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Abstract. Segmenting the prostate from CT images is a critical step in the radio-
therapy planning for prostate cancer. The segmentation accuracy could largely af-
fect the efficacy of radiation treatment. However, due to the touching boundaries
with the bladder and the rectum, the prostate boundary is often ambiguous and
hard to recognize, which leads to inconsistent manual delineations across differ-
ent clinicians. In this paper, we propose a learning-based approach for bound-
ary detection and deformable segmentation of the prostate. Our proposed method
aims to learn a boundary distance transform, which maps an intensity image into a
boundary distance map. To enforce the spatial consistency on the learned distance
transform, we combine our approach with the auto-context model for iteratively
refining the estimated distance map. After the refinement, the prostate boundaries
can be readily detected by finding the valley in the distance map. In addition, the
estimated distance map can also be used as a new external force for guiding the
deformable segmentation. Specifically, to automatically segment the prostate, we
integrate the estimated boundary distance map into a level set formulation. Ex-
perimental results on 73 CT planning images show that the proposed distance
transform is more effective than the traditional classification-based method for
driving the deformable segmentation. Also, our method can achieve more consis-
tent segmentations than human raters, and more accurate results than the existing
methods under comparison.

1 Introduction

CT images are widely used in the image-guided radiotherapy planning (IGRT), as it
provides Hounsfield units for all image voxels, which are necessary for dose calcula-
tion. In the IGRT for prostate cancer, the prostate and nearby organs (e.g., the bladder
and the rectum) need to be segmented in order to optimize the dose plan for precisely
targeting the radiation beams on the prostate and minimizing the radiation exposure to
the surrounding tissues. The segmentation accuracy of the prostate could largely affect
the efficacy of radiation treatment. However, due to the touching boundaries with the
bladder and the rectum, the prostate boundary is often indistinct in CT images (Fig.
1), which imposes much difficulty upon the manual delineation. It usually takes an ex-
perienced clinician 10 − 12 minutes to manually delineate the prostate boundary in
CT image of each patient. Despite of taking this long delineation time, manual seg-
mentations still vary much among different raters [1,2]. Thus, an automatic and robust
segmentation method is highly desired in this context.
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Fig. 1. A typical 3D planning CT image in the transversal view (left panel) and sagittal view (right
panel). In each view, the left figure shows the original prostate slice, and the right figure shows
the corresponding slice overlaid with the manually segmented prostate (red).

Previous works [3,4] often reply on learning a patient-specific model for addressing
the aforementioned challenge, as the prostate appearance and shape variations are small
for the image data acquired from the same patient. However, these methods are not ap-
plicable for prostate segmentation from the planning CT images, as no segmented CT
images of the same patient are available for appearance and shape learning in the ra-
diotherapy planning stage. Consequently, only population information (i.e., CT images
of other patients) could be used for guiding the prostate segmentation in the planning
CT images. Among the population-based methods, most of them utilize the shape con-
straint for deriving a robust segmentation. For example, Costa et al. [5] proposed a
coupled deformable model for segmenting the prostate by imposing a non-overlapping
constraint from the bladder. Chen et al. [6] proposed a Bayesian framework that incor-
porates anatomical constraints from the surrounding bones for prostate segmentation.
However, due to the lack of an effective appearance model for guiding the deformable
segmentation, the accuracy of these methods is very limited. Recently, classification-
based methods [2,7] have been proposed to segment the prostate from CT images, and
achieved significant improvement over the traditional intensity-based methods [5,6,8].
The main idea is to train a classifier for distinguishing prostate voxels from background
voxels based on local patch appearance. The learned classifier could be used to label the
intensity image into a prostate likelihood map for guiding the deformable segmentation.

In this paper, we propose to learn a distance transform for boundary detection and
deformable segmentation of the prostate. The learned distance transform can map a new
intensity image into the distance map of the target prostate boundary, which could be
further utilized for anatomical boundary detection as well as deformable segmentation.
In particular, regression forest is adopted to learn the non-linear relationship between
a voxel’s local image appearance and its 3D displacement to the nearest point on the
target prostate boundary. Once the forest is learned, it can be used to predict the 3D
displacement from any voxel in the new testing image to the target prostate boundary.
By taking the magnitude of the displacement vector, the distance map of the prostate
boundary can be obtained for a new testing image. To enforce the spatial consistency
within the obtained distance map, we further combine the high-level context features
extracted from the previously obtained distance map with the original image appearance
features into the auto-context framework [9] for iterative refinement. Finally, the refined
distance map will be integrated into a level set formulation for segmenting the prostate
from CT images. Experimental results show that learning a boundary distance transform
is more effective than prostate classification for guiding the deformable segmentation.
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Fig. 2. The flowchart of our method. Green boxes show the local patches where appearance and
context features are extracted for the voxel marked as red crosses. Cold and warm colors in the
figure indicate voxels with small and large predicted distances to the prostate boundary.

