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Preface

The 5th InternationalWorkshop onMachine Learning in Medical Imaging (MLMI
2014) was held in the Kresge Auditorium and the Student Center at the Mas-
sachusetts Institute of Technology, Cambridge, MA, USA on September 14, 2014,
in conjunction with the 17th International Conference on Medical Image Com-
puting and Computer Assisted Intervention (MICCAI).

Machine learning plays an essential role in the medical imaging field, includ-
ing computer-assisted diagnosis, image segmentation, image registration, image
fusion, image-guided therapy, image annotation, and image database retrieval.
With advances in medical imaging, new imaging modalities and methodologies,
such as cone-beam CT, tomosynthesis, electrical impedance tomography, and
new machine learning algorithms/applications, come to the stage for medical
imaging. Due to large inter-subject variations and complexities, it is generally
difficult to derive analytic formulations or simple equations to represent objects
such as lesions and anatomy in medical images. Therefore, tasks in medical
imaging require learning from patient data for heuristics and prior knowledge,
in order to facilitate the detection/diagnosis of abnormalities in medical images.

The main aim of this MLMI 2014 workshop is to help advance scientific
research within the broad field of machine learning in medical imaging. This
workshop focuses on major trends and challenges in this area, and presents
works aimed to identify new cutting-edge techniques and their use in medical
imaging. We hope that the MLMI workshop becomes an important platform for
translating research from the bench to the bedside.

The range and level of submissions for this year’s meeting were of very high
quality. Authors were asked to submit full-length papers for review. A total of 70
papers were submitted to the workshop in response to the call for papers. Each
of the 70 papers underwent a rigorous double-blinded peer-review process, with
each paper being reviewed by at least two (typically three) reviewers from the
Program Committee, composed of 56 well-known experts in the field. Based on
the reviewing scores and critiques, the 40 best papers (57%) were accepted for
presentation at the workshop and chosen to be included in this Springer LNCS
volume. The large variety of machine-learning techniques applied to medical
imaging were well represented at the workshop.

We are grateful to the Program Committee for reviewing the submitted pa-
pers and giving constructive comments and critique, to the authors for submit-
ting high-quality papers, to the presenters for excellent presentations, and to all
the MLMI 2013 attendees who came to Cambridge from all around the world.

July 2014 Guorong Wu
Daoqiang Zhang

Luping Zhou
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Sparsity-Learning-Based Longitudinal MR

Image Registration for Early Brain Development

Qian Wang1, Guorong Wu2, Li Wang2,
Pengfei Shi3, Weili Lin2, and Dinggang Shen2

1 Med-X Research Institute, Shanghai Jiao Tong University
2 Department of Radiology and BRIC, University of North Carolina at Chapel Hill

3 Department of Automation, Shanghai Jiao Tong University

Abstract. Longitudinal sequences of infant brain MR images are in-
creasingly applied in early brain development studies, while their regis-
tration are highly challenging as rapid brain development causes drastic
image appearance changes. To this end, we propose a novel sparsity-
learning-based strategy to tackle the longitudinal registration of infant
subject. First, we prepare a set of intermediate sequences, whose longi-
tudinal (voxel-to-voxel) correspondences are established in advance. For
each time point of the subject, we then utilize sparsity learning to iden-
tify its correspondences in the intermediate images at the same age and
thus of similar appearances. Next, the intermediate sequences are used to
bridge the temporal “gaps” between different subject time points, while
the sparsity-learning-based correspondence detection is jointly conducted
for all subject images to impose the temporal consistency. Finally, the
deformation field of each subject time point is reconstructed from the
spatio-temporal correspondences. Experimental results show that our
method is able to achieve the longitudinal registration of the infant sub-
ject despite its varying appearances along time.

1 Introduction

Magnetic resonance (MR) imaging provides a non-invasive way to render inter-
nal structures of human brains. It has thus been widely applied to numerous
applications, including studies upon early brain development. To better monitor
the continuous and complicated development patterns in infant brains, many
researchers follow the longitudinal experimental design to acquire image data.
For example, infant subjects are recruited and scanned via MR imaging every
three months apart, e.g., at the gestational ages of 2 weeks, 3 months, 6 months,
9 months, 12 months, etc. All images compose the longitudinal sequences, which
are helpful to reveal the common pattern of mankind’s early brain development
and the uniqueness of each specific subject [1].

Deformable image registration, a major topic in medical image analysis, is fun-
damentally important to the studies of longitudinal MR images. Once all images
in a longitudinal sequence (corresponding to a certain subject) are normalized
to a same space (e.g., indicated by a reference), we are then able to quanti-
tatively evaluate the temporal changes among brains of different time points.

G. Wu et al. (Eds.): MLMI 2014, LNCS 8679, pp. 1–8, 2014.
c© Springer International Publishing Switzerland 2014



2 Q. Wang et al.

To this end, longitudinal (or 4D) registration is more preferred over traditional
volumetric (or 3D) image registration. Typically, longitudinal registration con-
siders the alignment of all images in the sequence altogether, and imposes the
temporal (smoothness) constraint (TC) upon the deformation fields to reflect
the continuous brain development.

The rapid growth of infant brains causes drastic appearance changes in MR
images (c.f. Fig. 1), making it hard to establish anatomical correspondences
across different time points even for the same subject. Although several longitu-
dinal registration methods are reported [2,3,4,5,6,7], not all of them are capable
of handling the appearance “gaps” in longitudinal infant images. Alternatively,
logistic regression models are introduced to capture the dynamic appearance
changes within the image sequence, while all images are registered together in
the longitudinal style [8]. It is also applicable to segment each brain into dif-
ferent tissues [9] first. Then, spatio-temporal correspondences can be detected
from features related with the segmentation result, instead of the original inten-
sity, to complete longitudinal registration [10]. However, these methods might
be challenged by the large temporal interval (e.g., due to time point missing) in
the sequence, which is common for infant image data.

In this paper, we propose a sparsity-learning-based strategy to tackle the dy-
namic appearance changes and attain longitudinal registration of infant brain
MR images. Our solution is to identify spatio-temporal correspondences within
the to-be-registered subject with helps from a set of intermediate sequences,
where longitudinal correspondences are pre-established already. Therefore, given
a new subject, we only need to utilize sparsity learning to detect correspondences
between each subject image and the intermediate images of the same age. After
we incorporate temporal information contributed by the intermediate sequences,
the spatial-temporal correspondences of the subject would become available.
Moreover, for subject voxels that come from different ages but are correspon-
dences to each other, we impose TC and jointly solve for their correspondence
detection with respect to the intermediate sequences in sparsity learning. After
reconstructing the deformation fields from the detected correspondences, we are
able to complete the longitudinal registration of the entire subject sequence.

A major novelty of our method is that we fully bypass the temporal appear-
ance changes in the subject, which prevent us from directly establishing spatio-
temporal correspondences. We only need to identify correspondences between
each subject image and the intermediate images of the same age, which are sim-
ilar in appearances. Meanwhile, TC is enforced as we detect correspondences for
all subject images jointly and simultaneously. Based on the longitudinal corre-
spondences in the intermediate sequences, the spatial-temporal correspondences
can essentially be established for the subject to complete its registration.

2 Method

We attain longitudinal infant image registration based on spatio-temporal
correspondences within the subject, which are established by combining (1)



Sparsity-Learning-Based Longitudinal MR Image Registration 3

Fig. 1. A sample intermediate sequence of T1 images and the segmented tissues. All
images are pre-processed via affine registration to eliminate the scaling effect. Drastic
appearance changes are clearly observable throughout the first year of life.

longitudinal correspondences in the intermediate sequences and (2) sparsity-
learning-based correspondence detection. To this end, we divide our method
into two stages, i.e., the training stage and the application stage.

– In the training stage, we pre-register all intermediate sequences to reveal
their longitudinal correspondences, which essentially contribute to bridge
the temporal appearance “gaps” across different time points in the subject.

– In the application stage, we identify spatio-temporal correspondences for a
set of key voxels in the image space, and then reconstruct the dense defor-
mation fields to complete the registration of all subject images. The subject
correspondences consist of two parts, i.e., (1) between each subject image
and the intermediate images of the same age (blue/cyan lines in Fig. 2), and
(2) across the intermediate sequences (dashed pink curve).

The two stages will be detailed in the next. For clarity, we denote the i-th
(i = 1, · · · ,m) intermediate sequence as Ri = {Rit|t ∈ nR} (with t indexing the
time point in the set nR); similarly, the to-be-registered subject is S = {St|t ∈
nS ⊆ nR}. Since we focus on deformable registration only in this paper, affine
registration (via FLIRT [11]) is applied to all images in pre-processing to avoid
the scaling effect caused by brain volume enlargement (c.f. Fig. 1).

2.1 Pre-registration of Intermediate Sequences

In the training stage, we pre-register all intermediate images to reveal the spatio-
temporal correspondences within each longitudinal sequence. We require that a
qualified intermediate sequence should consist of all time points and multiple
modalities (i.e., T1, T2, etc.), in contrast to possible time point missing within
the subject. The complete (temporal) information in the intermediate sequence
enables us to apply the 4D segmentation method [9] and accurately segment
each intermediate image into WM, GM, as well as cerebrospinal fluid (CSF)
(c.f. Fig. 1). GLIRT [12], a groupwise and longitudinal registration method, is
then used to normalize all images to their common space, while TC is enforced
to the deformation fields of each sequence simultaneously.

The pre-registration of the intermediate images are based on their tissues,
which comes from the 4D segmentation and has passed our visual inspection for
quality control. Therefore, though the intensity appearances change drastically
in each longitudinal sequence, the spatio-temporal correspondences can still be
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Fig. 2. Each subject image identifies its correspondences (blue/cyan lines) with re-
spect to the intermediate images of the same age. The spatio-temporal correspondences
within the subject can be established after combining contributions from the interme-
diate sequences (dashed pink curve).

matched after all images are deformed to the common space. We denote the de-
formation field for Rit as ψit(·) and the common space as Ω. Then, given x ∈ Ω,
the two voxels, ψit(x) in Rit and ψjτ (x) in Rjτ , are regarded as correspondences
to each other.

2.2 Initialization of Subject Registration

In the application stage, we also use the common space Ω as the reference
to register the subject S. We derive an initial deformation field φt(·) for each
St from the pre-registered intermediate images. Given the time point t, we first
designate the collection {Rit} for the intermediate images of the same age. Then,
we select the most similar intermediate image Ṙt from {Rit} and register St with
Ṙt. Finally, φt(·) (with respect to Ω) can be roughly estimated by composing
the deformation fields (1) from Ṙt to Ω and (2) from St to Ṙt. Note that Ṙt

is selected in accordance to the inverse of the intensity difference against St.
Also, Ṙt is registered to Ω already, while St can be registered to Ṙt via most
state-of-the-art methods (e.g., diffeomorphic Demons [13]).

2.3 Correspondence Detection via Sparsity Learning

Only a single intermediate image (i.e., Ṙt) is utilized by the subject image St

to initialize its deformation field φt(·) in Section 2.2. However, the simple choice
of Ṙt might not be optimal for all voxels in St to identify their correspondences
with respect to the common space and other subject images under considera-
tion. To this end, we apply the sparsity learning strategy to patch-based image
appearances for accurate correspondence detection.

Given the location x ∈ Ω, its tentative correspondence in St is determined
as φt(x). We signify φt(x) with its surrounding intensity patch in the vectorized
form �aSt,x. Similarly, we define the signature for any specific intermediate voxel

ψit(y), which is located in Rit and associated with y ∈ Ω through ψit(·), as �aRit,y.
A dictionary matrix At is further established for φt(x), as each column vector
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in At comes from a certain intermediate voxel ψit(y), or �a
R
it,y. Here, we use a

search neighborhood N (x) centered at x, and enumerate all intermediate voxels
subject to y ∈ N (x) in At. Then, we aim to solve

�ct = argmin
�ct

1

2
‖�aSt,x −At�ct‖22 + α‖�ct‖1,

s.t. �ct ≥ 0.

(1)

The coefficient vector �ct records the linear combination of column vectors in At

to approximate the patch-based appearance centered at φt(x) in St. The l1 norm
(controlled by the scalar α) encourages that only a limited number of column
vectors inAt are involved into the sparse representation of �aSt,x. The intermediate
voxels selected in solving (1) are correspondences to φt(x), while the confidences
of the correspondences are described by the coefficients in �ct [14].

We can utilize the correspondences between St and {Rit} to refresh the cor-
respondences between St and Ω, which are conveyed by φt(·). To this end, by

denoting the coefficient for �aRit,y as c
(y)
t in �ct, we follow

φnew
t (x)← φold

t (x) +Δφt(x), Δφt(x) =
∑

y∈N (x)

c
(y)
t (ψit(x) − ψit(y)) (2)

to update the deformation field φ(·) at the location x [15].

2.4 Joint Spatio-Temporal Correspondence Detection

The correspondence detection in Section 2.3 is independent for different subject
images. For example, each subject voxel marked by a red patch in Fig. 2 lo-
cates two correspondence candidates (in blue and cyan), respectively, from an
intermediate image of the same age. If all three marked subject voxels are corre-
spondences (e.g., with respect to the same location x ∈ Ω), their detected corre-
spondences in the intermediate images (represented by the blue/cyan patches)
should also be matched in the common space. Therefore, we are able to impose
TC and jointly identify the spatio-temporal correspondences for the subject.

Our purpose is to identify the set {φt(x)|x ∈ Ω, t ∈ nS} such that all its
members are spatio-temporal correspondences to each other. To this end, we
define the concatenated coefficient vector �c = [· · · ,�cTt , · · · ]T and the indexing
matrix It such that �ct = It�c. Then, we reformulate the problem in (1) as

�c = argmin
�c

∑
t∈nS

(
1

2
‖�aSt,x −AtIt�c‖22 + α‖It�c‖1

)
+

∑
t,t′∈nS

β

2
‖It�c− It′�c‖22,

s.t. �c ≥ 0.

(3)

By increasing β, we encourage φt(x) and φt′(x) to have similar representation
coefficients based on the dictionaries At and At′ . Then, the spatio-temporal
correspondences can be established across subject voxels from different time
points (e.g., all three red patches in Fig. 2), due to the existing longitudinal
correspondences within the intermediate sequences (e.g., blue/cyan patches).
Note that (1) and (3) are both solvable through quadratic programming (QP).
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2.5 Implementation Issues

We design a multi-level multi-resolution framework to iteratively optimize the
deformation fields in the application stage, based on the detected spatio-temporal
correspondences. In each level, voxels that are likely to be on tissue edges are
randomly selected as key voxels. We identify the correspondences for each key
voxel in all subject images by solving (3). With all key voxels and their incre-
mental displacements in (2), we reconstruct the dense incremental deformation
fields via interpolation. The deformation field for each subject image can then
be iteratively updated by composing the tentative incremental field [15].

We adopt a low-middle-high level setting and resample images by 2 for two
consecutive levels. Each voxel is signified by a 5× 5× 5 surrounding patch. The
radius of the search neighbourhood N (x) is 5 voxels in the beginning of each
level, and gradually drops to 2 voxels in the end. We set α = 0.1 throughout
registration. In every level, β starts from 0 in that TC might hinder each sub-
ject image correctly identifying its correspondences with respect to the common
space. However, β finally reaches 0.12 in the end of each level, as subject images
need to refine their spatio-temporal correspondences jointly.

3 Experimental Results

We acquired 9 longitudinal sequences on a Siemens head-only 3T scanner for
evaluation. Each sequence consists of images at 2 weeks, 3 months, 6 months,
9 months, and 12 months, respectively. The parameters for T1 images were:
144 sagittal slices, resolution 1 × 1 × 1mm3, TR/TE=1900/4.38ms, flip an-
gle=7; T2 images: 64 axial slices, resolution 1.25 × 1.25 × 1.95mm3, flip an-
gle=150, TR/TE=7380/119ms; diffusion weighted images: 60 axial slices (thick-
ness 2mm), matrix size=12896, TR/TE=7680/82ms, 42 non-collinear gradients,
b=1000s/mm.

We adopted the leave-one-out strategy by using 8 training sequences to regis-
ter the left subject. All time points and modalities are used for training (particu-
larly for accurate 4D segmentation [9]). In the application stage, we only register
the T1 images of three time points (i.e., 2 weeks, 6 months, 12 months), as the
other time points are assumed missing to mimic real cases in image acquisition.
After completing the longitudinal registration of the subject, we calculated the
Dice ratios of segmented tissues, which reflect anatomy overlapping and thus
registration quality, between the deformed images of neighbouring time points
(i.e., 2-week/6-month and 6-month/12-month) in the subject.

Table 1 provides a detailed report of the Dice ratios. Our method achieved
72.15% (2-week/6-month) and 76.47% (6-month/12-month) in average upon 9
leave-one-out cases. We note that FLIRT is for (input) images after affine yet
prior to deformable registration. In our method, we can disable TC, i.e., by
letting β = 0 in (3). However, our results show that TC is helpful to more con-
sistent alignment among different time points and thus higher Dice ratios. Since
images of different time points can be regarded as multi-modal data, we also
compared with state-of-the-art mutual-information-based registration, where the
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Table 1. The Dice ratios (%) of tissues yielded by individual registration schemes

WM GM CSF Overall
Mean STD. Mean STD. Mean STD. Mean STD.

FLIRT [11]
2-wk/6-mo 69.03 4.74 70.30 2.98 47.78 8.42 62.37 5.38
6-mo/12-mo 76.17 3.66 79.00 2.94 58.63 4.50 71.27 3.70

Mutual Information
2-wk/6-mo 69.47 4.83 71.91 3.17 50.85 8.62 64.08 5.54
6-mo/12-mo 77.25 3.59 80.31 3.04 59.66 5.29 72.41 3.97

After Initialization
2-wk/6-mo 77.53 3.98 75.39 2.82 52.30 8.38 68.41 5.06
6-mo/12-mo 78.97 3.42 77.33 2.66 63.71 5.52 73.34 3.87

Our Method 2-wk/6-mo 80.02 3.70 78.56 2.59 54.79 7.95 71.12 4.75
(without TC) 6-mo/12-mo 82.17 3.16 79.61 2.58 63.85 5.70 75.21 3.81

Our Method 2-wk/6-mo 80.93 3.58 79.81 2.41 55.72 7.53 72.15 4.51
(with TC) 6-mo/12-mo 83.81 2.99 81.52 2.32 64.08 5.35 76.47 3.55

2-week/12-month image was independently aligned with the 6-month image. In
general, our method outperformed all other schemes in the table, demonstrating
its capability of longitudinal registration.

In the training stage, all image sequences were registered by GLIRT [12].
The overall 2-week/6-month, 6-month/12-month Dice ratios were 75.16±4.22%,
78.59±3.47%, respectively. It is worth noting that all five time points and multi-
modal image data were utilized by GLIRT (as well as its preceding 4D segmen-
tation). The combination of comprehensive data thus leads to more accurate
registration and higher Dice ratios. Our method, however, utilizes the interme-
diate sequences to establish spatio-temporal correspondences within the sub-
ject, even though missing time point could exaggerate the temporal appearance
“gaps”. That is, we regard the longitudinal correspondences in the intermediate
sequences as “groundtruth”, towards which our method can well approach. We
conclude that our method yields high-quality registration results, even though
the subject only provides much limited temporal information.

4 Conclusion

We propose a novel longitudinal registration method for infant brain MR im-
ages in this paper. To avoid the challenging appearance changes caused by rapid
brain development, we use sparsity learning to jointly identify correspondences
between all subject images and their respective intermediate images of the same
ages. The temporal “gaps” within the subject are filled in by the longitudinal
correspondences in the intermediate sequences. In this way, we successfully con-
vert the longitudinal registration of the subject into indirect spatio-temporal
correspondence detection powered by the intermediate data. Our experimental
results show that the proposed method is capable of registering all subject im-
ages in the longitudinal style, even though drastic temporal appearance changes
may occur.
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Abstract. Segmentation of neonatal and fetal brain MR images is a
challenging task due to vast differences in shape and appearance across
age and across subjects. Expert priors for atlas-based segmentation are
often only available for a subset of the population, leading to a reduction
in accuracy for images dissimilar from the atlas set. To alleviate the ef-
fects of limited prior information on atlas-based segmentation, we present
a novel semi-supervised learning framework where labels are propagated
among both atlas and test images while modelling the confidence of
propagated information. The method relies on a voxel-wise graph in-
terconnecting similar regions in all images based on a patch similarity
measure. By iteratively allowing information flow from voxels with high
confidence to voxels with lower confidence, segmentations in test images
with low similarity to the atlas set can be improved. The method was
evaluated on 70 fetal brain MR images of subjects at 22–38 weeks ges-
tational age. Particularly for test populations dissimilar from the atlas
population, the proposed method outperformed state-of-the-art patch-
based segmentation.

1 Introduction

Accurate automated segmentation of anatomical structures in MR images of
the neonatal and fetal brain is an important step towards biomarker discovery
for better understanding early brain development. However, segmentation is a
challenging task as the brain undergoes rapid changes in the time before and
after birth, leading to vast differences in its shape and appearance on MR images
across age and across subjects [8].

Atlas-based methods such as multi-atlas label propagation [5] or patch-based
segmentation (PBS) [3] have been successfully applied to the segmentation of
brain MR images, for example on fetal subjects in [4,11]. Both families of meth-
ods use expert priors (atlases) to guide the segmentation. However, expert man-
ual segmentations are expensive to obtain and are therefore often available in
small numbers and only for a specific subgroup of the population, for example
for a set of control subjects at a specific age. For a heterogeneous data set, such
as fetal MR images over a wide age range, this means that the atlas set is not

G. Wu et al. (Eds.): MLMI 2014, LNCS 8679, pp. 9–16, 2014.
c© Springer International Publishing Switzerland 2014
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always representative of the test set to be segmented. As a result, segmentation
accuracy declines the more dissimilar the test images are from the priors [1].

To overcome the heterogeneity in terms of shape and appearance across the
population, techniques have recently emerged that employ stepwise label prop-
agation, where automatically labelled images or voxels are added to the atlas
set and used as priors in subsequent iterations. In [10], a manifold was learned
to identify similar images within a data set. Label maps were then propagated
through the manifold by applying multi-atlas propagation with segmentation
refinement, in each step labelling similar images only. A similar strategy has
been applied in computer vision for segmentation propagation in ImageNet [7],
a large-scale hierarchichal image database, where labels were propagated to se-
mantically similar object classes. In [2], dense correspondences were established
between all images through diffeomorphic registration before propagating labels
along locally similar regions. In the above approaches, only similar images or sim-
ilar regions were labelled during each step, making each individual step less prone
to errors. However, it is important to note that no distinction was made between
original expert priors and potentially weaker propagated priors. This means that
automatically labelled regions contributed to future propagation steps with the
same strength and confidence as manually labelled regions, leading to potential
accumulation of errors. One step towards accounting for label confidence has
been proposed in the computer vision community in [9]. In this approach, an-
notations were inferred in large, partially annotated image databases through
a Markov Random Field formulation enforcing spatial smoothness and consis-
tency among locally similar regions across images. The algorithm distinguishes
the strength of manually labelled pixels and propagated information.

The methods presented in the previous paragraph can be viewed as examples
of semi-supervised learning, as segmentations are learned from both labelled
and unlabelled data. Building on the idea of stepwise label propagation, we
propose a novel graph-based label propagation scheme that propagates labels
between similar regions in a data set while estimating and accounting for the
decreased confidence of propagated information. We formulate the segmentation
problem as an information propagation process through a graph that connects
similar voxels in the entire population based on patch similarity. Atlas labels
are propagated through the graph and the confidence of subsequently labelled
voxels decreases with the distance along which the information propagates. By
repeatedly allowing information flow from voxels with high confidence to voxels
with lower confidence, voxels within the test population are able to contribute
to the final segmentation. Thus, test images with poor representation in the
atlas set (and therefore low confidence after an initial segmentation step) can be
refined in subsequent iterations.

2 Method

The proposed segmentation technique relies on information flow in a graph of
interconnected voxels. The set of vertices V consists of all voxels in all images.
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(a) Graph construction (b) Information propagation

Fig. 1. (a) Similar voxels are interconnected in labelled (green contour) and unlabelled
(empty red contour) images. (b) shows vertex initialisation and information propaga-
tion. Dark green shades depict high confidence and bold arrows describe active edges.
At t = 1, labels are available only in the atlas voxels. At t = 2, propagated information
is available, contributing to the label fusion.

In a data set consisting of R coarsely aligned images with N voxels per image,
the graph G = (V,E) is of order |V | = R · N . Edges E exist between voxels
in corresponding regions of different images. Edge weights wij are based on the
similarity of image patches centred on voxels i and j and aim to express how
well label information can be propagated along the edge. Each vertex is assigned
a confidence value describing the reliability of its labelling, irrespective of the
assigned label probabilities. The confidence is 1 for atlas vertices, 0 for unlabelled
vertices, and in the range (0, 1) for vertices labelled in subsequent iterations. Over
multiple iterations, information is propagated from vertices with high confidence
to vertices with lower confidence. When label probabilities are propagated along
an edge, the associated confidence decreases proportionally to the edge weight.
Confidence and label probabilities for all voxels in the data at iteration t are

described by c(t) ∈ IRR·N and p
(t)
l ∈ IRR·N , respectively, where l ∈ {1, . . . , L, ∅}

denotes the labels. Unlabelled voxels are described by li = ∅.

2.1 Graph Construction

The graph is constructed such that each voxel (surrounded by a patch) is con-
nected to voxels surrounded by similar patches within a local neighbourhood in
the remaining images. To establish the connections wij , a patch search and pre-
selection based on structural similarity, as proposed by [3], is conducted for each
voxel i. It is important to note that in the proposed method, similar patches are
searched in all (labelled and unlabelled) images as shown in Fig. 1a.

A similarity metric is used to describe the weights wij of edges found during
the patch search. Normalised cross correlation (NCC) is invariant to linear in-
tensity changes and fast to compute, making it suitable for patch comparison
within a large set of images from subjects of different ages.
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2.2 Information Propagation

The following paragraphs describe all aspects of information propagation through
the graph: initialisation of the vertex attributes (label probabilities and confi-
dence), the search for propagating neighbours at each iteration, propagation at
each iteration, and the final label decision. Key elements are visualised in Fig. 1b.

Initialisation. Before propagating information through the graph, voxel at-

tributes pl and c are initialised. Label probabilities p
(0)
i,l are set according to the

labels at voxel i such that
∑

l∈{1,...,L,∅} p
(0)
i,l = 1. The confidence c

(0)
i is set to

1 for voxels in atlas images and 0 for voxels in test images (where p
(0)
i,∅ = 1).

Neighbourhood sets V
(t)
i describe for each vertex which neighbours in the graph

propagate information during an iteration. They are initialised as V
(0)
i = {}.

Active Neighbourhood Search. In each iteration, the graph neighbourhood
of each vertex is searched for vertices with higher confidence. These vertices are

combined with the existing active (propagating) neighbourhood to form V
(t)
i :

V
(t)
i =

{
j | i ∼ j, wijc

(t−1)
j > c

(t−1)
i

}
∪ V

(t−1)
i (1)

V
(t)
i is used to propagate information to vertex i and update its existing label

probabilities and confidence. Initially, when nodes are either unlabelled (c
(0)
j = 0)

or manually labelled (c
(0)
j = 1), only atlas voxels propagate information, and only

vertices connected to atlas voxels have a non-empty neighbour set V
(1)
i .

Propagation. For propagation of label probabilities and confidence, the edge
weights wij are transformed with an exponential kernel and a locally and tem-

porally adaptive decay parameter h
(t)
i . This is done to control the influence of

individual neighbours depending on neighbourhood content as proposed in [3]:

u
(t)
ij =

{
exp

−(1−wij)

h
(t)
i

∀i, ∀j ∈ V
(t)
i ,

0 otherwise
(2a)

h
(t)
i = min

j∈V
(t)
i

(1 − wij) + ε (2b)

The label probabilities p
(t)
i,l are obtained by averaging the active neighbourhood’s

labels p
(t−1)
j,l as in Eq. 3a. Averaging weights are based on the neighbours’ con-

fidence c
(t−1)
j and the adaptive weights u

(t)
ij obtained in Eq. 2. The updated

confidence c
(t)
i is determined by the confidence of the propagating neighbours

c
(t−1)
j as shown in Eq. 3b. It is calculated as an average of the propagated (and

therefore reduced) confidence values wijc
(t−1)
j , weighted by u

(t)
ij .
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p
(t)
i,l =

∑
j∈V

(t)
i

u
(t)
ij c

(t−1)
j p

(t−1)
j,l∑

j∈V
(t)
i

u
(t)
ij c

(t−1)
j

(3a)

c
(t)
i =

∑
j∈V

(t)
i

u
(t)
ij wijc

(t−1)
j∑

j∈V
(t)
i

u
(t)
ij

(3b)

Convergence and Final Labelling. The active neighbourhood search and
propagation step can be interleaved until there are no more changes for any ver-
tex in the graph. This is achieved when for every vertex i, the set of propagating

graph neighbours V
(t)
i remains constant, i.e. there are no more higher confidence

nodes to include in the label fusion. In practice, improvements achieved beyond a
few iterations are marginal, as shown in the experiments. At any iteration t, hard

labels can be generated from the probabilistic labels p
(t)
i,l with l

(t)
i = argmaxl p

(t)
i,l .

2.3 Relationship to Patch-Based Segmentation

In the initial propagation step of the proposed method, the active neighbourhood
for each voxel as determined by Eq. 1 consists only of atlas voxels. Since the same
patch search strategy as in [3] was used to establish edges in the graph, the set of
patches contributing to the label fusion is the same as in PBS. For t = 1, the label
fusion described in Eq. 3a simplifies to a weighted average of atlas labels based

on u
(1)
ij only. PBS is therefore equivalent to the first iteration of the proposed

method except for the choice of similarity measure. While traditional PBS uses
an exponential kernel on the sum of squared differences (SSD) to measure patch
similarity, the proposed method relies on NCC as described in Eq. 2.

3 Experiments and Results

Experiments were conducted using data from 70 healthy fetal subjects with ges-
tational age (GA) between 22.4–38.7weeks. All images were acquired on a 1.5T
Philips Achieva scanner without sedation. Overlapping T2-weighted slices were
acquired in three orthogonal planes. Sequence parameters were repetition time
15,000ms, echo time 160ms, slice thickness 2.5mm, slice gap -1.25mm, excitation
flip angle 90◦ and refocusing flip angle 130◦. The images were reconstructed [6]
and preprocessed as described in [11]. They were then affinely aligned, resampled
to 0.85× 0.85× 0.85mm3 and normalised to the intensity range [0, 100]. Manual
segmentations of the lateral ventricle were available for all subjects.

For each experiment, the data were split into a small atlas set and a test set
consisting of the remaining images. To investigate the problem of unrepresen-
tative atlas sets, the subjects were split so that the atlas set consisted of the n
oldest subjects in the dataset. We refrained from performing cross-validation as
its usefulness is limited in the setting at hand, where the atlas and test population
are expected to show systematic differences. To build the propagation graph, for
each voxel connections were searched in a local neighbourhood of 5×5×5 voxels,
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Fig. 2. Results for GraBS, PBS NCC and PBS SSD. (a) Influence of atlas set size on
segmentation accuracy across methods. (b) Influence of iterative refinement on GraBS
accuracy, evaluated for young, medium, and old subjects.

and a patch size of 5×5×5 voxels was used to calculate the edge weights. The pa-
rameters were manually selected to achieve optimal results for PBS on the fetal
data. The graph was constructed for voxels within a region of interest around the
lateral ventricle, determined by a union and subsequent dilation of all manual
segmentations. This lead to a dimensionality of |V | ≈ 2.7 · 106, |E| ≈ 2.9 · 109.
The proposed graph-based segmentation method (subsequently referred to as
‘GraBS’) was compared to PBS using NCC (PBS NCC, equivalent to the first
iteration of GraBS) and PBS using SSD (PBS SSD, as in [3]). All experiments
were run with the same parameter set for fair comparison. Segmentation accu-
racy in the labelled regions is measured by the Dice coefficient. All quantitative
results are reported with the median and interquartile range. As the results are
not normally distributed, statistical significance is measured using the two-sided
Wilcoxon signed-rank test and is reported for p < 10−6.

Results. The experiment was run for atlas set sizes n = {5, 10, 15, 20}. Fig-
ure 2a shows the segmentation results of GraBS after 10 iterations and the
baseline (PBS NCC and PBS SSD), evaluated on the whole test population. As
expected [5], segmentation accuracy improved when using more atlases. GraBS
outperformed the baseline for each n and was able to match the performance
of PBS using smaller atlas sets. Due to the unbalanced split and heterogeneous
data, the achieved performance for all methods in this experiment setup does
not match the results observed in [3].

To test the ability of the proposed method to propagate labels from older
subjects to younger subjects, a more detailed analysis for different age groups
is presented for n = 10. Results are examined separately for young (<28weeks
GA), medium (28–33weeks GA), and old (>33weeks GA) subjects. Example
segmentations in each age group are shown in Fig. 3. Table 1 summarises the
achieved Dice coefficients for all methods and Fig. 2b presents the performance of
the proposed method for each iteration. All methods achieved consistently better
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Table 1. Dice coefficients by age group for atlas size n = 10. For GraBS, Dice coeffi-
cients after 10 iterations are reported. Statistically significant improvements of GraBS
over PBS NCC and PBS SSD are marked with ∗ and † respectively.

Method Young Medium Old

GraBS 0.72 (0.63–0.76)∗† 0.74 (0.70–0.78)∗† 0.81 (0.74–0.86)
PBS NCC 0.64 (0.57–0.68) 0.71 (0.66–0.77) 0.80 (0.74–0.85)
PBS SSD 0.58 (0.53–0.63) 0.68 (0.61–0.73) 0.76 (0.73–0.82)

(a) 27.3 weeks GA (b) 29.3 weeks GA (c) 34.6 weeks GA

Fig. 3. Example segmentations for randomly chosen subjects from the young (a),
medium (b), and old (c) population. The label probability map for the lateral ven-
tricle is indicated in green, manual segmentations are outlined in red.

results for older test subjects, i.e. those more similar to the atlas set. For medium
subjects and more prominently for young ones, strong improvements could be
achieved with GraBS in the first few refinement steps. As seen in Table 1, the
Dice coefficients of the proposed method were significantly higher compared to
PBS NCC and PBS SSD for the young and medium population.

4 Discussion and Conclusion

We propose a novel stepwise label propagation scheme that incorporates the
notion of label confidence. It extends patch-based segmentation [3] to a semi-
supervised learning framework where both atlases and test images contribute to
the final segmentation results. The proposed method iteratively refines segmen-
tations of images with poor representation in the atlas set. It thus addresses the
segmentation problem in heterogeneous data with limited expert priors, often
relevant in perinatal MR imaging.

Due to the challenging data and an experiment setup which often reflects re-
ality (a small atlas set consisting of images that do not represent well the entire
test population), the resulting Dice coefficients are not comparable to results
obtained in [3]. However, experiments show that especially for images least sim-
ilar to the atlas set, i.e. very young subjects, segmentation accuracy could be
increased considerably with the proposed refinement steps. For the older popu-
lation, iterative refinement did not improve the segmentations significantly. This
is expected, as MR images of old subjects are well represented by an atlas set
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consisting of similarly aged subjects. In these images, test patches are strongly
and directly connected to patches in the atlas set, yielding high confidence seg-
mentations after the first iteration, which is equivalent to PBS. By formulating
the segmentation problem as an extension of PBS and thus keeping the pro-
posed method closely related to the baseline method, the effectiveness of using
label confidence to propagate weakened priors can be measured. However, these
restrictions lead to a high dimensional problem with many redundant edges in
the connectivity graph. Future work will aim to exploit the graph structure and
explore sparsification techniques to reduce the graph dimensionality and compu-
tational complexity. This will improve scalability of the method for application
to larger datasets and whole brain segmentation. The proposed framework may
also be suitable for segmentation tasks in other populations with heterogeneous
imaging data and limited manual labels, such as neonates or dementia patients
with varying degrees of disease progression.
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Abstract. Immunohistochemistry (IHC) staining is a widely used tech-
nique in the diagnosis of abnormal cells such as cancer. For instance, it
can be used to determine the distribution and localization of the differen-
tially expressed biomarkers of immune cells (such as T-cells or B-cells) in
cancerous tissue for an immune response study. Typically, the immuno-
logical data of interest includes the type, density and location of the
immune cells within the tumor samples; this data is of particular inter-
est to pathologists for accurate patient survival prediction. However, to
manually count each subset of immune cells under a bright-field micro-
scope for each piece of IHC stained tissue is usually extremely tedious
and time consuming. This makes automatic detection very attractive,
but it can be very challenging due to the wide variety of cell appear-
ances resulting from different tissue types, block cuttings, and staining
processes. This paper presents a novel method for automatic immune cell
counting on digitally scanned images of IHC stained slides. The method
first uses a sparse color unmixing technique to separate the IHC image
into multiple color channels that correspond to different cell structures.
Since the immune cell biomarkers that we are interested in are mem-
brane markers, the detection problem is formulated into a deep learning
framework using the membrane image channel. The algorithm is evalu-
ated on a clinical data set containing a large number of IHC slides and
demonstrates more effective detection than the existing technique and
the result is also in accordance with the human observer’s output.

1 Introduction

Immunohistochemistry (IHC) slide staining has the advantage of identifying pro-
teins in cells of a tissue section, and hence is widely used to study of the dis-
tribution and localization of different cell types in a biological tissue such as
cancerous cells and immune cells. For example, tumors often contain infiltrates
of immune cells, which may prevent the development of tumors or favor the
outgrowth of tumors [1]. In this scenario, multiple biomarkers are used to tar-
get different types of immune cells and the population distribution of each type
are compared with the clinical outcomes of the patients. As an emerging re-
search topic of tremendous interest in pathology and immunology, an “immune
profile” studies the correlation between the immune response and the growth
and recurrences of human tumors. However, a prerequisite of an immune profile
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study requires the human observer to manually locate and count the number of
different immune cells within selected lymph node regions, which may contain
hundreds to thousands of cells. This is an extremely tedious and time consuming
process and the results are also subject to intra- and inter-individual variability.
In order to avoid the tedium involved in manual counting, a technique that is
able to automatically and reliably detect different types of immune cells is of
great research and clinical interest.

Typically, a tissue slide is stained by an IHC diagnostic assay with a cluster
of differentiation (CD) protein markers identifying the immune cells and the nu-
cleus marker Hematoxylin (HTX) marking the nuclei. The stained slide is then
imaged using a CCD color camera mounted on a microscope or a scanner. The
acquired RGB color image is a mixture of the immune cell membrane and the
universal cell nuclear biomarker expressions. Several techniques have been pro-
posed in the literature to detect such cells. Most of the techniques are based
on image processing methods that capture the symmetric information of the
cell appearance features. For instance, in [2] Pavin et al. proposed an iterative
voting method to cluster and group non-convex perceptual circular symmetries
along the radial line of an object, and demonstrated its efficacy in the detec-
tion of nucleus which presents a round blob shape. Xin et al. in [3] extended
Pavin’s method by adding a shifted Gaussian kernel at the center of the vot-
ing area and showed improved detection for overlapping cells. Machine learning
techniques have also been explored in literature for cell detection. A statisti-
cal model matching method learned from structured SVM was proposed in [4]
to identify the cell-like regions. However, all of the three aforementioned tech-
niques are limited to nucleus rather than cell membrane detection. Since the
most popular immune cell markers, such as CD3 and CD8 for universal T-cells
and cytotoxic T-cells respectively, are membrane markers, the stain appears as
a ring instead of a blob. Another machine learning based system using SIFT,
Random Forests, and Hierarchical Clustering was developed by Mualla et al. in
[5] for unstained cell imaging which has the properties of maintaining sufficient
contrast of cell boundaries. In this work, the SIFT key-points are classified into
cells and backgrounds, and all the key-points within each cell are linked together
using hierarchical clustering. The system was validated on a large data set, and
has shown robustness and stability. However, it is non-trivial to extend it to
detect immune cells in IHC stained images.

Recently, an automatic CD8 cytotoxic T-cell counting algorithm was proposed
by Niazi et al. in [6], wherein normalized multi-scale difference of Gaussian is
used to detect the candidate regions, and the color and intensity information
is applied to fuse the results. This image processing and rule-based technique
has a potential robustness concern due to the great diversity exhibited in terms
of cell shape and size. Meanwhile, deep learning techniques, such as Convolu-
tional Neural Networks (CNN) [7], have evidenced great success in mitosis cell
detection from histology images stained with Hematoxylin and Eosin [8].This
serves as a valuable source of inspiration for developing a new learning-based
immune cell detection algorithm as the hard mitosis cell detection problem also
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suffers from large appearance variation and high complexity. As a powerful pixel
classifier, CNN takes the image patch centered at each pixel as input and pro-
vides the classification label for each patch. The advantage of CNN is that the
feature descriptors are automatically learned as the kernel matrices in the con-
volution layers, therefore, less effort is needed in designing sophisticated features
for immune cells.

In this paper, we propose an automatic immune cell detection framework
for IHC images. The algorithm first unmixes the RGB image into different color
channels corresponding to the different cell structures. CNN is then trained using
the immune cell marker image channel and produces a probability response map
of the immune cell locations. Finally, we apply non-max suppression to obtain
the centroids of the cells. There is very little published literature for IHC image
analysis due to the limited data availability. As the major contribution of this
paper, we are the first to propose an immune cell counting algorithm based
on sparse color unmixing and deep learning, and demonstrate a RGB image
unmixing algorithm potentially working for more than three stains as well as a
new, important application of the CNN algorithm.

2 Methodology

Fig. 1. The framework of the algorithm

In this section, we present
the methodology of our algo-
rithm. We begin with illus-
trating the basic framework
in Fig.1. In the analysis of
the cancerous tissues, differ-
ent biomarkers are specified
to one or more types of im-
mune cells. For instance, CD3
is a known universal marker
for all T-cells and CD8 only
stains the membranes of cy-
totoxic T-cells. To detect the
T-cells, the IHC image is first
unmixed into HTX and T-cell
marker channels. The pixels
in the T-cell channel are then
classified into foreground and

background using CNN, the output of which is a probability map. Finally, we
apply non-max suppression to the probability map and obtain the T-cell cen-
troids.

2.1 Color Unmixing

There are several techniques available in the literature to unmix each pixel of
the RGB image into multiple biologically meaningful channels corresponding to
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different stain colors. As the most widely used method in the digital pathology
domain, Ruifrok et al. developed an unmixing algorithm [9] to unmix the RGB
image with up to three stains in the converted optical density space. Given the
reference color vectors xi ∈ R3 of the pure stains, the method assumes that each
pixel of the color mixture a ∈ R3 is a linear combination of the pure stain colors
and solves a linear system to obtain the combination weights b ∈ RM . The linear
system is denoted as a = Xb, where X = [x1, . . . , xM ],M ≤ 3 is the matrix of
reference colors. Most of the effort in reported literature is for multi-spectral
image unmixing [10] which is not applicable for RGB images. To the best of our
knowledge, a technique that is able to reliably unmix more than three colors from
a RGB image has never been reported in literature. In this paper, we extended
Ruifrok’s method by providing the L1 norm constraint for b due to the fact that
only a small number of stains exist at each pixel. With the sparse constraint,
we obtain the following advantages: (1) the linear system is no longer deficient
and thus can potentially unmix more than three colors, (2) background noise is
greatly suppressed in the unmixed channels due to the sparsity regularization
which leads to a larger signal noise ratio.

In a pre-processing step, the RGB image I is converted into the optical den-
sity (OD) space using the formula Oc = − log( Ic

I0,c
) derived from Beer’s law; this

is based on the fact that the optical density is proportional to the stain concen-
tration. Here c is the index of the RGB color channels, I0 is the RGB value of
the white points and O is the optical density image obtained. As in [9], O will
be the image to work with in the rest of the paper.

Let a be a pixel of O and it is a 3-dimensional column vector corresponding
to the OD values converted from RGB. There are M biomarkers available in a
multiplex IHC slide corresponding to M stain colors. Let b be the combination
weight vector of the stains; bm,m = 1, . . . ,M is the mth element of b. The sparse
unmixing problem is then formulated as the following:

min
b
||a−Xb||22 + λ||b||1. (1)

Each column ofX corresponds to a reference stain color sampled from the control
slide of pure stain. Existing techniques such as LASSO can be used to solve Eqn.
1, and can achieve better unmixing results than in [9] in terms of robustness and
accuracy.

Note that instead of working in the unmixed immune cell marker channel, the
detection algorithm proposed in this paper is also applicable to the absorbance
image of I. However, the noisy HTX channel ( Fig.5) may lead to a false positive
detection of immune cells. As accurate unmixing provides an accurate separation
of the two stains with less cross-talk among different channels, we therefore work
in the unmixed T-cell marker channel which has sufficient information about cell
membranes.

2.2 Cell Detection

The accurate detection of immune cells is a challenging task due to the large
variation of data caused by a variety of issues, such as different tissue types,
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tissue section cuttings, chemical staining artifacts, and scanner focus problems,
etc. Fig.2 shows some example fields of view (FOVs) from the whole slide images
and the tissue cutting problem.

Fig. 2. Example FOVs demonstrate the data variations. The boxes show the staining
artifacts and the cell shape variations due to cutting. The figure on the right shows the
blob and ring shape cells from different cuttings.

Fig. 3. The architecture of CNN for membrane detection

Given an input RGB
image I, sparse color
unmixing is used to
unmix the image into
immune cell markers
and nucleus marker
channels, denoted as
Idab and Ihtx, respec-
tively. Idab is then
used as the input image for learning the detector. The immune cell detection
problem is formulated as classifying each pixel of Idab into two classes, positive
for the centroids of the immune cells and negative for the rest. More specifically,
let P be the training data and Y be the set of labels, where (pn, yn) are drawn
randomly from P × Y based on some unknown distribution. In this application,
P is the set of patch images centered at each pixel of Idab and Y is a binary
set containing two labels {+1,−1}. We have ground truth immune cell locations
manually labeled by the pathologist, wherein the coordinates of the cell centroids
are recorded. The positive class of training data consists of k by k-pixel image
patches centered at the pixels within a d-pixel neighborhood of the recorded
coordinates. The non-immune cell class contains all the image patches centered
at pixels sampled from the boundaries of the cells and the background.

Fig. 4. The test image and its probability
map from CNN

A convolutional neural network
(CNN) is trained given the training
data (patches and their corresponding
labels). CNN is basically a neural net-
work with the sequence of alternating
convolutional layers and sub-sampling
layers, followed by the fully connected
layers, which can be trained by a
back-propagation algorithm (Fig.3). CNN has the advantages of automatically
learning the feature descriptors which are invariant to small translation and dis-
tortion from the training image patches. The convolution layer convolves the
input patch with a kernel matrix; the output is passed to a continuous and dif-
ferentiable activation function. The kernel matrix is part of the parameter set to
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be learned in CNN. The sub-sampling layer reduces the size of the image by a
coarse sampling or max-pooling. The fully connected layer is similar to a typical
neural network designed to generate probabilistic labels for each class.

In the testing stage, we first unmix the test RGB image Ī to obtain Īdab, then
apply the trained CNN classifier to the patches centered at each pixel of the
test image Īdab. Let y = C(p) denote the CNN classifier that takes the patch
p as input and produces the probabilistic label y for the patch, here y ∈ [0, 1].
Hence, a probability map M as shown in Fig.4 is created for each test image, in
which higher probability means that the pixel is more likely to be the centroid
of the immune cell. Non-maximum suppression (NMS) [11] is typically used for
the local maximum search, i.e. finding the pixel with the value that is greater
than all its neighbors. Therefore, we apply NMS to the probability map to yield
the final detection.

3 Experiments

In this section, we empirically validate our immune cell detection algorithm, and
compare it to the existing technique and human observer’s output.

3.1 Data Set and Experiment Setting

Fig. 5. Unmixing of the RGB image. (a) input image I . (b) input
image in absorbance space. (c) Idab from Ruifrok’s method [9].
(d) Idab from sparse unmixing.

A clinical data set
containing several
different cancer tis-
sue samples was
used to test the
proposed approach.
The data set con-
tains 42 fields of
view (FOVs) which
were scanned under 20X magnification. The tissues were stained with the follow-
ing assay: DAB for the immune cell markers and HTX for the nucleus marker.
We have two types of T-cell markers in our data set, the universal T-cell marker
CD3 and the cytotoxic T-cell marker CD8. As both are membrane markers with
DAB staining, they have a similar appearance. Hence, the same detection al-
gorithm can be used for both cases. Among the 42 FOVs, 10 were randomly
selected by the pathologist for manual counting for quality control purposes,
and these images were reserved for testing only. We first selected 3 images out
of the remaining 32 FOVs, and manually annotated the positive and negative
pixels. This yielded 491 positive samples and 539 negative annotated samples.
To generate more training data, we sampled the patches around the 2-pixel
neighborhood of the annotation, also flipped and rotated the patches, and fi-
nally created 17355 training patches in all. For all the experiments, the sparse
regularization parameter λ was set to be 0.5.
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3.2 Comparisons of Detection Algorithms

We first compared the sparse unmixing with Ruifrok’s unmixing algorithm and
showed that the sparse unmixing leads to better results with less backgound
noise. Fig.5 shows the input RGB image, its absorbance transformed image and
the unmixed immune cell channel from both methods.

To train a CNN classifier, we used the following network configuration. The
size of the image patch was set to be 27 by 27. We used Idab as the input layer
and set 2 convolution layers with both kernel sizes being 6 by 6. 10 epochs
were used for training and we finally obtained the training error 0.008. Example
detection results are shown in Fig.6. We compared with iterative voting based
method [2] for immune cell detection. The algorithm tends to accumulate votes
around the centroid of the ring, hence it has the potential to fail if the immune
cell shows a solid elliptical shape due to the angle at which the tissue sample
was cut (Fig.2). It also has the disadvantage of being sensitive to local gradient
changes, since local votes will be accumulated near the boundary of the blob.
See Fig. 6 for the examples. The iterative voting based method obtained two
local maximums near the boundary of the elliptical blob. Note that we also
improved the iterative voting algorithm by filtering out false positive detections
near the ring boundaries caused by the local votes using the binary mask of the
immune cell marker image channel. As both blob and ring shape immune cells
can be included in the training of CNN, the proposed algorithm is more robust
in detecting both types of cells.

Fig. 6. First row: manual annotation. Second row: detection using the proposed
method. Third row: detection using iterative voting based method [2].
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3.3 Comparison to Human Observer’s Counts

We have 10 FOVs manually annotated by a human observer. To measure the
accuracy of the proposed detection algorithm, we compared the algorithm counts
with the manual counts and obtained correlation coefficients as high as 0.9949.
The average count difference is 17.19 cells per FOV; the number of cells in each
FOV is between 200 to 300. This demonstrates that the automatic immune cell
detection algorithm proposed in this paper is in concordance with the human’s
output. As more annotations become available, we believe that it is possible to
train the algorithm to follow the human observer’s behavior even more reliably.

4 Conclusion

In this paper, we introduced an automatic immune cell detection algorithm for
IHC images to assist the clinical immune profile studies. Sparse color unmixing
algorithm was proposed to unmix the RGB image into different biologically
meaningful color channels. The cell detector was trained using a convolutional
neural network in the immune cell marker image channel. The experiments using
clinical data demonstrate the efficacy of the proposed algorithm in terms of
accuracy, stability, and robustness when compared to the existing techniques
and human observer.
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Abstract. In this work we propose a feature-based segmentation ap-
proach that is domain independent. While most existing approaches are
based on application-specific hand-crafted features, we propose a frame-
work for learning features from data itself at multiple scales and depth.
Our features can be easily integrated into classifiers or energy-based seg-
mentation algorithms. We test the performance of our proposed method
on two MICCAI grand challenges, obtaining the top score on VESSEL12
and competitive performance on BRATS2012.

1 Introduction

The choice of image representation plays a crucial role in the success of medical
image segmentation algorithms. Most existing methods utilize hand-crafted fea-
tures incorporated into an energy-based segmentation method or into a machine
learning classifier. Commonly, energy-based methods utilize engineered features
such as Gabor filters for texture-based segmentation [1], while machine learning
approaches use many more simple features like Haar or steerable filters leav-
ing the classification method to disambiguate the ones that are significant for
the segmentation task. Popular examples of machine learning methods are ones
based on decision trees [2] or random forests [3]. Some methods use very spe-
cialized filters designed for a particular task, such as extracting linear structures
based on eigenvalues of the image Hessian matrix [4].

Recently there has been much interest within the machine learning and com-
puter vision communities to automatically learn feature representations from
scratch. Feature learning methods are general, while hand-crafted features re-
quire a certain insight and understanding of the given image data to be analyzed,
thus they are often not optimal when applied to a new dataset. Moreover, fea-
ture learning algorithms can benefit from many unlabeled examples, even those
that may come from a different distribution than the target data [5]. Features
can be learned either in an unsupervised setting or in a joint end-to-end system
trained with supervision. Successful applications have included object recogni-
tion [6] [7], scene parsing and segmentation [8], annotation and retrieval [9],
multimodal applications [10] and large-scale learning [11]. What these meth-
ods have in common is the emphasis on learning hierarchical representations as
opposed to single-layer algorithms such as sparse coding.

Unfortunately, most of the above methods are not directly applicable to med-
ical imaging tasks as they often assume the use of natural images and require a
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Table 1. A comparison of different feature learning architectures for application to
medical image segmentation: Y is yes, N is no and S is sometimes. Multi-scale and
multi-depth methods can often improve performance while patch-based and stagewise
learning improve speed. Here sparse coding eefers to any method that aims to learn a
filter bank with a sparsity cost.

Method Patch-based Multi-scale Multi-depth Stagewise

Sparse coding Y N N Y
Convolutional sparse coding N N N Y
Convolutional networks N S Y N
Proposed approach Y Y Y Y

large number of labeled examples to be effective. There exist few feature learning
methods applied to medical data like the segmentation of linear [12] and curvilin-
ear [13] structures; segmentation of electron microscopy (EM) images [14] and a
recent work on MS lesions segmentation [15]. In this paper we propose a frame-
work that is domain independent and utilizes features learned from multiple
scales and depth. The key features that make our method fast and thus suitable
for medical data are detailed below and can be summarized as: (1) patch-based,
(2) stage-based system and a (3) fast dictionary learning method.

Table 1 summarizes and distinguishes four types of feature learning architec-
tures. Simpler single layer sparse coding methods like [15] also use patches but
with no scales or depth. Convolutional sparse coding algorithms, such as those
used by [12],[16] and [13], differ from standard sparse coding methods as con-
volution is incorporated into the optimization procedure. The third architecture
describes convolutional networks, used by [14] for EM segmentation, which are
learned jointly with supervision. While convolutional networks are often very
effective, jointly training the whole model can be time consuming. Furthermore,
convolutional networks require many labeled examples in order to avoid over-
fitting. The last architectures illustrates our proposed framework. Features are
learned one stage at a time using patch-based learning at multiple scales. Since
the model does not require joint learning, features can be learned efficiently and
quickly. Our framework is the first to utilize the “encoding versus training” prin-
ciple of [17] in the context of image segmentation. The emphasis of this work
is the importance of the feature encoding as opposed to the filter learning al-
gorithm itself. Due to this, we suggest that more expensive convolutional filter
learning is unnecessary, so long as a proper encoding is performed after learning.

Experimentally we demonstrate that the same algorithm can be used to ob-
tain strong performance on two completely different medical segmentation tasks.
We report superior results on the vessel segmentation of the lung (VESSEL12)
challenge data and competitive performance on multimodal brain tumor seg-
mentation (BRATS2012) data. Furthermore, our system is able to learn features
in under ten minutes on both challenges. Code for our approach will be released
upon publication.
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Fig. 1. Visualization of our feature learning approach. Each volume slice is scaled using
a Gaussian pyramid. Patches are extracted at each scale to learn a dictionary D using
OMP. Convolution is performed over all scales with the dictionary filters, resulting in
Γk feature maps. After training the first layer, the feature maps can then be used as
input to a second layer.

2 Method

We assume we are given m volumes with s modalities {{V (j)}sj=1}mi=1, where

each V
(j)
i ∈ R

nV ×nH×n. nV × nH is the spatial dimension of a slice and n

is the number of slices. For simplicity, we assume that each volume V
(j)
i has

dimensionality nV × nH × n although this is not needed. As a specific example,
brain tumor segmentation tasks can use s = 4 modalites consisting of FLAIR,
T1, T2 and post-Gadolinium T1. The general outline of our feature learning
framework is as follows:

– Extract multimodal patches at multiple scales using a Gaussian pyramid.
– Learn a filter bank using orthogonal matching pursuit.
– Convolutionally extract feature maps using the learned filters as kernels.
– Repeat the above steps, using the computed features maps as input to an-

other layer. The number of feature maps (next layer modalities) corresponds
to the number of filters.

In each of the following subsections, we describe the above operations in detail.

2.1 Pre-Processing and Dictionary Learning

Given a volume V , a Gaussian pyramid with Γ scales is applied to each modality
of each slice. Let {p(1), . . . , p(mP )} denote a set ofmP patches randomly extracted
from the scaled volumes. Each patch p(l) is of spatial dimension r× c× s where
r × c is the receptive field size. These patches are then flattened into column
vectors. Per patch contrast normalization and patch-wise mean subtraction is
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performed. For dictionary learning we use orthogonal matching pursuit (OMP).
OMP aims to solve the following optimization problem:

minimize
D,x(i)

mP∑
i=1

||Dx(i) − p(i)||22

subject to ||D(l)||22 = 1, ∀l
||x(i)||0 ≤ q, ∀i

(1)

where D ∈ R
nP×k and D(l) is the l-th column of D. Optimization is done using

alternation over the dictionary D and codes x. For all our experiments we set
q = 1, which reduces to a form of gain-shape vector quantization. In particular,
given a dictionary D, an index κ is chosen as

κ = argmax
l

|D(l)T p(i)| (2)

for which the κ-th index of x(i) is set as x
(i)
κ = D(κ)T p(i) with all other indices

left as zero in order to satisfy the constraint ‖x(i)‖0 ≤ 1 for all i. Given the one-
hot codes X , the dictionary is easily updated by first solving the unconstrained
problem, followed by re-normalization to satisfy the constraint ‖D(l)‖22 = 1 for
all l.

2.2 Convolutional Feature Extraction

Let T γ
j denote a volume slice of modality j and scale γ. Each r × c × s patch

in T γ
j is pre-processed by contrast normalization and mean subtraction. Let

D
(l)
j ∈ R

r×c denote the l-th basis for modality j of D. We will define the feature
encoding for basis l as:

fγ
l =

s∑
j=1

T γ
j ∗D(l)

j (3)

where * denotes convolution. The resulting feature maps {fγ
l }kl=1 are of the same

spatial dimensions as T γ
j . The feature maps are finally upsampled to the original

nV × nH spatial dimension. Figure 1 illustrates our approach.

2.3 Stacking Multiple Layers

Our described setup for feature learning has involved scaling, dictionary learning
and convolutional extraction. Just as the volumes slices were inputs to a first
layer with s modalities, the upsampled output feature maps {{fγ

l }Γγ=1}kl=1 may
be seen as inputs to a second layer but with Γk modalities. The same described
operations are applied a second time resulting in additional second layer output
feature maps. These groups of feature maps can be concatenated together result-
ing in a total number of Γ1k1 +Γ2k2 feature maps, where Γ1, k1 are the number
of first layer scales and filters while Γ2, k2 are the number of second layer scales
and filters. Thus each pixel in a volume slice can be represented as a Γ1k1+Γ2k2
dimensional feature vector.
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Fig. 2. Visualizing the importance of scale and depth for vessel segmentation

3 Experiments

We perform experimental evaluation using data from two MICCAI grad chal-
lenges: vessel segmentation of the lung1 and multimodal brain tumor segmenta-
tion2.

3.1 Vessel Segmentation

The vessel segmentation challenge consists of 20 volumes of CT scans to segment
with 3 additional volumes that include 882 labeled pixels based on the agreement
of at least 3 experts. Each slice is of size 512× 512 with each volume containing
a few hundred slices. We performed feature learning with 2 depths, 6 scales, a
receptive field size of 5×5, 32 first layer filters and 64 second layer filters. The final
feature vector is thus of size 6×(32+64) = 576. In order to perform segmentation,
we extracted features for the existing labeled pixels and trained a L2-regularized
logistic regression classifier, using 10-fold cross validation in order to tune the
L2 hyperparameter. Each pixel of a new slice is then classified, resulting in a
probability of whether or not the pixel is a vessel. For our submission to the
challenge, the probabilities are scaled and rounded to unsigned 8-bit integers as
requested.

Table 2. The top 5 results from the VESSEL12 challenge leaderboard

Team Method type score

our method feature learning + classification 0.986
LKEBChina Krissian-inspired vesselness 0.984
FME LungVessels Frangi vesselness + region growing 0.984
LKEBChina Krissian-inspired vesselness with bi-Gaussian kernel 0.981
FME LungVessels Frangi vesselness + region growing (raw) 0.981

Figure 2 illustrates the importance of adding depth and scale to segmentation.
The first image is the original CT scan. The second image shows segmentation

1 http://vessel12.grand-challenge.org/
2 http://www2.imm.dtu.dk/projects/BRATS2012/

http://vessel12.grand-challenge.org/
http://www2.imm.dtu.dk/projects/BRATS2012/
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Fig. 3. Sample vessel segmentation results
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Fig. 4. Sample brain tumor segmentation results

when neither depth nor scale is added while the third image shows segmentation
with added depth and scale. Without scale, larger vessels are less likely to be
segmented while without depth, segmentation is much more scattered and less
contiguous. For visualization purposes, a pixel is labeled as being a vessel if the
probability of a vessel given the pixel features is greater than 0.5.

Table 2 shows the top 5 performing methods on the VESSEL12 challenge. Our
proposed method tops all existing approaches. The top performing methods in
the competition are largely based on the use of Frangi [4] and Krissian vesselness
[18] all of which derive structural properties from the eigenvalues of the Hessian.

3.2 Brain Tumor Segmentation

To emphasize that the proposed method is domain independent, we evaluated it
on the BRATS2012 multimodal brain tumor segmentation challenge, a dataset
that has totally different properties and segmentation task than the vessel data.
Due to BRATS2012 site maintenance, the test volume labels were unavailable at
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the time we did our experiments. Instead we perform evaluation using leave-one-
out cross validation on the training set. Two types of tumour data are evaluated:
high-grade and low-grade. Each volume voxel is labeled as being one of three
classes: tumor, edema and other. We utilized our approach with one scale and
two depths, with 16 bases in each depth for a total of 32 features. A 2 hidden
layer network with dropout [19] is used to make predictions. Within each training
fold, 10-fold cross validation is used to select the dropout parameters.

Table 3. Comparison against the top two performers in the BRATS2012 competition.
HG and LG stand for high-grade and low-grade, respectively.

Team region mean dice coeff. region mean dice coeff.

our method HG edema 0.485 LG edema 0.250
Bauer et al. HG edema 0.536 LG edema 0.179
Zikic et al. HG edema 0.598 LG edema 0.324

our method HG tumor 0.470 LG tumor 0.406
Bauer et al. HG tumor 0.512 LG tumor 0.332
Zikic et al. HG tumor 0.476 LG tumor 0.339

our method HG GTV 0.720 LG GTV 0.494

Table 3 shows our results in comparison to the top 2 methods in the competi-
tion. We note again that out comparison is not on the same held-out data. None
the less, our results are competitive with the top performing methods.

4 Conclusion

In this paper we proposed a domain independent approach for segmenting medi-
cal images. Our approaches involves learning feature representations at multiple
scales and depths which are compatible with existing classification and energy-
based segmentation methods. We obtain the best performing result on the VES-
SEL12 challenge and competitive results on the BRATS2012 multimodal brain
tumor segmentation challenge. For future work we intend to further evaluate
our approach on additional grand challenge problems. We also intend to study
various transfer learning scenarios between domains and modalities.
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Abstract. Computer-aided diagnosis (CAD) of mammographic masses
is important yet challenging, since masses have large variation in shape
and size and are often indistinguishable from surrounding tissue. As an
alternative solution, content-based image retrieval (CBIR) techniques
can facilitate the diagnosis by finding visually similar cases. However,
they still need radiologists to identify suspicious regions in the query case.
To overcome the drawbacks of both kinds of methods, we propose a CAD
approach that integrates image retrieval with learning-based mass detec-
tion. Specifically, a query mammogram is first matched with a database
of exemplar masses, getting a series of similarity maps. Then these maps
are subtracted by discriminatively learned thresholds to eliminate noise.
At last, individual similarity maps are aggregated, and local maxima in
the final map are selected as masses. By utilizing a large database, our
approach can effectively detect masses despite their variation. Moreover,
it bypasses the identification of suspicious regions by radiologists. Exper-
iments are conducted on 500 mammograms randomly selected from the
digital database for screening mammography (DDSM) using receiver op-
erating characteristic (ROC) analysis. The proposed approach achieves
a promising ROC area index Az = 0.91, and outperforms two traditional
classifier-based CAD methods.

1 Introduction

For years, mammography has played a key role in diagnosis of breast cancer, the
second leading cause of cancer-related death among women. The major indica-
tors of breast cancer are masses and microcalcifications. Generally speaking, the
detection of mammographic masses is even more challenging than that of micro-
calcifications, since masses vary substantially in shape, margin, size and usually
have obscure boundaries. Consequently, a considerable portion of retrospectively
visible masses is missed by radiologists, and biopsies are frequently conducted
on normal tissues or benign lesions [1].

Due to the clinical significance and great challenge of mammographic mass
detection, numerous computer-aided diagnosis (CAD) methods have been pro-
posed to facilitate this procedure. A majority of these approaches first segment
a query mammogram into several regions, then extract certain features from
each region, and finally classify these regions as mass or normal tissue using the
extracted features and pre-trained classifiers [4, 13, 18]. However, it is very diffi-
cult for classifiers to model all the training masses, and they are likely to miss
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c© Springer International Publishing Switzerland 2014
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masses of “uncommon” appearance or sizes [13]. Besides, their performance may
be affected by the obscure boundaries of masses [18], since most of them need
to perform image segmentation before mass detection.

As an intuitive alternative, content-based image retrieval (CBIR) techniques
have gradually gained their popularity. Specifically, these methods first prompt
radiologists to label a region of interest (ROI) in the query case, then compare it
with ROIs extracted from previously diagnosed cases, and finally return the most
relevant cases along with the likelihood of a lesion in the query [7,11]. Compared
with classifier-based approaches, CBIR-based CAD methods could provide more
clinical evidence to assist the diagnosis. Especially, the recent progress of scalable
CBIR techniques has been a catalyst for the increase of such CAD systems
[6, 20]. Nevertheless, they are semi-automatic and rely heavily on radiologist-
specified ROI. A nonrepresentative region, e.g. a normal region in a malignant
mammogram, will lead to wrong diagnosis.

To overcome the above drawbacks, inspired by [16], we propose a CAD method
that combines image retrieval with discriminative learning, which is illustrated in
Fig. 1. In particular, a large database of exemplar mammographic masses is con-
structed, and a query mammogram is matched with each exemplar to compute a
series of similarity maps. A similarity map describes the probabilities of a mass
centered at each pixel in the query mammogram. Second, each similarity map is
subtracted by a discriminatively learned threshold to remove non-mass regions.
Finally, individual similarity maps are summed up, and masses are detected by
simply choosing local maxima in the aggregated map. Our approach has sev-
eral advantages over traditional classifier-based methods. First, it could detect
unusual masses as long as there are several similar exemplars in the database.
Second, the obscure mass boundary problem is eliminated, since no segmenta-
tion is required. Third, our method returns not only a detection result but also
the most similar diagnosed cases, which are valuable to the interpretation of
current case. The presented approach is also superior to CBIR-based methods
regarding that it does not need artificial labeling of suspicious regions. Therefore
it provides radiologists with “double reading” aid automatically.

2 Methodology

In this section, we first introduce the similarity matching between query mam-
mogram and exemplar masses, then present the refinement of similarity maps
based on discriminative learning, and finally describe how to detect masses using
these similarity maps. The overview of our approach is shown in Fig. 1.

2.1 Local Feature Voting-Based Image Retrieval

Our approach builds upon the “bag of words” (BoW) framework [2, 6, 15–17],
which describes an image with a series of quantized local features. The local
feature we choose here is scale-invariant feature transform (SIFT) [8]. SIFT has
been successfully applied to medical image retrieval and analysis [2,6], owing to
its excellent robustness and discriminability.
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Fig. 1. Overview of the proposed approach

During offline stage, a large set of SIFT features extracted from a separate
database are used to train a visual vocabulary (VOC) through k-means cluster-
ing. After that, SIFT features are extracted from exemplar database D, then
quantized using this VOC. Each SIFT feature is represented by the ID of its
nearest visual word (cluster center), and an exemplar mass is characterized by
all the quantized SIFT features along with their locations. During online stage,
given a mammogram q in the query set Q, SIFT features are extracted and quan-
tized using the same VOC. Following [15, 16], each exemplar d is matched with
q to calculate a similarity score sim (q, d) and a similarity map S (q, d), where
S (q, d) [x, y] indicates the similarity between a region of q centered at (x, y) and
d.

Formally speaking, q is represented as a BoW, q = {vqi }mi=1, where v
q
i denotes

its i-th quantized feature. Similarly, d is represented as d =
{
vdj

}n

j=1
. Supposing

d is transformed to dα,s after rotation α and scale s, and dα,s matches a region
in q denoted as qα,s, then their features should match with each other and have
similar locations relative to their centers. For a given pair of matched features
vqi = vdj = v, the center of qα,s, denoted as cqi , can be localized based on the

locations of vqi and vdj :

lqci = lqvi − s ·R · ldvj , R =

[
cosα − sinα
sinα cosα

]
, (1)

where ldvj is the location of vdj relative to the center of d, α and s are transforma-
tion parameters, lqvi and lqci are the absolute locations of vqi and cqi respectively.

After localizing cqi , v
q
i can cast its vote. To resist gentle nonrigid deformation,

vqi votes in favor of not only cqi but also cqi ’s neighbors. c
q
i earns a full vote, and

each neighbor gains a vote shrinked by a Gaussian weight:

S (q, dα,s) [x
q
ci + δx, yqci + δy] + =

idf2 (v)

tf (v, q) · tf (v, d)
· exp

(
−δx2 + δy2

σ2

)
, (2)
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Fig. 2. Illustration of local feature voting-based similarity measure. Note that only
one pair of (α, s) is used here, whereas 64 pairs are used in practice. (a) An exemplar
mass d. (b) d is virtually transformed to dα,s. (c) A query mammogram q with three
features vq1 , v

q
2 and vq3 matched with vd1 , v

d
2 and vd3 respectively. vq1 and vq2 vote for

nearby centers, whereas vq3 is a noise and votes for a wrong center. qα,s is localized by
finding the maximum value in S (q, dα,s).

where (xq
ci, y

q
ci) = lqci is the location of cqi , (δx, δy) is the deviation from cqi to

its neighbor and satisfies δx2 + δy2 � r2, tf (v, q) and tf (v, d) are the term fre-
quencies (TFs) of v in q and d respectively, and idf (v) is the inverse document
frequency (IDF) of v. TF-IDF [14] is widely adopted in BoW-based CBIR meth-
ods. It reflects the importance of a visual word to an image in a collection of
images. The vote score in Eq. (2) is defined based on the observation that visual
words occurring rarely in the whole database (with high IDF) are more informa-
tive, and visual words occurring frequently in a single mammogram (with high
TF) are less informative.

The cumulative votes of all matched pairs generate a similarity map S (q, dα,s).
The center of qα,s is localized by finding the maximum value in S (q, dα,s). This
value represents the similarity between q and dα,s, and is denoted as sim (q, dα,s).
For the robustness to rotation and scale transformations, d is virtually trans-
formed using every combination of 8 α (from 0 to 7π/4) and 8 s (from 1/2 to
2). Among all the 64 similarity maps, the one with highest similarity score is se-
lected. The chosen similarity map and score serve as the similarity map and score
between q and d, which are referred to as S (q, d) and sim (q, d) respectively:

sim (q, d) = max
α,s

max
x,y

S (q, dα,s) [x, y] . (3)

Let (x∗, y∗) and (α∗, s∗) be the parameters that maximize Eq. (3), then the
query mass is localized at (x∗, y∗). Calculation of S (q, dα,s) and sim (q, dα,s) is
illustrated in Fig. 2.

The above image retrieval approach has several advantages. First, it performs
mass retrieval and localization simultaneously. Second, it is robust to translation,
rotation and scale transformations of masses. Last, without resort to sliding
window-based scanning, our approach is computationally efficient.
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2.2 Learning Similarity Thresholds

With the quantization of local features for fast retrieval, their discriminative
power is weakened. Therefore some non-mass regions may receive high similarity
scores, as shown in the third column of Fig. 1. To solve this problem, following
[16], we subtract a similarity score sim (q, d) by a pre-trained threshold θd:

sim (q, d) =

{
sim (q, d)− θd , if sim (q, d) > θd
0 , otherwise

, (4)

where sim (q, d) denotes the gated similarity score between q and d.
After applying the thresholds, only those exemplars with positive similarity

scores are kept. For each remaining exemplar d, its similarity map S (q, d) is also
gated, resulting in S̄ (q, d):

S̄ (q, d) [x, y] =

{
S (q, d) [x, y]− θd , if S (q, d) [x, y] > θd
0 , otherwise

. (5)

As demonstrated in the fourth column of Fig. 1, most noise in the similarity
maps could be successfully eliminated.

In order to learn all the thresholds, a group of mammograms depicting healthy
breasts are collected to form a negative query set Q̃. For each exemplar d, its
threshold is chosen as the maximum similarity score between d and any negative
query q̃ ∈ Q̃:

θd = max
q̃∈Q̃

sim (q̃, d) . (6)

It is worth pointing out that the above threshold scheme can be interpreted as
Naive Bayes classification [16]. Each gated similarity score sim (q, d) is regarded
as the output of a simple classifier, where a positive score indicates a mass. The
threshold θd learned in Eq. (6) satisfies the constraint that no negative query
q̃ ∈ Q̃ is mistaken for a positive one by d. In the meantime, it maximizes the
likelihood that a positive query is correctly detected.

2.3 Detection of Masses

After obtaining all the exemplars with positive similarity scores sim (q, d), we
sum up their similarity maps S̄ (q, d) to calculate the final similarity map of q,

denoted as Ŝ (q):

Ŝ (q) =
∑

d:sim(q,d)>0

S̄ (q, d) . (7)

Then, non-maximum suppression is exploited to find the local maxima in Ŝ (q),
and masses are asserted around these maxima points. Finally, each mass is local-
ized based on its supporting exemplars. Let (x∗, y∗) be the center of an asserted

mass, the individual similarity maps S̄ (q, d) contributing to Ŝ (q) [x∗, y∗] can be
identified. Remember that in Subsection 2.1, the mass region is localized when
calculating S (q, d). The final mass region is determined as the per-component
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median of the regions corresponding to all supporting exemplars. An example is
provided in the fifth and sixth columns of Fig. 1.

It is noteworthy that during the above detection and localization process, the
supporting exemplars for each detected mass are also found. These exemplars,
along with their diagnosed pathologies, can be displayed to the radiologists. Such
clinical evidence is a by-product of our method.

3 Experiments
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Fig. 3. ROC performance of the
three evaluated methods

Our experiment dataset is constructed from
the digital database for screening mammog-
raphy (DDSM) [5], which is currently the
largest public mammogram database. DDSM
is comprised of 2,604 cases, and every case
consists of four views, i.e. LEFT-CC, LEFT-
MLO, RIGHT-CC and RIGHT-MLO. The
masses have diverse shapes, sizes, margins,
breast densities as well as patients’ races and
ages, and are associated with annotations la-
beled by experienced radiologists. To build
our dataset, mammograms are first mapped
from grey level to optical density to elimi-
nate visual difference caused by different scan-
ners. Second, normalized mammograms are
processed for better visual quality using inver-
sion, breast segmentation, and contrast enhancement. Third, 2,021 ROIs cen-
tered at masses are extracted to form an exemplar database D. Finally, 500
mammograms containing masses are randomly selected as query set Q. Besides,
500 mammograms depicting healthy breasts compose a negative query set Q̃,
which is utilized to train the similarity threshold θd for each exemplar mass
d ∈ D. D, Q and Q̃ are randomly selected from different cases.

