
Structured Random Forests for Myocardium

Delineation in 3D Echocardiography

João S. Domingos1, Richard V. Stebbing1, Paul Leeson2, and J. Alison Noble1

1 Department of Engineering Science, University of Oxford, U.K.
2 Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, U.K.

Abstract. Delineation of myocardium borders from 3D echocardiogra-
phy is a critical step for the diagnosis of heart disease. Following the ap-
proach of myocardium segmentation as a contour finding task, recent work
has shown effective methods to interpret endocardial edge information in
the left ventricle. Nevertheless, these methods are still prone to preserve
irrelevant edge responses and would struggle to overcome chief ventricle
anatomical challenges. In this paperwe adapt StructuredRandomForests,
borrowed from computer vision, for fast and robust myocardium edge de-
tection.Thismethod is evaluated on adataset composed of short-axis slices
from 25 End-Diastolic echocardiography volumes. Results show that the
proposed ensemble model outperforms standard intensity-based and local
phase-based edge detectors, while removing or significantly suppressing
irrelevant edges triggered by ultrasound image artefacts and blood pool
anatomical structures.

1 Introduction

In this paper we propose a fast and effective method to perform myocardial
boundary detection in short-axis slices of 3D Echocardiography (3DE) volumes
by integrating structural information of pixel neighbourhoods in classification
random forests. These novel Structured Random Forests (SRFs) were introduced
in [1] for fast edge detection in computer vision and were adapted here to demon-
strate their value in the task of enhancing myocardial boundary. While a truly
3D analysis would be more consistent, slice-by-slice analysis does not lead to
notably misaligned contours from observation. Any error has to be traded with
the computational cost of a 3D implementation.

Delineation of myocardium borders is a critical step for accurate left ventri-
cle (LV) segmentation and cardiac function quantification. Although LV border
delineation has been a widely researched topic, it remains a challenging task
mainly due to the anatomical presence of papillary muscles and trabeculae. In
addition, there are 3DE image limitations such as speckle, low signal-to-noise
ratio, low contrast images and stitching artefacts. In this context, development
of computer aided ventricle delineation and segmentation frameworks aimed at
improving volumetric analysis in 3DE is of particularly relevance.

Following the approach of myocardium segmentation as a contour finding
task, it has previously been shown that intensity-invariant phase-based methods
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Fig. 1. [a] Training data examples as used in our proposed SRFs. While standard
random forests associate only the centre label at position (u,v) to an image patch x, we
incorporate the topology of the local label neighbourhood (y) and hence learn relevant
labelling transitions between myocardium and blood pool. A rich set of structured
labels are then used by the ensemble model to select splits in the decision trees. [b] LV
myocardial edge probability map (left) from the slice in [a], obtained from our SRFs,
and its non-maximal suppression version (right).

offer a good alternative to underperforming intensity gradient-based ones in ul-
trasound images. In [2] a 3D edge detection method was proposed based on a
local-phase Feature Asymmetry (FA) measure using the monogenic signal. Mo-
tivated by the principle that only the edges that contribute to the myocardium
boundary are relevant for segmentation, a 3D Boundary Fragment Model-based
method is proposed in [3] to perform anatomical heart boundary delineation.
Nevertheless, when accurate myocardium delineation is required, these methods
still preserve irrelevant edges. The proposed SRFs use the topological informa-
tion in local image patches (Figure 1[a]) to selectively suppress spurious edge
responses and learn only relevant local image neighbourhoods that encode the
myocardial boundaries in a structured learning-based approach [4].

2 Methods

2.1 Structured Random Forests

Following a data-driven learning approach, we could firstly propose semantic
myocardial boundary detection as a simple binary classification problem. The
idea being that a given input image patch can be classified as a positive patch
if its centre pixel contains an edge and negative otherwise. Nevertheless, this
binary approach ignores valuable local structural information about edges. A
multiclass classification approach could then be proposed by simply clustering
label (Ground Truth, GT) patches into patch classes. Upon reaching a leaf node,
a standard Random Forest (RF) classifier [5] could then directly predict, from
a distribution over the labels, the most likely patch class correspondent to the
input patch image. With the proposed SRFs, we directly predict local structure
of a given image patch, at the cost of a high dimensional output space. As such,
standard RFs need to be extended to arbitrary structured output spaces Y.
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In RFs the information stored at a leaf node can be arbitrary [1]: binary,
multiclass or structured labels. Moreover, inference in SRFs is actually identical
to inference in standard RFs, the only difference being is what information is
stored at the leaf nodes and how it is used. For multiclass classification, the
standard information gain criterion may also not be well defined over structured
labels, y ∈ Y, that encode the local image annotations of image patches x ∈ χ.
As a result of this, in [1] the authors propose a straightforward two-step mapping
approach (defined below): firstly Y → Z and then Z → C.