In addition, our method can achieve more consistent segmentations than human raters,
and also more accurate results than existing methods under comparison.

2 Method

Our method consists of three components: 1) regression forest for learning boundary
distance transform, 2) iterative refinement of the predicted distance map by context
features, and 3) distance-map-guided boundary detection and deformable segmentation
with level sets. Fig. 2 shows the flowchart of our method.

2.1 Learning Boundary Distance Transform by Regression Forest

Regression forest, as a non-linear regression model, has recently been used for efficient
anatomy detection [10], i.e., detecting the bounding box of one specific organ. In this
paper, we extend it to learn the distance transform for a specific organ boundary (e.g.,
prostate boundary). The learned distance transform is used for mapping a new 3D in-
tensity image into the distance map of the target boundary. More specifically, given
any voxel in the new testing image, we want to predict its nearest distance to the tar-
get boundary. Hence, distance transform learning is essentially a regression problem.
In our work, regression forest is particularly used for learning the non-linear relation-
ship between a voxel’s local image appearance and its 3D displacement vector to the
nearest point on the target boundary. By taking the magnitude of the 3D displacement
vector, the distance of this voxel to the target boundary can be obtained. Thus, the
learned regression forest can be regarded as a boundary distance transform. In the next
paragraphs, we will show how the regression forest is trained for learning boundary
distance transform, and how the learned forest could be applied to a new testing image
for predicting the distance map.

To learn the distance transform for a specific organ boundary, we first randomly sam-
ple voxels near the boundary in every training image according to a Gaussian distribu-
tion: p(x) = 1/(

√
2πσ) × exp(−d(x)2/2σ2), where p(x) indicates the probability of
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voxel x ∈ R
3 in a training image to be sampled, d(x) is the nearest distance of voxel

x to the target boundary in this training image, and σ controls the size of narrowband
for sampling. In this way, the majority of sampled voxels will be close to the target
boundary, thus making the learned model more specific on detecting the target bound-
ary. This sampling strategy is important for accurate organ segmentation, as boundary
voxels are usually the most difficult to characterize. Afterwards, the sampled voxels
from all training images are used as our training dataset. For each sampled voxel in one
training image, we extract randomized 3D Haar-like features from an intensity patch
centered at this voxel for capturing the local image appearance around it. The Haar-like
features are defined as follows.

f(I) =

M∑

i=1

ti
∑

‖x−ci‖∞≤si

I(x) (1)

where f(I) denotes one 3D Haar-like feature extracted from intensity patch I , M is
the number of 3D cubic functions used in this Haar-like feature, and ti ∈ {+1,−1}, ci
and si are the polarity, the center and the size of the i-th cubic function, respectively.
By randomizing the parameters M , ti, ci and si in Eq. 1, we can generate an unlim-
ited number of 3D Haar-like features for regression forest learning. In this work, M is
limited to {1, 2}, si is limited to {3, 5}, and ci is not limited as long as the 3D cubic
function stays within intensity patch I of size 30× 30× 30.

Once the feature representation of each voxel is determined, a regression forest can
be trained for predicting the 3D displacement from any image voxel to the nearest point
on the target boundary. Given a new testing image, the learned forest can be applied
to voxel-wisely estimate the 3D displacement for every image voxel. By taking the
magnitude, a boundary distance map can then be obtained.

2.2 Iterative Refinement of Distance Map by Context Features

As the displacement from each image voxel to the target boundary is predicted inde-
pendently, the estimated distance map for a new testing image is often spatially incon-
sistent, as shown in the leftmost distance map of Fig. 2. To overcome this limitation,
we integrate the proposed distance transform learning with the auto-context model [9]
for iteratively refining the estimated distance map. The main idea is to train a sequence
of distance transforms, each utilizing both the local image features extracted from the
original intensity image, and the high-level context features extracted from the output
of the previous distance transform for gradually improving the quality of the estimated
distance map.