As a point of reference, we also implement two classifier-based CAD meth-
ods. Both methods adopt a cascade of boosted classifiers [19]. This framework,
usually referred to as “Viola-Jones”, is widely used in general object detection
and also achieves promising results in mammographic lesion detection [12]. The
first method employs the same Haar feature as [19], and the second one utilizes
histogram of oriented gradient (HOG) [3] to better describe mass appearance
and shape. HOG and its variations demonstrate excellent performance in the
latest works on mammographic mass detection and segmentation [9, 10].

All the methods are evaluated using receiver operating characteristic (ROC)
curve and ROC area index Az, which are shown in Fig. 3. The proposed ap-
proach significantly outperforms the Viola-Jones methods. It achieves an Az

value as high as 0.91, whereas the Az values of the other two methods are 0.84
and 0.81. Detailed results show that the Viola-Jones methods miss most of the
“uncommon” masses, which is expected since classifiers can hardly recognize
minority features extracted from the exemplar database. On the contrary, our
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approach could precisely detect and localize these masses as long as there are
a few similar exemplar masses. Remember that in addition to better detection
performance, our method also provides users with visually similar cases and
associated pathologies. Such information can further improve the accuracy of
radiologists’ diagnosis. An example can be found in Fig. 4. The query mam-
mogram contains a malignant mass of great size, lobulated shape and obscure
boundary. There are only several similar masses in the exemplar database, which
cannot be modeled by classifiers. Consequently, the Viola-Jones methods fail to

Fig. 4. A query mammogram with
a malignant mass (left) and its top
3 supporting exemplar masses re-
trieved by our approach (right)

detect this mass. Nevertheless, these exem-
plars are sufficient to vote the mass using our
approach.

It is worth mentioning that a considerable
portion of false positives is caused by the vi-
sual similarity between malignant masses and
normal regions with bright cores and spicu-
lated boundaries. A possible solution is to fil-
ter out these regions through an additional
mass validation step. In particular, a series
of annotated mammograms depicting either
healthy or abnormal breasts should be col-
lected to make up a validation database V .
Then, an asserted mass q is matched with each
validation mammogram using the same sim-
ilarity measure explained in Subsection 2.1.
A true positive is expected to discover some
masses in V , while a false positive is likely to
find normal tissues or localize masses inaccu-
rately. Therefore a validation score can be cal-
culated for q based on how much its retrieved
regions overlap with the annotated mass regions in V . And q is reported only if
its score is higher than a validation threshold θV .

4 Conclusion

During the past decades, various CAD approaches have been presented to assist
mammographic mass detection, which are based on classifiers or CBIR tech-
niques. Nevertheless, either category has its limitations. In this paper, image
retrieval and discriminative classifiers are unified to complement each other. In
particular, a query mammogram is matched with each exemplar mass using a
local feature voting scheme, achieving mass retrieval and localization simultane-
ously. Then, discriminatively learned thresholds are employed to prune non-mass
regions, which can be regarded as Naive Bayes classification. Finally, thresh-
olded similarity maps are accumulated, and masses are detected by finding local
maxima in the aggregated map. Compared with classifier-based CAD methods,
the proposed approach could handle unusual masses by using a large exemplar
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database. In addition, it solves the obscure mass boundary problem, and pro-
vides radiologists with relevant diagnosed cases. Compared with CBIR-based
methods, it doesn’t rely on radiologist-labeled suspicious regions and serves as
a fully automated double reading aid. A large dataset is built from DDSM, and
experiments show the effectiveness of our method. Further endeavors will be
devoted to remove false positives through mass validation.
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Abstract. Pinpointing the sources of dementia is crucial to the effec-
tive treatment of neurodegenerative diseases. In this paper, we model
the dementia progression by a diffusive model over the brain network
with sparse impulsive stimulations. By solving inverse problems, we lo-
calize the possible origins of Alzheimer’s disease based on a large set of
repeated magnetic resonance imaging (MRI) scans in ADNI. The distri-
bution of the sources averaged over the sample population is evaluated.
We find that the dementia sources have different concentrations in the
brain lobes for Alzheimer’s disease (AD) patients and mild cognitive
impairment (MCI) subjects, indicating possible switch of the dementia
driving mechanism. Our model provides a quantitative way to perform
explanatory analysis of the dynamics of dementia.

Keywords: Sources of dementia, network diffusion, brain morphology,
longitudinal study, MRI, Alzheimer’s disease.

1 Introduction

As a collective term describing symptoms of severe cognitive decline, dementia
affects 35.6 million people worldwide. About 50% to 80% of dementia is due to
Alzheimer’s disease (AD), a progressive neurodegenerative disease without cure
since the cause and progression of AD are not well understood. To reveal the
pathology of AD, the amyloid and tau hypotheses have been proposed. They pos-
tulate that the disease begins in the gray matter with accumulation of misfolded
beta-amyloid and/or tau protein and progresses along extant fiber pathways [1].
The progression results in gross atrophy of the affected brain regions, containing
degeneration in the temporal lobe and parietal lobe, and parts of the frontal
cortex and cingulate gyrus [2].

Recently, a network diffusion model was used to characterize the propagation
of dementia [3]. The transmission of disease agents like misfolded beta-amyloid
and tau protein was modeled as a diffusive mechanism mediated by the brain
connectivity network [4]. The authors effectively predicted spatially distinct “per-
sistent modes” capturing the patterns of dementia by this model. Moreover,
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prevalence rates forecasted by the model strongly agree with published data.
Later, it was demonstrated that network diffusion could accurately model the
relationship between structural and functional brain connectivity networks [5].

In this work, we infer sources of dementia progression using a network diffu-
sion model with sparse impulsive stimulations. The study of brain disease agents
attributed the cause of dementia to a few seed regions in the brain [6]. We intro-
duce sparse impulsive stimulations arriving at different time to the seed regions
that drive the atrophy. Based on this, we propose a network diffusion model
that simultaneously describes the propagation of dementia and the dynamics
of the seed effect. In practice, we fit the amplitudes of the input impulses and
the diffusion speed to the observed data. Numerical simulations demonstrated
that we were able to recover the input impulses at the source nodes. Next, we
evaluated the longitudinal MRI dataset in ADNI with this model. We extracted
the average atrophy level at each brain region and inferred the dementia source
distributions of both AD patients and MCI subjects.

Two primary differences between summarized source distributions of the AD
and MCI groups were the lower contrast of the distribution and the denser
sources in the temporal lobe for MCI. We found that the dementia progression
was more evidently driven by a set of leading brain regions in AD than MCI.
Moreover, there was a shift of dominant dementia sources from the temporal lobe
and cerebellum for MCI to the central brain regions, frontal lobe and the border
between parietal lobe and occipital lobe for AD, consistent with former findings
in [7,8]. Since MCI subjects have high chances to develop AD, the different
patterns in the source distributions of MCI and AD may indicate the evolution
of the dementia progression mechanism. The results may help better understand
the dynamics of the brain and design targeted treatments to dementia.

2 Inferring Dementia Sources with Diffusion Model

As in [3], we model dementia progression as a diffusion process on a brain net-
work G = (V , E ,W ), where V and E are the node set and the edge set, ac-
cordingly. Node vi ∈ V represents the i-th brain region (cortical or subcortical
gray matter structure) and edge (i, j) ∈ E represents a connected region pair
(vi, vj) by white-mater fiber pathways. W is a symmetric weight matrix with
Wij quantifying the connection strength between regions vi and vj . The amount
of disease agent transmitting from an affected region vi to an unaffected region
vj is proportional to the product of the disease factor concentration xi and the
inter-region connection strength Wij . Adversely, a reverse diffusion from vj to
vi proportional to Wjixj exists. Assuming undirected pathways, the diffusion
process could be captured by the first-order differential equation

dxi

dt
= −β

∑
j
Wij(xi − xj). (1)

Here β ≥ 0 is a constant controlling the speed of diffusion. In [5], a refined version
of Eq. (1) is raised by performing the normalizationW = D−1/2WD−1/2, where
D is the diagonal matrix with the i-th diagonal element Dii =

∑
j Wij .
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Suppose the disease factors at time t in the network are represented by the
vector x(t) = {x(v, t), v ∈ V} for all the nodes, then the diffusion process can be
rewritten as the following “network heat equation”

dx(t)

dt
= −βLx(t), (2)

where L � I −W is the (normalized) graph Laplacian matrix. Eq. (2) has an
explicit solution x(t) = exp(−βLt)x(0). Throughout this paper, we consider
continuous systems while t could also be restricted to discrete values.

We model the sources of dementia by a series of impulsive stimulations ex-
pressed by s(t) =

∑
tij≤t cijδ(t− tij)ei, where cij is the amplitude of the impulse

at node i at the j-th time step tij . Note that δ(·) is the dirac delta function; ei
is a standard basis in R

|V| with the i-th element being nonzero. By adding the

input, we update Eq. (2) to dx(t)
dt = −βLx(t) + s(t), with the solution

x(t) = e−βLtx(0) +
∑

tij≤t
cije

−βL(t−tij)ei. (3)

In reality, the dynamics in Eq. (3) might not be followed exactly due to the
unavoidable modeling error. Hence, usually θ could not be directly solved from
Eq. (3). It motivates us to fit the observed data y(t) to the diffusive model by

minθ
∥∥y(t) − e−βLty(0)−

∑
tij≤t

cije
−βL(t−tij)ei

∥∥2

2
, (4)

where the indicators of the unknown parameters take values i = 1, · · · , N and
j = 1, · · · ,K. There are 2NK + 1 parameters to be fitted in above formula
compared with the dimension N of the observed data, which may make the
gradient descent methods to search the optimal solution unstable.

To solve the inverse problem more robustly, we simplify the model of the input
disease factor by restricting the arrival time on integer time steps 1, 2, · · · ,K =
�t�, meaning that tik = k for any node i and integer k ∈ {1, · · · ,K}. This is
reasonable, since in practice often we only want to determine the sources up to a
certain time resolution. Let ỹβ(t) = y(t)−e−βLty(0) and hij(β) = e−βL(t−tij)ei,
then the minimization in Eq. (4) could be replaced by

minβ,cij
∥∥ỹβ(t)−

∑N

i=1

∑K

j=1
cijhij(β)

∥∥2

2
. (5)

The above procedure can be treated as a linear regression parameterized by β.
To obtain a unique solution, we enforce the l1-sparsity constraint:

minβ,cij‖ỹβ(t)−H(β)c‖22 + α|c|1, (6)

where H = (h1,1,h1,2, · · · ,hN,K) is a N × NK matrix and c = (c1,1, c1,2,
· · · , cN,K)T is a column vector storing all the amplitudes of the impulses; α is a
spareness control parameter. If β is known, then the optimization can be effectively
solved by the coordinate descent learning or the active-set algorithm [9]. When β
is unknown, the overall estimation task becomes hard. We propose a two-stage al-
gorithm with an initial stage and a refined stage. For the inference problem in Eq.
(6), we first adopt the following iterative algorithm:
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Algorithm 1. Solving the Parameterized Lasso Problem

1. Given 0 < ε1, ε2, < 1. Initialize any feasible β(1), {c(1)ij }.
2. For k = 1, 2, · · ·

2.1 Find a descent direction d in Eq. (6) given β = β(k) using algorithms in [9].

2.2 Update {c(k+1)
ij } = {c(k)ij } − ε1d.

2.2 Update β(k+1) = β(k) − ε2f
T g, with

f = ỹβ(k)(t)−H(β(k))c(k+1),

g = e−β(k)LtLtx(0) +∑
i,j c

(k+1)
ij (t− tij)Lhij(β

k).

Each time when applying the above algorithm, we obtain an estimate of the
impulsive inputs since the last observation and β. In the end, there will be
several estimates of β, namely β̂1, · · · , β̂K . We average them to get a refined
version β̂ = 1

K

∑K
i=1 β̂i. Next, we treat β = β̂ in Eq. (6) and solve the problem.

5-fold cross-validation is performed for tuning the regularization parameter α at
both the initial stage and refined stage.

3 Numerical Simulations

We evaluated the inference algorithm by simulations on a random geometric
network. We arbitrarily spread 100 nodes in a unit square area and drew edges
between node pairs when their Euclidean distances were less than 0.2 (see Fig.
1). Unit weight was assigned to each edge. Then, we imported 4 impulsive stimu-
lations c10,0 = 1, c40,0 = 0.6, c51,9 = 0.2, c40,19 = 0.1 with cij signifying the input
at node i at the j-th time step. Observations with Gaussian noise were made
at three time steps t = 6, 12, 24, where the standard deviation of the noise was
10−3. In Fig. 1, we visualized the observations on the network with heat maps.

In the first row of Fig. 2, the input impulses were displayed during time
periods: t = [0, 6], [6, 12], [12, 24], respectively. In each period, we plotted out cij
in the order of c1,1, · · · , c1,K , · · · , cN,K. We first ran Algorithm 1 and obtained
the estimation results in the second row of Fig. 2. It appeared that the locations
of the sources were correctly detected. However, the amplitudes and arrival times
of the impulses were not well estimated. For instance, during t = 6 ∼ 12, the
recovered impulse had an index 651, meaning that the estimated arrival time
was t = 12 at node 51. Meanwhile, we knew that the true arrival time was t = 9
at node 51. The impulse locations during other two time periods were correctly
detected too. Then, we applied the refinement step to get a better estimate of
β. The improved results were shown in the third row of the plot, from which we
observed that although a true impulse seemed to be split into bunches of multiple
recovered impulses, the cumulative value and arrival time were better preserved.
For example, in Fig. 2(b), the summation of the amplitudes at node 51 was
0.2103, close to the true amplitude 0.2; in Fig. 2(c), the aggregated amplitudes
at node 40 was 0.1079, which was near the truth 0.1 as well.
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Fig. 1. From left to right are the observations of a diffusion process on a 100-node
random geometric network at time t = 6, 12, 24. Edges built across nearby nodes have
unit weights. The sizes and colors both indicate the scales of the noisy measurements.

1 100 200 300 400 500 600 700
0

0.5

1

1 100 200 300 400 500 600 700
0

0.5

1

1 100 200 300 400 500 600 700
0

0.5

1

(a) t = 0 ∼ 6.

1 100 200 300 400 500 600 700
0

0.1

0.2

1 100 200 300 400 500 600 700
0

0.05

0.1

1 100 200 300 400 500 600 700
0

0.1

0.2

(b) t = 6 ∼ 12.

1 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.05

0.1

1 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.05

0.1

1 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.05

(c) t = 12 ∼ 24.

Fig. 2. Inference results on the simulated data. From above to bottom, the rows cor-
respond to the truth, direct estimate, refined estimate of the impulsive amplitudes
cij ; from left to right, the columns illustrate the results based on the observations at
t = 6, 12, 24, respectively. The x-axes and y-axes denote tij and the amplitude.

4 Evaluation on ADNI Data

We employed our diffusion source inference method and the tensor-based mor-
phometry (TBM) [10] to analyze the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI-1) dataset. The full ADNI-1 dataset contained sequential brain MRI
scans from 188 AD patients, 400 individuals with MCI, and 229 healthy elderly
controls. Subjects were scanned at screening and followed up at 6, 12, 18 (MCI
only), 24, and 36 months (MCI and normal only). To adjust for linear shifts in
head position, the follow-up scan was linearly registered to its matching screening
scan via 9-parameter (9P) registration. By warping the 9P-registered follow-up
scans to match the corresponding screening scan, individual Jacobian maps were
produced to estimate 3D patterns of structural brain change over time. The Ja-
cobian determinants illustrate regions of ventricular/CSF expansion (i.e., with
detJ(r) > 1), or brain tissue loss/atrophy (i.e., with det J(r) < 1) over time.

We first constructed the brain connectivity network and extracted the brain
atrophy measurements from the Jacobian deformation maps. The Jacobian maps
in the 6, 12, 24 month were registered to the 116 region automated anatomic
labeling (AAL) atlas. In parallel, we built a 116-node weighted brain network by
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(a) AD group source distributions.
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(b) MCI group source distributions.

Fig. 3. Average source distributions recovered at three time steps (t = 6, 12, 24
months). Horizontal axes of the subplots denote the ROI index of the AAL template;
vertical axes of the charts signify the normalized cumulative atrophy imported to a
certain brain region since last observation averaged over population.
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(a) Average dementia source distribu-
tion for AD group.

(b) Sajittal view
of AD.

(c) Axial
view of AD.

10 20 30 40 50 60 70 80 90 100 110 116
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

(d) Average dementia source distribu-
tion for MCI group.
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Fig. 4. Estimated total dementia source distributions averaged over the two groups.
Dotted lines in (a) and (d) delineate the thresholds above which there are 60 brain
regions. (b-c) and (e-f) show the sagittal and axial views of these ROIs with significant
atrophy, where sizes of the color-balls are proportional to the atrophy levels.

treating each region of interest (ROI) as a node and assigning weight between
brain region i and j according to Wij =

1
d(i,j) , if d(i, j) < 40; Wij = 0 otherwise,

where dij is the Euclidean distance between the i-th and j-th ROI centers. From
[11], we knew that this simple construction approximates the functional and
anatomical brain network topologies very well. Next, averaged brain deforma-
tion level within every ROI was calculated. The original deformation maps were
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downsampled to 116 dimensional vectors with postive/negative numbers signify
expansion/shrinkage of the regions. We set positive average deformation values
to zero, since we only wanted to consider the brain atrophy. The truncated data
were regarded as the observations of the dementia progression over the brain
connectivity network, namely y(t) in Eq. (4).

We ran our diffusion source inference algorithm for the AD and MCI groups by
keeping the regularization factor α in Eq. (6) the same. From cross-validations,
we found that α ∈ [10−4, 10−5] was favorable. Here we choose α = 10−4. At
t = 6 month, we replaced y(0) = 0 and t = 6 in Eq. (4). Arrival times and
locations of the impulsive stimulations of dementia were estimated via solving
this optimization for every individual. The resulted amplitude sequence cij for
i = 1, · · · , N and j = 1, · · · ,K, were folded up and summed over each ROI to
give the cumulative atrophy input c̃i at the i-th region: c̃i =

∑K
j=1 cij . Thus, c̃ =

(c̃1, · · · , c̃N ) describes the dementia source distribution of the subject. To obtain
a meaningful summary of the atrophy sources across the group, we normalized c̃
such that the maximum absolute value of its elements was one. The normalized
source distributions for both groups were displayed in the first row of Fig. 3. Next,
we inferred the sources coming into play during the time intervals t ∈ [6, 12] and
t ∈ [12, 24] by treating y(6) and y(12) as initial conditions. Those results were
in the second and third rows of Fig. 3. We observed that the envelopes of the
source distributions obtained at different time for a certain group were close to
each other, which might signify that the dementia was due to stimulations at a
constant set of regions.

To obtain an atrophy source map for every group, we further added up the
source distributions c̃ estimated at the three time steps. The total dementia
source distributions were presented on the left panels of Fig. 4. Two main dif-
ferences between the AD and MCI groups were the lower contrast of the distri-
bution as well as the denser sources in the temporal lobe for MCI. To quantify
the contrast of the source distributions, we calculated the ratio ρ between the
sum of top 60 leading source regions and that of the rest regions. It turned
out that ρAD = 8.97 compared with ρMCI = 2.70, meaning that the dementia
progression was more evidently driven by a set of leading brain regions in AD
than MCI. We also examined the difference of the distributions over brain lobes.
Using BrainNet Viewer [12], we displayed the center locations of the 60 major
dementia sources inside the 3D brain mesh in Fig. 4. We observed that the dom-
inant dementia sources overlap with the hubs of the functional brain network
[12], namely the bilateral Rolandic operculum, bilateral superior temporal gyrus,
right supplementary motor area, right temporal pole, and right supramarginal
gyrus, which were primarily located at the association and subcortical regions.
On the whole, there was a shift of dominant dementia sources from the temporal
lobe and cerebellum for MCI to the central brain regions, frontal lobe and the
border between parietal lobe and occipital lobe for AD. This phenomenon is
consistent with former findings in [7,8]. Since MCI subjects have high chances
to develop AD, the different patterns in the source distributions of MCI and AD
may indicate the evolution of the dementia progression mechanism.



Inferring Sources of Dementia Progression 49

5 Conclusion

We presented a diffusive model on network to trace back the sources of a diffusion
process. Numerical simulations demonstrated that it was possible to estimate the
locations of the sources and arrival times of the input impulses. Possible origins
of Alzheimer’s disease were found by using the longitudinal MRI dataset pro-
vided by ADNI. The average distributions of the dementia sources had different
concentrations in the brain lobes for AD patients and MCI subjects, indicat-
ing possible transformation of the dementia driving mechanism. Our method
enables the quantitative assessment of the dementia causes, which may help
discover better targeted treatments of the disease.
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Abstract. In this paper we propose a new fully-automatic method for
localizing and segmenting 3D intervertebral discs from MR images, where
the two problems are solved in a unified data-driven regression and clas-
sification framework. We estimate the output (image displacements for
localization, or fg/bg labels for segmentation) of image points by ex-
ploiting both training data and geometric constraints simultaneously.
The problem is formulated in a unified objective function which is then
solved globally and efficiently. We validate our method on MR images
of 25 patients. Taking manually labeled data as the ground truth, our
method achieves a mean localization error of 1.3 mm, a mean Dice met-
ric of 87%, and a mean surface distance of 1.3 mm. Our method can be
applied to other localization and segmentation tasks.

1 Introduction

In clinical practice, accurate identifying of intervertebral discs (IVD) is very
important for diagnosis and operation planning of spine pathologies. In this
paper we propose a fully automatic method to localize and segment 3D IVDs
from MR image with a unified regression and classification framework.

In literature, different methods have been proposed for IVD localization [1,2]
and segmentation [5,6,7,8,9]. In [1], the IVDs were localized and labeled by a
probabilistic model considering image intensity and geometric constraints. Corso
et al. [2] enforced the inter-disc distance constraint to improve the label accuracy.
Glocker et al. applied the Random Forest regression [3] and classification [4]
methods, although their localization target is the vertebrae instead of IVD.

For IVD segmentation, existing methods are based on watershed algorithm
[5], atlas registration [6], graph cuts with geometric priors from neighboring discs
[7], template matching and statistic shape model [8], or anisotropic oriented flux
detection [9]. All of these methods except [8] work only on 2D sagittal images.

Recently, a new data-driven optimization method [10] was proposed for land-
mark localization. Inspired by this, in this paper we make four contributions.
(1): We extend the method into segmentation domain, where we estimate the
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Fig. 1. Pipeline overview our method. Top: localization. Bottom: segmentation.

foreground/background label of image points instead of displacements. (2): We
introduce a new constraint for segmentation which ensures the neighborhood
smoothness. (3): We unify our localization and segmentation solutions into one
unified framework, where we estimate output values (displacements or labels)
on image locations. (4): We verified our method on MR images.

2 Data-Driven Regression/Classification Method

2.1 Overview

The localization and segmentation problems are formulated as in Fig. 1. Given an
image, we consider a set of points (Fig. 1(a)): for localization task these are some
randomly sampled points (green dots), and for segmentation these are all voxels
inside a region of interest (yellow box). Each of these points can be represented
by its visual feature calculated in a small image neighborhood (the green dash
box in Fig. 1(b)). Then, we want to estimate the output values for each point.
In the case of localization, the output is the displacement vector from the point
to the target position (e.g. disc center), which makes it a regression problem.
Each point makes a vote relative to itself (Fig. 1(c)) and a score map can be
estimated by aggregating these votes (Fig. 1(d)). For segmentation, we estimate
the fg/bg label of each voxel (Fig. 1(c)), which is a soft classification problem.
The binary segmentation is then derived from the soft labels (Fig. 1(d)).

Notations. Suppose that N points are sampled on the training images, and let
{xi}i=1...N denote the features calcuated at these points, where xi ∈ R

d. We
denote X = [x1...xN ] ∈ R

N×d. We use {y}i=1...N to denote the output value of
the training points, i.e. yi ∈ R

3 for localization, and yi ∈ {0, 1} for segmentation.
The training images are annotated, so that the ground-truth output values of
training points are known as {yGT

i }i=1...N , and we denote Y GT = [yGT
1 ...yGT

N ].
Given a new image, we randomly sample N ′ points at locations {c′}i=1...N ′ ,

whose features are {x′}i=1...N ′ . We denote X ′ = [x′
1...x

′
N ′ ]. The task is to com-

pute the output values for these points {y′}i=1...N ′ . We write Y ′ = [y′1...y
′
N ′ ].
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We solve for Y ′ by optimizing an objective function as below. Please refer to
the supplementary material for a complete mathematical treatment.

2.2 Objective Function

First, we construct a matrix Ỹ = [Y, Y ′] which is the composition of training
and test outputs. Although we want to compute Y ′, our objective function is
defined on Ỹ . In this way we can encode the relations between training and test
data in a uniform way. After solving for the optimal Ỹ , we simply take its right

part as Y ′ = Ỹ Q, where Q is a
(
0 1

)T
matrix selecting the right part.

1. Ground-truth Consistence Eg. The output of the training points, which

is the left part of Ỹ , should be consistent with the ground-truth. With a (0,1)
matrix P selecting the left part of Ỹ , we define the penalty of violation as:

Eg(Ỹ ) =
1

N
‖Y − Y GT ‖2F =

1

N
‖Ỹ P − Y GT ‖2F (1)

2. Feature Proximity Consistence Ef . The ith column of Ỹ , coli(Ỹ ), encodes
the output of the ith point (either a training or a test point). We construct a
binary similarity matrix S ∈ {0, 1}(N+N ′)×(N+N ′), where Sij = 1 iff the ith
and jth points are mutually k nearest neighbors in the feature space. A natural
assumption is that points with similar features should have similar outputs:

Ef (Ỹ ) =
1∑

i	=j Sij

∑
i	=j

Sij‖coli(Ỹ )− colj(Ỹ )‖2F (2)

For each pair of points (i, j), Ef introduces a high penalty if they are similar in

the feature space (i.e. Sij = 1) but the output are very different (i.e. ‖coli(Ỹ )−
colj(Ỹ )‖ is big). Denoting LS as the Laplacian matrix of S, we can write:

Ef (Ỹ ) = Tr
(
Ỹ LS Ỹ



)

(3)

3. Point Subtractive Constraint Es. In the case of localization, y′i and y′j are
displacements from two test points c′i and c′j to the (unknown) target location.
From triangle geometry we have y′i−y′j = c′j−c′i. Therefore, we want to minimize:

Ei,j
s (Y ′) = ‖(y′i − y′j)− (c′j − c′i)‖22 = ‖Y ′ui,j −Δcj,i‖2F (4)

where ui,j is a N ′ dimensional vector whose ith element is 1, jth element is −1,
and all others are 0s, and Δcj,i = c′j − c′i. Adding these constraints together:

Es(Ỹ ) =
1

N ′(N ′ − 1)

∑
i	=j

Ei,j
s (Y ′) =

1

N ′(N ′ − 1)
‖Ỹ QU −ΔC‖2F (5)

where U = [..., ui,j , ...] and ΔC = [..., Δcj,i, ...] are matrices of column vectors.

4. Point Neighborhood Constraint En. In the case of segmentation, y′i is
the label of the ith point. A natural assumption is that the segmentation should
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be smooth, i.e. neighboring points should have similar labels. Therefore, if we
define a neighboring system N , we would want to minimize:

En(Ỹ ) =
1

|N |
∑

(i,j)∈N
‖y′i − y′j‖2F (6)

If we define A as the neighbor affinity matrix, where Ai,j = 1 iff only (i, j) ∈
N , and we denote LA as the Laplacian matrix of A, we can write En as:

En(Ỹ ) = Tr
(
Y ′LA(Y

′)

)
= Tr

(
Ỹ QLAQ


Ỹ 

)

(7)

The Objective Function. Our objective function consists of the above terms:

E(Ỹ ) = Eg(Ỹ ) + αEf (Ỹ ) + βEs(Ỹ ) + γEn(Ỹ ) (8)

where the terms are defined in Eqs. (1), (3), (5) and (7), with their respective
importance controlled by parameters α, β and γ. Note that Es is defined only
for localization (γ = 0), and En is only defined for segmentation (β = 0).

Optimization. Without loss of generality, we relax the binary requirement of
labels in the segmentation case, and let labels y to be continuous. It is not
difficult to prove that Eq. (8) is convex, with gradient given by:

∂E(Ỹ )

∂Ỹ
= Ỹ

(
1

N
PP
 + αLS + β

1

N ′(N ′ − 1)
QUU
Q
 + γQLAQ



)

− 1

N
Y GTP
 − β

N ′(N ′ − 1)
ΔCU
Q


(9)

For the globally optimal Ỹ , we can either solve the equation ∂E(Ỹ )

∂Ỹ
= 0 in

closed form, or use gradient descent from the initialization given by k-nn search.

Discussion. Eg ensures the consistence with the ground-truth data. Ef prop-
agates outputs from training data to test data based on feature proximity. The
key contribution is that in Es and En we exploit different pairwise geometric
constraints to regularize the output values being estimated, which are not ex-
ploited in other methods, such as [3]. These MRF-like neighboring constraints
are encoded compactly in our objective function which can be solved globally.

3 Application to IVD Localization and Segmentation

We applied our method to IVD, where we first localize the disc centers, and then
segment the discs. Without loss of generality, we consider 7 discs T11-L5 and
number them reversely from 1 (L5) to 7 (T11). Note that for both localization
and segmentation, the training and prediction are done separately for each IVD,
which means that the presence of other IVDs outside T11-L5 will not affect our
method as those IVDs will not generate significant response.

Localization of disc centers
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Fig. 2. The first step of localization. (a)-(c): Score images of three disc centers 2, 5 and
7. (d): The mode of each score image. (e): After HMM optimization. For (d) and (e),
the red crosses are ground-truth center locations and the greens are detected centers.

Fig. 3. The segmentation process after the disc centers are detected

For each disc center, the method in Section 2 will sample a set of points
over the image and produce a set of votes. We aggregate these discrete votes to
produce a continuous soft score map by considering each vote as a small Gaussian
distribution [10]. Therefore, for each image, 7 score maps are produced.

We detect the disc centers in a two-step coarse-to-fine way. In the first step,
points are sampled over the entire image to search for the disc centers, as in Fig.
2. Due to the repetitive pattern, the produced score maps are multimodal with
potential ambiguities. For example, in Fig. 2(d) the center 5 is confused with
center 6 if we simply take mode of its score map. To improve the robustness,
the score maps are treated as observation probabilities and are fed to an HMM
model encoding the prior geometric information of neighboring disc centers as
in [3]. In the second step, we fine-tune the center locations by sampling points
only in a local region around the centers initialized from the first step.

Segmentation of Discs
The segmentation of a disc is performed after its center is detected at location
z0 = (u0, v0, w0). The process is shown in Fig. 3. To save space, we superim-
pose the visualization of the 7 discs on a single image, but the segmentation
is conducted separately for each disc. For each pixel location z = (u, v, w), we
compute two probabilities of it being the foreground of a disc: pp(z), the prior
probability, and po(z), the observation probability. pp(z) is the probability of
being the foreground given the offset from the disc center z − z0, which is esti-
mated using the parzen window method from the annotated training data. On
the other hand, po(z) is calculated by the data-driven estimation method in Sec-
tion 2. Since pp(z) is much cheaper to calculate and serve as a good pre-filter
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Fig. 4. The qualitative localization result on some images (the 18th sagittal slice)

Table 1. Quantitative evaluation of disc center localization

Median Mean Std. Min. Max.

Ours 1.3 1.3 0.6 0.2 3.0

Random Forest [3] 1.6 2.7 6.2 0.3 40.6

of the potential foreground pixels, we first calculate pp(z) over all pixels around
the disc center, and then we only consider voxels where pp(z) is not zero, on
which po(z) is then calculated. The final probability of each pixel is then given
by p(z) = pp(z)po(z). The final binary segmentation is derived by thresholding
the probability map and only keeping the largest connected component.

4 Experiments

Data
We validate our method on MR images of 25 patients. Each patient was scanned
with 1.5 Tesla MRI scanner of Siemens. Dixon protocol was used to reconstruct
four aligned high-resolution 3D volumes during one data acquisition: in-phase,
opposed-phase, fat and water images. We manually annotated the intervertebral
discs in water images of all subjects, resulting in 175 discs in total. The ground-
truth disc centers are defined as disc centroids. The study is conducted in a
leave-one-out manner. In each round data of 1 subject is chosen for testing and
data of the remaining 24 subjects are used for training purpose.

Implementation Details
We use the neighborhood intensity vector as the visual feature of sampled image
points. Specifically, we draw a cube (of edge size 3cm for localization and 1cm
for segmentation) centered on the point. The cube is then evenly divided into
4 × 4 × 4 blocks, and the mean intensities in each block are concatenated to
form a 64 dimensional feature. As our data contains 4 channels, we concatenate
the vector from all channels to form a 256 dimensional final feature vector. For
parameter selection, we fix α = 0.01, β = 0.001, γ = 0 for localization, and α =
0.01, β = 0, γ = 0.01 for segmentation. Our unoptimized Matlab implementation
requires on average 3.5 minutes to finish both localization and segmentation of
one subject. Please note that all our operations are done in 3D space. However,
to ease visualization, the figures in the following sections are presented in 2D
sagittal slices.
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Fig. 5. Segmentation result on three images. We visualize the result on the 8th, 13th,
18th, 23th, 28th sagittal slices. Red: ground-truth contour. Green: our results.

Localization Result
Fig. 4 shows some qualitative results of disc center localization (only the 18th
sagittal slice is shown), where the red crosses are ground-truth and the green
ones are the detected centers. We also conducted quantitative evaluation as in
Table 1, where the evaluation metric is the Euclidean distance from the detected
disc centers to the ground-truth. We get a mean localization error of 1.3mm. We
also compare our results with the Random Forest based method [3]. To make
the comparison fair, we use the same parameters (e.g. the same features...) and
the same HMM optimization process for both methods. From the result we can
see that we do get better results.

Segmentation Result
We show our qualitative segmentation result on randomly selected three images
in Fig. 5. We visualize the results by superimposing the contours of ground-truth
discs and those of our results on five sagittal slices (slices 8,13,18,23 and 28).
The red contours are ground-truth and the green ones are our results.

For quantitative evaluation, we employ two metrics: the Dice metric which
measures the percentage of correctly identified pixels, and the average physical
distance from the ground-truth disc surface and the segmented surface. The
results are summarized in Table 2. We achieve a mean Dice of 87% and a mean
SurfDist of 1.3mm. We note that Neubert et al. [8] reported a mean Dice of
76%-80% in their 3D IVD segmentation paper on a different dataset.
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Table 2. Quantitative evaluation of disc segmentation. The unit of SurfDist is mm.

Median Mean Std. Min. Max.

Dice (3D) 87% 87% 3% 76% 92%

SurfDist (3D) 1.3 1.3 0.2 1.0 2.4

Dice (sagittal) 91% 90% 4% 72% 96%

SurfDist (sagittal) 0.7 0.7 0.3 0.3 1.6

Since most existing methods work only on 2D sagittal slices, for comparison
we also calculate the 2D versions of the metrics by using only the 18th slice (in
most cases it is the centered sagittal slice), where we achieve a mean Dice of
90% and SurfDist of 0.7mm. We note that in [7] they reported a mean Dice of
88% in the case of 2D IVD segmentation on a different dataset.

5 Conclusions

We have proposed a unified framework for localization and segmentation tasks of
medical images. We estimate outputs (displacements or labels) on image points
by considering both training data and geometric constraints. Applied to the
intervertebral disc case on MR data, our method achieves good results. Our
method can be generally applied to other localization and segmentation tasks,
and in the future, we plan to conduct more studies on different types of images.
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Abstract. Recently, sparse inverse covariance matrix (SICE matrix) has been
used as a representation of brain connectivity to classify Alzheimer’s disease and
normal controls. However, its high dimensionality can adversely affect the classi-
fication performance. Considering the underlying manifold where SICE matrices
reside and the common patterns shared by brain connectivity across subjects, we
propose to explore the lower dimensional intrinsic components of SICE matrix
for compact representation. This leads to significant improvements of brain con-
nectivity classification. Moreover, to cater for the requirement of both discrimi-
nation and interpretation in neuroimage analysis, we develop a novel pre-image
estimation algorithm to make the obtained connectivity components anatomically
interpretable. The advantages of our method have been well demonstrated on both
synthetic and real rs-fMRI data sets.

1 Introduction

Early and precise diagnosis of Alzheimer’s disease (AD), especially at its early warning
stage: Mild Cognitive Impairment (MCI), enables treatments to delay or even avoid
cognitive symptoms. Constructing and classifying functional brain networks based on
resting-state functional Magnetic Resonance Imaging (rs-fMRI) holds great promise
for this purpose. Many methods have been proposed to model brain network based on
rs-fMRI time series by identifying network nodes and inferring functional connectivity
(FC) between the nodes. The nodes are often defined as anatomically separated brain
regions of interest (ROIs) and the FC between two nodes is conventionally defined as
the correlation of time series associated with the two nodes. However, it has been argued
that partial correlation could be a better choice of FC since it measures the correlation
of two nodes by regressing out the effects from all other nodes [1]. This often results
in a more accurate estimate of network structure. Sparse inverse covariance estimation
(SICE) is a principled method for partial correlation estimation, which often produces
a stable estimation due to the L1-norm regularization. The result of SICE is an inverse
covariance matrix, and each of its off-diagonal entries indicates the partial correlation
between two nodes. For brevity, we call it “SICE matrix” throughout this paper.

SICE matrix can be used as a representation to classify brain connectivity. A direct
approach could be to vectorize each SICE matrix, as in [2]. However, when using it to
train a classifier to separate AD from normal controls (NC), the problem of “curse of
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dimensionality” will occur since the dimensionality of the vector (d × d1 for network
with d notes, for example, d = 90) is usually much larger than the number of training
subjects, which is often tens for each class. An alternative approach is to summarize a
d × d SICE matrix into lower dimensional graphical features such as hubs [3] or local
clustering coefficient (LCC) [4]. Nevertheless, these approaches have the risk of losing
useful information in the SICE matrices. This paper aims to address the high dimen-
sionality issue of SICE matrix by extracting compact representation for classification.

As an inverse covariance matrix, SICE matrix is symmetric positive definite (SPD).
This inherent property restricts SICE matrices to a lower-dimensional Riemannian man-
ifold rather than the full d× d dimensional Euclidean space. In the community of med-
ical image, the Riemannian manifold has been widely used for DTI analysis [5], shape
statistics [6] and functional-connectivity detection [7]. Moreover, considering the fact
that the brain connectivity patterns are generally similar across different subjects, the
SICE matrices representing brain connectivity should concentrate on an even smaller
subset of this manifold. In other words, the intrinsic degree of freedom of these SICE
matrices is much lower than the apparent dimensions of d× d. These two factors moti-
vate us to seek a compact representation that better reflects the underlying distribution
of the SICE matrices.

Principal component analysis (PCA), the commonly used unsupervised dimension-
ality reduction method, is our default option. However, a linear PCA is expected not to
work well for manifold-constrained SICE matrices. Recently, advances have been made
on measuring the similarity of SPD matrices. In particular, two SPD kernels, Stein ker-
nel [8] and Log-Euclidean kernel [9], have been proposed. Both of them implicitly
embed the Riemannian manifold of SPD matrices to a kernel-induced feature space F .
They offer better measurement than their counterparts in Euclidean space and require
less computation than Riemannian metric, as detailed in [8]. In this paper, we take ad-
vantage of the two kernels to conduct a kernel PCA. This brings forth two advantages:
i). It produces a compact representation that can mitigate the curse of dimensionality
and thus improves the generalization. ii). The extracted leading eigenvectors inF reveal
the intrinsic structure of the SICE matrices, and hence, assist brain network analysis.

Although our approach mentioned above could significantly improve the classifica-
tion accuracy, another problem arises: how to interpret the obtained results anatom-
ically? This is important in neuroimage analysis, as it could possibly help to reveal
the disease mechanisms behind. Since SPD-kernel PCA is implicitly carried out in F ,
estimating the pre-image of the objects, say, leading eigenvectors obtained by kernel
PCA in F , is very challenging. Existing pre-image methods [10,11] require explicit
distance mapping between the input space and F , which is intractable for SPD kernels.
To solve this problem, we further propose a novel pre-image method for the SPD ker-
nel and use it to gain an insight into SICE-based brain network analysis. To verify our
approach, we conduct extensive experimental study on synthetic data set and rs-fMRI
data from ADNI. The result well demonstrates the effectiveness and advantages of our
approach.

1 To be precise, the number of variables is d(d−1)
2

because the SICE matrix is symmetric and its
diagonal entries are not used.
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2 Constructing Brain Network Using SICE

Let {x1,x2, · · · ,xM} be a time series of length M , where xi is a d-dimensional vector,
corresponding to an observation of d brain nodes. Following the literature of SICE, xi

is assumed to follow a Gaussian distributionN (μ,Σ). Each off-diagonal entry of Σ−1

indicates the partial correlation between two nodes by eliminating the effect of all other
nodes. For example, Σ−1

ij will be zero if nodes i and j are independent of each other

when conditioned on the other nodes. In this sense, Σ−1
ij can be interpreted as the

existence and strength of the connectivity between nodes i and j. The estimation of
S = Σ−1 can be obtained by maximizing the penalized log-likelihood:

S∗ = argmax
S�0

log
(
det(S)

) − tr(CS)− λ||S||1 (1)

where C is the sample-based covariance; det(·), tr(·) and || · ||1 denote the determi-
nant, trace and the sum of the absolute values of the entries of a matrix. ||S||1 imposes
sparsity to achieve more reliable estimation by considering the fact that a brain region
often has limited direct connections with other brain regions in neurological activities.
The tradeoff between the degree of sparsity and the log-likelihood estimation of S is
controlled by the regularization parameter λ. The maximization problem in Eq. (1) can
be efficiently solved by the off-the-shelf package such as SLEP [12].

3 Proposed Method

3.1 SICE Representation Using SPD-Kernel Based PCA

The SICE method is applied to N subjects to obtain {S1,S2, · · · ,SN}, where Si ∈
Sym+

d is the obtained SICE matrix for the i-th subject. Sym+
d denotes the set of d× d

SPD matrices. As known, Sym+
d forms a Riemannian manifold in the Euclidean space

�
d×d [8]. To effectively measure the similarity of two SICE matrices, Riemannian met-

rics that respect the specific manifold structure should be used [9]. However, directly
using Riemannian metrics usually leads to unaffordable computational cost. SPD ker-
nels implicitly map the Riemannian manifold of SPD matrices to a high-dimensional
kernel-induced feature space F . They are computationally more efficient than Rieman-
nian metrics and also well maintain the measurement accuracy. We consider two re-
cently proposed SPD kernels: Stein kernel [8] and Log-Euclidean kernel [9] in our
study. Stein kernel measures the similarity between two SPD matrices Si and Sj as:

k(Si,Sj) = exp (−θ·S (Si,Sj)) (2)

where θ is a positive scalar within the range of { 12 , 2
2 ,

3
2 , · · · , (d−1)

2 } ∪ ( (d−1)
2 ,+∞) to

guarantee Stein kernel to be a Mercer kernel. S(Si,Sj) is S-Divergence defined as

S(Si,Sj) = log

(
det

(
Si + Sj

2

))
− 1

2
log

(
det(SiSj)

)
. (3)

Log-Euclidean kernel is another commonly used SPD kernel defined as: k(Si,Sj) =
exp

(−θ·d2(Si,Sj)
)

with d(Si,Sj) = || log(Si)− log(Sj)||F . The parameter θ ∈ �+

and || · ||F denotes the Frobenius matrix norm.
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Although having detailed differences for each individual, human brains do share
common connectivity patterns across different subjects. Therefore, SICE matrices, as
a representation of brain networks, shall have similar structure across subjects. This
makes them only occupy a small subset of the manifold. Taking advantage of this, we
aim to extract new representation to compactly represent SICE matrices. Linear PCA is
expected not to work well for these SICE matrices because it cannot consider the mani-
fold structure. By integrating SPD kernels into kernel PCA, we can effectively account
for the manifold structure of SICE matrices when performing dimension reduction.

Let {Si}Ni=1 be a training set, where Si ∈ Sym+
d . We define Φ(·) : Sym+

d �→ F and
it is induced by a SPD kernel denoted by k(·, ·). Without loss of generality, it is assumed
that Φ(Si) is centered, i.e.

∑N
i=1 Φ(Si) = 0. Then a N × N kernel matrix K can be

obtained by applying k(·, ·) to Si, · · · , SN , where Kij = 〈Φ(Si), Φ(Sj)〉 = k(Si,Sj).
In our study, k(·, ·) will be Stein kernel or Log-Euclidean kernel. Kernel PCA first
performs the eigen-decomposition:K = UΛU
. The i-th column ofU, denoted byui,
is the i-th eigenvector, and Λ = diag( λ1, λ2, · · · , λN ), where λi corresponds to the i-th
eigenvalue in a descending order. Let ΣΦ denote the covariance matrix computed by
{Φ(Si)}Ni=1 in F . The m-th eigenvector of ΣΦ can be expressed as vm = 1√

λm
Φum,

where Φ = [Φ(S1), Φ(S2), . . . , Φ(SN )]. Analogous to linear PCA, Φ(S) can then be
projected onto the top m eigenvectors to obtain a m-dimensional principal component
vector α = V


mΦ(S), where Vm = [v1,v2, · · · ,vm]. Note that the i-th component of
α is v


i Φ(S). With the kernel trick, it can be computed as v

i Φ(S) = λmu


mkS, where
kS = [k(S,S1), k(S,S2), . . . , k(S,SN )]
. Once α is obtained as a new representation
for each SICE matrix, a SVM or k-NN classifier can be trained on α with class labels.

3.2 Pre-image Estimation

As will be shown in the experimental study, the principal components α extracted by
the above SPD-kernel PCA achieve superior classification performance. Note that α is
fundamentally determined by the eigenvectors which capture the underlying structure
of SICE matrices in F . Therefore, the analysis of the leading eigenvectors is equally
important for the interpretation of classification result and the exploration of knowledge
about brain connectivity structure. However, the eigenvectors are extracted in F via an
implicit kernel mapping, and thus cannot be readily used for analysis in the input space
Sym+

d . To tackle this issue, we can try to recover the SPD matrix in the input space that
corresponds to a feature vector (be it a single eigenvector or their linear combinations)
in F , which is known as “pre-image” problem in the literature [10,11]. Unfortunately,
existing pre-image methods, such as those in [10,11], cannot be applied to SPD kernels,
because they require an explicit mapping between the distance in F and the distance in
the input space, which is unavailable for SPD kernels. In the following, we develop a
novel pre-image method for SPD kernels to address this issue.

Let Φm(S) denote the projection of Φ(S) into the subspace spanned by the leadingm
eigenvectors in F , that is, Φm(S) = Vmα. The aim is to find a pre-image Ŝ in Sym+

d

which best satisfies Φ(Ŝ) = Φm(S). Considering the fact that Riemannian manifold is
locally homeomorphic with Euclidean space, we model Ŝ by a convex combination of
its neighboring SICE matrices. Similar to [10], we assume that if Φ(Si) and Φ(Sj) is
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close in F , Si and Sj shall also be close in Sym+
d . With this assumption, the neighbors

of Ŝ can be obtained by finding the neighbors of Φm(S) in F .
Specifically, Ŝ is estimated as follows: i) Find a set of nearest neighbors Ω =

{Sj}Lj=1 for Ŝ from the training set {Si}Ni=1 by sorting the distance in Eq.(4),

d2(Φm(S), Φ(Si)) = ||Φm(S)− Φ(Si)||2
= (kS − 2kSi)MkS + k(Si,Si)

(4)

where M =
∑m

i=1
1
λi
uiu



i ; ii) Model Ŝ by a convex combination (to guarantee SPD of

Ŝ) of its neighbors
∑L

j=1 wjSj , where Sj ∈ Ω, wj ≥ 0, and
∑L

j=1 wj = 1. Defining
w = [w1, w2, · · · , wL]


, the optimal w can be obtained as:

w∗ = arg min
wj≥0;

∑
wj=1

d2
(
Φm(S), Φ

( ∑
Sj∈Ω

wjSj

))
(5)

Note that when estimating the pre-image of an eigenvector, we can simply set Φm(S)
as vm. In this case, Eq.(4) reduces to 1 + k(Si,Si) − 2

λm
u

mkSi . The pre-image of

vm reveals the underlying structure of the SICE matrices in F and could enable us to
analyze the building blocks of these SICE matrices in Sym+

d . Algorithm 1 outlines the
overall algorithm.

Algorithm 1. Pre-image estimation for Φm(S) in F
Input: A training set {Si}Ni=1, m, S;
Output: Pre-image Ŝ
1: Find L neighbors Ω = {Sj}Lj=1 for Ŝ by sorting d2(Φm(S), Φ(Si)), i = 1, · · · , N ;
2: Solving w∗ = argminwj≥0;

∑
wj=1; d

2(Φm(S), Φ(
∑

Sj∈Ω wjSj))

3: return Ŝ =
∑L

j=1 wjSj ;

4 Experimental Study

4.1 Data Preprocessing and Experimental Settings

Rs-fMRI data of 44 MCI and 38 NC subjects downloaded from ADNI website are
used in our study. The data are acquired on a 3 Tesla (Philips) scanner with TR/TE
set as 3000/30 ms and flip angle of 80◦. Each series has 140 volumes, and each volume
consists of 48 slices of image matrices with dimensions 64×64with voxel size of 3.31×
3.31 × 3.31 mm3. The preprocessing is carried out using SPM8 and DPARSFA [13].
The first 10 volumes of each series are discarded for signal equilibrium. Slice timing,
head motion correction and MNI space normalization are performed. Participants with
too much head motion are excluded. The normalized brain images are warped into AAL
atlas to obtain 90 ROIs as nodes. The ROI mean time series are extracted and then band-
pass filtered to obtain the most discriminative sub-band by following [4].

The functional connectivity (FC) networks of 82 participants are obtained by SICE
using SLEP [12], with sparse level set as λ = [0.1 : 0.1 : 0.9]. For comparison, con-
strained sparse linear regression (SLR) [4] is also used to learn FC networks with the
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same setting. FC networks constructed by SICE and SLR are called “SICE matrices”
and “SLR matrices” respectively. To make full use of the limited number of subjects,
leave-one-out procedure is used for training and test. All parameters, including λ, num-
ber of eigenvectors m, k of k-NN, θ in LogEuclidean kernel (LEK) or Stein kernel
(SK) and the regularization parameter of SVMs, are tuned by cross-validation on train-
ing set. Since SVMs are sensitive to parameter tuning when training samples are scarce,
we mainly use linear SVMs and LCC methods as baseline and focus on k-NN.

4.2 Experimental Result

The experiment has three parts: i) to evaluate classification methods using original SICE
or SLR matrices; ii) to evaluate linear PCA and the proposed SPD-kernel PCA methods
for classification; iii) to evaluate the effect of our proposed pre-image method. The
classification results of the three parts are summarized in Tables 1, 2, 3, respectively.

As shown in Table 1, when applied to original SICE or SLR matrices, SPD kernels
(LEK and SK) outperform linear kernel. Specifically, linear kernel produces poor clas-
sification performance (< 60%) on both vectorized SICE and SLR matrices. This is
largely due to the “curse of dimensionality” caused by their high dimensionality. When
LEK and SK are applied to SICE matrices, 61% and 63.4% are obtained, indicating that
applying SPD kernels are helpful2. The lower-dimensional graphical feature LCC from
original SICE or SLR matrices achieves 65.9%. Compared to LCC, we can see that
merely applying SPD kernels on SICE matrices for classification is not good enough.

Table 2 shows the result of extracting compact representation of SICE or SLR matri-
ces for classification. When linear PCA is applied to vectorized SICE or SLR matrices
to extract the top m principal components (PCs) as features, the classification accuracy
reaches 67% for both matrices, which is significantly better than all methods in Table 1.
This indicates the power of compact representation and also preliminarily justifies our
idea of exploring the lower intrinsic dimensions of the SICE matrices. By further tak-
ing the SPD property into account and using SPD-kernel PCA to extract the PCs, the
classification accuracy is boosted up to 68.3% for LEK and 72% for SK. This well
demonstrates that: i) the obtained compact representation can effectively improve the
generalization of the classifier in the case of limited training samples. ii) It is important
to consider the manifold property of SICE matrices to obtain more representative PCs
than those in linear PCA. Cross-referencing the two tables, SPD-kernel PCA achieves
the best classification performance, which is at least 14.7% higher than the linear kernel
method and 6% higher than LCC.

We perform the proposed pre-image method to estimate the pre-image of Φm(S)
on both synthetic and real rs-fMRI data sets. The synthetic data set allows the com-
parison of pre-image with the ground truth covariance matrix in Sym+

d , which is not
available for real rs-fMRI data. The synthetic data are generated as follows: i) 82 sim-
ilar covariance matrices {Σi}82i=1, Σi ∈ Sym+

90, are generated as ground truth (refer
to supplementary material for details ); ii) 82 sets of 130 vectors are randomly sampled
from the normal distributionN (0,Σi); iii) sample-based covariance matrix Σ̂i is esti-
mated by using these 130 vectors; iv) Apply the SICE method to Σ̂i to obtain {Si}82i=1

2 Noting that SLR matrices are not necessarily SPD, SPD kernels are therefore not applied.



Exploring Compact Representation of SICE Matrices 65

Table 1. Classification accuracy (in %) on directly using SICE/SLR matrices

Linear kernel LCC LEK SK

k-NN SVMs k-NN SVMs k-NN k-NN

SLR [4] 53.7 52.4 65.9 64.6 - -

SICE 57.3 57.3 65.9 60 61 63.4

Table 2. k-NN accuracy (in %) of PCA and kernel PCA methods on SICE/SLR matrices

Linear PCs LEK PCs (proposed) SK PCs (proposed)

SLR [4] 67.1 - -

SICE 67.1 68.3 72

Table 3. k-NN accuracy (in %) on original SICE/SLR matrices and pre-images of Φm(S)

SLR [4] SICE SK pre-image(proposed) LEK pre-image(proposed)

Linear kernel 53.7 57.3 67.1 68.3

LCC 65.9 65.9 67.1 67.1

and use it as the training set for Algorithm 1; v) Estimate the pre-image Ŝ of Φm(S)
(with m = 10) for a randomly selected SICE matrix S. We then calculate the KL diver-
gence between the ground truth distribution N (0,Σ) and N (0, Ŝ−1). It is interesting
to find that the KL divergence significantly reduces to 5.14, compared with 19.05 be-
tween N (0,Σ) and N (0,S−1) (See supplementary material for illustration). Table 3
shows the result on rs-fMRI data. The pre-images of Φm(Si), Si ∈ {Si}Ni=1 obtained
by either SK or LEK consistently outperform the original SICE or SLR matrices in
classifications with either linear kernel or LCC. These result may suggest that the pre-
images seem to be more reliable than the original SICE matrix when minor components
in F are removed, bringing some kind of denoising effect.

We also estimate the pre-image of each eigenvector in F for anatomical analysis.
The pre-images of top 4 eigenvectors, which pose the most significant variance of SICE
matrices in F , are visualized in Fig.1. We observe that: i) In the first three pre-images,
there are strong intra-lobe connections, especially in the occipital lobe; ii) In the 4th
pre-image, in addition to intra-lobe connections, there are strong inter-lobe connections
between superior parietal gyrus (28), inferior parietal (30), heschl gyrus (51), posterior
cingulate gyrus (63) and other ROIs. These pre-images characterize the variation be-
tween Φ-maps of SICE matrices and reveal the underlying structure of SICE matrices.
Further exploration of their clinical interpretation will be included in our future work.
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Pre−image of 1st principle component in feature space
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Fig. 1. Pre-images of top 4 eigenvectors extracted in the kernel-induced feature space F (Best
viewed on monitor or in supplementary material. Refer to the supplement for names of ROIs. )

5 Conclusion

Taking advantage of the SPD property of SICE matrices, we use SPD-kernel PCA to
extract principal components to obtain a compact representation for classification. The
classification results on rs-fMRI data of MCI and NC demonstrate the effectiveness
of our proposed method. We also propose a pre-image estimation algorithm, which
enables a new perspective to visualize and analyze the extracted principal components
in the input space. In this paper, we focus on unsupervised learning to explore compact
representation without class label information. Note that our framework can readily be
extended to supervised case, such as kernel linear discriminant analysis (KLDA), to
explore discriminative representation. This will be studied in our future work.
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Abstract. Cerebellar ataxia is a progressive neuro-degenerative disease
that has multiple genetic versions, each with a characteristic pattern
of anatomical degeneration that yields distinctive motor and cognitive
problems. Studying this pattern of degeneration can help with the di-
agnosis of disease subtypes, evaluation of disease stage, and treatment
planning. In this work, we propose a learning framework using MR image
data for discriminating a set of cerebellar ataxia types and predicting a
disease related functional score. We address the difficulty in analyzing
high-dimensional image data with limited training subjects by: 1) train-
ing weak classifiers/regressors on a set of image subdomains separately,
and combining the weak classifier/regressor outputs to make the deci-
sion; 2) perturbing the image subdomain to increase the training sam-
ples; 3) using a deep learning technique called the stacked auto-encoder
to develop highly representative feature vectors of the input data. Ex-
periments show that our approach can reliably classify between one of
four categories (healthy control and three types of ataxia), and predict
the functional staging score for ataxia.

1 Introduction

Cerebellar ataxia is a progressive neuro-degenerative disease that preferentially
affects the cerebellum. This relatively rare spectrum of diseases has multiple
genetic versions, each with a characteristic pattern of anatomical degenerations
that yields distinctive motor and cognitive problems. Despite the significant im-
pact on the lives of patients, the current standard of diagnosis, prognosis, and
treatment of ataxia is inadequate. The clinical evaluations are mostly indirect,
by use of clinical motor and cognitive testing. There are no accurate methods to
predict the character and timing of likely functional losses. MR image analyses
provide potentials to improve the evaluation of cerebellar neuro-degeneration by
revealing the structural changes of the cerebellum. Fig. 1 shows example coronal
sections of the cerebellum from healthy control (HC), spinocerebellar ataxia type
2 (SCA2), spinocerebellar ataxia type 6 (SCA6), and ataxia-telangiectasia (AT).
We can see that all of the three ataxia types show cerebellar atrophy compared
to the HC. However, SCA2 shows significant atrophy of the corpus medullare
(central white matter of the cerebellum and the deep cerebellar nuclei) while

G. Wu et al. (Eds.): MLMI 2014, LNCS 8679, pp. 68–76, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. Example coronal sections of the cerebellum from HC and three ataxia types

SCA6 shows more atrophy in the posterior-inferior regions of the cerebellum.
Besides discriminating degeneration patterns, it may be possible to quantita-
tively study the correlation between the amount of structural change and degree
of functional loss.

Various approaches have been proposed for studying the correlation between
the structural changes of the brain and the clinical measurements. According
to the type of features used to characterize the structural changes, they fall
into two categories: 1) using low-dimensional carefully designed features, e.g.,
volumetric measurement of manually delineated region of interests (ROIs) [1,2];
2) high dimensional features with the same order as the input images, e.g., brain
morphology changes represented by deformation field from a template [3,4]. The
latter group of approaches has gained popularity for: 1) less involvement of
manual design and delineation and 2) being able to capture the complex patterns
of structural changes. However, the high-dimensional input (up to millions) of
a typical medical image and the small sample size (often several hundred) that
can be acquired makes the problem challenging. Various proposed to encode the
high-dimensional input into a relatively small number of features that are both
representative of the data and discriminative for classification purposes [5,6].

In this work, we present a learning framework for MR image based classifica-
tion and regression of cerebellar ataxia degeneration patterns. We address the
problem of analyzing high-dimensional data with limited training samples with
a series of strategies. Instead of classification/regression directly on the whole
image volume, we train weak classifiers/regressors on a set of image subdomains
separately, and then learn a classifier/regressor to combine the weak decisions.
Based on the local smoothness properties of medical images, we perform a local
perturbation to generate more training samples. Stacked auto-encoder (SAE) [7],
a deep learning techniques, is used to develop highly representative feature vec-
tors of the input data. Experiments show that our approach can reliably classify
four categories, (HC and three types of ataxia), and predict the functional staging
score for ataxia (FSFA). This is the first machine learning approach with MR
image input for studying the correlation between cerebellar structural change
and degeneration patterns of cerebellar diseases.

2 Method

2.1 Pre-processing

Our data consists of T1-weighted MPRAGE images of 168 subjects, 61 HCs and
107 patients with various types of ataxia. 120 of the subjects completed a series of
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neurological tests that emphasizes mobility and were assigned a functional stag-
ing score for ataxia (FSFA), which provides a score from 0 to 6. The FSFA rating
scale is a subset of the Unified Ataxia Disorders Rating Scale (UADRS) [8]. A
higher FSFA value indicates more functional losses. The MR images were prepro-
cessed with Freesurfer software [9] to generate a masked and intensity-normalized
image that contains only the cerebellum. The masked images are registered to
a template, allowing only rigid and scale transformations. The images are then
cropped to the same bounding box to tightly contain the cerebellum, see Fig. 1.
We use I to denote the MR image after the above processing.

2.2 Method Outline

As shown in Fig. 2(b), we train K weak classifiers/regressors on K image subdo-
mains separately, and then learn a classifier/regressorC to combine the decisions
from weak classifiers. As shown in Fig. 2(a), each of the K image subdomains
is a square plane of the same size, but with different locations and orientations.
The image subdomains are chosen so that they are distributed evenly across the
whole volume. Here we use six coronal planes (three on each hemisphere), and
three sagittal planes, so K = 9. Let πk(u, v), u ∈ [0, 1], v ∈ [0, 1] be the paramet-
ric equation of the square plane at the kth image subdomain, k = 1, 2, . . . ,K.

Fig. 2. (a) Image subdomains. (b) Method Diagram.

Training Weak Classifier/Regressor Rk: Let I
i be the preprocessed image

for the ith training subject. A 2D image patch Si
k(u, v) = Ii(πk(u, v)) can be

generated by evaluating Ii on πk(u, v). S
i
k(u, v) is discretized to a 32× 32 image

and vectorized. We will use Si
k to represent the vector. In order to increase the

training samples, we perturb πk by changing its center and orientation by small
amounts, and produces a set of perturbed planes, see Fig. 3. Now each subject
can generate multiple image patches by evaluating Ii on the set of perturbed

planes, resulting in a set of image patches Ωi
k =

{
Si
k,m

}
,m = 1, 2, . . . ,M .

A stacked autoencoder (SAE) is trained on the image patches thus generated

from all subjects, i.e.
{
Si
k,m

}
,m = 1, 2, . . . ,M, i = 1, 2, . . . , N , and outputs a

low dimensional feature vector sik,mj
for each input image patch Si

k,mj
. Finally,
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the set of feature vectors
{
sik,m

}
, i = 1, 2, . . . , N,m = 1, 2, . . . ,M , is used to

train the weak classifier Rk. Let fk(·) be the outputs from Rk, which is a vector
specifying the class probabilities in the case of classification and the predicted
functional score in the case of regression.

Fig. 3. Image patches

Training Combined Classifier/Regressor C: To generate a training sample
for C, for each image subdomain k, an image patch Si

k,mj
is randomly selected

from Ωi
k. The selection is carried out independent among different image sub-

domains. Si
k,mj

is in turn input into SAE to generate a feature vector sik,mj
and

weak classifier/regressor Rk to generate an output fk(s
i
k,mj

). The feature vec-
tor for a training sample is formed by concatenating the outputs from all Rk,
i.e. [f1(S

i
1,mj

), f2(S
i
2,mj

), . . . , fK(Si
K,mj

)]. We generate multiple training samples
from each training subject by repeating the above procedure.

Testing Stage: Given the image of a test subject, multiple samples are gen-
erated in a similar way to the process of generating training samples for the
combined classifier/regressor C. Each training sample will be assigned by C the
class probabilities in the case of classification or a predicted score in the case of
regression. For classification, the final output is the class that has the maximum
average class probability output by C from the multiple samples. For regression,
the final score is the average score predicted by C from the multiple samples.

2.3 Dimensionality Reduction Based on Stacked Autoencoder

In this section, we will describe the stacked autoencoder (SAE) for dimension-
ality reduction in training Rk. A typical autoencoder proposed by Bengio et
al. [7] takes an input vector x ∈ [0, 1]d, and maps it to a hidden representation
y ∈ [0, 1]d through a mapping function y = fθ(x) = sigmoid(Wx+ b), param-
eterized by θ = {W,b}, the weight matrix and bias, respectively. This latent
representation in the hidden layer y is projected back to reconstruct the input
vector x. The reconstructed vector z ∈ [0, 1]d is in the input space, and can be
written as z = gθ′(y) = sigmoid(W′y+ c′) with θ′ =

{
W′, c′

}
. Often it is con-

strained in such a way that W′ = WT , and are referred to as tied weights. Each
training sample x(i) is mapped to a corresponding y(i) and has a corresponding
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reconstruction z(i). The parameter space is optimized to minimize the average
reconstruction error:

min
θ,θ′

1

n

n∑
i=1

L
(
x(i), z(i)

)
= min

θ,θ′

1

n

n∑
i=1

L
(
x(i), g′θ

(
fθ(x

(i))
))

, (1)

where

L(x, z) = −
d∑

k=1

[xk log zk + (1− xk) log(1− zk)] , (2)

is a loss function based on the reconstruction cross-entropy.
Autoencoders are used as building blocks to build the deep networks, called

stacked autoencoder (SAE), and trained in a greedy layer-wise way [7]. In our
work, we stacked two autoencoders to form the SAE, see Fig. 4. The input layer
has 1024 nodes, with each node corresponding to a pixel in the image patches.
The first and second hidden layer have 500 and 100 nodes respectively. After
the auto-encoders are constructed and trained, a classification/regression layer
is added on top of SAE, and the entire deep network is fine-tuned to find the
optimal parameter for the classification/regression purpose. Given a new image
patch S, a feature vector s can be computed by feed-forward propagation through
the SAE.

Fig. 4. Stacked auto-encoder

2.4 Classification and Regression

Random forests [10] are used for both the weak classifier/regressor Rk and
the combining classfier/regressor C. Random forests are an ensemble learning
method for classification and regression. It operates by constructing a set of de-
cision trees at training time and outputting the class that is the mode of the
classes output by individual trees. It also assigns the probability f t(x) that an
observation x belongs to a particular class t as the mean predicted class prob-
abilities of the trees in the forest. Random forest have been shown to achieve
robust and accurate classification while avoiding over-fitting.
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3 Experiments

3.1 Cerebellar Ataxia Classification

In this experiment, we consider the classification problem of classifying four
groups: HC, SCA2, SCA6 and AT. We applied a 10-fold cross validation on a
dataset of 80 subjects, formed by 31 HC subjects, 4 SCA2 subjects, 27 SCA6
subjects, and 18 AT subjects. The dataset is partitioned into 10 subsets in a
way that the proportion of the four groups in each subset are roughly the same.
For each trial, one subset is selected for testing and the other nine subsets are
used for training. The following classification methods are compared: 1) ROI
volume PCA: using the relative age-adjusted regional volumes as features [1],
PCA for dimensionality reduction and random forest for classification; 2) Image
PCA: using the whole MR image (masked and intensity normalized) as features,
PCA for dimensionality reduction and random forest for classification; 3) Log-
Jacobian PCA: using the log of the jacobian determinant computed from the
deformation field from an template as features [3], PCA for dimension redution
and random forest for classification; 4) Proposed method with PCA: the
proposed method using PCA for dimensionality reduction in Rk; 5) Proposed
method with SAE: the proposed method using SAE for dimensionality reduc-
tion in Rk.

As shown in Table 1 the proposed method produce the best performance, with
error rate being 13.75%. It outperforms the ROI volumetric analyses, indicating
that high-dimensional data can reveal structural information that is not captured
by the low-dimensional volumetric measurement. It also outperforms direct di-
mensionality reduction on the whole image or jacobian based features, which
verifies the effectiveness of the proposed learning framework, and the strategies
of dimensionality reduction and feature selection. Within the proposed learning
framework, the performance of using SAE for dimensionality reduction is better
than using PCA.

Fig. 5 shows the resulting confusion matrix of the proposed method with
SAE. There are two major sources of classification errors: 1) Classifying SCA2
as other classes, due to the limited SCA2 subjects in the dataset; 2) Classifying
ataxias as HC, because the cerebellum of people with a short disease duration
has mild cerebellar atrophy, and it’s difficult to distinguish from healthy sub-
jects. The learning framework can be further optimized to discover features that
distinguishes the subjects with mild disease from the healthy.

Table 1. Classification error rate

Method Error rate (%)

ROI volume PCA 16.25 ± 8.44

Image PCA 16.25 ± 11.86

Log-Jacobian PCA 22.50 ± 15.37

Proposed method with PCA 15.00 ± 11.49

Proposed method with SAE 13.75 ± 12.43
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True      Pred HC SCA2 SCA6 AT
HC 0.97 0.00 0.03 0.00

SCA2 0.25 0.00 0.50 0.25
SCA6 0.11 0.00 0.89 0.00

AT 0.06 0.00 0.11 0.83

Fig. 5. Average confusion matrix for the proposed method using SAE for dimension-
ality reduction

3.2 Functional Score Regression

In this experiment, we considered the regression of functional staging score for
ataxia (FSFA). We applied a 10-fold cross validation on a dataset of 120 subjects
which have FSFA evaluated. As in Sec. 3.1, five methods are compared. Table 2
shows that the proposed method with SAE outperforming the other methods in
root mean square error (RMSE), and is compatible with the lobule volume PCA
for Pearson’s correlation coefficient. Fig. 6 shows the predicted FSFA vs. true
FSFA for the test subjects from all 10 trials. Example coronal slices of subjects
are plotted against their corresponding points in the plot. The slices from the
bottom to the top of the plot show a trend from mild to severe atrophy, which
indicates that the proposed method is able to capture the correlation between the
degree of cerebellar atrophy and the functional loss. There are several sources
for prediction error. Some of the ataxia types, such as AT and SCA3, have
profounder sensory changes than other types, which could contribute to a worse
FSFA than would be predicted by cerebellar changes alone. Many other factors,
such as statue, weight, profession and the amount of exercise can affect their
functional performance. Also, as discussed in Section 3.1, there’s still room for
optimizing the learning framework to discover overlooked features that correlate
with FSFA.

Table 2. Root mean square error (RMSE) and Pearson correlation coefficient between
the measured functional score and predicted functional score

Method RMSE Pearson

Lobule volume PCA 1.187±0.217 0.693± 0.110

Image PCA 1.191±0.274 0.669± 0.153

Log-Jacobian PCA 1.250±0.181 0.635± 0.091

Proposed method with PCA 1.154±0.209 0.687± 0.144

Proposed method with SAE 1.148±0.211 0.685± 0.133
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Fig. 6. Predicted FSFA vs. true FSFA, using the proposed method. Typical MR images
of the cerebellum are shown.

4 Conclusion

We presented a learning framework for MR image based classification of cere-
bellar ataxia types and prediction of a disease related functional score. We ad-
dressed the difficulty in analyzing high-dimensional image data with limited
training subjects by: 1) training weak classifiers/regressors on a set of image
subdomains separately, and combining the weak classfier/regressor outputs to
make the decision; 2) perturbing the image subdomain to increase the training
samples; 3) using stacked auto-encoder (SAE), a deep learning technique, to de-
velop highly representative feature vectors of the input data. Experiments show
that our approach can reliably classify between one of four categories (HC and
three types of ataxia), and predict the functional staging score for ataxia.
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Abstract. Magnetic resonance (MR) images acquired at different field
strengths have different intensity appearance and thus cannot be eas-
ily combined into a single manifold space. A framework to learn a joint
low-dimensional representation of brain MR images, acquired either at
1.5 or 3 Tesla, is proposed. In this manifold subspace, knowledge can
be shared and transfered between the two distinct but related datasets.
The joint manifold subspace is built using an adaptation of Laplacian
eigenmaps (LE) from a data-driven region of interest (ROI). The ROI is
learned using sparse regression to perform simultaneous variable selection
at multiple levels of alignment to the MNI152 template. Additionally, a
stability selection re-sampling scheme is used to reduce sampling bias
while learning the ROI. Knowledge about the intrinsic embedding coor-
dinates of different instances, common to both feature spaces, is used to
constrain their alignment in the joint manifold. Alzheimer’s Disease (AD)
classification results obtained with the proposed approach are presented
using data from more than 1500 subjects from ADNI-1, ADNI-GO and
ADNI-2 datasets. Results calculated using the learned joint manifold in
general outperform those obtained in each independent manifold. Ac-
curacies calculated on ADNI-1 are comparable to other state-of-the-art
approaches. To our knowledge, classification accuracies have not been re-
ported before on the complete ADNI (-1, -GO and -2) cohort combined.

1 Introduction

Imaging biomarkers play an increasingly important role in the early diagnosis of
neurodegenerative diseases like Alzheimer’s disease (AD), such as assessing or de-
tecting patients with mild cognitive impairment (MCI). The problem of extract-
ing clinically useful biomarkers from MR images can be addressed using machine
learning techniques. The curse of dimensionality imposes great challenges on ana-
lyzing high-dimensional data, such as medical images. Learning low-dimensional
representations of high-dimensional data is thus a central problem of machine
learning. Magnetic resonance (MR) imaging is a non-invasive imaging modality
with widespread use for clinical disease assessment. As population-based studies
that use MR imaging are often conducted at multiple sites, images might be
acquired following different protocols, as well as different field strengths (FS).
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Increasing the FS from 1.5 to 3 Tesla (T) during MR image acquisition theoret-
ically doubles the signal-to-noise ratio [1]. However, MR images acquired with
different FS lie in different intensity feature spaces.

In [2] regional brain volumes and cortical thickness, derived from MR image
data, were used in locally linear embeddings (LLE) to learn a low-dimensional
space suitable for AD classification. In [3] 93 predefined brain regions of inter-
est (ROI) are used to learn a multi-modal manifold using the semi-supervised
manifold-regularized least squares method for AD prediction. In [4] several fea-
tures were combined to classify AD subjects. MR image intensities, extracted
from a ROI around the hippocampus, were used in Laplacian eigenmaps to find
a low-dimensional embedding and the were an AD classifiers was learned. A
common problem with using predefined ROI, is that neurodegeneration pat-
terns may not necessarily follow standard definitions of anatomical or functional
regions. Hence, limiting the analysis to predefined regions could potentially re-
duce the power of the biomarker. In [5] this is addressed by using data-driven
ROI, which were shown to outperform predefined ROI. However, a common im-
pediment when processing heterogeneous data, e.g. data acquired with different
acquisition parameters, is that high-dimensional features should be compara-
ble to allow dimensionality reduction. This usually hampers the joint analysis of
multiple cohorts in a common space, where learning using larger, pooled datasets
could be beneficial. A popular example of two cohorts residing in different spaces
is the ADNI-1 (1.5T) and ADNI-GO/2 (3T) cohorts. It would be desirable to
combine image intensity features, independent of field strength, in a single low-
dimensional space to transfer complementary information between datasets.

Recently, manifold alignment has been put forward as a dataset alignment
technique in computer vision [6,7] and medical image analysis [8]. In the follow-
ing, a framework is proposed that employs manifold alignment to learn a joint
low-dimensional manifold based on 1.5 and 3T MR image intensity features. This
embedding allows to share and transfer information between datasets and across
field strengths. The joint manifold is learned on a ROI obtained through a novel
approach, using sparse regression and multilevel variable selection. Conducted
experiments confirmed that our method enables the joint analysis of all publicly
available ADNI datasets without sacrificing performance on individual cohorts.

2 Methods

The main objective of the proposed framework is to combine different but re-
lated subspaces. Two images acquired at 1.5T and 3T lie in different spaces even
if both images have been acquired from the same subject. In the following, it is
assumed that images residing in different feature subspaces still follow the same
general manifold structure. These different, yet similar, spaces are then com-
bined through manifold alignment [7]. Sparse regression is employed to learn a
multilevel 4D ROI in which a distance measure allows to adequately capture the
variability associated with the desired variable. In this work, the interest lies in
better observing pathological differences in AD subjects. Exploiting correspond-
ing instances from both spaces (1.5/3T) for manifold alignment, a joint manifold
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Fig. 1. Overview of the proposed method

is learned based on the learned ROIs. In particular, corresponding instances are
forced to be neighbors in the joint manifold, while the local geometry of each in-
put manifold is preserved (see Sec. 2.1). Prior to manifold alignment, multilevel
variable selection and manifold learning are performed. An overview diagram of
the method’s main steps is shown in Fig. 1.

