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Abstract. In neuroimaging studies, high dimensionality and small sam-
ple size have been always an issue, and it is common to apply a dimension
reduction method to avoid the over-fitting problem. Broadly, there are
two different approaches in reducing the feature dimensionality: feature
selection and subspace learning. When it comes to the feature inter-
pretability, the feature selection approach such as the sparse regularized
linear regression method is preferable to the subspace learning meth-
ods, especially in Alzheimer’s Disease (AD) diagnosis. However, based
on recent machine learning researches, the subspace learning methods
presented promising results in various applications. To this end, in this
work, we propose a novel method for discriminative feature selection by
combining two conceptually different methodologies of feature selection
and subspace learning in a unified framework. Specifically, we integrate
the ideas of Fisher’s linear discriminant analysis and locality preserving
projection, which consider, respectively, the global and local information
inherent in observations, in a regularized least square regression model.
With the help of global and local information in data, we select class-
discriminative and noise-resistant features that thus help enhance clas-
sification performance. Furthermore, unlike the previous methods that
mostly considered only a binary classification, in this paper, we consider
a multi-class classification problem in AD diagnosis. Our experiments
on the Alzheimer’s Disease Neuroimaging Initiative dataset showed the
efficacy of the proposed method by enhancing the performances in multi-
class AD classification.

1 Introduction

Previous studies of the computer-aided Alzheimer’s Disease (AD) diagnosis usu-
ally applied the sequential processes of feature extraction, feature dimensionality
reduction, and classifier learning, to make a decision on the clinical status of a
subject, e.g., AD, Mild Cognitive Impairment (MCI), and Normal Control (NC)
[4,14,16,17,20]. In this paper, we focus on the feature selection, which has the
effect of lowering feature dimensionality. Furthermore, unlike the previous meth-
ods that mostly considered only binary classification of either AD vs. NC or MCI
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vs. NC, we consider a multi-class classification problem, e.g., AD vs. MCI vs.
NC, for practical applications. Based on the observation that there are three
or four different clinical status related to AD, i.e., AD, MCI (MCI-Converter:
MCI-C, MCI-NonConverter: MCI-NC), and NC, from a clinical point of view, it
is more practical to build a multi-class classifier.

In neuroimaging studies, while the feature dimension is high in nature, the
available sample size is very limited. It has been always an issue for high dimen-
sionality and small sample size in computer-aided AD diagnosis [5,13,22,23].
Thus, dimensionality reduction by means of either subspace learning or fea-
ture selection has been one of the core steps in neuroimaging pattern analysis.
Methodologically, feature selection methods, e.g., t-test and sparse regularized
linear regression, select an informative feature subset from the original feature
set, while the subspace learning methods, e.g., Fisher’s Linear Discriminant
Analysis (LDA) [3] and Locality Preserving Projection (LPP) [7], transform the
original feature space into a low-dimensional space. As for the interpretability
of the results, the feature selection methods are preferable to subspace learning
methods, in particular, in neuroimaging studies. However, according to recent
studies in machine learning [6,18,19], subspace learning has shown promising
performances in various fields.

In this paper, we propose a novel method that efficiently combines the method-
ologies of feature selection and subspace learning. Specifically, we inject the ideas
of two subspace learning methods, i.e., LDA and LPP, into a sparse least square
regression framework. The rationale of using both LDA and LPP in our formu-
lation is that LDA considers the global information inherent in the observations
with the ratio of within-class-variance and between-class-variance, while LPP
reflects the local information by means of graph Laplacian. That is, with the
help of global and local information in data, we can select class-discriminative
and noise-resistant features that thus help enhance classification performances.

