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Abstract. Although multi-atlas segmentation techniques have been
producing impressive results for many medical image segmentation
problems, most label fusion methods developed so far rely on simple
statistical inference models that may not be optimal for inference in high-
dimensional feature space. To address this problem, we propose a novel
scheme that allows more effective usage of advanced machine learning
techniques for patch-based label fusion. Our key novelty is using image
registration to guide training sample selection for more effective learning.
We demonstrate the power of this new technique in cardiac segmentation
using clinical 2D ultrasound images and show superior performance over
multi-atlas segmentation and machine learning-based segmentation.

1 Introduction

Multi-atlas segmentation has demonstrated outstanding performance for a wide
range of medical image segmentation problems. One key ingredient to its success
is that deformable registration can accurately align anatomical structures across
subjects for reliable label propagation. With accurate structure alignment, sim-
ple label fusion methods such as similarity-based local weighted voting [6,11,15]
often can produce state of the art performance.

Although more powerful learning and classification techniques other than
weighted voting have been developed in machine learning research, applying ad-
vanced machine learning techniques to aid label fusion has not been extensively
studied. In some recent work, [13] applies adaboost classification as a postprocess-
ing step to reduce errors produced by multi-atlas segmentation. Similarly, [5] em-
ployed random forest classification to reduce ambiguities produced by multi-atlas
segmentation. Random forest is also employed in [18] for atlas encoding.

A common limitation of the above mentioned methods is that the classifiers
are all trained without taking advantage of registration-based structure align-
ment, i.e. the key advantage of multi-atlas segmentation. To address this limita-
tion, we explore a new scheme for combining learning techniques with multi-atlas
segmentation. Our key novelty lies in an image registration based training sam-
ple selection strategy for more effective learning. Similar to the spatially varying
image similarity based local weight voting approach, we propose a spatially vary-
ing training sample selection strategy that aims to only apply training samples
that are anatomically most relevant to the target testing sample for segment-
ing the target sample. This is achieved by selecting training samples within a
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local neighborhood surrounding the target testing sample after registering and
warping atlases into the target image.

We implement our method with random forest and conduct validation in a
challenging cardiac segmentation application using clinical four-chamber view
2D echocardiography. We demonstrate promising improvement over the state of
the art label fusion method and random forest based segmentation.

2 Method

2.1 Background in Patch-Based Multi-atlas Label Fusion

In this section, we briefly describe multi-atlas segmentation. Let TF be a target
image to be segmented and A1 = (A1

F , A
1
S), ..., A

n = (An
F , A

n
S) be n atlases,

warped to the space of the target image by deformable registration. Ai
F and

Ai
S denote the ith warped atlas image and manual segmentation. Each Ai

S is
a candidate segmentation for the target image. Label fusion combines these
candidate segmentations to produce the final solution.

One simple and highly effective label fusion method is based on weighted
voting. For instance, the combined votes for label l are:

p̂(l|x, TF ) =
n∑

i=1

wi
xp(l|x,Ai) (1)

where x indexes through image locations. p̂(l|x, TF ) is the estimated label pos-
terior for the target image. p(l|x,Ai) is the probability that Ai votes for label
l at x, with

∑
l∈{1,...,L} p(l|x,Ai) = 1. L is the total number of labels. wi

x is a

local weight assigned to the ith atlas, with
∑n

i=1 w
i
x = 1. The voting weights

are typically determined based on the quality of registration produced for each
atlas such that more accurately registered atlases are weighted more heavily in
producing the final solution.

Patch-based label fusion. For estimating registration/segmentation accuracy,
patch-based approaches are among the most effective techniques. For this task,
most methods apply similarity metrics typically employed by image-based regis-
tration, such as sum of squared distance (SSD) and normalized cross correlation
(NCC) computed over local image patches. For instance, when SSD and a Gaus-
sian weighting model are used [11], the voting weights in (1) can be estimated by

wi
x = 1

Z(x)exp
(
−∑

y∈N (x)

[
Ai

F (y)− TF (y)
]2

/σ
)
, where σ is a model parame-

ter. N (x) defines the image patch, which is a neighborhood surrounding x, and
Z(x) is a normalization constant.