Intermediate Mapping and Information Gain Criterion. Given that our
required information gain criterion depends on the similarity over Y, we assume
that for many structured output spaces, including for structured learning of
myocardium edge detection, we can define a mapping Π of Y to an intermediate
space Z, Π : Y → Z, in which the Euclidean distance in Z can be measured.

Considering that an approximate measure of information gain is sufficient to
train an effective random forest classifier, our goal is to map a set of structured
labels y ∈ Y into a discrete set of labels c ∈ C, where C = {1, ..., k}, in a way that
labels with similar Y are assigned to the same discrete label c. Given that these
discrete labels can be binary (k = 2) or multiclass (k > 2), we can use standard
information gain measures such as Shannon entropy or Gini impurity [5]. The
discretization step (Z → C) yielding the discrete label set C given Z is computed
independently when training each node and depends on the distribution of labels
at each node. To do this, z is quantized based on the top log2(k) PCA dimensions,
effectively assigning z a discrete label c according to the orthant into which z
falls [1].

Because Z can be of high dimension and computationally expensive to deal
with, and since an approximate distance measure is sufficient, we perform di-
mensionality reduction by sampling m dimensions of Z which yields a reduced
mapping Πφ : Y → Z parametrised by φ. While training, we randomly generate
and apply a unique mapping Πφ to training labels y at each node. By sampling
Z, we not only make Πφ faster to compute than Π , but also improve diversity
of trees by injecting additional randomness into the learning process [1].

Ensemble Model. The structured ensemble model merges a set of n labels
y1...yn ∈ Y into a single prediction both for training, upon association of labels
with nodes, and testing i.e. merging of multiple predictions. After sampling a
selected m dimensional mapping Πφ and computing zi = Πφ(yi) for each i, we
finally select the label yk whose zk is the medoid i.e. the medoid zk that minimizes∑

ij(zkj − zij)
2. Because we only need an approximate distance measure to

estimate the dissimilarity of y, by reducing Z dimensionality, the medoid only
needs to be computed for small n, which means that an approximate distance
metric is sufficient to select an effective element yk. Notice that the ensemble
model is incapable of synthesising new labels without added information about
Y. Hence, every prediction y ∈ Y must have been observed during training.
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2.2 3D Echocardiogram Database

25 End-Diastolic (ED) 3D echocardiograms (224x208x208 voxels) of healthy vol-
unteers (ranging from 19 to 26 years old) were recorded using a Philips iE33
xMATRIX System (X3-1 and X5-1 probes). LV myocardial boundary references
(segmentation masks or GT shown in Figure 1[a]) were manually drawn for these.
All the Structured Edge Detector (SED) models learned in this paper underwent
3-fold cross validation (CV) (divided as 8,8,9 randomly selected datasets). For
example, these were trained on say 16 volumes on every 5th short-axis slice of
each volume and tested on the remaining 9 volumes, hence there was no corre-
lation between training and testing volumes and slices.

2.3 Myocardium Boundary Detection

Given an input short-axis slice from an ED echocardiography volume, the pro-
posed SED task is to label each pixel with a binary variable indicating whether
it belongs to an edge or not. This is done by predicting a structured 24 × 24
segmentation patch from a larger 48×48 image patch (fixed for all experiments).
This patch size was empirically determined to give best edge delineations, and
is a result of the need to look at more global information, i.e. contribution of
more neighbourhood pixel votes, in order to effectively avoid local irrelevant edge
responses.

Regarding the input feature pool, each image patch was augmented with mul-
tiple channels of information yielding a feature vector x ∈ Z

48×48×K where K is
the number of channels. Two types of features were used: pixel lookups x(i, j, k)
and pairwise differences x(i1, j1, k)− x(i2, j2, k). A similar set of gradient chan-
nels used in [6] were implemented in this work. We computed the normalised
gradient magnitude at 2 scales (original and half resolution) and each of these
channels is then split into 4 channels based on orientation. The channels were
blurred and then downsampled by a factor of 2. The resulting K consists of 11
channels (1 grayscale, 2 magnitude and 8 orientation channels). Pairwise differ-
ence features were obtained by sampling a blurred and downsampled (7 × 7)
version of the previous candidate pairs, and computing their differences.