Multilevel Relevant Variable Selection. The goal of variable selection is to
reduce the amount of input variables to those that are relevant for a specific task.
Sparse regression techniques model the relationship between a dependent vari-
able and a subset of one or more independent variables. Elastic net [9] performs
automatic variable selection, encouraging the grouping of correlated variables.
For a special case, it can be shown [9] that the elastic net has for each predictor
variable a closed-form solution. This problem can be solved for a number of ran-
dom instance subsets to introduce robustness against sampling errors (stability
selection [10]). From the previous step, a probabilistic mask that indicates the
likelihood of a variable being selected is obtained. Thresholding the probabilities
at τ then yields a binary ROI. In this work, the independent variables are the
MR image intensities, while the mini mental state examination (MMSE) score
acts as dependent variable. In contrast to commonly used approaches, each of
the N subjects (instances) has associated R images that have been created by
aligning the original scan to the MNI152 template at R different levels. As dis-
ease specific imaging characteristics might manifest at different alignment levels,
this allows the selection of the most descriptive variables (voxels) in an unsuper-
vised formulation. A matrix X is built, where each column represents a spatial
location in MNI space at a certain alignment level. Each row in matrix X repre-
sents a subject n ∈ N and is formed by concatenating vectorized versions of its
MR images at multiple levels r ∈ R. The elastic net then selects a subset of D
variables from X, that correspond to column indices of X. Finally, this yields a
4D mask, where the first three dimensions are spatial coordinates in MNI space
and the fourth is the alignment level of the image to the template.
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Manifold Learning. Manifold learning refers to a set of machine learning tech-
niques that aim at finding a low-dimensional representation of high-dimensional
data while adequately representing the intrinsic geometry of the data. Given
a set of N vectors of length D that represent the most relevant voxels V =
{v1,v2, ...,vN} ∈ R

D×N from a set of R images at different levels of alignment,
the aim is to learn the underlying manifold in R

d (d� D) that best represents
the population V. Here vk = {v1, v2, ..., vD} are the D most relevant voxels from
subject’s k set of R images extracted according to the learned ROI. Laplacian
eigenmaps (LE) [11] can then be used to derive a low-dimensional representa-
tion of data, f : V→ Y ∈ R

d, yi = f (vi), while preserving the local geometric
properties of the manifold. Local geometry is determined via a similarity graph,
using either correlation or the sum of squared differences (SSD). LE aims to
place points yi and yj close together in the low-dimensional space if vi and vj

are close in the original space. This is achieved by minimizing the classical LE
cost function φ(Y) =

∑
i,j ‖yi−yj‖2wi,j under the constraint y

TMy = 1, where
wi,j is an element of the weight matrix W and M is a degree matrix.

2.1 Manifold Alignment: Shared and Transfered Knowledge

The key concept behind manifold alignment is the mapping of different feature
spaces to a new latent space, simultaneously matching corresponding instances
and preserving local geometry of each input space [6]. The new latent space is
an augmented space where knowledge from all manifolds is shared and trans-
fered. In this work it is proposed to employ this augmented low-dimensional
manifold to map data instances from all feature spaces where the additional
information can be leveraged (e.g. in machine learning tasks). Semi-supervised
manifold alignment [7] aims to align the underlying manifolds of input datasets
V1, ...,Vm, where m is the number of independent manifolds. It exploits the ad-
ditional knowledge about the intrinsic embedding coordinates of some instances,
common to one or more feature spaces, to constrain the alignment. This new
latent space (of aligned manifolds) is found by optimizing over the joint graph

Fig. 2. Construction of the joint weight graph for 1.5T and 3T images. Intra-feature
space weights W1,1 and W2,2, corresponding to the 1.5T and 3T feature spaces, are
assigned based on correlation or SSD. Inter-feature space weights W1,2 = W T

2,1 are
assigned only to instances common to the 1.5T and 3T spaces.
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Laplacian matrix L, which simultaneously models all input manifolds. Similar-
ity calculations, and hence a neighborhood graph, between instances that be-
long to different feature spaces cannot be validly calculated using the instances’
features. Rather, the joint graph is constructed by concatenating their corre-
sponding weight graphs Wa,b and connecting common instances (i.e. subjects
acquired at both field strengths) across manifolds. These additional connections
force common instances, belonging to different feature spaces, to be neighbors
in the joint manifold. Fig. 2 shows an example of the construction of the joint
weight matrix for the 1.5T and 3T MR image intensities manifold alignment
problem. Then, the classical LE equation can be re-written as:

φ(Y1, ...,Ym) = α

m∑
a=1

m∑
b	=a

Na∑
i=1

Nb∑
j=1

‖yi
a − yj

b‖2wi,j
a,b

+ (1− α)

m∑
a=1

N∑
i=1

N∑
j=1

‖yi
a − yj

a‖2wi,j
a,a

(1)

where wi,j
a,b refers to the (i, j)th element of the Na x Nb weight matrix Wa,b that

connects instances in manifolds a and b. Accordingly, wi,j
a,a is an element ofWa,a.

Na and Nb are the number of elements in each dataset. The parameter α trades
off the first and second terms of Eq. (1), placing corresponding instances together
and preserving the local geometry of each individual manifold, respectively.

3 Data and Results

Data used in this article was obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.ucla.edu). To date, ADNI in its three
studies (ADNI-1, -GO and -2) has recruited over 1500 adults, aged between 55
and 90 years, to participate in the study. Participant subjects consist of cognitive
normal (CN), having significant memory concerns (SMC), early MCI (eMCI) or
MCI, and with early AD. In this work, a subset of 292 (86 AD, 149 MCI and
57 CN) ADNI-1 subjects with baseline 1.5T MR images and that did not have
1.5T MR images available at 12 or 24 month follow-up, were used for training the
multilevel variable selection scheme. The remaining 1.5T and 3T ADNI-1, -GO
and -2 baseline images (as of November 2013) were used to evaluate the proposed
framework. The number of subjects included in this work is summarized in Tab.
3. In total 1701 images were used, with 1591 unique subjects, from which 292
were used for multilevel variable selection and 1299 for evaluation. Note that a
further 63 subjects were discarded, 37 due to classification ambiguities (disease
reversion) and 25 due to the brain extraction failing.

All images were brain extracted using “pincram” (pyramidal intra-cranial
masking), which is similar to [12]. Intensity normalization was performed using
a piecewise linear function [13] that aligned the images’ histogram percentiles to
the average percentile model from all images. Also, all images were registered to
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the MNI152 template. From each subject, five different images were generated
using different detail levels of deformation to the template: affine, 20mm, 10mm,
5mm and 2.5mm. All images, except the affine case, were generated using free-
form-deformations [14] with the mentioned varying control point spacings.

Using sparse regression, as described in Sec. 2, a probabilistic 4D variable rel-
evance mask was obtained that relates to voxel relevance in an MMSE regression
model [5]. Higher probability voxels tended to cluster around the hippocampus,
which is a well-known marker of AD. Thresholding the probability mask obtained
from the described special case of the elastic net at τ yields a binary 4D ROI.
An optimal threshold τ = 0.2 was found using classification results of the 292
images used to learn the mask. In order to account for disease manifestation in
left- and right-handed populations, selected variables were mirrored between the
left and right brain hemisphere. 102, 194, 322, 200 and 42 voxels were selected
from the linear, 20, 10, 5 and 2.5 mm deformation levels respectively.

Voxels within the learned ROI were extracted from the unseen images at their
corresponding alignment levels and used to learn a low-dimensional representa-
tion using classical LE. As similarity metric, both correlation and SSD between
the subjects ROIs were used and compared. Low-dimensional space coordinates,
for each of the ADNI datasets individually, were learned and used for classifica-
tion using a linear SVM with a soft-margin constraint C = 1e−6. The choice of
parameter C was found to have little effect on classification accuracies in [5]. LE
parameters were empirically set based on previous experience: k = 10 nearest
neighbors for the similarity graph, similar results are obtained for values between
10-25; σ = 1 for heat kernel, if SSD is used. Manifold dimensionality was ex-
plored in a range from 1-100, the best values are reported. Tab. 2 shows results
of learning a manifold from the extracted ROI on each of the ADNI datasets
separately (called: individual manifold).

In order to find a 1.5T and 3T joint low-dimensional embedding, connections
between common instances are added (see Fig. 2). The trade-off between placing
common instances close and preserving the local geometry of each manifold is
controlled by the weight parameter α from Eq. (1). As most classification tasks
exhibited robustness against parameter α in the 0.9−0.99 range, we set α = 0.95.

Table 1. Subject groups used for the training and evaluation of the proposed frame-
work. Note that the subset of subjects in ADNI-1 3T are also included in ADNI-1 1.5T
and that the subset ADNI-1 1.5T (VS) was only used for multilevel variable selection.
MCI subjects where split into those that progressed to AD (pMCI) and and those that
remained stable (sMCI), within a 48 month period.

CN SMC eMCI sMCI pMCI AD Total

ADNI-1 1.5T 170 – – 113 114 102 499
ADNI-1 1.5T (VS) 57 – – 103 46 86 292
ADNI-1 3T 40 – – 23 24 23 110
ADNI-GO 3T – – 126 – – – 126
ADNI-2 3T 176 73 146 116 39 124 674

Total 443 73 272 355 223 335 1701
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Table 2. Classification accuracy (sensitivity/specificity) results after averaging a 100
run leave 10% out cross-validation. Note that since all ADNI-GO baseline subjects
are eMCI, classification was done against ADNI-2 CN subjects, which should have
the same imaging protocol. C - correlation similarity metric. Best results in terms of
accuracy in bold letters. Statistical significance (p<0.05) from a paired t-test between
the proposed aligned manifold and other results is indicated by *.

Study Alignment Dist sMCI - pMCI AD - CN eMCI - CN SMC - CN

ALL

No manifold C 70(73/68) 89(87/91)* 63(55/72)* 53(52/54)*
alignment SSD 70(66/74)* 87(79/94) 63(57/70)* 56(47/67)*
Manifold C 71(76/67) 87(82/92) 67(61/73) 58(74/43)
alignment SSD 73(73/73) 87(81/92) 66(58/73) 56(67/460)

ADNI-1
Individual C 68(73/69)* 87(88/87) – –
manifold SSD 69(69/70)* 88(87/90) – –

ADNI-GO
Individual C – – 62(57/68)* –
manifold SSD – – 63(46/80)* –

ADNI-2
Individual C 71(73/69) 87(80/94) 62(58/67)* 53(41/65)*
manifold SSD 71(69/74)* 87(79/94) 61(57/66)* 51(42/60)*

Tab. 2 shows classification results on the learned joint manifold (called: manifold
alignment), with the remaining LE parameters again set to σ = 1 and k = 10.
Additionally, one could treat instances originating from different feature spaces,
as equal, calculating similarities between them, building a single neighborhood
graph and directly solving classical LE without any manifold alignment. Results
on this experiment (called: no manifold alignment) are also shown in Tab. 2.

4 Discussion and Future Work

A framework that learns a joint low-dimensional manifold from two distinct,
yet related, feature spaces has been proposed. In this joint manifold knowl-
edge from both spaces is synthesized. In the experiments, the distinct feature
spaces consisted of multilevel relevant intensity features extracted from images
acquired at different magnetic field strengths. Our analysis confirms that 1.5
and 3T MR brain data shares a significant amount of information, while resid-
ing in different feature spaces. By learning their joint manifold representation,
we have shown that the additional information can be leveraged in classifica-
tion/prediction tasks. To our knowledge this is the first time intensity features
derived from 1.5T and 3T images from ADNI-1, -GO and -2 have been combined
into a single manifold for classification purposes of the whole dataset. Addition-
ally, a multilevel variable selection scheme was presented and independent clas-
sification results on ADNI-1, -GO and -2 are shown. Results are comparable to
previous studies reported in the literature based on ADNI-1. Our experiments in-
dicate that the proposed method is robust towards the introduced parameter α,
for α > 0.9. This is related to the fact that there are few common instances, and
hence only a small number of connections between the 1.5T and 3T manifolds
can be made. A high valued α compensates this by placing more weight on the
first term of Eq. (1). One potential limitation relates to the intrinsic geometry
of the different individual feature spaces. Assuming that each feature space has
its own distinct and optimal low-dimensional embedding, difficulties might arise
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if these embeddings are significantly different. In this scenario the joint embed-
ding might compromise the individual manifold structures and thus potentially
be less descriptive than either one independently. It could be desirable to ex-
tend the proposed approach to a more generalizable formulation without the
explicit requirement of one-to-one correspondences. Then connections between
feature spaces could be modeled using a surrogate variable, such as any type of
meta-data or volumetric information extracted from the anatomies under study.
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Abstract. Prostate cancer diagnosis involves the highly subjective and
time-consuming Gleason grading process. This paper proposes the use
of Max-Margin Conditional Random Fields (CRFs) towards the aim of
creating an automatic computer-aided diagnosis system. Unlike previous
methods, this approach enables us to fuse information from multiple clas-
sifiers while leveraging CRFs to model spatial dependencies. We perform
grading on superpixels which reduce redundancy and the size of data.
Probabilistic outputs from independent classifiers are passed as input to
a Max-Margin CRF, which then performs structured prediction on the
biopsy core, segmenting the image into regions of benign tissue, Gleason
grade 3 adenocarcinoma and Gleason grade 4 adenocarcinoma. The sys-
tem achieves an accuracy of 83.0% with accuracies of 83.6%, 86.9% and
77.1% reported for benign, grade 3 and grade 4 classes respectively.

1 Introduction

Gleason grading prostate tumour biopsies is a vital part of the prostate can-
cer diagnostic process. A histopathologist performing Gleason grading first mi-
croscopically examines a hematoxylin and eosin (H&E) stained biopsy core at
low magnification to indentify regions of interest (ROIs) before inspecting each
ROI at a higher magnification to assign it a Gleason grade. Despite being the
predominant prostate tumour grading system for nearly 50 years, the Gleason
system has its shortcomings. For instance, the method is very subjective with a
high degree of intra- and inter-observer variability[9]. Gleason grading is also an
incredibly time-consuming process. Considering approximately 60-70% of biop-
sies are benign, this suggests most of a histopathologist’s time is spent sifting
through benign tissue[3]. Consequently, there is a need for computer-aided diag-
nosis (CAD) to improve the accuracy and efficiency of the grading process.

A significant body of research has been dedicated towards this task. Monaco
et al.[8] use a probabilistic Markov Random Field (MRF) prior called a Prob-
abilistic Pairwise Markov Model (PPMM) in a gland segmentation framework
to enforce spatial dependencies during classification. Doyle et al.[3] and Gore-
lick et al.[5] both employ AdaBoost to learn meta-classifiers that aggregate
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Table 1. Overview of the proposed method in comparison to closely related work

Method Classification
Algorithm

Meta-
classification

Spatial De-
pendencies

Task

Doyle
et al.[3]

AdaBoost Yes No Segment an image into benign
and cancerous regions

Gorelick
et al.[5]

AdaBoost Yes No Grade images of manually identi-
fied ROIs

Monaco
et al.[8]

PPMM No Yes Segment and classify glands as
benign or cancerous

Proposed
method

Max-Margin
CRF

Yes Yes Segment an image into benign,
Gleason 3 and Gleason 4 regions

information from multiple weak ‘i.i.d. classifiers’1 to produce a strong classi-
fier. [3] uses AdaBoost in a multi-resolution pixel-wise framework to segment
an image into benign and cancerous regions. On the other hand, [5] uses Ad-
aBoost to (i) classify superpixels as one of nine tissue components and (ii) grade
an image based on the distribution of tissue components. Besides these, most
studies focus on feature selection, using i.i.d. classifiers such as Support Vector
Machines (SVMs) and k-Nearest Neighbours (k-NN) with some combination of
colour, texture and morphometric features to segment or classify images[14,11].

This paper presents a method that segments H&E stained biopsy cores into
regions of benign tissue, Gleason grade 3 adenocarcinoma and Gleason grade
4 adenocarcinoma. Table 1 compares the proposed method to the closest in
previous literature. We use Max-Margin Conditional Random Fields (CRFs) to
perform multi-class meta-classification on the outputs of two multi-class i.i.d.
classifiers while incorporating spatial dependencies into the process. Like [3] we
perform classification on every region in an image (i.e. not just on segmented
glands), enabling the algorithm to function even in highly cancerous regions
which often have poorly defined glands[4]. However, we use superpixels to over-
segment an image prior to performing classification. This significantly reduces
redundancy and the size of data.

2 Proposed Method

Our solution uses machine learning and computer vision algorithms to segment
and grade H&E stained biopsy cores. The method employs Simple Linear Iter-
ative Clustering (SLIC)[1] to over-segment an image into superpixels. We then
extract colour and texture features from each superpixel to perform classification
in two stages. In the first stage, we use a k-NN and an SVM to obtain individ-
ual class probabilities for each superpixel. A Max-Margin CRF then acts as a
meta-classifier, combining information from the first stage classifiers while incor-

1 We define an ‘i.i.d. classifier’ as a classifier that assumes data points are independent
and identically distributed (the i.i.d. assumption).
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Fig. 1. Overview of the proposed method

porating spatial dependencies into the prediction process. The following sections
describe and motivate the selection of each individual algorithm in more detail.

2.1 Pre-Processing

The computational complexity of performing inference on a general CRF in-
creases with the number of vertices and edges in the graph. Our method groups
perceptually similar pixels to form superpixels. This reduces the number of ver-
tices in the CRF, thus reducing the computational complexity of inference. We
use SLIC[1] to do this as the algorithm is simple, fast and memory efficient. Given
a superpixel size S, SLIC clusters an image I in the colour and spatial domains

using an algorithm similar to k-means clustering to form k = |I|
S2 superpixels.

Next, we extract colour and texture features from each superpixel. A 17-bin
histogram of RGB pixel intensities and the mean RGB pixel intensity represent
the colour of a superpixel while histograms of Local Binary Patterns (LBP)[12]
describe its texture. We use the ‘uniform’ variant of LBP as it is both greyscale-
and rotation-invariant. For each pixel c, we construct a P -bit binary number
with the indicator function I[gi ≥ gc], i = 1, . . . , P where gc is the greyscale
pixel intensity of c and gi are the greyscale pixel intensities of P points at a
radius R around c. The LBP label for uniform patterns (i.e. there are, at most,
two 0/1 transitions in the P -bit number) is the number of 1s in the P -bit number
while the label for non-uniform patterns is P+1. We then construct a (P+2)-bin
histogram of LBP labels to obtain a texture descriptor for each superpixel.

2.2 Classification

At this stage it is possible that some superpixels may not contain enough useful
information to distinguish between the three classes. A histopathologist looking
at the same region would consider the information in surrounding regions to
make a decision. Structured prediction offers the ability to do this by incorpo-
rating spatial dependencies between superpixels into the prediction process. We
perform structured prediction with a function f : X → Y from the input domain
X to a structured output domain Y where

fw(X) = argmax
Y ∈Y

gw(X,Y ), X ∈ X (1)

for some cost function gw(X,Y ) that describes the compatibility of structured
output Y with input X as parameterised by w. In our case, the input X is
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the probabilistic output from our first stage classifiers, a CRF G encodes the
structure of the output and we use max-margin learning to find the optimal w.

First Stage Classifiers. The first stage classifiers are a k-NN and an SVM that
output class probabilities for each superpixel. The k-NN calculates class prob-
abilities for each data point as the proportion of the k closest points belonging
to each class. The SVM uses a modified version of Platt scaling[6] to provide
class probabilities given the decision function outputs of a non-linear SVM. The
output from this stage is a 6× 1 vector of class probabilities for each superpixel.

Conditional Random Fields. The graph G = (V , E) is a pairwise CRF that
models the conditional probability of a structured output Y as a combination of
unary and pairwise terms. We define G such that each vertex v ∈ V represents
a superpixel and edges eu,v ∈ E connect two adjacent superpixels u, v ∈ V . The
energy or cost of a given labelling Y ∈ Y is then expressed as

E(Y ) =
∑
v∈V

U(v) +
∑

eu,v∈E
P (u, v) (2)

where U(v) is the unary term and P (u, v) is the pairwise term. U(v) encodes
the compatibility of a given labelling yv ∈ Y with the inputs xv ∈ X at vertex
v. To use the CRF as a meta-classifier, we model U(v) as a linear combination
of the class probabilities from the first stage classifiers xv. This is written as

U(v) = 〈wU
yv
,xv〉 (3)

where wU
yv

are the unary parameters for the class yv learnt during training.
P (u, v) represents the compatibility of the labelling yu and yv for the adjacent
vertices u and v. This is learnt directly during training and is written as

P (u, v) = wP
yu,yv

(4)

where wP
yu,yv

is the symmetric pairwise parameter for the classes yu and yv learnt
during training. Performing ‘prediction’ on the CRF amounts to performing in-
ference on the graph G to find the optimal solution Y � that minimises the energy
function E. The general pairwise CRF is usually a loopy graph which renders
exact inference intractable. However, good approximations of the solution can
be obtained using a variety of methods. Here we use Alternating Directions
Dual Composition (AD3)[7] as it gives us better performance compared to other
algorithms such as graph cuts.

Max-Margin Learning. Our method uses the Structured SVM (SSVM) for-
mulation by Tsochantaridis et al.[15] to do max-margin learning. This formula-
tion is particularly appealing as it enables the use of arbitrary loss functions. In
this case we have chosen to use per-superpixel 0-1 loss, expressed as

Δ(Ŷ , fw(X)) =
∑
v∈V

I[Ŷv �= fw(X)v] (5)
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where I[a] is an indicator function and Ŷ the ground truth. The SSVM minimises
the following empirical risk function to learn the optimal parameters w�:

w� = argmin
w

1

2
‖w‖2+ C

|N |
∑
n∈N

Δ(Ŷ n, fw(Xn))−gw(Xn, Ŷ n)+gw(Xn, fw(Xn))

(6)
Here N is the set of ground truth images.

2.3 Experimental Setup

Our experimental setup uses open source implementations of the above methods
[1,2,10,13,16] to make it easily reproducible. The data set contains images of
H&E stained biopsy cores collected from 122 patients. These were graded by
two experienced histopathologists, each with 10 years experience in genitourinary
pathology. We select ten biopsy cores for each of the Gleason scores 3+3, 3+4,
4+3 and 4+4, ensuring each core contains a continuous Gleason pattern at least
0.4mm in length. From these, we extract 146 images of tissue segments at 20×
magnification: 90 for training and 56 for testing. We create ground truth by
labelling the superpixels in these images. Where there are two or more classes
of pixels within a superpixel, we select the higher Gleason grade as the label.

3 Results and Discussion

The Jaccard Index (JI) quantifies the overall performance of the method. We
define it as the fraction of superpixels that are correctly labelled, expressed as

JI =
|L̂ ∩ L|
|L̂ ∪ L| (7)

where L̂ is the set of predicted superpixel labels and L is the corresponding
ground truth. We compare the performance of i.i.d. classifiers (Table 2) against
our method (Figure 2), each using different combinations of normalised input
features (i.e. colour/texture features only or both colour and texture features).

Table 2 shows i.i.d. classifiers struggle to perform classification at superpixel
level. The two best i.i.d. classifiers are the SVM and k-NN that use both sets
of features, achieving JIs of 0.604 and 0.583 respectively. In contrast, the worst
variant of our method achieves a JI of 0.666. Figure 3 compares sample output
from an SVM against our method, revealing its advantages over i.i.d. classifica-
tion. The output of our method is a lot smoother and more consistent with the
ground truth compared to the SVM. Figure 2 shows the JI of our method as we
vary the input features to the first stage classifiers. When the first stage k-NN
uses both sets of features, the difference in JI as we vary the features of the
SVM is negligible. Similarly, there is an insignificant difference in JI when the
SVM uses either texture or both sets of features. This tells us that using the best
i.i.d. classifiers does not necessarily lead to better overall performance. Instead,
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Table 2. Jaccard Index for i.i.d. classifiers with different combinations of features

Classifier SVM SVM SVM k-NN k-NN k-NN

Input Features colour texture both colour texture both

Jaccard Index 0.562 0.545 0.604 0.547 0.530 0.583

k−NN (both) k−NN (colour) k−NN (texture)
0.5

0.6

0.7

0.8

0.9

 

 

0.747 0.759 0.751
0.775

0.666

0.767

0.714

0.830

0.723

SVM (both)

SVM (colour)

SVM (texture)

Fig. 2. Comparison of Jaccard Indices for Max-Margin CRFs using different combina-
tions of input features to the first stage classifiers.

(a) Ground truth

(b) Output from a SVM (both) (c) Output from our method

Fig. 3. This visualisation demonstrates the advantages of structured prediction. The
output of the Max-Margin CRF is clearly a lot smoother and closer to the ground truth
data than that of the SVM.
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Table 3. Confusion matrix for the max-
margin CRF using SVM (colour) and k-NN
(texture) as input.

Predicted
Benign Grade 3 Grade 4 Total

A
ct
u
a
l Benign 1988 301 90 2379

Grade 3 252 2875 182 3309
Grade 4 194 370 1902 2466
Total 2434 3546 2174 8154

Table 4. Confusion matrix to evaluate
the performance of the best classifier
on the separation between benign and
cancerous regions.

Predicted
Cancerous Benign Total

A
ct
u
a
l Cancerous 5329 446 5775

Benign 391 1988 2379
Total 5720 2434 8154

the method performs best when we use weaker first stage classifiers. The results
also indicate that texture features are weighted higher than colour features in
an SVM trained on both sets of features. Consequently, dropping colour features
and training the SVM with texture features only has little effect on performance.
We also notice the method performs best when each of the first stage classifiers
use different features. We suggest that this is because each classifier provides the
Max-Margin CRF with a different insight into the data.

The confusion matrix of the best performing classifier for the three-class grad-
ing problem (Table 3) indicates good grading accuracy for each individual class.
The method performs worst on Gleason grade 4 regions, classifying these cor-
rectly only 77.1% of the time. These regions were most often misclassified as
Gleason grade 3 (15% of the time). While not ideal, this balance of classification
error is preferable to the converse. This is more evident when we consider the
confusion matrix for the separation between benign and cancerous regions (Table
4). The results indicate that the proposed method has a sensitivity of 92.3% and
a specificity of 83.6% for separation between benign and cancerous regions. This
balance of misclassification is desirable as we would rather overdiagnose than
underdiagnose in a CAD system. Otherwise the system could miss cancerous
regions, resulting in the disease being completely undiagnosed in some patients.

4 Conclusion and Future Work

This paper presented a novel approach to grading prostate tumour biopsies
for CAD. Max-Margin CRFs were used both as a meta-algorithm and a struc-
tured prediction mechanism to provide an accurate segmentation and labelling
of prostate tissue images. In this case only colour and texture features were
extracted from each superpixel. Using more first stage classifiers on different
features (e.g. morphometric features like nuclei density) could improve the sys-
tem. Specifically, we aim to capture characteristics to distinguish grade 4 from
grade 3 tissue. Another weakness to address in future work is the inability to tune
the trade-off between sensitivity and specificity for separation between benign
and cancerous regions. We also intend to perform pixel-wise evaluation using a
larger data set to enable more accurate quantification of performance.



92 J.G. Jacobs, E. Panagiotaki, and D.C. Alexander

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC Super-
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Abstract. Segmenting the prostate from CT images is a critical step in the radio-
therapy planning for prostate cancer. The segmentation accuracy could largely af-
fect the efficacy of radiation treatment. However, due to the touching boundaries
with the bladder and the rectum, the prostate boundary is often ambiguous and
hard to recognize, which leads to inconsistent manual delineations across differ-
ent clinicians. In this paper, we propose a learning-based approach for bound-
ary detection and deformable segmentation of the prostate. Our proposed method
aims to learn a boundary distance transform, which maps an intensity image into a
boundary distance map. To enforce the spatial consistency on the learned distance
transform, we combine our approach with the auto-context model for iteratively
refining the estimated distance map. After the refinement, the prostate boundaries
can be readily detected by finding the valley in the distance map. In addition, the
estimated distance map can also be used as a new external force for guiding the
deformable segmentation. Specifically, to automatically segment the prostate, we
integrate the estimated boundary distance map into a level set formulation. Ex-
perimental results on 73 CT planning images show that the proposed distance
transform is more effective than the traditional classification-based method for
driving the deformable segmentation. Also, our method can achieve more consis-
tent segmentations than human raters, and more accurate results than the existing
methods under comparison.

1 Introduction

CT images are widely used in the image-guided radiotherapy planning (IGRT), as it
provides Hounsfield units for all image voxels, which are necessary for dose calcula-
tion. In the IGRT for prostate cancer, the prostate and nearby organs (e.g., the bladder
and the rectum) need to be segmented in order to optimize the dose plan for precisely
targeting the radiation beams on the prostate and minimizing the radiation exposure to
the surrounding tissues. The segmentation accuracy of the prostate could largely affect
the efficacy of radiation treatment. However, due to the touching boundaries with the
bladder and the rectum, the prostate boundary is often indistinct in CT images (Fig.
1), which imposes much difficulty upon the manual delineation. It usually takes an ex-
perienced clinician 10 − 12 minutes to manually delineate the prostate boundary in
CT image of each patient. Despite of taking this long delineation time, manual seg-
mentations still vary much among different raters [1,2]. Thus, an automatic and robust
segmentation method is highly desired in this context.

G. Wu et al. (Eds.): MLMI 2014, LNCS 8679, pp. 93–100, 2014.
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Fig. 1. A typical 3D planning CT image in the transversal view (left panel) and sagittal view (right
panel). In each view, the left figure shows the original prostate slice, and the right figure shows
the corresponding slice overlaid with the manually segmented prostate (red).

Previous works [3,4] often reply on learning a patient-specific model for addressing
the aforementioned challenge, as the prostate appearance and shape variations are small
for the image data acquired from the same patient. However, these methods are not ap-
plicable for prostate segmentation from the planning CT images, as no segmented CT
images of the same patient are available for appearance and shape learning in the ra-
diotherapy planning stage. Consequently, only population information (i.e., CT images
of other patients) could be used for guiding the prostate segmentation in the planning
CT images. Among the population-based methods, most of them utilize the shape con-
straint for deriving a robust segmentation. For example, Costa et al. [5] proposed a
coupled deformable model for segmenting the prostate by imposing a non-overlapping
constraint from the bladder. Chen et al. [6] proposed a Bayesian framework that incor-
porates anatomical constraints from the surrounding bones for prostate segmentation.
However, due to the lack of an effective appearance model for guiding the deformable
segmentation, the accuracy of these methods is very limited. Recently, classification-
based methods [2,7] have been proposed to segment the prostate from CT images, and
achieved significant improvement over the traditional intensity-based methods [5,6,8].
The main idea is to train a classifier for distinguishing prostate voxels from background
voxels based on local patch appearance. The learned classifier could be used to label the
intensity image into a prostate likelihood map for guiding the deformable segmentation.

In this paper, we propose to learn a distance transform for boundary detection and
deformable segmentation of the prostate. The learned distance transform can map a new
intensity image into the distance map of the target prostate boundary, which could be
further utilized for anatomical boundary detection as well as deformable segmentation.
In particular, regression forest is adopted to learn the non-linear relationship between
a voxel’s local image appearance and its 3D displacement to the nearest point on the
target prostate boundary. Once the forest is learned, it can be used to predict the 3D
displacement from any voxel in the new testing image to the target prostate boundary.
By taking the magnitude of the displacement vector, the distance map of the prostate
boundary can be obtained for a new testing image. To enforce the spatial consistency
within the obtained distance map, we further combine the high-level context features
extracted from the previously obtained distance map with the original image appearance
features into the auto-context framework [9] for iterative refinement. Finally, the refined
distance map will be integrated into a level set formulation for segmenting the prostate
from CT images. Experimental results show that learning a boundary distance transform
is more effective than prostate classification for guiding the deformable segmentation.
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Fig. 2. The flowchart of our method. Green boxes show the local patches where appearance and
context features are extracted for the voxel marked as red crosses. Cold and warm colors in the
figure indicate voxels with small and large predicted distances to the prostate boundary.

In addition, our method can achieve more consistent segmentations than human raters,
and also more accurate results than existing methods under comparison.

2 Method

Our method consists of three components: 1) regression forest for learning boundary
distance transform, 2) iterative refinement of the predicted distance map by context
features, and 3) distance-map-guided boundary detection and deformable segmentation
with level sets. Fig. 2 shows the flowchart of our method.

2.1 Learning Boundary Distance Transform by Regression Forest

Regression forest, as a non-linear regression model, has recently been used for efficient
anatomy detection [10], i.e., detecting the bounding box of one specific organ. In this
paper, we extend it to learn the distance transform for a specific organ boundary (e.g.,
prostate boundary). The learned distance transform is used for mapping a new 3D in-
tensity image into the distance map of the target boundary. More specifically, given
any voxel in the new testing image, we want to predict its nearest distance to the tar-
get boundary. Hence, distance transform learning is essentially a regression problem.
In our work, regression forest is particularly used for learning the non-linear relation-
ship between a voxel’s local image appearance and its 3D displacement vector to the
nearest point on the target boundary. By taking the magnitude of the 3D displacement
vector, the distance of this voxel to the target boundary can be obtained. Thus, the
learned regression forest can be regarded as a boundary distance transform. In the next
paragraphs, we will show how the regression forest is trained for learning boundary
distance transform, and how the learned forest could be applied to a new testing image
for predicting the distance map.

To learn the distance transform for a specific organ boundary, we first randomly sam-
ple voxels near the boundary in every training image according to a Gaussian distribu-
tion: p(x) = 1/(

√
2πσ) × exp(−d(x)2/2σ2), where p(x) indicates the probability of
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voxel x ∈ R
3 in a training image to be sampled, d(x) is the nearest distance of voxel

x to the target boundary in this training image, and σ controls the size of narrowband
for sampling. In this way, the majority of sampled voxels will be close to the target
boundary, thus making the learned model more specific on detecting the target bound-
ary. This sampling strategy is important for accurate organ segmentation, as boundary
voxels are usually the most difficult to characterize. Afterwards, the sampled voxels
from all training images are used as our training dataset. For each sampled voxel in one
training image, we extract randomized 3D Haar-like features from an intensity patch
centered at this voxel for capturing the local image appearance around it. The Haar-like
features are defined as follows.

f(I) =

M∑
i=1

ti
∑

‖x−ci‖∞≤si

I(x) (1)

where f(I) denotes one 3D Haar-like feature extracted from intensity patch I , M is
the number of 3D cubic functions used in this Haar-like feature, and ti ∈ {+1,−1}, ci
and si are the polarity, the center and the size of the i-th cubic function, respectively.
By randomizing the parameters M , ti, ci and si in Eq. 1, we can generate an unlim-
ited number of 3D Haar-like features for regression forest learning. In this work, M is
limited to {1, 2}, si is limited to {3, 5}, and ci is not limited as long as the 3D cubic
function stays within intensity patch I of size 30× 30× 30.

Once the feature representation of each voxel is determined, a regression forest can
be trained for predicting the 3D displacement from any image voxel to the nearest point
on the target boundary. Given a new testing image, the learned forest can be applied
to voxel-wisely estimate the 3D displacement for every image voxel. By taking the
magnitude, a boundary distance map can then be obtained.

2.2 Iterative Refinement of Distance Map by Context Features

As the displacement from each image voxel to the target boundary is predicted inde-
pendently, the estimated distance map for a new testing image is often spatially incon-
sistent, as shown in the leftmost distance map of Fig. 2. To overcome this limitation,
we integrate the proposed distance transform learning with the auto-context model [9]
for iteratively refining the estimated distance map. The main idea is to train a sequence
of distance transforms, each utilizing both the local image features extracted from the
original intensity image, and the high-level context features extracted from the output
of the previous distance transform for gradually improving the quality of the estimated
distance map.

During the training stage, after the distance transform of the first iteration is learned
as described in Section 2.1, it can be used to predict a boundary distance map for every
training image. Then, the additional high-level context features can be extracted from
the estimated distance map, and further combined with the original image features to
form a new feature representation for each voxel. Afterwards, a new distance trans-
form can be learned by using the updated feature representation. This iterative training
procedure continues until a specified number N of distance transforms is obtained. In
our work, the high-level context features are also the randomized Haar-like features as
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Fig. 3. Typical planning CTs (sagittal view) in our dataset. Green and blue contours indicate
the prostate boundaries automatically detected by our boundary detection method and manually
delineated by the expert, respectively.

defined in Eq. 1. Different from image appearance features, these context features are
extracted from the distance map estimated by the previous distance transform. Since
the rough distances of nearby voxels to the target boundary have been encoded in the
previously estimated distance map, the new distance transform learning can utilize this
valuable information to impose the spatial consistency on the to-be-estimated distance
map, thus improving the overall prediction accuracy. In the testing stage, the learned
distance transforms can be applied sequentially as shown in Fig. 2 to iteratively refine
the estimated distance map for a new testing image.

2.3 Distance-Map-Guided Boundary Detection and Deformable Segmentation
(with Level Sets)

Once the boundary distance map is estimated for a new testing image, it can be used for
either boundary detection or level set segmentation.

Boundary Detection: In most cases, the estimated distance map of a new testing image
will be directly utilized for the final segmentation (e.g., to guide the deformable seg-
mentation). However, sometimes if the organ-specific boundary segments are desired,
we can also adopt non-minima suppression and hysteresis thresholding, similar as in the
canny edge detector [11], to detect these organ-specific boundaries from the estimated
distance map.

Level Set Segmentation: Since the target boundaries are located in the valley of the
estimated distance map, the local means in the estimated distance map should be sim-
ilar for both sides of the zero level set. Based on this assumption, we can design the
following evolution flow to segment the prostate from the boundary distance map:

∂φ

∂t
= δ(φ)(u1(x)− u2(x)) + vδ(φ)div(

�φ

‖ � φ‖ ) (2)

u1(x) =

∫
K(y − x)H(φ(y))Ω(y)dy∫

K(y − x)H(φ(y))dy
, u2(x) =

∫
K(y − x)(1−H(φ(y)))Ω(y)dy∫

K(y − x)(1−H(φ(y)))dy
(3)

where φ is the level set function with φ > 0 as the inner part and φ < 0 as the outer
part, δ is the Delta function, u1(x) and u2(x) are the local means of the inner and outer
parts, respectively, K is a Gaussian kernel function with the standard deviation of 3,
H is the Heaviside step function [12], and Ω denotes the estimated boundary distance
map. The first data-fitting term attracts the zero level set to the valley of the estimated
distance map Ω, and the second regularization term imposes the smoothness constraint
on the evolving surface φ.
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Fig. 4. Qualitative results from three planning CT images with different levels of contrast agent.
Each row shows the planning CT images and their corresponding predicted distance maps in
transversal, sagittal and coronal views. Red and blue contours indicate our final segmented
prostate boundaries and the manually delineated boundaries, respectively.

3 Experiments

Data Descriptions: Our dataset consists of 73 planning CT images, scanned from dif-
ferent patients. The typical image size is 512 × 512 × (61 ∼ 81) with voxel size
0.94 × 0.94 × 3.00 mm3. The prostate in each planning CT image has been manu-
ally delineated by a radiation oncologist, which we use as ground truth. The dataset is
of large appearance variability due to the uncertainty on the level of contrast agent that
is present. Fig. 3 shows typical planning CT images (sagittal view) in our dataset along
with the detected prostate boundaries by our boundary detection method (green) and
manual rater (blue).

Parameter Setting: In the regression forest training, the number of trees is 10, the
maximum tree depth is 15, the number of randomized Haar-like features is 1000 for
both image appearance and context features, and the minimum sample number for each
leaf node is 8. σ for controlling the size of narrowband sampling is 8. v in the level
set segmentation is set to 0.01. All the parameters of regression forest is typical as
adopted in other works [10]. To evaluate our segmentation method, we use four-fold
cross-validation with 54 images for training and 19 images for testing. The initialization
of the level set function is accomplished by using an affine transformation to transform
the mean prostate shape onto the testing image. The affine transformation is estimated
between six automatically detected prostate landmarks (i.e., top, base, anterior, poste-
rior, left and right) in the testing image and their counterparts on the mean shape [2].

Qualitative Results: In addition to the boundary detection results in Fig. 3, we also
plot the qualitative results for three typical planning CT images (with different levels of
contrast agent) in Fig. 4. We can see that, after the proposed distance transform, prostate
boundaries can be clearly seen in the predicted distance maps, and are quite consistent
with the manually delineated boundaries by radiation oncologist. This demonstrates that
our proposed method works very well in various planning CTs with different levels of
contrast agent.

Classification versus Distance Transform: Fig. 5 (a) quantitatively compares the clas-
sification guided level set method with our proposed method (distance-map-guided level
set method) on the same dataset. As aforementioned, the classification-based method
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Fig. 5. (a) Quantitative comparison between classification-guided and distance-map-guided level
set methods in our dataset. DSC: Dice Similarity Coefficient. ASD: Average Surface Distance. (b)
Qualitative comparison between distance-map-based (first row) and classification-based (second
row) auto-context refinement on a typical planning CT image. Red and blue contours indicate
automatically-segmented and manually-delineated prostates, respectively.

uses a learned classifier to label the new testing image into a prostate likelihood map,
which is then utilized for guiding the deformable segmentation with level sets [12].
For fair comparison, we used the classification forest with the same training parame-
ters for the classification-guided level set method. Similarly, we also adopt the auto-
context model to iteratively refine the classification response map. From Fig. 5 (a),
we can clearly see that our proposed method (“distance transform”) outperforms the
classification-guided level set method in all iterations (e.g., with higher Dice Similarity
Coefficient (DSC) and lower Average Surface Distance (ASD)). In addition, Fig. 5 (b)
gives a typical example that compares the classification-based auto-context refinement
with our distance-map-based auto-context refinement. We can see that the distance-
map-based refinement is able to achieve more accurate segmentation than classification-
based refinement. This infers that the context features extracted from the boundary dis-
tance map are more helpful to assist the auto-context refinement than the traditional
context features extracted from the classification response map.

Comparison with other CT Prostate Segmentation Methods: Our method obtains an
average surface distance (ASD) 1.85±0.87mm on our dataset. Due to the fact that nei-
ther the executables nor the datasets of other works are publicly available, it is difficult
for us to directly compare our method with other CT prostate segmentation methods.
Thus, we only cite the results reported in their publications for reference. The com-
parison shows that our method achieves more accurate segmentations than [8] (ASD
4.09 ± 0.90 mm), [2] (ASD 3.35 ± 1.40 mm), and the current state-of-the-art method
[7] (ASD 2.37± 0.89 mm). Besides, it is worth noting that most existing methods were
evaluated only on the datasets without contrast agent. It is not clear whether these meth-
ods can be applied to the mixed datasets which contain planning CTs with different levels
of contrast agent. Actually, this aspect is very important in the clinical application. A de-
sired prostate segmentation method should be able to deal with various kinds of planning
CTs obtained with different contrasts and scanning protocols, as it is never pre-known
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which type of an unseen image would need to be segmented. Clearly, our method wins
at this point, since it has been evaluated with good performance on the dataset with plan-
ning CTs of different contrasts. Additionally, the comparison with inter-rater variability
of manual prostate delineations (ASD 3.03± 1.15mm [2]) indicates that our method is
also able to obtain more consistent segmentations than the human raters.

4 Conclusion

In this paper, we propose to predict the boundary distance transform for anatomical
boundary detection and deformable segmentation. It is applied to segment the prostate
from CT images. Validated on 73 planning CT images with various contrasts, our pro-
posed distance transform learning method shows better performance than prostate clas-
sification method for guiding the deformable segmentation of the prostate. Moreover,
the comparisons with other CT prostate segmentation methods indicate that our method
can be more adaptive to different datasets with various contrasts. Also, compared to
manual prostate delineations, our method can achieve more consistent segmentations,
since there often exists large inter-rater variability for manual delineations.
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Abstract. The region covariance descriptors have recently become a popular
method for detection and tracking of objects in an image. However, these descrip-
tors are not suitable for classification of images with heterogeneous contents. In
this paper, we present an image-level descriptor obtained using an affine-invariant
geodesic mean of region covariance descriptors on the Riemannian manifold of
symmetric positive definite (SPD) matrices. The resulting image descriptors are
also SPD matrices, lending themselves to tractable geodesic distance based k-
nearest neighbour classification using efficient kernels. We show that the pro-
posed descriptor yields high classification accuracy on a challenging problem of
nuclear pleomorphism scoring in breast cancer histology images.

Keywords: Symmetric positive definite matrices, generalised geometric mean,
geodesic nearest neighbourhood, nuclear pleomorphism.

1 Introduction

The Nottingham Grading System is the most widely used standard for grading breast
cancer tissue slides recommended by the World Health Organisation [1]. It is based on
the assessment of three morphological features: tubule formation, mitotic count and nu-
clear atypia/pleomorphism. Tubule formation assesses what percentage of the tumour
forms normal duct structures. Regular duct structures implies lower grade cancer. Mi-
totic count assesses the number of dividing cells seen in 10 high power microscope
fields. More dividing cells implies high grade cancer. Nuclear Atypia (NA) assesses the
deviation in appearance (pleomorphism) of cell nuclei from those in normal breast duct
epithelial cells. More deviation implies high grade tumour (see Figure 1).

Previous approaches to NA scoring generally emulate the visual examination by a
pathologist. Cosatto et al. [2] perform nuclear segmentation using image analysis ap-
proach by first detecting seed points using the difference of Gaussian (DoG) operator
followed by the Hough transform to delineate the nuclei boundaries. Next, they com-
pute a set of shape, size and texture features to train a classifier for NA scoring. Dalle
et al. [3] employ a similar approach as well by first performing nuclear segmentation
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Fig. 1. Visual appearance of different nuclei in breast histological images. Grade-1 (Left Column)
, 2 (Middle Column), and 3 (Right Column) nuclear pleomorphism.

followed by fitting a Gaussian mixture model on the features computed from the seg-
mented nuclei. Nuclei segmentation is performed by detecting regions of interest using
intensity thresholding followed by fitting a line to the distance transform of this region
in polar space where the round nuclei shapes form a curve.

Most existing methods rely heavily on the accurate segmentation of cell nuclei. How-
ever, nuclei segmentation in histology images remains a challenging problem in high
grade tumours, where nuclei are often hollow inside with broken cell membrane or
weakly stained cell membrane and contain unpacked chromatin structures. Moreover,
due to occlusion or overlapping nuclei, nuclei segmentation becomes extremely chal-
lenging leading to erroneous segmentation which may affect the predicted NA score.
Therefore, despite good results obtained on a limited dataset, techniques that rely heav-
ily on the accurate nuclear segmentation run the risk of overfitting on limited training
data.

Instead of performing nuclear segmentation, we take a holistic approach and pose
the NA scoring as a texture discrimination problem. In literature, a range of texture
descriptors (e.g. Haralick, local binary patterns (LBP), Gabor and region covariance
(RC) descriptor [4]) have been proposed for performing variety of tasks including his-
tology texture classification [5]. Among these texture descriptors, the RC descriptor
is relatively recently proposed and offers some desirable theoretical properties - for
instance, RC descriptors are symmetric positive definite (SPD) matrices lending them-
selves to tractable optimisation. Furthermore, they are also relatively low-dimensional
descriptors extracted from several different features computed at the level of regions
and consequently reducing the computational cost of classification.

In this paper, we propose an image classification scheme based on the generalised ge-
ometric mean of symmetric positive definite matrices (mSPD) computed from features
of all regions in a given image (see Figure 2). The regional covariance descriptors com-
puted from sub-image are points lying on the Riemannian manifold of SPD matrices.
The image level descriptor given by the mSPD is, therefore, a representative of po-
tentially different covariance matrices calculated from heterogeneous sub-images. The
mSPD matrix is calculated using the geodesic connected to affine-invariant Riemannian
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Fig. 2. An illustration of the overall classification framework using (a) the standard region co-
variance and (b) generalised geometric mean region covariance. The generalised geometric mean
is calculated using equation (1), while the classification is achieved using a geodesic k-nearest
neighbour classifier. N is number of pixels in the image, NRK is number of pixels in sub-image
region RK , n is number of features, fi,j is the feature j at pixel location i, cp,q and c̄p,q are (p, q)
elements of RC and mSPD descriptors respectively.

metric [6]. We utilise geodesic k-nearest neighbour (GkNN) approach to assign labels
to a test input image. In order to improve the computational efficiency of computing
geodesic distances, which cause nontrivial numerical burden, we use the kernel trick
that results in comparable accuracy and statistically significant reduction in execution
time.

2 The Proposed Scheme for Image Classification

Figure 2 describes the proposed framework for image classification using the mSPD
descriptors. An image is divided into small non-overlapping regions. For each region,
pixel-level features are collected to form an RC descriptor. RC descriptors of different
regions are then summarised into a single mSPD descriptor, by calculating the gen-
eralised geometric mean of RC descriptors. A Geodesic k-nearest neighbour classifier,
which utilises the known structure of the Riemannian manifold of SPD matrices, is then
employed to assign the NA score labels (1, 2 or 3) to test images.

2.1 Generalised Geometric Mean of Symmetric Positive Definite Matrices as an
Image-Level Descriptor

An image I can be divided into K small non-overlapping sub-regions {R1, ..., RK} to
calculate the corresponding RC descriptors CRk

, k = 1, ...,K . The RC descriptor can
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be computed simply by calculating n pixel-level features f(x, y) = {f1(x, y), f2(x, y),
. . . , fn(x, y)} for all (x, y) image coordinates and then calculating the n × n covari-
ance matrix CRk

of f(x, y) ∀x, y. These RC descriptors can then be combined through
generalised geometric mean as below:

M(I) = argminX∈M
K∑

k=1

dist2(X,CRk
), (1)

where dist(·, ·) is defined based on a metric on the space M of SPD matrices. In this
work, we use geodesic distance (equation (2), (3), and (4)) based on affine-invariant
metric due to the Riemannian manifold structure of the space of SPD matrices which
will be described in Section 2.2.

2.2 Nearest Neighbour Classification on Riemannian Manifold of Symmetric
Positive Definite Matrices

An n × n mSPD is a member of the space S+
n of n × n symmetric positive definite

(SPD) matrices, which is an open convex subset of the Euclidean space. However, S+
n

is not a vector space with usual addition and scalar multiplication as, for example, it
is not closed under negative scalar multiplication. Analysing SPD matrices under usual
Euclidean geometry would fail to capture the nonlinearity of S+

n . In fact, S+
n forms a

Riemannian manifold with negative curvature when endowed by affine invariant metric
[6], and a Riemannian manifold with null curvature when endowed by the log-Euclidean
metric [7].

Metrics for SPD Manifolds. We measure the distance between two SPD matrices
X,Y ∈ S+

n based on geodesic distance of the known Riemannian manifold by using
following distance measures.

– Affine-invariant metric

dist(X,Y) = ‖ log(X−1/2YX−1/2)‖F = ‖ log(Y−1/2XY−1/2)‖F (2)

where ‖ · ‖F denotes the Frobenius norm and log(·) denotes matrix logarithm.
– Log-Euclidean metric

dist(X,Y) = ‖ log(X)− log(Y)‖F = ‖ log(Y)− log(X)‖F (3)

– Positive Definite kernel Computation of geodesic distance ((2) and (3)) involves
nonlinear log operator which can cause nontrivial numerical burden. Motivated by
this, we employ a kernel-based approach which defines an embedding function φ :
S+
n → H in order to map the SPD matrices into the high-dimensional reproducing

kernel Hilbert space (RKHS) H. Since the RKHS is equipped with inner product,
dissimilarity measure between two points φ(X), φ(Y) ∈ H for any X,Y ∈ S+

n

can simply be calculated by their inner product which is defined in the form of
positive definite kernel k(X,Y) : S+

n × S+
n → R [8],

k(X,Y) = e−σS(X,Y) (4)
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where σ ∈ { 12 , 2
2 , ...,

n−1
2 } ∪ {τ ∈ R : τ > n−1

2 } is a scaling factor, and

S(X,Y) ≡ log

(
det

(
X+Y

2

))
− 1

2
log (det (XY)) (5)

is a symmetric Stein divergence which behaves similarly to geodesic distance (equa-
tion 2) induced by affine-invariant metric within a tight bound. Note that det(·) is
determinant operator.

Kernel Geodesic k-Nearest Neighbour Classifiers. The geodesic neighbour (GkNN)
classifier explicitly exploits the structure of Riemannian manifold of SPD matrices
through the use of geodesic distances (2) and (3). On account of its computational bene-
fits (Table 1), we propose the use of positive-definite kernel distance (4) which behaves
similar to the true geodesic distance in the GkNN classifier. The value of the kernel
function ranges between 0 and 1, and the higher the value of the kernel function, the
smaller the distance between two SPD matrices. Experimental results (Section 3) also
confirmed the improvement in classification accuracy of GkNN classifiers over their
Euclidean distance-based counterpart.

3 Results and Discussion

3.1 Dataset Description and Preprocessing

We evaluate our method on the publicly available MITOS-Atypia dataset, which com-
prises of 297 breast histology images extracted from 11 patients, and is part of an on-
going Mitos-Atypia Challenge1. The slides are stained with the standard Hematoxylin
and Eosin (H&E) dyes and scanned using two slide scanners: Aperio Scanscope XT and
Hamamatsu Nanozoomer 2.0-HT. Here, we consider images acquired by the Aperio XT
scanner (×20 magnification), the more widespread and accessible solution among the
two. It has a resolution of 0.245μm per pixel, resulting in a 1376 × 1539 RGB image
for each visual field. Two senior pathologists independently scored the images for NA.
The score assigned to each image is a discrete number between 1 and 3. S1 denotes a
low grade NA and S3 denotes a high grade NA. In approximately 15% of the cases, the
two experts disagreed. For these conflicting cases, a third pathologist scored the slides
independently and majority vote was used.

All images are stain normalised using [9] to minimise the effect of variation in visual
appearance of stains. Histological images may contain stromal regions, where lympho-
cytes and stromal nuclei are likely to exist. We avoid stromal regions while scoring NA
by performing tumour segmentation in order to restrict scoring to tumour areas only
[10], [11]. Motivated by the cues used by most to score NA in breast histology images
(e.g. the chromatin textures present in the nuclei), we convert RGB images into a blue
ratio (BR) image, that the values of BR are positively correlated to the presence of nu-
clear content in an H&E stained tissue, thus directly revealing spatial distribution of
nuclei as follows, BR = 100B

1+R+G × 256
1+B+R+G where R,G,B stand for red, green,

and blue intensities, respectively. Finally, an average kernel of size 3 × 3 is applied to
smooth the image to remove noise.

1 http://mitos-atypia-14.comicframework.org/

http://mitos-atypia-14.comicframework.org/
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Table 1. Comparative results of mSPDlbp, RCgabor and mSPDgabor descriptors using all
pixels in the image (columns 2, 4 and 6) and only the tumour pixels (columns 3, 5 and 7) in the
image. Last column shows the average execution time over 10 runs. All timings are calculated on
an iMac27 machine running Matlab 2013b with 16GB RAM.

mSPDlbp RCgabor mSPDgabor Run Time
Classifier All Tumour All Tumour All Tumour μ± σ
GkNN-Affine 0.73 0.76 0.71 0.72 0.79 0.83 15.26 ± 6.61
GkNN-logE 0.72 0.73 0.76 0.79 0.80 0.81 120.04 ± 4.67
GkNN-Stein 0.69 0.73 0.74 0.74 0.79 0.84 11.64 ± 0.51
kNN 0.71 0.71 0.77 0.75 0.75 0.73 2.15 ± 0.51

Table 2. Performance of a library of texture features when used in conjunction with linear and
quadratic discriminant analysis classifiers

Baseline Features Classifier Trainin/Test Split No. of Features Accuracy

Haralick, LBP,
Gabor, Wavelet

LDA
70/30 73 0.75
50/50 75 0.74

QDA
70/30 9 0.72
50/50 13 0.71

3.2 Experimental Setup, Results and Discussion

For computation of the mSPD descriptor, we evaluate LBP and Gabor texture features.
As mSPDgabor features perform better (see Table 1), we further compute RCgabor

features on whole image level and present a 3-way comparison between whole image
level RCgabor , sub-image level mSPDgabor and sub-image level mSPDlbp. For com-
putation of mSPDgabor and RCgabor descriptors, SPD matrices of size 29 × 29 are
generated by computing the covariance of 29 channels (BR, gradients and Hessians on
BR in horizontal and vertical directions, and Gabor filter responses at 4 scales and 6
orientations) at sub-image level and whole image level respectively. For computation of
the mSPDlbp features, a range of options (varying the size and number of filters) were
examined and the best results are reported.

In order to establish a baseline performance, an additional experiment was performed
on the same dataset where a set texture features (Haralick, LBP, Gabor and wavelet)
were computed at image-level, over a range of colour spaces (RGB, Lab, HSV, XYZ,
BR and Hematoxylin and Eosine), feature selection was performed using Fisher mea-
sure, and classification using linear and quadratic discriminant analysis was performed.
In all our experiments, we perform 5-fold cross validation. Each experiment is repeated
10 times and average accuracy results are reported. For fair comparison, the number
of nearest neighbours are fixed to 5 for both Euclidean and geodesic nearest neighbour
algorithms. For tumour segmentation, a system trained on similar images was used. The
choice of all parameters was based on cross-validation experiments on a subset of data.

Tables 1 and 2 show the experimental results for NA subtypes classification. Fol-
lowing important observations can be made from the results: (1) Regional statistics is
more effective in small neighbourhoods as compared to on the whole image where the
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Table 3. Disagreement between pathologists (left); Confusion matrix representing misclassifica-
tions using our proposed algorithm in 3 nuclear pleomorphism scores (right)

S1 S2 S3

No. of Samples 23 222 52
Pathologist-1 Agreed 21 205 52
Pathologist-2 Agreed 22 203 36

Disagreement
3 27 15

(13.0%) (12.1%) (28.8%)

S1 S2 S3 Misclassifications
S1 15 8 0 34.78%
S2 4 200 18 9.90%
S3 0 16 36 30.76%

heterogeneity in various parts of the image may negatively influence the performance of
the descriptor. This can be observed from the results of the RCgabor descriptor which
calculates features at the whole image level, and does not perform well as compared
to mSPDlpg and mSPDgabor features, which are calculated on sub-image level; (2)
Classical texture discrimination approaches do not perform well, even if the feature
space is explored in an extensive manner with both linear and quadratic classifiers (as
shown in Table 2), and fail to capture subtle differences in the appearance of nuclei.
Again, since the texture features are computed at the whole image level, the descrip-
tor does not perform well due to the statistical nature of features; (3) Geodesic kNN
mostly outperforms the Euclidean kNN classifier. This essentially refers to the fact that
Euclidean kNN is not appropriate for classification of covariance matrices as it does
not take into account the structure of manifold while finding the nearest neighbours;
(4) Statistically significant improvement (31%) in computational speed, without com-
promising classification accuracy, is achieved by using kernel trick while calculating
geodesic distance between the SPD matrices; (5) Tumour segmentation helps improve
the classification accuracy of almost all competing methods in Table 1 (by as high as
6.78%) except kNN, where either marginal improvement (mSPDlbp) or an opposite
trend (RCgabor and mSPDgabor) is seen. Again, this can be attributed to the fact that
the Euclidean kNN is not appropriate for classification of covariance matrices.

Table 3 shows the comparison of disagreement, regarding NA scoring, between three
expert pathologists and the proposed system. The proposed system performs best on S2

subtype, where the accuracy of the proposed system is ≈ 2.2% better than the agree-
ment between experts. On the other hand, the proposed system shows worse perfor-
mance on S1 NA images, where the accuracy of the proposed system is ≈ 20% lower
than the agreement between experts. The best and worse performance of the proposed
system correlates positively with the prevalence of the two subtypes in dataset (S2 -
74%, as compared to S1 - 7% of the samples). Furthermore, the performance of the
proposed system is in line with the agreement between pathologists for S3 subtype.
This indicates the potential of the proposed algorithm to perform even better if pro-
vided with more samples from less prevalent NA subtypes.

4 Conclusions

We presented the generalised geometric mean of region covariance descriptors as an
image level descriptor along with the geodesic k-nearest neighbour classifier for image
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classification. Extracting region covariance descriptors locally allows better representa-
tion of variability in a region. Generalised geometric mean over all region covariance
descriptors of an image offers an effective way to unify several descriptors to repre-
sent the whole image. Possible future directions includes incorporation of generalised
geometric mean region covariance descriptors in sparse coding and dictionary learning
frameworks [12] and hormone receptor scorings [13].
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Abstract. This paper develops a novel approach to find the plane in a 3D fetal 
ultrasound scan which corresponds to the 2D diagnostic plane used in cranial 
ultrasound of a neonate to allow image-based biomarkers to be tracked from 
pre-birth through the first weeks of post-birth life. We propose a method based 
on regression forests (RF) with important algorithm design considerations taken 
into account to provide an accurate plane-finding solution. Specifically, the new 
method constrains the RF method by 1) using informative voxels and voxel in-
formative strength as a weighting within the training stage objective function u, 
and 2) introducing regularization of the RF by proposing a geometrical feature 
within the training stage. Results on clinical data indicate that the new automat-
ed method is more reproducible than manual plane finding. 

Keywords: Ultrasound, Regression Forests, Fetal Brain, Localization. 

1 Introduction 

Longitudinal analysis of the developing brain is an emerging area of medical image 
computing and neurology. This may have a potential impact on clinical management 
of premature infants and neonates with neurological conditions. Most research has 
considered MRI solutions because of the exquisite level of anatomical detail seen, and 
possibly the wider availability of MRI from clinical neurology research versus ultra-
sound. However, ultrasound is the imaging modality most widely used in hospitals to 
screen for fetal and neonatal neurological abnormalities. The cot-side utility of ultra-
sound, ease of obtaining imaging, widespread availability of equipment and potential 
cost benefits combined with advances in medical image computing make it an ideal 
imaging modality to follow neurodevelopment during early life. 

Clinicians are exploring tools to track the changes in image-based biomarkers from 
womb to the postnatal period [1, 2]. Motivating this paper, a recent study [1] pub-
lished preliminary findings suggesting a correlation between neonatal gestational age 
and the thalamic area measured manually on standard 2D cranial ultrasound image of 
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plane (the mid-sagittal plane). We demonstrate that our approach leads to plane detec-
tion accuracies which are as good as manual plane finding and which show promise 
for their intended use of standardizing parasagittal plane acquisition. 

2 Constrained Regression Forests for Plane Localization 

2.1 Regression Forests for Plane Localization 

In the training stage, a set of 3D training images with their manual planes are used to 
build the forest. A plane is represented as 3 parameters normal vector and 3 parame-
ters to represent a point on the plane.  Each voxel in each 3D image is used as a train-
ing example. The perpendicular distance d = (dx, dy ,dz) between a voxel and the 
manual plane is computed [5] and used as a continuous label for each training exam-
ple. Appearance features are computed within a neighborhood around each voxel. We 
use appearance features like voxel intensity, mean intensity within a cuboid and dif-
ference of mean intensity of two cuboids. These types of features have been success-
fully used in related classification and regression forest applications and showed 
promising results [5, 7, 8].  

2.2 Constrained RF via the Use of Informative Examples 

During RF training on image volumes, millions of features need to be computed on 
typically millions of examples (voxels in our case). RF is responsible for finding the 
best set of features to build each tree. Although many of the training examples are non-
informative, RF treats all training examples equally during training. Here we propose a 
technique which locates the informative voxels within a 3D image and uses their 
strength to weight their contribution during tree training. We present a solution to over-
come a common problem observed in machine learning in ultrasound of otherwise gen-
erating a sub-optimal RF because of the existence of many non-informative voxels.  

An informative voxel is a voxel which is discriminative within its neighborhood. 
Here we use Feature Asymmetry (FA) to highlight informative voxels motivated by its 
successful application to 3D echo feature enhancement and detection, e.g. [9, 10]. FA 
computes the step edge strength at a specific voxel and provides a value in the range [0, 
1], thus providing directly a measure of strength at a specific voxel. The region-of-
interest (ROI) highlighted in red in Fig. 2 shows an area with speckle texture while the 
ROI highlighted in green shows an area containing fetal brain structures (part of the 
falx). Most importantly, even within areas of apparent weak image appearance (red ROI 
in Fig. 2), FA identifies the voxels which may be discriminative. Fig. 2 motivates the 
choice of using FA measure to represent voxels informative strength. 

How do we use FA in our solution? We use FA to create stronger trees during 
training by (1) masking out all voxels which has FA measure below a specific thresh-
old and (2) using the FA value to weight the importance of each training example 
when finding a splitting score in a tree node.  

The traditional function that is optimized is 
    arg   ∑ S ∑ ∑ ,     ,       (1) 
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where z is the variable that defines the optimal split of a training set. Instead we nor-
malize the traditional variable by the FA measure i.e. . Note that we divide 

rather than multiple since we are minimizing an objective function. We find the best 
split of a training set S (p is a training point) to left (L) and right (R), denoted (SL and 
SR).  is the mean value of z for all training points reaching a specific tree node. 

2.3 Constrained RF via Distance to Mid-Sagittal Plane 

The use of appearance features within RF creates a learner which works well if image 
appearance is clear and not ambiguous. However, in ultrasound imaging this is not 
always the case as previously discussed. To address this issue we introduce a geomet-
ric constraint expressed as a distance feature to help constrain RF training. This fea-
ture type imbeds the perpendicular distance between the voxel of interest and the mid-
sagittal plane. Given the mid-sagittal plane normal n=(nx, ny, nz), a point on the plane 
p = (px, py, pz) and a point in space v = (vx, vy, vz), the perpendicular distance D be-
tween v and the plane parameterized by n and p can be expressed as: | · || |            .                         (2)

This feature clusters training examples depending on their distance from the mid-
sagittal plane. However, this distance feature alone is not sufficient to capture the 
variability of plane appearance in different fetuses especially when dealing with dif-
ferent gestational ages. Therefore, it is important to incorporate both appearance and 
distance features inside the RF and to let the optimization of the objective function 

 
Ultrasound slice of a fetal brain 

 
Corresponding FA image 

  
Magnified regions from the 2D slices 

Fig. 2. Localization of informative voxels. Red is a region with little informative voxels while 
green is a region with highly informative voxels 
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choose a feature at a specific depth depending on its ability to split the training points 
properly. 

2.4 Localizing the Parasagittal Plane 

In the testing stage, the informative voxels in a test image traverse the trees until each 
voxel ends up in a leaf. Only voxels that reach confident leaves are allowed to vote 
for the output plane parameters. The confidence level is measured using the variance 
of the training examples that reached a specific leaf during training. The mean param-
eters of all informative voxels reaching confident leaves are used to output the final 
plane parameters by fitting a mean plane which represents the estimated parasagittal 
plane position. 

3 Experiments 

3.1 Dataset 

87 3D ultrasounds of the fetal brain between 23 and 27 weeks of gestation were ac-
quired on a Philips HD9 ultrasound machine from 45 normal fetuses1. These fetal 
brain volumes were not acquired specifically for our study but for biometry so were 
not optimized by any means to our application.  

For each volume, the parasagittal plane was manually identified twice by an expe-
rienced clinician. To minimize bias, the two manual measurements were performed a 
month apart. The mid-sagittal planes were also manually located by the clinician to 
help build the constrained RF. The Thalamic Area (TA) was measured manually on 
the second manual plane which was the one also used in training, and on automatical-
ly detected planes to investigate TA measurement accuracy.  

3.2 Validation 

To validate the accuracy of parasagittal plane-finding, two validation metrics were 
used. The first is the angular distance between the manual and the detected planes 
defined as    .| || |                                  (3) 

where nm is the normal to the manually defined plane and nd is the normal to the au-
tomatically found plane. The angular distance provides insight into how close two 
planes are in 3D space but does not take into consideration their line of intersection - 
two planes may have a small angle between them but their intersection be far outside 
the brain which means the error in diagnostic plane finding is large. To circumvent 
this problem, we include, as a second validation metric, the Euclidian distance  

                                                           
1  Fetal images are from the Intergrowth-21st study (http://www.intergrowth21. 

org.uk/) 
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between the centers of the manual and the automatic planes. Since the fetal brain will 
appear approximately in the middle of the volume in most cases (given this require-
ment is part of the scanning protocol), the distance metric expresses how far the mid-
dle of the two planes are from each other. The smaller the distance and angle the bet-
ter the accuracy. 

We report 5 comparisons: 1) manual-to-manual plane agreement; 2) manual-to-
automatic plane agreement with the RF trained on appearance features only; 3) manu-
al-to-automatic plane agreement using the RF trained on appearance features only but 
constrained by the use of informative voxels (CRF-FA); 4) manual-to-semi-automatic 
plane agreement using RF trained on all examples but constrained by distance fea-
tures (CRF-Dist); and 5) manual-to-semi-automatic plane agreement using RF con-
strained by the use of informative voxels and distance features (CRF-FA-Dist).  

3.3 Implementation Details 

We split the 87 volumes into 44 for training and 43 for testing such that no two vol-
umes of the same fetus exist in both sets. In all experiments we optimized the method 
parameters on the classic RF and fixed them for the proposed RFs to allow a fair 
comparison. We used 10 trees with a maximum depth 18. We optimized 300 candi-
date features during node creation. The FA threshold we used is 0.1 to allow as much 
as possible informative voxels during the training stage. In addition, when comparing 
multiple thresholds, visual inspection showed that the chosen threshold provides a 
suitable spread of voxels in different images. This implies informative voxels from all 
over the volume are selected during the training and testing stages. We used the 3D 
Gaussian derivative as a filter to compute FA and we experimentally set its Sigma to 
4. Finally, we used the C# language to build the methods in a parallel fashion. 

4 Results 

In our parallel implementation, training time was approximately 6 days while testing a 
new volume took under 3 seconds. However, optimizing the technique was performed 
on a smaller set of training examples to tune the different parameters. Visual demon-
stration of the detected plane on a typical volume using the different proposed varia-
tion of the method is shown in Fig. 3. We found that the distance constraint feature is 
more discriminating towards the top of the tree and was found to be used in approxi-
mately 30% of all feature decisions. In Table 1 we report distances (mm) and angles 
(degree) for the different planes. The results shown are separated by gestational age 
where we also report the number of volumes used at each gestation. Note how dis-
tance and angles in 24 weeks are higher. This is possibly because of the existence of a 
small number of images; notice the second row in in Table 1 which represents the 
number of training / testing images in each gestational age. The classic RF has larger 
errors (distance & angle) than the manual agreement. However, using the informative 
voxels in RF (CRF-FA) slightly improves the agreement with the manual reference. 
The use of the mid-sagittal plane constraint (CRF-Dist) allows RF to provide errors 
smaller than in the manual agreement. Ultimately, RF with the use of informative 
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voxels constrained by the mid-sagittal plane (CRF-FA-Dist) provides better agree-
ment with manual than manual-manual agreement. Additionally, by looking at the 
standard deviation of the distances and angles in Table 1, the parasagittal plane found 
manually or using the classic RF is highly inconsistent. However, the three proposed 
RFs offer a more consistent and reproducible planes than those obtained manually.  
 

Manual 
 

RF CRF-FA 
 

CRF-Dist 
 

CRF-FA-Dist 

Fig. 3. Visual comparisons of the detected plane from all methods for the same volume. 

Table 1. Mean ± standard deviation of angles and distances between two planes. We report 
these between the two manual planes, manual and the detected planes using RF, manual and the 
detected planes using CRF-FA, manual and the detected planes using the CRF-Dist, and 
manual and the detected planes using the CRF-FA-Dist. 

GA Weeks 23 24 25 26 27 All 

 # training/testing 9 / 9 5 / 5 8 / 8 11 / 11 11 / 10 44 / 43 

A
ng

le
s 

(d
eg

re
e)

 Manual vs Manual 12.1°± 9.6 13.2°±12.4 11.7°±9.8 13.7°±9.4 12.2°±9.3 12.6°±9.8 

Manual vs RF 12.7°±2.9 17.0°±9.9 15.5°±7.2 15.3°±8.7 16.3°±5.1 15.2°±6.5 

Manual vs CRF-FA 10.2°±5.7 14.5°±8.9 11.8°±8.1 12.1°±7.2 12.4°±6.0 12.0°±6.9 

Manual vs CRF-Dist 6.4°±3.7 15.9°±5.9 10.8°±6.0 10.1°±5.2 11.9°±4.8 10.6°±5.0 

Manual vs CRF-FA-
Dist 6.1°±3.4 12.4°±4.7 9.0°±5.6 8.1°±3.9 10.6°±4.2 9.0°±4.3 

D
is

ta
nc

e 
(m

m
) Manual vs Manual 8.3±7 8.2±6.2 9.6±7.2 10.3±8.4 10.7±9.1 9.6±7.8 

Manual vs RF 10.1±1.9 10±2.1 9.5±2.1 11.5±2.6 12±2.4 10.8±2.3 

Manual vs CRF-FA 8.9±1.7 10.5±2.7 9.6±2.5 10.7±2.3 11.9±2.9 10.4±2.4 

Manual vs CRF-Dist 8.2±1.8 9.3±1.8 9±1.8 10.2±1.3 11.5±3.1 9.8±2.0 

Manual vs CRF-FA-
Dist 

6.0±2.5 8.5±5.1 7.5±3.0 9.3±2.6 9.7±3.2 8.3±3.1 

5 Discussion and Conclusion 

In this paper, we have developed a novel plane-finding solution for 3D fetal brain 
ultrasound. The plane is clinically important to locate because the TA measurement 
on this plane showed to correlate well with gestational age which could also help 
monitor neuro-development of a neonate, especially in preterm infants [1]. The clini-
cal validation of this tool for estimating TA is an ongoing work. The solution we pro-
posed constrains the RF technique by the use of informative voxels during training 
and with a new feature which regularizes RF through the use of distance to a refer-
ence plane. Although the CRF-Dist and CRF-FA-Dist methods provide a better 
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agreement with a manual reference than manual-manual agreement, they are semi-
automatic approaches requiring the mid-sagittal plane as an input. However, the mid-
sagittal plane is a much easier plane to find within a 3D ultrasound of a fetal brain and 
will be automated in future work. On the other hand, the RF and CRF-FA methods are 
fully automatic. It turns out that the CRF-FA-Dist provides the best agreement with 
the manual reference.  

Although this technique is developed to solve a specific plane finding problem, it is 
applicable to other plane finding problems which suffer from a significant amount of 
non-informative training examples and possibly have a common reference plane or 
even a structure of interest. The proposed technique was developed for 3D ultrasound 
images but it is also applicable to other medical imaging modalities.  
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Abstract. A new automatic method for multiple sclerosis (MS) lesion
segmentation in multi-channel 3D MR images is presented. The main
novelty of the method is that it learns the spatial image features needed
for training a supervised classifier entirely from unlabeled data. This is
in contrast to other current supervised methods, which typically require
the user to preselect or design the features to be used. Our method can
learn an extensive set of image features with minimal user effort and
bias. In addition, by separating the feature learning from the classifier
training that uses labeled (pre-segmented data), the feature learning can
take advantage of the typically much more available unlabeled data. Our
method uses deep learning for feature learning and a random forest for
supervised classification, but potentially any supervised classifier can be
used. Quantitative validation is carried out using 1450 T2-weighted and
PD-weighted pairs of MRIs of MS patients, with 1400 pairs used for
feature learning (100 of those for labeled training), and 50 for testing.
The results demonstrate that the learned features are highly competitive
with hand-crafted features in terms of segmentation accuracy, and that
segmentation performance increases with the amount of unlabeled data
used, even when the number of labeled images is fixed.

Keywords: Multiple sclerosis lesions, MRI, machine learning, segmen-
tation, deep learning, random forests.

1 Introduction

Multiple sclerosis (MS) is a chronic, inflammatory and demyelinating disease
of the brain and spinal cord. Lesions are a hallmark of MS pathology, and are
primarily visible in white matter (WM) on conventional magnetic resonance
imaging (MRI) scans. Manual segmentation by expert users is a common way
to determine the extent of MS lesions, which is a time-consuming task and can
suffer from intra- and inter-expert variability. Automatic segmentation is an at-
tractive alternative, but it is a challenging task and remains an open problem [1].

G. Wu et al. (Eds.): MLMI 2014, LNCS 8679, pp. 117–124, 2014.
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Many automatic approaches have been proposed over the last two decades and
they have two main categories: supervised and unsupervised. Supervised meth-
ods learn from training images previously segmented, and use user-selected im-
age features to discriminate between lesions and healthy tissue (e.g. [2]). The
availability of representative labeled images and the choice of image features
are important considerations and may be difficult to optimize. Some methods
use a very large starting set of features and select the more discriminative ones
through labeled training (e.g. [3]). Unsupervised methods do not require labeled
training data, but instead typically use an intensity clustering method to model
tissue distributions and rely on expert’s a priori knowledge of MRI and anatomy
to reduce false positives (e.g. [4]). While both supervised and unsupervised ap-
proaches have had some success, supervised methods that can automatically
learn useful spatial features from unlabeled images are an attractive alternative
that remains under-investigated. The amount of unlabeled data typically far ex-
ceeds that of labeled data, and using a large database to build a feature set has
the potential to improve robustness and generalizability over current supervised
methods.

