjunction of the deduction rules having R in
their head literal. Since X̄ can contain constants, we propagate them to the rules’
bodies by writing σX̄(Ψ). Extensional literals, which are the subject of the second
case, can yield sets of first-order lineage formulas. We proceed by considering
each variable individually and distinguish between query variables (see Defini-
tion 6), existentially bound variables, and universally bound variables. If X is a
query variable, then each constant a that yields a valid binding to X produces
a new distinct set of query answers represented by the lineage formula σa(Φ

′).
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Conversely, if X is existentially quantified, we apply Equation (16) to expand the
formula by introducing a disjunction ranging over the constants a1, . . . , an which
bind X . Analogously, a universally quantified X yields the conjunction over the
constants a1, . . . , an. The third case again reflects a closed-world assumption [2],
where we replace a literal with no match by the constant false. Finally, if we have
an arithmetic literal that has only constants as arguments, we evaluate it to its
truth value. We can safely assume that all arguments of the arithmetic literal are
finally going to be bound to constants, because these must be bound to at least
one positive, relational literal (see Definition 2). What we omitted for brevity
are constants in the head literal of a deduction rule. Since these constants bind
variables as in extensional literals (the second case), a mixture of the first and
second case arises.

Example 33. We illustrate Definition 25 by providing an example for each case.
As for T we assume it to comprise all tuples of Figure 4.

1. We expand the formula Φ := KnownFor(X,Crime) over the deduction rules
of Example 30. Since KnownFor is an intensional relation, we start with
the first case of Definition 25. There, the substitution σX̄ binds the second
argument to Crime:

σX̄(Y ) = Crime

Since there are two rules having KnownFor in the head literal we apply the
substitution to both bodies which then yields:

⎧
⎪⎪⎨

⎪⎪⎩

(∃Z BestDirector(X,Z) ∧ Category(Z,Crime))
∨(

∃Z WonAward(Z,BestPicture)∧
ActedOnly(X,Z) ∧ Category(Z,Crime)

)

⎫
⎪⎪⎬

⎪⎪⎭

2. (a) Imagine we are given the first-order lineage formula

Φ := BestDirector(X,Z) ∧Category(Z,Crime)

and we intend to expand the literal Category(Z,Crime). Here, Category
is an extensional relation. First, we determine the bindings of Z, which
are Godfather and PulpFiction. Since Z is not quantified, but a query
variable, we obtain several formulas, one for each of the constants:

{
(BestDirector (X,Godfather ) ∧ Category(Godfather ,Crime)),

(BestDirector(X,PulpFiction) ∧ Category(PulpFiction ,Crime))

}

(b) In this case, we quantify Z existentially and otherwise keep the previous
formula:

Φ := ∃Z BestDirector (X,Z) ∧ Category(Z,Crime)
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Then, we expand the Category literal by case 2(b) of Definition 25 which
results in a disjunction over the two constants Godfather and PulpFic-
tion:
⎧
⎨

⎩

(BestDirector(X,Godfather ) ∧ Category(Godfather ,Crime))
∨

(BestDirector(X,PulpFiction) ∧ Category(PulpFiction ,Crime))

⎫
⎬

⎭

(c) Let us consider a universal quantifier instead:

Φ := ∀Z BestDirector (X,Z) ∧ Category(Z,Crime)

When applying a SLD step to the Category literal, we instantiate Z by
the two constants Godfather and PulpFiction to obtain the conjunction:
⎧
⎨

⎩

(BestDirector(X,Godfather ) ∧ Category(Godfather ,Crime))
∧

(BestDirector(X,PulpFiction) ∧ Category(PulpFiction ,Crime))

⎫
⎬

⎭

3. Trying to resolve the second literal of

Φ := ∃Z BestDirector(X,Z) ∧ Category(Z,Comedy)

over T delivers no result. Hence, we replace it by false which yields:

{∃Z BestDirector(X,Z) ∧ false}
4. In the last case, we have an arithmetic literal, for example

I1 ∧ I2 ∧ ApocalypseNow 	= Godfather

which we then evaluate to I1 ∧ I2 ∧ true.

Analogously to the Disjunctive Normal Form (DNF) for propositional formu-
las, any first-order formula can equivalently be transformed into prenex form by
pulling all quantifiers in front of the formula. The remaining formula can again
be transformed into DNF, which is then called Prenex Disjunctive Normal Form
(PDNF) [65].

Next, we devise two formal properties of first-order lineage formulas. First, the
existence of at least one proof implies that all query variables are bound. Second,
unbound query variables imply that a first-order lineage formula represents a set
of query answers.

Proposition 6. Expanding a query Q(X̄) with query variables X̄ to first-order
lineage by repeatedly applying Definition 25 has the following properties:

1. If at least one clause in the disjunctive normal form of the lineage formula
is propositional, then all query variables X̄ are bound to constants.

2. If at least one query variable X ∈ X̄ is unbound a lineage formula represents
a (potentially empty) set of query answers.
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Proof. We prove both statements separately.

1. Without loss of generality, we assume the formula to be in PDNF. Then,
every clause stands for one proof of the answer candidate. When one of
these clauses is propositional, all query variables within this clause were
bound and hence become bound in the entire formula.

2. Since a query variable can be bound to many constants, each representing
a different query answer, the first-order lineage formula represents all these
answers.

5.2 Probability Bounds for Lineage Formulas

In this section, we develop lower and upper bounds for the probability of any
query answer that can be obtained from grounding a first-order lineage formula.
We proceed by constructing two propositional lineage formulas φlow and φup

from a given first-order lineage formula Φ. Later, the probabilities of φlow and
φup serve as lower and upper bounds on the probabilities of all query answers
captured by Φ. More formally, if φ1, . . . , φn represent all query answers we would
obtain by fully grounding Φ, then it holds that:

∀i ∈ {1, . . . , n} : P (φlow ) ≤ P (φi) ≤ P (φup)

Building upon results of [26,47,53], we start by considering bounds for propo-
sitional formulas, from which we extend to the more general case of first-order
lineage. Then, we show that these bounds converge monotonically to the prob-
abilities P (φi) of each query answer φi, as we continue to ground Φ.

Bounds for Propositional Lineage. Following [47], we relate the probability
of two propositional lineage formulas φ and ψ via their sets of modelsM(φ) and
M(ψ) (see Equation (4)), i.e., the sets of possible worlds over which φ and ψ
evaluate to true.

Proposition 7. For two propositional lineage formulas φ and ψ it holds that:

M(φ) ⊆M(ψ) ⇒ P (φ) ≤ P (ψ)

Proof.

P (φ)
Equation (5)

=
∑
W∈M(φ) P (W)

≤ ∑
W∈M(φ) P (W) +

∑
W∈M(ψ)\M(φ) P (W)

M(φ)⊆M(ψ)
=

∑
W∈M(ψ) P (W)

Equation (5)
= P (ψ)

Since we assumeM(φ) ⊆ M(ψ), the possible worlds satisfying φ fulfill ψ as
well. However, there might be more worlds satisfying ψ but not φ. This might
yield more terms over which the sum of Equation (5) ranges, and thus we obtain
P (φ) ≤ P (ψ).
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Example 34. Consider the two propositional formulas φ ≡ I1 and ψ ≡ I1 ∨ I2.
FromM(I1) ⊆M(I1∨ I2) it follows that P (I1) ≤ P (I1∨ I2), which we can easily
verify by Equation (5).

To turn Proposition 7 into upper and lower bounds, we proceed by considering
conjunctive clauses in the form of conjunctions of propositional literals. Then,
following a result from [47], we obtain the following proposition.

Proposition 8. Let φ, ψ be two propositional, conjunctive clauses. It holds that:

M(φ) ⊆M(ψ) ⇔ Tup(φ) ⊇ Tup(ψ)

The above statement expresses that adding literals to a conjunction φ removes
satisfying worlds fromM(φ).

Example 35. For the two clauses I1∧I2 and I1 it holds that Tup(I1∧I2)⊇Tup(I1)
and thus Proposition 8 yieldsM(I1 ∧ I2)⊆M(I1).

We now establish a relationship between two formulas in Disjunctive Normal
Form (DNF) (see Definition 12) via their conjunctive clauses as in [47,53]. Since
any propositional formula can be transformed equivalently into DNF, this result
is generally applicable.

Lemma 3. For two propositional DNF formulas φ ≡ φ1 ∨ · · · ∨ φn and ψ ≡
ψ1 ∨ · · · ∨ ψn, it holds that:

∀φi∃ψj :M(φi) ⊆M(ψj)⇒M(φ) ⊆M(ψ)

If we can map all clauses φi of a formula φ to a clause ψj of ψ with more
satisfying worlds, i.e.,M(φi) ⊆M(ψj), then ψ has more satisfying worlds than
φ. This mapping of clauses is established via Proposition 8.

Example 36. For the propositional DNF formula φ ≡ (I1 ∧ I2)∨ (I1 ∧ I3)∨ I4, we
can map each conjunctive clause in φ to a clause in ψ ≡ I1 ∨ I4. Hence, ψ has
more models than φ, i.e.,M(φ) ⊆M(ψ).