Although the above approach can provide reasonable estimation about regis-
tration accuracy for each warped atlas, its contribution for remedying the reg-
istration error is limited. To more effectively remedy registration errors, atlas
patches within a local searching neighborhood of the registered correspondence
could all be considered as the potential corresponding patch for a target patch
and are applied for label fusion in patch-based label fusion methods [4,10,15].
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2.2 Limitations of Current Patch-Based Label Fusion Methods

Patch-based label fusion could be interpreted as a regression or interpolation
problem [9,14], where the goal is to predict the segmentation label for each tar-
get voxel given its surrounding image patch. All potential corresponding image
patches from the warped atlases provide observed data for this regression task.
Given that this regression problem is performed in a high-dimensional feature
space, the simple distance metric employed in current patch-based label fusion
methods, e.g. the Euclidean metric used above, could be inadequate for accu-
rately characterizing the feature space. This problem is less critical when image
registration can be reliably computed. As shown in an empirical study [16], sim-
ple metrics such as the Euclidean metric does a good job differentiating small
registration errors, however the accuracy of predicting large registration errors
quickly drops as the registration error increases. Hence, employing simple metrics
in patch-based label fusion becomes more problematic when image registrations
are poorly computed.

2.3 Random Forest Based Label Fusion

To address this limitation, we propose to employ more powerful learning tech-
niques for patch-based label fusion. In this paper, we investigate the usage of
random forest for this task.

A random forest is an ensemble of decision trees [3]. Each non-leaf node in a
decision tree performs a test, e.g. the comparison of a feature value to a given
threshold. During training, training data are used to build each decision tree.
During testing, a testing data is sent to the root node of each decision tree. Based
on the test at the node, the data is sent to either its left or right child node. This
process is repeated until a leaf node is reached in a tree. The class distribution
of all training samples located in the leaf node is interpreted as the probability
that the testing data should be assigned to each class. The final class probability
is obtained by averaging the class distributions from all decision trees. Random
forest has demonstrated impressive performance in image segmentation [18].

Inspired by the highly successful spatially varying weighted voting scheme, we
propose to train spatially varying local random forest classifiers for label fusion.
As in patch-based label fusion [4,10], given a target patch, all atlas patches
located in a small neighborhood of the registered correspondence are applied
for training a local random forest classifier, which is then applied for predicting
labels for the target patch. To facilitate our comparison with previous patch-
based label fusion, we apply pixel intensity values within each image patch as
features to predict the patch’s central pixel’s label. In our experiment, we apply
a (2rs + 1) × (2rs + 1) square-shaped sampling neighborhood specified by the
radius rs for our 2D cardiac ultrasound images. We also use a square-shaped
patch specified by a radius r for feature extraction.

Ideally, a distinct random forest classifier should be trained for segmenting
each target voxel using warped atlas samples surrounding the target voxel. How-
ever, this requirement increases the computational cost. To make our study more
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practical, we apply the trained classifier to predict segmentation labels for each
voxel located in the sampling window in the target image. In addition, we train
classifiers on overlapping sampling windows. Centers of the sampling windows
are located on a 2D grid with the distance between two neighboring grid nodes
in each row and each column equal rs

2 . Classification results from overlapping
classifiers are averaged to generate the final solution.

2.4 Relation to Training Sample Selection in Machine Learning

In machine learning research, it is well known that not all training samples
are always equally important for any given learning task. Choosing the most
relevant training samples for any specific classification task is a highly effective
technique for improving the learning performance. In general, rules for choosing
the most relevant training samples are application dependent. In medical image
segmentation, one intuitive rule for choosing relevant training samples is based
on their anatomical locations.