During the training stage, after the distance transform of the first iteration is learned
as described in Section 2.1, it can be used to predict a boundary distance map for every
training image. Then, the additional high-level context features can be extracted from
the estimated distance map, and further combined with the original image features to
form a new feature representation for each voxel. Afterwards, a new distance trans-
form can be learned by using the updated feature representation. This iterative training
procedure continues until a specified number N of distance transforms is obtained. In
our work, the high-level context features are also the randomized Haar-like features as
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Fig. 3. Typical planning CTs (sagittal view) in our dataset. Green and blue contours indicate
the prostate boundaries automatically detected by our boundary detection method and manually
delineated by the expert, respectively.

defined in Eq. 1. Different from image appearance features, these context features are
extracted from the distance map estimated by the previous distance transform. Since
the rough distances of nearby voxels to the target boundary have been encoded in the
previously estimated distance map, the new distance transform learning can utilize this
valuable information to impose the spatial consistency on the to-be-estimated distance
map, thus improving the overall prediction accuracy. In the testing stage, the learned
distance transforms can be applied sequentially as shown in Fig. 2 to iteratively refine
the estimated distance map for a new testing image.

2.3 Distance-Map-Guided Boundary Detection and Deformable Segmentation
(with Level Sets)

Once the boundary distance map is estimated for a new testing image, it can be used for
either boundary detection or level set segmentation.

Boundary Detection: In most cases, the estimated distance map of a new testing image
will be directly utilized for the final segmentation (e.g., to guide the deformable seg-
mentation). However, sometimes if the organ-specific boundary segments are desired,
we can also adopt non-minima suppression and hysteresis thresholding, similar as in the
canny edge detector [11], to detect these organ-specific boundaries from the estimated
distance map.

Level Set Segmentation: Since the target boundaries are located in the valley of the
estimated distance map, the local means in the estimated distance map should be sim-
ilar for both sides of the zero level set. Based on this assumption, we can design the
following evolution flow to segment the prostate from the boundary distance map:

∂φ

∂t
= δ(φ)(u1(x)− u2(x)) + vδ(φ)div(

�φ

‖ � φ‖ ) (2)

u1(x) =

∫
K(y − x)H(φ(y))Ω(y)dy
∫
K(y − x)H(φ(y))dy

, u2(x) =

∫
K(y − x)(1−H(φ(y)))Ω(y)dy
∫
K(y − x)(1−H(φ(y)))dy

(3)

where φ is the level set function with φ > 0 as the inner part and φ < 0 as the outer
part, δ is the Delta function, u1(x) and u2(x) are the local means of the inner and outer
parts, respectively, K is a Gaussian kernel function with the standard deviation of 3,
H is the Heaviside step function [12], and Ω denotes the estimated boundary distance
map. The first data-fitting term attracts the zero level set to the valley of the estimated
distance map Ω, and the second regularization term imposes the smoothness constraint
on the evolving surface φ.
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Fig. 4. Qualitative results from three planning CT images with different levels of contrast agent.
Each row shows the planning CT images and their corresponding predicted distance maps in
transversal, sagittal and coronal views. Red and blue contours indicate our final segmented
prostate boundaries and the manually delineated boundaries, respectively.

3 Experiments

Data Descriptions: Our dataset consists of 73 planning CT images, scanned from dif-
ferent patients. The typical image size is 512 × 512 × (61 ∼ 81) with voxel size
0.94 × 0.94 × 3.00 mm3. The prostate in each planning CT image has been manu-
ally delineated by a radiation oncologist, which we use as ground truth. The dataset is
of large appearance variability due to the uncertainty on the level of contrast agent that
is present. Fig. 3 shows typical planning CT images (sagittal view) in our dataset along
with the detected prostate boundaries by our boundary detection method (green) and
manual rater (blue).