Thus, Lemma 3 enables us to compare the probabilities of propositional for-
mulas in DNF based on their clause structure.

Converting Formulas to DNF. When transforming any propositional for-
mula into DNF, we can first iteratively apply De Morgan’s law [65] which pushes
negations down in a formula:

¬∧i Φi ≡
∨
i ¬Φi

¬∨i Φi ≡
∧
i ¬Φi

(17)

Thereafter, we apply the distributive law which allows the following observation.

Observation 13. If a tuple I occurs exactly once in a propositional formula φ,
then all occurrences of I in the DNF of φ have the same sign.
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The reason is that the sign of a tuple I changes only when De Morgan’s law
is applied. However, when applying De Morgan’s law, no tuples are duplicated.
When utilizing the distributive law, tuples are duplicated but preserve their
signs.

Example 37. Applying the distributive law to (I1 ∨ I2) ∧ ¬I3 yields (I1 ∧ ¬I3) ∨
(I2 ∧ ¬I3). Now, I3 occurs twice, but its sign was preserved.

Bounds for First-Order Lineage. For our following constructions on first-
order formulas, we assume the first-order formulas to be given in PDNF. Next,
given a first-order lineage formula Φ, we construct two propositional formulas
φlow and φup whose probabilities then serve as lower and upper bound on Φ,
respectively.

Definition 26. Let Φ be a first-order lineage formula.

1. We construct the propositional lineage formula φup by substituting every lit-
eral R(X̄) in Φ with
– true if R(X̄) occurs positive in the PDNF of Φ, or
– false if R(X̄) occurs negated in the PDNF of Φ.

2. We construct the propositional lineage formula φlow by substituting every
literal R(X̄) in Φ with
– false if R(X̄) occurs positive in the PDNF of Φ, or
– true if R(X̄) occurs negated in the PDNF of Φ.

The idea of the above definition is as follows. If we replace a positive literal
by true, we add models to the resulting formula. Hence, due to Proposition 7
the resulting formula can serve as an upper bound on the probability, which we
show formally later. The remaining three cases are analogous. We note that R
can be intensional, extensional and even arithmetic.

Example 38. We consider Figure 4 and the first-order lineage formula:

Φ := I1 ∧ ∃XWonAward(X,BestPicture)

Then, the upper bound is given by P (φup) = P (I1 ∧ true) = p(I1) = 0.8 and
the lower bound is P (φlow ) = P (I1 ∧ false) = P (false) = 0. If we execute one
SLD step (see Definition 25) on Φ we obtain I1 ∧ (I9 ∨ I10). Its probability is
P (I1∧(I9∨I10) = 0.8 ·(1−(1−0.4) ·(1−0.9) = 0.752 which is correctly captured
by the upper and lower bound.

As a next step, we discuss the application of Definition 26 to general first-order
lineage formulas which do not necessarily adhere any normal form.

Proposition 9. By first exhaustively applying De Morgan’s law of Equation (17)
on a first-order lineage formula Φ, we can apply Definition 26 to Φ, even if Φ is
not in PDNF. Hence, constructing φup and φlow can be done in O(|Φ|).
Proof. We can implement De Morgan by traversing the formula once, which thus
is in O(|Φ|). Subsequently, we traverse the formula again and replace all first-
order literals by true or false as devised in Definition 26. Observation 13 ensures
the replacements to be unique for each literal.
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Convergence of Bounds. Our last step is to show that, when constructing
first-order lineage Φ (see Definition 25) for a fixed query answer φ resulting
from Φ, the probability bounds converge monotonically to the probability of the
propositional lineage formula P (φ) with each SLD step.

Theorem 2. Let Φ1, . . . , Φn denote a series of first-order formulas obtained
from iteratively grounding a conjunctive query via the form of SLD resolution
provided in Definition 25 until we reach the propositional formula φ. Then,
rewriting each Φi to φi,low and φi,up according to Definition 26 creates a mono-
tonic series of lower and upper bounds P (φi,low), P (φi,up) for the probability
P (φ). That is:

0 ≤ P (φ1,low ) ≤ · · · ≤ P (φn,low ) ≤ P (φ)
≤ P (φn,up) ≤ · · · ≤ P (φ1,up) ≤ 1

Proof. The proof proceeds inductively over the structure of Definition 25, where
we show that each SLD step preserves the bounds. We assume the observed
literal R(X̄) to occur positively in the PDNF of Φi. The negated version is
handled analogously.

1. We have an intensional literal R(X̄) which was substituted in Φi by the
disjunction of deduction rules’ bodies, which we call Ψ here, to yield Φi+1.
Because there are only literals and no tuple identifiers in Ψ , Definition 26
yields ψlow ≡ false and ψup ≡ true. Hence, the bounds of Φi+1 are not
altered, which reads as P (φi+1,up) = P (φi,up) and P (φi+1,low ) = P (φi,low ).

2. As in Definition 25, we separate the cases of different variables.

(a) In this case we consider an extensional literal R(X̄) where Var(X̄) are
query variables. Now, SLD(R(X̄), Φi) delivers a set of formulas. Let Φi+1

be an arbitrary formula in this set. We obtain Φi+1 by replacing R(X̄)
in Φi by a tuple identifier I. Hence, in the DNF of φi+1,up we added I to
the clauses, whereas in the DNF of φi,up we replace R(X̄) by true. Thus,
Lemma 3 applies and we have P (φi+1,up) ≤ P (φi,up). The reasoning for
lower bounds is analogous.

(b) Again, we have an extensional literal R(X̄), but all variables Var(X̄)
are bound by an existential quantifier. As a result, each Φi+1 in the set
SLD(R(X̄, Φi) is constructed from Φi by the first line of Equation (16).
Now, the DNF of φi,up has clauses where R(X̄) was substituted by true.
Then, in φi+1,up each clause featuring a new tuple identifier I can be
mapped to one of these clauses in the DNF of φi,up . Therefore, Lemma 3
gives us P (φi+1,up) ≤ P (φi,up). Again, lower bounds are handled analo-
gously.

(c) If the variables X̄ in the extensional literal R(X̄) are universally quan-
tified, then R(X̄) in Φi is replaced by a conjunction (as given in the
second line of Equation (16)) to yield Φi+1. In the DNF of φi,up , we
employed true whenever R(X̄) occurred. Conversely, in φi+1,up we re-
placed R(X̄) by a conjunction of tuple identifiers. The resulting extended
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clauses of φi+1,up can be mapped to a clause of φi,up , so Lemma 3 applies:
P (φi+1,up) ≤ P (φi,up). The lower bounds are addressed analogously.

3. Here, a literal R(X̄) was replaced in Φi by false to yield Φi+1. Hence, for the
lower bounds constructed according to Definition 26, we have P (φi,low ) =
P (φi+1,low ). For the upper bounds Lemma 3 delivers P (φi+1,up) ≤ P (φi,up),
since the PDNF of Φi+1 has fewer clauses as the PDNF of Φi.

4. In the last case, R(X̄) is arithmetic and X̄ consists of constants only. Now,
if R(X̄) evaluates to true, we have φi,up = φi+1,up and hence also P (φi,up) =
P (φi+1,up). For the lower bound, the DNF of φi+1,low can have more clauses
than the DNF of φi,low and so Lemma 3 comes to our rescue again:
P (φi,low ) ≤ P (φi+1,low ). Conversely, if R(X̄) evaluates to false, the rea-
soning for the upper and lower bounds is inverted.

The resulting lower and upper bounds for all answer candidates can be plugged
into any top-k algorithm (see [34] for an extensive overview) that—in our case—
will then iteratively refine these lower and upper bounds via SLD resolution
until a termination condition is reached. The seminal line of threshold algorithms
proposed by Fagin, Lotem and Naor [24], for example, iteratively maintains two
disjoint sets of top-k answers and remaining answer candidates, coined top-k
candidates , respectively, and it terminates when:

min{P (φi,low ) | φi ∈ top-k} ≥ max{P (φi,up) | φi ∈ candidates}

6 Learning Tuple Probabilities

Most works in the context of PDBs assume the database tuples along with their
probabilities to be given as input. Also the preceding sections of this chapter
followed this route. Nevertheless, when creating, updating or cleaning a PDB,
the tuple probabilities have to be altered or even be newly created—in other
words: they have to be learned. Learning the probability values of databases
tuples from labeled lineage formulas thus is the subject of the present section
and is also discussed in more detail in [22].