Although machine learning methods usually employ more powerful statistical
inference techniques than what are employed by current patch-based label fusion
methods, existing learning-based segmentation methods still largely ignore the
valuable anatomical information encoded in medical images. In contrast, multi-
atlas segmentation stands in the opposite extreme in terms of how anatomical
information is incorporated for reaching solutions. For instance, it is common
that machine learning based methods apply mixed training data sampled from
different anatomical area for making segmentation decisions, while multi-atlas
segmentation significantly simplifies the problem by applying spatially-varying
training data that are anatomically more relevant to the testing data obtained
from image registration. Due to this distinction, the best brain segmentation
performance achieved by machine learning techniques, e.g. [12,18], are still well
below those produced by multi-atlas segmentation [7,1]. In this aspect, the key
advantage of our method lies in combining the complementary advantages of
machine learning and multi-atlas segmentation.

3 Experiments

We conduct experimental study on cardiac segmentation using apical four-
chamber view 2D echocardiography. 2D echocardiography is a common modal-
ity for diagnosis in clinical practice. Anatomical structure labeling will assist
cardiac disease diagnosis by providing geometrical and morphological statistics.
This is an ideal application for demonstrating the advantage of our machine
learning based label fusion technique. Image registration on echocardiography
are challenging as the images are noisy and the anatomical structure deformation
among different subjects are large. Hence, label fusion needs to accommodate
large registration errors. Furthermore, different anatomical regions often share
similar intensity profiles in echocardiography, making image feature based ma-
chine learning techniques less effective.
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3.1 Data and Experiment Setup

Our dataset consists of a total of 50 patients with a variety of cardiac diseases
such as aneurysms, dilated cardiomyopathy and hypertrophies. Each image is
manually labeled with the following nine structures: Chamber Junction (CJ), In-
ter Ventricle Septum (IVS), Left Ventricle (LV), Mitral Valve (MV), Left Atrium
(LA), Inter Atrium Septum (IAS), Right Atrium (RA), Tricuspid Valve (TV)
and Right Ventricle (RV). We conducted a 5-fold cross-validation. Hence, the
dataset is randomly divided into 5 equal size non-overlap groups. Each group is
treated as the testing set and the remaining groups are treated as training set
in each of the five cross-validation experiments. The results below are summa-
rized over the five cross-validation experiments. In our experiments, we applied
sampling windows with rs = 5 for our method.

Deformable image registration. The global image-based registration between
each pair of images were performed through sequentially optimizing translation,
rigid body, affine and deformable transforms between the registered images. De-
formable registration was performed using the greedy diffeomorphic Symmetric
Normalization (SyN) algorithm [2] implemented by the Advanced Normalization
Tools (ANTs) software package. The Mattes mutual information metric was ap-
plied for the registration task. Multi-scale optimization was applied. Three res-
olution levels with maximum 200 iterations at the coarse and middle levels and
100 iterations at the fine level were applied.

Random Forest setup. We applied the random forest package implemented in R
[8] with the default parameter setting, i.e. 500 trees. Using this implementation,
our method usually segments each image in about 10 minutes.

Benchmark methods. For comparison, we evaluated joint label fusion (JLF) [15].
This method is one of the state of the art methods for patch-based local weighted
voting label fusion and is a consistent top performer in both MICCAI grand
challenges on multi-atlas segmentation held in 2012 and 2013 [7,1]. For this
study, we applied the authors’ implementation that is distributed through the
ANTs software package with default parameters, i.e. 5×5 image patches for local
image similarity estimation, 7× 7 local searching windows and model parameter
σ = 2. As another baseline performance, we also computed the segmentation
results produced by majority voting (MV) and by the STAPLE algorithm [17].