Parameter Setting: In the regression forest training, the number of trees is 10, the
maximum tree depth is 15, the number of randomized Haar-like features is 1000 for
both image appearance and context features, and the minimum sample number for each
leaf node is 8. σ for controlling the size of narrowband sampling is 8. v in the level
set segmentation is set to 0.01. All the parameters of regression forest is typical as
adopted in other works [10]. To evaluate our segmentation method, we use four-fold
cross-validation with 54 images for training and 19 images for testing. The initialization
of the level set function is accomplished by using an affine transformation to transform
the mean prostate shape onto the testing image. The affine transformation is estimated
between six automatically detected prostate landmarks (i.e., top, base, anterior, poste-
rior, left and right) in the testing image and their counterparts on the mean shape [2].

Qualitative Results: In addition to the boundary detection results in Fig. 3, we also
plot the qualitative results for three typical planning CT images (with different levels of
contrast agent) in Fig. 4. We can see that, after the proposed distance transform, prostate
boundaries can be clearly seen in the predicted distance maps, and are quite consistent
with the manually delineated boundaries by radiation oncologist. This demonstrates that
our proposed method works very well in various planning CTs with different levels of
contrast agent.

Classification versus Distance Transform: Fig. 5 (a) quantitatively compares the clas-
sification guided level set method with our proposed method (distance-map-guided level
set method) on the same dataset. As aforementioned, the classification-based method
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Fig. 5. (a) Quantitative comparison between classification-guided and distance-map-guided level
set methods in our dataset. DSC: Dice Similarity Coefficient. ASD: Average Surface Distance. (b)
Qualitative comparison between distance-map-based (first row) and classification-based (second
row) auto-context refinement on a typical planning CT image. Red and blue contours indicate
automatically-segmented and manually-delineated prostates, respectively.

uses a learned classifier to label the new testing image into a prostate likelihood map,
which is then utilized for guiding the deformable segmentation with level sets [12].
For fair comparison, we used the classification forest with the same training parame-
ters for the classification-guided level set method. Similarly, we also adopt the auto-
context model to iteratively refine the classification response map. From Fig. 5 (a),
we can clearly see that our proposed method (“distance transform”) outperforms the
classification-guided level set method in all iterations (e.g., with higher Dice Similarity
Coefficient (DSC) and lower Average Surface Distance (ASD)). In addition, Fig. 5 (b)
gives a typical example that compares the classification-based auto-context refinement
with our distance-map-based auto-context refinement. We can see that the distance-
map-based refinement is able to achieve more accurate segmentation than classification-
based refinement. This infers that the context features extracted from the boundary dis-
tance map are more helpful to assist the auto-context refinement than the traditional
context features extracted from the classification response map.

Comparison with other CT Prostate Segmentation Methods: Our method obtains an
average surface distance (ASD) 1.85±0.87mm on our dataset. Due to the fact that nei-
ther the executables nor the datasets of other works are publicly available, it is difficult
for us to directly compare our method with other CT prostate segmentation methods.
Thus, we only cite the results reported in their publications for reference. The com-
parison shows that our method achieves more accurate segmentations than [8] (ASD
4.09 ± 0.90 mm), [2] (ASD 3.35 ± 1.40 mm), and the current state-of-the-art method
[7] (ASD 2.37± 0.89 mm). Besides, it is worth noting that most existing methods were
evaluated only on the datasets without contrast agent. It is not clear whether these meth-
ods can be applied to the mixed datasets which contain planning CTs with different levels
of contrast agent. Actually, this aspect is very important in the clinical application. A de-
sired prostate segmentation method should be able to deal with various kinds of planning
CTs obtained with different contrasts and scanning protocols, as it is never pre-known
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which type of an unseen image would need to be segmented. Clearly, our method wins
at this point, since it has been evaluated with good performance on the dataset with plan-
ning CTs of different contrasts. Additionally, the comparison with inter-rater variability
of manual prostate delineations (ASD 3.03± 1.15mm [2]) indicates that our method is
also able to obtain more consistent segmentations than the human raters.

4 Conclusion

In this paper, we propose to predict the boundary distance transform for anatomical
boundary detection and deformable segmentation. It is applied to segment the prostate
from CT images. Validated on 73 planning CT images with various contrasts, our pro-
posed distance transform learning method shows better performance than prostate clas-
sification method for guiding the deformable segmentation of the prostate. Moreover,
the comparisons with other CT prostate segmentation methods indicate that our method
can be more adaptive to different datasets with various contrasts. Also, compared to
manual prostate delineations, our method can achieve more consistent segmentations,
since there often exists large inter-rater variability for manual delineations.
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