Example 39. Our running example resembles the information-extraction setting
of Section 1.1, in which we employ a set of textual patterns to extract facts from
various Web domains. However, instead of knowing all probabilities of all tuples
the respective values in the UsingPattern and FromDomain relations are missing
as indicated by the question marks in Figure 5. We thus are unsure about the
reliability—or “trustworthiness”—of the textual patterns and the Web domains
that led to the extraction of our remaining facts, respectively. Grounding the
deduction rules of Equation (1) and Equation (2) against the database tuples of
Figure 5 yields the new tuples BornIn(Spielberg, Cinncinati), BornIn(Spielberg,
LosAngeles), andWonPrize(Spielberg,AcademyAward). Figure 6 shows these new
tuples along with their propositional lineage formulas.
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WonPrizeExtraction
Subject Object Pid Did p

I1 Spielberg AcademyAward 1 1 0.6
I2 Spielberg AcademyAward 2 1 0.3

BornInExtraction
Subject Object Pid Did p

I3 Spielberg Cinncinati 3 1 0.7
I4 Spielberg LosAngeles 3 2 0.4

UsingPattern FromDomain
Pid Pattern p Did Domain p

I5 1 Received ? I8 1 Wikipedia.org ?
I6 2 Won ? I9 2 Imdb.com ?
I7 3 Born ?

Fig. 5. Example Probabilistic Database with Missing Probability Values

A closer look at the new tuples reveals, however, that not all of them are cor-
rect. For instance, BornIn(Spielberg,LosAngeles) is wrong, so we might rather la-
bel it with the probability of 0.0. Moreover,WonPrize(Spielberg,AcademyAward)
is likely correct, but we are unsure, hence we label it with the probability of 0.7,
as shown on top of Figure 6. Given the probability labels of the query answers,
the goal of the learning procedure is to learn the database tuples’ unknown prob-
ability values for UsingPattern and FromDomain, such that the lineage formulas
again produce the given probability labels. The probabilities of the tuples of
WonPrizeExtraction and BornInExtraction, on the other hand, should remain
unchanged.

Fig. 6. Partially Labeled Lineage Formulas
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6.1 Encoding Propositional Lineage into Polynomials

For the theoretical analysis of the learning problem presented in this section,
we devise an alternative way of computing probabilities of lineage formulas via
polynomial expressions. First, we reduce the number of terms in the sum of
Equation (5) by considering just tuples Tup(φ) that occur in the propositional
lineage formula φ.

Proposition 10. We can compute P (φ) relying on tuples in Tup(φ), only, by
writing:

P (φ) =
∑

V∈M(φ,Tup(φ))

P (V ,Tup(φ))
︸ ︷︷ ︸
Definition 10

(18)

Proof.

P (φ) =
∑
W∈M(φ,T ) P (W , T )

=
(∑

V∈M(φ,Tup(φ)) P (V ,Tup(φ))
)
·
(∑

V⊆(T \Tup(φ))P (V , T \Tup(φ))
)

︸ ︷︷ ︸
=1 by Proposition 1

Thus, Equation (18) expresses P (φ) as a polynomial. Its terms are defined as in
the third item of Definition 10, and the variables are p(I ) for I ∈ Tup(φ). The
degree of the polynomial is limited as follows.

Corollary 1. The probability P (φ) of a propositional lineage formula φ can be
expressed by a multi-linear polynomial over variables p(I ), for I ∈ Tup(φ), with
a degree of at most |Tup(φ)|.
Proof. By inspecting Proposition 10, we note that the sum ranges over subsets
of Tup(φ) only, hence each term has a degree of at most |Tup(φ)|.
Example 40. Considering the propositional lineage formula φ ≡ I1 ∨ I2, the oc-
curring tuples are Tup(φ) = {I1, I2}. Then, it holds that {I1, I2} |= φ, {I1} |= φ,
and {I2} |= φ. Hence, we can write P (φ) = p(I1) ·p(I2)+p(I1) · (1−p(I2))+ (1−
p(I1)) · p(I2). Thus, P (φ) is a polynomial over the variables p(I1), p(I2) and has
degree 2 = |Tup(φ)| = |{I1, I2}|.

6.2 Learning Problem

We now move away from the case where the probability values of all database tu-
ples are known, which was a basic assumption we made for the previous sections.
Instead, we intend to learn the unknown probability values of (some of) these tu-
ples (e.g., of I5–I9 in Example 39). More formally, for a tuple-independent PDB
(T , p), we consider Tl ⊆ T to be the set of base tuples for which we learn their
probability values. That is, initially p(I ) is unknown for all I ∈ Tl. Conversely,
p(I ) is known and fixed for all I ∈ T \Tl. To be able to complete p(I ), we are
given labels in the form of pairs (φi, li), each containing a propositional lineage
formula φi (i.e., a query answer) and its desired probability li. We formally define
the resulting learning problem as follows.
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Definition 27. We are given a probabilistic database (T , p), a set of tuples Tl ⊆
T with unknown probability values p(Il) and a multi-set of given labels L =
〈(φ1, l1), . . . , (φn, ln)〉, where each φi is a propositional lineage formula over T
and each li ∈ [0, 1] ⊂ R is a probability for φi. Then, the learning problem is
defined as follows:

Determine: p(Il) ∈ [0, 1] ⊂ R for all Il ∈ Tl
such that: P (φi) = li for all (φi, li) ∈ L

Intuitively, we aim to set the probability values of the base tuples Il ∈ Tl such
that the labeled lineage formulas φi again yield the probability li. We want to
remark that all probability values of tuples in T \Tl remain unaltered. Also, we
note that the Boolean labels true and false can be represented as li = 0.0 and
li = 1.0, respectively. Hence, Boolean labels resolve to a special case of the labels
of Definition 27.

Example 41. Formalizing the problem setting of Example 39, we obtain T :=
{I1, . . . , I9}, Tl := {I5, . . . , I9} with labels ((I1 ∧ I5 ∧ I8)∨ (I2 ∧ I6 ∧ I8), 0.7), and
((I3 ∧ I7 ∧ I9), 0.0).

6.3 Properties of the Learning Problem

We next discuss the complexity of solving the learning problem. Unfortunately, it
exhibits hard instances. First, computing P (φi) may be #P-hard (see Lemma 2),
which would require many Shannon expansions to compute an exact probability
P (φi). But even for cases when all P (φi) can be computed in polynomial time
(i.e., when Equation (6) is applicable), there are combinatorially hard cases of
the above learning problem.

Lemma 4. For a given instance of the learning problem of Definition 27, where
all P (φi) with (φi, li) ∈ L can be computed in polynomial time, deciding whether
there exists a solution to the learning problem is NP-hard.
Proof. We encode the 3-Satisfiability Problem (3SAT) [29] for a Boolean formula
ψ ≡ ψ1∧· · ·∧ψn in Conjunctive Normal Form (CNF) into the learning problem
of Definition 27. For each variable Xi ∈ Var(ψ), we create two tuples Ii, I

′
i

whose probability values will be learned. Hence, 2 · |Var(ψ)| = |Tl| = |T |. Then,
for each Xi, we add the label ((Ii ∧ I ′i ) ∨ (¬Ii ∧ ¬I ′i ), 1.0). The corresponding
polynomial equation p(Ii) · p(I ′i ) + (1 − p(Ii)) · (1 − p(I ′i )) = 1.0 has exactly
two possible solutions for p(Ii), p(I

′
i ) ∈ [0, 1], namely p(Ii) = p(I ′i ) = 1.0 and

p(Ii) = p(I ′i ) = 0.0. Next, we replace all variables Xi in ψ by their tuple Ii.
Now, for each clause ψi of ψ, we introduce one label (ψi, 1.0). Altogether, we
have |L| = |Var(ψ)| + n labels for the problem of Definition 27. Each labeled
lineage formula φ has at most three variables, hence P (φ) takes at most 8 steps.
Still, Definition 27 solves 3SAT, where the learned values of each pair of p(Ii),
p(I ′i ) (either 0.0 or 1.0) correspond to a truth value of all Xi for a satisfying
assignment of ψ. From this, it follows that the decision problem formulated in
Lemma 4 is NP-hard.



358 M. Dylla, M. Theobald, and I. Miliaraki

After discussing the complexity of the learning problem, we characterize its
solutions. First, there might also be inconsistent instances of the learning prob-
lem. That is, it may be impossible to define p : Tl → [0, 1] such that all labels
are satisfied.

Example 42. If we consider Tl := {I1, I2} with the labels L := 〈(I1, 0.2), (I2, 0.3),
(I1 ∧ I2, 0.9)〉, then it is impossible to fulfill all three labels at the same time.

From a practical point of view, there remain a number of questions regarding
Definition 27. First, how many labels do we need in comparison to the number
of tuples for which we are learning the probability values (i.e., |L| vs. |Tl|)?
And second, is there a difference in labeling lineage formulas that involve many
tuples or very few tuples (i.e., |Tup(φi)|)? These questions are addressed by the
following theorem. It is based on the computation of probabilities of lineage
formulas via their polynomial representation as in Corollary 1. We write the
conditions of the learning problem P (φi) = li as polynomials over variables p(Il)
of the form P (φi) − li, where Il ∈ Tl and the probability values p(I ) for all
I ∈ T \Tl are fixed and hence represent constants.