2 Proposed Method

2.1 Multi-class Sparse Discriminative Feature Selection

Let X ∈ R
d×n denote a feature matrix, where d and n are, respectively, the

numbers of feature variables and samples, andY ∈ R
c×n denote a class indicator

matrix, e.g., 0-1 encoding, where c is the number of classes. We formulate a
multi-class feature selection problem by means of a multi-task learning with a
sparse least square regression model as follows:

min
W

1

2
‖Y −WTX‖2F + λ‖W‖2,1 (1)

where W ∈ R
d×c is a regression coefficient matrix and λ is a sparsity control

parameter. The �2,1-norm ‖W‖2,1 penalizes the coefficients in the same row of
W together for joint selection or unselection in regressing the response variables
in Y. In Eq. (1), the optimal solution assigns a large weight to the important
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features and zero or a small weight to less important features and this method
has been successfully applied for a binary classification [10,12,20]. With respect
to the multi-task learning, it has been shown that Eq. (1) utilizes the correlation
of different classes [1] by regarding each class as one task. However, in its current
form, it cannot guarantee the class-discriminative power of the selected features
and the preservation of the neighborhood structure of data points, which are
important characteristics for a good classification performance [3,6].

In this section, we propose a novel discriminative feature selection method
that considers both the global data distribution and the local topological re-
lation among data in a sparse least square regression framework. We first uti-
lize a Fisher’s LDA that considers the global data distribution based on the
ratio between within-class-variance and between-class-variance to find the class-
discriminative features. Second, we take the concept of an LPP [7] to preserve
the topological relation among data.

Regarding the Fisher’s criterion for discriminative feature selection, a straight-
forward approach is to penalize the objective function of Eq. (1) with a regular-
ization term defined as follows:

RG =
WTΣbW

WTΣwW
(2)

whereΣw andΣb denote, respectively, the within-class variance and the between-
class variance. However, due to the non-convexity of Eq. (2), it is not trivial to
find an optimal solution of the objective function. Fortunately, Ye [15] presented
that the multi-class LDA that finds a subspace by maximizing Eq. (2) can be
equivalently formulated with a linear regression model by defining the class in-
dicator matrix Y = [yi,k] in Eq. (1) as follows:

yi,k =

{√
n
nk

−√
nk

n , if l(xi) = k

−√
nk

n , otherwise
(3)

where l(xi) denotes a class label of xi and nk is the sample size of the class k.
That is, using a class indicator matrix Y defined as Eq. (3), we can efficiently
use the global information, i.e., data distribution in the original space, without
changing the formulation. Importantly, we don’t transform the original input
feature space into a low-dimensional space, in which it is difficult to interpret or
investigate the results.

As for the topological relation among data, i.e., local information, we use a
graph Laplacian by defining the similarity si,j between every pair of data points
xi and xj via a heat kernel1 and define a regularization term as follows:

RL = tr(WTXLXTW) (4)

where L = D − S with a similarity matrix S = [si,j ] ∈ R
n×n and a diagonal

matrix D = [di,i =
∑

j si,j ] ∈ R
n×n.

1 H(xi,xj) = exp
[
− ‖xi−xj‖2

σ

]
, where σ ∈ R

+ is a parameter.
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Therefore, our final objective function is formulated as follows:

min
W

1

2
‖Y −WTX‖2F + λ1tr(W

TXLXTW) + λ2‖W‖2,1 (5)

where Y is defined as Eq. (3), and λ1 and λ2 are tuning parameters. Here, we
should note that Eq. (5) efficiently combines the ideas of subspace learning (LDA
and LPP) and feature selection in a unified framework.

Our method can be discriminated from the previous methods in the following
senses: (1) Unlike the previous sparse linear regression-based feature selection
methods [11,21], the proposed method finds the class-discriminative and noise-
resistant regression coefficient matrix thanks to the use of the Fisher’s criterion
and graph Laplacian. (2) Compared to the subspace learning methods such as
Principal Component Analysis (PCA), LDA, and LPP, which all have an in-
terpretational limitation, the proposed method selects features in the original
space, and thus it has an advantage of intuitive investigation of the results. (3)
Unlike the conventional LDA [3] based on the criterion in Eq. (2), the proposed
method uses the Fisher’s criterion but still operates in the original feature space,
and thus allows for an intuitive interpretation of the selected features. Further-
more, while the conventional LDA finds at most (c− 1)-dimension features for a
c-class classification task, e.g., 2-D space in a three-class classification task, Eq.
(5) selects at most d features (in general, d � c in the AD study).