Upon training our SRF, and because the Euclidean distance over binary edge
maps yields a weak distance measure, we define our mapping Π by sampling a
pair of locations j1 �= j2, where 1 ≤ j ≤ 256 denote the jth pixel of segmentation
mask y(j) (Figure 1[a]), and check if y(j1) = y(j2). This defines z = Π(y) as
a large binary vector encoding [y(j1) = y(j2)] for every distinct pair of indices
j1 �= j2. Hence, a subset of m = 256 dimensions of the high dimensional Z, and
k = 2, were found to effectively capture the similarity of segmentation masks.

Given that we can store edge maps (any arbitrary information) at the leaf
nodes, we finally averaged these to compute a soft edge response. The resulting
ensemble model is computationally efficient because it uses structured labels,
capturing information for an entire image neighbourhood, thus reducing the
number of decision trees T that need to be evaluated per pixel. The structured
output was computed on the image with a stride of 2 pixels. Since both the
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inputs and outputs of each tree overlapped, we trained T=8 trees and evaluated
an alternating set of 4 trees at each adjacent location.

Motivated by [7], we finally performed classical multiscale of our SED by
averaging the result of three probability edge maps at the original, half (robust
but poor localisation), and double resolution (detail-preserving detection but
sensitive to endocardial boundary artefacts) version of a given input image. Prior
to evaluation, we performed standard non-maximal suppression on the resulting
edge maps to obtain thinned edges.

Finally, a SRF ensemble model, SED1, was trained on LV myocardial bound-
ary references, and hand-optimized with the parameters previously discussed and
a maximum depth of D = 64. In addition, a second model, SED2, was trained
on the same volumes but on LV endocardial boundaries only. After 3-fold CV of
results from both SEDs, we evaluated them qualitatively by comparing endocar-
dial edge strength and enhancement against the best (hand-optimized) standard
2D and 3D local phase-based FA measure [2] (parameters: centre frequency:
0.25mm, and 2 octaves) and intensity-based Canny edge detector (magnitude of
a Gaussian derivative operator) [8]. In the latter we used the ”CannyEdgeDe-
tectionImageFilter” from ITK (parameters: variance: 0.25, lower threshold: 0,
upper threshold 1.0, maximum error: 0.0125). For the quantitative evaluation of
SED2, we computed the Hausdorff distance between the detected endocardium
boundaries (non-maximally suppressed) and their correspondent GT. The same
was performed for the other two standard edge detectors. To compare these,
we used a masking procedure in which we mask (GT contour filled and dilated)
the (2D and 3D) FA and Canny edge responses to include all responses inside
the GT and to explicitly exclude epicardium or other edge responses exterior
to the myocardium that could have made the Hausdorff distances bogus.

3 Experimental Results and Discussion

Qualitative Evaluation. Examples of unseen test cases with visible papil-
lary muscles and trabeculation in the blood pool were selected for comparison
between the proposed SED ensemble models and the best (thresholded) 3D
FA measure. As depicted in Figure 2[a], the proposed SED1 significantly out-
performed the best standard FA and Canny methods in the sense that where
responses fade in the local phase-based measure (known to respond well to ul-
trasound images since they are intensity invariant), SED1 yielded myocardium
edges with high probability. Non-maximal suppression computation of these al-
lowed to better delineate the myocardium. In our method, the stronger edge
responses were derived from the topological knowledge gathered by the SRF
from each edge pixel neighbourhood (24× 24 = 576 pixel votes), and therefore
contribute to the completeness of the LV and RV blood pools. In addition, it is
illustrated how our SED1 was able to significantly suppress or, in most cases,
completely remove any spurious or irrelevant edge responses that result from im-
age artefacts or the presence of papillary muscles and trabeculations in the LV
and RV blood pool. In the typical case where accurate myocardium delineation



220 J.S. Domingos et al.

(a)

(b)

(c)

Fig. 2. [a] From left to right : unseen testing examples with GT (red); LV myocardial
edge probability maps from SED1 ; non-maximal suppressed versions of the previous;
3D FA-based edge maps; 3D Canny edge maps. [b] From left to right : unseen testing
examples; LV endocardial edge probability maps from SED2 ; non-maximal suppressed
versions of the previous; 3D FA-based edge maps; 3D Canny edge maps. [c] Unseen
testing examples of LV myocardial (endocardium and epicardium) boundary detection
from SED1 and single endocardial boundary detection from SED2 on short-axis slices.
Where shown, GT (red) boundaries are superimposed on the detected ones (green) by
the proposed SEDs.
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(a) (b)

Fig. 3. [a] Comparison of the Hausdorff distance distribution between the detected
myocardial boundaries (SED2 ) and the GT for different edge detectors. [b] Fitting a
biquadratic B-spline surface [3] to the detected epicardial boundaries of an LV blood
pool test example. This demonstrates that our SED2 allows for fast and robust heart
segmentation and volumetric quantification.

is required, both the FA and Canny methods preserve irrelevant edges which can
be seen inside the blood pool of both ventricles in Figure 2[a,b].