Theorem 3. If the labeling is consistent, the problem instances of Definition 27
can be classified as follows:

1. If |L| < |Tl|, the problem has infinitely many solutions.
2. If |L| = |Tl| and the polynomials P (φi) − li have common zeros, then the

problem has infinitely many solutions.
3. If |L| = |Tl| and the polynomials P (φi)− li have no common zeros, then the

problem has at most
∏
i |Tup(φi) ∩ Tl| solutions.

4. If |L| > |Tl|, then the polynomials P (φi) − li have common zeros, thus re-
ducing this to one of the previous cases.

Proof. The first case is a classical under-determined system of equations. In the
second case, without loss of generality, there are two polynomials P (φi)− li and
P (φj)− lj with a common zero, say p(Ik) = ck. Setting p(Ik) = ck satisfies both
P (φi) − li = 0 and P (φj) − lj = 0, hence we have L′ := L\〈(φi, li), (φj , lj)〉
and T ′l := Tl\{Ik} which yields the first case of the theorem again (|L′| < |T ′l |).
Regarding the third case, Bezout’s theorem [18], a central result from algebraic
geometry, is applicable: for a system of polynomial equations, the number of so-
lutions (including their multiplicities) over variables in C is equal to the product
of the degrees of the polynomials. In our case, the polynomials are P (φi)−li with
variables p(Il) where Il ∈ Tl. So, according to Corollary 1 their degree is at most
|Tup(φi)∩Tl|. Since our variables p(Il) range only over [0, 1] ⊂ R, and Corollary 1
is an upper bound only,

∏
i |Tup(φi) ∩ Tl| is an upper bound on the number of

solutions. In the fourth case, the system of equations is over-determined, such
that redundancies like common zeros reduces the problem to one of the previous
cases.

Example 43. We illustrate the theorem by providing examples for each of the
four cases.
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1. In Example 41’s formalization of Example 39, we have |Tl| = 5 and |L| = 2.
So, the problem is under-specified and has infinitely many solutions, since
assigning p(I7) = 0.0 enables p(I9) to take any value in [0, 1] ⊂ R.

2. We assume Tl = {I5, I6, I7}, and L = 〈(I5 ∧¬I6, 0.0), (I5 ∧¬I6 ∧ I7, 0.0), (I5 ∧
I7, 0.0)〉. This results in the equations p(I5) · (1 − p(I6)) = 0.0, p(I5) · (1 −
p(I6)) · p(I7) = 0.0, and p(I5) · p(I7) = 0.0, where p(I5) is a common zero to
all three polynomials. Hence, setting p(I5) = 0.0 allows p(I6) and p(I7) to
take any value in [0, 1] ⊂ R.

3. Let us consider Tl = {I7, I8}.
(a) If L = 〈(I7, 0.4), (I8, 0.7)〉, then there is exactly one solution as predicted

by |Tup(I7)| · |Tup(I8)| = 1.

(b) If L = 〈(I7 ∧ I8, 0.1), (I7 ∨ I8, 0.6)〉, then there are two solutions, namely
p(I7) = 0.2, p(I8) = 0.5 and p(I7) = 0.5, p(I8) = 0.2. Here,

∏
i |Tup(φi)∩

Tl| = |Tup(I7 ∧ I8)| · |Tup(I7 ∨ I8)| = 4 is an upper bound.

4. We extend the second case of this example by the label (I5, 0.0), thus yielding
the same solutions but having |L| > |Tl|.

In general, a learning problem instance has many solutions, where Definition 27
does not specify a precedence, but all of them are equivalent. The number of
solutions shrinks by adding labels to L, or by labeling lineage formulas φi that
involve fewer tuples in Tl (thus resulting in a smaller intersection |Tup(φi)∩Tl|).
Hence, to achieve more uniquely specified probabilities for all tuples Il ∈ Tl, in
practice we should obtain the same number of labels as the number of tuples for
which we learn their probability values, i.e., |L| = |Tl|, and label those lineage
formulas with fewer tuples in Tl.

Now that we characterized the number of solutions, we furthermore provide
an insight on their nature. We give conditions on learning problems which imply
the existence of an integer solution, i.e., that assigns only 0 or 1 as tuple prob-
abilities. Hence, the resulting tuples are either non-existent or deterministic as
in conventional databases.

Proposition 11. For a learning problem, where

1. ∀I ∈ T \Tl : p(I) ∈ {0, 1}
2. (φi, li) ∈ L : li ∈ {0, 1}
3.

∧
(φi,1)∈L φi ∧

∧
(φi,0)∈L ¬φi is satisfiable,

there exists an integer solution p′, that is for all Il ∈ Tl : p′(Il) ∈ {0, 1}.

Proof. Due to the first requirement we can remove all tuples in T \Tl from the
labels’ formulas φ, since these tuples correspond to either true or false. Like-
wise, the second condition allows the construction of the formula

∧
(φi,1)∈L φi ∧∧

(φi,0)∈L ¬φi. As we require the existence of a satisfying assignment for this
formula, precisely this assignment is the integer solution.
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(a) Labels of case 3(a) of Example 43 (b) Labels of case 3(b) Example 43

Fig. 7. Visualization of the Learning Problem

Visual Interpretation. Based on algebraic geometry, the learning problem
allows for a visual interpretation. All possible definitions of probability values
for tuples in Tl, that is, p : Tl → [0, 1], span the hypercube [0, 1]|Tl|. In Exam-
ple 43, cases 3(a) and 3(b), the hypercube has two dimensions, namely p(I7) and
p(I8), as depicted in Figures 7(a) and 7(b). Hence, one definition of p specifies
exactly one point in the hypercube. Moreover, all definitions of p that satisfy a
given label define a curve (or plane) through the hypercube (e.g., the two labels
in Figure 7(a) define two straight lines). Also, the points, in which all labels’
curves intersect, represent solutions to the learning problem (e.g., the solutions
of Example 43, case 3(b), are the intersections in Figure 7(b)). If the learning
problem is inconsistent, there is no point in which all labels’ curves intersect.
Furthermore, if the learning problem has infinitely many solutions, the labels’
curves intersect in curves or planes, rather than points.

6.4 Gradient Based Solutions

We formally characterized the learning problem and devised the basic proper-
ties of its solutions. From a visual perspective, Definition 27 established curves
and planes whose intersections represent the solutions (see, e.g., Figure 7(b)).
We now introduce different objective functions that describe surfaces whose op-
tima correspond to these solutions. For instance, the problem of Figure 7(b) has
the surface of Figure 8(a) if we the employ mean squared error (MSE) as the
objective, which will be defined in this section. Calculating a gradient on such
a surface thus allows the application of an optimization method to solve the
learning problem.

Desired Properties. Before we define objective functions for solving the learn-
ing problem, we establish a list of desired properties of these (which we do
not claim to be complete). Later, we judge different objectives based on these
properties.
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Definition 28. An objective function to the learning problem should satisfy the
following three desired properties:

1. All instances of the learning problem of Definition 27 can be expressed, in-
cluding inconsistent ones.

2. If all P (φi) are computable in polynomial time, then also the objective is
computable in polynomial time.

3. The objective is stable, that is L := 〈(φ1, l1), . . . , (φn, ln)〉 and L ∪ 〈(φ′i, li)〉
with φ′i ≡ φi, (φi, li) ∈ L define the same surface.

Here, the first case ensures that the objective can be applied to all instances of
the learning problem. We insist on including inconsistent instances, because they
occur often in practice. The second property restricts a blow-up in computation,
which yields the following useful characteristic: if we can compute P (φ) for all
labels, e.g., for labeled query answers, then we can also compute the objective
function. Finally, the last of the desiderata reflects an objective function’s ability
to detect dependencies between labels. Since φi ≡ φ′i both L and L ∪ 〈(φ′i, li)〉
allow exactly the same solutions, the surface should be the same. Unfortunately,
including convexity of an objective as an additional desired property is not pos-
sible. For example Figure 7(b) has two disconnected solutions, which induce at
least two optima, thus prohibiting convexity. In the following, we establish two
objective functions, which behave very differently with respect to the desired
properties.

Logical Objective. If we restrict the probability labels of the learning prob-
lem to li ∈ {0.0, 1.0}, we can define an objective function based on computing
probabilities of lineage formulas as follows.

Definition 29. Let an instance of the learning problem of Definition 27 be given
by a probabilistic database (T , p), tuples with unknown probability values Tl ⊆ T ,
and labels L = 〈(φ1, l1), . . . , (φn, ln)〉 such that all li ∈ {0.0, 1.0}. Then, the
logical objective is formulated as follows:

Logical (L, p) := P

⎛

⎝
∧

(φi,li)∈L,li=1.0

φi ∧
∧

(φi,li)∈L,li=0.0

¬φi
⎞

⎠ (19)

The above definition is a maximization problem, and its global optima are iden-
tified by Logical (L, p) = 1.0. Moreover, from Definition 13, we may obtain its
derivative.