We present a new method for automatic learning, from unlabeled images, im-
age features for MS lesion segmentation. We train our model on a large batch
of unlabeled images to identify common patterns, then add labels to a subset of
the training images so that the features and labels can be used in a supervised
learning method to perform the segmentation. To our knowledge, this is the first
attempt to automatically learn discriminative 3D image features from unlabeled
images for MS lesion segmentation. Previous papers have proposed advanced fea-
ture selection methods, such as those based on modifications of random forests
[5,6], but the features were still pre-determined and filtered using relatively small
sets of labeled data to identify the more discriminative features. The main differ-
ence is that our method automatically learns data-driven features from unlabeled
images without the potential bias of predefined features or those learned from
labeled data. This allows large data sets to be used to generate broadly repre-
sentative feature sets. We show that the learned features enable segmentation
performance that is competitive with hand-crafted features, and that increasing
the amount of unlabeled data improves segmentation performance, even when
the amount of labeled data is fixed.

2 Materials and Methods

Our data set consists of the image data from 581 MS patients scanned at multiple
time points. The total number of cases, where a case consists of a pair of T2-
weighted and proton density (PD) weighted scans, is 1450. Each T2/PD pair was
acquired using a dual-echo MR sequence so they are inherently co-registered. The
data set was collected from 48 sites, each using a different scanner, as part of
a clinical trial in MS. All the images have the same resolution, 256× 256× 50,
and the same voxel size, 0.936 × 0.936 × 3.000 mm3. We divided the data set
into independent training and test sets. The training set consists of 1400 cases



Deep Feature Learning for MS Lesion Segmentation 119

9×9×3 
patches 

15×15×5 
patches 

T2 images 

Train 2-layer 
DBN 

T2 images with 
lesion masks 

IT2 

IPD 

Compute  
activations 

 

g1  

Train a 
random forest 
with feature 
vectors and 

labels 

Feature 
vectors 

Train RBM 

Train 2-layer 
DBN 

Train RBM 9×9×3 
patches 

15×15×5 
patches 

PD images 

9×9×3 
patches 

15×15×5 
patches 

Voxel 
intensity 

9×9×3 
patches 

15×15×5 
patches 

Voxel 
intensity 

PD images with 
lesion masks 

T1:500
s1

T1:1000
s2 ,1

T1:1000
s2 ,2

J1:500
s1

J1:1000
s2 ,1

J1:1000
s2 ,2

Fig. 1. A training algorithm for our MS lesion segmentation framework. A large number
of unlabeled images and a smaller number of labeled images are used in a deep learning
framework to generate the feature vectors used to train a random forest classifier.

from 531 patients and the test set contains 50 cases from 50 patients. Within the
training set, 100 cases from 100 patients have expert segmentations that we used
for supervised training. For preprocessing, N3 inhomogeneity correction [7] is first
applied. Then, the entire set of T2-weighted (and independently, PD-weighted)
images are intensity-normalized to produce a mean of 0 and a standard deviation
of 1. Skull-stripping is then performed with the brain extraction tool [8].

2.1 Algorithm Overview

Our algorithm for learning image features from unlabeled data is built using re-
stricted Boltzmann machines (RBMs), which are two-layer, undirected networks
each consisting of a visible layer and a hidden layer, where the activations of
the hidden units capture patterns in the visible units. RBMs can be stacked
to form a deep belief network (DBN) for learning more abstract features. Our
model (Fig. 1) consists of two RBMs, one for the T2 images, the other for the
PD images, that learn smaller-scale features. In addition, two DBNs are used,
again separately for the T2 and PD images, to learn larger-scale features. After
training with unlabeled data, the model can be used to identify, in a probabilistic
sense, the learned features in any given image. The model is then applied to a
subset of the training data that has lesion labels. Any of the learned features
found are then fed, along with the labels, into a random forest, which is used to
build a voxel-wise probabilistic classifier to find lesion voxels in unseen images.

2.2 Unsupervised Feature Learning Using RBMs and Deep Learning

To target features at different scales, we extract image patches of two different
sizes at the same locations from each image. To make feature learning on large
batches of data feasible, we extract 100 uniformly spaced and non-overlapping
patches at each scale, and set those patches as a mini-batch. The spacing and
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patch sizes allow complete coverage of the whole brain in most images. For the
smaller scale, we use a patch size of 9× 9× 3, and convert the image values to
one-dimensional vectors v1, . . . ,v100 ∈ R

D with D = 243. For the larger scale
features, we use a 3D patch size of 15× 15× 5 for D = 1125. We learn features
from each 3D image patch using a Gaussian-Bernoulli RBM model [9] with a
set of binary hidden random units h of dimension K (K = 500 for the smaller
scale, 1000 for the larger scale), a set of real-valued visible random units v of
dimension D (D = 243 for the smaller scale, 1125 for the larger scale), and
symmetric connections between these two layers represented by a weight matrix
W ∈ R

D×K . We follow a published guide [10] for choosing the number of hidden
units to avoid severe overfitting. We minimize the energy function [9]:

E(v,h) =
1

2

D∑
i=1

(vi − ci)
2 −

K∑
j=1

bjhj −
D∑
i=1

K∑
j=1

viWijhj, (1)

where bj are hidden unit biases (b ∈ R
K) and ci are visible unit biases (c ∈

R
D). The units of a binary hidden layer (conditioned on the visible layer) are

independent Bernoulli random variables P (hj = 1|v) = σ (
∑

iWijvi + bj), where
σ(s) = 1

1+exp(−s) is the sigmoid function. The visible units (conditioned on the

hidden layer) are independent Gaussians with diagonal covariance P (vi|h) =

N
(∑

j Wijhj + ci, 1
)
. We perform the contrast divergence approximation [11]

to update the weights and biases during training. In order to capture a higher-
level representation of local brain structures, another layer of hidden units is
stacked on top of the larger scale RBM to form a deep belief network. Hinton et
al. [11] showed that greedily training each pair of layers (from lowest to highest)
as an individual RBM using the previous layer’s activations as input is an efficient
approach for training DBNs. Our DBN has a layer of real-valued visible units v
of dimension D = 1125 and two layers of K = 1000 binary hidden units h.

2.3 Feature Vector Construction for Supervised Learning

To train a random forest, we use the labeled set of training images and construct
feature vectors computed by applying our trained RBM/DBN model to 200
image patches within the lesion mask and 3800 image patches from normal-
appearing tissue in each T2 and PD image. The patches are extracted in the
same way described above. The activations of the RBM/DBN model represent
the strength of the learned features present in the labeled images. We define x as
a voxel location and let vs1(x) represent a one-dimensional vector reformatted
from a 3D image patch of size 9 × 9 × 3 centered at x. We define vs2 (x) as an
one-dimensional vector reformatted from a 3D image patch of size 15 × 15 × 5
centered at x. We let IT2(x) and IPD(x) represent intensity values at a voxel
position x of a T2 image and a PD image, respectively. A feature vector g ∈ R

L

with L = 5002 is constructed for a given voxel in a pair of T2/PD images by
concatenating the intensity values and activations of the learned features:
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g(x) = {IT2(x), T
s1
1:500(vs1 (x)), T

s2,1
1:1000(vs2(x)), T

s2,2
1:1000(vs2(x)),

IPD(x), J
s1
1:500(vs1(x)), J

s2,1
1:1000(vs2(x)), J

s2,2
1:1000(vs2 (x))},

(2)

where T s1
k is an activation of the k -th hidden unit from the trained RBM when

the image patch vs1(x) from the T2 image is used as input. Similarly, T s2,n
k is

an activation of the k -th hidden unit of the n-th layer from the trained DBN
when the image patch vs2 (x) from the T2 image is used as input. Js1

k and Js2,n
k

are the analogous activations calculated from the PD image.

2.4 Random Forest Training and Prediction

We have chosen to use a random forest [12] for supervised classification because
random forests have been successfully used for MS lesion segmentation using
hand-crafted features [2], and because random forests are able to provide infor-
mation on the relative importance of the features used. We construct a random
forest consisting of 30 randomized binary decision trees with a maximum depth
of 20. We use the same structure for the random forest as used for previous work
[2] in MS lesion segmentation, which may not necessarily be optimal for our
learned features, but should be sufficient for a proof-of-concept. As described
above, we collect feature vectors from image patches inside and outside of the
lesion mask of each labeled image. The information gain is used to measure the
quality of a split. To segment the lesions in a new image, a feature vector for
each voxel is computed using (2) and voxel-wise classification is performed by
propagating the computed feature vectors through all the trees by successive ap-
plication of the relevant binary tests. The final posterior probability is estimated
by averaging the posteriors from every leaf node in all trees.

3 Experiments and Results

To evaluate the segmentation performance using the automatically learned fea-
tures, we used a validation procedure in which we varied the amount of unlabeled
data (100, 400, 700, 1000, and 1400 cases) used for training the RBMs and DBNs,
while keeping the labeled (100 cases) and test images (50 cases) the same, and
compared the automatic probabilistic segmentations to the binary segmenta-
tions by the experts. The parameters for training the RBMs and DBNs were
kept consistent for all experiments. We used three measures for comparing seg-
mentations: the Dice similarity coefficient (DSC), the true positive rate (TPR)
and the positive predictive value (PPV) [1,13]. To produce binary segmentations,
we thresholded the probabilistic segmentations using a visually derived value of
0.4. Since relative segmentation accuracy generally increases with lesion load,
we stratified the cases into 5 lesion load categories for interpreting the results.
An example of a segmentation result with a larger lesion load is shown in Fig. 2.

Table 1 summarizes the segmentation performance as measured by the DSC.
For all of the lesion load categories, there is an apparent trend toward greater
accuracy with an increase in the number of unlabeled training images. The im-
provement is monotonic up to 700 cases, except for a slight aberration in the
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Fig. 2. Probabilistic segmentation example. (a) T2 input image, (b) PD input image,
(c) probabilistic segmentation result, (d) ground truth. DSC = 73.15%.

Table 1. DSC results (%) calculated on 50 T2/PD test pairs. Ten T2/PD pairs were
used for each lesion load range and average scores were computed. The number of
unlabeled images used for feature learning was varied, while the supervised training
set was fixed at 100 T2/PD pairs. There is an apparent trend toward improved accuracy
with a greater number of unlabeled training images.

Lesion load (1000×mm3)

Number of cases (number of patients) 0.0-4.0 4.0-7.8 7.8-14.7 14.7-28.5 28.5+

100 (45) 12.8 32.7 45.2 51.2 51.4

400 (152) 12.1 34.2 48.1 54.8 55.3

700 (264) 12.8 35.5 49.0 56.3 56.5

1000 (384) 12.2 34.2 47.8 55.1 55.8

1400 (532) 14.0 36.2 49.6 55.7 55.4

lowest lesion load category. However, in all categories, the DSC decreased slightly
when using 1000 cases as compared to 700 cases. This may be a problem arising
from some unusual similarities between some of the 700 unlabeled cases, the
labeled cases, and test images, leading to over-fitting, which may be determined
by further experiments with multiple randomizations.

To compare fairly with other state-of-the-art methods [2,13,14], we selected
38 cases from our test set so that the range in lesion load (128 mm3 to 20695
mm3) is similar to that of the data set used for evaluation in [2,13,14] (105 mm3

to 22542 mm3). Table 2 shows the performance statistics for the other methods
and our own, using the features learned from 1400 cases, and demonstrates that
our method is highly competitive in accuracy, although the use of different data
sets only allows for an indirect comparison. The lower PPV value suggests that
our model appears to under-segment the lesions compared to the other methods.

Finally, we examined the training results of the random forest to determine
which sets of features (intensity, RBM, DBN first layer, DBN second layer), and
which MR channel were the most important. Table 3 shows the relative dis-
criminative power of each category of features as represented by the percentage
of nodes in which the category of features was selected by the random forest.
These results suggest that spatial features were much more important (96.9%)
than intensity features (3.1%) for distinguishing between lesion and non-lesion
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Table 2. Average TPR/PPV/DSC results (%). Our method is compared to three
state-of-the-art methods (2008: Souplet [14], 2011: Geremia [2], 2013: Weiss [13]). Note
that DSC measures were not available in [14,2], and our data set was different which
only allows for an indirect comparison.

Souplet [14] Geremia [2] Weiss [13] Our Method

TPR PPV TPR PPV TPR PPV DSC TPR PPV DSC

19 ± 14 30 ± 16 39 ± 18 40 ± 20 33 ± 18 37 ± 19 29 ± 13 58 ± 17 35 ± 24 38 ± 19

Table 3. Relative discriminative power (%) of the features used for voxel-wise clas-
sification as determined by the random forest. The percentages indicate the relative
frequency each category of features was selected when training the random forest using
the features learned from 1400 unlabeled cases.

T2 T2 T2 DBN T2 DBN PD PD PD DBN PD DBN

intensity RBM Layer 1 Layer 2 intensity RBM Layer 1 Layer 2

1.3 14.9 17.7 19.0 1.9 14.3 15.0 16.0

voxels. The spatial features computed from the second layer of DBNs were se-
lected slightly more often (35.0%) than those from the first layer (32.7%) and
the RBMs (29.2%), but the RBM contribution still seems significant. The fea-
tures learned from T2 images were selected slightly more often (51.6%) than the
features learned from PD images (45.3%).

4 Conclusion and Future Work

We have presented a new MS lesion segmentation method based on automatic
feature learning from unlabeled images. Using a multi-scale RBM/DBN frame-
work, we showed that the automatically learned features can be highly com-
petitive to hand-crafted features for subsequent use in the supervised training
of random forests, and that adding more unlabeled images generally increases
segmentation performance, with the main advantage that minimal manual effort
is involved. The main current limitation is the high dimensionality of the feature
vectors used for training the random forest, which is the reason we only used
4000 patches per labeled image. This limitation is more critical than the small
number of patches used for RBM and DBN training, because much fewer labeled
images are typically available. Future work would include improvements in train-
ing efficiency for the RBMs, DBNs, and random forests in order to use a greater
number of sample patches for both the unsupervised and supervised stages. An-
other limitation is that although we have shown that increasing the amount of
unlabeled training data generally increases segmentation performance, the inter-
actions between the unlabeled, labeled, and test data are poorly characterized
and deserve further investigation (for example, by varying the amount of labeled
data). In addition, our model can likely be further optimized, for instance by
tuning the deep learning and random forest parameters, and adding more layers
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to the network. Despite the limitations, we believe we have demonstrated the
potential for unsupervised feature learning in MS lesion segmentation.
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Abstract. Acquisition of the fetal abdominal standard plane (FASP)
is crucial for prenatal ultrasound diagnosis. However, it requires a thor-
ough knowledge of human anatomy and substantial experience. In this
paper, we propose an automatic method to localize the FASP from US
images. Unlike the previous methods that consider simple low-level fea-
tures such as Haar features, we exploited the deep convolutional neural
network to automatically learn the latent representation. In addition, we
adopted the novel knowledge transfer method to enhance the learning
performance by making use of the knowledge obtained in other domain.
Experimental results on 219 fetal abdomen videos showed that the clas-
sification accuracy of our method was above 90%, outperforming other
methods by a significant margin.

1 Introduction

Acquisition of the fetal abdominal standard plane (FASP) is crucial for the
biometric measurements and ultrasound (US) diagnosis. In clinical practice, the
FASP is manually acquired in the presence of three key anatomical structures
(KASs): stomach bubble (SB), umbilical vein (UV), and spine (SP) located in
the region of interest (ROI) by experienced clinicians [1]. However, this process
requires a thorough knowledge of human anatomy, which makes it challenging for
novices and time-consuming for experts. Hence, the development of automatic
methods for localizing the FASP would enhance the ability of non-experts to
operate US devices and improve the examination efficiency for experts. However,
this task is very challenging for several reasons. First, the FASP often has high
intra-class variations due to the artifacts, deformations, different fetal postures
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(a) (b) (c)

Fig. 1. (a) Fetal abdominal anatomy, (b) True FASP, (c) False FASP with similar
anatomical structure GB and IC (ROI marked with green rectangle)

and scanning orientations. Second, as shown in Fig. 1, large numbers of regions,
e.g. shadows, abdominal aorta (AO), gall bladder(GB), intestinal canal(IC) and
inferior vena cava (IVC), often carry similar appearance to the KASs.

A few recent studies have contributed to the automatic localization of stan-
dard planes from 2D US images. Zhang et al. [2] proposed to select standard
planes of gestational sac from US videos based on cascade AdaBoost classifier.
Kwitt et al. [3] presented a kernel dynamic texture (KDT) model to localize
target structures from US videos acquired from phantoms. Yang et al. [4] pro-
posed a radial component-based detection (RCD) framework to identify FASP
by incorporating the prior geometric knowledge into the detection procedure.

Although previous researchers presented their efficacy in localizing standard
planes from 2D US images, the main limitation of previous works was that
they considered only simple low-level features such as Haar features by obser-
vation and experiences. Recently, there was a surge interest of deep neural net-
works which achieved great success in object recognition with expressive power
for feature representation [5]. Instead of manually designing a feature detector
according to different task-specific problems, the latent representation learned
from deep neural networks can better re-apply to generic tasks across different
domains [6]. Another limitation of previous works was that the relatively insuf-
ficient training data sets in medical domain may lead to the overfitting problem
and degrade the learning performance. Knowledge transfer has been proved to
address this problem and improve the performance of learning in one domain of
interest by making use of the knowledge obtained in another domain [7].

Motivated by the recent works [5,6], we exploited the deep learning method
to learn the powerful and discriminative features automatically. Specifically, the
supervised deep convolutional neural network (DCNN) implemented by the Caffe
framework [8] was utilized to train a robust classifier for the localization of FASP
from 2D US images. DCNN trained on large auxiliary data could disentangle
various factors accounting for recognition and help to initialize the parameters of
fine tuning, we combined the knowledge transfer into our framework. To our best
knowledge, this is the first work that considers deep learning for the localization
of standard planes from US images. Our experimental results on 219 videos prove
the effectiveness of the proposed methods.
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2 Methods

The pipeline of the proposed method is shown in Fig. 2. First, the DCNN classi-
fier was trained on the labelled ROIs extracted from the training images. Second,
given a test image, the probability map p was produced by the model averaging
technique. The probability map was further smoothed by bilateral filter for out-
lier elimination. Finally, the test image was classified as a FASP when the score
generated by performing the non-max suppression on the smoothed probability
map is larger than one threshold value.

Fig. 2. The pipeline of the proposed method

2.1 The Architecture of DCNN

A DCNN is a feed-forward neural network comprised of several pairs of convolu-
tional, max-pooling and normalization layers, followed by several fully connected
layers. Due to the limited number of medical training data, we first transferred
the model trained on ImageNet [8] into our DCNN architecture and subsequently
refined this model according to our specific task. The DCNN architecture used
in this paper is shown in Table 1 (activation, padding and dropout layers are

Table 1. Architecture of the deep neural network

Layer Feature maps Kernel size Stride Group

input 227x227x3 - - -
C1 55x55x96 11 4 -
M1 27x27x96 3 2 -
N1 27x27x96 5 - -
C2 27x27x256 5 - 2
M2 13x13x256 3 2 -
N2 13x13x256 5 - -
C3 13x13x384 3 - -
C4 13x13x384 3 - 2
C5 13x13x256 3 - 2
M5 6x6x256 3 2 -
F6 1024 - - -
F7 256 - - -
F8 2 - - -
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not shown). The convolution layers (C) connect the local receptive field of the
former layer, the max-pooling layers (M) partition the reception field into non-
overlapping regions and output the maximum value, and the response normal-
ization layers (N) prevent the neurons from saturating. F represents the fully
connected layer. The final layer is the output layer with softmax function for
classifying.

2.2 DCNN Fine Tuning with Knowledge Transfer

Although the deep neural network has the advantages of learning the powerful
feature representations, with limited training data in medical domain, fully-
supervised deep architectures will generally overfit the training data and thus
degrade the learning performance. Previous studies [6,9] have indicated that the
pre-trained model in other domain could well initialize the training of the DCNN
in one domain of interest. But how to adapt it into medical applications with
knowledge transfer hasn’t been well exploited. In this paper, we first initialized
the parameters of the DCNN layers using the pre-trained model. This process can
be seen as a supervised pre-training prior, which disentangled variation factors
for our specific task of FASP localization. Then the DCNN was further fine tuned
on the training data in a supervised way using the softmax regression method
defined in Eq.(1).

p(r = j|f) = eo(fj)∑k
c=1 e

o(fc)
(1)

Where o(fj) is the output of neural network, and p(r = j|f) is the predicted
probability result for the jth class given the input feature vector f . Note that
such fine tuning process converged much faster than the randomly initialized
DCNN.

2.3 FASP Localization with Pre-trained DCNN

Given the input test image I, the probability map p was produced by the trained
DCNN classifier in a sliding window way. Specifically, each sliding window was
augmented by cropping the center and corners of the sliding window as well as
its mirrored versions, resulting in 10 inputs to the DCNN. The final score of the
sliding window was obtained by averaging the scores of these 10 inputs. Ideally,
we want p to be zero everywhere except at the center of the true ROI of the FASP,
but it could be noisy in practice. In this regard, p was further smoothed with
a bilateral filter. Then the maximum probability value at the position Cm was
calculated by performing the non-max suppression on the smoothed probability
map ps, defined in Eq.(2). If ps(Cm) was larger than the threshold value T
obtained by the cross validation (T = 0.68 in our experiments), the test image
was regarded as FASP, or non-FASP if smaller.
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ps(x, y) =

∑
xi,yi∈Ω p(xi, yi)wi∑

xi,yi∈Ω wi

wi = fr(||p(xi, yi)− p(x, y)||2)gs(||xi − x||2 + ||yi − y||2) (2)

Cm = argmax
x,y

ps(x, y)

Where (x, y) is the pixel coordinate, Ω is the window centered at (x, y), fr is
the range smoothing kernel, gs is the spatial smoothing kernel.

3 Experimental Results and Discussion

Dataset In order to train the DCNN classifier, we first generated the training
samples (1911 positive and 3160 negative samples) by manually extracting the
ROI of fetal abdomen from the expert-annotated US images. Note that some of
the training samples were further rotated and mirrored to augment the training
database. In addition, 219 videos with total 8718 US images were obtained for
test by performing the conventional US sweep on the pregnant women(fetal ges-
tational age from 18 to 40 weeks). The testing images were also manually labeled
to obtain 1588 FASPs and 7130 nonFASPs for the performance evaluation by a
clinical radiologist with more than five years of experience in obstetrics US. All
the images and videos used in our experiments were acquired using a Siemens
Acuson Sequoia 512 US scanner.

Qualitative Performance Evaluation. In order to show the feature represen-
tation power of the DCNN, we first illustrate the automatically learned features
of the intermediate layers by reducing the dimensions of the features utilizing the
Barnes-Hut Stochastic Neighbor Embedding(BH-SNE) method [10]. As shown
in Fig. 3 (a) and (b), the low inter-class difference between FASP and non-FASP
makes the classification very challenging. However, Fig. 3 (c) and (d) show that
the automatically learned features with high level information make it easier
to classify the FASP and nonFASP. This result visually certified our hypoth-
esis that extracted features encoding high level information could disentangle
the variation factors and benefit more to our task than using the original data.
Fig. 4(a) and (b) show two typical FASPs correctly classified by our method,
where the KASs including UV, SB and SP are contained. Fig. 4(e) and (f) are
the corresponding probability maps of Fig. 4(a) and (b), respectively. Fig. 4(c)
shows one false FASP classified by our method, due to its similar appearance
with the true FASP.

Comparison of Quantitative Performance. We then compared the perfor-
mance of our method on the US images and videos with the state-of-the-art
method [4]. For the localization of FASP from one video, the US image of the
highest score is selected as the FASP. In [4], three Random Forests Classifiers
trained on Haar features were used to detect the KASs: UV, SB and SP sepa-
rately. A novel radial component-based model (RCM) was incorporated in the
detection procedure to improve the performance. In order to show the efficacy of
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Fig. 3. Feature embedding and visualization (red and blue points represent FASP and
non-FASP respectively). (a) raw training data (b) raw testing data (c) F7 layer of
training data (d) F7 layer of testing data.

(a) (b) (c)

(e) (f) (g)

Fig. 4. Examples of FASP localization: the first row is original US images, the second
row is the corresponding probability maps(the color bar indicates the probability value).
(a)-(b) are the true FASPs, (c) is the false FASP.
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Table 2. Results of FASP Localization in US Videos and Images

Method Accuracy (images) Accuracy (videos)

DCNN with pre-train 0.910 0.904
DCNN without pre-train 0.857 0.822

RCD[4] 0.775 0.762
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Fig. 5. Precision-recall plane (left) and ROC curve (right) of different methods

the knowledge transfer strategy employed in our method, we further compared
the performance of our method with the DCNN method without using the pre-
trained parameters. We computed the following performance measures: recall
(R = NTP /(NTP + NFN )), precision (P = NTP /(NTP + NFP )) and accuracy
(A = (NTP + NTN )/N), where NTP , NTN , NFP and NFN are the number of
true positives, true negatives, false positives and false negatives, respectively; N
is the number of total test samples. The Precision-Recall (PR) and Receiver Op-
erating Characteristic (ROC) curves are shown in Fig.5. Our proposed method
(pre-trained DCNN) achieved the best performance and the result of the DCNN
method without pre-training is better than the RCD method, which proved the
efficacy of both the deep learning algorithm and the knowledge transfer method.
As shown in Table 2, the classification accuracies of the pre-trained DCNN on
testing images and videos are 0.910 and 0.904, respectively, which significantly
outperformed the state-of-the-art method [4]. In addition, the results shown
in Table 2 further demonstrated that the pre-trained DCNN with knowledge
transfer outperformed the DCNN without pre-training by a large margin. It also
indicates that the knowledge transferred from related domain can benefit our
specific task when limited data is available.

4 Conclusions

In this paper, we proposed a deep learning based method to automatically local-
ize the FASP from US images. This method can automatically learn the latent
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representation information instead of using the low-level features by observations
or experiences. We further adopted the knowledge transfer method to enhance
the learning performance by making use of the knowledge learned from other
domain. Experimental results showed the efficacy of our method. In the future,
we will apply this framework to the automatic localization of other ultrasonic
standard planes.
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Abstract. Ultrasound diagnosis and therapy is typically protocol driven
but often criticized for requiring highly-skilled sonographers. However
there is a shortage of highly trained sonographers worldwide, which is
limiting the wider adoption of this cost-effective technology. The chal-
lenge therefore is to make the technology easier to use. We consider
this problem in this paper. Our approach combines simple standardized
clinical US scanning protocols (defined by our clinical partners) with ma-
chine learning driven image analysis solutions to enable a non-expert to
perform ultrasound-based diagnostic tasks with minimal training. Moti-
vated by recent work on dynamic texture analysis within the computer
vision community, we have developed, and evaluated on clinical data, a
framework that given a training set of Ultrasound Sweep Videos (USV),
models the temporal evolution of objects of interest as a kernel dynamic
texture which can form the basis of a metric for detecting structures of
interest in new unseen videos. We describe the full original method, and
demonstrate that it outperforms a simpler recently proposed approach
on phantom data, and is significantly superior in performance on real
clinical data.

1 Introduction

Compared with other imaging modalities, current advantages of ultrasound (US)
including absence of adverse effects, lower cost, real-time acquisition and porta-
bility, have encouraged wide use of the technology for diagnostic and therapeu-
tic purposes. Skilled operators are adept at both guiding the transducer to the
correct diagnostic plane as well at interpreting often complex sonographic pat-
terns. A non-expert finds both tasks hard. The medical image analysis field has
worked hard to develop automated solutions to the second step (quantification).
To address the former, 3D ultrasound helps to some extent in that it simpli-
fies acquisition, but shifts the burden of finding the diagnostic plane to finding a
plane in an ultrasound volume and a number of recent papers have looked at this
problem e.g. [1]. Image analysis to assist in the acquisition stage for 2D scanning
is a largely unexplored area, other than the recent work [2] which was developed
in parallel to our own (we compare with this work later in this paper). Here the
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(a) Proposed Approach (b) Conventional Approach

Fig. 1. User follows a simple scanning protocol for automated analysis to find the SOI
(a). Conventional ultrasound scanning protocol where user scans over multiple paths to
locate the best visual representation of the SOI where it is saved for further analysis (b).

general problem can be posed as, given an ultrasound video sweep (USV), de-
fined by a standardized clinical protocol, identify video segments which contain
the structure of interest (SOI). This approach is illustrated schematically in Fig.
1a for obstetrics scanning and compared with conventional scanning in Fig. 1b.

While this is a special case of general ultrasound use, many clinical applica-
tions in ultrasound, of which fetal biometry analysis is just one, can be defined
by simplified scanning protocols which can be readily learnt by a non-expert
sonographer. While the work of Kwitt et al. [2] considered a related technical
approach to the one we present, it was only applied to phantom data, and was
not taken through to consideration of real clinical use or evaluation. The latter
is one of the contributions of our work and to our knowledge we are the first to
demonstrate clinical applicability. Compared to [2], the technical contributions
of this paper are to employ an extended image processing pipeline which includes
a pre-processing filtering stage and a more robust distance metric, both of which
turn out to be critical for good performance on clinical data.

2 Method

The steps are illustrated schematically in Fig. 2. First, the user acquires a USV
following a simple and repeatable protocol, such as in Fig. 1a. The protocol used
is application dependent in general (see Experimental section for the ones used in
our work). USVs are then pre-processed as explained in section 2.1 to enhance
acoustically significant images. Dynamic Texture model parameters are then
estimated for segments of the enhanced video and a distance metric is computed
to compare video segments. A classifier is then trained on the distance metric
and evaluated on unseen data (we used SVM but other classifiers could have
equally been used). Details of each step are given below.
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Fig. 2. First the video is filtered and divided into overlapping sub-sequences. Dynamic
texture model parameters are then learnt based on appropriate features (pixel values
in this case) followed by classification.

2.1 Pre-processing

Pre-processing involves masking the USV frames followed by downsapling using a
Gaussian pyramid reduction method for computational efficiency. Furthermore
as simple edge detection methods are too sensitive to speckle in ultrasound
images, local phase based filters are used for detecting intensity invariant features
as initially described in [3], to enhance discrimination between frames with and
without SOI. This filtering process produces a feature symmetry map of locations
with high amplitude as a result of the product of the local phase symmetry
and the local energy. For the clinical application considered in this paper, this
combination can nicely discriminate between the fetal skull and the soft tissue
objects as indicated in Fig.3. Thus an isotropic Gaussian derivative filter was
used with it’s parameter σ in a range of 10, 14 and 18 pixels, and local phase
symmetry and local energy are both calculated using the monogenic signal [4]. It
is important to note that the values for σ were chosen to correspond to the size of
the features of interest, in pixels, and may require tuning for other applications.

2.2 Detecting Sections of Interest in an USV

To model the statistical properties of sequences of multivariate observations, it is
generally assumed that each observation is correlated to some underlying latent
variable, x, that evolves over the duration of the sequence. Following the system
identification of the dynamic texture (DT) model in [5], pixel intensities in each
frame are modeled as the output of a linear dynamical system (LDS). In this
model the appearance of each video frame is determined through the observed
variable denoted as y, and the motion and dynamics in the video over a given
time is determined through the hidden-state variables denoted as x which are
sampled from a Gauss-Markov process. In such a model the observed frame at
any given time can be constructed from a linear combination of the hidden state
variables. Therefor given an ultrasound sequence S of T video frames, let S =
[y1, ...,yT ], where yt ∈ R

d is the frame observed at time t. It is assumed that
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at each time instance t, a noisy version of the image can be measured, y(t) =
S(t)+w(t), wherew(t) ∈ R

d is an independent and identically distributed (i.i.d.)
sequence drawn from a known distribution, resulting in a positive measured
sequence y(t) ∈ R

d for t = 1, ..., T . The evolution of an LDS can be modelled as:{
xt+1 = Axt + vt

yt = Cxt +wt
(1)

Here xt ∈ R
T is the state of the LDS and yt ∈ R

d is the observed pixel intensities
at time t. Matrix A ∈ R

T×T is the state transition matrix that describes the
dynamics of the state evolution and C ∈ R

d×T is the output matrix. We assume
vt ∼ N(0, I) and wt ∼ N(0,R) are the state and observation noise which we
argue to be a valid assumption due to our Gaussian pyramid reduction approach.

In a linear system such as (1), the output matrix C can be estimated via
singular value decomposition of observation matrix y, where C can be restricted
to the N largest eigenvalues. However here a kernelized version of the DT model
known as KDT is used where the evolution of the hidden states of the model are
kept linear but in order to capture the dynamics of the video the output matrix
C is replaced by a non-linear observation function C : RT → R

d. Therefore given
the same ordered US sequence S = [y1, ...,yT ] and a kernel function k(y1, y2)
with associated feature transformation < φ(y1), φ(y2) >, the c-th eigenvector vc

can be used to obtain the c-th kernel principal component in the feature space:

vc =

T∑
i=1

αi,cφ(yi) (2)

where αi,c represents the i-th component of the c-th weight vector and αc =
1√
λc
vc, assuming the eigenvectors are sorted in descending order of the eigen-

values {λc}Tc=1. Here λc and vc are the c-th largest eigenvalue and eigenvector
of the kernel matrix K. Finally the sequence of hidden states X and the state
transition matrix A can be estimated as

X = αᵀK
A = [x1, ...,xT−1][x0, ...,xT−2]

† (3)

The reader is referred to [6] and [2] for a more detailed explanation of the method
as well as the estimation of the state and observation noise.

2.3 Distance Metrics

Given a KDT model estimate for each sub-sequence, a suitable metric now needs
to be defined to assess similarity between any two sub-sequence models. For this
we deviate from [2] in using the Binet-Cauchy (BC) singular value kernel [7],
which empirically we have found performs significantly better than the Martin
Distance (MD) used in [2] as shown in the next section. A technical report on
various metrics that could be utilized can be found in [8]. BC kernels were in-
troduced in [7] as a class of metrics for LDSs. It has been shown that trace
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Fig. 3. Filtered positive (top row) and negative (bottom row) frames. The Local
Energy, Phase Symmetry and the product of the two filters are shown.

kernel can be used for comparing two LDS models M1 and M2 (represented
by their model parameters), with corresponding sequences {yMi

t }Tt=1 which have
the same underlying noise process. This was later extended for Non-Linear Dy-
namical Systems (NLDS) as follows;

KNLDS(M1,M2) := Ev,w

[ ∞∑
t=0

λtk(y
1
t ,y

2
t )

]
, (4)

where λ is a weight factor between 0 and 1 and E is expected value of the infinite
sum of inner products with respect to the joint probability distribution of vt and
wt. Thus the BC trace kernel for NLDS is defined as

KNLDS(M1,M2) = xᵀ
0P̄x

ᵀ
0 +

λ

1− λ
trace(QP̄+R) (5)

where x0 is the initial state of the system, P̄ =
∑∞

t=0 λt(A
1
t )

ᵀFA2
t , F is the

inner product matrix between all the KPCA components and Q and R are the
state and output covariance matrices. To remove the dependency on the initial
state and the noise process, [9] also proposed the BC maximum singular value
kernel for NLDSs as Kσ

NLDS = max σ(P̄), where σ represents the singular values
kernel, to take into account only the dynamics of the NDLS. Thus a normalized
kernel of the similarity values can be constructed such that K(M1,M2) = 1 if
M1 = M2 as

K(M1,M2) =
K(M1,M2)√

K(M1,M1),K(M2,M2)
(6)

A distance can now be computed as d(M1,M2) = 2(1 − K(M1,M2)) and
classification is then carried out using these values. For further detail regarding
this metric the reader is referred to [7, 8].

3 Experiments

Experiments have been designed to illustrate the capabilities of the proposed
method; one on phantom data, and one on clinical data. The phantom data used



138 M.A. Maraci et al.

Fig. 4. Distance matrices comparing the 12 videos (sequences 1 ot 6 contain fetal head
structures) with each other where 1 indicates perfect match. Martin distance (left) and
Binet-Cauchy singular value kernel (right).

in this study for comparison purposes is kindly provided by the authors of [2]
and enables direct comparison with that work. The clinical data was generated
specifically for this paper and consisted of two 2D fetal USVs each acquired
from 35 subjects. Clinical data acquisition was carried out using a mid-range US
machine (Philips HD9 with a V7-3 transducer) by an experienced obstetrician
who was asked to follow a simple scanning protocol of moving the ultrasound
probe from bottom to top of the abdomen in approximately 6 seconds.

Phantom Study Comparison: This experiment allowed to systematically compare
the Martin distance (MD) used in [2] with the BC trace kernel distance proposed
in our work on phantom data. We re-implemented the method described in [2]
without applying our pre-processing step to learn the MD model parameters and
to carry out classification. As in [2], the experiment was repeated to vary the
number of LDS states. Average Precision (AP), mean AP and mini/max AP are
reported with the best threshold for the precision/recall value. Furthermore to
visually demonstrate the performance of the two metrics on our dataset, 12 sub-
sequences of which the fist 6 contain a fetal skull were selected and their system
parameters were estimated following the procedures outlined in section 2. Fig.
4 illustrates the similarity kernels calculated between these sequences using the
two metrics. Values are normalised from 0-1 where 1(red) indicates exact match.
As it can be seen, MD incorrectly indicates relatively high similarity between
sequences of different kind. Please refer to the electronic copy for color encoding.

Clinical Data Comparison: A similar experimental protocol to the phantom
study comparison was followed for the clinical data evaluation with the follow-
ing changes. The goal here was to find the position of the fetal head. Clinically
it is important to know if the fetal head is upwards facing (breach) or down-
wards facing (not) and the idea of this protocol was to define a simple way to
determine this from a single ultrasound sweep. In this case the SVM classifier
was trained to identify sequences of frames that contained the fetal skull. For
the purposes of measuring the performance of the classifier, the average preci-
sion (AP) value was calculated for each classification outcome as before, and
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Table 1. Classification on the phantom dataset(a) and the raw(b) and pre-processed(c)
clinical datasets using 10-fold cross validation.

(a) Phantom Study Comparison

State mAP min/max AP P/R, α=0.05
(n) (%) (%) (%)

Dm 2 45.24 08.50/72.92 53.35/45.25
5 51.14 18.21/84.49 45.62/50.39
8 31.99 01.19/72.41 61.89/34.04

Db 2 62.18 24.86/80.76 67.42/59.87
5 67.98 27.70/88.32 69.85/68.30
8 70.14 26.77/90.44 77.43/51.79

Table Keys

Precision TP/(TP+FP)

Recall TP/(TP+FN)

AP Average Precision
mAP Mean Average Precision
P/R Precision/Recall
Dm Martin Distance Metric
Db Binet-Cauchy

Singular Value Metric
mCA mClassification Accuracy

(b) Clinical Data (no preprocessing)

State mAP min/max AP mCA
(n) (%) (%) (%)

Dm 2 23.90 20.29/25.90 65.82
5 21.47 20.33/22.86 67.53
8 23.84 22.68/26.32 63.56

Db 2 87.26 79.60/91.37 82.80
5 90.56 86.96/93.91 85.03
8 76.31 57.70/87.89 77.02

(c) Clinical Data (preprocessed)

State mAP min/max AP mCA
(n) (%) (%) (%)

Dm 2 17.28 13.95/19.57 61.79
5 29.51 26.90/33.35 44.72
8 20.70 19.03/21.95 62.72

Db 2 95.85 94.14/96.80 90.21
5 86.64 79.15/95.14 78.55
8 72.81 49.78/94.61 81.24

to summarise this statistics, the mean average precision (mAP), and the mean
classification accuracy (mCA) are calculated over a 10-fold cross-validation.

4 Results

Phantom Study: Results from the phantom study experiment are summarised
in Table 1a. Consistent with [2] for the Martin distance, a 5-state KDT model
yielded the best performance. The highest mAP achieved on the phantom dataset
using the Martin Distance was 51.14% (5-state KDT model). In general, results
obtained using the BC similarity metric were much higher compared to those of
the Martin distance. The highest mAP achieved using the BC metric was 70.14%
(8-state KDT model).

Clinical Study: Tables 1b and 1c summarise classification results for sub-sequences
of 20 frames long. As shown in table 1b without the pre-processing step, the best
results were achieved with a 5-sate KDT model (mAP 90.56%, mCA 85.03%) in
comparison to when the frames are pre-processed where the motion in the video
is best described with a 2-state KDT model (mAP 95.85%, mCA 90.21%) using
the BC singular value kernel. Generallywhen filtering is not applied, increasing the
number of states from 2 to 5 increases the classification accuracy however a further
increase to 8 states leads to a decrease in performance.This can be explained by the
fact that when KPCA is used, the main dynamics of the video are best described
using the first 2/5 eigenvalues for the filtered/raw frames respectively, therefore
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additional eigenvalues capture a very small portion of the variation in the feature
space, thus resulting in noisier KDT model parameter estimates.

5 Discussion and Conclusion

Ultrasound image acquisition and interpretation can be a challenging task for
non-experts. We have tackled this obstacle and as the results demonstrate our
proposed method outperforms previous work on structure detection in ultra-
sound videos. In summary, we have proposed a general framework for ultrasound
video analysis, motivated by our interest in ultrasound in pregnancy and peri-
natal care, which couples standardised, and possibly non-conventional scanning
protocols, with image analysis methods designed to extract predefined useful
information from ultrasound videos. We emphasise that the accuracy achievable
in other applications will be dependent on both the choice of scanning protocol
and to a lesser extent (in our experience at least) on the ultrasound equipment.
Our technical interest is extending this work to detect other structures. In col-
laboration with clinicians in Africa, we are exploring the role of methodology of
this kind in supporting medical training and roll out of ultrasound services in
rural areas.

Acknowledgments. The authors acknowledge RCUK Digital Economy Pro-
gramme grant number EP/G036861/1 (Oxford Centre for Doctoral Training in
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Abstract. The early detection of Alzheimer’s disease (AD) is a key
step to accelerate the development of new therapies and to diminish the
associated socio-economic burden. To address this challenging problem,
several biomarkers based on MRI have been proposed. Although numer-
ous efforts have been devoted to improve MRI-based feature quality or
to increase machine learning methods accuracy, the current AD prog-
nosis accuracy remains limited. In this paper, we propose to combine
both high quality biomarkers and advanced learning method. Our ap-
proach is based on a robust ensemble learning strategy using gray matter
grading. The estimated weak classifiers are then fused into high infor-
mative anatomical sub-ensembles. Through a sparse logistic regression,
the most relevant anatomical sub-ensembles are selected, weighted and
used as input to a global classifier. Validation on the full ADNI1 dataset
demonstrates that the proposed method obtains competitive results of
prediction of conversion to AD in the Mild Cognitive Impairment group
with an accuracy of 75.6%.

Keywords: Ensemble learning, Weak classifier, Sparse logistic regres-
sion.

1 Introduction

Alzheimer’s disease (AD) and its prodromal phase, Mild Cognitive Impairment
(MCI), are the most common neurodegenerative diseases affecting elderly peo-
ple. In the early stage of the disease, neural degeneration is subtle making it

� Data used in the preparation of this article were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). Hence,
the investigators within the ADNI contributed to the design and implemen-
tation of ADNI and/or provided data, but did not participate in analysis or
writing of this report. ADNI investigators include (complete listing available at
www.loni.ucla.edu/ADNI/Collaboration/ADNI Author ship list.pdf).

G. Wu et al. (Eds.): MLMI 2014, LNCS 8679, pp. 141–148, 2014.
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difficult to predict which MCI subjects will progress to AD (pMCI) and which
MCI subjects will remain stable (sMCI) during the follow up. Hereon, AD pre-
diction, i.e., AD early detection will address the classification of MCI subjects
into pMCI and sMCI subjects.

Several biomarkers have been proposed to achieve early AD diagnosis [1].
Among them, it has been established that measurements of brain atrophy ex-
tracted from structural MRI are valid markers of early stages of AD [2]. There-
fore, automatic frameworks using MRI-based features have been developed to
achieve computer-aided prognosis [3–5]. One part of these works focused on ad-
vanced machine learning techniques [6] while another part aimed to enhance
the biomarker quality [4, 7]. Among them, patch-based methods [8, 9] demon-
strated competitive AD prediction results. Despite these efforts, the current AD
prognosis accuracy remains around 70%, that suggests the limitation of using (i)
traditional features with advanced learning processes or (ii) high quality features
with basic machine learning methods. In this paper, we propose to combine high
quality biomarkers with advanced learning method to improve AD prediction
accuracy.

To this end, we first propose to extend the patch-based scoring method pro-
posed in [8]. In this approach, the anatomical pattern similarity is estimated
between the MCI test subject and two training populations (i.e., Cognitively
Normal (CN) and AD) using a non-local patch-based scoring method. For each
voxel, a score (i.e., a grade) that measures the proximity to both training pop-
ulations is computed. In [8], the a priori ROI-based strategy focused mainly on
hippocampus and may discard other possible informative anatomical regions.
To overcome this limitation, we propose to score the whole gray matter (GM).
Moreover, to be more robust to intensity normalization discrepancies between
MRI, probabilities are used in place of intensities during patch comparison. Fi-
nally, while a local patch-based strategy is used in [9], a non-local approach is
privileged to better handle inter-subject variability and registration error [8].

Afterwards, an ensemble learning method [10] is considered to efficiently use
the estimated advanced biomarkers. Since the scoring value, assigned to each
voxel of the GM, estimates the proximity to AD and CN, it can be viewed as
the posterior probability of a weak classifier. Combined together, these weak
classifiers form an ensemble that can be used to classify subjects [11]. As noticed
in [2], it appears that AD-related brain alterations are mainly a region-by-region
process. Hence, we propose to further use this clinical knowledge to create atlas-
based anatomical sub-ensembles of weak classifiers before fusing them into in-
termediate classifiers. Finally, to discard brain areas that may not be related to
AD, we propose to select the most relevant anatomical sub-ensembles using a
Sparse Logistic Regression (SLR).

In this work, the contributions are threefold: (i) unlike ROI-based approach,
non-local scoring values are estimated over the whole GM and considered as
weak classifiers; (ii) an advanced ensemble learning technique is used to fuse
these weak classifiers into anatomical sub-ensembles; and (iii) a sparse approx-
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Table 1. Demographic information about the considered study subjects

Pathological group Size Gender (% Female) Age ± SD MMSE± SD

AD 192 48% 75.7±7.6 22.9±3.0
CN 220 49% 76.1±4.9 29.1±0.9
pMCI 166 39% 74.5±7.2 26.4±2.0
sMCI 236 33% 74.9±7.8 27.2±2.5

imation is used to efficiently select and weight the most relevant anatomical
sub-ensembles.

2 Materials and Methods

2.1 The ADNI Dataset and Image Processing

To evaluate the performance of the proposed method, all the subjects with an
available baseline ADNI preprocessed 1.5T MRI scan are used. The considered
dataset is composed of 814 subjects divided into 4 groups AD, CN, pMCI and
sMCI. AD and CN groups are used exclusively as training population during GM
grading step (see 2.3). The size, the genders, the average ages and the average
MMSE (Minimal Mental State Examination) are summarized in Table 1. These
groups are similar to the ones used in [4,7–9]. All 814 MRI were first segmented,
normalized, modulated (correction of volume changes due to the normalization),
and registered into a common space. These processing steps were performed
with the VBM8 toolbox1 added to the SPM8 software2. The resulting images
correspond to tissue-class probability maps in the MNI space. The obtained GM
probability maps are then used as inputs of our GM grading process.

2.2 Method Overview

The framework of the proposed method is summarized here and in Fig. 1. First,
the grading method is applied to all the MCI subjects GM maps using the AD
and CN populations. Second, the grading values obtained over the whole GM
are fused into anatomical sub-ensembles to form intermediate classifiers. Third,
the age-effect is corrected using a control population. Afterwards, SLR feature
selection is applied to select and weight the most relevant intermediate classifiers.
Finally, the selected intermediate classifiers are used to train a global linear SVM
classifier. The methods are detailed in the following sections.

2.3 Weak Classifier Estimation via Whole GM Grading

This work is based on the Scoring by Non-local Image Patch Estimator (SNIPE)
method [8] where a non-local patch-based estimator is used to perform anatom-
ical structure grading. The patch surrounding each voxel of a test subject is

1 http://dbm.neuro.uni-jena.de/vbm.html
2 http://www.fil.ion.ucl.ac.uk/spm

http://dbm.neuro.uni-jena.de/vbm.html
http://www.fil.ion.ucl.ac.uk/spm
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Fig. 1. Overview of the proposed method

involved to estimate the anatomical pattern similarity between the considered
patch and the most similar patches extracted from AD and CN training pop-
ulations. This pattern similarity is quantified with L2-norm between the patch
intensities. The resulting grading value indicates if the considered anatomical
pattern is typical of AD (AD-like) or CN (CN-like) populations. Such values
can be viewed as the posterior probabilities of a weak classifier. In the proposed
method, the grade of each GM voxel is calculated using probability of GM tis-
sue instead of voxel intensities. By using GM tissue probability, our method is
more robust to multi-site MR image acquisition. In addition, in our approach
the grading is performed on the whole GM, and not only in the hippocampal
area. This prevents discarding any relevant information that could be found in
other brain regions.
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2.4 Weak Classifier Fusion into Anatomical Sub-Ensembles

After the grading step, the dimensionality of the weak classifiers space is too
high to be directly used for classification. A straightforward solution is to fuse
the weak classifiers into a global classifier [11]. However, this may lead to a sub-
optimal result since local relevant information may be lost in a high level global
fusion. Additionally, as noticed in [2], AD affects specific regions of the brain in
a typical progressive manner. Therefore, we propose to group the weak classi-
fiers into anatomical sub-ensembles using an atlas-based strategy. An ensemble
learning principle fuses them into intermediate classifiers [10]. The intermediate
classifiers, ci =

1
K

∑
k cw(k), are constructed by an un-weighted vote of the K

weak classifiers cw included in each anatomical sub-ensemble. In this work, the
whole GM is divided into the 116 segmented anatomical regions corresponding
to the Automatic Anatomical Labeling (AAL) atlas [12]. Thus, the grades are
averaged within each anatomical structure and their mean values considered as
predictor values of the 116 ci intermediate classifiers. Since the grades estimate
the AD-related brain anatomical changes, it could be interesting to remove the
normal aging effect from the features used. Moreover, it has been shown that
SNIPE grades are correlated to age [8]. Therefore, as in [13], we used the CN pop-
ulation to correct the age effect on the MCI populations. For each intermediate
classifier, we estimated the age-related effect on the CN population using linear
regression. Intermediate classifiers in the MCI populations were then corrected
using the estimated linear regression coefficients (see [14]).

2.5 Anatomical Sub-Ensemble Selection and Weighting

As shown in [1], anatomical regions may not be similarly impacted by the pro-
gression from MCI stage to the moderate stage of AD. Therefore, using all
the intermediate classifiers could be suboptimal. Moreover, beyond classifica-
tion efficiency reasons and for clinical considerations, it could also be interesting
to know the most impacted brain regions. In this work, we selected the most
relevant anatomical sub-ensembles by using SLR with L1/L2-norm regulariza-
tion [15, 16]. It has been established that combining the two norms take into
account possible inter-feature correlation while imposing sparsity [17]. Addition-
ally, SLR provides a coefficient for each intermediate classifier that represents
its relative importance in the sparse approximation. In our method, these coeffi-
cients are used to weight each corresponding intermediate classifier before global
classification. We used the SLEP package3 to solve SLR. The selected weighted
intermediate classifiers are then used to train a linear SVM as implemented in
LIBSVM4.

2.6 Validation Framework

As is done in [7–9], the classification process is performed using a leave-one-out
cross-validation procedure to avoid bias. To validate the efficiency of our frame-

3 http://www.public.asu.edu/~jye02/Software/SLEP/
4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.public.asu.edu/~jye02/Software/SLEP/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 2. Methods comparison. The used features were corrected for age-effect.

Methods Accuracy (%) Sensitivity (%) Specificity (%)

GM Volume 59.7 47.6 68.2
GM Volume + SLR 70.1 56.0 80.0
GM Grading 67.7 57.8 74.8
GM Grading + SLR 75.6 61.5 85.6

Table 3. Comparison with recently published methods using similar dataset

Method Acc. (%) Sen. (%) Spe. (%)

GM Grading + SLR 75.6 61.5 85.6
GM Volume + SLR 70.1 56.0 80.0
ROI-based SNIPE (hippocampal grading) [8] 71 70 71
Multi-instance learning [9] 70.4 66.5 73.1
Multi-methods [4] 68 67 69
Cortical thickness [7] 67.8 64.6 70.0

work, we conducted several experiments. First, to highlight the relevance of using
high quality features, we compared the efficiency of our framework using volume-
based and grading-based features. For the volume-based approach, we computed
the volumes of each AAL region performing the sum of its corresponding GM
probability values. Second, to measure the contribution of SLR sub-ensemble se-
lection, we tested our framework while removing this step for both volume-based
and grading-based approaches. For the grading step, we used the default param-
eters proposed in [8]. In each experiment, the L1/L2 regularization parameters
for solving SLR were set by searching their optimal values while the penalization
parameter of the SVM was estimated by a grid search and a nested 10-fold cross
validation over the training set.

3 Results and Discussion

The results are summarized in Table 2. First, we notice that using grading-
based features improves the result of the classification compared to volume-based
features with an increase of about 5pp (percentage points). This confirms the
relevance of using high quality features in our method. Second, we observe an
improved accuracy of at least 8pp when performing an SLR feature selection with
both volume and grading. Moreover, compared to hippocampal scoring [8], we
improve the accuracy of 4.6pp using our framework (see Table 3). It is interesting
to note that directly using all the anatomical sub-ensembles (i.e., without SLR)
provided worst results than using only hippocampal grading. However, when
selecting the most relevant anatomical sub-ensembles an important increase is
observed. This indicates that areas other than hippocampus seem to be impacted
at MCI stage. Thus, automatic a posteriori selection of these areas instead of
using predefined ROIs leads to higher accuracy.
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Table 4. 10 first AAL regions selected by SLR and ordered by decreasing weight

AAL-based gyrus:

1. Right middle temporal 6. Left cerebelum
2. Left hippocampus 7. Right inferior frontal
3. Left superior frontal 8. Left medial orbital frontal
4. Right middle cingulum 9. Right hippocampus
5. Left posterior cingulum 10. Left para-hippocampal

As shown in Table 3, our method achieves better accuracy than other state-of-
the-art methods validated on the same ADNI database and with the same unbi-
ased leave-one-out cross-validation process [7–9]. This establishes the robustness
and the efficiency of the proposed framework that combines high quality fea-
tures with an advanced learning method, i.e., sub-ensemble learning based on
constrained weak-classifier-fusion combined with SLR. Additionally, it should
also be noted that even using usual GM volumes as features in our framework
leads to similar or even competitive accuracy as compared to other methods.

Finally, we can note that even though our method is based on one imaging
modality it performs similarly or even better than recent multi-modality methods
[6, 18, 19]. Furthermore, for clinical reasons, it could be interesting to analyze
the anatomical regions selected via SLR. Table 4 presents, on average, the first
selected AAL regions at each run of the leave-one-out cross-validation process. It
appears that some anatomical regions like middle temporal gyrus, hippocampus
and parahippocampal gyrus are included in the presented list. Such structures
are known to be impacted by AD [20]. They are also among the most selected
regions in [7] using cortical thickness features.

4 Conclusion

In this study, we proposed an anatomically constrained weak classifier fusion
classification procedure extending the grading technique presented by [8]. This
work aimed to combine high quality biomarkers with advanced learning method
to improve AD detection at its prodromal stage. We demonstrated through our
experiments that the contributions made to the method proposed by [8] lead to
high classification accuracy for the early detection of AD. Compared to recently
proposed MRI-based prediction techniques, we obtained a very competitive ac-
curacy result of 75.6% for the prediction of AD.
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Abstract. In this work, we present a fully-automatic approach for seg-
menting bone and marrow structures from dual energy CT (DECT) im-
ages. The images are represented using a multi-material decomposition
model (MMD) computed from a triplet of physical materials at two differ-
ent energy attenuation levels. We employ support vector machine learn-
ing to select the most relevant MMD model for the anatomical structure
of interest so that highly accurate segmentation of the said structures
can be achieved. We evaluated our approach for segmenting bone and
marrow structures with varying amounts of metastatic bone disease on
multiple longitudinal follow up patient scans. Our approach shows con-
sistent and robust segmentation despite changes in bone density due to
disease progression, high-density contrast material uptake in neighboring
tissue, and significant metal artifacts.

1 Introduction
Computed tomography (CT) is the frequently used modality for routine diagno-
sis and evaluation of disease progression in patients with metastatic bone cancers.
Accurate extraction of bone and marrow structures is an important first step
for the analysis of abnormalities in the marrow. Although, bony structures can
be detected from single energy CT scans, obtaining highly accurate automatic
segmentation of the same structures [1] is difficult. Dual energy CT (DECT) on
the other hand has been shown to provide good differentiation of bone marrow
and structures in the marrow such as bone edema and bone bruise lesions [1].
In [2], manually selected multi-material decomposition models (MMD) were used
for removing contrast from CT images and for organ segmentation. Our work
automates the MMD model selection and tunes the selected models specific to
the structure of interest such that accurate segmentation can be achieved in the
presence of confounding structures.

Concretely, our approach computes several candidate MMD models from the
DECT image pair. SVM classifiers are trained using the coefficient images ob-
tained from the models and the SVM-MMD model that maximizes the SVM
� Equal contributing.
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margin is selected for generating segmentations on novel images. Previously,
SVM margins were employed for feature selection and disease classification
in [3, 4]. Our work extends this concept to DECT images. Unlike [3,4], in our
work, feature selection refers to selecting a candidate model from among mul-
tiple models where the cardinality of features in all the models is the same,
albeit with different combination of features. Our approach requires training
on utmost a single patient scan and can then be used on scans with vary-
ing amounts of disease and metal artifacts. Finally, our approach makes use
of physical materials such as bone, fat, contrast agent, etc at different en-
ergy levels to formulate the candidate models and therefore, yields intuitively
meaningful models for interpreting the images. For example, the best model se-
lected using our approach for the bone and marrow segmentation consists of
bone −mix1(gastrografin + water) −mix2(hydroxylapatite + water), where
gastrografin is the contrast agent typically used for imaging the patients, and
hydroxylapatite is an important constituent of the bones.

Fully automatic methods based on intensity thresholding such as in [5, 6] are
adversely affected by the presence of high density materials such as contrast in
the bowel. On the other hand, user interaction based methods including [7–9]
require significant user interaction to achieve reasonably accurate segmentation.
Apriori learning-based methods for bone segmentation [10] have been applied
only to single energy CT. Fig. 1 shows example segmentations generated using
robust statistics [8], interactive Grow Cut [9], and our approach SVM-MMD
for a typical case. As seen, our approach generates more accurate segmentation
compared to the other two methods.

(a) Orig (b) Robust Stats (c) Grow Cut (d) SVM-MMD

Fig. 1. Segmentation results with different methods

2 Background

2.1 Dual Energy Computed Tomography

Material differentiation in standard CT is based on the X-ray attenuation caused
by absorption and Compton scattering of radiation by the material in a region
of interest. The attenuation and the resulting CT number (HU) depend on the
material and its density. DECT on the other hand uses two scans at two different
energy levels to achieve material differentiation. Two physical properties that
DECT depends on are the mass attenuation coefficient (μM (E)) of a material
M at a particular energy E and the density ρM of the material. The product of
these quantities is the linear attenuation coefficient μL (E) = ρMμM (E). Linear
attenuation images at arbitrary energy levels can be computed from a pair of
images (ρ1, ρ2) which result in better separation of anatomical structures than
when using the DECT image pairs [11].
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2.2 Multi Material Decomposition Model

While DECT can help to differentiate two elements, it is not sufficient to ob-
tain a good separation of the materials in the human body. This is because,
materials in the human body are often a mixture of more than two elements.
Multi-material decomposition methods have been successfully applied for bone
composition determination [12], and liver fat quantification in [2]. In this work
we use the volume conservation based multi-material decomposition in [2].

The central assumption used in [2] for computing the multi-material decom-
position is that the mixture of materials in the human body behaves as an ideal
solution at a given temperature and pressure, for which volume preservation
applies. In other words, volume of a material mixture equals the sum of the vol-
umes of its constituent parts. Given this, the linear attenuation coefficient of a
mixture μL(E) can be expressed as: μL(E) =

∑S
i=1 αiμL,i(E), where, μL,i(E)

is the attenuation coefficient of the individual materials at a nominal density
ρi which is available from standard tables [13]. αi is the volume fraction of the
constituent materials in the mix and S is the number of materials used, which
in our case is 3. [2] shows that the solution to the above equation when subject
to the constraint

∑
i αi = 1 gives the mixing coefficients of the set of materials.

Geometrically, the volume fractions can be interpreted as the barycentric coor-
dinates of a point μL = (μL(El), μL(Eh)) in two dimensional linear attenuation
coefficient space Λ with respect to a triangle whose vertices are formed by the
coordinates of three materials. We call this triangle, material basis triplet . Given
a material basis triplet, each point in the DECT image can be expressed in the
coordinates of the same triplet using their volume fractions. The triplet, together
with the energy pair form a multi-material decomposition model (MMD).

3 Method

3.1 Support Vector Machine Margin Based Multi-Material
Decomposition (SVM-MMD)

Given a set of examples X = {x1, x2, . . . , xn} which are vectors in some d dimen-
sional space, X ⊆ Rd and their labels {y1, . . . , yn}, SVM projects the data into
a higher dimensional space and finds the best separating hyper-plane classifier
with the largest sample margin. Margin is a geometric measure for evaluating the
confidence of a classifier. Margins have previously been employed to evaluate the
“goodness” of a classifier in the context of active learning-based segmentation
in [14] and for feature selection [15]. Our work complements [15] by extracting
the best combination of a fixed number of features (three for the material basis
and two for the energy pairs).

3.2 Algorithm Description

The algorithm for the SVM margin-based MMD model selection is shown in
Alg. 1. As shown, the inputs to the algorithm are the DECT material den-
sity image pair ρ1, ρ2, the set of J materials M = {s1, . . . , sJ}, P energy levels
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Fig. 2. Points μL in linear attenuation coefficient space Λ (40, 60) for three different
patients. One basis triplet is given in black.

E = {E1, . . . , EP } and the labeled voxels Y = {y1, . . . , yλ}. The output of the al-
gorithm is the SVM model mi with the maximum margin ei and the correspond-
ing multi-material decomposition model Bi = {{sx, sy, sz} , (Eu, Ev)}i, contain-
ing the material triplet {sx, sy, sz} ⊂ M and the energy pair (Eu, Ev) ∈ E2.
Initially, all possible material and energy models are constructed by combining
materials and energy pairs from which the individual linear attenuation coef-
ficient images are computed [line 3]. Fig. 2 shows the distribution of voxels
obtained at energy levels (40, 60)keV and the basis triplet (bone,mix1,mix2).
From these coefficient voxels the volume fractions αi are computed for each voxel
[line 4] and they constitute the input to the SVM classifier. The SVM classifier
is trained on the volume fractions αi to produce the model mi and margin ei
[line 5]. The model with the largest margin is chosen as the best model whose
MMD basis is retained for analysis of novel data [line 7].

Algorithm 1. Multi-material Decomposition Model Selection

input : DECT density pair (ρ1, ρ2), materials M = {s1, . . . , sJ}, energy levels
E = {E1, . . . , EP }, labeled voxels Y = {y1, . . . , yλ}

output: maximum margin SVM model mi, MMD basis model
Bi = {{sx, sy, sz} , (Eu, Ev)}i

1 Construct all feasible MMD basis models B = {B1, . . . , BN}
2 for Basis model Bi ∈ B do
3 Compute linear attenuation coefficient space Λi = Λ(Eu, Ev)i
4 Transform voxels to volume fractions αi using basis {sx, sy , sz}i
5 {mi, ei} ← SVMTrain(αi, Y )

6 end
7 Choose MMD basis model Bi = argmaxi(ei)
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3.3 Segmentation

The selected MMD model together with the corresponding SVM is used to per-
form voxelwise classification. The result of the classification is refined using
morphological opening and closing operations followed by active contour seg-
mentation available in Matlab [16] applied to the 70keV image to produce the
final result. The 70keV image was chosen as the best contrast is obtained in
this energy and is also used in clinic. Although, we chose the active contour
segmentation, note that any segmentation technique can be employed. We have
experimented with the geodesic active contour [17] method available in ITK [18]
and obtained similar results. Currently, we are investigating the use of our tech-
nique with other segmentation methods including Grow Cut. The use of the
SVM output as a likelihood in the segmentation is potential future work.

4 Results and Discussion
4.1 Experimental Setup

DECT imaging was performed with a GE Discovery CT750HD scanner. Eight
patients with multiple follow up scans were used for analysis. Patients had vary-
ing number of follow up scans ranging from one to five resulting in a total of 30
image volumes. All the patients had one or two artificial metal hip prosthesis.
While some of the scans in the patients were subjected to metal artifact reduc-
tion technique to eliminate metal artifacts, others retained metal artifacts. This
increased the complexity and variability in the scans. The ground truth segmen-
tation of the bone and marrow regions were drawn manually and validated by a
radiologist with several years of experience. We used the following materials for
the analysis: air, cortical bone, adipose tissue, hydroxylapatite, mix1 and mix2,
which are respectively hydroxylapatite mixed with water (ratio: 0.6/0.4) and
gastrografin mixed with water (ratio: 0.3/0.7). The energies used for analysis
ranged from 40keV to 140keV .

4.2 Multi-Material Decomposition Selection

Our approach was trained using data from a single patient scan. In order to vali-
date the MMD selection, the SVM training was repeated for all the patient scans
individually using K = 10 fold cross-validation. Our approach always selected
the material basis triplet (bone,mix1,mix2) and the energy pair (40, 60)keV .
This model selection confirms the observation that the scatter plot distribution
of the image voxels in the linear attenuation space is very similar across multiple
patients, as can be observed in Fig. 2. Furthermore, our result suggests that it
is sufficient to train the model from one patient to achieve highly accurate seg-
mentation from multiple patients. The SVM training achieved a cross-validation
accuracy of 92.6% (for just the bone voxels). The SVM parameters γ = 0.05
used in the RBF kernel, and C = 1 have been set empirically.

4.3 Segmentation

The segmentation results obtained from the postprocessed classification were val-
idated by comparing against ground truth masks. The dice overlap scores shown
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Table 1. Dice overlap scores

Scan
SVM Region Robust Grow
MMD Growing Statistics Cut

1 0.87 0.71 0.61 0.67
2 0.88 0.64 0.56 0.66
3 0.87 0.59 0.54 0.76
4 0.86 0.11 0.60 0.71
5 0.85 0.57 0.55 0.70
6 0.87 0.62 0.60 0.69
7 0.83 0.06 0.52 0.56
8 0.79 0.20 0.58 0.45
9 0.84 0.02 0.59 0.54
10 0.84 0.58 0.57 0.53
11 0.86 0.46 0.70 0.59
12 0.79 0.06 0.45 0.57
13 0.75 0.09 0.50 0.57
14 0.82 0.46 0.57 0.59
15 0.80 0.44 0.59 0.64

Scan
SVM Region Robust Grow
MMD Growing Statistics Cut

16 0.68 0.13 0.48 0.52
17 0.69 0.09 0.44 0.57
18 0.68 0.07 0.49 0.56
19 0.59 0.19 0.50 0.51
20 0.84 0.03 0.45 0.56
21 0.84 0.01 0.58 0.61
22 0.86 0.04 0.65 0.70
23 0.85 0.14 0.63 0.68
24 0.48 0.15 0.43 0.52
25 0.50 0.14 0.43 0.58
26 0.55 0.10 0.40 0.61
27 0.52 0.12 0.45 0.48
28 0.68 0.16 0.46 0.53
29 0.73 0.15 0.45 0.52
30 0.70 0.12 0.44 0.60

in Table 1 were obtained by generating segmentations using the SVM model
trained on the first scan of patient 1. We only report the results for patient 1 as
the segmentation accuracies obtained using the other patients were very similar.
Since the training was performed on a small subset of voxels from patient 1’s first
scan, we also report the this scan’s segmentation. We compared the results of
our segmentation approach with region growing available in 3DSlicer [19], robust
statistics segmentation [8], and Grow Cut segmentation [9]. The parameters for
the afore-mentioned approaches were optimized empirically to achieve the best
possible segmentation on patient 1’s first scan at 70keV . Despite subjecting the
results generated using the other methods to the postprocessing, the accuracies
in segmentation were very similar to when not using such postprocessing. Ad-
ditionally, we also compared our segmentation with the Graph Cuts method [6]
using the opensource implementation [20]. However, as the method is only for 2D
images and required significant fine tuning to achieve reasonable segmentation
even for individual slices (parameters needed to be changed for each slice), we
do not report the dice overlap scores and instead show qualitative results.

Fig. 3 shows snapshots of segmentations using the aforementioned methods
including Graph Cuts. As shown, our approach obtains very good segmentation
of the structures for different scans. In addition, it is also fairly robust to the
presence of metal artifacts.

The SVM-MMD approach is a method for selecting the “best” model using
the material basis and attenuation energies for representing the DECT images.
Once the model is learned, any segmentation method can be used either using
the vectorized image representation or the classifier result with its probabilities
applied to a 70KeV image. We have successfully combined the classification result
and the probabilities with both active contours and geodesic active contours and
obtained reasonably accurate segmentation.
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Original Region Robust Grow Graph SVM-
Growing Statistics Cut Cut MMD

(a) Scan1

(b) Scan2

(c) Scan3

(d) Scan4

(e) Scan5

Fig. 3. Comparison of segmentation methods

5 Conclusions

In this work, we presented a SVM margin maximization-based approach for au-
tomatically selecting the “best” multi-material decomposition model from dual
energy CT for structure specific segmentation and combined the SVM learning
based classification with an active contour segmentation to achieve reasonably
accurate segmentations. We evaluated our approach to segment bone and mar-
row structures in multiple patients with more than one follow up scan. We have
shown that our approach achieves consistently reasonable segmentation and ob-
tains more robust segmentation compared to multiple segmentation methods.

References

1. Pache, G., Krauss, B., Strohm, P., Saueressig, U., Blanke, P., Bulla, S., Schäfer,
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Abstract. In neuroimaging studies, high dimensionality and small sam-
ple size have been always an issue, and it is common to apply a dimension
reduction method to avoid the over-fitting problem. Broadly, there are
two different approaches in reducing the feature dimensionality: feature
selection and subspace learning. When it comes to the feature inter-
pretability, the feature selection approach such as the sparse regularized
linear regression method is preferable to the subspace learning meth-
ods, especially in Alzheimer’s Disease (AD) diagnosis. However, based
on recent machine learning researches, the subspace learning methods
presented promising results in various applications. To this end, in this
work, we propose a novel method for discriminative feature selection by
combining two conceptually different methodologies of feature selection
and subspace learning in a unified framework. Specifically, we integrate
the ideas of Fisher’s linear discriminant analysis and locality preserving
projection, which consider, respectively, the global and local information
inherent in observations, in a regularized least square regression model.
With the help of global and local information in data, we select class-
discriminative and noise-resistant features that thus help enhance clas-
sification performance. Furthermore, unlike the previous methods that
mostly considered only a binary classification, in this paper, we consider
a multi-class classification problem in AD diagnosis. Our experiments
on the Alzheimer’s Disease Neuroimaging Initiative dataset showed the
efficacy of the proposed method by enhancing the performances in multi-
class AD classification.

1 Introduction

Previous studies of the computer-aided Alzheimer’s Disease (AD) diagnosis usu-
ally applied the sequential processes of feature extraction, feature dimensionality
reduction, and classifier learning, to make a decision on the clinical status of a
subject, e.g., AD, Mild Cognitive Impairment (MCI), and Normal Control (NC)
[4,14,16,17,20]. In this paper, we focus on the feature selection, which has the
effect of lowering feature dimensionality. Furthermore, unlike the previous meth-
ods that mostly considered only binary classification of either AD vs. NC or MCI
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vs. NC, we consider a multi-class classification problem, e.g., AD vs. MCI vs.
NC, for practical applications. Based on the observation that there are three
or four different clinical status related to AD, i.e., AD, MCI (MCI-Converter:
MCI-C, MCI-NonConverter: MCI-NC), and NC, from a clinical point of view, it
is more practical to build a multi-class classifier.

In neuroimaging studies, while the feature dimension is high in nature, the
available sample size is very limited. It has been always an issue for high dimen-
sionality and small sample size in computer-aided AD diagnosis [5,13,22,23].
Thus, dimensionality reduction by means of either subspace learning or fea-
ture selection has been one of the core steps in neuroimaging pattern analysis.
Methodologically, feature selection methods, e.g., t-test and sparse regularized
linear regression, select an informative feature subset from the original feature
set, while the subspace learning methods, e.g., Fisher’s Linear Discriminant
Analysis (LDA) [3] and Locality Preserving Projection (LPP) [7], transform the
original feature space into a low-dimensional space. As for the interpretability
of the results, the feature selection methods are preferable to subspace learning
methods, in particular, in neuroimaging studies. However, according to recent
studies in machine learning [6,18,19], subspace learning has shown promising
performances in various fields.

In this paper, we propose a novel method that efficiently combines the method-
ologies of feature selection and subspace learning. Specifically, we inject the ideas
of two subspace learning methods, i.e., LDA and LPP, into a sparse least square
regression framework. The rationale of using both LDA and LPP in our formu-
lation is that LDA considers the global information inherent in the observations
with the ratio of within-class-variance and between-class-variance, while LPP
reflects the local information by means of graph Laplacian. That is, with the
help of global and local information in data, we can select class-discriminative
and noise-resistant features that thus help enhance classification performances.

2 Proposed Method

2.1 Multi-class Sparse Discriminative Feature Selection

Let X ∈ R
d×n denote a feature matrix, where d and n are, respectively, the

numbers of feature variables and samples, andY ∈ R
c×n denote a class indicator

matrix, e.g., 0-1 encoding, where c is the number of classes. We formulate a
multi-class feature selection problem by means of a multi-task learning with a
sparse least square regression model as follows:

min
W

1

2
‖Y −WTX‖2F + λ‖W‖2,1 (1)

where W ∈ R
d×c is a regression coefficient matrix and λ is a sparsity control

parameter. The �2,1-norm ‖W‖2,1 penalizes the coefficients in the same row of
W together for joint selection or unselection in regressing the response variables
in Y. In Eq. (1), the optimal solution assigns a large weight to the important
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features and zero or a small weight to less important features and this method
has been successfully applied for a binary classification [10,12,20]. With respect
to the multi-task learning, it has been shown that Eq. (1) utilizes the correlation
of different classes [1] by regarding each class as one task. However, in its current
form, it cannot guarantee the class-discriminative power of the selected features
and the preservation of the neighborhood structure of data points, which are
important characteristics for a good classification performance [3,6].

In this section, we propose a novel discriminative feature selection method
that considers both the global data distribution and the local topological re-
lation among data in a sparse least square regression framework. We first uti-
lize a Fisher’s LDA that considers the global data distribution based on the
ratio between within-class-variance and between-class-variance to find the class-
discriminative features. Second, we take the concept of an LPP [7] to preserve
the topological relation among data.

Regarding the Fisher’s criterion for discriminative feature selection, a straight-
forward approach is to penalize the objective function of Eq. (1) with a regular-
ization term defined as follows:

RG =
WTΣbW

WTΣwW
(2)

whereΣw andΣb denote, respectively, the within-class variance and the between-
class variance. However, due to the non-convexity of Eq. (2), it is not trivial to
find an optimal solution of the objective function. Fortunately, Ye [15] presented
that the multi-class LDA that finds a subspace by maximizing Eq. (2) can be
equivalently formulated with a linear regression model by defining the class in-
dicator matrix Y = [yi,k] in Eq. (1) as follows:

yi,k =

{√
n
nk
−√

nk

n , if l(xi) = k

−√
nk

n , otherwise
(3)

where l(xi) denotes a class label of xi and nk is the sample size of the class k.
That is, using a class indicator matrix Y defined as Eq. (3), we can efficiently
use the global information, i.e., data distribution in the original space, without
changing the formulation. Importantly, we don’t transform the original input
feature space into a low-dimensional space, in which it is difficult to interpret or
investigate the results.

As for the topological relation among data, i.e., local information, we use a
graph Laplacian by defining the similarity si,j between every pair of data points
xi and xj via a heat kernel1 and define a regularization term as follows:

RL = tr(WTXLXTW) (4)

where L = D − S with a similarity matrix S = [si,j ] ∈ R
n×n and a diagonal

matrix D = [di,i =
∑

j si,j ] ∈ R
n×n.