In the second comparison, we compare with the segmentation performance
produced by the classical usage of random forest for image segmentation (RF).
We train a single random forest classifier using the training samples from all
atlases without warping them into the target image space and apply this clas-
sifier to segment testing images. In addition to the intensity feature extracted
from each pixel’s surrounding patch, we also include relative spatial location of
each training sample with respect to the mass center of the scanned view as an
additional feature. To facilitate a direct comparison with other tested methods,
we did not include any other features for random forest classification.
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Table 1. Segmentation performance of our random forest label fusion (RFLF) method
compared with other methods. Results are measured using the Dice similarity coeffi-
cient (2|A ∩B|/|A|+ |B|).

anatomical regions MV STAPLE RF JLF RFLF

CJ 0.53±0.28 0.43±0.21 0.49±0.24 0.57±0.25 0.64±0.18

IVS 0.67±0.27 0.62±0.18 0.72±0.13 0.73±0.19 0.78±0.09

LV 0.77±0.14 0.73±0.17 0.82±0.07 0.80±0.11 0.82±0.08

MV 0.30±0.25 0.34±0.28 0.20±0.10 0.44±0.25 0.50±0.18

LA 0.74±0.20 0.69±0.19 0.73±0.14 0.78±0.17 0.79±0.14

IAS 0.51±0.29 0.38±0.27 0.18±0.14 0.57±0.23 0.59±0.21

RA 0.70±0.21 0.60±0.26 0.69±0.17 0.73±0.20 0.75±0.16

TV 0.07±0.12 0.17±0.21 0.02±0.03 0.17±0.18 0.21±0.19

RV 0.68±0.18 0.53±0.24 0.68±0.17 0.72±0.15 0.72±0.14

Overall 0.55 0.50 0.50 0.61 0.65
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Fig. 1. Segmentation accuracy (in terms of average Jaccard index) of joint label fusion
and our random forest based label fusion method with respective to the size of local
searching windows

Results. Table 1 summarizes the segmentation performance produced by each
method. The performance of the classical machine learning approach that learns
a single random forest classifier to assign labels for the entire testing image
is clearly below those of multi-atlas segmentation methods. In contrast, apply-
ing random forest for local patch-based label prediction produced a significant
improvement over the state of the art label fusion method (with p < 0.05 on
the paired Students t-test compared with JLF and p < 0.001 compared with
the remaining evaluated methods). This result clearly demonstrates: 1) the sim-
ple metric based patch label fusion method is inadequate for our application;
2) the registration based spatially varying sample selection scheme significantly
improved the performance of random forest.

Fig. 1 shows the performance of joint label fusion and our random forest
based label fusion method with respect to the size of local searching windows.
Both methods’ performance dropped as the local searching radius increases. This
result is expected because larger local searching/sampling windows complicate
the label fusion/classification problem by adding more irrelevant samples into
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image RF JLF RFLF manual

Fig. 2. Segmentation results by different methods. Red: CJ; Green: IVS; Blue: LV;
Yellow: MV; Sky blue: LA; Pink: IAS; Light brown: RA; Deep blue: TV; Brown: RV.

consideration. This result also indicates that training separate classifiers for dis-
tinct anatomical structures, such as in [13,5], is suboptimal because one anatom-
ical structure may still be large enough to include samples that are not strongly
relevant with each other for classification purpose. See Fig. 2 for some segmen-
tation examples.

4 Discussion and Conclusions

We introduced a novel scheme for combining the complementary advantages of
multi-atlas segmentation with more general machine learning techniques. The
key idea is to use image registration to generate spatially varying training sam-
ple selection for more effective learning. In our experiments of cardiac segmen-
tation using four chamber view 2D echocardiography, we demonstrated that the
registration-based spatially varying sample selection method significantly im-
proves classification accuracy for random forest. By including more descriptive
features or by applying postprocessing methods such as [13,5], we expect further
prominent improvement in the segmentation performance. In future work, we
will also conduct validation on broader applications with different registration
accuracy levels.

One common implementation to make multi-atlas segmentation more practi-
cal is to preregister all atlases to a common template space. Given a new target
image, only one registration from the target image to the template is required.
Although it significantly reduces the registration burden, it also compromises
the overall registration accuracy. Since our experiments show that our machine
learning based label fusion method is more robust to registration errors, it is
especially suitable to be implemented through the common template strategy.
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