Example 44. Let T = Tl := {I1, I2} and L := 〈(I1 ∨ I2, 1.0), (I1, 0.0)〉 be given.
Then, Logical(L, p) is instantiated as P ((I1 ∨ I2) ∧ ¬I1) = P (¬I1 ∧ I2). Visually,
this defines a surface whose optimum lies in p(I1) = 0.0 and p(I2) = 1.0, as
shown in Figure 8(b).

With respect to Definition 28, the third desired property is fulfilled, as P (φ′i ∧
φi) = P (φi). Hence, the surface of the logical objective, shown for instance in
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(a) Example 43: 3(b): MSE objective (b) Example 44: Logical objective

(c) Example 46: MSE objective (d) Example 46: MSE objective, unstable

Fig. 8. Visualization of the MSE and Logical Objective Functions

Figure 8(b), is never altered by adding equivalent labels. Still, the first property
is not given, since the probability labels are restricted to li ∈ {0.0, 1.0} and
inconsistent problem instances collapse Equation (19) to P (false), thus rendering
the objective non-applicable. Also, the second property is violated, because in the
spirit of the proof of Lemma 4, we can construct an instance where for each label
P (φi) on its own is computable in polynomial time, whereas the computation of
the probability for Equation (19) is again #P-hard.

Mean Squared Error Objective. Another approach, which is also common
in machine learning, lies in using the mean squared error (MSE) to define the
objective function.

Definition 30. Let an instance of the learning problem of Definition 27 be given
by a probabilistic database (T , p), tuples with unknown probability values Tl ⊆ T ,
and labels L = 〈(φ1, l1), . . . , (φn, ln)〉. Then, the mean squared error objective is
formulated as:

MSE (L, p) := 1

|L|
∑

(φi,li)∈L
(P (φi)− li)

2
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Moreover, its partial derivative with respect to the probability value p(I ) of the
tuple is:

∂MSE (L, p)
∂p(I )

:=
1

|L|
∑

(φi,li)∈L,I∈Tup(φi)

2 · (P (φi)− li) · ∂P (φi)

∂p(I )
︸ ︷︷ ︸

Definition 13

The above formulation is a minimization problem whose solutions have 0.0 as
the target value of the objective function.

Example 45. Example 43, case 3(b), is visualized in Figure 7(b). The correspond-
ing surface induced by the MSE objective is depicted in Figure 8(a) and has its
minima at the solutions of the learning problem.

Judging the above objective by means of Definition 28, we realize that the first
property is met, as there are no restrictions on the learning problem, and incon-
sistent instances can be tackled (but deliver objective values larger than zero).
Furthermore, since the P (φi)’s occur in separate terms of the sum of the ob-
jective, the second desired property is maintained. However, the third desired
property is violated, as illustrated by the following example.

Example 46. In accordance to Example 44 and Figure 8(b), we set T = Tl :=
{I1, I2} and L := 〈(I1 ∨ I2, 1.0), (I1, 0.0)〉. Then, the MSE objective defines the
surface in Figure 8(c). However, if we replicate the label (I1, 0.0), thus resulting in
Figure 8(d) (note the “times two” in the objective), its surface becomes steeper
along the p(I1)-axis, but has the same minimum. Thus, MSE’s surface is not
stable. Instead, it becomes more ill-conditioned [43].

Discussion. Both the logical objective and the MSE objective have optima
exactly at the solutions of the learning problem of Definition 27. With respect
to the desired properties of Definition 28, we summarize the behavior of both
objectives in the following table:

Properties
Objective 1. 2. 3.

Logical × × �
MSE � � ×

The two objectives satisfy opposing desired properties, and it is certainly possi-
ble to define other objectives behaving similarly to one of them. Unfortunately,
there is little hope for an objective that will be adhering to all three proper-
ties. The second property inhibits computational hardness. However, Lemma 4
and the third property’s logical tautology checking (i.e., |= φi ↔ φ′i, which
is co-NP-complete) require this. In this regard the logical objective addresses
both computationally hard problems by computing probabilities, whereas the
MSE objective avoids the latter form of tautology checking.



364 M. Dylla, M. Theobald, and I. Miliaraki

7 Conclusions

In recent years, the need to efficiently manage large amounts of uncertain data
has become evident as more and more data arise from various applications such
as information extraction, sensor networks, and scientific data management. As a
result, PDBs have evolved as an establish field of research in recent years [63]. In
this chapter, we provide an overview of the key concepts of PDBs and the main
challenges than need to be addressed. Specifically, we begin by describing the
main characteristics of probabilistic databases assuming tuple independence, and
we present the respective data model and query evaluation strategies. Apart from
being uncertain, data can be annotated by other dimensions such as time and lo-
cation. In this regard, we describe a closed and complete temporal-probabilistic
database model [21], coined TPDB, which allows us to cope with data that is
variable over time as well as uncertain. Complementary to the basics, we review
state-of-the-art methods in this field and also describe some of our own recent
research results including a top-k style evaluation strategy [23]. The latter at-
tempts to tackle the increased complexity of the probability computation step
involved in query evaluation in PDBs. This is achieved by pruning answer candi-
dates without fully grounding the lineage formula and hence saving also on the
data computation step. Last, although most works assume the probabilities are
provided as input along with the data, this assumption often does not hold and a
learning approach is required. As we consider learning to be a key building block
for future probabilistic database engines, we conclude this chapter by discussing
such a learning approach [22] for creating, updating and cleaning of PDBs.

Acknowledgements. This article is based on the doctoral dissertation by Ma-
ximilian Dylla: “Efficient Querying and Learning in Probabilistic and Temporal
Databases”, Saarland University, February 2014.” [20]
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Abstract. The Semantic Web is finally leaving the lab. In this article,
we examine some practical, industry-oriented Semantic Web systems and
discuss the costs and benefits on this disruptive technology. We focus on
applications for cities and citizens and present a set of key challenges and
solutions made possible using semantics at scale. When applicable, we re-
port on the differentiating factors for Semantic Technologies, showcasing
their unique capabilities, as well as the cost of this paradigm shift.

1 Introduction

The Semantic Web is becoming mainstream beyond the research lab. Large or-
ganizations and technology companies are using Semantic Technologies to pro-
vide global and flexible integration - BBC is using this to connect its online
content1, search engines are using semantics to annotate content on the Web
through Schema.org2. Major vendors are adding RDF capabilities to their of-
ferings - IBM3 and Oracle4 have added SPARQL capability to their databases,
Cray markets an appliance for SPARQL processing5.

The emergence of Semantic Technologies is driven by changes in IT infrastruc-
tures, in terms of information networking, and business, in terms of emergent
opportunities on a data-driven business:

– Siloed information is seen as an inhibitor of efficient business. Enterprises
realize that data is not only usable in the context in which it has been pro-
duced or collected. It is becoming increasingly common that the business
unit responsible for some data collection is not the only consumer of this in-
formation. Information sharing within the business is of course nothing new:
data warehouses and master data management infrastructures have been in
use for at least one decade. What is different is the desire to access informa-
tion as context, in a setting where the information producer/publisher and
information consumer are largely independent.

1 http://www.bbc.co.uk/blogs/internet/posts/Linked-Data-Connecting-

together-the-BBCs-Online-Content
2 http://schema.org
3 http://www-01.ibm.com/support/knowledgecenter/SSEPGG 10.1.0/

com.ibm.swg.im.dbclient.rdf.doc/doc/r0060562.html
4 http://docs.oracle.com/cd/E11882 01/appdev.112/e11828/

sem jena.htm#RDFRM234
5 http://www.yarcdata.com/Products/
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– Data is increasingly seen as an asset. There is an increasing trend towards
data-driven business [1]. In this setting, insights coming from data become
the driver for identifying new business opportunities and optimizing execu-
tion rather than supplementary tools for traditional business disciplines. The
demand for data scientists and executive appointment of chief data officers
(CDO’s) testifies to this trend.

– Organizations realize that cross-domain information is more valuable than
more-of-the-same information. Critical information often lies in multiple do-
mains. By merging information across disciplines, organizations can make
better informed decisions. A good example is dealing with the Social Deter-
minants of Health6: optimizing healthcare delivery is dependent on informa-
tion coming from local government (e.g. about the environment or safety),
transportation (e.g. access to services) and finance (e.g. economic feasibility
of treatments), among others [2]. This multi-domain information not only
calls for efficient data sharing, but also for fit-for-use knowledge sharing
across disciplines.

The rest of this paper is structured as follows: Section 2 provides motivation
and background by describing the characteristics of some information resources
used by the systems this paper. Section 3 describes a set of approaches focused
on the operation of cities. Section 4 describes a set of approaches focused at
the citizens. We discuss some key advantages and disadvantages of Semantic
Technologies and conclude in Section 5.