1 H(xi,xj) = exp
[
− ‖xi−xj‖2

σ

]
, where σ ∈ R

+ is a parameter.
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Therefore, our final objective function is formulated as follows:

min
W

1

2
‖Y −WTX‖2F + λ1tr(W

TXLXTW) + λ2‖W‖2,1 (5)

where Y is defined as Eq. (3), and λ1 and λ2 are tuning parameters. Here, we
should note that Eq. (5) efficiently combines the ideas of subspace learning (LDA
and LPP) and feature selection in a unified framework.

Our method can be discriminated from the previous methods in the following
senses: (1) Unlike the previous sparse linear regression-based feature selection
methods [11,21], the proposed method finds the class-discriminative and noise-
resistant regression coefficient matrix thanks to the use of the Fisher’s criterion
and graph Laplacian. (2) Compared to the subspace learning methods such as
Principal Component Analysis (PCA), LDA, and LPP, which all have an in-
terpretational limitation, the proposed method selects features in the original
space, and thus it has an advantage of intuitive investigation of the results. (3)
Unlike the conventional LDA [3] based on the criterion in Eq. (2), the proposed
method uses the Fisher’s criterion but still operates in the original feature space,
and thus allows for an intuitive interpretation of the selected features. Further-
more, while the conventional LDA finds at most (c− 1)-dimension features for a
c-class classification task, e.g., 2-D space in a three-class classification task, Eq.
(5) selects at most d features (in general, d� c in the AD study).

2.2 Optimization

Eq. (5) is a convex but non-smooth function. In this work, we solve it by designing
a new accelerated proximal gradient method [9,19]. We first conduct the proximal
gradient method on Eq. (5) by setting

f(W) =
1

2
‖Y −WTX‖2F + λ1tr(W

TXLXTW) (6)

L(W) = f(W) + λ2‖W‖2,1. (7)

Note that f(W) is convex and differentiable, while λ2‖W‖2,1 is convex but non-
smooth [9]. To optimize W with the proximal gradient method, we iteratively
update it by means of the following optimization rule:

W(t+ 1) = argmin
W

Gη(t)(W,W(t)), (8)

whereGη(t)(W,W(t))= f(W(t))+〈∇f(W(t)),W −W(t)〉+ η(t)
2 ‖W−W(t)‖2F+

λ2‖W‖2,1,∇f(W(t)) = (XXT +λ1XLXT )W(t)−XYT , and η(t) andW(t) are,
respectively, a tuning parameter and the value of W obtained at the t-iteration.

By ignoring the terms independent of W in Eq. (8), we can rewrite it as

W(t+ 1) = πη(t)(W(t)) = argmin
W

1

2
‖W −U(t)‖22 +

λ2

η(t)
‖W‖2,1 (9)
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where U(t) = W(t)− 1
η(t)∇f(W(t)) and πη(t)(W(t)) is the Euclidean projection

of W(t) onto the convex set η(t). Thanks to the separability of W(t+1) in each
row, we can obtain the optimal W(t + 1) by finding a closed form solution of
each row [9].

Meanwhile, in order to accelerate the proximal gradient method in Eq. (8),
we further introduce an auxiliary variable V(t+ 1) as:

V(t+ 1) = W(t) +
α(t)− 1

α(t+ 1)
(W(t+ 1)−W(t)). (10)

where the coefficient α(t+ 1) is usually set as α(t+ 1) =
1+
√

1+4α(t)2

2 [9].

3 Experimental Analysis

3.1 Dataset and Feature Extraction

We conducted performance evaluation on a subset (202 subjects: 51 AD, 43
MCI Converter: MCI-C, 56 MCI Non-Converter: MCI-NC, and 52 NC) of the
ADNI dataset by comparing the proposed method with the competing methods.
We considered two multi-class classification problems: AD vs. MCI (including
both MCI-C and MCI-NC) vs. NC and AD vs. MCI-C vs. MCI-NC vs. NC.
Regarding the feature extraction, we first sequentially performed spatial distor-
tion, skull-stripping, and cerebellum removal for Magnetic Resonance Imaging
(MRI) and Positron Emission Tomography (PET) images. For the MRI images,
we further segmented them into three tissue types of gray matter, white matter,
and cerebrospinal fluid. By warping a template into a subject’s brain image,
we parcellated the gray matter into 93 Region-Of-Interests (ROIs). The PET
images were spatially aligned to its respective MRI images. Finally, we obtained
93 gray matter tissue volumes from an MRI image and also 93 mean intensities
from a PET image. For the modality fusion of MRI and PET (MRI+PET), we
concatenated their features into a long vector of 186 features.

3.2 Experimental Setting

We compared our feature selection method with the widely used methods such
as Fisher Score (FS for short) [3], LPP [7], LDA [3], and PCA [3]. The FS is
categorized as a feature selection method since it selects features in the original
feature space based on the score ranking [3]. Meanwhile, LPP, LDA, and PCA
are subspace learning methods, which aim, respectively, at preserving the local
structures, the maximal variance, and the global structures of the data [3,15]. We
also compared the proposed method with the state-of-the-art feature selection
methods applied for AD diagnosis: Sparse Joint Classification and Regression
(SJCR) [12] and Multi-Modal Multi-Task (M3T) [16]. For these two methods,
we followed their papers to apply a 0-1 encoding method for the class indicator
matrix.
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Table 1. Comparison of classification accuracy ((mean±standard deviation)%) of two
classification tasks

Method
AD/MCI/NC AD/MCI-C/MCI-NC/NC

MRI PET MRI+PET MRI PET MRI+PET

FS 62.33±1.56 60.11±1.54 62.88±1.31 50.87±1.73 50.44±1.49 51.76±1.58
PCA 63.71±1.30 61.49±1.58 64.61±1.60 51.05±1.64 51.51±1.62 52.20±1.60
LPP 63.21±1.91 61.03±1.22 64.35±1.29 51.72±1.42 51.39±1.58 52.60±1.37
LDA 49.01±1.71 39.02±1.23 51.85±1.66 35.25±1.65 31.82±1.40 36.32±1.64
SJCR 64.02±1.36 61.31±1.73 67.66±1.63 52.13±1.73 51.85±1.68 55.98±1.65
M3T 63.30±1.66 61.32±1.90 67.91±1.91 51.89±1.61 50.91±1.83 54.47±1.67

Proposed 68.31±1.23 65.50±1.50 73.35±1.53 59.74±1.52 56.29±1.53 61.06±1.40

3.3 Classification Results

Table 1 reports the classification accuracy of all the methods for two multi-
class classification problems. The experimental results in Table 1 clearly show
that the proposed method outperformed all the competing methods in all ex-
periments. For example, in the three-class classification problem, our method
improved the classification accuracy by 4.29% (MRI), 4.01% (PET), and 5.44%
(MRI+PET), respectively, compared to the best performances among the
competing methods. Meanwhile, in the four-class classification problem, the clas-
sification improvements were higher than the best performances among the com-
peting methods as much as 7.61% (MRI), 4.44% (PET), and 5.08% (MRI+PET),
respectively. Based on these results, we argue that the proposed discriminative
and noise-resistant feature selection method helped enhance the classification
performances.

Besides, we found that LDA achieved the worst classification performances
among all the methods. The main reason was that LDA projected the original
high dimensional feature space into only two or three dimensional subspace, re-
spectively. Such low-dimensional space was not enough to correctly classify the
neurimaging features. On the other hand, the subspace learning methods, ex-
cept for LDA, outperformed the feature selection method of FS. This makes it
reasonable to integrate subspace learning into the feature selection framework.
Moreover, the proposed method clearly outperformed both the conventional fea-
ture selection and subspace learning methods thanks to the combination of the
two approaches.

3.4 Discussions

We investigated the importance of the brain regions in discriminating among
classes based on the frequency of the selected ROIs by the proposed method with
MRI+PET. According to our experimental results, we can know that the com-
monly selected regions in two multi-class classification tasks were uncus right,
hippocampal formation right, uncus left, middle temporal gyrus left, hippocam-
pal formation left, amygdala left, middle temporal gyrus right, and amygdala
right from MRI, and precuneus right, precuneus left, and angular gyrus left
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from PET. These regions were also selected by the proposed method with either
MRI or PET and almost all the competing methods with MRI+PET. Moreover,
these regions have been also shown to be highly related to AD and MCI practical
clinical diagnosis [2,8]. In this regard, we can say that these regions can be the
potential biomarkers for AD diagnosis.

Meanwhile, the numbers of selected features in three- and four-class classifi-
cation tasks were, respectively, 50.52 and 34.36 on average. That is, the smaller
number of features were used in the classification task of considering the larger
number of classes. It is also interesting that the larger number of features from
MRI rather than PET was selected in both three- and four-class classification
problems. This was also observed in the competing methods. Furthermore, from
Table 1, we can see that in general, the MRI-based methods achieved better
performance than the PET-based methods. Based on these observations, it is
likely that the structural MR image provides more discriminative information in
identifying the clinical status related to AD, compared to the functional PET
image.

4 Conclusions

In this work, we focused on the issue of discriminative feature selection for multi-
class classification in AD diagnosis. Specifically, we proposed a novel feature se-
lection method by integrating subspace learning, which utilized both the global
and the local information inherent in the data, into in a sparse least square regres-
sion framework. In our experimental results on the ADNI dataset, we validated
the efficacy of the proposed method by enhancing the classification accuracies
in multi-class classification problems.
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Abstract. Anatomical landmark detection plays an important role in
medical image analysis, e.g., for landmark-guided image registration,
and deformable model initialization. Among various existing methods,
regression-based landmark detection method has recently drawn much
attention due to its robustness and efficiency. In this method, a regres-
sion model is often trained for each landmark to predict the location of
this landmark from any image voxel based on local patch appearance,
e.g., also the 3D displacement vector from any image voxel to this land-
mark. During the application stage, the predicted displacement vectors
from all image voxels form a displacement field, which is then utilized
for final landmark detection with a regression voting process. Accord-
ingly, the quality of predicted displacement field largely determines the
accuracy of final landmark detection. However, the displacement fields
predicted by previous methods are often spatially inconsistent 1) within
each displacement field of same landmark and 2) also across the displace-
ment fields of all different landmarks, thus limiting the final landmark
detection accuracy. The main reason is that for each landmark, the 3D
displacement of each image voxel is predicted independently, and also
for all different landmarks their displacement fields are estimated inde-
pendently. To address these issues, we propose a two-layer regression
model for context-aware landmark detection. Specifically, the first layer
is designed to separately provide the initial displacement fields for dif-
ferent landmarks, and the second layer is designed to refine them jointly
by using the context features extracted from results of the first layer to
impose spatial consistency 1) within the displacement field of each land-
mark and 2) across the displacement fields of all different landmarks.
Experimental results on a CT prostate dataset show that our proposed
method significantly outperforms the traditional classification-based and
regression-based methods in both landmark detection and deformable
model initialization.

1 Introduction

Anatomical landmarks (also landmarks for short) are the distinct points at anatom-
ical structures. The detection of landmarks is important in many medical im-
age analysis tasks, e.g., landmark-guided image registration [1], and deformable
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Fig. 1. Example of six prostate landmarks in CT images. BS: base center; RT: right
lateral point; LT: left lateral point; AT: anterior point; PT: posterior point; AP: apex
center.

model initialization [2]. However, automatic landmark detection is quite challeng-
ing due to the variability of anatomical structures across different subjects and
also sometimes the indistinct image appearances of landmarks (Fig. 1). Among
various methods, learning-based methods have been shown very effective to deal
with these challenges. In particular, previous learning-based methods can be
roughly categorized into two classes: classification-based [3,4,5,6] and regression-
based landmark detection methods [7,8]. In the former class, landmark detection
is formulated as a binary classification problem, with voxels near the landmark as
positives and the rest as negatives. Then, a strong classifier is typically trained to
distinguish landmark voxels from other voxels. For example, Cheng et al. [5] pro-
posed to use classification forest for detecting CBCT dental landmarks. Zhan et al.
[6] adopted cascade Adaboost classifiers with Haar wavelet features for MR knee
landmark detection. On the other hand, regression-based methods [7,8] learn a
regression model (e.g., regression forest) for capturing the non-linear relationship
between a voxel’s local appearance and its 3D displacement to the target land-
mark. During the application stage, the learned regressionmodel is used to predict
the 3D displacement for each voxel in the testing image, and then obtains a dis-
placement field for the whole testing image1. Finally, the landmark location is de-
termined by a voting process using the estimated displacement field. Recent inves-
tigation [8] has shown that the regression-basedmethod tends to yieldmore robust
and accurate detection results than the classification-based method in landmark
detection. Accordingly, in this paper, we will focus on regression-based landmark
detection.

It is clear to see that the accuracy of regression-based landmark detection
highly depends on the quality of the predicted displacement field. However, the
displacement fields predicted by previous methods [7,8] often suffer from two
types of spatial inconsistency, which potentially limit their detection accuracy.
First, the obtained displacement field of each target landmark is often spatially
inconsistent, as the displacement vector from each image voxel to the target
landmark is predicted independently. This spatial inconsistency often results in

1 Please note that “displacement field” used in this paper is different from the term often
used in the non-rigid image registration. In the latter, each displacement vector indi-
cates the position offset between the two corresponding points in the fixed and moving
images, respectively, while the displacement vector in this paper means the position
offset from any image point to the target landmark within the same testing image.
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non-smooth displacement fields (See the first-layer distance (displacement mag-
nitude) maps in Fig. 2). Second, there might also be spatial inconsistency across
the obtained displacement fields of all different landmarks since the displacement
field for each target landmark is estimated independently. This spatial inconsis-
tency could lead to unreasonable spatial configuration of all detected landmarks.
In the literature, researchers often focus on addressing the second spatial incon-
sistency problem by simply exploiting the inter-landmark spatial relationship
in a post-processing step. For example, Zhan et al. [6] proposed a set of linear
spatial models to capture the spatial relationship among all different landmarks,
and then used it to correct the wrongly detected landmarks. However, due to the
lack of appearance information in this post-processing step, these methods can
correct only the landmarks that are obviously wrong in their positions. More-
over, the accuracy of those corrected landmarks is often limited due to the use
of only the spatial locations of other landmarks for correction. Thus, exploiting
the inter-landmark spatial relationship in the post processing step can improve
only the robustness of landmark detection, but not the detection accuracy. To
improve both robustness and accuracy of landmark detection, it is necessary to
incorporate the inter-landmark spatial relationship into the displacement pre-
diction step as proposed in this paper.

Specifically, we propose a two-layer regression model for context-aware land-
mark detection by imposing the spatial consistency 1) within the displacement
field of each landmark, and also 2) across the displacement fields of all different
landmarks. In particular, a two-layer regression forest is adopted as a landmark
detector for each landmark. Here, the first-layer regression forest is the same as
in the traditional regression-based methods, which maps a testing image into
a displacement field using only the image appearance features. The displace-
ment fields predicted for all landmarks by the first layer provide the rich context
features to assist the refinement of the respective displacement fields in the sec-
ond layer. That is, since we can roughly know the relative spatial positions of
each image voxel to all target landmarks, we can use this valuable information
to impose the spatial consistency on the refined displacement fields. Also, by
combining high-level context features with low-level appearance features, the
second-layer regression forest is able to significantly improve the quality of each
predicted displacement field, thus leading to more accurate landmark detection
than the traditional regression-based methods (which is also referred in this
paper as the one-layer regression model).

2 Methodology

2.1 Regression Forest and Landmark Detection

Regression forest is one type of random forests specialized for non-linear regres-
sion tasks. It consists of mutiple independently trained binary decision trees.
Each tree is trained with randomness on both features and associated thresh-
olds. The final prediction is the average over the predictions of all individual
trees. As an ensemble method, regression forest typically yields robust and ac-
curate predictions.
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In the regression-based landmark detection, regression forest is often used to
learn the non-linear mapping from a voxel’s local appearance to its 3D displace-
ment towards the target landmark. Inspired by the patch-based methods [10], a
voxel is often represented by a local patch centered at it. For better characteri-
zation of local patch, instead of using only intensities, we also extract Haar-like
features from local patch to serve as feature representation for each voxel. The
Haar-like features are defined as follows:

v(I) =

Z∑
i=1

pi
∑

‖x−ai‖∞≤si

I(x) (1)

where v(I) denotes a Haar-like feature, I is a local patch, Z is the number of
3D cubic functions used in this Haar-like feature, and pi ∈ {−1, 1}, ai ∈ R

3 and
si are the polarity, position and scale of the i-th 3D cubic function, respectively.
By changing the values of Z, pi, ai and si, we can generate an unlimited number
of Haar-like features. During the regression forest training, we randomly sample
Z, pi, ai and si to generate a feature subset whenever needed. In this work, we
limit Z to {1, 2}, and si to {3, 5}. In order to capture the long-distance context
features within the local patch, we do not limit ai, which can have arbitrary
values as long as the 3D cubic function does not move outside the local patch I
(of size 30× 30× 30).

Regression Voting: Once the appearance-to-displacement mapping is learned
by regression forest, we can adopt a regression voting to finally detect the land-
mark position in the new testing image. The idea of regression voting is simple.
For each voxel x ∈ R

3 in the testing image, it casts one vote to the discrete
position nearest to x+ d̃x, where d̃x ∈ R

3 is the predicted displacement vector
of voxel x. After voting from all possible image voxels, a voting response map is
obtained. Then, the landmark location can be determined as the position that
receives the most votes in the voting response map.

Multi-resolution Landmark Detection: To increase both robustness and effi-
ciency of regression-based landmark detection,we can further implement the above
algorithm in a multi-resolution way. Specifically, the landmark location detected
in the coarser resolution can be used as a good initialization for the next finer reso-
lution. In the finer resolution, regression voting is performed only in a local neigh-
borhood centered at the initialization. In this way, only voxels near the target land-
mark are involved in the voting, while the far-away voxels are automatically filtered
out. This would potentially improve the detection accuracy, as the far-away voxels
might not be informative for the detection of the target landmark.

2.2 Context-Aware Landmark Detection

In this section, we first present the training and application of our method. Then,
we elaborate how the two types of spatial consistency can be simultaneously
enforced in the second-layer regression models by using distance-based context
features. Finally, we conclude the contributions of our method compared with
previous methods.
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Fig. 2. The flowchart of context-aware landmark detection. Cold and warm color in
the color maps indicate the voxels with small and large predicted distances from the
target landmark, respectively. Green boxes show the local patches where appearance
features and also context features are extracted for the voxel marked as red cross.

Training and Application: In the training stage, a two-layer regression
forest is trained for each landmark to serve as landmark detector. The first-layer
regression forest is trained using only image appearance features (i.e., Haar-like
features as defined in Eq. 1), which is the same as in the traditional regression-
based landmark detection methods. Then, we can use the trained first-layer
forests to estimate an initial displacement field for each landmark, for every
training image. By taking L2 norm on the initial displacement field, we can con-
vert the displacement fields into the distance maps. Afterwards, the high-level
context features can be jointly extracted from the distance maps of all land-
marks and further combined with the previous image appearance features to
train the second-layer regression forests. The application stage follows the
same pipeline as the training stage. To detect a set of target landmarks in a
testing image, we will first apply the first-layer regression models to generate an
initial distance map for each target landmark. Then, both the initial distance
maps of all different target landmarks and the original testing image are taken as
input to the second-layer regression forests, which will combine the appearance
features extracted from the original testing image with the context features ex-
tracted from the initial distance maps of all different target landmarks to refine
the respective displacement fields. Once the displacement field for each target
landmark is finally obtained, regression voting (Section 2.1) can be adopted to
detect the landmark location. Fig. 2 shows the flowchart of our proposed method.

Distance-Based Context Features: The spatial consistency of our context-
aware landmark detection comes from two aspects: 1) spatial consistency within
the displacement field of each target landmark, and 2) spatial consistency across
displacement fields of all different target landmarks. Both aspects are simulta-
neously fulfilled by using the distance-based context features. Different from the
traditional context features [9], which are the simple classification responses at
the context locations, our context features are Haar-like features (Eq. 1) com-
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puted from local patches of distance maps. Specifically, there are two types
of context features used in our work, namely intra-landmark and inter-
landmark context features, respectively. To detect one target landmark,
intra-landmark context features refer to the Haar-like features extracted from
the initial distance map of the landmark itself. These features are informative in
providing the roughly estimated distances of nearby image voxels to the target
landmark, and thus can be used for spatially regularizing the displacement field
of this landmark. On the other hand, inter-landmark context features refer to
the Haar-like features extracted from distance maps of other target landmarks.
These features encode the spatial relationship between this landmark and other
landmarks, e.g., how far away this landmark is usually from other landmarks.
Thus, the use of inter-landmark context features will be effective to impose the
spatial consistency across displacement fields of different landmarks. Fig. 2 shows
the distance maps of two prostate landmarks before and after imposing two types
of spatial consistency as mentioned above. We can clearly observe the improved
quality of distance maps by using both types of context features.

Contributions of Our Method: To the best of our knowledge, this is the first
paper that utilizes distance-based context features to improve the landmark
detection accuracy. The use of distance-based context features not only offers a
spatially smooth displacement field for each target landmark, but also enforces
the spatial consistency across the predicted displacement fields of all different
target landmarks. Compared to previous methods that exploit inter-landmark
spatial relationship in a post-processing step, our proposed method can embed
the inter-landmark spatial constraint into the displacement prediction step for
improving the quality of the predicted displacement fields, and hence the final
landmark detection accuracy.

3 Experimental Results

To validate the effectiveness of our context-aware landmark detection, we apply
it to detect the six prostate landmarks (Fig. 1) in CT images for deformable
model initialization. Specifically, the affine transformation estimated between
automatically detected landmarks and their counterparts in the mean shape
model will be used for transforming the mean shape model onto the testing
image for initialization.

Our dataset consists of 73 pelvic CT images with various image contrasts as
shown in Fig. 3. The typical image size is 512×512×(60∼80)with voxel size 0.938×
0.938× 3.000mm3. The six landmarks and the whole prostate in each of these 73
images have been manually annotated by an experienced radiation oncologist to
serve as ground truth. Four-fold cross validation is used to evaluate our method.
In each fold, 54 images are used for training and 19 images are used for testing.

In Table 1, we compared the traditional classification-based (“Cascade”) and
regression-based (“Regression”) landmark detection methods [4,7] with three
variants of our methods (“Intra-LM”,“Inter-LM”,“Both”) on the same dataset.
All these methods use the same type of appearance features and the same multi-
resolution framework for fair comparison. Here, “Intra-LM” imposes only spatial
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Fig. 3. Qualitative comparison between the traditional regression-based landmark de-
tection with outlier correction (“Traditional”) and our proposed method (“Context-
aware”) on two difference cases (left and right panels). Crosses indicate the positions
of landmarks BS, AT, PT and AP after projection onto the central slice of the prostate
in the saggital view. Blue: ground-truth landmarks. Red: detected landmarks by “Tra-
ditional”. Green: detected landmarks by “Context-aware”.

consistency within the displacement field of each target landmark by using intra-
landmark context features; “Inter-LM” imposes only spatial consistency across
the displacement fields of different landmarks by using inter-landmark context
features; “Both” is the full version of our method by imposing both types of
spatial consistency. On the other hand, to filter out the influence of possibly
wrongly detected landmarks (i.e., outliers) on deformable model initialization,
we implemented the outlier correction algorithm in [6] to correct the possibly
wrongly detected landmarks before deformable model initialization. From Table
1, we can clearly see the accuracy improvments for both landmark detection and
deformable model initialization (p < 0.05) by imposing spatial consistency either
within displacement field of each target landmark or across displacement fields
of all different target landmarks. By combining both types of spatial consistency,
we can achieve the best performance (as bolded ones in Table 1). In addition,
Fig. 3 gives a qualitative comparison between the traditional regression-based
landmark detection with outlier correction and our context-aware landmark de-
tection. We can see the importance of utilizing the inter-landmark spatial rela-
tionship in the displacement prediction step, instead of a post-processing step.

Table 1. Quantitative comparison between different landmark detection methods on
both landmark detection and deformable model initialization. Cascade: the traditional
classification-based landmark detection; Regression: the traditional regression-based
landmark detection (also referred as one-layer model); Intra-LM: our method with
only intra-landmark context features; Inter-LM: our method with only inter-landmark
context features; Both: our method with both types of context features. Error (mm)
indicates the landmark detection error. DSC indicates the Dice similarity coefficient
between initialized deformable model (e.g., mean shape) and ground-truth. ASD (mm)
indicates the average surface distance between the initialized deformable model and
ground-truth. * indicates the accuracy without using outlier correction.

Cascade Regression Intra-LM Inter-LM Both

Landmark
Detection

Error* 6.75 ± 4.81 5.76 ± 2.51 4.98 ± 1.78 4.83 ± 1.93 4.82 ± 1.89

Error 6.70 ± 4.75 5.70 ± 2.59 4.82 ± 1.68 4.73 ± 1.78 4.67 ± 1.66

Model
Initialization

DSC 0.72 ± 0.14 0.78 ± 0.08 0.81 ± 0.07 0.81 ± 0.07 0.82 ± 0.07

ASD 3.62 ± 1.69 2.82 ± 1.24 2.51 ± 0.83 2.50 ± 1.06 2.42 ± 0.88
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It is worth noting that, by detecting only six landmarks, our method is able to
achieve a fairly good initialization for deformable models (ASD 2.42± 0.88mm),
which is already better than the inter-user variability of manual delineations of
prostate (ASD 3.03 ± 1.15mm [12]). Moreover, it is interesting to see that our
landmark-based initialization achieves an accuracy better than several existing
prostate segmentation methods (e.g., [11] (ASD 4.19± 0.90mm) and [12] (ASD
3.35±1.40mm)), and is comparable to the state-of-the-art prostate segmentation
method [13] (ASD 2.37± 0.89mm). Although the comparison is not completely
fair since different datasets are adopted, it reveals the effectiveness of context-
aware landmark detection in deformable model initialization.

The typical runtime of our method to detect a single landmark is 2.35 seconds
on an Intel i5 CPU. The detection of six landmarks costs about 14.1 seconds.

4 Conclusion

In this paper, we propose a two-layer regression model for context-aware land-
mark detection. By imposing the spatial consistency within displacement field
of each target landmark, and also across displacement fields of all different tar-
get landmarks, our method is able to achieve significant improvement over the
traditional classification-based and regression-based landmark detection meth-
ods. Experimental results in a CT prostate dataset indicate that our proposed
method is very effective for deformable model initialization.
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Abstract. In many medical imaging applications, merging segmenta-
tions obtained from multiple reference images (i.e., templates) has be-
come a standard practice for improving the accuracy as well as reliability.
Simultaneous Truth And Performance Level Estimation (STAPLE) is a
widely used fusion algorithm that simultaneously estimates both per-
formance parameters for each template, and the output segmentation;
a more accurate estimation of performance parameters consequently re-
sults in more accurate output segmentations. In this paper, we propose
a new approach for learning prior knowledge about the performance pa-
rameters of each template, and for incorporating it into the Maximum-
a-Posteriori (MAP) formulation of the STAPLE, so that more accurate
output segmentations can be obtained. More specifically, we propose a
new approach to learn, for each structure to be segmented, the relation-
ships between the performance parameters (viz. sensitivity and speci-
ficity) and the intensity similarities; we also propose a methodology for
transferring this prior knowledge about the performance parameters into
the STAPLE algorithm through optimal setting of the MAP parameters.
The proposed approach is evaluated for the segmentation of structures
in the brain MR images. These experiments have clearly demonstrated
the advantages of incorporating such prior knowledge.

Keywords: Medical Imaging, Segmentation, Atlas-based Segmentation,
Label Fusion, STAPLE, MAP Formulation, MRI, Brain, Lateral
Ventricles.

1 Introduction

It has been shown in many recent works that the automated segmentations
obtained based on multiple template images provide more accurate segmenta-
tions than the single-template-based methods [1–7]. Multiple-templates-based
segmentation can be defined as the alignment of a set of reference images with
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the corresponding segmentations to the target image to be segmented, and fol-
lowed by the fusion of those aligned segmentations to estimate the reference
standard segmentation. Fusion methods can be broadly classified into two cate-
gories: (i) voting-based methods [4–7] and (ii) statistically driven methods that
simultaneously estimate both the ground-truth and performance-parameters of
each template [1–3, 8–10].

Simultaneous Truth and Performance Level Estimation (STAPLE) is a widely
used algorithm [1] that belongs to the second category of statistical fusion meth-
ods. The Expectation-Maximization (EM) approach used with the classical STA-
PLE algorithm guarantees convergence to a local optimum solution. However,
if we can incorporate appropriate prior knowledge about the performance pa-
rameters of the templates into the Maximum-a-Posteriori (MAP) formulation of
the STAPLE [9, 10], then it can provide more accurate estimations of both the
reference standard and performance parameters.

MAP solution of the STAPLE algorithm is studied previously in a very specific
context of missing data [9, 10], where segmentations for the labels of interests
are missing in some of the templates; the authors proposed to incorporate this
“missing” information into the STAPLE by setting the diagonal elements of the
performance matrix close to 1 for the templates that contain the segmentations,
and close to 0 for the templates with missing data. As that approach is specifi-
cally designed to deal with the fusion problem in the presence of missing data,
it cannot distinguish between the performances of the regular templates with no
missing data.

In this paper, we introduce a general and powerful framework for learning
prior knowledge about the performance parameters of each label in each tem-
plate, and for using that information to optimally set the MAP parameters of
the STAPLE algorithm. More specifically, we propose here a new approach for
learning the relationships between the intensity similarities and the performance
parameters of each label. This is the first work that deals with learning and in-
corporating prior knowledge about the performance parameters into a statistical
fusion framework, and this approach can be readily incorporated into many of
the advanced variants of the STAPLE algorithm, like [2, 3, 8, 10].

The rest of the paper is organized as follows. Section 2 describes our new
method. Section 3 presents the evaluation results both on synthetic data, and
on real 3D brain images for the segmentation of lateral ventricles. Conclusions
are presented in Section 4.

2 Methods

2.1 Framework of the STAPLE Algorithm

Let D = {D1, . . . , Di, . . . , DN} be a matrix of size N × J , where N and J are
respectively the number of voxels and the number of templates. In this ma-
trix, Di = [Di1, . . . , Dij , . . . , DiJ ]

′ and Dij is the label of the template j at
voxel i. The goal here is to estimate the reference standard segmentation T =
{T1, . . . , Ti, . . . , TN} and the performance parameters θ = {θ1, . . . , θj, . . . , θJ}
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where θj is the matrix of size S × S, θjs′s = f(Dij = s′|Ti = s), and S is
the number of segmentation labels. Since both T and θ are unknown, the com-
plete log-likelihood function Q(θ|θt) = ∑

i

∑
j

∑
s W

t
si log(θjDijs) is maximized

iteratively using an EM algorithm where W t
si is the posterior probability of

the reference standard segmentation Ti for label s. The EM algorithm guaran-
tees convergence to a local optimum. However, incorporating appropriate prior
knowledge about the performance parameters of the template images through
MAP formulation of the STAPLE could result in more accurate estimation of
both the performance parameters and the reference standard. The following sub-
section presents beta distribution based MAP formulation of the STAPLE.

2.2 Beta Distribution Based MAP Formulation

The MAP formulation of the STAPLE algorithm can be expressed as:

QMAP(θ|θt) = Q(θ|θt) + γ log(p(θ)). (1)

where p(θ) is the prior probability of the performance parameters and γ is the
weighting parameter between the data term and of the MAP prior. As the per-
formance parameters for each template and each label can be considered to be
independent of each other [10], p(θ) can be expressed as a product of the prob-
abilities of each performance parameter denoted by p(θjs′s).

Similar to [10], in this paper, we use beta distribution Bα,β(x) =
1
Zx

α−1(1−
x)β−1 for modeling the prior probabilities of each performance parameter. The
main advantage of beta distribution is that it facilitates modeling a wide variety
of differently shaped characteristics. Using of the beta distribution leads to the
following expected value of the complete log-likelihood function:

QMAP(θ|θt) =
∑
i

∑
j

∑
s

W t
si log(θjDijs)

+ γ
∑
j

∑
s′

∑
s

[(αjs′s − 1) log(θjs′s) + (βjs′s − 1)(log(1 − θjs′s))]. (2)

A detailed description regarding solving the above MAP formulation can be
found in [10].

In [9, 10] the authors used the MAP solution for the specific problem of
missing data. To this end, they used a set of fixed parameters for all of the
templates containing labels, to have priors with probability close to one for
diagonal performance parameters, and close to zero for off-diagonal performance
parameters. However, in this paper, we are interested in incorporating the prior
knowledge about the performance parameters of each label in each template.
The following subsection presents our proposed approach for achieving this goal,
which is based on learning the relationships between the performance parameters
and the image similarity information.
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2.3 Learning Performance Parameters vs. Image Similarity
Relations

A common underlying assumption for many fusion methods [4–7] is that the
accuracy of segmentations obtained from a given template are proportional to
it’s intensity similarity to the target image to be segmented. In similar lines, we
make an assumption here that the performance parameters of a given template
are proportional to it’s intensity similarity to the target image. We then proceed
further by learning the relationships between the performance parameters and
the intensity information, by using all templates as our training data.

The training procedure that we propose for learning the prior knowledge is as
follows:

1. Select an image from the template database, and treat it as the target image
to be segmented.
Hereafter, we refer to this image as the pseudo-target, in order to differentiate
it from the actual target image to be segmented. The rest of the images in
the database are used as templates for the pseudo-target.

2. Compute the non-consensus mask for the pseudo-target image, and compute
both the performance parameters over this mask.
It is easy to notice that instead of deriving the relationships based on the
entire image, it is more effective to compute them over the non-consensus
mask, which indicates the voxels where at least two of the template im-
ages differ in their labeling decisions. Hence, we proposed to compute the
performance parameters over the non-consensus mask instead of the entire
region.

3. Observation 1 : As we deal here with the binary labeling problem, the diag-
onal elements of the performance matrix represent specificity and sensitiv-
ity [10], while the off-diagonal elements are (1-specificity) and (1-sensitivity);
thus, we only need to learn prior knowledge about sensitivity and specificity.
Observation 2 : Let T ′ represent the ground truth segmentations for the se-
lected pseudo target. From the definitions of sensitivity (Pr(Dij = 1|T ′ = 1))
and specificity (Pr(Dij = 0|T ′ = 0)), we know that they are computed re-
spectively at those voxels where the ground truth labels are 1 and 0.
Based on these observations, we propose to compute two different masks for
intensity similarity calculations; the first mask contains only those voxels in
the non-consensus mask for which T ′ = 1, and use this mask for comput-
ing the intensity similarity corresponding to sensitivity; similarly, the second
mask contains only those voxels in the non-consensus mask for which T ′ = 0,
and use this for computing intensity similarity corresponding to specificity.

4. Repeat steps 1 to 3 for each image in the template database using a leave-
one-out approach.

5. By the completion of step-4, for a database of J templates, we will have
J(J − 1) pairs of sensitivity (or specificity) versus similarity values.
Perform a robust linear regression analysis, and obtain the final parameters
representing the overall relation between the sensitivity (or specificity) and
the image-similarity.
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2.4 MAP Parameters Estimation

We now present how the prior knowledge learned using the approach proposed
in Section 2.3 can be incorporated into the MAP formulation of the STAPLE.

The approach that we propose for estimating the performance of each tem-
plate is as follows: (1) Unlike in the learning phase, as we do not know the
ground truth segmentation for the target image, we propose to first compute the
intensity similarity metric over the entire non-consensus mask (instead of using
two different mask as in step 3 of Section 2.3). (2) Then, estimate the probable
performance parameters for each template using the linear regression parame-
ters computed in the learning phase, and the intensity similarities computed in
step-1. (3) We further make the assumptions that the mode value of the beta
distribution for a given performance parameter occurs at it’s estimated value
in step-2, and the variance of the beta distribution is equal to the variance of
regression fit of the corresponding performance parameter. This implies that for
each beta distribution, we know the mode and variance values, and the goal now
is to obtain their equivalent α and β values as parameterized in Eq. 2. For this
purpose, we use the method that was proposed in [11], and it is as follows.

Let m and σ2 respectively represent the mode and variance of a beta distri-
bution. Let us define an intermediate variable τ as:

τ =
σ2

(1−m)2
. (3)

Then, the parameter β of the beta-distribution corresponds to the largest posi-
tive real root of the following cubic equation:

c3β
3 + c2β

2 + c1β + c0 = 0, (4)

whose coefficients are given by

c0 = −12τm3 + 20τm2 − 11τm+ 2τ. (5)

c1 = 16τm2 + (2− 18τ)m+ 5τ − 1. (6)

c2 = −(7τ + 1)m+ 4τ. (7)

c3 = τ. (8)

The other shape parameter α of the fitted beta distribution is given by:

α =
(β − 2)m+ 1

1−m
. (9)

Thus, the prior knowledge about the performance parameters of each template
is incorporated into the MAP formulation of Eq. 2, through α and β parameters
of the distribution, computed using Eq. 9 and Eq. 4 respectively.

3 Results

3.1 Experiments on Synthetic Data

We first evaluated the proposed method using synthetic data. For this purpose,
we generated 20 template images and their corresponding segmentations using
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(a)Sample template (b)target (c)STAPLE (d)Commowick et al. (e)New Method

Fig. 1. Illustration of segmentation results from synthetic data. One of the 20 template
images is shown in (a). The target image to be segmented is shown in (b). The mis-
classified voxels in the output labels from STAPLE [1], MAP-STAPLE of Commowick
et al. [10], and our new method are shown in (c), (d) and (e) figures respectively.

the following approach. The target image to be segmented (shown in Fig. 1(b))
is rotated by 0◦, 2◦, 4◦, 6◦, 8◦ (i.e., 5 rotations), with translations of ±1 pixel
(i.e., 2 translations), in both x and y directions (i.e., in 2 directions), which
resulted in generating 20 templates. We then added white Gaussian noise to the
template images with an SNR value of 40dB. One of those 20 templates is shown
in Fig. 1(a).

For our new method, we used the local Normalized Cross Correlation (NCC)
computed over a radius of 4 (i.e., on a 9× 9 regular grid) around each voxel as
the intensity-similarity metric. Finally, for setting the weighting parameter γ,
we first run the EM-based STAPLE [1], and then set the γ value to the number
voxels present in the output label of the STAPLE; by this way, the two terms in
the MAP formulation of the STAPLE will have approximately similar weight.

We compared the results from our method with (i)classical EM-based STA-
PLE [1], and (ii)STAPLE algorithm of Commowick et al. with fixed MAP pa-
rameters [10]. The Dice Similarity Coefficient (DSC) values for the results from
STAPLE, Commowick et al. and the proposed method are 91.01%, 91.06% and
98.12% respectively. Fig. 1(c), (d), and (e) highlight the differences between the
ground truth and the results from each segmentation method, by showing the
mis-classified voxels for each method. The number of misclassified voxels from
STAPLE, Commowick et al. and our new method are 10931, 10772 and 2251
respectively. Since the method of Commowick et al. with fixed MAP parame-
ters [10] was intended for a different purpose with missing data, we won’t be
considering it anymore in the later evaluations. In summary, these experiments
on the synthetic data clearly illustrated the advantages of our new method.

3.2 Experiments on 3D Brain MR Images

We evaluated the proposed method for the segmentation of left and right lateral
ventricles in the 3D brain MR images. These brain MR images are from Open
Access Series of Imaging Studies (OASIS), and we got this data as a part of
“MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling1.” The

1 https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Main Page
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(a)Ground Truth (b)STAPLE (c)New Method

Fig. 2. Screen-shots of left and right lateral ventricles segmentation results for one of
the target images from the 3D brain MR image database

Table 1. Quantitative evaluation of segmentation results for left and right Lateral
Ventricles (LV), obtained from STAPLE and the proposed MAP-based approach. The
average size of left and right LV structures are respectively 9424 and 11175 voxels.

Method
DSC(%) Sensitivity(%) Avg. mis-class. voxels

Left-LV Right-LV Left-LV Right-LV Left-LV Right-LV

STAPLE 84.8 ± 9 87.1 ± 8 91.8 ± 8 92.1 ± 7 2,393 2,715
New Method 88.2 ± 6 89.3 ± 6 92.9 ± 5 93.3 ± 5 1,772 1,945

dataset that we use contained 34 normal brain MR images, and the evaluation
is performed on all these images, using a leave-one-out approach. Local NCC is
used as the intensity-similarity metric, and it is computed over a neighborhood
radius of 4 (i.e., 9× 9× 9 regular grid). Finally, we set the weighting parameter
γ using the same approach that we have mentioned in the preceding subsection.

Fig. 2 shows the screen-shots of ground-truth segmentations, results from
STAPLE, and from our new method, for one of the target images. Table 1 sum-
marizes the quantitative evaluations performed based on - DSC, sensitivity, and
the average number of mis-classified voxels. It can be noted from these results
that incorporating the prior knowledge using the proposed approach has signif-
icantly improved the segmentation results when compared to the original STA-
PLE. Finally, we also evaluated the statistical significance of the improvements
(at 0.05 significance level) using paired t-tests; when compared to STAPLE, the
improvements in the DSC value from the proposed method are found to be sta-
tistically significant with resulting p values of 5.1× 10−6 and 2.2× 10−6 for the
left and right lateral ventricles respectively.
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4 Conclusions

In this paper, we have a presented a new approach for learning prior knowledge
about the performance parameters of each template, and for incorporating it
into the MAP-based STAPLE formulation. The advantages of incorporating such
prior knowledge are clearly illustrated using both synthetic and 3D brain MR
image data. In future work, we will extend this approach to multi-label fusion
problem, and also to a local MAP formulation of the STAPLE, as in [10].
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Abstract. In this paper we introduce a novel method for the detection
of diseases in biopsies that contain glandular structures. Most approaches
proposed in the literature try to classify the biopsy using the image alone
without analyzing its basic elements (such as the nuclei and the glands).
The proposed method differs in that it is based on the architecture of the
glands in the biopsy and the analysis of each pixel. We demonstrate our
novel, three-step method on the task of classifying colon biopsies. First,
as described in our previous work, we create a pixel-level classification
image, segment the crypts (the glandular structures in the biopsy) using
it, and remove false-positive segments. Next, we calculate the crypt ar-
chitecture using Delaunay triangulation on the crypt centroids and use
this architecture to retrieve those crypts that were incorrectly removed in
the first step. In the final step, we use the segmented crypts to construct
a more accurate architecture and classify each triangle as healthy or can-
cerous using the classification of the crypts as healthy or cancerous. The
method was tested on 54 colon biopsy images: 109 healthy sub-images
containing 4944 healthy crypts and 91 cancerous sub-images containing
2236 cancerous crypts. It achieved 92% accuracy in crypt classification
and 94% in biopsy region classification.

Keywords: Histology, Colon Crypts, Classification, Architecture.

1 Introduction

Colon cancer is the third most common cancer, with nearly 1.4 million new
cases in 2012 worldwide [1]. Early detection of cancer can lead to full recovery.
Once a possible cancer is detected, it is diagnosed by a biopsy — pathologist’s
examination of a tissue sample via a microscope. Due to the implication of this
diagnosis for the patient, this process is critical. The pathologist needs to be
precise and have the ability to sift through huge amounts of data to detect small
anomalies in the biopsy. There is thus a clear need for an automatic tool to draw
the pathologist’s attention to biopsies with suspicious regions.

Considerable progress has been made in the field of histology image anal-
ysis and many surveys on biopsy segmentation and classification have been
conducted [2–5]. There are several approaches to this problem. Texture based
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methods [6, 7] classify the biopsy without understanding its structure and basic
elements (such as nuclei and crypts). Relying solely on texture can fail due to
changes in color between biopsies due to the staining process and fading of colors
over time. Architecture based methods [8, 9] classify the biopsy according to an
architecture constructed from the nuclei. This type of architecture is too sensitive
to errors in nucleus detection and ignores the crypt features. In [10], a method
for classification of prostate glands was proposed using structural and contex-
tual information. We believe that classifying the glands alone cannot produce
accurate results.

In this paper a novel biopsy classification method is presented. The problem of
classifying the biopsy regions as healthy or cancerous is broken into three major
steps. Each step relies on the results of the previous steps but uses a higher level
of knowledge to overcome any errors that may have occurred. In our previous
work, described in Section 2, the image is Classified at the Pixel Level (denoted
by PLC). Using the classified pixels, the crypts are then segmented and false
positive crypts identified using a classifier that assigns a certainty score to each
crypt. In the second step, described in Section 3, the architecture of the crypts
is calculated and used to retrieve missing crypts that were removed in the first
step. In the third and final step, described in Section 4, a more accurate archi-
tecture is constructed using triangulation on the crypt centroids, including the
retrieved crypts. Each triangle is classified as healthy or cancerous using geom-
etry, appearance, the classification of the crypts as healthy or cancerous, and
features based on the PLC. The main novelty of this method is the architecture
created using the segmented crypts. This type of architecture is general and can
be used in the detection of diseases in glandular tissue. Section 5 presents the
evaluation of the method and results of each step of the proposed classification
method on thousands of healthy and cancerous crypts. We conclude in Section 6.

2 Crypt Segmentation

In this study we work with colon tissue images. The colonic biopsy is composed
of a stromal intermedium containing glands (called crypts) and immune system
cells that surround the crypts (see Figure 1). We model the crypt as an inner
area (lumen, goblet cells, and cytoplasm) with an outer layer of nuclei.

In our previous work [11] (included in the supplementary material), we in-
troduced a novel two-step PLC method and a memory based Active Contour
algorithm that we used to segment the colon biopsy crypts. The external forces
of the active contour are based on the crypt model and the PLC image.

Due to incorrect selection of crypt candidates or incorrect segmentation, false
positive crypts are returned. Features describing the shape of the crypt and
the distribution of the pixel classes are extracted from each candidate crypt.
A RandomForest (RF) [12] classifier trained on these features eliminates the
segments that do not satisfy the crypt model and gives a classification certainty
score for each crypt. The false-positive rate drops as a result from 63% to 7%,
but 15% of the valid crypts are also removed in this phase, whereas prior to this
phase, almost all the crypts were retrieved.
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Fig. 1. Healthy colon tissue and crypt structure. A healthy crypt is composed of a
lumen and goblet cells in cytoplasm, surrounded by a thin layer of nuclei. The crypt
and immune system cells are in the stromal intermedium.

3 Missing Crypt Retrieval Using Crypt Architecture

As described in the previous section, the false-positive crypt elimination step
uses only features of a single crypt. These features are local and the errors in
eliminating valid crypts can be corrected using a higher level of information –
the architecture of the crypts.

The architecture is calculated using Delaunay triangulation where the vertices
are the centroids of the crypts. The absence of a crypt results in triangles with
a different shape from its valid neighboring triangles and the region between the
crypts that define the triangle contains eliminated crypts and pixels of crypt
classes (see Figure 2a). In order to identify these triangles, a RandomForest
classifier is trained based on the following types of features (see Figure 2b):

– Triangle geometry. The average, standard deviation, and median of the
side lengths, the standard deviation, median of the angles, largest angle, and
the area of the triangle.

– Crypt inter-area. The percentage of pixels from each crypt class (nuclei,
cytoplasm, goblet cells, lumen) inside the area between the crypts. This
percentage is determined from the PLC image.

– Triangle neighborhood geometry. The number of neighbors of each ver-
tex, standard deviation and average of the distances of a vertex from its
neighbors, and the same for the part of the edge in the crypt inter-area.

– Probability to contain false negative crypts. The number of invalid
crypts, average certainty of the invalid crypts, and the highest crypt certainty
inside the triangle.

The classifier is used to find the triangles suspected of containing false negative
crypts (see Figure 2a). The architectural information gives a prior that enables
us to lower the threshold for the certainty of a valid crypt. Every eliminated crypt
that is in a suspicious triangle and whose certainty is above the new empirically
selected threshold is considered valid (see Figure 2c). After this step, the false
negative rate drops from 15% to 6.3%. Hence the crypt architecture is more
accurate, which is crucial for the partition of the biopsy to cancerous and healthy
regions.
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(a) (b) (c)

Fig. 2. (a) The architecture of the crypts using Delaunay triangulation on the crypt
centroid. In red, the missing crypts. The gray triangles are classified as containing
missing crypts. (b) Zoom on a triangle containing a missing crypt. For each triangle,
features are extracted on the basis of geometry, content, and similarity to neighboring
triangles. (c) The architecture of the crypts after adding those with certainty above
the threshold, inside the gray triangles.

4 Biopsy Classification

A biopsy can be healthy or cancerous, but in early stages of cancer development
a healthy biopsy might have some cancerous regions (see Figure 6e). In order to
accurately segment the biopsy into healthy and cancerous regions, the triangles
are classified as healthy or cancerous. This calculated triangle is the smallest
unit that has enough information to allow for correct classification. One of the
major indications of a cancerous region is that it contains cancerous crypts. In
order to use this information in the triangle classification step, we first classify
the crypts as healthy or cancerous and then classify the triangles.

4.1 Crypt Classification

In this step, the crypts are classified as cancerous or healthy. A cancerous crypt
is larger than a healthy crypt, it does not have a circular shape, its nuclei layer
is thicker, and the nuclei pixels are darker. To measure these characteristics, the
classifier uses features of the crypt that are extracted from the PLC image:

– Crypt geometry. Average radius of the crypt and the distance histogram
of the nuclei pixels from the skeleton of the crypt (see Figure 3a).

– Crypt content. The percentage of each class of the PLC in the crypt and
the thickness of the nucleus layer (see Figure 3b).

– Crypt appearance. For each crypt class, the average of the RGB and Lab
of the pixels that belong to it (see Figure 3c).

Using the PLC, more accurate features can be extracted: the content and
internal structure of the crypt can be measured, as can the thickness of the
nucleus layer, and the average of the RGB channels can be calculated for each
crypt class (rather than for the entire crypt).
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(a) (b) (c)

Fig. 3. (a) The radii of the crypt are defined as the distance of the edge pixels from
the skeleton. (b) Calculating the percentage of the nucleus, cytoplasm, lumen, and
goblet cell pixels. (c) A cancerous crypt has darker nucleus pixels. To measure this
characteristic, the average of the RGB pixels is calculated for each of the crypt classes.

The RF classifier gives 92% accuracy. Despite its good performance, there are
errors in the classification of the crypts. As can be seen in Figure 4, these errors
are sparse. They are dealt with during the triangle classification phase by adding
the architecture of the crypts and classification of the neighboring crypts.

Fig. 4. Results of crypt classification. Left: Healthy biopsy, right: Cancerous biopsy.
The green overlay indicates that the crypt is healthy, red indicates that the crypt is
cancerous. It can be seen that the classification errors are sparse.

4.2 Biopsy Region Classification

Using the Delaunay triangulation on the crypt centroids, the biopsy is decom-
posed to small triangular regions that can be used to distinguish cancerous from
healthy biopsy regions. A triangle of a cancerous region is larger than that of
a healthy region, it differs from neighboring triangles in shape, the crypts that
define it are close to each other and different in shape, and the stroma and im-
mune system cell pixels are darker. The classifier uses the following features to
measure these characteristics:

– Triangle geometry and triangle neighborhood geometry. The same
features as in the identification of triangles containing missing crypts, de-
scribed in Section 3 (see Figure 5a).

– Crypts’ shape similarity. Variance of the radii of the crypts that define
the triangle (see Figure 5a).
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– Crypts’ classification. The classification of the crypts (as described in the
previous section) that define the triangle and their classification certainties.

– Crypt inter-area geometry. The distance between the edges of the crypts
that define the triangle (see Figure 5b).

– Crypt inter-area content. The percentage of pixels of each of stroma and
immune system cell inside the area between the crypts (see Figure 5b).

– Crypt inter-area appearance. The average of RGB and Lab pixels of the
stroma and the immune system cells inside the triangle (see Figure 5c).

The RF classifier gives 94% accuracy.

(a) (b) (c)

Fig. 5. Triangle Features. (a) Features based on the geometry of the triangles, the
similarity of the shape of the crypts that define the triangles, and their classification.
(b) Features based on the crypts’ intra-area geometry and content. (c) The average of
RGB and Lab pixels of the intra-area classes.

5 Results and Discussion

The proposed method is built from three phases. Because each phase relies on
the previous phases, in the experiments we evaluate their performance.

Dataset: Since a database with ground truth segmentation of crypts does not
yet exist, we collected a database of healthy and cancerous colon biopsies. The
biopsies for the database were randomly chosen by E. Sabo MD, a pathologist
from the Gyneco-oncology Unit at Rambam Hospital. The database was created
by scanning the biopsies under a microscope at x200 magnification. From each
scanned biopsy image, sub-images were taken at x4 zoom out. The average size
of a sub-image is 800x500 pixels. There were 109 sub-images of healthy colons
taken from 33 biopsies and 91 sub-images of cancerous colons taken from 21
biopsies. This database contains 4944 healthy crypts and 2236 cancerous crypts.
The ground truth partitioning of the biopsy into cancerous and healthy regions
(see Figure 6e) was also confirmed by him.

Missing Crypt Retrieval: The ground truth of the suspicious triangles was
created by marking the triangles that contained missing crypts. This step was
tested by 5-fold cross-validation on the 200 sub-images and gave 87% accuracy.
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(a) (b) (c)

(d) (e)

Fig. 6. Example for the steps of the method. (a) Crypt segmentation. The gray overlay
indicates that the crypt is classified as false positive. Several valid crypts are misclas-
sified as false positives. (b) Architecture-based retrieval of missing crypts. (c) Crypt
classification. (d) Triangle classification. (e) Ground truth image. The red overlay in-
dicates that the region is cancerous.

The following step is retrieving the crypt segments that have certainty above
the threshold of being inside the suspicious triangles. This selective crypt re-
trieval gives significant improvement in the rate of missed crypts, from 15% to
6.3%, with no loss in segmentation accuracy and an increase in the false-positive
rate, from 7.2% to 12.4%.

Crypt Classification: The crypt classification was tested using 5-fold cross-
validation. The classifier gives 92% accuracy.

Biopsy Region Classification: The classification of triangles was tested using
5-fold cross-validation using balanced datasets. A triangle is considered as can-
cerous if it intersects with the red overlay in more than 50% of the triangle area.
The classifier gives 94% accuracy, when the classification rates of benign and
cancerous triangles are similar, 94.6% and 92.8% respectively. Figure 6 displays
the steps of this method. For more results see the supplementary material.

To demonstrate the importance of the type of architecture used we compared
Delaunay triangulation generated from nuclei which are lower level features (like
the ones used by [8]) to triangulation generated from segmented crypts. Using
only color statistics for the pixels in the triangle, the classification accuracy was
71% compared to 83%. This demonstrates that relatively high quality classifica-
tion can be achieved even with naive features when a meaningful triangulation
is used. The method for classifying the triangles is also novel by that it uses
new features as input for the classification process. When we replaced the sim-
ple color statistics with PLC based features that enable us to analyze the color
of the pixels and their distribution from each class, the classification accuracy
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increased from 83% to 91%. Adding the architecture-based features describing
the geometry of each triangle and the similarity to its neighborhood, increased
the classification rate to our final result of 94%.

6 Conclusions and Future Work

We have presented a novel method to classify colon crypts and biopsies. The
contributions of this paper include: (1) an architecture-based method for the
identification of crypts misclassified as invalid; (2) new features for crypt classi-
fication using the PLC image; (3) biopsy region classification using the segmented
crypts and the PLC image.

In contrast to other architectures defined in previous studies, this one is de-
fined on the basis of crypts. Therefore, the proposed method is general and can
be used to classify and estimate the severity of other diseases (such as Crohn’s
and ulcerative colitis), and can be applied to other types of biopsies that contain
glandular structures (such as breast, thyroid, and prostate).
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Abstract. We present an anatomically guided feature selection scheme
for prediction of neurological disorders based on brain connectivity
networks. Using anatomical information not only gives rise to an in-
terpretable model, but also prevents overfitting, caused by high dimen-
sionality, noise and correlated features. Our method selects meaningful
and discriminative groups of connections between anatomical regions,
which can be used as input for any supervised classifier, such as logistic
regression or a support vector machine. We demonstrate the effectiveness
of our method on a dataset of autism spectrum disorder, with an AUC
of 0.76, outperforming baseline methods.

1 Introduction

The effect of neurological disorders on structural (and functional) brain connec-
tivity can be studied through magnetic resonance imaging (MRI). Studies often
focus on population differences between cases and controls for particular global
variables, such as white matter volume [1] or global graph-theoretic properties
of brain networks [2,3]. However, the predictive power of the selected features is
often not tested [3,4], and weak statistical tests which can be inconclusive as to
which variables of interest are predictive of the diagnosis [5], leading to poor gen-
eralization to unseen data. Classification models are therefore more interesting
from a diagnostic perspective [6, 7].

Furthermore, interpretability, in the sense that prediction should link back to
concrete biological markers, is a desirable property. For example, global mea-
sures such as small-worldness of networks [3] or histograms of image gradient
descriptors [8] may disregard local connectivity changes, and do not provide
information about which brain pathways have been altered.

This calls for methods which (i) consider local information and (ii) are predic-
tive. Measuring features on densely sampled regions of interest (ROIs) provides
local information, but unfortunately the high dimensionality of the noisy, cor-
related features can easily lead to overfitting, i.e. predicting perfectly on the
training data, but failing to generalize to previously unseen data. It is therefore
necessary to reduce the dimensionality, either by clustering ROIs [9], selecting
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features with good predictive performance on the training data [6, 10], and/or
using classifiers which penalize complex models [9, 11].

It is important to understand that these techniques do not necessarily lead
to good generalization to test data – even feature selection methods can suf-
fer from overtraining due to the large number of potential feature subsets that
need to be evaluated using limited training data. Adding constraints to select
groups of features (i.e. either all or none of the features in a group are selected)
helps to reduce the size of this search space. Such an approach is taken in struc-
tured sparsity [9,11], however there the feature selection is implicit and it is not
straightforward to control how many feature groups are selected.

In this paper we leverage the advantages of clustering ROIs and group feature
selection in order to create a robust predictive model for brain connectivity
data. We study features which quantify ROI-ROI connections. Clustering
ROIs therefore naturally results in groups of connections, which share their start
and end clusters. We call the concatenation of all connections within such a
feature group a hyperedge, see Fig. 1. We cluster the ROIs into data-driven or
anatomical clusters, which in both cases may lead to clusters of different sizes.
This leads to hyperedges of different dimensionalities. Our goal is to select a set
of discriminative hyperedges, i.e. per hyperedge we aim to select all, or none of
the features.

By assuming that adjacent ROI-ROI connections are likely to work together
in disorders, we further propose to examine connected networks of hyperedges.
At each step of the feature selection approach, we therefore add a hyperedge that
(a) is connected to the already selected hyperedges via one or both of its clusters
and (b) leads to the largest improvement in performance on the training set. The
performance is evaluated by the nearest mean classifier, which is efficient and
insensitive to overfitting.

We contribute an interpretable predictive model for brain connectivity
graphs, which selects local discriminative brain connectivity patterns, implicated
in neurological disorder. We combat the overfitting problem by grouping ROIs
into anatomical or data-driven clusters, and thus grouping ROI-ROI connec-
tions into groups of features. We use the cluster assignments to guide the group
feature selection process, which, for anatomical clusters, leads to interpretable
brain networks. Our method outperforms competing approaches on a dataset of
ASD [3, 12].

2 Methods

Each subject’s brain graph is represented by a symmetric m×m matrix which
quantifies the brain connectivity between m ROIs in the brain, as illustrated in
Fig. 1 (right). Each matrix is a collection of M = (m2+m)/2 individual connec-
tions (including the self-connections on the diagonal). That is, each subject is
described by a vector xi ∈ R

M of M features, where each feature is an ROI-ROI
fiber count. These m ROIs are associated with G clusters. The clusters organize
these M features into (G2 +G)/2 feature groups or hyperedges. Fig. 1 illustrates
the relationship of the ROIs, clusters and the connectivity matrices.
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Fig. 1. Illustration of brain network (left) of m = 6 ROIs organized into G = 4 clusters
(by color). Each connection is a feature; all features are summarized in a subject-specific
data matrix (right). For each pair of ROI clusters, the set of connections between two
clusters, or within a cluster, form a feature group called a hyperedge. Due to symmetry,
this example has M = 21 unique features and 10 hyperedges (outlined in bold) to
consider. There are 3 hyperedges with 1 feature, 4 with 2 features, 2 with 3 features,
and 1 with 4 features.

For N subjects, this gives anN×M data matrixX = (x1, . . . ,xN )ᵀ and a vec-
tor y ∈ {−1, 1}N of labels which describe the presence or absence of neurological
disorder. Subsets of the features are denoted by Xs, where s ∈ S = {1, . . . ,M}.
A hyperedge Hij ⊂ S is the set of indices of all the connections of clusters i and
j.

Filter Approach to Feature Selection. We are interested in the feature
subset s∗ ⊂ S, which maximizes a goodness criterion c on the training data,
s∗ = argmaxs c(X

s,y). Exhaustive evaluation of all choices for s is intractable
for large M , while individual feature selection does not take feature correlations
into account, rendering both approaches unsuitable for brain connectivity. A
possible approach is therefore to perform forward feature selection: select the
best feature, and iteratively grow the feature set with the feature j that leads
to the largest improvement in c(Xs∪j, Y ).

Network Group Feature Selection. Based on the assumption that discrim-
inative information is contained in networks of anatomical regions, we propose
to perform forward selection on connected feature groups rather than individual
features. This further limits the flexibility of the feature selection methods and
therefore helps to reduce overfitting. Furthermore, the selected feature set will
be interpretable which is interesting from a diagnostic perspective.

We iteratively grow the feature set by adding the (i, j)-th hyperedge that
leads to the largest increase in c(Xs∪Hij , Y ), and is adjacent to the already
selected hyperedges. For example, in Fig. 1, {blue-green, green-purple} is allowed
because the hyperedges are connected at the green cluster, but the feature set
{blue-green, purple-orange} is not. A procedure overview is shown in Fig. 2.



Network-Guided Group Feature Selection 193

Goodness Criterion. The goodness criterion c could be univariate, such as a
t-test. However, we need a multivariate c because we want to evaluate groups
of hyperedges. We define c as the average cross-validation performance of the
nearest mean classifier (NMC) on the training set, c(X,y) = 1

N

∑N
i=1 I(f(xi) ==

yi) where f(x) = argminl∈{−1,1} ‖μl−x‖ and μl are the class means. This choice
has several advantages: NMC is very inflexible and therefore relatively insensitive
to overfitting [13], and its performances on different cross-validation folds can
be computed very efficiently in matrix form.

The NMC errors are discretized into ranks (equal error = equal rank). To
avoid discarding potentially good feature sets when feature sets s and s′ have
similar errors, we consider all feature sets with rank up to R, therefore reducing
the greediness of our method. The added computational effort of this step is
compensated by the fact that fewer feature sets need to be evaluated due to the
network constraint.

Evaluation Procedure. We perform 10-fold cross-validation, the feature selec-
tion is performed only on the training set. The area under the receiver-operating
characteristic (AUC) is used for evaluation; random performance is equal to 0.5
and perfect performance is equal to 1.

Fold 1, 90% train data Fold 1, 90% train, 10% test

Fold 2 … 10 Fold 2 … 10

Average AUC, 
size 1 … maxsize

Top networks, 
size 1 … maxsize, 
fold 1 … 10

Train classifiers on top R 
networks of size 1, 2, … 
maxsize

Test classifiers

1
2
2
3
3
3

2
1
2
3 Top

R=1
Top
R=1

Fig. 2. Overview of procedure. The hyperedges are ranked, then the hyperedges with
rank less than or equal to R (here R = 1) are selected for the next step. The selected
hyperedges are extended to form pairs of hyperedges, which are again ranked. The
procedure continues until the desired network size is reached.

3 Experiments and Results

We apply our algorithm to the structural connectivity matrices from the autism
spectrum disorder dataset of [3, 12]. Each subject is represented by a 264× 264
matrix encoding the number of paths connecting 264 ROIs from a functional at-
las [14], where paths are found by deterministic tractography, using the fiber as-
signment by continuous tracking (FACT) algorithm in Diffusion Toolkit1. There
are N = 94 subjects (51 ASD, 43 TD), matched for factors such as IQ and age.
The ROIs are divided into clusters using (a) 88 anatomical regions, based on the
coordinates of the 264 ROIs, and (b) 9 data-driven clusters obtained through
Louvain modularity on the mean connectivity matrix.

1 http://trackvis.org/dtk
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Fig. 3. AUC for an increasing number of hyperedges between data-driven clusters (left),
anatomical clusters (middle) and p-values for the anatomical clusters (right). The best
result achieved is AUC of 0.76 for 3 anatomical hyperedges and an SVM.

We evaluate the network group forward selection on both (a) and (b). Fig. 3
shows how the performances change when more hyperedges (best hyperedge,
best pair, . . .) are added in the two models. As the anatomical clusters achieve
superior, less noisy performances and improve interpretability, we use them in
further experiments. To test significance of these results, we provide p-values
based on a permutation test with 1000 repetitions in Fig. 3 (right).

Comparison. We first compare our method (fwd-network with 5 hyperedges
and SVM) to filter feature selection with a t-test (t-test), minimum redun-
dancy maximum relevance [15] (mrmr) from the FEAST toolbox [16] and SVM
with recursive feature elimination [17] (rfe). We use 300 highest ranked features
and an SVM (from PRTools [18]) as a classifier. We also compare to a sparse
logistic (sp-basic) and group sparse logistic (sp-group), both from SLEP tool-
box [19], and a tree-structured sparse logistic [9] (sp-tree), modified to suit
our connectivity data. This method averages correlated groups of connections
and enforces that within such correlated groups, all or none of the features are
selected. Note that for the sparse methods, it is not possible to control the num-
ber of hyperedges explicitly, as in our method. Lastly, we compare to selecting 5
hyperedges without the network constraint (fwd-group). The results are shown
in Table 1.

Table 1. AUC mean ± std, ×100, of selection of 300 best features (t-test to rfe),
sparse methods (sp-) or forward selection (fwd-) with 5 hyperedges. 300 features and
5 hyperedges are chosen as default parameters, and NOT to correspond with best
performances in Fig. 3.

t-test mrmr rfe sp-basic sp-group sp-tree fwd-network fwd-group

56.6 52.4 48.9 51.3 47.4 50.1 73.5 67.8
± 25.7 ± 22.2 ± 17.4 ± 21.6 ± 20.3 ± 23.3 ± 16.6 ± 16.2

Interpretation. Table 2 shows the subnetworks frequently selected by our
method. In each fold, we record which networks have ranks 1 to 5. Not con-
sidered networks are ranked with a 10. By averaging ranks over the folds, we
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Table 2. Average ranks (1 = best, 10 = worst) for networks with 1-3 hyperedges.
R Putamen (RP), R Superior Parietal Lobule (RSPL), R Parahippocampal Gyrus
posterior (RPGp), R Thalamus (RT), L Insular Cortex (LIC), L Planum Temporale
(LPT), L Precentral Gyrus (LPG), R Superior Temporal Gyrus posterior (RSTGp), L
Inferior Frontal Gyrus pars opercularis (LIGFpo), L Caudate (LC)

Size 1 Rank Size 2 Rank Size 3 Rank

RP-RSPL 1.8 LPG-RP-RSPL 2.9 LPG-RP-RSPL-RSTGp 6.2
RPGp-RT 4.5 RP-LIC-LPT 6.7 LC-LPG-RP-RSPL 6.4
LIC-LPT 5.6 RP-RSPL-RSTGp 7.0 LIFGpo-LPG-RP-RSPL 7.6

quantify how frequently a network is selected: if a network is the best in all folds,
its average rank is 1, if a network is never selected, its average rank is 10.

4 Discussion and Conclusions

Our method selects groups of connectivity features based on prior anatomical
knowledge and outperforms competing approaches which either do not consider
groups of features and/or do not select features prior to training a classifier.

Comparison of Classifiers. As expected, methods which select features in-
dividually (t-test) perform very poorly because feature interactions are not
taken into account. Forward selection methods which add or remove one feature
per iteration (mrmr and rfe) perform even worse, because overfitting becomes
a problem due to the amount of possible feature subsets that are evaluated.
Selecting groups of features in a forward fashion (fwd-) therefore yields supe-
rior results, and network selection (fwd-network) outperforms selecting groups
without such network constraints (fwd-group).

The sparse classifiers (sp-) perform very poorly. We suspect this is mainly
due to the high dimensionality and correlations of the feature space, which lead
to overfitting. While structured sparsity aims at selecting few features or feature
groups, this cannot be controlled explicitly because a relaxation of the desired l0
norm is used. Therefore, solutions that are less sparse than desirable could still
be chosen. Our method explicitly controls the sparsity by choosing the network
size, and therefore removes some potentially harmful solutions. To this end, it
would also be interesting to investigate methods from computational biology
which explicitly optimize the l0 norm, such as [20].

In general, we suspect the problems are also caused by the difficulty of the
data, because other methods, such as averaging of features for each ROI [7]
(AUC ≈ 0.5 on our dataset) or structured sparsity [9], perform well on related
problems, but not on this ASD dataset. Perhaps the numbers of fiber tracts
do not contain enough discriminative information for this study, because of the
differences in the tractography procedure.

Anatomical vs. Data-Driven Clusters. In our method, anatomical ROI clus-
ters outperform data-driven clusters. This may be caused by the dimensionality
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of the hyperedges, which is higher for the data-driven clusters because the fea-
tures are divided into less groups, resulting in more features per group. Perhaps
more importantly, prior knowledge acts as an intrinsic regularization. We as-
sume that the discriminative information is contained in connected subnetworks
of anatomical regions, which reduces the solution search space. The fact that
we obtain superior results indicates that the corresponding search space reduc-
tion removes solutions (which are not connected subnetworks) that would fit the
training data perfectly but not generalize to test data.

Interpretability. Our method selects networks of anatomical regions, and there-
fore allows interpretation of results from a neurological perspective. The net-
works selected for this dataset often contain the right putamen. A study of DTI
measures in ASD [21], finds significant differences in white matter tracts pass-
ing through the putamen (primarily left) to the frontal cortex, which is in part
consistent with our results. Other studies of white matter pathways in ASD
(reviewed in [22, 23]), find differences in the connections between temporal and
occipital lobes and between the cingulate cortex and medial temporal struc-
tures. Although we do not find these specific connections, differences in the data
acquisition and methodology could also be leading to inconsistencies.

Further Investigation. Age is important in the development of the brain dur-
ing ASD [4,22], increasing the variability in brain connectivity inside each class.
To this end, we analyzed the correlation of performance, and the similarity of
ages in the training and test set. Moderate correlations suggest that it might
be advantageous to train age-dependent classifiers. Our initial efforts to do so
did not outperform the proposed method, probably because of the even further
reduced sample sizes. A remaining question is how to incorporate age in the
classification procedure, without splitting the data into smaller subsets.

Conclusions. We propose a network-guided group feature selection method for
structural brain connectivity data. The approach reduces overfitting by incor-
porating prior anatomical knowledge about ROI-ROI connections, and outper-
forms both methods where group structure is not considered, and data-driven
methods. Our method provides interpretable output in the form of connected
subnetworks between anatomical regions of the brain, which are discriminative
for patients and controls. On a dataset of ASD, we obtain an AUC of 0.76 and
select subnetworks which point in the direction of brain areas to be investigated
in ASD. Future improvements could include incorporating the subjects’ ages into
classification.
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Abstract. Spatial normalization of positron emission tomography
(PET) images is essential for population studies, yet work on anatomi-
cally accurate PET-to-PET registration is limited. We present a method
for the spatial normalization of PET images that improves their anatom-
ical alignment based on a deformation correction model learned from
structural image registration. To generate the model, we first create a
population-based PET template with a corresponding structural image
template. We register each PET image onto the PET template using
deformable registration that consists of an affine step followed by a dif-
feomorphic mapping. Constraining the affine step to be the same as that
obtained from the PET registration, we find the diffeomorphic mapping
that will align the structural image with the structural template. We
train partial least squares (PLS) regression models within small neigh-
borhoods to relate the PET intensities and deformation fields obtained
from the diffeomorphic mapping to the structural image deformation
fields. The trained model can then be used to obtain more accurate
registration of PET images to the PET template without the use of
a structural image. A cross validation based evaluation on 79 subjects
shows that our method yields more accurate alignment of the PET im-
ages compared to deformable PET-to-PET registration as revealed by
1) a visual examination of the deformed images, 2) a smaller error in the
deformation fields, and 3) a greater overlap of the deformed anatomical
labels with ground truth segmentations.

Keywords: PET registration, deformation field, partial least squares.

1 Introduction

Deformable medical image registration is essential to aligning a population of im-
ages, performing voxelwise association studies, and tracking longitudinal changes.
While within-modality spatial normalization of structural medical images has
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been studied extensively, work on anatomically accurate positron emission to-
mography (PET) spatial normalization remains limited. The anatomical align-
ment of PET images is a difficult problem since they reflect metabolism and
function rather than anatomy, the observed intensities depend on the amount of
radiotracer used, and the spatial detail is confounded by radiotracer spillover.

Whenever available, it is preferable to use a structural image (such as a T1-
weighted MRI) co-registered with the subject’s PET image for registration pur-
poses and to warp the PET image accordingly. However, it is important to be
able to perform PET spatial normalization accurately without guidance from
additional images, as structural MR images are not always available due to
claustrophobia or MR-incompatible implants. Enabling accurate PET spatial
normalization can obviate the need for structural imaging in certain studies,
resulting in lower costs, hospitalization time, and patient burden.

Prior work on PET spatial normalization includes modification of the target
image intensities using a whole-brain principal component analysis model to
match more closely to the moving image intensities [7,9], imposing constraints
on the PET deformations via a statistical control point model based on the
deformation parameters of PET-to-MR registrations [8], and making use of the
4D data available in dynamic PET studies [3]. While these approaches show
improvements over simple 3D PET spatial normalization, they do not take into
account the systematic errors present in PET-to-PET registration due to the
incorrect inference of anatomical boundaries stemming from spillover effects and
the preferential binding of the radiotracer to certain parts within structures.

We present a method for the spatial normalization of PET images based on
a deformation correction model learned from structural image registration. The
observation motivating our method is: PET-to-PET registration produces defor-
mations that are systematically biased in certain regions, and these biases can be
characterized as a function of location and estimated within small neighborhoods.
The correction operates on the PET-to-PET deformation fields obtained from
a deformable registration algorithm and uses partial least squares regression
models learned from a population of subjects relating the local PET intensi-
ties and deformation fields to the corresponding structural imaging deformation
fields. The learned relationship between the deformation fields accounts for the
anatomical inaccuracies present in the alignment of PET images, while the use
of PET intensity information allows for inter-subject variability in radiotracer
binding due to differences in physiology.

2 Method

To construct our model, we need the deformation fields that are to be applied
to the PET images and their structural counterparts to bring the images to a
common template. Our model is then trained using the resulting deformation
fields for the PET and the structural images as well as the warped PET image
intensities, yielding a correction that can be applied to PET deformation fields.
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2.1 Image Template Generation

To create an anatomically accurate PET template image, we rely on the associ-
ated structural images. The structural images Si (i = 1, . . . , N), are co-registered
rigidly with the subject PET images Fi yielding transformation Ri, followed by
affine registration to a common space with transformation T i.

The affinely coregistered structural images Ŝi = Si (Ri ◦ T i) are then used to
create a structural population template image S̄. Let x be in the common space
Ω, and φi a diffeomorphism defined on Ω to transform Ŝi into a new coordinate
system by Ŝi ◦ φi(x, t), with t ∈ [0, 1] and φi(x, 0) = x. The square-integrable
and continuous vector field νi(x, t) parameterizes the diffeomorphism such that
dφi(x,t)

dt = νi(φi(x, t), t) [1]. The population template is

S̄, {φi} = arg min
S̄,{φi}

N∑
i=1

(∫ 1

0

‖νi(x, t)‖2L dt+

∫
Ω

−CC
(
S̄, Ŝi(φi),x

)
dΩ

)
(1)

where L is a Gaussian convolution operator regularizing the velocity field, and
CC(S̄, Ŝi(φi),x) is the cross correlation similarity measure with the inner prod-
ucts calculated over a cubic window around x [2].