2.2 Optimization

Eq. (5) is a convex but non-smooth function. In this work, we solve it by designing
a new accelerated proximal gradient method [9,19]. We first conduct the proximal
gradient method on Eq. (5) by setting

f(W) =
1

2
‖Y −WTX‖2F + λ1tr(W

TXLXTW) (6)

L(W) = f(W) + λ2‖W‖2,1. (7)

Note that f(W) is convex and differentiable, while λ2‖W‖2,1 is convex but non-
smooth [9]. To optimize W with the proximal gradient method, we iteratively
update it by means of the following optimization rule:

W(t+ 1) = argmin
W

Gη(t)(W,W(t)), (8)

whereGη(t)(W,W(t))= f(W(t))+〈∇f(W(t)),W −W(t)〉+ η(t)
2 ‖W−W(t)‖2F+

λ2‖W‖2,1,∇f(W(t)) = (XXT +λ1XLXT )W(t)−XYT , and η(t) andW(t) are,
respectively, a tuning parameter and the value of W obtained at the t-iteration.

By ignoring the terms independent of W in Eq. (8), we can rewrite it as

W(t+ 1) = πη(t)(W(t)) = argmin
W

1

2
‖W −U(t)‖22 +

λ2

η(t)
‖W‖2,1 (9)
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where U(t) = W(t)− 1
η(t)∇f(W(t)) and πη(t)(W(t)) is the Euclidean projection

of W(t) onto the convex set η(t). Thanks to the separability of W(t+1) in each
row, we can obtain the optimal W(t + 1) by finding a closed form solution of
each row [9].

Meanwhile, in order to accelerate the proximal gradient method in Eq. (8),
we further introduce an auxiliary variable V(t+ 1) as:

V(t+ 1) = W(t) +
α(t)− 1

α(t+ 1)
(W(t+ 1)−W(t)). (10)

where the coefficient α(t+ 1) is usually set as α(t+ 1) =
1+

√
1+4α(t)2

2 [9].

3 Experimental Analysis

3.1 Dataset and Feature Extraction

We conducted performance evaluation on a subset (202 subjects: 51 AD, 43
MCI Converter: MCI-C, 56 MCI Non-Converter: MCI-NC, and 52 NC) of the
ADNI dataset by comparing the proposed method with the competing methods.
We considered two multi-class classification problems: AD vs. MCI (including
both MCI-C and MCI-NC) vs. NC and AD vs. MCI-C vs. MCI-NC vs. NC.
Regarding the feature extraction, we first sequentially performed spatial distor-
tion, skull-stripping, and cerebellum removal for Magnetic Resonance Imaging
(MRI) and Positron Emission Tomography (PET) images. For the MRI images,
we further segmented them into three tissue types of gray matter, white matter,
and cerebrospinal fluid. By warping a template into a subject’s brain image,
we parcellated the gray matter into 93 Region-Of-Interests (ROIs). The PET
images were spatially aligned to its respective MRI images. Finally, we obtained
93 gray matter tissue volumes from an MRI image and also 93 mean intensities
from a PET image. For the modality fusion of MRI and PET (MRI+PET), we
concatenated their features into a long vector of 186 features.

3.2 Experimental Setting

We compared our feature selection method with the widely used methods such
as Fisher Score (FS for short) [3], LPP [7], LDA [3], and PCA [3]. The FS is
categorized as a feature selection method since it selects features in the original
feature space based on the score ranking [3]. Meanwhile, LPP, LDA, and PCA
are subspace learning methods, which aim, respectively, at preserving the local
structures, the maximal variance, and the global structures of the data [3,15]. We
also compared the proposed method with the state-of-the-art feature selection
methods applied for AD diagnosis: Sparse Joint Classification and Regression
(SJCR) [12] and Multi-Modal Multi-Task (M3T) [16]. For these two methods,
we followed their papers to apply a 0-1 encoding method for the class indicator
matrix.
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Table 1. Comparison of classification accuracy ((mean±standard deviation)%) of two
classification tasks