2 Information Resources

2.1 Scaling Up the Semantic Web: Linked Data

Over the last years, we have witnessed explosive growth in the publication of
Linked Open Data (LOD). This growth happens in multiple dimensions: In terms
of domains, LOD covers a broad range, such as general knowledge (DBPedia),
public administration (IPSV), bioinformatics (Uniprot) and many more. In terms
of size, in 2008, LOD consisted of “several billion” triples7; in 2010, it consisted
of some 13 billion triples8; in 2012, it consisted of some 32 billion triples9. The
users of LOD also changing: initially limited to academia, with the advent of
Linked Enterprise Data, there is an increasing tendency to use Linked Data
within the enterprise. We refer the reader to the respective article in the same
volume for further information regarding Linked Data.

2.2 Urban Data

Cities are both producers and consumers of vast volumes of information. Ur-
ban data comes in many forms, shapes and sizes. Part of this information is

6 http://www.who.int/social_determinants/en/
7 http://events.linkeddata.org/ldow2008/
8 http://events.linkeddata.org/ldow2010/
9 http://events.linkeddata.org/ldow2012/
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generally openly accessible while another can be sensitive from a privacy, secu-
rity or business perspective.

Open Data. Government agencies and other organizations are increasingly
making their data accessible to promote transparency and economic growth.
Since the first data.gov initiative launched by the US government, many city
agencies and authorities have made their data publicly available through content
portals: New York City10, London11, San Francisco12, Boston13, and Dublin14,
to name a few. Sometimes, this data is exposed as Linked Data. Managing Open
and Linked data require that publishers put significant resources. A critical ques-
tion for government agencies is what return-on-investment they are getting for
resources spent in making their data open. This may come as an increase in
economic activity in their constituencies, decrease in administration costs and
increased transparency.

User generated content can provide information outside of the scope of tradi-
tional data sources. For example, a traffic jam that emerges due to an unplanned
protest may be captured through a twitter stream, but missed when examin-
ing weather conditions, event databases, reported roadworks, etc. Additionally,
weather sensors in the city tend to miss localised events such as flooding. These
views of the city combined however, can provide a richer and more complete
view of the state of the city, by merging traditional data sources with messy and
unreliable social media streams.

Closed Data. Not all data can be made publicly accessible, due to privacy
restrictions (e.g. residence occupancy, health-related information), public safety
restrictions (e.g. plans for disaster management) or business reasons (e.g. elec-
tricity consumption can be used to estimate the levels of production). Many
of the systems operating in a city rely on such information - systems for pub-
lic safety, social security, transportation and public administration systems, to
name a few.

More interestingly, for many problems in cities, it is necessary to combine
information across systems. An example domain is person-centred care. As a
simple motivating example, consider an individual quartered in inappropriate
housing while suffering from a relatively minor health issue, aggravated by the
housing condition. As a result, the given individual frequently resorts to visiting
emergency rooms, resulting in significant cost to the healthcare system and a
less effective treatment. By itself, the housing situation does not warrant state
intervention. Nevertheless, resolving it would dramatically improve the health
situation, resulting in a better quality-of-life for the individual and lower costs
for the health system. In addition, a possible conviction for illegally selling pre-
scription medication would strengthen the need to this intervention. Possible

10 http://www.nyc.gov/html/
11 http://data.london.gov.uk/
12 http://datasf.org/
13 http://www.cityofboston.gov/doit/databoston/app/data.aspx
14 http://www.dublinked.ie
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convictions leading to incarceration would weaken it (individual might not be
home anyway). The above example makes it obvious that information from mul-
tiple domains and systems needs to be combined to achieve better results in a
complex environment like a city.

In the following sections, we will focus on how some systems use Semantics to
solve challenging problems in cities. Although the discussion will not be limited
to efforts from industry, we will only mention systems with a heavy practical
focus.

3 City-Centric Systems

There is a large body of literature aiming at providing better insight into the
operation of cities. We will focus on two use cases: Open Data management
and industry-specific systems using semantics. We will give an overview of some
systems in both categories and provide a more detailed description for some
examples for traffic and for managing city data as Linked Data.

3.1 Open Data Management

With the advent of Open Data, research organizations, non-profits and software
vendors has started looking at scalable ways to manage this information. The
problem of managing Open Data is broad, spanning from file-based content
management to complex methods aimed at semantically lifting and linking data
coming from heterogeneous sources.

Data Cataloguing and Hosting. As soon as cities and other public organiza-
tions realised the value of opening up their data, they began investigating tech-
nical solutions to make this possible. Initially, most solutions were proprietary
(e.g. the original data.gov site). Soon enough, data cataloguing and hosting so-
lutions started appearing, both from non-profits (e.g. CKAN15) and commercial
organizations (e.g. Socrata16), .

As these technologies started maturing, additional capability has been added
to provide visualizations on top of this data. In Figure 1, one can see the data in-
teraction interface of CKAN for some Open Data from Italywww.publicdata.eu.
In Figure 2, one can see an example of a simple visualisation: The user is called
to select a set of columns from a CSV file (shown in Figure 1) for the information
to be plotted on a chart. In this case, it is important to note that (a) the input
has no explicit semantics (b) the system relies solely on structure to display this
information. In the following paragraphs, we describe some approaches aimed at
understanding such data.

15 http://www.ckan.org
16 http://www.socrata.com

data.gov
www.publicdata.eu
http://www.ckan.org
http://www.socrata.com
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Fig. 1. Example data from CKAN

Fig. 2. Example visualisation from CKAN

From Data to Knowledge. There has been a set of research efforts to-
wards automated approaches for turning tabular data into Semantic Web for-
mats. Pattern-based methods for re-engineering non-ontological resources into
ontologies [3] are based on the use of thesauri, lexica and WordNet for making
explicit the relations among terms. TARTAR [4] automatically generates knowl-
edge models out of tables. In this system, grounded in the cognitive table model
introduced by Hurst [5], a table is handled from a structural, functional and
semantic point of view by respectively identifying homogeneous regions (group
of cells) in a table, distinguishing between attribute cells and instance cells, and
then finding semantic labels for each region content with the help of WordNet.
The coverage of these approaches depends on WordNet or an ontology that mod-
els the domains of interest. To annotate tables on the Web and improve search,
[6] uses a column-based approach. A class label is attached to a column if a



374 S. Kotoulas

sufficient number of the values in the column are identified with that label in
some “is-a” databases extracted from the Web.

In [7], a new dataset-specific ontology is constructed for each dataset, repre-
senting only the data stored in the particular database. To convert this data into
RDF, scripts are developed in correspondence with their manually-designated
and built ontologies.

A number of tools for automatically converting tabular data (mostly CSV)
into RDF also exist, such as RDF123 [8]. W3C defines a standardised map-
ping language R2RML17 and an approach for converting relational databases
to RDF. In this W3C candidate recommendation, the first row is used to sug-
gest properties and each other row refers to entities, with one of the columns
uniquely identifying the entity. This approach is used, for example, in the Datalift
project [9] to automate the conversion from the source format to “raw RDF”,
before transforming it to “well-formed” RDF by using selected vocabularies and
SPARQL construct queries.

The approach presented in [10] is based on Google Refine for data cleaning
and a reconciliation service extended with Linked Data capabilities to enable
exporting tabular data into RDF, while keeping provenance descriptions repre-
sented according to the Open Provenance Model Vocabulary [11].

Queriocity. We will go into more detail regarding a system that combines the
data storage and management capabilities of data portals and the semantic uplift
capabilities of the approaches mentioned above. The novelty of Queriocity [12]
lies in the ability of the system to ingest highly heterogenous data and process
it in an incremental manner. The cost of entry to the system is minimal (i.e.
datasets can be imported as they are), and processing (annotation, linking, inte-
gration) can be done incrementally, exploiting semantic technologies. The main
purpose of the system, from an industry perspective, is to show that a stack
based on semantic technologies can go a long way, without the need for global
integration, pre-defined schemas, or even linking the entire input. At the same
time, it exploits the Web-wide wealth of resources rich in meaning and structure
published as Linked Open Data.

In Queriocity, raw data is ingested, annotated, and transformed into a mean-
ingful and connected structure, in order to be accessed and queried on demand
and in context based on space, time and semantic relations to other relevant
data. This goes beyond classical document search or entity search, since it largely
relies on externally available models to disambiguate, organize and query non-
semantic data. To achieve this, data is semantically uplifted and entities and
relations between them are extracted and aligned to well-known vocabularies
and widely used LOD resources. Different views and exploration paths are ex-
posed according to dynamically chosen models, allowing users to profit from
the expressive power of semantic standards while hiding the complexity behind
services exposed in an intuitive and easy-to-use interface.

17 http://www.w3.org/TR/r2rml/

http://www.w3.org/TR/r2rml/
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Cataloguing Format Structure Links Views Insight

:d a void:Dataset
:d sourceUrl "http:.."
:d :uploadedBy :u1

:c a :Cell
:c :inRow :R1
:c in Col :C1

:e a :Entity
:e inRow :R1

:e a :Entity
:e rdfs:label "name"
:e g:lat "52.4332"

:v a :View
:v :hasGraph :g1
:v :hasGraph :g2

:v a :Diagnosis
:v :pcause :p1
:v :pcause :p2

Fig. 3. Data processing approach in Queriocity

Figure 3 summarizes the steps taken to go from raw data to a useful business
result, from a data management perspective:

– Initially, data is catalogued in a semantically interoperable manner, i.e. using
existing ontologies such as VOID18, PROV19 and IPSV20.