The affine transformations T i and diffeomorphisms φi obtained from the
structural image template construction are applied to the corresponding PET
images in order to bring them into the same template space. The PET tem-
plate F̄ is then defined as the mean of the spatially normalized PET images as

F̄ =
1

N

N∑
i=1

Fi (T i ◦ φi) . (2)

2.2 Computing a Training Set

Using a set of subjects for whom both a structural image and a PET image are
available, we perform deformable registration to map the PET images onto the
PET template. For each subject i = 1, . . . , n in the training data, the deformable
registration consists of an affine transformation T ′

i followed by a diffeomorphic
mapping ψi(x) defined on Ω. We denote the PET image registered onto the
PET template F̄ by F̃i = Fi (T

′
i ◦ψi). Constraining the affine transformation

to be the same as that obtained from the PET-to-PET registration, we then
perform another registration to find the deformation field ϕi(x) that must be
applied to the structural image such that Si (Ri ◦ T ′

i ◦ϕi) is in alignment with
the structural image template S̄.

2.3 Model Training

Our goal is to train a model at each voxel x ∈ Ω describing a relationship
between the estimated PET deformation field ψi(x) and the structural image
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deformation field ϕi(x) for the training subjects i = 1, . . . , n. To account for the
variability in PET intensities across subjects due to differences in function and
metabolism, we also include the intensities F̃i(x) as features in the model.

We denote the row vector whose components are the warped PET intensities
at each voxel in the neighborhood N (x) as F̃i (N (x)) ∈ R

|N |, where |N | is
the number of voxels in the neighborhood. Similarly, we denote the row vector
whose components are the deformation field components at each voxel in the
neighborhood as ψi (N (x)) ∈ R

3|N |. In our setup, we use the input features
X(x) ∈ R

n×4|N | and the output data Y(x) ∈ R
n×3

X(x) =

⎡⎢⎢⎣
...

...

ψi (N (x)) F̃i (N (x))
...

...

⎤⎥⎥⎦ Y(x) =

⎡⎢⎢⎣
...

ϕi(x)
...

⎤⎥⎥⎦ (3)

compiled across the n subjects to train a partial least squares regression model
for predicting the structural image deformation vector at the center voxel.

Partial least squares (PLS) is a dimensionality reduction technique that seeks
to find a small number of latent variables extracted from the input features
that best explain the observed data [10]. The number of latent variables, or
components, to be retained in the model is denoted by c. PLS performs linear
decomposition of the input features X ∈ R

n×p and observed data Y ∈ R
n×q,

where n, p, and q are the number of observations, input features, and output
features, respectively, to obtain X = TPT +V and Y = UQT +W, where T
and U are the n× c score matrices each consisting of orthogonal columns, with
loadings P and Q, and residuals V and W. PLS finds the linear decompositions
so that the covariance of the extracted score matrices is maximized. The coef-
ficient matrix for the multivariate linear regression of X on Y is then given by

B = XTU
(
TTXXTU

)−1
TTY [10], which is later used for prediction.

The choice of the number of components c is important: a small value will
yield a model that cannot account for the sample variance while a large value will
lead to over-fitting. We apply a k-fold cross validation as part of the training to
determine the best number of PLS components to retain in our model. The cross
validation involves splitting the training subjects into k groups, one of which is
used to test the model that is trained on the remaining k− 1. This training and
testing procedure is repeated to obtain predictions on each of the k groups. We
find an optimal ĉ for each spatial location using the cross validation results:

ĉ(x) = arg min
c

n∑
i=1

‖ϕ̂i(x; c)−ϕi(x)‖2 . (4)

Here, ϕ̂i(x; c) is the prediction of the PLS model with c components for test
subject i. We use this spatially varying choice ĉ(x) in the model at each voxel x.
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3 Results

PET scans were performed on a GE Advance scanner immediately following
an intravenous bolus injection of Pittsburgh compound B (PiB), which binds
to the beta-amyloid peptide. Dynamic PET data were acquired over 70 min-
utes, yielding 33 time frames each with 128 × 128 × 35 voxels. Voxel size was
2× 2× 4.25 mm3. Each time frame was cropped to 118× 118× 33 images. The
images corresponding to the first 20 minutes were averaged to create a static
PET image for each subject. Early time frames were chosen as they are mostly
reflective of cerebral blood flow and show clearer anatomic boundary less vulner-
able to modification by beta-amyloid. For structural images, we used MPRAGE
scans performed on a Philips Achieva 3T scanner with the following acquisition
parameters: TR = 6.8 ms, TE = 3.2 ms, α = 8◦ flip angle, 256 × 256 matrix,
170 sagittal slices, 1× 1 mm2 in-plane pixel size, 1.2 mm slice thickness. Three
subjects had their MPRAGE scan 4 years after the PET, and one subject 2 years
after the PET. The remaining subjects had both scans during the same visit.

The inhomogeneity corrected [11] MPRAGE images for each subject were
rigidly aligned onto the corresponding static PET and skull-stripped [4]. The
intensities of the PET images were normalized by the mean intensity within the
volume, and thresholded at 80% to remove background noise. The MPRAGE and
PET population templates were constructed using the ANTs package using 79
subjects (http://picsl.upenn.edu/software/ants/). The diffeomorphic reg-
istration of each subject onto the population template was performed using SyN
[1], with the same parameters for MPRAGE and PET. The model was validated
using 10-fold cross validation on 79 subjects. Input features for PLS were ob-
tained over 3× 3× 3 neighborhoods, and within each training set, an additional
k = 10-fold cross validation was used to pick the number of components to keep
in the model.

We compared our method against PET-to-PET template registration and an
implementation of [7] that involved first creating a PET template using corre-
sponding MRIs as in our approach, constructing a whole-brain PCA model from
the spatially normalized PET images, affinely registering the subject’s PET onto
the template, modifying the template using the PCA model to resemble more
closely to the subject, and finally performing deformable registration using the
modified template. Sample PET and MPRAGE images warped by deformation
fields obtained from the different methods are presented in Fig. 1. Ventricle size
is overestimated in both PET-to-PET registration and the method described in
[7], whereas our method achieves better registration as revealed by the differ-
ence images. The putamen, a structure that exhibits higher activity in the PET
image and thus causes spillover, is also better aligned by our method.

A comparison of the root mean square (RMS) error of the deformation fields
is presented in Fig. 2. The deformation field ϕ obtained from the registration
of MPRAGE onto the MPRAGE template is used as ground truth in the RMS
error calculation. Our method achieves the lowest overall RMS error.

To assess the accuracy of anatomical alignment, the FreeSurfer [5] segmen-
tations of the original MPRAGE images were brought into the template space

http://picsl.upenn.edu/software/ants/
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Fig. 1. Visual comparison of deformed images for a sample subject. First row: PET
deformed using (A) the deformation ϕ from MPRAGE-to-MPRAGE template regis-
tration, (B) the deformation ψ from PET-to-PET template registration, (C) the de-
formation given by [7] (D) the deformation ϕ̂ predicted using our PLS model. Second
row: MPRAGE deformed using (E) ϕ, (F) ψ, (G) the deformation given by [7] and
(H) ϕ̂. Third row: (I) MPRAGE template, (J) difference of E and F, (K) difference of
E and G (L) difference of E and H.

Fig. 2. Root mean square (RMS) error (in mm) of the PET deformation fields, cal-
culated across 79 subjects. Left to right: MPRAGE template, RMS error of ψ, RMS
error of the deformation given by [7], and RMS error of ϕ̂ predicted using our PLS
model.

by applying the mappings from the previously performed registrations. Using
the FreeSurfer labels deformed according to ϕ as ground truth, we calculated
the Dice coefficients [6] for the deformed labels. Table 1 shows the summary
statistics for Dice coefficients for gray matter, white matter, and ventricular cor-
ticospinal fluid (CSF). Dice coefficients for our method are statistically different
(p < 0.01 for all three tissue types) from both compared methods. Fig. 3 shows
the Dice coefficient box plots for cortical regions. While the method proposed by
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Table 1. Dice coefficients (mean ± st. dev., N = 79) for major brain tissue types

PET-to-PET PCA method by [7] Our method

Gray matter 0.64 ± 0.02 0.64 ± 0.03 0.65 ± 0.02
White matter 0.76 ± 0.02 0.76 ± 0.02 0.78 ± 0.02
Ventricular CSF 0.77 ± 0.05 0.78 ± 0.04 0.80 ± 0.04

Fig. 3. Box plots of Dice coefficients for cortical labels across 79 subjects calculated
using the deformations obtained from PET-to-PET registration (blue), the method
proposed by [7] (green), and our method (red).

[7] yields mixed results, our method consistently achieves higher Dice coefficients
than either of the methods compared against. Dice coefficients for our method
are statistically different (p < 0.05) from both compared methods for all regions
except for cuneus, paracentral lobule, precentral gyrus and temporal pole.

4 Discussion and Conclusion

In our dataset, PET-to-PET registration consistently yielded larger ventricles
compared to MPRAGE-to-MPRAGE registration. We also observed smaller
brains and larger subcortical gray structures in PET-to-PET registered volumes,
but these effects were subtle (Fig. 1).

We presented a deformation correction method to improve the anatomical
alignment of PET images. Cross validation results show that our deformation
correction method reduces the deformation field error and improves the anatomi-
cal alignment of PET images as evidenced by the higher Dice coefficients
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calculated using the deformed segmentations. Our method can compensate for
errors in PET-to-PET registration by learning locally from the structural image
registrations. While we used SyN for registration purposes, the method can be
applied to any deformable PET-to-PET registration method.

Our method is particularly suited for spatial normalization of PET images in
datasets where only a subset of the subjects have structural images. Subjects
with both PET and structural images can be used to train the model, and those
with PET images only can then be registered onto the PET template, taking
into account the deformation correction provided by the model. If the dataset
contains no concurrent PET and structural images, our deformation correction
can still be applied given a PET template and an associated deformation field
correction model that has already been constructed using a separate dataset.

The proposed approach could be applied to improve the deformable registra-
tion of other types of medical images with low resolution, poor contrast, geo-
metric distortions, or inadequate anatomical content by using a model trained
on corresponding medical images that are largely free of such effects.
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Abstract. The goal of multi-atlas segmentation is to estimate the anatomical la-
bels on each target image point by combining the labels from a set of registered 
atlas images via label fusion. Typically, label fusion can be formulated either as 
a reconstruction or as a classification problem. Reconstruction-based methods 
compute the target labels as a weighted average of the atlas labels. Such 
weights are derived from the representation of the target image patches as a li-
near combination of the atlas image patches. However, the related issue is that 
the optimal weights in the image domain are not necessarily corresponding to 
those in the label domain. Classification-based methods can avoid this issue by 
directly learning the relationship between image and label domains. However, 
the learned relationships, describing the common characteristics of all the train-
ing atlas patches, might not be representative for a particular target image patch, 
and thus undermine the labeling results. In order to overcome the limitations of 
both types of methods, we innovatively formulate the patch-based label fusion 
problem as a matrix completion problem. By doing so, we can jointly utilize (1) 
the relationships between atlas and target image patches (thus taking the advan-
tage of the reconstruction-based methods), and (2) the relationships between 
image and label domains (taking the advantage of the classification-based me-
thods). In this way, our generalized paradigm can improve the label fusion ac-
curacy in segmenting the challenging structures, e.g., hippocampus, compared 
to the state-of-the-art methods. 

1 Introduction 

Multi-atlas segmentation (MAS) is commonly used for automated labeling of anatom-
ical structures from the target images. It consists of two steps, namely, image registra-
tion and label fusion. In the registration step, either linear or non-linear registration is 
used to spatially normalize all atlas images to the target. In the label fusion step, the 
latent labels in the target image are determined by utilizing image appearance and 
fusing the label information from each registered atlas. 

Typically, label fusion can be solved either as a reconstruction or a classification 
problem. Reconstruction-based methods compute the target labels as a weighted aver-
age of the atlas labels. The weights are often derived from the reconstruction coeffi-
cients used to represent the target image patch from a set of atlas image patches [1]. 
However, the optimal weights used for patch reconstruction in the image domain 
might not be optimal for fusing labels in the label domain. On the other hand, classifi-
cation-based methods have no such issue since they determine the target labels based 
on a learned mapping function from the image appearance domain to the label  
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domain. Such mapping is learned from the observed atlas image patches and ground-
truth (manual) labels [2]. However, the relationships learned using the whole training 
set might not be representative enough for a new specific target patch under consider-
ation. Fortunately, this issue can be alleviated by utilizing the correlation between the 
target image patch and each atlas image patch, which is the essential idea in recon-
struction-based methods. 

It is apparent that the reconstruction-based and classification-based methods can 
help each other to overcome their respective limitations. This is exactly the goal of 
this paper, i.e., improving the label fusion accuracy by integrating the advantages of 
both types of methods. To achieve this goal, we formulate label fusion as a matrix 
completion problem, where the latent target labels are the missing entries in a four-
quadrant matrix. Specifically, we first stack each atlas image patch and its respective 
(ground-truth) label into a column vector. We do similarly for the target image 
patches, but leaving the label entries blank. Then, we build a matrix by arranging 
these column vectors in a column-wise manner, where the four parts in the matrix are 
the atlas image patches, atlas labels, target image patches, and latent target labels (to 
be estimated), respectively. According to the assumptions made by the reconstruction- 
and classification-based methods, the four-quadrant matrix is highly correlated in both 
column-wise and row-wise manners, and thus it has low rank. In this way, the prob-
lem of estimating the missing entries (i.e., the latent target labels) in the matrix can be 
solved with the rank minimization technique, as commonly used by matrix comple-
tion [3]. It is worth noting that we can now leverage both column-wise correlations 
(i.e., representing a target image patch by all atlas image patches) and row-wise corre-
lations (i.e., mapping the image appearance domain to the label domain) to predict 
more reasonable values for the target patches (i.e., values for those missing entries). 

Furthermore, we also propose two additional strategies to make our new label fu-
sion method more robust: (1) instead of estimating only the labels for the center of 
target patches, we estimate labels for the whole target patch in a set of target patches 
simultaneously. In this way, we provide additional useful sources of correlation 
among the observed data to be leveraged by the matrix completion technique; and (2) 
instead of treating each atlas label equally, we assign a confidence for each atlas label 
based on its distance to the corresponding boundary of the manually-labeled structure, 
since labels far from the boundary are more reliable of conveying the correct label 
information. We have comprehensively evaluated the labeling accuracy of our method 
on both ADNI and LONI datasets obtaining much better results than the state-of-the-
art patch-based label fusion methods. 

2 Method 

Given a target image  and a set of atlas images  along with their respective label 
maps , 1 … , which have been registered to the target image, the conventional 
label fusion approaches estimate the target label  at each voxel Ω of target image 

 in a patch-wise manner. Denote  as a (column) vector of intensities in the target 
image patch (centered at voxel ), and , … , , … , … , …  as a  
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dictionary of  candidate atlas image patches with centers in a local search neighbor-
hood of voxel . Note that, each column vector  contains the -th image patch from 

the -th atlas image . Corresponding to , , … , , … , … , …  is a (col-

umn) vector of labels at the patch centers, with each element 1,1  indicating 

absence or presence of certain label at the center of the respective atlas image patch . 
As mentioned, label fusion can be regarded as a reconstruction or classification 

problem. In the reconstruction case, each target label  is approximated as a linear 
combination of the atlas labels [1], i.e., , where  is a weighing vector to 
combine the atlas labels. Weights in  can be computed as the reconstruction coeffi-

cients of the target patch  by the atlas patches , i.e., 1 . Note that we add 

the trailing 1 in the target and atlas patches to enforce the weighting vector  will add 
up to one. On the other hand, in the classification case, given the target image patch , 
its central label is determined only based on the mapping function learned from the 

atlas image patches and ground-truth labels [2], i.e., 1 , where the trailing 1 

allows to include the bias term of the linear mapping in the last entry of . The linear 
mapping function  can be learned by minimizing the discrepancies between the pre-

dicted labels and ground-truth labels in the training stage, i.e., . 

Instead of predicting only the label at the center of each target patch, we also esti-
mate the labels for the entire target image patch. Following the same order as in , 
we can arrange the label vector  of each atlas patch  into the atlas label matrix , … , , … , ,.., , ,…, . Moreover, instead of labeling each target patch 

independently, we go one step further to simultaneously label a large group of target 
image points with similar anatomical characteristics. To achieve it, we first group the 
target image into several partitions based on the image intensities. Then, we label the 
target image in a group-by-group manner. For each group, we use , … ,  
and , … ,  to denote  intensity vectors and their respective missing label 
vectors of all target image points in the group. 

Construction of the Four-Quadrant Matrix. Fig. 1 illustrates the construction of 

the four-quadrant matrix  . This matrix consists of four parts (from 

top to bottom, left to right): the atlas image patch matrix , the atlas label matrix , 
the target image patch matrix , and the target label matrix  (for the sake of sim-
plicity, we consider the trailing ones along with the intensity vectors as a whole). Our 
goal is to complete the missing values in the target label matrix  by using matrix 
completion (MC) techniques. In this way, label fusion can be formulated as the recov-
ery of the missing entries in  by imposing the low-rank constraint upon . 

Advantages of Label fusion by Matrix Completion. As mentioned earlier, the re-
construction-based methods assume that each target-patch column can be represented 
by a linear combination of atlas-patch columns, while classification-based methods 
assume that each label-patch row can be represented by a linear combination of  
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image-patch rows. In order to leverage the significant row-wise and column-wise 
correlations, label fusion can be regarded as finding the entries in  that make the 
four-quadrant matrix  the lowest rank possible. As a result, matrix  is the result 
of a blend of row-wise and column-wise combinations. Since the column-wise corre-
lations describe the relationships between atlas and target image patches as in the 
reconstruction-based methods and also the row-wise correlations encode the mapping 
between image and label domains as in the classification-based methods, our MC-
based label fusion approach inherits the advantages of both reconstruction- and classi-
fication-based methods. 

 

Fig. 1. Construction of the four-quadrant matrix 

Label Fusion by Matrix Completion. As mentioned above, label fusion by MC 
consists in finding the missing entries in  so that the rank of  is minimized. To 
improve the robustness to noise in the observed data, we also allow for small devia-
tions in the entries corresponding to the observed data that further help reducing the 
rank. Therefore, the objective of label fusion by MC is to find the new four-quadrant 
matrix  which satisfies (1) the rank of  is low; and (2) the residual between the 
observed data in  and  is small. Due to the different natures of the data contained 
in matrix  (i.e., image data and label data) it is more convenient to use different 
cost functions for evaluating the residuals regarding each one of the types. To that 
end, we define Θ  and Θ  as the sets of matrix indices pointing to the entries in  
(i.e., pairs of row and column coordinates) corresponding to the observed image data 
and the observed label data, respectively. Accordingly, , , , Θ  corresponds 
to the image-intensity value at position ,  in matrix  (i.e., in either the red  
or blue quadrants of Fig. 1), and , , , Θ  corresponds to a label-value at 
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position ,  in matrix  (i.e., in the yellow quadrant of Fig. 1). As shown by [3], 
the above objectives can be stated by a convex optimization problem as: 

 minimize | | ∑ , , ,, | | ∑ , , ,,  (1) 

where  denotes the nuclear norm, which is responsible for the minimization of 
the rank of matrix , and  and  are the loss functions regarding the image 
reconstruction errors (across the indices in Θ ) and label reconstruction errors (across 
the indices in Θ ), respectively, which are responsible for the minimization of the 
discrepancies between the observed entries of  and . Equation (1)(1) represents a 
trade-off between leveraging the row- and column-wise correlations to reproduce the 
data in the matrix, and minimizing the residual error between the reproduced and the 
original matrix (balanced by scalars  and , respectively). 

Similarly as in [3], we use the squared loss to penalize the image reconstruction er-

rors, i.e., , , , , , 2, , Θ  since it is suitable for the 
continuous values in the intensity images, and logistic loss to penalize the label pre-

diction errors, i.e., , , , log 1 exp , , , , Θ  since it is 

suitable for the binary values in the label maps. 

Confidence Measurements for the Atlas Labels. Logistic loss assumes binary atlas 
labels 1,1  Ω in the label images  for each atlas. Since different 
points act different roles in label fusion, we further propose to measure the impor-
tance of each atlas label by assigning high confidence degrees to labels distant to the 
structure boundary. Thus, we replace the binary label maps  by the signed distance 
maps (SDM)  when building the new four-quadrant matrix , where , Ω contains the signed distance of voxel  in the -th atlas to the boundary of the 
structure. Given the new four-quadrant matrix  (with the atlas label matrix  con-
taining signed distances from  instead of binary labels from ), we compute the 
probability that a signed distance, ,  , , Θ , corresponds to a voxel inside a 
structure, by using the sigmoid function, as proposed in [4]: 

 , exp ,   , , Θ  (2) 

Therefore, voxels deep inside/outside the structure will be considered with high con-
fidence to belong/not belong to the structure (i.e., 1 / 0) and voxels within 
a neighborhood of the boundary will be considered with less confidence to belong/not 
belong to the structure (i.e., 0,1 ). The size of this neighborhood is determined 
by the scalar . Fig. 2 shows an example of this representation. 

Given the observed signed distance, , , , Θ , and the estimated one by 
MC, , , , Θ , we define the new loss , , ,  as the negative of the 
probability of both agreeing in their relative position w.r.t. the boundary of the struc-
ture, as follows: 
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 , , ,  , , 1 , 1 ,  (3) 

The difference between logistic loss and the proposed loss function is that, with logis-
tic loss, errors are penalized equally across all voxels, whereas with equation (3), 
errors at pixels deep inside/outside the structure are penalized higher. 

 

Fig. 2. The confidence map of a 2D synthetic hippocampus. From left to right: binary labels as 
in , signed distance map as in  and confidence map as computed by eq. (2). 

MC Optimization. The optimization of equation (1) can be solved by an iterative 
algorithm that alternates between a gradient step and a shrinkage step. In the gradient 
step, the matrix is updated so as to decrease the residual error, and in the shrinkage 
step, the rank of the matrix is reduced. Since it is a convex optimization problem, 
convergence to the global optimum is guaranteed [3]. 

Determine the Target Labels after Matrix Completion. As result of MC, we get a 
low rank matrix  containing continuous target labels in . Discretization is 
straightforwardly applied to each target label by using the sign function (in the case of 
using both binary labels and SDMs). Since we predict the target label for the entire 
target patch, we end up with multiple estimations from the neighboring points for 
each target image point. We use the majority voting rule to determine the final label 
for each target image point. 

3 Experiments 

We evaluate the performance of the proposed method in the segmentation of the left 
and right hippocampi in the ADNI1 and LONI LPBA402 datasets. The ADNI dataset 
is provided by the Alzheimer’s Disease Neuroimaging Initiative and the size of each 
image is 256 256 256. The LONI LPBA40 dataset is provided by the Laborato-
ry of Neuro-Imaging at UCLA and contains 40 brain images of size 220 220184. Manual annotations of the left and right hippocampi for all the subjects are 
available in both datasets. These manual annotations are used as the labels for the 
atlases and as gold standard to evaluate the segmentation performance in the target 
images. 

In order to evaluate the performance of the proposed method we compare the fol-
lowing methods: (i) non-local weighted voting label fusion (NLWV) [5] (i) Linear 

                                                           
1  http://www.adni-info.org/ 
2  http://www.loni.usc.edu/atlases/Atlas_Detail.php?atlas_id=12 
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reconstruction with sparsity constraints (Rec), which falls into the reconstruction-
based methods with ℓ  regularization; (ii) logistic regression with group sparsity 
(Class), which is one of the classification-based methods with ℓ ,  regularization on 
the weighting vector; (iii) matrix completion with SDMs (MCFull), which is the full 
version of our proposed method. We tested the label fusion performance of the differ-
ent methods under two different registration scenarios: (1) linear (affine) registration 
by FLIRT [6], and (2) non-linear registration by diffeomorphic demons [7]. After 
registration, we selected the best 15 atlases to label each target image according to 
the normalized mutual information criterion. 

We include results for both point-wise estimation (i.e., only central label) and multi-
point estimation (i.e., entire label patch). In the multi-point case, we use the same patch 
size (5 5 5) for image patch and label patch. The local search neighborhoods are 
set to 5 5 5 for linear registration and 3 3 3 for non-linear registration, re-
spectively, in order to adapt to their different accuracies. We use 1 for measuring 
the confidence value as in equation (2). We have experimentally set the trade-off pa-
rameters for the MC optimization to 10  and 0.05, respectively. 

Tables 1 and 2 show the Dice ratios obtained by the compared methods in seg-
menting of both hippocampi in the ADNI dataset using linear and non-linear registra-
tion, respectively. Tables 3 and 4 show results obtained in the LONI dataset, similarly 
using linear/non-linear registration. There are four columns in Tables 1-4, with each 
column showing the Dice ratio of the left/right hippocampi with multipoint/point-wise 
estimation. 

Table 1. Dice Ratio in the ADNI database using linear registration 

 Right, multipoint Left, multipoint Right, point-wise Left, point-wise 

NLWV 78.00 76.42 75.67 73.63 
Rec 78.93 78.19 74.87 74.17 
Class 79.01 77.34 76.67 74.82 
MCFull 80.02 78.47 77.34 75.83 

Table 2. Dice Ratio in the ADNI database using non-linear registration 

 Right, multipoint Left, multipoint Right, point-wise Left, point-wise 

NLWV 81.68 80.21 81.06 79.59 
Rec 81.96 80.89 79.63 78.40 
Class 82.21 80.69 81.16 79.69 
MCFull 82.88 81.54 81.95 80.59 

Table 3. Dice Ratio in the LONI database using linear registration 

 Right, multipoint Left, multipoint Right, point-wise Left, point-wise 

NLWV 79.84 80.86 78.33 79.39 
Rec 80.74 81.45 78.48 78.92 
Class 80.68 81.42 79.06 79.90 
MCFull 81.21 81.91 79.39 79.93 
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Table 4. Dice Ratio in the LONI database using non-linear registration 

 Right, multipoint Left, multipoint Right, point-wise Left, point-wise 

NLWV 80.92 80.70 80.23 80.09 
Rec 81.29 81.25 79.72 79.56 
Class 81.38 81.26 80.32 80.10 
MCFull 81.83 81.66 80.79 80.60 

 
In order to get further insights, we also report results of matrix completion using 

binary labels instead of SDMs (MCBin) in the multipoint estimation case. In the 
ADNI dataset, MCBin achieved average Dice ratios of 79.28 and 82.06 with linear 
and non-linear registration, respectively. In the LONI dataset, MCBin achieved  
average Dice ratios of 81.41 and 81.73 with linear and non-linear registration, respec-
tively. As we can see the use of the SDMs improves 0.2% in the non-linear regis-
tration case. Regarding the comparison with the rest of the methods, in the ADNI 
dataset our proposed method achieved improvements w.r.t. the 2nd best performing 
method of 1% and 0.7% with linear and non-linear registration, respectively. 
In the LONI dataset, our method achieved improvements of 0.5% with both linear 
and non-linear registration. 

4 Conclusions 

In this paper, we have presented a novel label fusion method that inherits the benefits 
of the reconstruction and classification-based approaches by posing the label fusion 
problem as a matrix completion problem. By doing so, we fully utilize not only the 
correlation between atlas and target image patches but also the relationship between 
image patches and ground-truth labels. Promising labeling results have been achieved 
in ADNI and LONI datasets. 
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Abstract. Delineation of myocardium borders from 3D echocardiogra-
phy is a critical step for the diagnosis of heart disease. Following the ap-
proach of myocardium segmentation as a contour finding task, recent work
has shown effective methods to interpret endocardial edge information in
the left ventricle. Nevertheless, these methods are still prone to preserve
irrelevant edge responses and would struggle to overcome chief ventricle
anatomical challenges. In this paperwe adapt StructuredRandomForests,
borrowed from computer vision, for fast and robust myocardium edge de-
tection.Thismethod is evaluated on adataset composed of short-axis slices
from 25 End-Diastolic echocardiography volumes. Results show that the
proposed ensemble model outperforms standard intensity-based and local
phase-based edge detectors, while removing or significantly suppressing
irrelevant edges triggered by ultrasound image artefacts and blood pool
anatomical structures.

1 Introduction

In this paper we propose a fast and effective method to perform myocardial
boundary detection in short-axis slices of 3D Echocardiography (3DE) volumes
by integrating structural information of pixel neighbourhoods in classification
random forests. These novel Structured Random Forests (SRFs) were introduced
in [1] for fast edge detection in computer vision and were adapted here to demon-
strate their value in the task of enhancing myocardial boundary. While a truly
3D analysis would be more consistent, slice-by-slice analysis does not lead to
notably misaligned contours from observation. Any error has to be traded with
the computational cost of a 3D implementation.

Delineation of myocardium borders is a critical step for accurate left ventri-
cle (LV) segmentation and cardiac function quantification. Although LV border
delineation has been a widely researched topic, it remains a challenging task
mainly due to the anatomical presence of papillary muscles and trabeculae. In
addition, there are 3DE image limitations such as speckle, low signal-to-noise
ratio, low contrast images and stitching artefacts. In this context, development
of computer aided ventricle delineation and segmentation frameworks aimed at
improving volumetric analysis in 3DE is of particularly relevance.

Following the approach of myocardium segmentation as a contour finding
task, it has previously been shown that intensity-invariant phase-based methods

G. Wu et al. (Eds.): MLMI 2014, LNCS 8679, pp. 215–222, 2014.
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(a) (b)

Fig. 1. [a] Training data examples as used in our proposed SRFs. While standard
random forests associate only the centre label at position (u,v) to an image patch x, we
incorporate the topology of the local label neighbourhood (y) and hence learn relevant
labelling transitions between myocardium and blood pool. A rich set of structured
labels are then used by the ensemble model to select splits in the decision trees. [b] LV
myocardial edge probability map (left) from the slice in [a], obtained from our SRFs,
and its non-maximal suppression version (right).

offer a good alternative to underperforming intensity gradient-based ones in ul-
trasound images. In [2] a 3D edge detection method was proposed based on a
local-phase Feature Asymmetry (FA) measure using the monogenic signal. Mo-
tivated by the principle that only the edges that contribute to the myocardium
boundary are relevant for segmentation, a 3D Boundary Fragment Model-based
method is proposed in [3] to perform anatomical heart boundary delineation.
Nevertheless, when accurate myocardium delineation is required, these methods
still preserve irrelevant edges. The proposed SRFs use the topological informa-
tion in local image patches (Figure 1[a]) to selectively suppress spurious edge
responses and learn only relevant local image neighbourhoods that encode the
myocardial boundaries in a structured learning-based approach [4].

2 Methods

2.1 Structured Random Forests

Following a data-driven learning approach, we could firstly propose semantic
myocardial boundary detection as a simple binary classification problem. The
idea being that a given input image patch can be classified as a positive patch
if its centre pixel contains an edge and negative otherwise. Nevertheless, this
binary approach ignores valuable local structural information about edges. A
multiclass classification approach could then be proposed by simply clustering
label (Ground Truth, GT) patches into patch classes. Upon reaching a leaf node,
a standard Random Forest (RF) classifier [5] could then directly predict, from
a distribution over the labels, the most likely patch class correspondent to the
input patch image. With the proposed SRFs, we directly predict local structure
of a given image patch, at the cost of a high dimensional output space. As such,
standard RFs need to be extended to arbitrary structured output spaces Y.
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In RFs the information stored at a leaf node can be arbitrary [1]: binary,
multiclass or structured labels. Moreover, inference in SRFs is actually identical
to inference in standard RFs, the only difference being is what information is
stored at the leaf nodes and how it is used. For multiclass classification, the
standard information gain criterion may also not be well defined over structured
labels, y ∈ Y, that encode the local image annotations of image patches x ∈ χ.
As a result of this, in [1] the authors propose a straightforward two-step mapping
approach (defined below): firstly Y → Z and then Z → C.

Intermediate Mapping and Information Gain Criterion. Given that our
required information gain criterion depends on the similarity over Y, we assume
that for many structured output spaces, including for structured learning of
myocardium edge detection, we can define a mapping Π of Y to an intermediate
space Z, Π : Y → Z, in which the Euclidean distance in Z can be measured.

Considering that an approximate measure of information gain is sufficient to
train an effective random forest classifier, our goal is to map a set of structured
labels y ∈ Y into a discrete set of labels c ∈ C, where C = {1, ..., k}, in a way that
labels with similar Y are assigned to the same discrete label c. Given that these
discrete labels can be binary (k = 2) or multiclass (k > 2), we can use standard
information gain measures such as Shannon entropy or Gini impurity [5]. The
discretization step (Z → C) yielding the discrete label set C given Z is computed
independently when training each node and depends on the distribution of labels
at each node. To do this, z is quantized based on the top log2(k) PCA dimensions,
effectively assigning z a discrete label c according to the orthant into which z
falls [1].

Because Z can be of high dimension and computationally expensive to deal
with, and since an approximate distance measure is sufficient, we perform di-
mensionality reduction by sampling m dimensions of Z which yields a reduced
mapping Πφ : Y → Z parametrised by φ. While training, we randomly generate
and apply a unique mapping Πφ to training labels y at each node. By sampling
Z, we not only make Πφ faster to compute than Π , but also improve diversity
of trees by injecting additional randomness into the learning process [1].

Ensemble Model. The structured ensemble model merges a set of n labels
y1...yn ∈ Y into a single prediction both for training, upon association of labels
with nodes, and testing i.e. merging of multiple predictions. After sampling a
selected m dimensional mapping Πφ and computing zi = Πφ(yi) for each i, we
finally select the label yk whose zk is the medoid i.e. the medoid zk that minimizes∑

ij(zkj − zij)
2. Because we only need an approximate distance measure to

estimate the dissimilarity of y, by reducing Z dimensionality, the medoid only
needs to be computed for small n, which means that an approximate distance
metric is sufficient to select an effective element yk. Notice that the ensemble
model is incapable of synthesising new labels without added information about
Y. Hence, every prediction y ∈ Y must have been observed during training.
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2.2 3D Echocardiogram Database

25 End-Diastolic (ED) 3D echocardiograms (224x208x208 voxels) of healthy vol-
unteers (ranging from 19 to 26 years old) were recorded using a Philips iE33
xMATRIX System (X3-1 and X5-1 probes). LV myocardial boundary references
(segmentation masks or GT shown in Figure 1[a]) were manually drawn for these.
All the Structured Edge Detector (SED) models learned in this paper underwent
3-fold cross validation (CV) (divided as 8,8,9 randomly selected datasets). For
example, these were trained on say 16 volumes on every 5th short-axis slice of
each volume and tested on the remaining 9 volumes, hence there was no corre-
lation between training and testing volumes and slices.

2.3 Myocardium Boundary Detection

Given an input short-axis slice from an ED echocardiography volume, the pro-
posed SED task is to label each pixel with a binary variable indicating whether
it belongs to an edge or not. This is done by predicting a structured 24 × 24
segmentation patch from a larger 48×48 image patch (fixed for all experiments).
This patch size was empirically determined to give best edge delineations, and
is a result of the need to look at more global information, i.e. contribution of
more neighbourhood pixel votes, in order to effectively avoid local irrelevant edge
responses.

Regarding the input feature pool, each image patch was augmented with mul-
tiple channels of information yielding a feature vector x ∈ Z

48×48×K where K is
the number of channels. Two types of features were used: pixel lookups x(i, j, k)
and pairwise differences x(i1, j1, k)− x(i2, j2, k). A similar set of gradient chan-
nels used in [6] were implemented in this work. We computed the normalised
gradient magnitude at 2 scales (original and half resolution) and each of these
channels is then split into 4 channels based on orientation. The channels were
blurred and then downsampled by a factor of 2. The resulting K consists of 11
channels (1 grayscale, 2 magnitude and 8 orientation channels). Pairwise differ-
ence features were obtained by sampling a blurred and downsampled (7 × 7)
version of the previous candidate pairs, and computing their differences.

Upon training our SRF, and because the Euclidean distance over binary edge
maps yields a weak distance measure, we define our mapping Π by sampling a
pair of locations j1 �= j2, where 1 ≤ j ≤ 256 denote the jth pixel of segmentation
mask y(j) (Figure 1[a]), and check if y(j1) = y(j2). This defines z = Π(y) as
a large binary vector encoding [y(j1) = y(j2)] for every distinct pair of indices
j1 �= j2. Hence, a subset of m = 256 dimensions of the high dimensional Z, and
k = 2, were found to effectively capture the similarity of segmentation masks.

Given that we can store edge maps (any arbitrary information) at the leaf
nodes, we finally averaged these to compute a soft edge response. The resulting
ensemble model is computationally efficient because it uses structured labels,
capturing information for an entire image neighbourhood, thus reducing the
number of decision trees T that need to be evaluated per pixel. The structured
output was computed on the image with a stride of 2 pixels. Since both the
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inputs and outputs of each tree overlapped, we trained T=8 trees and evaluated
an alternating set of 4 trees at each adjacent location.

Motivated by [7], we finally performed classical multiscale of our SED by
averaging the result of three probability edge maps at the original, half (robust
but poor localisation), and double resolution (detail-preserving detection but
sensitive to endocardial boundary artefacts) version of a given input image. Prior
to evaluation, we performed standard non-maximal suppression on the resulting
edge maps to obtain thinned edges.

Finally, a SRF ensemble model, SED1, was trained on LV myocardial bound-
ary references, and hand-optimized with the parameters previously discussed and
a maximum depth of D = 64. In addition, a second model, SED2, was trained
on the same volumes but on LV endocardial boundaries only. After 3-fold CV of
results from both SEDs, we evaluated them qualitatively by comparing endocar-
dial edge strength and enhancement against the best (hand-optimized) standard
2D and 3D local phase-based FA measure [2] (parameters: centre frequency:
0.25mm, and 2 octaves) and intensity-based Canny edge detector (magnitude of
a Gaussian derivative operator) [8]. In the latter we used the ”CannyEdgeDe-
tectionImageFilter” from ITK (parameters: variance: 0.25, lower threshold: 0,
upper threshold 1.0, maximum error: 0.0125). For the quantitative evaluation of
SED2, we computed the Hausdorff distance between the detected endocardium
boundaries (non-maximally suppressed) and their correspondent GT. The same
was performed for the other two standard edge detectors. To compare these,
we used a masking procedure in which we mask (GT contour filled and dilated)
the (2D and 3D) FA and Canny edge responses to include all responses inside
the GT and to explicitly exclude epicardium or other edge responses exterior
to the myocardium that could have made the Hausdorff distances bogus.

3 Experimental Results and Discussion

Qualitative Evaluation. Examples of unseen test cases with visible papil-
lary muscles and trabeculation in the blood pool were selected for comparison
between the proposed SED ensemble models and the best (thresholded) 3D
FA measure. As depicted in Figure 2[a], the proposed SED1 significantly out-
performed the best standard FA and Canny methods in the sense that where
responses fade in the local phase-based measure (known to respond well to ul-
trasound images since they are intensity invariant), SED1 yielded myocardium
edges with high probability. Non-maximal suppression computation of these al-
lowed to better delineate the myocardium. In our method, the stronger edge
responses were derived from the topological knowledge gathered by the SRF
from each edge pixel neighbourhood (24× 24 = 576 pixel votes), and therefore
contribute to the completeness of the LV and RV blood pools. In addition, it is
illustrated how our SED1 was able to significantly suppress or, in most cases,
completely remove any spurious or irrelevant edge responses that result from im-
age artefacts or the presence of papillary muscles and trabeculations in the LV
and RV blood pool. In the typical case where accurate myocardium delineation
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(a)

(b)

(c)

Fig. 2. [a] From left to right : unseen testing examples with GT (red); LV myocardial
edge probability maps from SED1 ; non-maximal suppressed versions of the previous;
3D FA-based edge maps; 3D Canny edge maps. [b] From left to right : unseen testing
examples; LV endocardial edge probability maps from SED2 ; non-maximal suppressed
versions of the previous; 3D FA-based edge maps; 3D Canny edge maps. [c] Unseen
testing examples of LV myocardial (endocardium and epicardium) boundary detection
from SED1 and single endocardial boundary detection from SED2 on short-axis slices.
Where shown, GT (red) boundaries are superimposed on the detected ones (green) by
the proposed SEDs.
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(a) (b)

Fig. 3. [a] Comparison of the Hausdorff distance distribution between the detected
myocardial boundaries (SED2 ) and the GT for different edge detectors. [b] Fitting a
biquadratic B-spline surface [3] to the detected epicardial boundaries of an LV blood
pool test example. This demonstrates that our SED2 allows for fast and robust heart
segmentation and volumetric quantification.

is required, both the FA and Canny methods preserve irrelevant edges which can
be seen inside the blood pool of both ventricles in Figure 2[a,b].

Unsurprisingly, when we fitted a deformable anatomical model to the LV blood
pool, depicted in Figure 3[b], we found that convergence of surfaces to detected
endocardial boundaries was complete for our SED2, while in both FA and Canny
methods, irrelevant edge responses will prevent deformable models from growing
and converging to boundaries. A more extensive analysis of this method for LV
volumetric quantification can be found in [9].

In Figure 2[c], our SEDs demonstrated the ambiguity existent in the seg-
mented masks (GT) since in some cases it is arguable that our method performed
a better endocardial boundary detection than the GT, which could be due to
the blurring and thus smoothing process occuring at the feature extraction level.

Quantitative Evaluation. Because the masking procedure preserves all the
responses interior to the endocardium, the Hausdorff distance measures whether
or not the different methods detect erroneous edges in the blood pool, which
is the primary driver for our method. As depicted in Figure 3[a], our SED2
method ([4.1 5.3 9.5] mm) outperformed the standard FA (2D:[5.1 8.3 12.9] mm;
3D:[4.7 7.6 14.4] mm) and Canny (2D:[5.3 8.5 13.7] mm; 3D:[5.3 8.5 13.1] mm)
methods at every percentile (25th, 50th and 75th). More interestingly, even when
not masked to exclude epicardium or other edge responses exterior to the my-
ocardium, the proposed SED2 ([4.7 7.1 12.2] mm) was still able to outperform
the standard methods. Note that ultrasound images have been shown to respond
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well to local phase-based methods, such as the 3D FA measure, and still our
unmasked SED did slightly better when it comes to endocardial boundary de-
tection and enhancement. The higher number of outliers in the SEDNoMask was
related to some detected RV endocardial boundaries in short-axis slices where
RV endocardial structure resembled the LV one.

Finally, at runtime, a 224x208x208 image volume took only 6.7s to generate
the myocardial edge probability and orientation volumes on a single core of an
Intel Mobile 4930MX (or 4.2s on 8 cores).

4 Conclusion

A novel structured learning approach borrowed from computer vision is shown
to perform fast and robust myocardial edge detection. Qualitative and quantita-
tive results demonstrate that our method outperforms standard edge detectors,
effectively suppressing the prediction of irrelevant endocardial edge responses,
and allowing deformable models and contour-based approaches to more stably
converge to the detected myocardial boundaries, enabling computation of more
accurate LV clinical indices. Future work will evaluate how accurate the proposed
ensemble model is in performing wall thickness measurements.
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Alain Trouvé5, Laurent Younes1, and Michael Miller1

1 Center for Imaging Science, Johns Hopkins University, Baltimore MD USA
2 Center for Mind/Brain Sciences, University of Trento, Italy

3 University of Napeles Parthenope and IRCSS Fondazione SDN, Naples Italy
4 Geneva University Hospitals and University of Geneva, Geneva, Switzerland

IRCCS Fatebenefratelli, Brescia, Italy
5 CMLA, ENS Cachan - CNRS (UMR 8536), F-94235 Cachan Cedex

Abstract. We present an algorithm for passing from dense noisy neu-
roanatomical segmentations, directly to a complexity-reduced represen-
tation with respect to a deformed smooth template surface, bypassing
the need for triangulation of any target data. We demonstrate the util-
ity of this algorithm toward improving reproducibility of hippocampal
definitions, using a dataset containing 4 MR images per subject, two
within the same visit on each of two dates, with dense segmentations
provided by unedited longitudinal Freesurfer analysis. We quantify re-
producibility of intra-visit and inter-visit variability through L2 distances
and Hausdorff distances between pairs of segmentations, and show that
our method results in a statistically significant improvement by a factor
of 1.63 to more than 3-fold.

Keywords: Complexity reduction, reproducibility, diffeomorphometry,
LDDMM, neuroanatomy, neuroimaging.

1 Introduction

Medical imaging data is necessarily high dimensional. Reduction of its inherent
complexity is essential for machine learning applications—overcoming the curse
of dimensionality in model estimation, multiple comparison corrections in statis-
tical hypothesis testing, and building and communicating intuition with medical
practitioners comprise a few compelling reasons.

When studying anatomical structures, one observes that imaging modalities
only provide information about shape through their gradients and discontinu-
ities. In neuroimaging this corresponds to boundaries between grey matter, white
matter, and cerebrospinal fluid, the remainder of the images being relatively
homogeneous in intensity. This leads to a natural reduction in complexity by rep-
resenting subcortical structures by triangulated surfaces defined on their bound-
aries, rather than through dense imagery defined everywhere in space.
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However, dense voxelized imaging data, including the unedited anatomical
segmentations generated by longitudinal Freesurfer analysis [1] used here, is
widely available. Making use of such data is important, despite its quality often
being low for shape analysis. An example of a typical voxelized hippocampus
segmentation is shown in Fig. 1. Note the lack of smoothness, the appendages,
the isolated components, and the concavities which are not reflective of real
anatomy and can be considered noise.

Fig. 1. A typical example of a voxel based segmentation of left hippocampus shown as
a slice (left) and an isosurface rendering (right)

In this work we present a method for passing from structural definitions in
terms of dense voxelized data in the presence of such noise, directly to a rep-
resentation defined with respect to a deformed smooth template surface. This
approach is novel as compared to other surface based analyses in that it by-
passes the need for triangulation of segmentations, and allows working with the
voxelized data directly. This complexity reduction solves the problem of ambigu-
ity in defining deformations within the homogeneous interiors of the subcortical
structures. We demonstrate its application to improvement in reproducibility of
hippocampal definitions for repeated scans—both within a single visit and be-
tween repeated visits—the hippocampus being a clinically important structure
for the detection of Alzheimer’s disease onset [2]. Quantifying and improving re-
producibility is an important challenge facing the shape analysis community [3].

2 Anatomical Shape Model

We work within the large deformation diffeomorphic metric mapping framework
[4] referred to as diffeomorphometry, characterizing shapes by the action of a
group of diffeomorphisms on a template. Machine learning applications within
this framework have been explored for building classifiers from medical imaging
data based an anatomical structure. Examples include identifying patients with
Alzheimer’s disease [5], or healthy patients who are likely to develop Alzheimer’s
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disease in the future [6,7]. Here we consider a template consisting of a smooth
surface M ⊂ R

3, representing the left hippocampus, estimated as the average
of the population [8] (to remove bias associated with a single subject template),
along with a corresponding dense segmentation image, a function I0 from a
subset Ω of R3 to [0, 1]. The segmentation image may not be strictly binary due
to interpolation. The surface is represented by the coordinate chart f0 : U ⊂
R

2 →M, with u �→ f0(u).
We describe target anatomy by acting on the template with diffeomorphisms

ϕ1 generated by smooth time varying velocity fields vt, with ϕ0 = Id and the
dynamics

ϕ̇t = vt(ϕt). (1)

The reduction in complexity arises by modelling the dense velocity field as in-
dexed to the surface M through a kernel K (here a Gaussian with standard
deviation chosen heuristically to be 4mm) and a function pt(u) which we call
the momentum

vt(x) =

∫
U

K(x, ft(u))pt(u)du. (2)

As described in [9], we consider only flows corresponding to geodesics in
the diffeomorphism group, allowing us to describe the shape of target anatomy
through the value of p0. This describes our forward model—given a value for p0,
we can generate ϕt and a realization of anatomy, with It = I0 ◦ϕ−1

t , ft = ϕt(f0),
and pt satisfying the geodesic equation ṗt = −Dv∗t (ft)pt.

3 Complexity Reduction Algorithm

The problem of interest will be to estimate the reduced representation p0, given
the atlas data f0 and I0, and a dense anatomical segmentation of a target subject
J (like I0, J is a function from Ω → [0, 1]). We assume that J has been rigidly
registered to I0, which is accomplished by calculating the rigid body transform
minimizing the sum of square error between I0 and J . If J represents a right
hippocampus, it is reflected to the left side before rigid alignment. We solve this
problem using a variational approach to minimize the cost function

E =
1

2
‖p0‖2V ∗ +

1

2σ2
I

‖I1 − J‖2L2 (3)

where ‖p0‖2V ∗ =
∫∫

U×U
p∗0(u)K(f0(u), f0(u

′))p0(u′)dudu′ is a norm enforcing

smoothness of the velocity field. The parameter σ2
I , which expresses the trade-off

between accuracy and smoothness, is chosen heuristically to be 0.5. We enforce
the system dynamics—the images evolving under the optical flow equation İt =
−DItvt, the manifold moving with the velocity field as ḟt = vt(ft), and the
momentum satisfying the geodesic equation—through time varying Lagrange
multipliers (also called co-state variables) λft, λpt, λIt in the augmented cost
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C =
1

2
‖p0‖2V ∗ +

1

2σ2
I

‖I1 − J‖2L2 +

∫ 1

0

∫
Ω

λ∗
It(x)[−DIt(x)vt(x) − İt(x)]dx

+

∫
U

λ∗
ft(u)[vt(ft(u))− ḟt(u)] + λ∗

pt(u)[−Dv∗t (ft(u))pt(u)− ṗt(u)]dudt (4)

We extremize the cost function with respect to each variable, giving co-state
dynamics and boundary conditions, and use an adjoint method as in [10,11] to
calculate the gradient of the cost with respect to p0. We optimize with gradient
descent.

4 Experiment

We expect this reduction in complexity to be a powerful tool in overcoming sensi-
tivity to noise that voxelized data is vulnerable too. We evaluate the performance
of our algorithm in terms of accuracy, and reproducibility in the definition of
the hippocampus across repeated scans.

We use a subset of five subjects from the data described in [13]. The mean
subject age is 59± 3.5 years, with 2 females and 3 males. Subjects were scanned
with a 3T Siemens Biograph mMR, and a 12 channel body RF coil. A 2563 mm
volume at 1 mm isotropic resolution was acquired with a 3D sagittal MPRAGE
sequence (TR/TI=2300/900 ms, flip angle 9 degrees, no fat suppression, full k-
space, no averages). Subjects returned for a retest scan after 19± 15 days, and
each visit included two acquisitions. For each of these four scans, subcortical
structures were segmented using longitudinal Freesurfer analysis [1]. In this study
we consider only the left and right hippocampus, giving 40 target segmentation
images total.

We verify the accuracy of our method by examining volume bias, as well as
sum of square error. We quantify reproducibility by measuring the square of
the L2 distance (i.e. volume of disagreement in mm3 or sum of square error)
and Hausdorff distance (i.e. maximum distance between segmentations in mm).
The intra-visit variability is calculated as the average of two distances (distance
between repeats on visit 1, and distance between repeats on visit 2), whereas
the inter-visit variability is calculated as the average of four distances (distance
between repeat i on visit 1 and repeat j on visit 2, for i, j ∈ {1, 2}).

The statistical significance of results is determined using the non-parametric
signed rank test for paired data.

5 Results

Three typical results of our complexity reduction algorithm are shown in Fig. 2.
One can see the segmentations overlap well with the target, capturing their
shape. At the same time they inherit the smoothness of our template and effec-
tively filter out the noise.
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Fig. 2. Three typical results of our complexity reduction algorithm are shown (rows).
At left a slice through the deformed template I1 is shown in green, summed in RGB
space with the target J in red. Where they overlap their color appears yellow. At right
is the deformed template surface f1 shown in green, overlaying a red mesh isosurface
rendering of the target J .

The accuracy of our segmentations is quantified in terms of mean absolute
volume bias (vol[I1] − vol[J ]), mean relative volume bias ((vol[I1] − vol[J ])/
(0.5(vol[I1] + vol[J ])) ), and mean sum of square error (‖I1 − J‖2L2

), and is
summarized in Table 1. This accuracy should be compared with the intra-visit
square error, 276± 64mm3, a measure of the intrinsic variability of our Freesurfer
segmentations. The volume bias −34 ± 16mm3 is quite small compared to this
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intrinsic variability, and may be partly explained by avoiding contouring the noisy
appendages as visible for example in the top two rows of Fig. 2. The square error,
243±17mm3, is comparable to this intrinsic variability (but statistically smaller,
p = 0.0423 in a non-parametric ranksum test). Much smaller square error could
be interpreted as over fitting noise, so we consider this accuracy acceptable.

Table 1. Accuracy of our segmentations, as quantified through volume bias and square
error

Relative Volume Bias Absolute Volume Bias Square error
(%) (mm3) (mm3)

−0.81± 0.38 −34± 16 243± 17

Reproducibility is quantified in L2 distance squared, for each of the five pa-
tients, left then right, in Fig. 3. It is quantified similarly in terms of the Hausdorff
distance in Fig. 4. Note that our method provides improved reproducibility for
both measures, for every patient, left and right.

Fig. 3. The square of L2 distance between segmentations is shown for each of the five
patients, left then right, with target segmentations in red and our results in green.

The means of these results, along with p-values demonstrating statistical sig-
nificance, are shown in Table 2. Note that our results show an improvement of
a factor of two or more in each case, except inter-visit Hausdorff distance where
the improvement is by a factor of 1.63.



Improved Reproducibility of Neuroanatomical Definitions 229

Fig. 4. The Hausdorff distance between segmentations is shown for each of the five
patients, left then right, with target segmentations in red and our results in green

Table 2. Mean intra- and inter-visit variability is shown in terms of the squared
L2 distance, and the Hausdorff distance. The p-values are calculated from a paired
nonparametric signed rank test.

Method L2 distance2 (mm3) p-value Hausdorff distance (mm) p-value

Freesurfer intra-visit 275.7 4.8e-05 3.0 4.7e-05
Surface based intra-visit 87.5 1.5
Freesurfer inter-visit 354.6 9.8e-04 3.1 9.8e-04

Surface based inter-visit 132.4 1.9

6 Conclusions

We have presented an algorithm to directly reduce the complexity of voxel based
neuroanatomical segmentations, by interpreting them as a deformation defined
with respect to a template triangulated surface. We bypass the need for trian-
gulating target segmentations, and work with the widely available dense data
directly. We have shown that this method is able to smooth out noise while still
capturing overall shape effectively, and maintain accuracy with minimal volume
bias. Furthermore, we have shown how this method can be used to improve re-
producibility of anatomical definitions for scans acquired within a single visit
and between visits, a challenge for high dimensional data and shape analysis.
We expect this complexity reduction to have important implications for machine
learning applications based on anatomical shape.
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Abstract. The purpose of this study is to investigate architectural char-
acteristics of cell arrangements in breast cancer histology images. We
propose the use of topological data analysis to summarize the geomet-
ric information inherent in tumor cell arrangements. Our goal is to use
this information as signatures that encode robust summaries of cell ar-
rangements in tumor tissue as captured through histology images. In
particular, using ideas from algebraic topology we construct topologi-
cal descriptors based on cell nucleus segmentations such as persistency
charts and Betti sequences. We assess their performance on the task of
discriminating the breast cancer subtypes Basal, Luminal A, Luminal B
and HER2. We demonstrate that the topological features contain use-
ful complementary information to image-appearance based features that
can improve discriminatory performance of classifiers.

1 Introduction

Clinical diagnosis of cancer is performed by assessing properties of biopsied tis-
sue. For breast cancer, architectural criteria based on the organization and ar-
rangement of cells, form critical cues for a pathologist to assess and grade tissue
samples. Methods to automatically and objectively analyze architectural char-
acteristics of human tissue from histology images are therefore needed to aid
pathologists and to computationally quantify tissue architecture.

A variety of geometric approaches to pattern or shape recognition have been
investigated over the last 15 years. Of these, topological data analysis (TDA)
enables the investigation of structural characteristics of high-dimensional data
[1,3,4]. The strength of TDA lies in its two core ideas: (a) representing objects
based on their topology making it invariant to small changes in shapes and hence
robust to noise, and (b) considering a range of coarse to fine scales of topological
changes, thereby, summarizing large and small scale objects.

This paper explores to which extent TDA can characterize cell organization
and tissue in breast cancer histology images. We study how to analyze nuclear
arrangements through TDA to distinguish genetically derived breast cancer sub-
types. These subtypes can be used to guide personalized treatments. We propose
topological methods for feature extraction and present a method to combine
topological summaries with other imaging features thereby demonstrating that
topological features can add information over local image-based descriptors. We
first review the necessary background of computational topology for TDA in § 2.1

G. Wu et al. (Eds.): MLMI 2014, LNCS 8679, pp. 231–239, 2014.
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and present its application to the analysis of breast cancer histology images in
§ 2.2. In § 3, we discuss and evaluate the extracted topological summaries.

2 Methodology

2.1 Background on Topological Data Analysis and Homology
Groups

Topological data analysis uses concepts from algebraic topology [10,3] and pro-
vides methods to characterize geometric information in the data. The classical
way is to represent the data in the form of combinatorial objects called simplicial
complexes to form a topological space. TDA then studies connectivity informa-
tion and characterizes loops, voids and higher dimensional surfaces within the
space [4]. To analyze tissue architecture the simplicial complex is built, for ex-
ample, based on the center points of segmented cell nuclei, which define a point-
cloud. See the section on the Vietoris-Rips filtration on point clouds below. We
review the necessary concepts in topological data analysis in what follows.

Simplicial Complexes and Filtration. A simplicial complex consists of a
collection of simplices, such as vertices, edges, triangles or d-dimensional sim-
plices, which is closed under inclusion. More precisely, a simplicial complex is
a collection, K of d-dimensional simplices, τ , such that if τ ∈ K, all its faces,
σ ⊂ τ , are also in K. A subcollection L of simplices from K which itself is a
simplicial complex, forms a subcomplex of K, denoted as L ↪→ K. A nested
sequence of simplicial subcomplexes that ascends from an empty set all the way
up to K is called a filtration of K. An N -step filtration is therefore denoted by
the sequence,

∅ = F0K ↪→ F1K ↪→ F2K ↪→ . . . ↪→ FN−1K ↪→ FNK = K.

Topological Summaries Using Homology Groups. The representation of
data by a simplicial complex, K, allows for its characterization through homol-
ogy groups, which we denote as Hd(K). Hd(K) is the collection of d-dimensional
holes. Homology groups consist of groups of d-dimensional homology generators,
e.g., 1D connected components for d = 0, 2D loops for d = 1, 3D cavities for
d = 2, and so on. The rank of Hd(K) is called the d-th Betti number. We now
discuss a simple example of a filtration of a 2D simplicial complex formed by
point cloud data entities, which will form the basis of our analysis of tissue data.

Example of Vietoris-Rips Filtration on Point Cloud Simplicial Com-
plex. Consider a set of points, C ⊂ Rd (Fig. 1, left) and define the largest
possible simplicial complex, KC , consisting of all subsets of C. We construct
a subcomplex by using a threshold on the pairwise distances between any two
points. We define a simplicial subcomplex as a function of filtration scale, s. The
subcomplex FsKc consists of a subcollection of points with pairwise distance
between them less than s. It is helpful to think of this subcollection of points
obtained when the balls of radius, s, centered at each point intersect (Fig. 1,
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Filtration

1

2

3 3

1
2
3

Persistence

Fig. 1. Vietoris-Rips filtration of a point cloud. Two steps of filtration that depict
topological features forming and disappearing (left). Three loops as H1 formed during
filtration persist for different length of filtration (right).

center). Increasing the ball radii results in a chain of subcomplexes defining a
filtration of Kc. For a given s, the 0-dimensional homology group consists of
the set of independent components. The 1-dimensional group consists of the
loops. The rank of H0(Kc) is the count of connected components and the rank
of H1(Kc) is the count of loops (Fig. 1, right). These topological objects can be
summarized in terms of their persistence during the filtration steps. This results
in a signature representation of topology of the data in the form of persistent
diagrams or bar charts [2].

2.2 Cell Architecture, Nuclei Arrangement and Topology

Clinical diagnosis of breast cancer is usually performed by analyzing H&E-
stained histology images. The arrangement of cells and other structures are some
of the cues guiding a pathologist to characterize tissue and assess prognosis.
Hence, TDA as described in Sec. 2.1 seems a natural choice to quantify such
arrangements. In previous work, TDA has been applied to microarray data.
Nicolau et al. [12] propose cluster analysis of persistence charts derived from
the simplicial complex of microarray data to identify breast cancer subtypes.
However, the topological characterizations of nuclear arrangements in tumor

a

b

Fig. 2. Example of a histology image for a tumor of subtype, Basal. The highlighted
loops formed due to the arrangement of nuclei are an example of architectural feature.



234 N. Singh et al.

tissue has not yet been investigated. Fig. 2 suggests that such an approach could
capture architectural characteristics, using an example H&E stained histology
image. The patterns in the organization of cells is evident simply by observing
the nuclei in a region (Fig. 2, b). Distinct topological object characterizations
such as nuclear connectivity and loops based on the Vietoris-Rips filtration of
nuclei centers look promising as summaries of the arrangement of nuclei in tissue.

3 Experiments

We present our topological analysis of nuclei arrangements using a dataset of
breast cancer microarray tissue samples, imaged at the University of British
Columbia from a Washington University cohort of patients [13]. The dataset
consists of 111 subjects with two images each. Subtypes of Basal, Luminal A,
Luminal B, and HER2 have been assigned to each sample by molecular means.
The ensemble has 38 Basal, 35 Luminal A, 18 Luminal B and 17 HER2 cases and
our goal is to assess whether these subtypes differ in terms of their topological
characteristics. We combine the features extracted from two images to construct
a single patient level representation.

Constructing Topological Summaries of Homology Images. As discussed
in § 2.1, we define the simplicial complex by representing the collection of nuclei
as point clouds such that the center of mass of each nucleus denotes a vertex. We
perform the Vietoris-Rips filtration of this complex by growing balls centered at
each vertex. The initial start radius of a ball is proportional to the mass of its
nucleus. Since each nucleus has a different size, such an initialization ensures
that at the first step, the balls approximately encircle the respective nuclei.
We successively increase the radii of all balls with equal rates and stepsizes.
Beginning at the start scale, where the number of connected components is
equal to the number of nuclei, this filtration computes the generators of zero
(H0: connected components) and one dimensional (H1: loops) homology groups.
We use the Perseus software [11,9] to perform the filtration on the Rips complex.

We summarize the resulting topological objects into a sequence of Betti num-
bers, e.g., Fig. 3 a and b. We convert the Betti numbers into densities, by dividing
them by the area of the tissue in the image making the representation invari-
ant to tissue size. Fig. 3 b suggests that loops exhibit the most dynamics with
changing filtration scale. Thus, in another representation, we consider the bar
chart representation, called the persistence diagram, based on birth and death
of loops during filtration (Fig. 3 c and d). Small bars can be considered as noise
artifacts in imaging and segmentation. For robustness, we consider the top few
persistent bars (lengthwise), arranged in the order of their birth, as features.

3.1 Evaluating Topological Features

We perform leave-one-out cross-validation experiments to demonstrate the dis-
criminatory capabilities of the topological features to classify tissue images into
subtypes. We use distance weighted discrimination (DWD) [8] as a classifier.
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Three examples of H 0 Betti sequence
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Fig. 3. Different topological summaries for nuclei arrangements in histology images
demonstrated for three different examples. (a) and (b) display the Betti densities for
H0 and H1 homology as a function of filtration steps, while (c) shows the corresponding
persistence diagrams, and (d) shows how those are summarized into just the 5 longest
bars, in birth order (connecting line segments represent the order of arrangement).

For each pair of subtypes, we evaluated the prediction accuracy using the two
classifiers on Betti densities, top 5 and top 75 persistent bars. The best results
were obtained for the Basal vs Luminal A classification using Betti density fea-
tures and for Luminal B vs HER2 classification using the top 5 persistent bars.
For Basal vs Luminal A, we achieved a classification accuracy of 69.86%, an im-
provement of 17.80% over the baseline accuracy of predicting the subtype based
on the proportion of the samples of the largest class. For Luminal B vs HER 2
subtype classification, the topological features improved the prediction accuracy
by 17.14% over the baseline, giving an overall accuracy of 68.57%.

3.2 Joint Analysis of Topological and Other Imaging Features

Besides topological connectivity and nuclei arrangements, a histology image has
other potentially complementary information about tumor tissue. We augment
the topological features with those extracted from local image intensities: we con-
struct another set of features learned directly from image patches. A dictionary
is learned by modeling 9×9 pixel image patches as sparse linear combinations of
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a. Using support vector machine (SVM)

Betti densities Top 5 persistence bars

b. Using distance weighted discrimination (DWD)

Betti densities Top 5 persistence bars

Fig. 4. Repeated 5-fold cross validation for Basal vs Luminal A: combining TDA with
patch-based image features suggests improvement in performance for certain cases

dictionary elements [7]. Each patch of an image is encoded with this dictionary.
The frequency of usage of each dictionary element is summarized with a 128 bin
histogram resulting in a 128-dimensional feature vector for each image.

We define the combined feature space as a product space of topological fea-
tures, represented as a matrix T , and the patch based image feature space, repre-
sented as a matrix I. In these matrices, let rows represent samples and columns
represent features. We construct a convex combination of columnwise concate-
nated features, to form the augmented feature matrix, C =

(
αT (1− α)I

)
,

where α controls the feature weight; α is a relative weight when both feature
matrices are normalized to have unit variance. This is achieved by mean centering
and dividing the two matrices by the sum of their eigenvalues. Another possibil-
ity is to use a multi-kernel approach to combine complementary features [5].

To investigate whether topological features and the image based-features pro-
vide complementary information relevant to cancer subtypes, we assess the re-
ceiver operator characteristics (ROC) of the classifiers over the entire range of
α ∈ [0, 1]. Note that ROC analysis is not applicable to leave-one-out crossvali-
dation since we get test prediction only on a single test sample for each trained
model. Hence, we perform Monte-Carlo (MC) repetitions of 5-fold crossvalida-
tion using both SVM and DWD classifiers for 3500 repetitions. We choose the
average area under the ROC curve (AUC) as the metric of performance. AUC
is a more stable performance measure than accuracy as it considers the whole
range of thresholds for a classifier [6]. For each MC iteration, we compute the
false positive (FPR) and true positive (TPR) rates for every crossvalidation run
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a. Using support vector machine (SVM)

Betti densities Top 5 persistence bars

b. Using distance weighted discrimination (DWD)

Betti densities Top 5 persistence bars

Fig. 5. Repeated 5-fold cross validation for Luminal B vs. HER2: combining TDA with
patch-based image features suggests improvement in performance for certain cases

for the test data, resulting in an average FPR and TPR to give a mean AUC.
We test this for the classification tasks that resulted in the best performance
with the leave-one-out classification using only the topology features in § 3.1,
i.e., Basal vs Luminal A and Luminal B vs HER2. The trends in AUC as a
function of α suggest that, for some cases, the topological Betti features per-
form better when compared to the patch based image-appearance features for
both the classification tasks using either of the classifiers. (Fig. 4 and Fig. 5). In
terms of AUC, the Betti features perform better than the persistence summaries,
for discriminating Basal from Luminal A. However, the persistence summaries
outperform the Betti features, in average AUC metric, for Luminal B vs HER2
discrimination. Another observation is that the AUC peaks in the middle for
some of the plots suggesting that a combination of the two features may provide
useful information. The results on average accuracy metric as a function of α
did not match for all cases with those obtained for the AUC metric. For the
top 5 persistence summaries for Luminal B vs HER2 with DWD, both the aver-
age AUC and the accuracy analyses suggest that topological features massively
outperform the image-appearance features. In particular, using top 5 persis-
tence summaries with DWD improve the AUC by 43% and the accuracy by
22% over imaging features and their combination further adds 13% and 8% im-
provements, respectively. Additional results are in the supplementary material
at http://www.cs.unc.edu/ nsingh/publications/nsingh2014topology

breast cancer supplementary.pdf.
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4 Discussion

We proposed the use of topological methods to summarize architectural features
of cancerous tissue. We constructed geometric features that quantitatively cap-
ture arrangements of nuclei as seen in histology images. We explored multiple
topological features derived from the homology groups resulting from filtrations
of simplicial complexes defined using nuclei locations. Our experiments suggest
that, for most cases, topological features perform as good as the patch based fea-
tures on the task of discriminating cancer subtypes. We also demonstrate that
for certain combinations, the topological features provide complementary infor-
mation, which in turn improves the performance of classifiers. Our future work
will include exploring more informative features from the persistence diagram
and will repeat the analysis on bigger datasets. A possibility could be to use
persistent bars from the chart but maintain their order of filtration. This would
result in a sparse feature vector of size equal to the number of filtration steps.

We believe that the topological study of histology image data provides com-
plementary information to image-appearance about tissue properties. It holds
promise to improve our understanding of cytological and architectural differ-
ences in tissues. In the context of cancer a topological characterization of tumor
tissue could potentially aid clinicians in cancer diagnosis and treatment planning.
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Abstract. Accurate classification of Alzheimer’s Disease (AD) and its
prodromal stage, Mild Cognitive Impairment (MCI), plays a critical role
in preventing progression of memory impairment and improving quality
of life for AD patients. Among many research tasks, it is of particular
interest to identify noninvasive imaging biomarkers for AD diagnosis. In
this paper, we present a robust deep learning system to identify differ-
ent progression stages of AD patients based on MRI and PET scans.
We utilized the dropout technique to improve classical deep learning by
preventing its weight co-adaptation, which is a typical cause of over-
fitting in deep learning. In addition, we incorporated stability selection,
an adaptive learning factor and a multi-task learning strategy into the
deep learning framework. We applied the proposed method to the ADNI
data set and conducted experiments for AD and MCI conversion diag-
nosis. Experimental results showed that the dropout technique is very
effective in AD diagnosis, improving the classification accuracies by 6.2%
on average as compared to classical deep learning methods.

1 Introduction

Alzheimer’s disease is the sixth-leading cause of death in the United States [1].
AD patients usually undergo progressive stages of cognitive and memory func-
tion impairment, including prodromal, MCI and AD. For each of these stages,
significant amount of research has been conducted aiming to understanding the
underlying pathological mechanisms. In addition, imaging biomarkers have been
identified using different imaging modalities such as magnetic resonance imaging
(MRI) [2], positron emission tomography (PET) [3], and functional MRI (fMRI)
[4]. Imaging biomarkers are a set of indicators computed from image modalities
and can be used for early detection of AD disease. It has been shown that fusing
these different modalities may lead to more effective imaging biomarkers [5].

Deep learning is a new breakthrough in machine learning. The first successful
deep learning framework, auto-encoder, was developed in 2006 [6]. It was subse-
quently used in other application fields and achieved state-of-the-art performance
in speech recognition, image classification and computer vision [7]. Deep learning
itself also evolves after 2006. For instance, the multimodal deep learning frame-
work boosted speech classification by learning a shared representation between

G. Wu et al. (Eds.): MLMI 2014, LNCS 8679, pp. 240–247, 2014.
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video and audio modalities [8]. A dropout technique further improved zip code
recognition, document classification and image recognition [9].

In this paper, we developed a robust deep learning framework for AD diagnosis
by fusing complementary information from MRI and PET scans. These 3D scans
were preprocessed and features were extracted. We first applied the principle
component analysis (PCA) to obtain PCs as new features. We then utilized the
stability selection technique [10] together with the least absolute shrinkage and
selection operator (Lasso) method [11] to select the most effective features for
the diagnosis. The selected features were subsequently processed by the deep
learning structure. Model weights in the deep structure were first initialized by
unsupervised training and then fine-tuned by AD patient labels. During the
fine-tune phase, the dropout technique was employed to improve the model’s
generalization capability. Finally, the learned feature representation was used
for AD/MCI classification by a support vector machine (SVM).

In addition to the discrete patient labels (AD, MCI or Healthy), there are two
additional clinical scores, namely Minimum Mental State Examination (MMSE)
and Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-Cog) as-
sociated with each patient. We configured the deep learning structure as a multi-
task learning (MTL) framework, and treated the learning of class label, MMSE
and ADAS-Cog as related tasks for improved main task (class label) prediction.
We evaluated the proposed method on the ADNI data set and compared it with
a similar deep learning system, where the auto-encoder was used as a feature
learning method for AD diagnosis [5].

2 Materials and Methods

The proposed system consists multiple components including PCA, stability se-
lection, unsupervised feature learning, multi-task deep learning and SVM train-
ing as shown in Fig. 1. We will detail each of these components in the following
subsections.

Fig. 1. Diagram of the proposed multi-task deep learning framework
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2.1 Data Preprocessing

We utilized the public ADNI data set 1 to validate our proposed deep learning
framework. The data set consists of MRI, PET, and CSF data from 51 AD pa-
tients, 99 MCI patients (43 MCI patients who converted to AD (MCI.C), and 56
MCI patients who did not progress to AD in 18 months (MCI.NC)) as long as 52
healthy normal controls. In addition to the crisp diagnostic result (AD or MCI),
this data set contains two additional clinical scores, MMSE and ADAS-Cog for
each patient. A typical procedure of image processing was applied to the 3D MRI
and PET volume [2,12,13] including anterior commissure-posterior commissure
correction, skull-stripping, cerebellum removal and spatially normalization. Fi-
nally, we extracted 93 features from MRI and PET volume, respectively, and
three CSF biomarkers, Aβ42, t−tau, and p-tau were computed, resulting in 189
features for each subject.

2.2 Principle Component Analysis and Stability Selection

We first applied PCA to the 189 features and used the resulting PCs as new
features. PCs are linear combinations of all original individual features that may
preserve more information for the subsequent diagnosis. However, not all PCs
are effective for the diagnosis. We applied Lasso [11] to reduce the dimensionality
of the new feature vector. Lasso tries to minimize the following cost function for
feature selection:

min
w
||y −wx||22 + λ||w||1 (1)

where y ⊂ {1,−1} is the desired class label, x is the feature vector and w
is the weight vector in the linear model. Because of the L1 norm constraint on
the weight magnitude, the solution minimizing the above cost function is usually
sparse, meaning that if a feature in the feature vector x is not correlated with the
target variable, y, the feature will have a zero weight such that being excluded,
and features having none zero weights will be selected.

It is well known that the solution of L1 norm based optimizations are sensitive
to the choice of λ. A recent breakthrough [10] sheds a light on selecting the
right amount of regularization for stability selection. We incorporate the stability
selection concept into the AD patient diagnosis in this paper. In particular, we
repeated the Lasso procedure 50 times and each time with a different value for
the parameter λ (We used the SLEP toolbox for Lasso 2). A probability for each
feature was computed by counting the frequency of the feature being selected in
the 50 experiments. The final selected features were those having probabilities
above a threshold t. It has been shown experimentally and theoretically that the
stabilized selection results vary little for sensible choices in a range of the cut-off
value for t [10].

1 Available at http://www.loni.ucla.edu/ADNI
2 Available at http://www.public.asu.edu/ jye02/Software/SLEP/index.htm
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Fig. 2. Multi-task deep learning with dropout. "x" denotes a dropped unit.

2.3 Multi-task Deep Learning

In contrast to the traditionary three-layer neural network (shallow structure),
deep learning is based on a deep architecture consisting of many layers of hidden
neurons for modelling. A shallow architecture would involve a lot of duplications
of effort to express things and such a fat architecture has been shown to suffer
from the problem of over-fitting, which leads to a poor generalization capability.
Instead, deep architecture could more gracefully reuse previous computations
and discover complicated relations of the input [14].

To train the deep architecture, the standard Backpropagation (BP) algorithm
did not work well with randomly initialized weights because the error feedback
becomes progressively noisier as it goes back to lower levels, making the low
level weight updates less effective. In 2006, a breakthrough in deep learning
has made the deep architecture training possible [6] by utilizing the restricted
Boltzmann machine to initialize multiple hidden layers one layer at a time in
an unsupervised manner. With unsupervised learning, deep learning is trying
to understand the data first, i.e., to obtain a task specific representation for the
data so that a better classification can be achieved. It has experimentally proven
that the unsupervised learning step in deep learning plays a critical role in the
success of the training in deep learning [7].

In multi-task learning, related tasks are learnt simultaneously by extracting
and utilizing appropriate shared information across tasks. It is worth noting
that neural network can simultaneously model multiple outputs making deep
learning a natural multi-task learning framework [6]. The proposed multi-task
deep learning framework is shown in Fig. 2, where we treated class label, MMSE
and ADAS-Cog as three different tasks but modeling them simultaneously. We
also utilized the dropout technique to improve the training.

2.4 Dropout with Adaptive Adaption

Deep learning achieved excellent results in many applications where training
data size is large. For small sized data sets such as the one in this paper, it
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is still possible for a deep structure to over-fit the data given the fact that
it usually has tens of thousands or even millions of parameters. To improve
the generalization capability of a model, the dropout technique tries to prevent
weight co-adaptation by randomly dropping out some units in the model during
training [9]. We incorporated the dropout technique in the multi-task learning
context to improve AD diagnosis as shown in Fig. 2. In the training process, each
hidden unit in the model was dropped with a probability of 0.5 when a batch
of training cases were present. Previous experiments [9] showed that it is also
beneficial if we apply the "dropout" process to the input layer but with a lower
probability (0.2 in this paper). In the testing procedure, all hidden units and
inputs were used to compute model outputs for a testing case with appropriate
compensations, i.e., weights between inputs and the first hidden layer were scaled
by 0.8 and all other weights were halved.