Unsurprisingly, when we fitted a deformable anatomical model to the LV blood
pool, depicted in Figure 3[b], we found that convergence of surfaces to detected
endocardial boundaries was complete for our SED2, while in both FA and Canny
methods, irrelevant edge responses will prevent deformable models from growing
and converging to boundaries. A more extensive analysis of this method for LV
volumetric quantification can be found in [9].

In Figure 2[c], our SEDs demonstrated the ambiguity existent in the seg-
mented masks (GT) since in some cases it is arguable that our method performed
a better endocardial boundary detection than the GT, which could be due to
the blurring and thus smoothing process occuring at the feature extraction level.

Quantitative Evaluation. Because the masking procedure preserves all the
responses interior to the endocardium, the Hausdorff distance measures whether
or not the different methods detect erroneous edges in the blood pool, which
is the primary driver for our method. As depicted in Figure 3[a], our SED2
method ([4.1 5.3 9.5] mm) outperformed the standard FA (2D:[5.1 8.3 12.9] mm;
3D:[4.7 7.6 14.4] mm) and Canny (2D:[5.3 8.5 13.7] mm; 3D:[5.3 8.5 13.1] mm)
methods at every percentile (25th, 50th and 75th). More interestingly, even when
not masked to exclude epicardium or other edge responses exterior to the my-
ocardium, the proposed SED2 ([4.7 7.1 12.2] mm) was still able to outperform
the standard methods. Note that ultrasound images have been shown to respond
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well to local phase-based methods, such as the 3D FA measure, and still our
unmasked SED did slightly better when it comes to endocardial boundary de-
tection and enhancement. The higher number of outliers in the SEDNoMask was
related to some detected RV endocardial boundaries in short-axis slices where
RV endocardial structure resembled the LV one.

Finally, at runtime, a 224x208x208 image volume took only 6.7s to generate
the myocardial edge probability and orientation volumes on a single core of an
Intel Mobile 4930MX (or 4.2s on 8 cores).

4 Conclusion

A novel structured learning approach borrowed from computer vision is shown
to perform fast and robust myocardial edge detection. Qualitative and quantita-
tive results demonstrate that our method outperforms standard edge detectors,
effectively suppressing the prediction of irrelevant endocardial edge responses,
and allowing deformable models and contour-based approaches to more stably
converge to the detected myocardial boundaries, enabling computation of more
accurate LV clinical indices. Future work will evaluate how accurate the proposed
ensemble model is in performing wall thickness measurements.

Acknowledgments. This work was supported by the RCUK CDT in Health-
care Innovation, EPSRC grant EP/G030693/1, and Rhodes Trust.

References

1. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV (2013)
2. Rajpoot, K., Grau, V., Noble, J.: Local-phase based 3D boundary detection using

monogenic signal and its application to real-time 3-D echocardiography images. In:
IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI
2009, pp. 783–786. IEEE (2009)

3. Stebbing, R.V., Noble, J.A.: Delineating anatomical boundaries using the boundary
fragment model. Medical Image Analysis 17(8), 1123–1136 (2013)

4. Nowozin, S., Lampert, C.H.: Structured learning and prediction in computer vision,
vol. 6. Now Publishers Inc. (2011)

5. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A unified framework for
classification, regression, density estimation, manifold learning and semi-supervised
learning. Foundations and Trends R© in Computer Graphics and Vision 7(2-3),
81–227 (2012)

6. Lim, J.J., Zitnick, C.L., Dollár, P.: Sketch tokens: A learned mid-level representation
for contour and object detection. In: 2013 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3158–3165. IEEE (2013)

7. Ren, X.: Multi-scale improves boundary detection in natural images. In: Forsyth, D.,
Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 533–545.
Springer, Heidelberg (2008)

8. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (6), 679–698 (1986)

9. Domingos, J., Stebbing, R., Noble, J.: Endocardial segmentation using structured
random forests in 3D echocardiography. In: MICCAI Challenge on Endocardial
Three-dimensional Ultrasound Segmentation (2014)


	Structured Random Forests for MyocardiumDelineation in 3D Echocardiography
	1 Introduction
	2 Methods
	2.1 Structured Random Forests
	2.2 3D Echocardiogram Database
	2.3 Myocardium Boundary Detection

	3 Experimental Results and Discussion
	4 Conclusion
	References