– Datasets in the system are loaded into a store so that they can be accessed
in an uniform manner (i.e. formats are homogeneised). This representation
is not intended to capture semantics, but rather to provide a convenient and
uniform way to represent the content of files, which are further processed as
described in the following sections.

– The next step in the process is to infer, and possibly validate with the user,
the structure of the data. For example, a file may contain an entity per row,
an entity per column or other combinations.

– The platform leverages semantic data types (geographical coordinates, dates,
etc.) and automatically converts units of measurement. In addition, it uses
user input or mapping techniques to detect common types and entity co-
reference.

– To abstract from the complexity of the domain, Queriocity uses semantic
views as a way to expose the relevant information to applications. Instead
of being closely coupled to the data layout, applications define how their
input should look like and, using a pay-as-you go paradigm, the user helps
the platform populate those views.

– Finally, analytics components can be used to infer new knowledge on top of
these views. Sometimes, the output of these analytics is stored in the system.

Throughout these steps, Queriocity follows a pay-as-you-go paradigm: the
steps above are only performed as required. For example, the cataloguing part
is performed for all datasets, format homogenization is performed for datasets
with a fixed set of formats (for which there are converters in place), linking is
done as required by the views, which are, in turn defined by the applications to
be run.

18 http://www.w3.org/TR/void/
19 http://www.w3.org/TR/prov-o/
20 http://doc.esd.org.uk/IPSV/

http://www.w3.org/TR/void/
http://www.w3.org/TR/prov-o/
http://doc.esd.org.uk/IPSV/
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Fig. 4. Support for views and multiple integrations

Figure 4 shows an example for the data model. Data is stored in Graphs.
DataViews are the access methods for data in the system, each referring to one or
more graphs. Graphs are shared between DataViews (i.e. a Dataset may reference
multiple Graphs, and a Graph can be referenced by multiple Datasets), using
union semantics. Data manipulation tasks entail creating new Graphs, which
are then referenced together with existing graphs. For read-stability reasons, the
only operation allowed on Graphs is splitting and re-writing existing references
to the graph. The said design avoids data duplication while inducing as little
overhead as possible.

Graphs are physically stored as named graphs on the underlying infrastruc-
ture. Management information, i.e. the information about DataViews, Graphs
etc, is also stored in RDF, on a separate named graph. The system keeps both
dataset-level provenance and graph-level provenance, storing derivedFrom rela-
tionships for both Datasets and Graphs.
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3.2 Applications

In the following paragraphs, we will briefly describe some systems that exploit
the semantics of data coming for various sources for decision-making.

Cities increasingly rely on information management systems for decision-
making. Decision-making can be roughly split into four main categories [13]:
strategic, operating on long-term and at high aggregation level to evaluate and
influence sustainability and growth, such as planning new development areas;
tactical, targeting goals with a time horizon from days to months, such as prepar-
ing for snow in the winter; operational, that address events in a time-frame from
minutes to hours, such as monitoring occupation of bike-sharing stations around
the city or traffic congestion management systems; and real-time, time-critical
operations on a frame from seconds to minutes, such as monitoring traffic to
operate traffic lights.

In particular, we will focus on two applications that reason over traffic data
and operate mainly at the operational and tactical levels and one that focuses
on real-time information.

TrafficLarKC. TrafficLarKC [14] is probably the first example of a semantics-
augmented service for traffic routing. It relies on the pluggable platform de-
veloped in the context of the Large Knowledge Collider (LarKC) project21 to
integrate conceptual query answering with statistical learning and operations
research algorithms. The service taps on several external resources to get an in-
tegrated view of the traffic environment and propose the best routes. The results
are visualized on a mobile phone.

Figure 522, shows the high-level architecture of TrafficLarKC: a wealth of in-
formation is collected from Linked Data, street maps, traffic sensors and web sen-
sors (such as online weather forecasts) and processed in a framework combining
multiple techniques. These techniques are arranged in a 5-step approach, largely
applicable to most (semantic) systems: Identify relevant information, transform
into an appropriate machine-processeable representation, select relevant subsets,
reason over the combined information and decide on an appropriate solution.

STAR-CITY. STAR-CITY [15] is a semantics-based system for traffic. It in-
tegrates both human and physical sensors representing information in a variety
of formats to perform analysis, diagnosis, exploration and prediction using Se-
mantic Technologies. We explain the main functionality of the system using a
screenshot (Figure 6):

– The user is able to make temporal selections for the data being explored ( 1©,
2©).

– The user makes a spatial selection using a map 3©.
– The environmental context of the current selection is shown. In 4©, one can

examine key information regarding weather conditions.

21 http://larkc.eu
22 Figure taken from http://emanueledellavalle.org/Projects/TrafficLarKC.html

http://larkc.eu
http://emanueledellavalle.org/Projects/TrafficLarKC.html
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Fig. 5. TrafficLarKC Approach Overview

– At a glance, the user is able to examine travel time vs historical information
( 5©). The user can select individual segments to isolate information. Detailed
records are also visible ( 6©) as well as proportions ( 7©).

– Additional views for exploration, diagnosis etc are available as separate tabs
( 8©).

Figure 7 shows the main diagnosis approach: The system does an off-line
compilation of historic diagnosis information into a deterministic finite state
machine, following the structure of the road network23. The network is used
to both get the connections between roads and for propagating road congested
states. This state machine is augmented with events extracted from a variety
of sources from the Web (as shown in the figure). In addition, these events are
correlated to past observed congestions. Real-time diagnosis is performed by
analyzing and matching current states to historical versions.

3.3 Real-Time Monitoring

Streaming semantic data is not limited to traffic scenarios, the system described
in [16], a system to process real-time urban information in the public safety
domain is presented. One of the problems addressed by this system is selecting
the most relevant closed-circuit television (CCTV) cameras.

23 Extracted from http://www.linkedgeodata.org

http://www.linkedgeodata.org
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Fig. 6. Interface of STAR-CITY
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Fig. 7. STAR-CITY Diagnosis Approach Overview

The rationale behind the system is that, complementary to video processing
techniques, information about the environment, as detected by sensors, can be
used to select the most relevant cameras for a human to monitor. In this scenario,
a “sensor” has a very wide meaning ranging from physical sensors capturing
noise, to Web sensors producing streams about happenings in a city.

The decision-making process is generally as follows: (i) take into account a
number of stream measurements, such as percentage of vehicles entering a region
with a traffic congestion, ambient noise beyond a given threshold, etc., and assign
a score to each of them, weighted by the distance from the cameras; (ii) assign
a weight for the presence of amenities in the area, such as schools and hospitals;
(iii) detect changes across three different time spans, called windows : a short-
window of a few seconds to measure recent changes, a medium-window of tens of
seconds to measure the persistence of the state evaluated by the short window,
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Fig. 8. Real-time camera selection

and a large-window, ending in the past, to account for regular variations, such
as daily rush hours.

Figure 8 shows some of the inputs and output of the system, plotted on
top of Dublin: yellow arrows represent currently selected CCTV cameras (i.e.
the output), bars represent pollution levels, noise levels, utilization of public
bikes and pedestrian counts (from footfall sensors), blue dots represent buses in
congestion and red dots represent amenities (from LinkedGeoData24).

Figure 9 shows the main components of the system, which is similar to other
systems in the literature [17,18,19,20,21,22], with a set of extensions to improve
performance and deal with heterogeneous input . The system takes as input
static or streaming data in heterogeneous formats, in this particular case CSV
or RDF input. An optional reasoning step does basic RDFS reasoning over this
information. Then, given a set of continuous SPARQL queries, performs the
selection, joining, aggregation and other operations.

Figure 10 shows an example query including extensions to SPARQL for pro-
cessing graph information and information coming from CSV files. Every triple
pattern is used to define a single variable of the query: the first element of the
triple is the variable that will bound to the value of the specific field of the CSV
stream, the second element is a special predicate (“ibm:csvCol”) plus a number
that is used to specify the field of the CSV record. The last element is the URI
reference of the specific CSV input stream. For example, in line 12, in Figure 10
the variable “?stationid” will get its bindings for field zero (“ibm:csvCol 0”) of
the CSV stream identified by the URI http : //.../csv.