During the multi-task fine-tune step, the stochastic gradient descent method
with a fixed learning factor is usually utilized as [6],

w(j, i) = w(j, i) +�w(j, i) = w(j, i)− α
∂E

∂w(j, i)
, (2)

where w(j, i) is the weight connecting the ith node and jth node in two consec-
utive layers. ∂E

∂w(j,i) is the gradient of the cost function E and α is a learning
factor. Sometimes, the weights update may contain a momentum term [9]. We
proposed to use an adaptive learning factor to speed up the adaptation. The
motivation of the adaptive learning is that the learning factor should be large
at location where gradient is small and vice verse. Based on the motivation,
an adaptive learning factor α can be determined as α = βE∑

i

∑
j [

∂E
∂w(j,i)

]2
, which

decreases E by β%.
There are usually two ways to increase the generalization capability of a

learned model, adding regularization (L1 or L2 norm) on weights or using com-
mittee machine. However, solving the regularization problem is usually challeng-
ing especially in the deep learning context. In addition, the committee machine
technique requires averaging many separately trained models to compute a pre-
diction for a testing case, which is time consuming for deep learning. The dropout
procedure does the both (constraint and committee machine) simultaneously in
a very efficient way. 1) Each sub-model in training is a sampled model from
all possible ones and all sub-models share weights. The weight sharing property
is equivalent to the L1 or L2 norm constraint on weights, and 2) The testing
procedure is an approximation of averaging all trained sub-models for a testing
case but it does not separately store them because they share weights. This is
an extremely efficient and a smart implementation of a committee machine [9].

3 Results and Discussion

3.1 Experimental Setup

We consider three classification tasks including AD patients vs Healthy Control
subjects (AD vs HC), MCI patients vs HC (MCI vs HC) and MCI-converted vs
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MCI-non converted (MCI.C vs MCI.NC). For each task, we utilised a ten-fold
cross-validation (CV) scheme to evaluate the proposed method. In the ten-fold
CV, we randomly divided the data set into 10 parts and for one run, we separated
one part for testing and applied the proposed framework to the remaining data
to train a classification model. This procedure was repeated 10 times so that
each part was tested once. Finally, testing accuracies were computed. To obtain
a more realizable estimate of the performance, we repeated the ten-fold CV ten
times for each task with different random data partitions and computed average
accuracy as the performance metric. To compare different classification models,
we kept the same data partitions in the ten-fold CV and utilized the paired-t
test to evaluate if there is a significant performance difference.

We did preliminary experiments to determine the structure of the deep learn-
ing model. For all the three classification tasks, it was found that a three hidden
layers with hidden units of 100-50-20 worked the best among the candidate struc-
tures considered, then all tasks used the same structure. For the SVM classifier,
we tried different kernels and a linear kernel was chosen. We also did a grid search
for the "soft margin" parameter in the linear kernel SVM model but it did not
improve the classification accuracies. Therefore, in all experiments, we utilized a
three hidden-layer model with a structure of 100-50-20 for feature learning and
a linear SVM with default soft margin as classifier.

There are four components in the proposed framework including PCA, stabil-
ity selection, dropout and multi-task learning. Inspired by "sensitivity analysis"
and "impact assessment", we identified the impact of each component by eval-
uating classification performances without the component being included in the
framework.

3.2 Performance Evaluation

Table 1 shows the overall performances of the proposed method and the impact
of each component in the framework. The proposed method performed the best
in diagnosing AD and MCI patients with accuracies of 91.4% and 77.4%, re-
spectively, and it is significantly better than the baseline method that obtained
accuracies of 86.4% and 72.1% for the diagnosis. The baseline method consists
of all components in the proposed method except deep learning. In the MCI con-
version diagnosis (MCI.C vs MCI.NC), the PCA component slightly degraded
the proposed method (from 58.1% to 57.4%) but it is still significantly better
than the baseline method (57.4% vs 50.6%).

Among those components, it is obvious that "dropout" has the most signif-
icant impact on the performances. Without "dropout", deep learning did not
improve the baseline method (69.2% vs 69.7% in terms of average acc.). The
least important component is "PCA", the average acc. slightly dropped from
75.4% to 74.7% without the PCA component. Without "stability selection" and
"multi-task learning", the average accuracy dropped from 75.4% to 73.8% and
74.2%, respectively.

We conducted a paired-t test between results by the proposed method and
those from classical deep learning ("-Dropout"). Table 2 lists the improvements
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Table 1. Performance comparison (in%) of the competing methods. The proposed
method consists of four components. "-PCA" stands for "the proposed method without
the PCA component" and "SS" stands for stability selection, "Baseline" denotes the
framework without the deep learning component.

Tasks Proposed -PCA -Dropout -SS -MultTask Baseline
AD vs HC 91.4(1.8) 89.6(1.3) 84.2(3.0) 89.4(1.6) 90.3(1.7) 86.4(2.0)
MCI vs HC 77.4(1.7) 76.4(1.5) 73.1(3.1) 74.3(1.6) 75.6(1.7) 72.1(3.0)

MCI.C vs MCI.NC 57.4(3.6) 58.1(1.8) 50.2(3.3) 57.7(1.8) 56.7(3.0) 50.6(4.7)
Average 75.4 74.7 69.2 73.8 74.2 69.7

Table 2. Paired-t test between results of the proposed method vs deep learning with-
out dropout. The methods of "SAEF" and "LLF+SAEF" were proposed by Suk [5].
"SAEF" stands for Stacked Auto-Encoder Features and "LLF" denotes Low Level
Features.

Tasks Proposed -Dropout Improvement p-value SAEF LLF+SAEF
AD vs HC 91.4(1.8) 84.2(3.0) 7.2 < 10−3 83.2(2.7) 85.3(3.2)
MCI vs HC 77.4(1.7) 73.1(3.1) 4.3 0.0034 70.1(2.8) 76.9(2.3)

MCI.C vs MCI.NC 57.4(3.6) 50.2(3.3) 7.2 <10−3 58.4(4.1) 60.3(2.3)
Average 75.4 69.2 6.2 N/A 70.6 74.2

and p-values. The average improvement is 6.2% and the improvements for all
the three classification tasks are significant. The work by Suk [5] on the same
data set is also shown in Table 2, where "SAEF" corresponds to the method
using features learned by a deep auto-encoder and "LLF+SAEF" represents the
method that combines original features with the SAEF features for AD diagnosis.

The proposed method (75.4%) outperformed the SAEF method (with an av-
erage accuracy of 70.6%). By combining SAEF with LLF (LLF+SAEF), the
average accuracy was increased to 74.2% [5]. The SAEF method is a similar
deep learning method in which feature representations for MRI, PET and CSF
were learned separately and combined by a linear SVM classifier. It is worth to
note that the proposed method used the learned representation only. In [5], uti-
lizing the multi-kernel SVM (MK-SVM) to combine SAEF features from MRI,
PET and CSF boosted the performances to 95.9%, 85.0% and 75.8% for the
three tasks, respectively. Since the dropout technique improved upon the basic
deep learning significantly in this paper, we are currently investigating if the
MK-SVM can further boost the performance of the proposed system.

4 Conclusion

Our proposed method achieved 91.4%, 77.4% and 57.4% accuracies for AD, MCI
and MCI conversion diagnosis, respectively. The framework consists of multi-
ple components including PCA, stability selection, dropout and multi-task deep
learning. We showed that dropout is the most effective one. This is not surprising
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because the size of ADNI data is relatively small compared to that of the deep
structure utilized in this paper. Classical deep learning cannot help but with the
dropout technique, the average accuracy was improved by 6.2% on average. We
are incorporating MK-SVM [5] into our method for improved AD diagnosis.
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Abstract. Quantitative measurements from segmentations of soft tis-
sues from magnetic resonance images (MRI) of human brains provide
important biomarkers for normal aging, as well as disease progression.
In this paper, we propose a patch-based tissue classification method from
MR images using sparse dictionary learning from an atlas. Unlike most
atlas-based classification methods, deformable registration from the atlas
to the subject is not required. An “atlas” consists of an MR image, its
tissue probabilities, and the hard segmentation. The “subject” consists
of the MR image and the corresponding affine registered atlas probabili-
ties (or priors). A subject specific patch dictionary is created by learning
relevant patches from the atlas. Then the subject patches are modeled as
sparse combinations of learned atlas patches. The same sparse combina-
tion is applied to the segmentation patches of the atlas to generate tissue
memberships of the subject. The novel combination of prior probabilities
in the example patches enables us to distinguish tissues having similar in-
tensities but having different spatial location. We show that our method
outperforms two state-of-the-art whole brain tissue segmentation meth-
ods. We experimented on 12 subjects having manual tissue delineations,
obtaining mean Dice coefficients of 0.91 and 0.87 for cortical gray mat-
ter and cerebral white matter, respectively. In addition, experiments on
subjects with ventriculomegaly shows significantly better segmentation
using our approach than the competing methods.

Keywords: Image synthesis, intensity normalization, hallucination,
patches.

1 Introduction

Magnetic resonance imaging (MRI) is a widely used noninvasive modality to
image the human brain. Postprocessing of MR images, such as tissue segmenta-
tion, provides quantitative biomarkers for understanding many aspects of normal
aging, as well as progression and prognosis of diseases like Alzheimers’ disease
and multiple sclerosis. Finite mixture models of the image intensity distribu-
tions is the basis of many image segmentation algorithms, where the intensity
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histogram is fitted with a number of distributions, e.g. Gaussians, [1]. Other
algorithms model the tissue intensities using fuzzy C-means (FCM) [2], partial
volume models [3] etc. Prior information on the spatial locations of the tissue are
usually incorporated using statistical atlases [4,2], which captures their spatial
variability. Since there is no tissue-dependent global MR image intensity scale
(unlike computed tomography), the intensity range and distribution varies sig-
nificantly across scanners and imaging protocols. Thus it is sometimes unclear
if a particular model is optimal for MR images with different acquisition proto-
cols. Instead of trying to fit image intensities into pre-defined models, we rely
on similar looking examples from expert segmented images.

In this paper, we propose an example based brain segmentation method, com-
bining statistical atlas priors into sparse dictionary learning. The atlas comprises
an MR image, corresponding stastistical priors, and the hard segmentation into
tissue labels, e.g, cerebral gray matter(GM), cerebral white matter (WM), ven-
tricles, cerebro-spinal fluid (CSF) etc. An image patch from the subject MR
along with the corresponding patches from the affine registered statistical priors
in the subject space, comprise of an image feature. A sparse patch dictionary
is learnt using the atlas and subject image features. For every subject patch,
its sparse weight is found from the learnt dictionary. Corresponding atlas hard
segmentation labels are weighted by the same weights to generate the tissue
membership of the subject patch.

In a previous example based binary segmentation method [5], prior informa-
tion about spatial location of a tissue is obtained from a deformable registration
of the atlas to the subject image. A binary dictionary-based labeling method
was proposed for hippocampal segmetation in [6]. Our method is similar in con-
cept to this approach, but we perform whole brain segmentation using a single
dictionary encompassing multiple tissue classes using statistical priors without
the need for deformable registration between subject and atlas.

Since the previous example based methods [5,6] are only applicable to binary
segmentation, we compare our method with two state-of-the-art publicly avail-
able whole brain multi-class segmentation methods, Freesurfer [3] and TOADS
[2], and show that segmentation accuracy significantly improves with our exam-
ple based method. We also experimented on 10 subjects with ventriculomegaly
and show that when the anatomy between atlas and subject is significantly dif-
ferent (e.g., enlarged ventricles), our method is more robust.

2 Method

We define an atlas as a (n+1)-tuple of images, {a1, . . . , an+1}, where a1 denotes
the T1-w MR scan, an+1 denotes the hard segmentation, and a2–an denotes
(n − 1) statistical priors. At each voxel, a 3D patch can be defined on every
atlas image and are rasterized as a d× 1 vector ak(i), where i = 1, . . . ,M , is an
index over the voxels of the atlas. A subject MR image is denoted by s1. Atlas
a1 is affine registered to s1, and the priors a2–an are transformed to the subject
space by the same affine transformation. The transformed priors are denoted by
{s2, . . . , sn}. The subject patches are denoted by sk(j), j = 1, . . . , N . The idea is
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to use these images {a1, . . . , an+1, s1, . . . , sn} to generate a segmentation ŝn+1.
The priors can be weighted, i.e., sk ← w × sk, where w is a scalar multiplying
the prior images.

An atlas patch dictionary is defined as A1 ∈ R
nd×M , where the ith col-

umn of A1, f(i), consists of the ordered concatenation of atlas patches (ak(i)),
i.e., f(i) = [a1(i)

T . . . an(i)
T ]T . Thus the nd × 1 vectors f(i) becomes the atlas

feature vectors. Similarly, the subject feature vectors are denoted by b(j) =
[s1(i)

T . . . sn(i)
T ]T , b(j) ∈ R

nd. We also refer to the nd × 1 feature vector as
a “patch”. A patch encodes the intensity information of a voxel and its neigh-
borhood, as well as its spatial information via the use of statistical atlases. The
atlas segmentation image is also decomposed into patches an+1(i), which forms
the columns of the segmentation dictionary A2.

2.1 Sparse Dictionary Learning

If the atlas and the subjects have similar tissue contrasts, we can assume that for
every subject patch s1(j), a small number of similar looking patches can always
be found from the set of atlas patches (a1(i)) [7,8]. We extend this assumption for
the nd×1 feature vectors b(j) as well, enforcing the condition that every subject
feature can be matched to a few atlas feature vectors, having not only similar
intensities but similar spatial locations as well. This idea of sparse matching can
be written as

b(j) ≈ A1x(j), for some x(j) ∈ R
M , ||x(j)||0 �M, ∀j. (1)

Previous methods [6,5] try to enforce the similarity in spatial locations by search-
ing for the similar patches in a small window around the jth voxel. We obviate
the need for such windowed searching by adding statistical priors in the fea-
tures. The non-negativity constraints in the weight x(j) enforces the similarity
in texture between the subject patch and the chosen atlas patches.

The combinatorics of the �0 problem in Eqn. 1 makes it infeasible to solve
directly, but it can be transformed into an �1 minimization problem,

x̂(j) = argmin
x≥0

{||b(j)−A1x(j)||22 + λ||x(j)||1
}
, subject to ||f(i)||22 = 1 (2)

However, x(j) is a M × 1 vector, where M is the number of atlas patches,
typically M ∼ 107. Thus solving such a large optimization for every subject
patch is computationally intensive. We use sparse dictionary learning to generate
a dictionary of smaller length D1 ∈ R

nd×L, from A1, which can be used instead
of A1 in Eqn. 2 to solve for x(j). We have chosen L = 5000 empirically.

The advantage of learning a dictionary is twofold. First, although the dictio-
nary elements are not orthogonal, all the subject patches (b(j)) can be sparsely
represented using the dictionary elements. Second, the computational burden of
Eqn. 2 for every subject patch is reduced. The sparse dictionary is learnt using
training examples from the subject such that all subject patches can be opti-
mally represented via the dictionary [9]. The dictionary learning approach is an
alternating minimization to solve the following problem,

{x̂(j), D̂1} = argmin
x≥0,D1

N∑
j=1

{||b(j)−D1x(j)||22 + λ||x(j)||1
}
, s.t ||f(i)||22 = 1. (3)
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Initial Dictionary Final Dictionary

Fig. 1. The left image shows middle sections of 100 randomly chosen 3× 3× 3 patches
from D

(0)
1 , while on the right are the same atlas patches learnt from the subject after

five iterations of Eqn. 5

f(i), i = 1 . . . ,M are the columns of D1. Eqn. 3 can be solved in two alternating
steps. First, keeping D1 fixed, we solve for x(j) for each j, as in Eqn. 2. Then
keeping x(j) fixed, we solve

D̂1 = argmin
D1

N∑
j=1

||b(j)−D1x(j)||22. (4)

A gradient descent approach leads to the following update equation,

D
(t+1)
1 = D

(t)
1 + η

N∑
j=1

(b(j)−D
(t)
1 x(j))x(j)T , (5)

where η is the step-size and t denotes iteration numbers. We note that η should

be chosen carefully so that D
(t)
1 > 0 always, since the columns of D1 contains

MR intensities and statistical priors. D
(0)
1 is generated using L randomly chosen

columns of A1. The segmentation dictionaryD2 is generated using corresponding
columns of A2.

Once the dictionary is learnt after the convergence of Eqn. 5, Eqn. 2 is solved
for every subject patch b(j) using D̂1 instead of A1, to find the sparse represen-
tation x(j). Every atlas patch in the learnt dictionary D1 has a corresponding
segmentation patch in D2. Thus the columns of D2 contain segmentation labels
{2, . . . , k}. It can be shown that ||x(j)||1 follows a Laplace distribution with
mean 1. Empirically, the variance is found to be very small (∼ 0.005). Thus
we weigh the segmentation labels according to their weights in x(j) to generate
tissue memberships,

pk = (�D2(k))
x(j)

||x(j)||1 , k = 2, . . . , n, (6)

where �D2(k) denotes the indicator matrix having the same size as D2, whose
elements are 1 if the corresponding element in D2 is k, 0 otherwise. k = 2, . . . , n
denotes (n − 1) tissue labels. We only take the central voxel of pk to generate
the full membership image pk.
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2.2 Updating Statistical Priors in the Segmentation

We have described a method to obtain tissue memberships from a set of MR
images and statistical priors. Usually, fixed statistical priors should be non-zero
and fuzzy, leaving a possibility that a CSF patch can be matched to a ventri-
cle patch, which have similar intensity as well as similar prior. On the other
hand, less fuzzy priors will introduce too much dependence on the accurate ini-
tial alignment between the atlas and the subject. Instead of using a fixed prior
based on the initial atlas-to-subject registration, we dynamically update it by
iterating the same patch selection method stated above. The statistical priors
({s2, . . . , sn}) at each iteration is replaced by a Gaussian blurred version of the
obtained memberships pk [10]. The blurring relaxes the localization of the tissues
in the memberships by increasing the capture range in the priors. The algorithm
can be written as,

1. At t = 0, start with {a1, . . . , an+1, s1, s
(0)
2 . . . , s

(0)
n }, where s

(0)
k are the regis-

tered atlas priors, k = 2, . . . , n.

2. Generate dictionaries D̂1 andD2 from Eqn. 5 using {a1, . . . , an+1, s1, s
(0)
2 . . . ,

s
(0)
n }. The subject patches are denoted by b(0)(j).

3. At t ← t + 1, for each subject patch b(t)(j), generate the sparse coefficient
x(t)(j) using D̂1 from Eqn. 2.

4. Generate memberships {p(t)2 , . . . , p
(t)
n } using x(t)(j)s from Eqn. 6

5. Generate new statistical priors s
(t)
k ← Gσ � p

(t)
k , k = 2, . . . , n. σ = 3mm is

chosen empirically.

6. Generate b(t+1)(j) using the new {s1, s(t)2 , . . . , s
(t)
n }

7. Stop if 1
N

∑N
j=1 ||x(t)(j)− x(t−1)(j)|| < ε, else go to step 3.

3 Results

The run-time is approximately ½hours on 2.7GHz 12-core AMD processors for
181 × 217 × 181 sized 1mm3 images. SparseLab is used to solve Eqn. 2. We
used 3 × 3 × 3 patches in all our experiments, and empirically chose the atlas
weight w as 0.10. λ for Eqn. 2 and η for Eqn. 5 are chosen as 0.01 and 0.001,
respectively. All images are skull-stripped [11] and corrected for any intensity
inhomogeneity [12]. All MR images are intensity normalized so that their modes
of WM intensities are unity [13]. WM intensity modes are found by fitting a
smooth kernel density estimator to the histograms.

An example of the learnt dictionary is shown in Fig. 1, where D
(0)
1 is com-

pared with D
(5)
1 . Clearly, after learning from the subject patches, there are more

edges in D
(5)
1 patches, compared to the “flat”-looking patches in D

(0)
1 , indicating

D
(5)
1 can represent any unknown subject patch better than D

(0)
1 . Fig. 2 shows

the effect of iteratively updating the priors via memberships. Since the atlas is
registered to the subject using affine only, the strong GM prior in the middle of
WM (red arrow) introduces non-zero membership to the WM patches. However,
the dynamic prior update at each iteration, instead of a fixed prior in most EM
based algorithms, reduces the dependence.
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Atlas Ventricle GM WM

Subject MR Iter 1 Iter 5 Segmentation

Fig. 2. Top row shows affine registered atlas images, registered to the subject in the
bottom row. WM memberships (pk) for the 1st and 5th iteration of the algorithm
(Sec. 2.2) are also shown. The last column shows the max-membership hard segmen-
tation output of our method.

We validated on 12 subjects from CUMC12 database [14], which have man-
ually segmented labels. The manual segmentations do not have any CSF. We
segment the images into 4 classes, GM, WM, ventricle and subcortical GM (e.g.,
caudate, putamen, thalamus). One subject is randomly chosen as atlas. Since
they do not have any tissue probability or memberships, Gaussian blurred tis-
sue label-masks (σ = 3mm) are used as priors {a2, . . . , an}. The remaining 11
subjects are segmented using the atlas MR and priors. Dice coefficients com-
paring three methods on the four tissue classes, as well as the weighted average
(W. Ave.) of the four, weighted by the volume of the corresponding tissue, are
shown in Table 1. Our method outperforms the other two methods in GM, WM,
subcortical GM and in the average (p < 0.05 in all cases). Since the ventricle
boundary is usually the most robust feature in an MR image, all three methods
perform similarly.

NPH Subject TOADS Freesurfer Dictionary Manual

Fig. 3. A subject with NPH is segmented using TOADS, Freesurfer and our dictionary
learning method. Rightmost column shows manual delineation of the ventricles.
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Table 1. Mean Dice coefficients for four tissue types and their weighted average,
averaged over 11 subjects from CUMC12 database are shown

Ventricle GM Subcort. GM WM W. Ave.

TOADS 0.778 ±0.089 0.891 ±0.013 0.570 ±0.053 0.853 ±0.011 0.867 ±0.011
Freesurfer 0.759 ±0.082 0.888 ±0.011 0.636 ±0.021 0.853 ±0.008 0.863 ±0.009
Dictionary 0.785±0.055 0.910±0.012 0.755±0.023 0.869±0.008 0.881±0.008

bold indicates statistically significantly larger than the other two (p < 0.05).

Fig. 4. Dice coefficients of between manual ventricle delineation and three automatic
methods are shown for 10 subjects with NPH

Next we applied the dictionary learning algorithm on 10 subjects with normal
pressure hydrocephalus (NPH), which have enlarged ventricles. Manual segmen-
tations are available only on ventricles. They are segmented with Freesurfer using
the -bigventricles flag. Fig. 3 shows one subject with the segmentations and
the manual delineation of the ventricles. The atlas is shown in Fig. 2. In this
case, 7 tissue classes, cerebellar GM, cerebellar WM, cerebral GM and WM,
subcortical GM, CSF and ventricles, are used. Clearly, our method significantly
improves the ventricle segmentation. Freesurfer segments part of the ventricles
as WM and lesions (red arrow), while TOADS segments part of it as cortical
GM. Visually, our method produces better CSF segmentation as well (green
arrow). Quantitative improvement is shown in Fig. 4 where Dice coefficients be-
tween manually segmented ventricles and automatic segmentations are plotted
for the three methods. Our method produces the most consistent Dice coefficient
(mean 0.91) across all subjects with very little variance, and it is significantly
(p < 0.05) larger than TOADS (mean Dice 0.71) and Freesurfer (mean Dice
0.72). Although we used default settings for TOADS or Freesurfer, no amount
of parameter tuning would significantly improve the NPH results.

4 Discussion

We have presented a patch based sparse dictionary learning method to segment
multiple tissue classes. Contrary to previous binary patch based segmentation
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methods, we use statistical priors to localize different tissues with similar in-
tensities. We do not require any deformable registration of the subject to the
atlas.
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Abstract. Although multi-atlas segmentation techniques have been
producing impressive results for many medical image segmentation
problems, most label fusion methods developed so far rely on simple
statistical inference models that may not be optimal for inference in high-
dimensional feature space. To address this problem, we propose a novel
scheme that allows more effective usage of advanced machine learning
techniques for patch-based label fusion. Our key novelty is using image
registration to guide training sample selection for more effective learning.
We demonstrate the power of this new technique in cardiac segmentation
using clinical 2D ultrasound images and show superior performance over
multi-atlas segmentation and machine learning-based segmentation.

1 Introduction

Multi-atlas segmentation has demonstrated outstanding performance for a wide
range of medical image segmentation problems. One key ingredient to its success
is that deformable registration can accurately align anatomical structures across
subjects for reliable label propagation. With accurate structure alignment, sim-
ple label fusion methods such as similarity-based local weighted voting [6,11,15]
often can produce state of the art performance.

Although more powerful learning and classification techniques other than
weighted voting have been developed in machine learning research, applying ad-
vanced machine learning techniques to aid label fusion has not been extensively
studied. In some recent work, [13] applies adaboost classification as a postprocess-
ing step to reduce errors produced by multi-atlas segmentation. Similarly, [5] em-
ployed random forest classification to reduce ambiguities produced by multi-atlas
segmentation. Random forest is also employed in [18] for atlas encoding.

A common limitation of the above mentioned methods is that the classifiers
are all trained without taking advantage of registration-based structure align-
ment, i.e. the key advantage of multi-atlas segmentation. To address this limita-
tion, we explore a new scheme for combining learning techniques with multi-atlas
segmentation. Our key novelty lies in an image registration based training sam-
ple selection strategy for more effective learning. Similar to the spatially varying
image similarity based local weight voting approach, we propose a spatially vary-
ing training sample selection strategy that aims to only apply training samples
that are anatomically most relevant to the target testing sample for segment-
ing the target sample. This is achieved by selecting training samples within a
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local neighborhood surrounding the target testing sample after registering and
warping atlases into the target image.

We implement our method with random forest and conduct validation in a
challenging cardiac segmentation application using clinical four-chamber view
2D echocardiography. We demonstrate promising improvement over the state of
the art label fusion method and random forest based segmentation.

2 Method

2.1 Background in Patch-Based Multi-atlas Label Fusion

In this section, we briefly describe multi-atlas segmentation. Let TF be a target
image to be segmented and A1 = (A1

F , A
1
S), ..., A

n = (An
F , A

n
S) be n atlases,

warped to the space of the target image by deformable registration. Ai
F and

Ai
S denote the ith warped atlas image and manual segmentation. Each Ai

S is
a candidate segmentation for the target image. Label fusion combines these
candidate segmentations to produce the final solution.

One simple and highly effective label fusion method is based on weighted
voting. For instance, the combined votes for label l are:

p̂(l|x, TF ) =
n∑

i=1

wi
xp(l|x,Ai) (1)

where x indexes through image locations. p̂(l|x, TF ) is the estimated label pos-
terior for the target image. p(l|x,Ai) is the probability that Ai votes for label
l at x, with

∑
l∈{1,...,L} p(l|x,Ai) = 1. L is the total number of labels. wi

x is a

local weight assigned to the ith atlas, with
∑n

i=1 w
i
x = 1. The voting weights

are typically determined based on the quality of registration produced for each
atlas such that more accurately registered atlases are weighted more heavily in
producing the final solution.

Patch-based label fusion. For estimating registration/segmentation accuracy,
patch-based approaches are among the most effective techniques. For this task,
most methods apply similarity metrics typically employed by image-based regis-
tration, such as sum of squared distance (SSD) and normalized cross correlation
(NCC) computed over local image patches. For instance, when SSD and a Gaus-
sian weighting model are used [11], the voting weights in (1) can be estimated by

wi
x = 1

Z(x)exp
(
−∑

y∈N (x)

[
Ai

F (y)− TF (y)
]2

/σ
)
, where σ is a model parame-

ter. N (x) defines the image patch, which is a neighborhood surrounding x, and
Z(x) is a normalization constant.

Although the above approach can provide reasonable estimation about regis-
tration accuracy for each warped atlas, its contribution for remedying the reg-
istration error is limited. To more effectively remedy registration errors, atlas
patches within a local searching neighborhood of the registered correspondence
could all be considered as the potential corresponding patch for a target patch
and are applied for label fusion in patch-based label fusion methods [4,10,15].
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2.2 Limitations of Current Patch-Based Label Fusion Methods

Patch-based label fusion could be interpreted as a regression or interpolation
problem [9,14], where the goal is to predict the segmentation label for each tar-
get voxel given its surrounding image patch. All potential corresponding image
patches from the warped atlases provide observed data for this regression task.
Given that this regression problem is performed in a high-dimensional feature
space, the simple distance metric employed in current patch-based label fusion
methods, e.g. the Euclidean metric used above, could be inadequate for accu-
rately characterizing the feature space. This problem is less critical when image
registration can be reliably computed. As shown in an empirical study [16], sim-
ple metrics such as the Euclidean metric does a good job differentiating small
registration errors, however the accuracy of predicting large registration errors
quickly drops as the registration error increases. Hence, employing simple metrics
in patch-based label fusion becomes more problematic when image registrations
are poorly computed.

2.3 Random Forest Based Label Fusion

To address this limitation, we propose to employ more powerful learning tech-
niques for patch-based label fusion. In this paper, we investigate the usage of
random forest for this task.

A random forest is an ensemble of decision trees [3]. Each non-leaf node in a
decision tree performs a test, e.g. the comparison of a feature value to a given
threshold. During training, training data are used to build each decision tree.
During testing, a testing data is sent to the root node of each decision tree. Based
on the test at the node, the data is sent to either its left or right child node. This
process is repeated until a leaf node is reached in a tree. The class distribution
of all training samples located in the leaf node is interpreted as the probability
that the testing data should be assigned to each class. The final class probability
is obtained by averaging the class distributions from all decision trees. Random
forest has demonstrated impressive performance in image segmentation [18].

Inspired by the highly successful spatially varying weighted voting scheme, we
propose to train spatially varying local random forest classifiers for label fusion.
As in patch-based label fusion [4,10], given a target patch, all atlas patches
located in a small neighborhood of the registered correspondence are applied
for training a local random forest classifier, which is then applied for predicting
labels for the target patch. To facilitate our comparison with previous patch-
based label fusion, we apply pixel intensity values within each image patch as
features to predict the patch’s central pixel’s label. In our experiment, we apply
a (2rs + 1) × (2rs + 1) square-shaped sampling neighborhood specified by the
radius rs for our 2D cardiac ultrasound images. We also use a square-shaped
patch specified by a radius r for feature extraction.

Ideally, a distinct random forest classifier should be trained for segmenting
each target voxel using warped atlas samples surrounding the target voxel. How-
ever, this requirement increases the computational cost. To make our study more
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practical, we apply the trained classifier to predict segmentation labels for each
voxel located in the sampling window in the target image. In addition, we train
classifiers on overlapping sampling windows. Centers of the sampling windows
are located on a 2D grid with the distance between two neighboring grid nodes
in each row and each column equal rs

2 . Classification results from overlapping
classifiers are averaged to generate the final solution.

2.4 Relation to Training Sample Selection in Machine Learning

In machine learning research, it is well known that not all training samples
are always equally important for any given learning task. Choosing the most
relevant training samples for any specific classification task is a highly effective
technique for improving the learning performance. In general, rules for choosing
the most relevant training samples are application dependent. In medical image
segmentation, one intuitive rule for choosing relevant training samples is based
on their anatomical locations.

Although machine learning methods usually employ more powerful statistical
inference techniques than what are employed by current patch-based label fusion
methods, existing learning-based segmentation methods still largely ignore the
valuable anatomical information encoded in medical images. In contrast, multi-
atlas segmentation stands in the opposite extreme in terms of how anatomical
information is incorporated for reaching solutions. For instance, it is common
that machine learning based methods apply mixed training data sampled from
different anatomical area for making segmentation decisions, while multi-atlas
segmentation significantly simplifies the problem by applying spatially-varying
training data that are anatomically more relevant to the testing data obtained
from image registration. Due to this distinction, the best brain segmentation
performance achieved by machine learning techniques, e.g. [12,18], are still well
below those produced by multi-atlas segmentation [7,1]. In this aspect, the key
advantage of our method lies in combining the complementary advantages of
machine learning and multi-atlas segmentation.

3 Experiments

We conduct experimental study on cardiac segmentation using apical four-
chamber view 2D echocardiography. 2D echocardiography is a common modal-
ity for diagnosis in clinical practice. Anatomical structure labeling will assist
cardiac disease diagnosis by providing geometrical and morphological statistics.
This is an ideal application for demonstrating the advantage of our machine
learning based label fusion technique. Image registration on echocardiography
are challenging as the images are noisy and the anatomical structure deformation
among different subjects are large. Hence, label fusion needs to accommodate
large registration errors. Furthermore, different anatomical regions often share
similar intensity profiles in echocardiography, making image feature based ma-
chine learning techniques less effective.
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3.1 Data and Experiment Setup

Our dataset consists of a total of 50 patients with a variety of cardiac diseases
such as aneurysms, dilated cardiomyopathy and hypertrophies. Each image is
manually labeled with the following nine structures: Chamber Junction (CJ), In-
ter Ventricle Septum (IVS), Left Ventricle (LV), Mitral Valve (MV), Left Atrium
(LA), Inter Atrium Septum (IAS), Right Atrium (RA), Tricuspid Valve (TV)
and Right Ventricle (RV). We conducted a 5-fold cross-validation. Hence, the
dataset is randomly divided into 5 equal size non-overlap groups. Each group is
treated as the testing set and the remaining groups are treated as training set
in each of the five cross-validation experiments. The results below are summa-
rized over the five cross-validation experiments. In our experiments, we applied
sampling windows with rs = 5 for our method.

Deformable image registration. The global image-based registration between
each pair of images were performed through sequentially optimizing translation,
rigid body, affine and deformable transforms between the registered images. De-
formable registration was performed using the greedy diffeomorphic Symmetric
Normalization (SyN) algorithm [2] implemented by the Advanced Normalization
Tools (ANTs) software package. The Mattes mutual information metric was ap-
plied for the registration task. Multi-scale optimization was applied. Three res-
olution levels with maximum 200 iterations at the coarse and middle levels and
100 iterations at the fine level were applied.

Random Forest setup. We applied the random forest package implemented in R
[8] with the default parameter setting, i.e. 500 trees. Using this implementation,
our method usually segments each image in about 10 minutes.

Benchmark methods. For comparison, we evaluated joint label fusion (JLF) [15].
This method is one of the state of the art methods for patch-based local weighted
voting label fusion and is a consistent top performer in both MICCAI grand
challenges on multi-atlas segmentation held in 2012 and 2013 [7,1]. For this
study, we applied the authors’ implementation that is distributed through the
ANTs software package with default parameters, i.e. 5×5 image patches for local
image similarity estimation, 7× 7 local searching windows and model parameter
σ = 2. As another baseline performance, we also computed the segmentation
results produced by majority voting (MV) and by the STAPLE algorithm [17].

In the second comparison, we compare with the segmentation performance
produced by the classical usage of random forest for image segmentation (RF).
We train a single random forest classifier using the training samples from all
atlases without warping them into the target image space and apply this clas-
sifier to segment testing images. In addition to the intensity feature extracted
from each pixel’s surrounding patch, we also include relative spatial location of
each training sample with respect to the mass center of the scanned view as an
additional feature. To facilitate a direct comparison with other tested methods,
we did not include any other features for random forest classification.
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Table 1. Segmentation performance of our random forest label fusion (RFLF) method
compared with other methods. Results are measured using the Dice similarity coeffi-
cient (2|A ∩B|/|A|+ |B|).

anatomical regions MV STAPLE RF JLF RFLF

CJ 0.53±0.28 0.43±0.21 0.49±0.24 0.57±0.25 0.64±0.18

IVS 0.67±0.27 0.62±0.18 0.72±0.13 0.73±0.19 0.78±0.09

LV 0.77±0.14 0.73±0.17 0.82±0.07 0.80±0.11 0.82±0.08

MV 0.30±0.25 0.34±0.28 0.20±0.10 0.44±0.25 0.50±0.18

LA 0.74±0.20 0.69±0.19 0.73±0.14 0.78±0.17 0.79±0.14

IAS 0.51±0.29 0.38±0.27 0.18±0.14 0.57±0.23 0.59±0.21

RA 0.70±0.21 0.60±0.26 0.69±0.17 0.73±0.20 0.75±0.16

TV 0.07±0.12 0.17±0.21 0.02±0.03 0.17±0.18 0.21±0.19

RV 0.68±0.18 0.53±0.24 0.68±0.17 0.72±0.15 0.72±0.14

Overall 0.55 0.50 0.50 0.61 0.65
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Fig. 1. Segmentation accuracy (in terms of average Jaccard index) of joint label fusion
and our random forest based label fusion method with respective to the size of local
searching windows

Results. Table 1 summarizes the segmentation performance produced by each
method. The performance of the classical machine learning approach that learns
a single random forest classifier to assign labels for the entire testing image
is clearly below those of multi-atlas segmentation methods. In contrast, apply-
ing random forest for local patch-based label prediction produced a significant
improvement over the state of the art label fusion method (with p < 0.05 on
the paired Students t-test compared with JLF and p < 0.001 compared with
the remaining evaluated methods). This result clearly demonstrates: 1) the sim-
ple metric based patch label fusion method is inadequate for our application;
2) the registration based spatially varying sample selection scheme significantly
improved the performance of random forest.

Fig. 1 shows the performance of joint label fusion and our random forest
based label fusion method with respect to the size of local searching windows.
Both methods’ performance dropped as the local searching radius increases. This
result is expected because larger local searching/sampling windows complicate
the label fusion/classification problem by adding more irrelevant samples into
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image RF JLF RFLF manual

Fig. 2. Segmentation results by different methods. Red: CJ; Green: IVS; Blue: LV;
Yellow: MV; Sky blue: LA; Pink: IAS; Light brown: RA; Deep blue: TV; Brown: RV.

consideration. This result also indicates that training separate classifiers for dis-
tinct anatomical structures, such as in [13,5], is suboptimal because one anatom-
ical structure may still be large enough to include samples that are not strongly
relevant with each other for classification purpose. See Fig. 2 for some segmen-
tation examples.

4 Discussion and Conclusions

We introduced a novel scheme for combining the complementary advantages of
multi-atlas segmentation with more general machine learning techniques. The
key idea is to use image registration to generate spatially varying training sam-
ple selection for more effective learning. In our experiments of cardiac segmen-
tation using four chamber view 2D echocardiography, we demonstrated that the
registration-based spatially varying sample selection method significantly im-
proves classification accuracy for random forest. By including more descriptive
features or by applying postprocessing methods such as [13,5], we expect further
prominent improvement in the segmentation performance. In future work, we
will also conduct validation on broader applications with different registration
accuracy levels.

One common implementation to make multi-atlas segmentation more practi-
cal is to preregister all atlases to a common template space. Given a new target
image, only one registration from the target image to the template is required.
Although it significantly reduces the registration burden, it also compromises
the overall registration accuracy. Since our experiments show that our machine
learning based label fusion method is more robust to registration errors, it is
especially suitable to be implemented through the common template strategy.
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Abstract. In this paper, we propose a new learning-based interactive
editing method for prostate segmentation. Although many automatic
methods have been proposed to segment the prostate, laborious manual
correction is still required for many clinical applications due to the lim-
ited performance of automatic segmentation. The proposed method is
able to flexibly correct wrong parts of the segmentation within a short
time, even few scribbles or dots are provided. In order to obtain the ro-
bust correction with a few interactions, the discriminative features that
can represent mid-level cues beyond image intensity or gradient are adap-
tively extracted from a local region of interest according to both the
training set and the interaction. Then, the labeling problem is formu-
lated as a semi-supervised learning task, which is aimed to preserve the
manifold configuration between the labeled and unlabeled voxels. The
proposed method is evaluated on a challenging prostate CT image data
set with large shape and appearance variations. The automatic segmen-
tation results originally with the average Dice of 0.766 were improved to
the average Dice 0.866 after conducting totally 22 interactions for the 12
test images by using our proposed method.

Keywords: Interactive segmentation, prostate, feature selection, semi-
supervised learning, manifold regularization.

1 Introduction

Prostate cancer is one of the top leading causes of cancer-related death for males.
Radiation therapy with high-energy beams or particles is commonly used to
cure the early-stage cancers. During the radiotherapy, the high dose radiation
should be accurately delivered to the prostate, since the false delivery could lead
to under-treatment for the prostate cancer and even severe side effects for the
patient. Accordingly, accurate segmentation of the prostate from the surrounding
healthy tissues is required, to provide guidance for delivering the radiation beams
to the prostate for maximizing the effectiveness of therapy. However, manual
segmentation of the prostate in a 3D image is very time-consuming and often
causes intra- and inter-variations across clinicians [1].

G. Wu et al. (Eds.): MLMI 2014, LNCS 8679, pp. 264–271, 2014.
c© Springer International Publishing Switzerland 2014



Interactive Segmentation Based on Adaptive Feature Selection 265

Many automatic prostate segmentation methods based on the aligned at-
lases [1], statistical shape or appearance models [2], or classifiers [3] have been
proposed to obtain the reliable prostate segmentation results. Although these
automatic methods can largely alleviate the burden of clinicians, inaccurate seg-
mentations are often obtained due to the weak boundary between the prostate
and its surrounding tissues, large shape and appearance variations across sub-
jects, and uncertainty of bowel gas and filling. Therefore, heuristic post-processing
or manual editing is sometimes needed for correcting the wrong parts after the
automatic segmentation process.

Many interactive segmentation methods [4,5], which can provide a fast edit-
ing result according to the user interaction, have been proposed in the computer
vision field. However, these methods cannot generate flexible correction results
with few user interactions, because only the intensity and gradient informa-
tion are generally used to construct the model without utilizing the high-level
knowledge from training data. Recently, interactive methods based on the prior
knowledge of training data have been proposed. Barnes et al. [6] proposed the
image completion and reshuffling methods based on PatchMatch, which can seek
for the corresponding image patches efficiently by first randomly searching for
a similar patch and then expanding correspondences to the adjacent regions.
Park et al. [7] further enforced the spatial relationships of adjacent patches to
constrain the specific shapes of organs. The use of label information of similar
patches can improve the editing performance for many applications. However,
simple label and intensity information cannot deal with the intra- and inter-
subject appearance variations, as well as the weak boundary of prostate in our
case of application.

In this paper, we propose a new interactive editing method, which can 1) gen-
erate the flexible correction results with a few clinician’s interactions, and 2) fast
deliver intermediate results to a clinician. The correction result of the proposed
method is very robust to the amount and locations of interactions, since possi-
ble variations of data have been guided by the training data and incorporated
into our algorithm. Unlike the existing interactive methods that directly use the
label or intensity histogram as the priors, in the proposed method, informative
features are adaptively extracted from each local correction region according
to its discriminative characteristics. In addition, the manifold configuration of
voxels in the target image is also considered in the semi-supervised regulariza-
tion formulation. These adaptive features can flexibly deal with both intra- and
inter-appearance variations and further represent mid-level cues for identifying
the weak boundary beyond the simple image features; also the manifold configu-
ration is learned to reflect the anatomical relationships between the labeled and
unlabeled voxels.

2 Interactive Segmentation Framework

The proposed editing procedure is repeated whenever a clinician’s interaction
is inserted into a wrong part of previous segmentation Lt−1, where t is the in-
teraction time. If there are many wrong parts on the segmentation, multiple



266 S.H. Park et al.

corrections are repeatedly conducted until obtaining satisfactory result. Each
correction consists of the following procedures. First, in a local region near the in-
teraction, appropriate training labels, well matched with the interaction and the
previous segmentation, are selected from the training set. Based on the selected
training labels, both the confident regions, e.g., the prostate and background,
and the unconfident regions are estimated. Then, the informative features, which
are important for separating the prostate and the background on the confident
regions, are selected. The labels of all voxels are determined by optimizing the
semi-supervised regularization formulation which is aimed to preserve the man-
ifold configuration between the labeled and unlabeled voxels. The details are
presented in the following sub-sections.

2.1 Initial Segmentation and Preprocessing

The initial segmentation L0 can be obtained by any kind of automatic or interac-
tive methods. In this paper, we use the regression-based automatic segmentation
method [8] to obtain L0.

All training images and their labels are aligned onto the target image to
rapidly search for appropriate training data in the online editing procedure. We
use the MRF based non-rigid registration method (Drop) [9] for the alignment.
It takes roughly one minute for aligning each training image, but this time-
consuming procedure can be done without clinician’s effort before the interactive
correction. The interactive correction, a main proposed algorithm, starts from
the next sub-section.

2.2 Determination of ROI from User Interaction

The proposed method receives foreground and background scribbles or dots as
the interactions for a wrong part of previous segmentation Lt−1. The correction
is conducted on a local region near the interaction with assumption that the
regions near the interaction have segmentation errors, while the other parts of
Lt−1 are assumed to be correct temporarily. If there are errors on the other
parts, the errors can be sequentially corrected in the next interactions. The local
region of interest (ROI) Φt is determined as a bounding box which includes the
interaction and also has a small margin, so that the possible local variations can
be covered. We set the margin as 9×9×2 voxels, considering the large thickness
of our CT images. According to the interaction, a voxel v on Φt will be labeled
as foreground (U t(v) = 1), background (U t(v) = −1), or unlabeled (U t(v) = 0),
where U t is the label image of tth round interaction.

2.3 Selection of Reference Training Data

To use of prior knowledge included in the training data, the appropriate training
data will be selected according to the interaction. Here, we assume that the
appropriate training data should have the training labelM which is well matched
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(a) (b) 

(c) (d) (e) 

Fig. 1. (a) Initial segmentation (green) and ground truth (white line), (b) foreground
(red) and background (blue) user annotations on the initial segmentation, (c) corrected
result (green), (d) probabilistic label constructed by averaging the reference labels, and
(e) selected reference labels (orange)

with 1) U t on the annotated voxels and also 2) Lt−1 on the other voxels. We
define the label-based similarity cost S(M,U t, Lt−1) as:

S(M,U t, Lt−1) =
∑

v∈Φt,
Ut(v) 	=0

(δ(M(v) − U t(v)) + wU ·
∑

v∈Φt,
Ut(v)=0

(δ(M(v) − Lt−1(v)),

(1)
where δ is the Kronecker delta. The first term represents the number of voxels
which have the same labels in M and U t, while the second term represents the
number of voxels which have the same labels in M and Lt−1. The more M is
consistent with U t and Lt−1, the higher similarity cost will be obtained. wU

is a parameter used to balance between the two terms. Since the number of
annotated voxels (U t(v) �= 0) is relatively smaller than that of unlabeled voxels
(U t(v) = 0), wU is set as a small value (i.e., wU = 0.01) in the experiments
below. The similarity costs are computed for all training data, and then totally
nr training labels with the highest costs are selected as the reference training
data. The examples of reference labels are shown in Fig. 1 (e).

2.4 Prostate Segmentation by Semi-supervised Labeling

Although the segmentation of target image can be obtained by using the ma-
jority voting of the reference labels, the simple label fusion technique could not
reflect the meaningful appearance or structures of the target image. Therefore,
we first estimate the confident prostate and background regions in Φt by using
the reference labels. Then, the labels of unconfident voxels are carefully deter-
mined by considering the prostate likelihood of the confident voxels and also
the manifold configurations between the confident and unconfident voxels in a
semi-supervised regularization formulation.

To estimate the confident regions, a probabilistic label P is computed by aver-
aging the reference labels (Fig. 1 (d)). If P (v) is higher than 0.7, v is estimated
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as a confident prostate voxel (y(v) = 1), while if P (v) is lower than 0.1, v is
estimated as a confident background voxel (y(v) = −1). These confident voxels
are regarded as totally nl labeled voxels and all others are regarded as totally
nu unlabeled voxels (y(v) = 0).

The labeling problem is then formulated as a Laplacian regularized least
square (LapRLS) equation [10] as:

ŵ = min
w
{||J(y−Kw)||22 + γ1w

TKw+
γ2nl

(nl + nu)
2w

TKLKw}, (2)

where w = [w1, ..., wnl+nu ] is the parameter set to be optimized. The first term
represents the prostate likelihood of the labeled voxels, while the second term
represents the smoothness regularization of w. The last term represents the rela-
tionship between the labeled and unlabeled voxels used for preserving their man-
ifold configuration. J = diag(1, ..., 1, 0, ..., 0) is a diagonal matrix with the first nl

diagonal entries as 1 and the rest as 0. y=[y(v1), ..., y(vnl
), y(vnl+1), ..., y(vnl+nu)]

is the label set. K is the (nl + nu) × (nl + nu) gram matrix with the elements
K(vi, vj) defined by the Gaussian RBF kernel as K(vi, vj) = exp(−τ ||f(vi) −
f(vj)||22), where f(v) is the feature vector of voxel v. L is the (nl+nu)× (nl+nu)
Laplacian matrix defined across all labeled and unlabeled voxels. The Gaussian
RBF kernel is similarly used to define the voxel relationship. γ1 and γ2 are the
weighting parameters for the second and third terms.

The optimal parameter ŵ can be computed as:

ŵ = (JK+ γ1nlI+
γ2nl

(nl + nu)
2LK)−1y, (3)

where I is the identity matrix. After estimating ŵ, the likelihood of all voxels
can be computed as P̂ = Kŵ. If P̂ (v) is larger than 0, the voxel v is classified
to the prostate (Lt(v) = 1), otherwise, classified to the background (Lt(v) = 0).

Here, the features f(v) can be defined by any type of appearance or context
features, but the discriminative power of f(v) is highly related to the final seg-
mentation performance. Since the prostate have very weak boundary and large
shape and appearance variations, simple appearance or context features cannot
generate the reliable result. We adaptively select the features that have the high
discriminative power on each local region. First, various 3D Haar features [11]
are randomly extracted from the confident labeled voxels. Then, the discrimi-
native power of a feature is measured by the Fisher separation criterion (FSC)
score SFSC [12] as:

SFSC =
μf − μb√
σf − σb

, (4)

where μf and μb denote the mean feature values of prostate and background
voxels, respectively. Similarly, σf and σb denote the variances of prostate and
background voxels, respectively. nf features with the largest FSC scores, i.e.,
the highest discriminative power, are finally selected and included in f(v).
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Table 1. Mean DSC scores of the separate correction results on local region of interest
and on the entire region for 22 interactions, and mean DSC scores of the accumulated
results on the entire region for 12 test images

Initial Manual WVA WVL LapRLS+RF LapRLS+SF

Local (separated) 0.548 0.574 0.789 0.848 0.805 0.854
Global (separated) 0.757 0.761 0.79 0.804 0.797 0.805

Global (accumulated) 0.766 0.773 0.84 0.863 0.854 0.866

3 Experimental Evaluation

The proposed method (LapRLS+SF) was evaluated on a challenging prostate
CT image dataset which consists of 73 images, scanned from different patients.
The image size is 512 × 512 × (61 ∼ 81) with 0.94 × 0.94 × 3.00mm3 voxel
spacing. The dataset includes various subjects with large shape and appearance
variations. The boundary of prostate in each image was manually delineated by a
radiation oncologist and used as the ground truth for measuring the segmentation
performance. The performance was measured by the Dice similarity coefficient
(DSC). We divided the dataset into 19 test images and 54 training images, and
applied the regression-based automatic segmentation method [8]. We obtained
the satisfactory results for 7 cases, which had more than 0.85 DSC scores. The
proposed editing method was applied to correct the results of the remaining
12(=19-7) images. The parameters of the proposed method were empirically set
as follows: nf=1000, nr = 7, γ1 = 10−2, γ2 = 10−1.

The proposed method was compared with a manual editing method, weighted
voting methods, and the LapRLS method with random features (LapRLS+RF).
Only the labels of voxels annotated by the user were changed in the manual edit-
ing method. To show the effect of label-based similarity (1), we provide both the
weighted voting result based on the appearance similarity cost (WVA) and the
result based on the label-based similarity cost (WVL). Specifically, the train-
ing labels which have the highest intensity-based normalized cross correlation
(NCC) are selected for the WVA. The selected training labels are averaged with
the weights, which are linearly computed by the NCC cost, and the voxels with
the averaged label value more than 0.5 are determined as the prostate. Similarly,
the training labels which have the highest label-based similarity are selected for
the WVL and the voxels with the averaged label value more than 0.5 are de-
termined as the prostate. We also provide the result of LapRLS method using
1000 random Haar features to present the effect of feature selection. Since the
improvement of correction could be relatively small in the entire image even
though the improvement on the local region was very large, the DSC were mea-
sured both on the ROI and on the entire image for each interaction. The final
DSC of accumulated correction results were also measured on the entire image.

The original average DSC score of the automatic results for the 12 test images
was 0.766. We input the several dots on wrong parts as shown in Fig 2 until the
DSC scores of all results are more than 0.85. The corrections for 12 images
were completed within 22 interactions, on average, 1.8 interactions per image.
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Fig. 2. Editing results for several wrong cases. Initial results (green), ground truth
boundary (white), and user interactions (red and blue dots) are shown in the top row.
Editing results (green) obtained by the proposed method are shown in the bottom row.

Initial segmentation  
+ Ground truth 

Fig. 3. Editing results according to the different interactions. Initial segmentation
(green) and ground truth (white line) are shown in left. Different user interactions
and the corrected results are shown in the upper and bottom rows, respectively.

Table 1 shows the mean DSC performance of each comparison method for the
22 interactions. Since the small numbers of dots were used for the interaction,
the result of manual editing method was slightly improved from the automatic
segmentation result. On the other hand, the performances of all methods based
on training set were largely improved. Among all methods based on training set,
the proposed method outperformed both the label fusion based methods.

Fig. 2 shows the qualitative correction results for several cases. Since the
training labels constrained the irregular shape variations, the segmentation was
flexibly updated even if few interactions were given. Fig. 3 shows the robustness
of the proposed method according to the different interactions. The overall cor-
rected results were similar to each other and robust to the placement and quan-
tity of interactions. We note that this property helps reduce the inter-variability
between different clinicians and different processing time.

The experiments were implemented on a PC with a 3.5 GHz Intel quad-core
i7 CPU, and 16GB of RAM. The computational time was less than 3 seconds
for each correction without any specific code optimization. We expect that the
computational time will be further reduced to less than a second if code is
optimized or the method is parallelized.
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4 Conclusion

We have proposed a novel interactive editing method for correcting the prostate
segmentation in CT images. The proposed method obtains the robust correc-
tion results with very few interactions for various wrong cases, by selecting the
location-adaptive features and imposing the manifold configuration. We expect
that the proposed method could largely reduce the laborious burdens of manual
editing, as well as the intra- and inter-variability between clinicians.
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Abstract. Support vector machine significance maps (SVM p-maps)
previously showed clusters of significantly different voxels in dementia-
related brain regions. We propose a novel feature selection method for
classification of dementia based on these p-maps. In our approach, the
SVM p-maps are calculated on the training set with a time-efficient an-
alytic approximation. The features that are most significant on the p-
map are selected for classification with an SVM classifier. We validated
our method using MRI data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI), classifying Alzheimer’s disease (AD) patients, mild
cognitive impairment (MCI) patients who converted to AD within 18
months, MCI patients who did not convert to AD, and cognitively normal
controls (CN). The voxel-wise features were based on gray matter mor-
phometry. We compared p-map feature selection to classification without
feature selection and feature selection based on t-tests and expert knowl-
edge. Our method obtained in all experiments similar or better perfor-
mance and robustness than classification without feature selection with
a substantially reduced number of features. In conclusion, we proposed
a novel and efficient feature selection method with promising results.

1 Introduction

Computer-aided diagnosis of neurodegenerative diseases is an emerging research
field in which machine learning approaches are used to distinguish for example
Alzheimer’s disease (AD) patients from normal (CN) controls [1]. For extracting
image-based features for classification, many methods have used a voxel-wise
approach based on brain morphometry [1]. These voxel-wise approaches give
high-dimensional feature vectors which have led to the exploration of feature
selection methods for reducing dimensionality and improving performance [1,2].

For the support vector machine (SVM) classifier, a significance map (p-map)
can be calculated that shows the regions that consistently influence the classifica-
tion. In previous work, we showed that these p-maps find clusters of significantly
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different voxels in regions known to be involved in dementia [3]. Based on this,
we propose a novel method for feature selection based on these SVM p-maps.
The feature selection method is purely data-driven and is from a methodological
point of view closely linked to the SVM classifier, giving it a clear interpretation.

Feature selection using SVM p-maps has not been applied before, probably
because SVM p-map computation with permutation testing is time-consuming.
Instead, we use a fast recently published method for analytic computation [4]. In
this work, we validate this feature selection method in a classification experiment
of AD, mild cognitive impairment (MCI) and CN based on T1-weighted MR
scans and compare it to other feature selection methods.

2 Methods

2.1 Support Vector Machine

SVMs are frequently used for classification inmedical imaging including computer-
aided diagnosis [1,5,6]. This classifier is based on maximization of the margin
around the hyperplane (wTx+ b) that separates samples of the different classes.
Each sample i = 1, ...,m consists of an N -dimensional feature vector xi and a
class label yi ∈ {+1,−1}. The maximization of the margin corresponds to:

w∗, b∗, ξ∗ = arg min
w,b,ξ

1

2
||w||2 + C

m∑
i=1

ξi (1)

s.t. yi(w
Txi + b) ≥ 1− ξi; ξi ≥ 0; i = 1, ..., m

In this soft-margin SVM, ξi is a penalty for misclassification or classification
within the margin. Parameter C sets the weight of this penalty. The resulting
weight vector w∗ encodes the contributions of all features to the classifier.

2.2 SVM Significance Map

The significance value (p-value) is a quantification of how significant the con-
tribution of each feature to the SVM classifier is. To obtain the p-values, per-
mutation testing is needed to estimate a null distribution on the weight vector
(w) [5,6]. For permutation testing however, a large number of SVM classifiers
needs to be trained making it very time-consuming for high-dimensional feature
vectors.

A faster solution for permutation testing is presented by Gaonkar et al. [4]
who derived an analytic approximation of the null distribution of w. For this ap-
proximation, the SVM classifier is simplified by making two assumptions. First,
under the assumption that the classes are separable which is true if many features
and a relatively small number of samples are used, the soft-margin SVM can be
simplified by using a hard-margin SVM, which does not use the misclassification
penalties ξi. Second, under the assumption that for most permutations most
samples will be support vectors, the hard-margin SVM can be further simplified
to a least-squares SVM, which has a closed-form solution w = Ky, with:

K = XT [(XXT )−1 + (XXT )−1J(−JT (XXT )−1J)−1JT (XXT )−1] (2)
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where J is a column matrix of ones and the matrixX contains one feature vector
in each row. Given a sufficiently high number of subjects, the probability density
function of every feature (j) can be approximated with a Gaussian distribution:

wj
d−→ N

(
(2q − 1)

m∑
i=1

Kij , (4q − 4q2)

m∑
i=1

K2
ij

)
(3)

where q is the fraction of the data with class label yi = +1. A p-value for each
feature is obtained by testing w∗ against the analytic null distribution in (3).
As every feature is a voxel, the p-values can be combined into a p-map image.
The experiments of Gaonkar et al. [4] show that p-maps obtained with this
approximation are very similar to those obtained with permutation testing.

2.3 P-Map for Feature Selection

In this work, we propose to perform feature selection based on the p-map. Since
the p-map provides information on which features contribute most to the clas-
sifier, feature selection based on this p-map is expected to reduce features in a
meaningful way. Intuitively, using such an SVM-based feature selection method
prior to SVM-based classification is an attractive approach, as in this way the
feature selection and the classification use the same multivariate decision model
on the same training data. Since the p-map can be used for feature selection in a
non-iterative way, it is more efficient than some other feature selection methods
(e.g. recursive feature elimination based on w∗ [2]).

For feature selection, the p-map is calculated for the training set using the
efficient method described in section 2.2. All features with a p-value below α =
0.05 are selected. Given the low false positive detection rate of permutation
testing, no further correction for multiple comparisons is performed [4]. After
feature selection, a linear hard-margin SVM classifier is trained and tested.

3 Experiments

3.1 Data

Data from the Alzheimer’s disease Neuroimaging Initiative (ADNI) was used.
The cohort is adopted from [1] and consists of AD patients, MCI patients that
converted to AD within 18 months (MCIc), MCI patients that did not convert to
AD within 18 months (MCInc), and CN. The participants were 137 AD patients
(67 male, age: 76.0± 7.3 yrs, MMSE: 23.2± 2.0), 76 MCIc (43 male, 74.8± 7.4
yrs, MMSE: 26.5± 1.9), 134 MCInc (84 male, 74.5± 7.2 yrs, MMSE: 27.2± 1.7),
and 162 CN (76 male, 76.3 ± 5.4 yrs, MMSE: 29.2 ± 1.0). T1w imaging was
acquired at 1.5T with a voxel size of ∼1mm3 [7].

3.2 Image Processing

Probabilistic tissue segmentations were obtained for white matter, gray matter
(GM) and cerebrospinal fluid using SPM8 (Statistical Parametric Mapping, UK).
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For construction of a template space, the coordinate transformations from the
template space to the subject’s space were derived from pairwise image registra-
tion [8] of a subset of 150 T1w images (81 CN, 69 AD [1]). We performed pair-
wise registrations with consecutively a rigid (including isotropic scaling), affine,
and non-rigid B-spline transformation model. The non-rigid B-spline registra-
tion used a three-level multi-resolution framework with isotropic control-point
spacing of 24, 12, and 6 mm at the three resolutions respectively. A template im-
age was created by averaging the deformed individual images. To transform the
other subjects’ images to template space, coordinate transformations were de-
rived from pairwise registrations to the subset. The registrations to the template
space were visually inspected to check if they were correct.

3.3 Classification

For classification [9], features were based on voxel-based morphometry, which
means that we use GM probabilistic segmentations in the template space that
are modulated by the Jacobian determinant of the deformation field. To correct
for head size, the features were divided by intracranial volume. The features were
normalized to zero mean and unit variance.

Four classification settings were defined: 1) AD-CN, 2) AD-MCI, 3) MCI-CN,
and 4) MCIc-MCInc. For each setting, classification performance was quantified
by the accuracy and the area under the ROC-curve (AUC) with two-fold cross-
validation. The cross-validation was iterated 100 times with random splits of
the participants into a training and test set of the same size while preserving
class priors. We tested differences between classifiers with a paired t-test. To
address the robustness of the classification, the coefficient of variation (CV) was
calculated, which is the standard deviation of performance divided by the mean.

The visualization of the selected features was based on one specific training
and test set in which the age and sex distributions were preserved [1]. To iden-
tify clusters of features selected by the p-map method, visual inspection was
performed by counting the number of selected features in every atlas region [10]
after removal of the smallest clusters by morphological opening.

3.4 Experimental Set-Up

We compared 4 classifiers: I) Classification on all features (No feature selection),
II) proposed p-map feature selection (P-map), III) univariate t-test for each voxel
(α = 0.05, T-test), and IV) ROI selection based on expert knowledge (ROI ).

For IV), the following ROIs were included (Figure 1) [2]: 1) Cingulate gyrus
(CG), 2) Hippocampus including amygdala (HC), 3) Parahippocampal gyrus
(PHG), 4) Fusiform gyrus (FG), 5) Superior parietal gyrus (SPG), 6) Mid-
dle/inferior temporal gyrus (MITG), 7) Temporal lobe (TL) including FG and
MITG, 8) HC + PHG, and 9) TL + HC + PHG. The ROIs were segmented
with a multi-atlas segmentation for every subject individually and subsequently
transformed to template space. The labels were fused using majority voting. For
the individual multi-atlas segmentations, 30 labeled T1w images containing 83
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Fig. 1. ROIs for feature selection based on previous knowledge, adapted from [2]

Fig. 2. Classification performance: the separate panels show mean and standard devi-
ation of AUC and accuracy over 100 cross-validations. Paired t-test p-values are shown
for results better than classification without feature selection, marked by * if significant.

ROIs each were used [10]. The atlas images were registered to the subjects image
using a rigid, affine, and non-rigid B-spline transformation model consecutively.

For each cross-validation run with feature selection (II-IV), features were se-
lected based on the training set. Using the selected features, an SVM was trained
on the training set and applied to the test set.

3.5 Results

Fig. 2 shows the classification performances for the original classification without
feature selection (white bars) and the different feature selection methods. For
the AD-CN and MCI-CN classification settings, the mean AUC of the p-map
method (black bars) is slightly higher than that of the original classification. On
average the improvement in AUC is 0.2%. For all classification settings except
MCIc-MCInc, the p-map method improves accuracy. The t-test method (blue
bars) never improves performance. For the p-map and the t-test methods, all
differences with the original classification are rather small. The AUC of the p-
map method was on average 4.3% higher than that of the t-test method. The
performances of the ROI selection methods vary. The best performing ROI,
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Fig. 3. A cross-section of the template space image showing features that are selected
by the p-map method (red), t-test method (blue), or both methods (purple)

Table 1. Coefficient of variation (CV) defined for the AUC and the Accuracy as the
standard deviation divided by the mean. Original shows the classification without
feature selection. The CVs in the green cells are smaller than without feature selection.

Groups Original P-map T-test ROI1 ROI2 ROI3 ROI4 ROI5 ROI6 ROI7 ROI8 ROI9
CG HC PHG FG SPG MITG TL HC+ TL+HC

PHG +PHG

CV [%] for Area under the curve (AUC)
AD-CN 1.4 1.3 1.5 3.9 1.7 1.8 3.0 3.6 3.6 1.7 1.4 1.2
AD-MCI 3.7 3.8 4.9 3.9 3.9 4.9 5.7 5.3 3.6 3.7 3.4 4.0
MCI-CN 3.7 3.5 4.2 4.6 3.9 4.1 4.1 4.7 5.1 3.4 3.9 2.9
MCIc-MCInc 6.9 6.7 7.2 7.7 5.6 6.7 7.1 7.8 7.5 5.7 6.1 5.9

CV [%] for Accuracy
AD-CN 1.9 1.8 2.0 3.7 2.2 2.5 3.5 4.1 4.0 2.2 2.2 1.9
AD-MCI 2.7 2.9 4.1 3.5 3.6 4.1 3.9 3.9 3.1 3.5 3.4 3.2
MCI-CN 3.2 3.5 3.7 4.0 3.7 3.4 4.0 4.0 4.7 3.4 4.2 3.0
MCIc-MCInc 3.0 3.3 4.5 5.5 4.3 5.4 5.0 4.8 5.0 3.7 4.9 3.6

which consists of the hippocampus, parahippocampal gyrus and the temporal
lobe (ROI 9), improves AUC in three and accuracy in two settings.

The paired t-test shows that the p-map method and ROI 9 gave a significantly
better performance than classification without feature selection in the AD-CN
setting (Fig. 2). For the MCIc-MCInc, the AUC is significantly improved by
two ROI methods that include the temporal lobe. The p-map is the only feature
selection method that never significantly decreases classification performance. In
addition, the performance differences between the p-map and the t-test methods
were significant in all settings as tested with the paired t-test (p < 0.001). The
p-map feature selection took on average 10 minutes (range: 6-13 min) and is
performed once for every training set.

The most robust methods were (Table 1): no feature selection, p-map feature
selection, and ROI9. In all settings except MCI-CN, the CV of AUC of latter
two was slightly smaller than using no feature selection.
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Table 2. Regions containing main clusters of features selected with the p-map method

AD-CN AD-MCI MCI-CN MCIc-MCInc

Hippocampus Hippocampus Hippocampus Mid./inf. temporal gyrus
Parahippocampal gyrus Parahippocampal gyrus Parahippocampal gyrus Superior parietal gyrus
Lateral occipital lobe Lateral occipital lobe Lateral occipital lobe Fusiform gyrus
Thalamus Thalamus Insula Frontal gyri

Mid./inf. temporal gyrus Cingulate gyrus Anterior orbital gyrus
Superior parietal gyrus Caudate nucleus Remainder parietal lobe
Frontal gyri Mid./inf. temporal gyrus Remainder temporal lobe

From the 1.4 ·106 features, the p-map method selected a substantially smaller
subset: the mean number of selected features over 100 iterations in four settings
was 5.5·104. The t-test method selected on average 1.1·105 features. An overview
of features selected by the p-map and t-test method is shown in Fig. 3. Table
2 lists the regions in which most features were selected by the p-map method.
Except for MCIc-MCInc, we found the most clusters of selected features in the
hippocampus, parahippocampal gyrus, lateral occipital lobe and thalamus.

4 Conclusion and Discussion

We proposed feature selection using SVM significance maps and compared this
method to classification using no feature selection, and feature selection based
on t-tests and expert knowledge ROIs. The proposed method yielded in most
cases a similar or higher performance than using no feature selection.

Chu et al. [2] concluded that feature selection only improves performance if
expert knowledge is used. For the AD-CN and MCI-CN settings, our accuracies
without feature selection were similar to those of Chu et al. Both studies found
that selecting the temporal lobe, hippocampus and parahippocampal gyrus (ROI
9) slightly improved performance. Our p-map selection method showed an im-
provement similar to that of ROI 9, which was significant for AD-CN. The p-map
method never significantly decreased performance. It should be noted that the
performance improvements compared to using no feature selection were modest.

Atrophy of the hippocampus (including amygdala) and parahippocampal gyrus
is well known to play an important role in AD [11,12,13]. Additionally, atrophy
in the cingulate gyri [12,13,14], caudate nucleus [11,12], insula [11,12], thala-
mus [11,14], superior parietal gyrus (precuneus) [12,14], temporal gyri [12,14]
and frontal cortex [12] were reported in AD and MCI. These regions correspond
very well to the regions in which the p-map method selected clusters of voxels
(Table 2). Two exceptions are: 1) the p-map method found features in the lat-
eral occipital lobe, which have not previously been reported, and 2) although
atrophy in the hippocampi and mediotemporal lobe is also considered a predic-
tor for conversion of MCI patients to AD [11], this was not identified by the
p-map feature selection in the MCIc-MCInc setting. For the regions found with
the p-map method, the main difference between the four classification settings
was how clustered the selected voxels are to specific regions. For the AD-CN
classification, the selected features were very clustered to specific regions, while
for the other settings the selected features were more spread over the temporal,
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frontal and parietal lobes. We conclude that the overall correspondence between
the findings and the literature confirms the validity of the p-map method.

A future direction of this work is to investigate the influence of the selection
threshold (α) and its optimal setting. In addition, we will compare other feature
selection methods, i.e. randomized t-tests and recursive feature elimination [2].

In conclusion, we presented a feature selection method that in most cases
showed a slight improvement in classification performance and robustness. Three
advantages of this p-map method are that: 1) the reduction of the number of
features never decreases performance, 2) without using expert knowledge the
method selects features in regions corresponding to those previously implicated
in AD and MCI, and 3) processing time may be drastically reduced because the
method is fast as feature selection takes only 10 minutes and the classification
is performed on a smaller feature set.
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Abstract. Positron emission tomography (PET) is a nuclear medical
imaging technology that produces 3D images of tissue metabolic activity
in human body. PET has been used in various clinical applications, such
as diagnosis of tumors and diffuse brain disorders. High quality PET im-
age plays an essential role in diagnosing diseases/disorders and assessing
the response to therapy. In practice, in order to obtain the high quality
PET images, standard-dose radionuclide (tracer) needs to be used and
injected into the living body. As a result, it will inevitably increase the
risk of radiation. In this paper, we propose a regression forest (RF) based
framework for predicting standard-dose PET images using low-dose PET
and corresponding magnetic resonance imaging (MRI) images instead of
injecting the standard-dose radionuclide into the body. The proposed
approach has been evaluated on a dataset consisting of 7 subjects us-
ing leave-one-out cross-validation. Moreover, we compare the prediction
performance between sparse representation (SR) based method and our
proposed method. Both qualitative and quantitative results illustrate the
practicability of our proposed method.

1 Introduction

Positron emission tomography (PET) is a molecular imaging technique which
produces 3D images reflecting tissue metabolic activity in human body. Since
developed in the early 1970s, PET has been widely used in oncology for diag-
nosing a variety of cancers [1]. Moreover, it was also widely used for clinically
diagnosing brain disorders [2], monitoring the therapy response and guiding the
treatment planning in radiation therapy [3].

High-quality PET image plays an essential role in diagnosing diseases/disorders
and assessing the response to therapy. However, due to the constraint on injected
radioactivity, low-dose PET images are widely obtained in clinical applications
with a compromised quality in comparison to those of the standard-dose PET im-
ages. Moreover, the quality of low-dose PET image will be further decreased due
to various factors during the process of acquisition, transmission and reconstruc-
tion. Consequently, it will affect the accurate diagnosis of diseases/disorders. In
practice, in order to obtain the high quality PET images, standard-dose radionu-
clide (tracer) needs to be used and injected into the living body. As a result, it
will inevitably increase the risk of radiation and also lengthen the imaging time.
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Although many methods have been proposed for improving the PET im-
age quality, most of them focused on low-dose/standard-dose PET itself, such
as partial volume correction, motion volume correction [3]. To the best of our
knowledge, no previous studies have been reported to predict standard-dose PET
image by using low-dose PET and MRI images.

In this paper, we propose a regression-forest-based framework for predict-
ing standard-dose PET image using both low-dose PET and MRI images. Our
method mainly consists of two steps: 1) the prediction of initial standard-dose
PET image by tissue-specific regression forests with image appearance features
from both low-dose PET and MRI images; 2) incremental refinement of the pre-
dicted standard-dose PET image by iteratively estimating the image difference
between the current prediction and the target standard-dose PET. By incremen-
tally adding the estimated image difference towards the target standard-dose
PET, our proposed method is able to gradually improve the quality of predicted
standard-dose PET. Fig. 1 gives a flowchart of our method.

The reminder of the paper is organized as follows: Section 2 briefly introduces
the regression forest, followed by the elaboration of our proposed method in two
steps. Then, Section 3 presents both qualitative and quantitative results of our
method, and also compares it with the sparse representation technique. Finally,
Section 4 presents the conclusion.

2 Method

As aforementioned, our method consists of two major steps, initial standard-dose
PET prediction and incremental refinement. Both steps adopt regression forest
as the non-linear prediction model. In this section, we will first briefly introduce
the regression forest. Then, we will explain the two steps in detail.

Fig. 1. The flowchart of our proposed framework

2.1 Regression Forest

Random forest [4] consists of multiple binary decision trees, with each tree
trained independently with random features and thresholds. The final predic-
tion of a random forest is the average over the predictions of all its individual
trees. As an ensemble method, it has recently gained much popularity on both
classification and regression problems [5,6]. Note that, when applied to the non-
linear regression task, random forest is often called as regression forest.

Similar to other supervised models, the use of regression forest consists of both
training and testing stages. In the training stage, given a set of training data
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{(fi, ti)|i = 1, · · · , N}, where fi and ti indicate the feature vector and regression
target of the i-th training sample, regression forest aims to learn a non-linear
model for predicting the target t based on the input features f . In the regression
forest, each binary decision tree is trained independently. A decision tree consists
of two types of nodes, namely split nodes (non-leaf nodes) and leaf nodes. The
split node is often associated with a decision stump function g(f |j, θ) = πj(f) ≤
θ, where πj(f) indicates the response of the j-th feature in the input feature
vector f , and θ is a threshold. The optimal combination of feature j and threshold
θ is learned by maximizing the average variance decrease in each dimension of
the regression target after splitting. The leaf node stores the average regression
target of training samples falling into this node. The training of decision tree
starts with finding the optimal split at the root node, and recursively proceeds
on child nodes until either the maximum tree depth is reached or the number
of training samples is too small to split. In the testing stage, a new testing
sample is pushed through each learned decision tree, starting at the root node.
At each split node, the associated decision stump function is applied to the
testing sample. If the result is false, then this testing sample is sent to the left
child; otherwise, it is sent to the right child. Once the testing sample reaches a
leaf node, the average regression target stored in that leaf node will be taken as
the output of this binary decision tree. The final prediction value of the entire
forest is the average of outputs from all decision trees.