Method
AD/MCI/NC AD/MCI-C/MCI-NC/NC

MRI PET MRI+PET MRI PET MRI+PET

FS 62.33±1.56 60.11±1.54 62.88±1.31 50.87±1.73 50.44±1.49 51.76±1.58
PCA 63.71±1.30 61.49±1.58 64.61±1.60 51.05±1.64 51.51±1.62 52.20±1.60
LPP 63.21±1.91 61.03±1.22 64.35±1.29 51.72±1.42 51.39±1.58 52.60±1.37
LDA 49.01±1.71 39.02±1.23 51.85±1.66 35.25±1.65 31.82±1.40 36.32±1.64
SJCR 64.02±1.36 61.31±1.73 67.66±1.63 52.13±1.73 51.85±1.68 55.98±1.65
M3T 63.30±1.66 61.32±1.90 67.91±1.91 51.89±1.61 50.91±1.83 54.47±1.67

Proposed 68.31±1.23 65.50±1.50 73.35±1.53 59.74±1.52 56.29±1.53 61.06±1.40

3.3 Classification Results

Table 1 reports the classification accuracy of all the methods for two multi-
class classification problems. The experimental results in Table 1 clearly show
that the proposed method outperformed all the competing methods in all ex-
periments. For example, in the three-class classification problem, our method
improved the classification accuracy by 4.29% (MRI), 4.01% (PET), and 5.44%
(MRI+PET), respectively, compared to the best performances among the
competing methods. Meanwhile, in the four-class classification problem, the clas-
sification improvements were higher than the best performances among the com-
peting methods as much as 7.61% (MRI), 4.44% (PET), and 5.08% (MRI+PET),
respectively. Based on these results, we argue that the proposed discriminative
and noise-resistant feature selection method helped enhance the classification
performances.

Besides, we found that LDA achieved the worst classification performances
among all the methods. The main reason was that LDA projected the original
high dimensional feature space into only two or three dimensional subspace, re-
spectively. Such low-dimensional space was not enough to correctly classify the
neurimaging features. On the other hand, the subspace learning methods, ex-
cept for LDA, outperformed the feature selection method of FS. This makes it
reasonable to integrate subspace learning into the feature selection framework.
Moreover, the proposed method clearly outperformed both the conventional fea-
ture selection and subspace learning methods thanks to the combination of the
two approaches.

3.4 Discussions

We investigated the importance of the brain regions in discriminating among
classes based on the frequency of the selected ROIs by the proposed method with
MRI+PET. According to our experimental results, we can know that the com-
monly selected regions in two multi-class classification tasks were uncus right,
hippocampal formation right, uncus left, middle temporal gyrus left, hippocam-
pal formation left, amygdala left, middle temporal gyrus right, and amygdala
right from MRI, and precuneus right, precuneus left, and angular gyrus left
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from PET. These regions were also selected by the proposed method with either
MRI or PET and almost all the competing methods with MRI+PET. Moreover,
these regions have been also shown to be highly related to AD and MCI practical
clinical diagnosis [2,8]. In this regard, we can say that these regions can be the
potential biomarkers for AD diagnosis.

Meanwhile, the numbers of selected features in three- and four-class classifi-
cation tasks were, respectively, 50.52 and 34.36 on average. That is, the smaller
number of features were used in the classification task of considering the larger
number of classes. It is also interesting that the larger number of features from
MRI rather than PET was selected in both three- and four-class classification
problems. This was also observed in the competing methods. Furthermore, from
Table 1, we can see that in general, the MRI-based methods achieved better
performance than the PET-based methods. Based on these observations, it is
likely that the structural MR image provides more discriminative information in
identifying the clinical status related to AD, compared to the functional PET
image.

4 Conclusions

In this work, we focused on the issue of discriminative feature selection for multi-
class classification in AD diagnosis. Specifically, we proposed a novel feature se-
lection method by integrating subspace learning, which utilized both the global
and the local information inherent in the data, into in a sparse least square regres-
sion framework. In our experimental results on the ADNI dataset, we validated
the efficacy of the proposed method by enhancing the classification accuracies
in multi-class classification problems.
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