24 http://linkedgeodata.org/

http://linkedgeodata.org/
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1   SELECT ?station ?stationid ?stationlat ?stationlong ?address 
2                       (AVG( ?bikecount / ?numBike ) AS ?bike)
3    FROM <http://.../rfid>
4    FROM CSV <http://.../csv> 1 [RANGE 20m STEP 20m] AS 'bikestream'
5    WHERE{
6      { ?station dpPedia:agencyStationCode ?stationid.
7      ?station dpPedia:maxNumOfBike ?numBike.
8        ?station wsg84:long ?stationlong.
9     ?station wsg84:lat ?stationlat.
10     ?station address:streetAddress ?address.}
11     CSV 'bikestream' {
12    ?stationid ibm:csvCol_0 <http://.../csv>.
13    ?bikecount ibm:csvCol_2 <http://.../csv>.}
14   } GROUP BY ?station ?stationid ?stationlat ?stationlong ?address

Fig. 10. Graph pattern extensions for processing heterogeneous stream information

4 Citizen-Centric Systems

In the following sections, we will describe a set of systems that are centred on
or oriented-towards the individual, rather than a city. We will describe systems
in two extremes: Revyu [23] is one of the first semantic web systems. It relies
on persistent identifiers to allow users to review anything. The system is simple
and completely open (i.e. all information is publicly visible). Link2Outcome [24]
is an enterprise system to improve Care. It aims at collecting and interpreting
personal information from multiple systems. The system is closed and most data
stored therein is sensitive.
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4.1 Revyu

Revyu is arguably one of the first Semantic Web systems exploiting the power
of Linked Data. It allows users to review things or people and publishes the
results as RDF. The architecture of the system is very simple (shown in Fig. 11),
consisting of a Web Server and PHP code to issue calls to an RDF store backed by
a MySQL database. The system both consumes and publishes data using Linked
Data principles. This allows already existing information (such as information
from DBpedia) to be mashed-up with user-content. Similarly, the system exposes
data using dereferenceable URIs and a SPARQL endpoint. Revyu is a good
illustration of how little semantics can go a long way.

RDF DB
(MySQL)

RDF API
(PHP)

Web Server 
(Apache)

Fig. 11. Revyu Architecture

4.2 Link2Outcome

A more complicated application scenario arises in the domain of care. Organi-
zations seeking to improve health outcomes and lower costs are facing unique
challenges such as aligning care delivery to population needs, creating and man-
aging holistic, individualized care plans and care coordination to produce posi-
tive and sustainable outcomes at reduced cost. In [25], it is reported that 5% of
individuals face complex issues spanning multiple domains and accounting for
50% of the cost. Identifying these individuals early on is key to reducing costs.
The impact of social determinants for health dictates that multi-domain infor-
mation is needed for holistic and individualized care delivery [26]. Furthermore,
coordination across care agencies and stakeholders requires an integrated view
of the individual, their vulnerabilities and their environment [27].

The common denominator is the need for fit-for-use information spanning
multiple domains. In general, needs span six core areas: health, food, shelter,
safety, education and income. Potential information sources are diverse and nu-
merous (e.g. the American Hospital Association numbers 572425 members and
the number of homeless shelters surpasses 400026). The complexity of Health
Care data is vast and Social Care systems have a very broad scope.

Relevant use-cases are abundant: In a New York hospital, a survey has shown
that 9.2 minutes out of a 15-minute doctor’s visit were spent on social needs,
crowding out clinical care [28] and illustrating that “social context” of individuals
is critical in improving care (for example, consider asthma triggered by
sub-standard housing, depression or chemical dependency affecting medication

25 http://www.aha.org/research/rc/stat-studies/fast-facts.shtml,
retrieved 19/04/2013

26 http://www.shelterlistings.org/

http://www.aha.org/research/rc/stat-studies/fast-facts.shtml
http://www.shelterlistings.org/
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adherence, lack of food impacting diabetes). A single social workermay be respon-
sible for thousands of people [28]. Providing timely, relevant, multi-dimensional
and fit-for-purpose information about vulnerability to all care workers is critical.

Typical Health Care data integration approaches use an all-or-nothing model,
i.e. data is either part of the (mediated) model or not accessible at all [29]. In con-
strast, Link2Outcome uses Linked Data to incrementally integrate and present
information coming from distributed sources. A set of reference ontologies is
used to map data from enterprise systems and access it in a uniform manner.
In addition, the reference ontologies are used to simplify information and make
it fit-for-use for the non-experts (for example, one could simplify the name of
“Pica Disease” to “Eating Disorder”).

As an example use-case, Link2Outcome [30] can provide an overview of the
vulnerability in a set of key dimensions. Fig. 12 shows a screenshot from the
system:

– The structure shown on Figure 12(α) shows a concise navigational structure
of the vulnerabilities of an example individual. The circles represent the
relative importance of the vulnerabilities in a set of dimensions that are
deemed important in the domain of the user. The user gets an immediate
impression of the key weaknesses of an individual (in this case, it would be
problems regarding Health and Food) and retains the capability to explore
further.

– To get finer-grain information, an exploration pane (Figure 12(β)) is used to
navigate the entire space, based on the Linked Data structure and potential
ontology overlap. In the example, the user can see that the individual is
receiving child benefit amounting to 170 euros weekly.

The architecture of the system (as shown in Fig. 13, taken from [30]) is com-
plex: Web-facing services use a set of REST services, implemented on a custom
application running on IBM WebSphere Application Server. The main compo-
nents for these services are the Node registry, which tracks nodes in the Federated
Query Engine, the View definitions, that are used to project information out of
the graph model for use by analytics widgets and UI elements. Data Sources are
exposed as virtual RDF, using SeDA, an IBM technology to execute R2RML
mappings. The virtual RDF Data Sources, the Metadata Repository and the
Ancillary Indexes are accessed through the Federated Query Engine, providing
transparent access to the distributed information. All core components in this
architecture can be clustered, for high availability and performance.

5 Discussion and Outlook

In this Section, we are discussing some advantages and disadvantages of Semantic
Technologies, mainly from an industry perspective.

The global semantics of RDF allow retrieving the relevant information trans-
parently. URI dereferencing and federated query capabilities allow retrieving
information regardless of physical infrastructure and location. For contextual
retrieval, this is of paramount importance, since which data is important is not
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Fig. 12. Interface of Link2Outcome
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always known in advance and we often need to follow connections across entities.
At a high-level, given a complex or dynamic domain, Semantic Technologies

are more flexible than Data Warehouses or a Master Data Management (MDM)
infrastructures. Traditional Extract-Transform-Load (ETL) or MDM approaches
typically require significant up-front investment, since they rely on a (set of)
global models, where data is projected on. While such approaches have shown
good performance, a Semantic approach is more suitable for dynamic situations
requiring partial and extensible integration across multiple sources. Partial inte-
gration in relational schemas is very cumbersome: typically, data is either fully
integrated or not accessible at all.

This flexibility comes at a cost: The lack of a rigid model means that access-
ing data is more difficult. Generic graph-based exploration and querying, typical
in many Semantic Web approaches, is not attractive from an enterprise appli-
cation perspective. Use-case specific navigational aids are necessary, hiding the
complexity of the graph.

Regarding visualization, tabular-style visualizations are preferred to graph-
based visualizations. When dealing with distributed data and inference, methods
to capture information provenance are highly desirable, since most semantic
approaches abstract from the underlying data.

A particularly challenging requirement for Linked data-based approaches is
coping with missing data, or rather knowing whether data is missing. For ex-
ample, a system that calculates an aggregate score based on all the medical
conditions of an individual needs to be able to distinguish between missing data,
mis-integration and data not supporting the aggregate. Given the open-world
assumption in the Semantic Web, indicating data completeness remains an open
challenge and, potentially, a significant drawback.

RDF provides a natural way to implement a consolidated information space
within and across organizations, while allowing re-use of assets from the
Web. Such assets include reference ontologies and vocabularies to standardize
datatypes, define types , ranges etc. In some cases, these ontologies and vocabu-
laries facilitate querying, even when lacking pre-defined and common structures,
through common or related (linked) values (e.g., broader or narrower topics in
the reference vocabularies).

Core components for RDF-based solutions are finally enterprise-ready. Several
systems presented here rely, to a large extent, on enterprise-grade components
that can be clustered for robustness and performance. Semantic Web tooling has
advanced significantly, although it is still far less developed than similar tools in
the relational domain, and in data warehousing and master data management
in particular.

The majority of enterprise infrastructures relies on systems of record [31],
meaning that there is an authoritative source, in a single system, for a piece of
information, in order to cope with the disparity of information. We are witnessing
a shift towards systems of engagement [32], where information across systems is
connected arbitrarily across systems and users interact with data in a way that
is not pre-determined. The Semantic Web plays a critical role in the future of
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information systems by providing global identifiers, self-describing, reason-able
data and an interoperable, machine-understandable format.
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3. Garćıa-Silva, A., Gómez-Pérez, A., Suárez-Figueroa, M.C., Villazón-Terrazas, B.: A

pattern based approach for re-engineering non-ontological resources into ontologies.
In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 167–181.
Springer, Heidelberg (2008)

4. Pivk, A.: Automatic ontology generation from web tabular structures. AI Commu-
nications 19, 2006 (2005)

5. Hurst, M.: Layout and language: Challenges for table understanding on the web,
pp. 27–30 (2001)

6. Venetis, P., Halevy, A., Madhavan, J., Paşca, M., Shen, W., Wu, F., Miao, G., Wu,
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