2.2 Prediction of Initial Standard-Dose PET Image by
Tissue-specific Regression Forests

Due to large volume of human brain (e.g., usually with millions of image vox-
els), it is difficult to learn a global regression model for accurately predicting the
standard-dose PET image over the entire brain. Many studies [7] have shown
that learning multiple local models would improve the prediction performance
compared with a single global model. Therefore, in this paper we learn one re-
gression forest for each brain tissue, i.e., white matter (WM), gray matter (GM)
and cerebrospinal fluid (CSF). Since the appearance variation within each brain
tissue is much less than that across different brain tissues, our tissue-specific
regression forest can yield more accurate predictions than a global regression
forest model (trained for the entire brain). As similar to most learning-based
methods, the proposed method consists of training stage and testing stage as
follows:

In the training stage, our training data consists of MRI, low-dose PET,
and standard-dose PET from different training patients (or called as training
subjects). Each training subject has MRI image, low-dose PET image and the
corresponding standard-dose PET image. Before learning the tissue-specific re-
gression forests, the three images of all training subjects are linearly aligned
onto a common space by FLIRT [8]. Then, a brain segmentation method [9] is
adopted to segment the brain region into WM, GM and CSF for each training
subject based on the respective MRI image. To train the regression forest for
one tissue type, we first randomly sample a set of points {(fi, ti)|i = 1, · · · , N}
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within this tissue region for every training subject. For the i-th point/sample
at position v ∈ R

3, we extract the local intensity patches from both MRI and
low-dose PET images centered at position v for serving as the input features fi
in the regression forest. The voxel intensity of the corresponding standard-dose
PET image at the position v is taken as the regression target ti. In this way,
we can learn three tissue-specific regression forests in the training stage, which
will be in charge of predicting standard-dose PET image within their respective
tissue region.

In the Testing Stage, given a testing subject with both MRI and low-
dose PET, we first linearly align these MRI and low-dose PET images onto
the common space (as defined in the training stage) by using FLIRT [8], and
automatically segment the MRI image into three brain tissues by [9]. Then,
the standard-dose PET image can be predicted in a voxel-wise manner by using
the local image appearance information from the aligned MRI and low-dose PET
images. Specifically, for each voxel in the unknown standard-dose PET image, we
can extract the local intensity patches at the same location from both MRI and
low-dose PET images. Based on the extracted intensity patches and the tissue
label at this location, we can apply the corresponding tissue-specific regression
forest to predict the standard-dose PET value for this voxel. By iterating all
image voxels, a standard-dose PET image can be predicted.

2.3 Incremental Refinement by Image Difference Estimation

Motivated by the success of ensemble models [4], we further propose an incremen-
tal refinement framework for iteratively improving the quality of the predicted
standard-dose PET image. To accomplish this, we learn a sequence of tissue-
specific regression forests for gradually minimizing the image difference between
the predicted and the target standard-dose PET images during the training
stage. In particular, the tissue-specific regression forests at iteration k aims to
estimate the image difference between the predicted standard-dose PET image
by the previous k-1 iterations and the target standard-dose PET image.

Similar to training tissue-specific regression forests (as described in the above
Subsection 2.2) for predicting initial standard-dose PET image, we first randomly

sample a set of training samples/points {(fi, tdiffi )|i = 1, · · · , N} within each
tissue region for every training subject. Specifically, for the i-th sample/point at
position v ∈ R

3, we extract the local intensity patches from both MRI and low-
dose PET images centered at position v for serving as the input features fi in the
regression forest; The voxel value of the real difference map (computed between
ground truth and standard-dose PET image predicted in previous step)at the

position v is taken as the regression target tdiffi . In this way, we can learn
three tissue-specific regression forests during the training stage, which will be
in charge of predicting (estimating) the image difference within their respective
tissue region. By adding the estimated image difference on top of previously
predicted standard-dose PET image, the new updated prediction could be closer
to the target standard-dose PET image, thus improving the prediction accuracy.
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In the testing stage, given a new testing subject with MRI and low-dose PET
images, the learned tissue-specific regression forests can be applied sequentially
to obtain a final predicted standard-dose PET image. Specifically, in the first
iteration, only the technique described in Section 2.2 is adopted to predict an
initial standard-dose PET image. Then, the tissue-specific regression forests in
the next iterations will be used to sequentially estimate the image difference
between the current prediction and the target standard-dose PET image. The
estimated image differences by the later regression forests will be sequentially
added onto the initially predicted standard-dose PET image for incremental
refinement. As will be validated in the experiments, our proposed incremental
refinement framework can further boost the prediction accuracy of tissue-specific
regression forests.

3 Experimental Results

Data Description: Our method was evaluated on a dataset consisting of 7
subjects. Each subject has three images: MRI, low-dose PET, and standard-
dose PET. After aligned onto the PET image space, each image has the size of
344× 344× 127, and the voxel size of 2.09× 2.09× 2.03mm3. It is worth noting
that for each subject, the low-dose PET sets are the completely separate acqui-
sitions from the standard-dose PET sets, and the low-dose PET are 180-second
reconstructions whereas the standard-dose PET are 720-second reconstructions.

Preprocessing: All images were preprocessed by following steps. 1) Linear
alignment : three images (MRI, low-dose PET, and standard-dose PET) of each
subject were linearly aligned onto a common space; 2) Skull stripping: non-brain
parts were removed from the aligned images; 3) Intensity normalization: each
modality image was normalized via histogrammatching; 4) Tissue segmentation:
WM, GM and CSF were segmented from each skull-stripped MR image.

Parameter Setting: In this paper, we choose the following parameters for all
experiments—patch size: 9×9×9; the number of trees in a forest: 10; the number
of randomly selected features: 1000; the maximum tree depth: 15; the minimum
number of samples at each leaf: 5; and the number of iterations in incremental
refinement: 2.

For the purpose of evaluating our proposed method, a leave-one-out cross-
validation method was adopted in our experiments. In each cross-validation step,
six of seven subjects were used to build the prediction models, and the remaining
one subject was used as the testing image to be predicted by the learned models.

Fig 2 presents the qualitative results of our method on two subjects, and
also compares our proposed method with sparse representation technique [10].
Similar to our method, sparse representation technique can also be adopted to
voxel-wisely predict the standard-dose PET image by utilizing information from
both MRI and low-dose PET images. In the sparse representation technique,
to estimate the standard-dose PET intensity t for a voxel v ∈ R

3, a sparse
coefficient αv needs to be first computed by solving the following problem:
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min
αv≥0

1

2
‖Dvαv − f(v)‖22 + λ1‖αv‖1 + λ2

2
‖αv‖22, (1)

where f(v) is the feature vector of voxel v, defined as the vector of concatenated
intensity of local patches from both MRI and low-dose PET; αv is the sparse
coefficient of voxel v to be estimated; Dv is the dictionary of voxel v, consisting
of feature vectors of voxels within a small neighborhood of voxel v in all training
subjects; λ1 and λ2 control the sparsity and smoothness of the estimated sparse
coefficient αv. Once αv is obtained, it can be used as weights to average the
corresponding voxel intensities in the standard-dose PET training images for
prediction. For fair comparison, we optimize both λ1 and λ2 for the best perfor-
mance of the sparse representation technique. In the experiments, λ1 and λ2 are
set to be 0.1 and 0.01, respectively. The neighborhood size is set to 5 × 5 × 5,
and the patch size is set to 9× 9× 9.

From Fig. 2, we can see that our proposed method (RF) achieves more accu-
rate predictions than sparse representation technique (SR) (i.e., with smaller dif-
ference magnitudes and more similar image appearance with the ground-truth).
The limited prediction accuracy of sparse representation might be due to two rea-
sons: 1) both MRI and low-dose PET modalities are treated equally in the sparse
representation; 2) only linear prediction models are adopted, which might be in-
sufficient to capture the complex relationship among MRI, low-dose PET, and
standard-dose PET images. In contrast, our proposed method adopts regression
forest to simultaneously identify informative features from MRI and low-dose
PET images for standard-dose PET image prediction, and learn the non-linear
relationship among MRI, low-dose PET and standard-dose PET images.

Fig. 2. Comparison between sparse representation (SR) and our proposed method (RF)
on two different subjects as shown in the first and second rows, respectively

To quantitatively evaluate the quality of predicted standard-dose PET images,
we adopt two commonly used metrics, normalized mean squared error (NMSE)
and peak signal-to-noise ratio (PSNR), which are defined as:

NMSE =
‖H − Ĥ‖22
‖H‖22

, PSNR = 10 log10(
L2

1
M ‖H − Ĥ‖22

) (2)
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where H is the ground-truth standard-dose PET image, Ĥ is the predicted
standard-dose PET image, L is the maximal intensity range of images H and Ĥ ,
and M is the total number of voxels in the image. In general, a good algorithm
provides lower NMSE and higher PSNR.

Table 1 and Fig. 3 quantitatively compare the sparse representation tech-
nique (SR) with our proposed method using one iteration (Model1) and two
iterations (Model1+Model2). In order to demonstrate the improvement of pre-
dicted standard-dose PET image over the low-dose PET image, we also calculate
the NMSE and PSNR for low-dose PET image with respect to the ground-truth.

Table 1. Performance comparison in terms of NMSE and PSNR (Note that Model1+2

means Model1+Model2)

Sub. No.
Low-dose PET SR RF(Model1) RF(Model1+2)
NMSE PSNR NMSE PSNR NMSE PSNR NMSE PSNR

1 0.360 13.394 0.108 18.634 0.073 20.339 0.058 20.797
2 0.278 10.713 0.034 20.023 0.013 24.056 0.010 24.875
3 0.289 10.243 0.026 20.778 0.016 22.800 0.013 23.456
4 0.268 11.204 0.041 19.461 0.033 20.780 0.030 21.176
5 0.251 15.013 0.103 18.926 0.044 22.672 0.038 22.900
6 0.301 12.001 0.075 18.059 0.046 20.187 0.040 20.308
7 0.276 12.884 0.066 19.160 0.040 21.429 0.034 22.009

Mean 0.289 12.207 0.065 19.292 0.038 21.752 0.032 22.217
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Fig. 3. Average NMSE and PSNR of 7 subjects using SR and proposed method (RF)

From Both Table 1 and Fig. 3, we can see that our method achieves better
accuracy than the SR technique (with lower NMSE and higher PSNR). In addi-
tion, compared with NMSE and PSNR of low-dose PET images, our method is
able to significantly improve the quality of original low-dose PET images.

Moreover, in order to illustrate the performance improvement by further using
Model2, Fig. 4 gives a comparison between Model1 and Model1+Model2 on a
sequence of voxels with maximal prediction errors using Model1. From Table
1 and Fig. 3, we can know that the overall performance for the entire brain is
improved slightly by further using Model2. However, as shown in Fig. 4, for those
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Fig. 4. Performance comparison between proposed Model1 and Model1+Model2. Blue
lines denote for the results from all subjects, while red lines denote for the results from
a selected subject.

voxels with maximal prediction errors by Model1, the performances by further
using Model2 are improved obviously, especially for some subjects as shown in
red lines in Fig. 4. The main reason for this phenomenon should be that for the
most voxels in the brain, Model1 already achieves very good performance, thus
affecting the calculation of overall improvement amount by Model2.

4 Conclusion

In this paper, we propose a regression-forest-based framework for predicting
standard-dose PET images using low-dose PET and MRI images without in-
creasing the radiation burden. Experimental results show that our proposed
method can well predict brain standard-dose PET images. Moreover, the pro-
posed method outperforms the sparse representation technique under compar-
ison. This is the first time in the literature to show that standard-dose PET
image can be predicted using low-dose PET and MRI images without directly
injecting the standard-dose radionuclide into the living body. In our future work,
we will include more subjects to further improve the prediction performance.
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Abstract. Multiparametric MRI (mpMRI) is becoming widely used as
a means of determining the need for prostate biopsy and also for target-
ing prostate biopsies. One problem with the mpMRI approach is that not
all MRI modalities might be available for each patient. For example, the
use of gadolinium-based contrast agents in dynamic contrast enhanced
MRI (DCE-MRI) results in allergic reactions in some patients with re-
ported reaction rates as high as 19.8% which results in missing DCE-MRI
parametric maps. The process of modifying a classifier to work on incom-
plete dataset is challenging and time consuming. This modification may
require a time consuming retraining or having multiple classifiers for each
missing data type. Therefore, the objective of the work presented here
is to develop an image-based classification technique for the detection
of prostate cancer with the capability of handling missing DCE param-
eters. We propose four different methods and show their effectiveness in
maintaining high Area Under Curve (AUC) while handling missing pa-
rameters without the requirement of any modifications to the classifier
models.

1 Introduction

Prostate cancer (PCa) is one of the leading causes of morbidity and mortality
for North American men with an estimated mortality rate of 33,620 deaths and
262,190 diagnosis in 2013 [1]. Prostate cancer diagnosis is confirmed by transrec-
tal ultrasound (TRUS) guided biopsy, followed by histopathologic evaluation of
the extracted samples. While capable of delineating the prostate itself, due to
low image quality and low tumour contrast in B-mode images, TRUS has pos-
itive predictive values in the range of 30-60% [2]. To improve cancer detection
rates, researchers studied other imaging modalities extensively.

Magnetic resonance imaging (MRI) techniques such as diffusion weighted
imaging (DWI) and dynamic contrast-enhanced (DCE) MRI have shown to be
highly accurate for the detection and staging of PCa particularly when used
in combination [3–5]. This has elevated multiparametric MRI, which combines
DCE and diffusion MRI, and could include MR spectroscopy, to be the most
reliable imaging tool for prostate cancer detection [3]. Many researchers have

G. Wu et al. (Eds.): MLMI 2014, LNCS 8679, pp. 289–296, 2014.
c© Springer International Publishing Switzerland 2014



290 H. Al-Deen Ashab et al.

used the combinations of the features extracted from these imaging modalities
in a supervised machine learning framework [5–7].

However, the use of contrast agents in DCE MRI such as gadolinium-based
contrast agents shows adverse reactions including headaches, nausea, unrespon-
siveness, and cardiopulmonary arrest in a relatively small group of patients.
The reaction rate is reported to be as high as 19.8% [8] for different types of
gadolinium-based contrast agents. Additionally, Marckmann et al. [9] found that
gadolinium-based contrast agents may play a causative role in nephrogenic sys-
temic fibrosis (NSF). These reactions prevent the acquisition of DCE MRI data
from some patients which will lead to missing DCE features and reducing cancer
detection capability of the proposed methods. Therefore, in this work we aim
to develop machine learning methods, to classify regions of interest of the tissue
in prostate using the DCE and DTI data, with the capability to handle missing
features from DCE MRI in some cases. The goal is to achieve high detection rate
at least as good as using DTI data alone for classification when the DCE pa-
rameter maps are missing. We use the biopsy result as the reference label for the
classified regions of interest. The developed frameworks can be applied to other
imaging applications. For example, in the absence of mpMRI, different groups
have used a combination of ultrasound methods such as B-mode, elastography,
and contrast-enhanced Doppler to maximize the performance of ultrasound in
prostate cancer imaging. An effective method for handling the missing param-
eters, without the need to build and train new classification models for every
subset of features, could make such multiparametric methods accessible for in-
stitutions where one of these technologies is unavailable.

This paper is organized as follows: Section 2 describes the Materials and
Methods used for handling missing features and description of the available
data. In particular, it includes (2.1) Description of the available data and type
of features used, (2.2) Description of the techniques used to handle missing
features, (2.3) description of the approach to simulate the missing data and
cross validation. Section 3 presents the results and discusses the experiments
performed. Section 4 provides concluding remarks, and future work.

2 Materials and Methods

2.1 Data

DTI and DCE MRI data, at 3T, of patients (n = 29) with elevated prostate
specific antigen (PSA) and/or palpable prostatic nodule (PSA range from 0.94
to 15 ng/mL) were used in this study. The data was obtained with the approval
of the Research Ethics Board of the University of British Columbia with in-
formed consent of the patients. All MRI examinations were performed on a 3T
MRI scanner (Achieva, Philips Healthcare, Best, the Netherlands). DCE MRI
was performed using a 3D T1-weighted (T1W) spoiled gradient echo sequence
(TR/TE = 3.4/1.06 ms, flip angle = 15◦, FOV = 24 cm, 256×163 matrix, 2 av-
erages). The DCE data per slice consisted of 75 T1-weighted images (three pre-
injection and 72 post-injection images) obtained at a temporal resolution of 10.6
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s. The DTI data were processed off-line to calculate fractional anisotropy (FA)
and average diffusivity < D > values. DCE MRI data were processed off-line
with software procedures developed in house using Matlab (Mathworks, Natick,
MA, USA) and Igor Pro (WaveMetrics, Portland, OR, USA). Pharmacokinetic
parameters: volume transfer constant, ktrans, fractional volume of extravascular
extracellular space, ve, and fractional plasma volume vp were calculated by fit-
ting the extended Kety model to the contrast agent concentration curves [10].
Fitting was carried out in every pixel of every slice within a region of interest
(ROI) encompassing the prostate gland to generate maps of the pharmacokinetic
parameters. Each ROI, constructed based on the location of a biopsy core, was
represented by the five-dimensional feature vector <FA,D,ktrans, ve, vp >. These
were the mean values of the corresponding parameters in all pixels within the
ROI which represents one biopsy core. The dataset included 240 normal, and 29
cancerous ROIs. To map the biopsy locations to parametric maps we followed
the methodology reported in both [5] and [6]. While we have designed methods,
described below, for handling potentially missing DCE data, within this dataset
all the five features were available for all ROIs.

2.2 Handling Missing Features

One simple approach to handling missing DCE data is to estimate the missing
DCE features, from the nearest neighbors in the DTI space with available DCE
data and replace the missing features with their estimations. We have tried this
independently and in combination with voting and in combination with clus-
tering and classification frameworks. An entirely different approach is the use
of Bayesian likelihood ratio estimation which does not include the estimation
of missing features. We have described these approaches in this section. This is
followed by the description of the method used to compare the performance of
these methods in handling missing DCE features in our dataset. In the descrip-
tions below, all support vector machine (SVM) classifiers were built using the
radial basis function (RBF) kernel.

KNN Imputation with SVM: In this approach, we trained one SVM classifier
for mpMRI classification with the five features. We imputed the missing data
using k-nearest-neighbourhood (KNN) approach. The KNN method finds the k
nearest training samples in the DTI space based on Euclidean distance, to the
data point with missing DCE data and imputes the DCE features for that data
point with a weighted mean of the DCE features of the nearest neighbours. This
approach practically fills in the missing values to enable using the same classifier
on cases with missing DCE features. k was determined with cross-validations.

KNN Imputation with Majority Voting (MV) on Several Classifiers:
In this approach, we trained nine different classifiers on the data. These were (we
use the term multi-feature to refer to the classifier that uses all five features): 1)
multi-feature SVM, 2) DTI-SVM, 3) DCE-SVM, 4) multi-feature quadratic clas-
sifier, 5) DCE quadratic classifier, 6) DTI quadratic classifier, 7) multi-feature
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linear classifier, 8) DCE linear classifier, and 9) DTI Linear classifier. Multi-
feature classifiers were built using all mpMRI features, DTI classifiers were built
using mpMRI DTI features (FA,< D >), and DCE classifier were built us-
ing DCE features (ktrans, ve, vp). The implementation of linear and quadratic
classifiers were based on linear discriminant analysis (LDA) and quadratic dis-
criminant analysis (QDA).

Given this pool of classifiers, there are a number of combining techniques to
follow. The simplest is to choose the best performing classifier on the training
data which does not guarantee the optimal performance on the test data set.
Instead, we imputed the missing data using KNN approach and combined the
results of nine classifiers by a majority voting mechanism to achieve a better
performance.

KNN Imputation with Clustering and Selection: Another technique is
the clustering and selection which was adopted from Kuncheva [11]. In clustering
and selection, the training data is clustered and a separate classifier is trained
on each cluster. The test samples are first assigned to one of the clusters based
on distance from the center of the training clusters and then classified using the
corresponding classifier. During the training phase, k-means clustering technique
was followed (optimal k = 3), based on Euclidean distance. Then a leave-one-
patient-out cross validation on the training data from the 28 patients were used
to choose the best classifier performing in each cluster. In the testing phase, we
used the best performing classifier in each cluster to assign the label to the test
data belonging to each cluster.

Bayesian Likelihood Ratio Method: This approach is different entirely from
the first three, in that it does not include estimation of the missing features. In
this method, two separate SVM classifiers were fused. The first classifier (DTI-
SVM) was built using DTI MRI features (FA, < D >) and the second classifier
(DCE-SVM) using DCE MRI features (ktrans, ve, vp). Leave-one-patient-out
cross-validation was performed for setting the parameters of each classifier. Those
two classifiers were fused using the Bayesian likelihood ratio fusion technique [12].
In this method, a test sample is considered cancerous, if the decision rule in
equation 1 below holds.

fDCE
cancer(n0)

fDCE
normal(n0)

∗ fDTI
cancer(n0)

fDTI
normal(n0)

≥ fDTI
cancer(n)

fDTI
normal(n)

∗ fDCE
cancer(n)

fDCE
normal(n)

∀n = 1, ...., N (1)

fcancer and fnormal are the densities of tissue classification scores, estimated
using Gaussian mixture models, output by DTI-SVM and DCE-SVM classifiers,
N is the number of training samples, and n0 is the query sample. In case of
missing data, the corresponding likelihood ratio is equal to one. As a result, only
the DTI classifier contributes to the decision.
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2.3 Removing DCE Features and Cross-Validation to Compare the
Four Approaches

In our data, all five parameters were available from all cases. We simulated the
effect of missing DCE components of the feature vector by removing them from
an increasing number (m) of cases (m = 1,....,29) in the test step. In each step, m
patient cases were randomly chosen and their corresponding DCE features were
removed from the test set of the leave-one-patient-out cross validation scheme.
The cross validation was repeated 50 times for each value of m (in case of clus-
tering and selection, and Majority voting the cross validation was repeated 29
times due to time constraints), with missing DCE features to get a robust esti-
mate of the effect of missing DCE features on the classification outcome. Note
that in the training step of each leave-one-patient-out iteration, DCE features
from 28 cases were included.

3 Results and Discussion

We first report the results of our analysis without missing data. Fig 1 summarizes
these results based on area under ROC curve (AUC). For SVM classifier, the top
left graph shows the performance of DTI, DCE and DTI-DCE (multi-feature)
classifiers. These have resulted in AUC of 0.91, 0.83 and 0.95. In comparison,
when two separate SVMs are trained and the combined using the likelihood ratio
method, the AUC is 0.92. The other three graphs show the performance of LDA
and QDA for DCE, DTI, and DTI-DCE (multi-feature) combinations. In the
DTI-DCE combination, the LDA and QDA result in an AUC of 0.93 and 0.91
respectively. The SVM was then used with the KNN method to test the drop
of the classifier performance, based on the drop in AUC, with missing features
as shown in Fig 2. The results of the KNN approach and the Likelihood ratio
fusion approach were compared as shown in Fig 2. The cross-validation yielded
a mean AUC of 0.95 using KNN imputation with SVM when DCE features of
one patient were removed, showing almost no decline compared to the situation
without missing data. It was noted that using k = 8 neighbours provided the
best results based on the AUC. In other words, we found that if we have one case
with missing DCE and if we estimate the DCE parameters of that case, as the
average of the DCE parameters of its eight closest neighbors in the DTI space,
we observe no decline in AUC. In a similar cross-validation, the likelihood ratio
fusion method resulted in a mean AUC of 0.93 when DCE features of one patient
were removed. As shown in Fig 2, as the number (m) of cases with missing DCE
features was increased, the imputation technique performed consistently better
than the DTI-SVM classifier (AUC=0.91). For the likelihood ratio method, the
performance dropped below that of DTI-SVM for m=13.

As described above, we also considered majority voting with KNN to improve
the performance of PCa detection. The KNN imputation was used to impute the
missing data and then all the classifiers provide a decision regarding the test data.
The class with majority vote was assigned to the test data. The cross-validation
yielded a mean AUC of 0.95 using majority voting when DCE features of one
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Fig. 1. ROCs and AUCs without missing features: (a) Top left - ROC curve of
four classifier models. Likelihood ratio classifier that fuses two SVM classifiers DTI-
SVM and DCE-SVM (green), multi-feature SVM which uses all five features (Blue)
< FA,D,ktrans,ve,vp >, DTI-SVM (Black) that uses DTI features (FA,< D >), and
DCE-SVM (Red) < ktrans, ve, vp >, (b) Top right - Quadratic classifier (blue) and
Linear classifier (Dashed Black) using all five features, (c) Low left -Quadratic classi-
fier (blue) and Linear classifier (Dashed Black) using DTI features and (d) Low right
- Quadratic classifier (blue) and Linear classifier (Dashed Black) using DCE features.
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Fig. 2. AUC reduction as the number (m) of missing DCE cases increases for the four
proposed methods: KNN with SVM, Likelihood Ratio fusion, majority voting with
KNN imputation, and clustering and selection with KNN. The red dashed line marks
the AUC of the DTI-SVM without missing data.

patient were removed, showing almost no decline compared to the situation
without missing data. As the number (m) of cases with missing DCE features
was increased, the fused classifiers performed consistently better than the DTI-
SVM (AUC=0.91), for up to m=29 when all cases were removed as shown in
Fig 2. Even though the majority voting method outperform the multi-features
SVM with KNN imputation, it is more complicated and required the training of
more than one classifier. In a similar cross-validation, the clustering and selection
method resulted in a mean AUC of 0.91 when DCE features of one patient were
removed. As shown in Fig 2, as the number (m) of cases with missing DCE
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features was increased, the fused classifiers performed better than the DTI-SVM
(AUC=0.91), for up to m=2.

4 Conclusion

In this work, we reported several methods that successfully handle missing DCE
features in computer-aided diagnosis using mpMRI. It is important to note that
our effort towards avoiding the process of training and maintaining multiple
classifiers is driven by the recent interest in multimodality methods. While the
data in this work came from only two different MRI technologies, efforts for the
simultaneous use of multiparametric ultrasound [13] and multiparametric MRI
for prostate cancer imaging could introduce several new modalities.

We showed that as an increasing number of cases with missing DCE features
are presented to the classifiers, KNN imputation of missing features outperforms
the fusion of two classifiers using Bayesian likelihood ratio in terms of AUC. An
interesting result was the good performance of the KNN imputation method.
This method was able to impute the missing DCE features using SVM to consis-
tently achieve a performance better than the DTI-SVM (AUC=0.91) for up to
m=22 whereas the likelihood ratio fusion technique did not achieve as good per-
formance as the KNN method. Moreover, we showed how using KNN imputation
with majority voting outperform the use of KNN imputation alone or cluster-
ing and selection method. Majority voting method can handle missing data and
achieve high detection performance at least as good as using DTI-SVM alone
when all the DCE features were removed from the testing data. Even though
the majority voting technique provides better performance than all the other
techniques, it requires multiple classifiers built. It should be noted that the rela-
tively low performance of the clustering and selection approach could be due to
our choice of the number of clusters. We will work on optimizing this approach
using cross-validation in an independent dataset.

It is curious that DCE features can be estimated from nearest neighbors in
DTI space. In general DTI looks at cellular density and morphology of the tissue
at the cellular level, whereas DCE looks at the blood supply and permeability
of the blood vessels. Thus, in principle the two sets of parameters should be
mostly independent. However, the extra-cellular extra-vascular space measured
in ve will likely depend on the cellular density as well. Therefore, there may be
some relationship between ve and the average diffusivity < D >. Also, the vessel
density will have some effect on the average diffusivity. Despite these potential
relationships, our method should be considered as a data-driven approach. In all
our experiments, the training data within the leave-one-out process included the
DCE parameters. In other words, our ability to estimate the DCE parameters
relies on the availability of a relatively rich training dataset. This is typically the
case in clinical practice where the CAD system is built on a large dataset. Our
methods enable the use of the CAD system on a new case with missing features.

Acknowledgement: Funding from Canadian Institutes for Health Research
(CIHR) and Natural Sciences and Engineering Research Council of Canada.
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Abstract. Multi-atlas labeling in a non-local patch manner has emerged
as an important approach to alleviate both the possible misalignment
and mis-match among patches for guiding accurate image segmentation.
However, the relationship among candidate patches and their intra/inter-
class variability are less investigated, which limits the discriminative
power of these patches. To address these issues, we present a new online
discriminative multi-atlas learning method for labeling the target patch
by the best representative candidates in a sparse sense. Specifically, the
online multi-kernel learning is firstly adopted to map the patches into
a cascade of discriminative kernel spaces for producing corresponding
probability maps to model a label of each sample in these spaces. Then
the online discriminative dictionary learning is proposed to build the
atlas that handles the intra-class compactness and inter-class separabil-
ity simultaneously. Finally, sparse coding is used to select patches in
the dictionary for label propagation. In this way, the multi-atlas infor-
mation dynamically learned with the context probability maps is itera-
tively incorporated to build the atlas dictionary, for gradually excluding
the misleading candidate patches. The proposed method is validated by
experiments on isointense infant brain tissue segmentation, and achieves
promising results in comparison with several different labeling strategies.

1 Introduction

Accurate tissue segmentation of infant brain images into white matter (WM),
gray matter (GM) and cerebrospinal fluid (CSF) is fundamental work in measur-
ing and understanding the early brain development. These images usually consist
of reduced tissue contrast, increased noise, and severe partial volume effect due
to the ongoing maturation and WM myelination. Especially in the isointense im-
ages (6 ∼ 12 months old), the tissue contrast is extremely low in MR modality,
and the intensity distributions of WM and GM are largely overlapped in both
T1 and T2 images [1, 2], which becomes a challenge for traditional brain tissue
segmentation methods.

G. Wu et al. (Eds.): MLMI 2014, LNCS 8679, pp. 297–305, 2014.
c© Springer International Publishing Switzerland 2014
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Multi-atlas patch-based labeling methods have recently emerged as an at-
tractive direction for brain MRI segmentation [3–9]. Early work uses the de-
formable registration to establish the point-based correspondence between each
atlas with known labels and the target. After that, the label fusion is applied
on this target by using the context of all warped atlas [3, 4]. Recent studies
[5–9] have moved forward by less emphasizing explicit registration while using
more complicated models that incorporates flexible configurations such as the
network among patch-based features. These methods assume that the similar
image patches should have the similar anatomical label [6] and then transfer
labels from the atlas to the target image by modeling those strongly correlated
patches. Although these multi-atlas labeling methods have shown their effective-
ness, there are still some limitations in practice:

1) The relationship among the candidate atlases is less investigated [5, 6].
Traditionally they are independently measured their similarity to the target
patch. More recent works explore the labeling error among them by imposed
some constraints (e.g. spatial bias [7], sparsity [9], Bayesian framework [10]).
These improvements alleviate the influences from possible mis-registration and
structural dissimilarity between the atlas and the target image. However, the
relationship among the patches is still not thoroughly discovered in a transformed
space. Furthermore, the computational burden will increase dramatically along
with the increasing templates, and if candidate patches are mis-labeled to certain
amount, they will dominate the label fusion process and lead to wrong result [7].

2) Intrinsically, the patch dictionary for label fusion is collected in an unsuper-
vised way, i.e., making the combination of candidate patches close to the target
patch [10]. This dictionary is optimal for patch representation but not necessar-
ily optimal for label fusion. Although recent work has explored the dictionary
learning for hippocampus labeling [11], the intra-class and inter-class variabil-
ity is less considered, which probably limits the discriminative power of learned
atoms. Furthermore, the context information that reveals the anatomical corre-
spondences in probability sense is less incorporated to improve the accuracy of
label fusion [5].

To address these limitations, we aim to learn a discriminative multi-atlas
dictionary adaptively for labeling the target patch by the best representative
candidates in a sparse sense. Specifically, the online multi-kernel learning is used
to map the patches into discriminative kernel spaces for producing corresponding
probability maps to model a label of each sample in these spaces. Then the online
discriminative dictionary learning is proposed to build the atlas that handles
the intra-class compactness and inter-class separability simultaneously. Finally,
sparse coding is used to select only a small number of candidate patches that best
represent the target patch. In this way, the multi-atlas information is dynamically
learned by controlling the sizes of the kernels and the atlas dictionary. We applied
the proposed method for the isointense infant brain tissue segmentation and
achieved promising results compared to the state-of-the-art labeling methods,
which shed light on the applicability of the proposed method in these scenarios.
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2 Methodology

Fig. 1 presents a schematic diagram of our proposed method. Here, we formulate
the tissue segmentation as a multi-class classification problem. In the training
stage, we linearly align the training multi-modality images to the atlas space,
and then extract the normalized intensities to build training patches associated
to a voxel position. These patch samples are then inputted to the online multi-
kernel learner to train a classifier to produce a tissue probability map for each
class (i.e., WM, GM, CSF). This learning module repeats to produce a set of
probability maps with different precision until the stop criteria are satisfied. In
each iteration, the maps are feed-backed to the trainer as context information
to assist further purifying the kernel space. Then the set of the probability maps
and the appearance features from image patches are combined with the label set,
and fed into the online discriminative dictionary learning module. In the testing
stage, a target image works in the similar way. The details are given below.

Feature extraction

Online multi-kernel learning

Probability map generation

Online discriminative multi-atlas dictionary learning

Sparse representation-based label fusion

Round ends or converges

labelMulti-modality images

No

Yes

Fig. 1. Diagram of the training procedure of the proposed method

2.1 Online Multi-Kernel Learning

To handle the multiple features in the different modality images (e.g. T1, T2,
and FA), we use a multi-kernel learning (MKL) method to fuse the hyperplanes
modeling the different features. The MKL methods are theoretically solid in the
minimization of an upper bound of the generalization error. It solves a joint
optimization problem while also learning the optimal weights for combining the
kernels. For a multi-class classification problem, given a set of N training in-
stances {xi, yi}Ni=1, where xi ∈ R

D is an input vector and yi ∈ {1, · · · , c} is a
class label, the generic convex optimization of MKL [12] in primal is

min
w

γ
2 ||w||22,p + 1

N

N∑
i=1

ξi

s.t. w · (φ(xi, yi)− φ(xi, y)) ≥ 1− ξi, ∀i, y �= yi

(1)
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where φ(x, y) =
[
φ1(x, y), · · · , φk(x, y), · · ·φK(x, y)

]
, K is the number of ker-

nels1; φk(x, y) denotes a joint feature mapping function of the k-th kernel; w =
[w1, · · · ,wk, · · · ,wK ] is a concatenation of the weight coefficients, ||w||2,p =∥∥[‖w1‖2, · · · , ‖wk‖2, · · · , ‖wK‖2

]∥∥
p
is the p-norm of the vector of K elements,

each of which is formed by �2-norm of the vectors {wk}Kk=1, {ξi}Ni=1 is a set of
slack variables, and γ is a regularization control parameter.

This optimization problem can be solved in the framework of stochastic sub-
gradient descent algorithms for any strongly convex function [13]. At each step,
the algorithm takes a random sample of the training set and calculates a sub-
gradient of the objective function evaluated on the sample. Then, it performs a
sub-gradient descent step with a decreasing learning rate, followed by a projec-
tion inside the space where the solution lies.

The MKL in our approach works in an online way. Specifically, for sequential
training samples, the algorithm receives the next instance and makes a pre-
diction. Once the algorithm makes its prediction, it observes the correct label
and then updates its current model. The goal is to minimize the cumulative
loss obtained from the sequence of observations, thus improving the chances of
making accurate predictions in the subsequent rounds. In this way, the compu-
tational prohibition of storing large kernel matrices in the batch framework can
be efficiently tackled. Following [14], we use Mercer kernels without introducing
explicitly the dual formulation to learn a kernel-based prediction function from
a pool of predefined kernels (or kernel functions) in the optimization problem.
In this work, we use a radial basis function (RBF) kernel with a self-tuned pa-
rameter, i.e. the distance among k-th nearest neighbors in the training set. In
practice, we store the original data rather than the kernel evaluations, at the
expense of the computational cost per iteration. Once the hyperplane is found,
we use a logistic function to produce the probability map of each class. Fig. 2
shows an intermediate result of the learning under different training strategies.
Since the under-learning strategy with less iterated training (≤ 3) easily out-
puts the obscure details in the cortex region, and the over-learning one with too
much iterated training (≥ 12) captures the clean but over-fitted details in these
regions, we set a small iteration (8) or once the probability of a class is larger
than 0.5, we regard the learner converged.

2.2 Online Discriminative Dictionary Learning

The atlas dictionary in many existing investigations is regarded to contain fea-
tures as much as possible, but a large size dictionary increases a computa-
tional burden and results in error summarization to replace the right label [7].
In this paper, motivated by [15], we propose an improved Fisher discriminant
dictionary learning that constructs dictionary with less atoms but good repre-
sentational ability. Specifically, in the dictionary learning stage, we construct a
structured dictionaryD = [D1,D2, · · · ,Dc], whereDi denotes the sub-dictionary
associated with the i-th class. Each column in D denotes the input sample fea-
tures, i.e. the vectorized re-arrangement of the intensities patches and their cor-

1 In this work, it is equal to the number of modalities.
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Original images (T1, T2, FA)                                   Under-learned probability maps (3 iterations) 

                   
 Over-learned probability maps (12 iterations)         Moderate learned probability maps (8 iterations) 

Fig. 2. Probability maps of tissues (CSF,GM,WM) under different training iterations

responding probability patches. For simplicity, let Y = [Y1,Y2, · · · ,Yc] and
X = [X1,X2, · · · ,Xc] denote, respectively, training samples and the coding co-
efficient matrix over dictionary, i.e., Y  DX. Then, we build the model as

J(D,X) = min
D,X

{r(Y,D,X) + λ1||X||1 + λ2f(X)}, (2)

where ||X||1 measures the sparsity, f(X) = tr(Slw(X) − Slb(X)) − η||X||2F is
a discriminative constraint imposed on X to guide D to be discriminative for
samples in Y, Slw(X) and Slb(X) are the local within-class and between-class
scatter of X, respectively, λ1, λ2, and η are tuning parameters, r(Y,D,X) =∑c

i r(Yi,D,Xi) is the discriminative fidelity term, i.e.

r(Yi,D,Xi) = ||Yi −DXi||2F + ||Yi −DiXi||2F +

c∑
j=1,j 	=i

||DjX
j
i ||2F , (3)

where || · ||F is the Frobenius norm. The first two terms in Eq. (3) guarantee that
Yi can be represented by D and Di approximately with X and Xi, respectively,
and the third one ensures that the representation of Yi over d

j
i (i �= j) is small.

Xj
i is the coding coefficient of Yi over the sub-dictionary Dj . The solution of

D can be obtained by iteratively updating X and D while fixing the other until
J(D,X) converges or changes small. Hence, by incorporating the label and the
scatter information, the learned dictionary is capable of estimating the subtle
structure around ambiguous voxels in the original result. In practice, we can use
clustering or sampling technique to reduce the original size. Fig. 3 presents an
example of the projecting coefficients of three testing voxels of different classes
on the cortex region. It is seen that their coefficients on the dictionary are sparse
and separable. In the online dictionary updating stage, we employ the method in
[16] to update the sub-dictionary that directly corresponds to the input feature
with the known class label.
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Fig. 3. Projecting coefficients of three voxels in different classes on a learned dictionary
with 500 atoms. (color preferred)

2.3 Sparse Representation-Based Label Fusion

Once the trained feature dictionary is obtained, it can be applied into the typi-
cal multi-atlas segmentation methods, e.g., nonlocal major voting [5], joint label
fusion [7][9], and sparse representation [1]. This segmentation category considers
the contribution of each atlas to the final label according to a nonnegative weight.
In this study, our focus is to combine the strengths of context and the discrim-
inative dictionary learning for exacting tissue segmentation, so we use a sparse
representation technique to find the weight [1, 9]. The final label probability is
a simply weighted sum of the sparse coefficients, that is, given a set of T atlas
coefficients and their segmentation ground truth {(It, Lt)}t=1:T registered to a
common image, after extracting coefficients, the label of a patch x in a target
image Inew is computed by Lnew(x) = 1

Z

∑T
t=1

∑
y∈Nt(x)

wt(x,y)Lt(y), where

Z =
∑T

t=1

∑
y∈Nt(x)

wt(x,y) and Nt(x) denotes the neighborhood intensity and

probability maps patch set of x, wt(x,y) is the weight of the contribution of the
patch y in It to estimate the tissue label of x. The final structure segmentation
result is thresholded at the isosurface according to the maximum coefficient.

3 Experimental Results

To validate the proposed method, we apply it to segment a group of 22 isointense
infants images. The study has been approved by the ethics committee of our insti-
tute and the written informed consent forms were obtained. T1-weighted images
were acquired on a Siemens head-only 3T scanners with a circular polarized
head coil for 144 sagittal slices with a resolution of 1×1×1 mm3. T2-weighted
images were obtained for 64 axial slices with a resolution of 1.25×1.25×1.95
mm3. Diffusion tensor images (DTI) consisted of 60 axial slices with a resolu-
tion of 2×2×2 mm3, TR/TE=7680/82 ms, 42 non-collinear diffusion gradients,
and diffusion weighting b=-1000 s/mm2. The DTI were reconstructed and the
respective FA images were computed. T2 and FA images were linearly aligned to
their corresponding T1 images and resampled with 1×1×1 mm3. We performed
preprocessing for bias correction, skull stripping, and cerebellum removal.

The main parameters in our experiments were set as: modality number F = 3,
norm p = 1.05, γ = 1/(CN) with C ∈ {0.001, 0.1, 1, 10, 100, 1000} by leave-
one-out cross-validation in the online MKL training. λ1 = 0.005, λ2 = 0.05,
and within-class and between-class neighbors were fixed to 5 in the dictionary
learning. In sparse representation package [17], the regularization parameters in
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Fig. 4. Classification accuracy under different training templates and examples of
ground-truth image (middle), along with our segmentation results (right)

Table 1. Comparison of segmentation accuracies in Dice ratio (mean± std %)

Method MajorVot. LevelSet Nonlocal SparseRep. Proposed

Registration Nonlinear Nonlinear Nonlinear Nonlinear Linear

WM 73.4±2.8 77.5±1.75 85.8±1.0 82.0±1.4 85.6±0.8
GM 73.7±1.3 77.7±1.42 82.5±1.0 81.9±1.1 84.9±0.9
CSF 68.9±1.2 84.2±1.4 83.5±1.9 84.2±1.4 85.3 ±1.0

sparsity and smooth terms were set to 0.05 and 0.5 respectively. The patch size
were 5×5×5 and searching neighbor size were 7×7×7. Fig. 4(left) shows three
tissue classification accuracies of our method under 5, 10, 15, 20 templates, from
which we can see that the accuracy becomes stable after 10. A segmentation
example is also shown in Fig. 4(right). Our method clearly distinguishes the
main tissues, and the most errors occur near the high curvature regions.

To quantitatively evaluate our method, we compare it with the methods of
majority voting, coupled level sets [18], nonlocal patch-based method [5], and
patch-based sparse method [1] on 22 isointense infant brain images. We employ
the Dice ratios (DR) to measure the overlapping rate of the segmentation results
with the ground-truth. Due to the computation burden of nonlinear registration
in other methods, we conducted our method using only linear registration to ob-
tain atlas with leave-one-out cross validation prototype. The experimental results
on 10 slices with fixed vertical-index in each subject are reported in Table 1, from
which it is seen that the different method performed differently on segmenting
WM/GM/CSF, and our method consistently showed better performance thanks
to the nolocal patch-based and sparse representation-based approaches. Further-
more, it uses multi-kernel learning to obtain the discriminative features of the
multi-source images.

4 Conclusions

We have presented a novel online discriminative multi-atlas learning method for
isointense infant brain tissue segmentation. Our method maps the atlas to a cas-
cade of kernel space for handling the intra-class compactness and inter-class sep-
arability simultaneously. The probability maps serve as context information, and
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are iteratively incorporated to build an atlas dictionary by gradually excluding
the misleading candidate patches in label fusion. The discriminative dictionary
learning is further adopted to group the most representative atlas in sparsity
constraints. Experimental results show that combining multi-kernel learning,
discriminative dictionary learning, and context information can improve gradu-
ally the segmentation accuracy. It is noteworthy that we use only the intensity
feature under linear registration, and does not incorporate anatomical structure
constraints. They will be considered in our future work.
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Abstract. In this paper we propose a novel algorithm for the efficient
search of the most similar brains from a large collection of MR imaging
data. The key idea is to compactly represent and quantify the differences
of cortical surfaces in terms of their intrinsic geometry by comparing
the Reeb graphs constructed from their Laplace-Beltrami eigenfunctions.
To overcome the topological noise in the Reeb graphs, we develop a
progressive pruning and matching algorithm based on the persistence
of critical points. Given the Reeb graphs of two cortical surfaces, our
method can calculate their distance in less than 10 milliseconds on a PC.
In experimental results, we apply our method on a large collection of 1326
brains for searching, clustering, and automated labeling to demonstrate
its value for the “Big Data” science in human neuroimaging.

1 Introduction

With the advance of MR imaging techniques and the availability of large scale
data from multi-site studies such as the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) [1] and Human Connectome Project (HCP) [2,3], brain imaging
is now entering the era of “Big Data” research [4]. To fully take advantage of
the rich source of imaging data, one key challenge is to efficiently organize these
data and provide search tools with real-time performance that can quickly find
the most similar brains to a query brain. For example, comparing the brain of a
patient with a control group of most similar brains has the potential of allowing
us to factor out structural differences and improve the signal to noise ratio in
disease diagnosis and the detection of treatment effects in drug trials.

Besides simple measures such as intra-cranial volume, sophisticated compar-
isons that can take into account more elastic brain differences usually involve
nonlinear warping techniques, which can take at least minutes to compute a
pairwise registration. To overcome this difficulty, it is essential to develop rich
characterizations of the brain with a small footprint to enable efficient calcu-
lation. In this work, we propose a novel method to compare the similarity of
cortical surfaces based on their intrinsic geometry. We use the Reeb graphs con-
structed from the Laplace-Beltrami (LB) eigenfunctions of the cortical surfaces
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as the compact, yet informative, description of the brain [5,6]. Due to the pres-
ence of noise in the Reeb graph, we develop a progressive pruning and matching
process based on the persistence of critical points [7,8]. With our novel method,
a similarity measure of two cortical surfaces can be calculated in less than 10
milliseconds in our MATLAB implementation. In our experiments, we demon-
strate the potential of our method for “Big Data” problems by applying it to find
the most similar brains from a collection of 1326 brains. The similarity measure
also allows the clustering of cortical surfaces to reveal brain asymmetry in terms
of intrinsic geometry. We also demonstrate the potential of our method in au-
tomated cortical labeling via intrinsic mapping between a brain and its nearest
neighbor.

The rest of the paper is organized as follows. In section 2, we introduce the
LB eigenfunctions of cortical surfaces and the construction of their Reeb graphs.
The persistent Reeb graph matching process is developed in section 3 to compute
the similarity between cortices. Experimental results are presented in section 4.
Finally, conclusions and future work are discussed in section 5.

2 Reeb Graph of LB Eigenfunctions

Given a cortical surface M, the LB eigen-system is defined as

ΔMfn = −λnfn (n = 0, 1, 2, · · · ) (1)

where ΔM is the LB operator on the surface, and the pair (λn, fn) are the n-
th eigenvalue and eigen-function, respectively. The set of eigen-functions Φ =
{f0, f1, f2, · · · , } form an orthonormal basis on the surface. Using the LB eigen-
system, an embedding IΦM :M→ R

∞ was proposed in [9]:

IΦM(x) = (
f1(x)√

λ1

,
f2(x)√

λ2

· · · , fn(x)√
λn

, · · · ) ∀x ∈ M, (2)

where intrinsic surface analysis can be performed such as mapping and automated
labeling [10].

For surfaces with salient geometric profiles, the LB eigenfunctions have been used
successfully as feature functions for the construction of Reeb graphs [6]. Given a Morse
function f on a surface M, its Reeb graph is defined as follows [11].

Definition 1. Let f : M → R. The Reeb graph R(f) of f is the quotient space with
its topology defined through the equivalent relation x � y if f(x) = f(y) for ∀x, y ∈ M.

Various approaches were developed for the numerical construction of Reeb graphs. In
this work, we use the algorithm proposed in [6] to build the Reeb graph as a graph
of critical points. Given an eigenfunction fn of M, we first calculate its critical points
Cn = {C1

n, C
2
n, · · · , CK

n }, which include maximum, minimum, and saddle points, and
sort them according to their function value such that fn(C

1
n) < fn(C

2
n) < · · · <

fn(C
K
n ). Using the level contours in the neighborhoods of the critical points, a parcella-

tion of the surface can be obtained and region growing can then be applied to connect
neighboring nodes in the Reeb graph. In the end, the Reeb graph is represented as
R(fn) = (Cn, En), where Cn is the nodes of the graph, and En = {E1

n, E
2
n, · · · } is the
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(a) n=1. (b) n=5. (c) n=9.

Fig. 1. The Reeb graphs of the 1st, 5th, 9th eigenfunction of a cortical surface. In (a)-
(c), the surface is color-coded with the corresponding eigenfunction. A zoomed view of
a spurious critical point was shown (a).

(a) n=1. (b) n=5. (c) n=9.

Fig. 2. The pruned Reeb graphs

set of edges, where each edge connects two nodes. Following the Morse theory, the Reeb
graph encodes the topology of the surface. Cortical surfaces are generally reconstructed
with genus zero topology, thus all of their Reeb graphs have tree structures.

As an example, we plot in Fig. 1 the Reeb graphs of a cortical surface, which is
represented as a mesh of 200K triangles. With the increase of the order, the eigen-
function becomes more oscillatory. This means they will have more critical points and
thus a more complicated structure in the computed Reeb graph. The complexity of
the Reeb graph, however, is not solely determined by the order of the eigenfunction.
Because we use a discrete representation of the surface and eigenfunction, numerical
approximations will sometimes create spurious critical points as shown in Fig. 1(a).
To use the Reeb graph for brain indexing and search, it is critical to robustly detect
and remove such spurious structures without compromising the representation power
of the Reeb graph.

3 Persistent Reeb Graph Matching

Based on the concept of persistence in discrete topology, we develop in this section a
Reeb graph pruning and matching algorithm. This provides the core step for efficient
brain search by comparing the intrinsic geometry of cortical surfaces.

For an edge Ek
n = (Ci

n, C
j
n) of the Reeb Graph R(fn) = (Cn, En), its weight is

defined according to its persistence:

w(Ek
n) = |fn(Ci

n)− fn(C
j
n)| (3)

which is the difference of the LB eigenfunction value of the two critical points Ci
n and

Cj
n. Using the weight on edges, we also have a matrix representation Rn of the Reeb
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Table 1. Persistent Reeb Graph Match Algorithm

Set Dn
min = ∞. Repeat the following steps until the minimal edge weight of R1

n

and R2
n are above the persistence threshold δ.

1. Calculate the cost matrix D+.
2. Calculate the cost matrix D−.
3. Compute the distance D at the current pruning level. If D < Dn

min, set D
n
min =

D and record the correspondence.
4. Prune the minimal edge in both Reeb graphs, and update the pruning cost P 1

n

and P 2
n . Go back to step 1.

graph with its entries defined as Rn(i, j) = |fn(Ci
n) − fn(C

j
n)| if there exists an edge

between the node Ci
n and Cj

n. By using the persistence to define the edge weights,
we not only have a natural way for outlier pruning but also an efficient mechanism to
model the distribution of the critical points on the surface. By comparing the Reeb
graphs of different surfaces, we can thus quantify their differences in terms of intrinsic
geometry.

For Reeb graph pruning, an intuitive approach can be developed for the selection of a
persistence threshold. Because the LB eigenfunctions have oscillatory patterns similar
to Fourier basis functions, their peak values are essentially the expected persistence
of the maximum and minimum. Based on this observation, we choose the persistence
threshold based on the maximum of the eigenfunction as δ = max(|fn|)/5 in our
experiments. To remove spurious edges, we sort all edges according to their persistence.
At each step, we find the edge Ek

n with the smallest weight. If w(Ek
n) < δ, we remove

it from the edge set by collapsing the two nodes Ci
n, C

j
n ∈ Ek

n. For a node Ci
n, we

calculate its total weight S(Ci
n) as

S(Ci
n) =

∑
Ci

n∈Ek
n

w(Ek
n). (4)

We collapse the two nodes by removing the node with the smaller total weight and
adding all its connections to the other node. For example, if S(Ci

n) < S(Cj
n), we remove

Ci
n from the node set of the Reeb graph R(fn). Except for the edge Ek

n to be removed,
for all other edges that were connected to Ci

n, we update them by replacing Ci
n with

Cj
n. We then check if the degree of any node becomes two. If so, we add an edge to

connect its two neighbors and remove this node and its two edges from the graph. For
all new edges, their weights are calculated according to (3) with the function values of
the nodes. The above steps can be repeated until the persistence threshold is reached.
For the example shown in Fig. 1, we applied the pruning process and the new results
are shown in Fig. 2.

For fast brain search, the core step is to efficiently compute a similarity measure
between two cortical surfaces. The solution we develop here is based on comparing
the Reeb graphs of their corresponding LB eigenfunctions. Let M1 and M2 denote
two surfaces we want to compare. We denote their corresponding eigenfunctions as
f1
n and f2

n(n = 1, ..., N). For the n-th eigenfunction f1
n and f2

n, we first compute
their Reeb graphs R(f1

n) and R(f2
n). Let R(f1

n) = (C1, E1) with C1 = (C1
1 , ..., C

1
K1

),
R(f2

n) = (C2, E2) with C2 = (C2
1 , ..., C

2
K2

). To start the iterative pruning and match-
ing algorithm, we first prune both graphs to have the same number of K nodes with
K ≤ min(K1,K2). We define the pruning cost P as the total edge weights between the
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original and pruned Reeb graph. The pruning cost of both graphs are denoted as P 1
n

and P 2
n . After that, an iterative process as summarized in Table 1 is applied to match

the Reeb graphs of the two surfaces. Next we describe the details of each step.
Let K denote the number of nodes in the Reeb graphs at the start of each iteration.

We define the cost matrix of size K ×K for matching the nodes of R(f1
n) to R(f2

n) as

A+(i, j) = |(S(C1
i )− S(C2

j )|+ |f1
n(C

1
i )− f2

n(C
2
j )| (5)

Using the cost matrix A+, we run the Hungarian algorithm and find the one-to-one cor-
respondences φ+ from the nodes of R(f1

n) to R(f2
n). We compute the distance between

the Reeb graphs as:

D+ =
K∑
i=1

K∑
j=1

|R1
n(i, j) −R2

n(φ
+(i), φ+(j))|+

K∑
i=1

|f1
n(i) − f2

n(φ
+(i))| (6)

where R1
n and R2

n are the matrix representation of the Reeb graphs.
Because of the sign ambiguity of the eigenfunction, we flip the sign of the eigenfunc-

tion f2
n and compute the cost matrix as

A−(i, j) = |(S(C1
i )− S(C2

j )|+ |f1
n(C

1
i ) + f2

n(C
2
j )| (7)

With the cost matrix A−, the correspondence computed with the Hungarian algorithm
is denoted as φ−, and the distance between the Reeb graphs is:

D− =
K∑
i=1

K∑
j=1

|R1
n(i, j)−R2

n(φ
−(i), φ−(j))|+

K∑
i=1

|f1
n(i) + f2

n(φ
−(i))| (8)

The overall cost of the matching at the current iteration is then

D = min(D+, D−) + P 1
n + P 2

n (9)

which is the sum of the graph distance and pruning costs. If convergence is not reached,
we continue the above steps after pruning the minimal edges from both graphs as
described in Table 1. Otherwise, the optimal match and the distance Dn

min is recorded.
By applying the persistence Reeb graph matching algorithm for eigenfunctions up

to the order N , we have the overall distance between M1 and M2 for brain search:

d(M1,M2) =
N∑

n=1

Dn
min. (10)

4 Experimental Results

In our experiments, we applied our method to T1-weighted MR images from three pub-
licly available datasets. The first dataset consists of the 225 subjects released by the
HCP up to date. The second dataset is composed of the 101 MR images of the Mind-
boggle atlas [12]. The third dataset includes 1000 MR images from all baseline visits of
the ADNI2 project. Overall we have a total of 1326 T1-weighted images from a diverse
population. Cortical surfaces were automatically reconstructed with the method in [6].
The white matter (WM) surfaces of all subjects were used in our experiments for per-
sistent Reeb graph matching (PRGM), which is currently implemented in MATLAB.
Before we perform PRGM, the first 9 LB eigenfunctions and their Reeb graphs were
computed for all subjects.
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(a) (b)

Fig. 3. PRGM results of HCP cohorts versus the HCP, Mingboggle, and the ADNI
cohorts. (a) The distance matrix. (b) The closest match of an HCP subject in the three
cohorts. Distance to each matched brain is plotted alongside the arrow.

(a) Distance matrix. (b) MDS plot.

Fig. 4. The use of persistent Reeb graph matching for brain asymmetry analysis on
the HCP cohort

4.1 Fast Brain Search

To demonstrate the capability of our method in finding the most similar brains from
a large brain collection, we applied PRGM between the HCP cohorts and all brains
from the three cohorts. For the left WM surface of a HCP subject, a PRGM is applied
against the left WM surface of each of the 1326 subjects and the distance is computed
as in (10). On a PC with a 2.7GHz CPU, every pair of PRGM takes less than 10
milliseconds. As shown in Fig. 3 (a), we obtain a distance matrix of size 225 × 1326.
Among the 225 HCP subjects, the closest match for 116 of them are from the HCP
collection, 15 of them are from the Mindboggle collection, and 94 of them are from the
ADNI collection. As an example, we show in Fig. 3(b) the left WM surface of one HCP
subject and the nearest brains we found via PRGM from all three datasets.

4.2 Brain Asymmetry

In our second experiment, we applied pairwise PRGM to all the left hemisphere (LH)
and right hemisphere (RH) WM surfaces of the HCP cohort. The distances are saved
into a matrix of size 450 × 450 as shown in Fig. 4(a), which exhibits a clear pattern:
the (LH,LH) and (RH,RH) blocks of the matrix have smaller distance values than the
(LH,RH) block. This suggests that we could use the PRGM distance to evaluate brain
asymmetry on a large scale. To further illustrate this point, we applied multidimensional
scaling (MDS) to the distance matrix and plotted the results in Fig. 4(b). While there
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are overlaps, it is clear that the LH and RH surfaces form very distinct clusters. A t-test
was applied to the projection of the MDS embedding coordinates onto the diagonal line,
i.e., the vector (−1, 1), and a highly significant p-value 9.4e−34 was obtained.

4.3 Fast Resolution of Sign Ambiguity in LB Embedding

(a) (b) .

(c) (d)

Fig. 5. Reeb graph matching for fast sign
ambiguity resolution and cortical labeling.
Critical point set on the HCP (a) and
Mindboggle subject (b). (c) Automatically
generated labels on the HCP subject. (d)
Manually delineated labels on the Mind-
boggle subject.

To compare two surfaces with their LB
embeddings as defined in (2), it is usu-
ally a challenging and computationally
expensive task to resolve the ambiguities
including the sign of the eigenfunctions,
switching of the order of the eigenfunc-
tions, and possible splitting of the eigen-
spaces due to multiplicity. With PRGM
matching, we find the nearest surface
from a large brain collection such that
the risk of order switching is greatly re-
duced. For lower order eigenfunctions,
multiplicity is uncommon for cortical
comparisons in our experience. Thus the
focus is on resolving the sign ambiguity
of LB embeddings for two very similar
surfaces. Using the corresponding criti-
cal points provided by PRGM, we show
here that this can be achieved extremely
efficiently.

For the HCP subject and its closest
Mindboggle match shown in Fig. 3(b),
the PRGM applied to the first 9 eigenfunctions generates a set of 48 corresponding
critical points as shown in Fig. 5 (a) and (b). For the n−th eigenfunction of the first

Fig. 6. Cortical labeling results of six HCP subjects paired with their nearest match
from the Mindboggle cohort. In each pair of surfaces: Left: HCP; Right: Mindboggle.
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surface f1
n(n = 1, · · · , 9), we calculate its difference with f2

n or −f2
n on the correspond-

ing point set and use the one with the smaller difference to construct the embedding
of the second surface. This process can also be done in less than 10 milliseconds in our
MATLAB implementation. After that, we can compute the nearest point map in the
embedding space between the surfaces and pull back the manually delineated labels
on the Mindboggle surface to the HCP subject [10]. The resulting labels are plotted in
Fig. 5(c) and (d). For further demonstration, we plotted the cortical labeling results
of six more HCP surfaces with the same strategy. These results show that excellent
cortical labeling can be done efficiently with PRGM-based search. For future work,
these results also lay the foundation for further improved labeling performance with
the fusion of labels from multiple neighbors [10].

5 Conclusions

In this paper we developed a novel approach for brain search based on persistent Reeb
graph matching. For future work, we will investigate different graph matching tech-
niques and compare their speed and search performance with the Hungarian algorithm
used in our current work. We will also incorporate other geometric features such as the
skeletons of the sulci and gyri of the cortex for more informative comparisons.
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Abstract. Prostate cancer is one of the major causes of cancer death for men. 
Magnetic Resonance (MR) image is being increasingly used as an important 
modality to detect prostate cancer. Therefore, identifying prostate cancer in 
MRI with automated detection methods has become an active area of research, 
and many methods have been proposed to identify the prostate cancer. Howev-
er, most of previous methods only focused on identifying cancer in the peri-
pheral zone, or classifying suspicious cancer ROIs into benign tissue and cancer 
tissue. In this paper, we propose a novel learning-based multi-source integration 
framework to directly identify the prostate cancer regions from in vivo MRI. 
We employ the random forest technique to effectively integrate features from 
multi-source images together for cancer segmentation. Here, the multi-source 
images include initially only the multi-parametric MRIs (T2, DWI, eADC and 
dADC) and later also the iteratively estimated and refined tissue probability 
map of prostate cancer. Experimental results on 26 real patient data show that 
our method can accurately identify the cancerous tissue. 

Keywords: Prostate cancer, MRI segmentation, Random forests, Auto-context. 

1 Introduction 

Prostate cancer is the most commonly diagnosed non-skin cancer and the second lead-
ing cause of cancer death among U.S. men [1]. Current clinical practice for the diag-
nosis of prostate cancer is using a transrectal ultrasound (TRUS) biopsy, when finding 
a positive prostate specific antigen (PSA) in blood test. A large screening trial using 
PSA and TRUS has shown that it is possible to reduce prostate cancer mortality by 
20-30% [2]. However, these studies have also shown that PSA testing in combination 
with TRUS biopsies has a relatively low specificity. Additionally, cancers are often 
under-graded in TRUS biopsies [3]. These problems lead to over-diagnosis and over-
treatment of patients for prostate cancer. Alternatively, multi-parametric high-contrast 
magnetic resonance (MR) imaging provides a powerful and noninvasive imaging tool 
for detecting suspicious cancerous tissues [4], as shown in Fig. 1. However, it requires 
a high level of expertise from the radiologist to read prostate MRI and suffers from 
observer variability [5]. Additionally, reading prostate MR is quite time-consuming. 
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2 Method 

2.1 Data and Image Preprocessing 

The dataset consists of a series of multi-parametric MR (T2, DWI, ADC) images from 
26 patients [19]. Since the generated ADC images are calculated from DWI by adjust-
ing b-value, two kinds of ADC images are provided: dADC and eADC, eADC is the 
inverted form of dADC. All MR images were acquired with an endorectal coil and a 
phased-array surface coil with a Philips MR scanner. Immediately before MR imag-
ing, 1  of glucagon was injected intramuscularly to decrease peristalsis of the 
rectum. For all of the subjects, the data acquisition parameters are shown in Table 1, 
and 1-3 cancer delineations on MRI of each subject were done manually by a radiolo-
gist by cooperating with a pathologist who sliced each prostate and identified all dis-
tinct tumors. These cancer ROIs were mostly outlined on T2-weighted images, and 
some were outlined on DWI. We resampled all images into the size 512×512 with the 
resolution 0.3125×0.3125×3(mm3), and aligned DWI, dADC and eADC images to T2 
image for each subject by using the FLIRT tool [20]. Histogram matching was also 
performed on each type of MRI across different subjects. 

Table 1. MR Image Acquisition Parameters 

Multi-

parametric MRI
Sequence Type 

Repetition 

Time (msec)

Echo Time 

(msec) 
Resolution (mm3) 

Flip Angle 

(degree) 

T2-weighted Fast spin echo 3166-6581 90-120 0.3125×0.3125×3 90 

DWI 
Fast spin echo, echo planar 

imaging 
2948-8616 71-85 1.406×1.406×3 90 

2.2 Prostate Cancer Identification with Random Forests and Auto-context 
Model 

In our method, we formulate the identification of prostate cancer as a two-class classi-
fication problem. To solve such a classification problem, we proposed a novel learn-
ing-based multi-source integration framework by employing the random forests [9] 
and auto-context model [10,11]. For simplicity, let  be the total number of the  
training subjects and let , , , , 1, … ,  be a set of multi-
parametric MRIs. As a supervised learning method, our method consists of training 
and testing stages. The flowchart of training stage is shown in Fig. 2. In the training 
stage, we will train a sequence of classification forests, each with the input of multi-
source images/maps. In the first iteration, the classification forest takes only the mul-
tipara-metric MRIs  as input, and learn the image appearance features from different 
multi-parametric MRIs for voxel-wise classification. By applying the trained forest in 
the first iteration, each -th training subject will produce tissue probability maps for 
prostate cancer  and non-prostate cancer , as shown in the second column of 
Fig. 2. In the later iterations, inspired by the auto-context model [10,11], the tissue 
probability maps , , 1, … ,  obtained from the previous iteration 
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will act as additional source images for training. Specifically, high-level context fea-
tures are extracted from the tissue probability maps to assist the classification, along 
with appearance features from the multi-parametric MRIs. Since context features are 
informative about the nearby tissue structures for each voxel, they encode the spatial 
constraints into the classification, thus improving the quality of the estimated tissue 
probability maps, as also demonstrated in Fig. 2. Then, the tissue probability maps are 
iteratively updated and fed into the next training iteration. Finally, a sequence of clas-
sifiers will be obtained. 

Similarly, in the testing stage, given a target subject with multi-parametric MRIs, 
we can obtain the initial tissue probability map by applying the trained classifier in 
the first iteration using only multi-parametric MRIs. In the later iterations, along with 
multi-parametric MRIs, the tissue probability maps resulted from previous iteration 
are fed into the next classifier for refinement. Fig. 3 shows an example by applying a  
 

 

Fig. 2. Flowchart of the training procedure for our proposed method with multi-source images, 
including T2, DWI, dADC and eADC images, along with cancer probability maps. The appear-
ance features from multi-parametric MR images are used for training the first classifier, and 
then both appearance features and the context features from probability maps are employed for 
training the subsequent classifiers. 

 
Fig. 3. A typical example by applying our method on an unseen target subject. We use the 
trained classifier in the first iteration from multi-parametric MRIs to obtain the initial tissue 
probability maps. In the later iterations, the tissue probability maps resulted from previous 
iteration are fed into the next classifier for refinement. 
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sequence of learned classifiers on an unseen target subject. As we can see from Fig. 3, 
the cancer probability maps are updated with iterations and becoming more and more 
accurate.  

In our implementation, we use Haar-like features [13] for both appearance features 
and context features due to its efficiency. Specifically, for each voxel , its Haar-like 
features are computed as the local mean intensity of any randomly displaced cubical 
region  or the mean intensity difference over any two randomly displaced, asym-
metric cubical regions (  and ) within the image patch  [14]: , 1| | 1| | ,    ,  , 0,1        1  

where  is the patch centered at voxel ,  is any kind of source image, and the 
parameter 0,1  indicates whether one or two cubical regions are used (as shown 
in Fig. 4, 1). In theory, for each voxel we can determine an infinite number of 
such features. 

 

Fig. 4. Computation of Haar-like features. The red rectangle indicates the patch centered at . 
Haar-like features are computed as the local mean intensity of any randomly displaced cubical 
region , or the mean intensity difference over any two randomly displaced, asymmetric 
cubical regions (  and ) within the image patch . 

3 Experimental Results and Analysis 

We validate the proposed method via a leave-one-out strategy, i.e., for each target 
image, we train the random forests based on the remaining 25 subjects. For each train-
ing subjects, we randomly select 1000 cancer samples and 1000 normal samples. 
Then, for each sample with the patch size of 7 7 7, 10000 random Haar-like 
features are extracted from all source images: T2, DWI, dADC, eADC images, and 
tissue/cancer probability maps in every iteration. We set the total iteration as 10. In 
each iteration, we train 20 classification trees. We stop the tree growth at a certain 
depth (i.e., depth 50), with a minimum of 8 sample numbers for each leaf node. 
The parameters for the random forests are set according to the previous work [18]. In 
our evaluation, we employ section-based evaluation (SBE) [12], which is defined as a 
ratio of the number of sections in which both the automatic method and expert identi-
fy the prostate cancer to the number of total sections that the automatic method identi-
fies the prostate cancer. The SBE is typically used for evaluation the performance  
for prostate cancer diagnoses. According to the prostate size of each subject, the pros-
tate is usually divided into 4-9 sections [12]. For example, Fig. 5 shows the divided 
sections for a typical prostate. 

.

R
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Fig. 6. Change of SBEs with the 
iterations. The SBEs are improved 
with the iterations. 

 

Fig. 5. The divided sections for a typical prostate. The prostate is divided by pink dash lines. 
The red curve indicates the manual segmentation of cancer ROI, and yellow curve outlines the 
prostate boundary. 

3.1 Importance of context features 

Fig. 6 shows the SBEs on 26 patient subjects 
by sequentially applying the learned classifi-
ers based on the multi-source. It can be seen 
that the SBEs are improved with the itera-
tions and become stable after a few iterations 
(i.e., 2 iterations). Specially, in the second 
iteration, the SBEs are improved greatly due 
to the integration of the previously-estimated 
tissue probability maps for guiding classifica-
tion. These results demonstrate the impor-
tance of using context features for cancer 
segmentation. 

3.2 Comparison with Conventional Method 

It is difficult to make comparisons with the other methods due to unavailability of 
their algorithms and their testing subjects. Thus, we currently only compared with the 
conventional classification method (AdaBoost [17]). AdaBoost is also a machine 
learning method. In training stage, it generates a series of weak learners by updating 
the weight on every training sample. These weak learners converge to a final strong 
learner. In AdaBoost method, we extract Haar-like features, Gabor features, HOG, 
LBP and gradient features, and set the maximum number of iterations as 100 in the 
weak learner refining process and also the boosting iterations is set as 2. Fig. 7 shows 
the qualitative comparison results on the same patient subject in Fig. 5. In the images, 
the red curves indicate the cancer ROIs, and yellow curves indicate the boundaries of 
the prostate mask. The results of AdaBoost and our proposed method are shown in the 
1st and 2nd rows, and indicated by the green and blue curves, respectively. It can be 
observed that our result is more consistent with the manual ground truth. For quantita-
tive evaluation, the SBEs on 26 subjects are shown in Fig. 8(a). It can be seen that our 
proposed method outperforms the AdaBoost method.  
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Fig. 7. Qualitative comparison of the proposed method with the AdaBoost method on a patient 
subject with multi-parametric MRIs. The yellow curve indicates the prostate region. The red 
curve indicates the manual segmentation, while the automated segmentation by AdaBoost and 
our proposed method are indicated by green curves and blue curves, respectively. 

In addition, we further employ Dice ratios to evaluate the accuracy. The results on 
26 patient subjects are shown in Fig. 8(b). It can be also observed that our method 
achieves a higher accuracy, with average dice ratios 67.06%, compared with 50.58% 
by the AdaBoost. 

 

Fig. 8. (a): Section-based evaluation (SBE) comparison of our proposed method and the Ada-
Boost method on 26 patients. The average SBE of our method is 87.11%, which is significantly 
better than AdaBoost method (p-value<0.01). (b): Dice ratios of the proposed method and the 
AdaBoost method on 26 patients. The performance of our proposed method is significantly 
better than that of AdaBoost method (p-value<0.01). 
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4 Conclusion 

We have proposed a novel framework to identify prostate cancer regions in the in vivo 
MR images. Our proposed method can directly identify cancerous regions from the 
whole prostate. Specially, we employ the random forests and auto-context model to 
effectively integrate features from multi-parametric MRIs and tentatively-estimated 
probability maps for cancer identification. Experimental results on 26 real patient data 
show that our method can accurately identify the cancerous regions. In our future 
work, we will validate the proposed method on more patient subjects. 
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Abstract. We propose a multi-atlas-based framework to label brain
anatomies in magnetic resonance (MR) images, by constructing a hier-
archical structure of atlas forests. We start by training the atlas forests
in accordance to individual atlases, and then cluster atlas forests with
similar labeling performances into several groups. For each group, a new
representative forest is re-trained, based on all atlas images associated
with the atlas forests in the group, as well as the tentative label maps
output by the clustered atlas forests. This clustering and re-training pro-
cedure is conducted iteratively to obtain a hierarchical structure of atlas
forests. When applied to an unlabeled image for testing, only the suit-
able trained atlas forests will be selected from the hierarchical structure.
Hence the labeling result of the test image is fused from the outputs
of selected atlas forests. Experimental results show that the proposed
framework can significantly improve the labeling performance compared
to the state-of-the-art method.

1 Introduction

Labeling individual neuro-anatomical regions is important for quantitative anal-
ysis of magnetic resonance (MR) brain images. However, due to the complexity
of brain structures and their blurred boundaries in the MR data, it is labor-
intensive to manually label the MR brain images into different regions. To ad-
dress this issue, many automatic methods have been proposed. Among them,
multi-atlas-based labeling methods are widely used, due to their robustness and
simplicity in incorporating prior labeling information from the atlases. Wolz et
al. [1] implemented the label estimation by learning an image manifold, and thus
the labels can be effectively propagated to the test image from the atlases that
can provide relatively more reliable label information. Jia et al. [2] introduced
an iterative multi-atlas-based multi-image segmentation (MABMIS) approach,
which utilized sophisticated registration scheme for spatial alignment and deter-
mined the labels of all test images simultaneously in the common space.
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Coupé et al. [3] proposed a non-local patch-based method for incorporating
the priors from the expert manual segmentations. The method relaxes the de-
manding requirement of accurate image registration. Instead, after aligning all
atlases with the test image via affine registration, each voxel in the test image
then computes its similarities to the non-local voxels in all linearly-aligned at-
lases. The labels in the atlases are then adaptively fused for the to-be-labeled
voxels under consideration. Continuous efforts (e.g., [4]) have been devoted to
further boost the labeling accuracy of the non-local methods. However, these
methods require high computation cost in the labeling process. The situation is
further deteriorated when the dataset under study includes a large number of
atlas images.

Recently Zikic et al. [5] proposed to encode each individual atlas by a random-
ized classification forest [6]. Given an atlas image with its corresponding label
map, a randomized classification forest is trained, denoted here as the “atlas
forest”, to differentiate voxels inside and out of the individual regions based on
the voxelwise visual features. Each of the atlas forest can produce a probabilis-
tic labeling result for the test image. Therefore it computes the final labeling
by simply averaging all the probability estimates. It was proved experimentally
that the performance can be compared favorably with the alternatives (e.g., the
non-local method [3]).

However, there are several drawbacks for this method [5]. First, each atlas
forest is trained using only a single atlas image. Such strategy can have efficient
experimentation as claimed, but also negatively influences its performance as the
atlas forest may over-fit the single atlas image. Second, after labeling result is
generated from each trained atlas forest, no feedback is considered by the atlas
forests, for further improving the labeling result. Third, the final labeling in their
work is the average of the probabilities estimated from all atlas forests, while the
simple averaging may not necessarily be the optimal for the input test image.

To overcome the aforementioned limitations, we propose a novel framework
which utilizes the atlas forest techniques for labeling the MR brain images. We
divide the proposed framework into the training stage and the testing stage.
During the training stage, a hierarchical structure is built by hierarchically clus-
tering similar atlas forests. Specifically, in the bottom level, one atlas forest only
encodes one atlas image. Then, atlas forests are clustered together, from which
a new atlas forest is trained in the next higher level. In this way, atlas forests in
the higher level are capable of using not only more comprehensive atlases than
the lower-level atlas forests, but also the augmented features including outputs
calculated from the lower level. This atlas forest clustering and training proce-
dure is performed iteratively to build a hierarchical structure of atlas forests in
the end.

In the testing stage, we utilize the trained hierarchical structure of atlas forests
to label the input images for testing. First, All atlas forests in the bottom level
are invoked. Based on their outputs, we then identify atlas forests that can
potentially contribute the most accurate labeling results to the test image. Next,
in the higher level, the atlas forests corresponding to the selected lower-level atlas
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forests are activated, while the rest in the current level are left inactive. Finally,
the labels of the test image is determined by fusing output of the active atlas
forests selected from the hierarchical structure, after all levels of the hierarchy
are exhausted.

The main contributions of this work include:

– A hierarchical learning framework is proposed for clustering similar atlas
forests together, and thus the re-trained atlas forests can reduce the risk of
over-fitting;

– A novel atlas forest selection strategy is proposed, which can boost the la-
beling accuracy by selecting the most effective atlas forests for the labeling
of the new test image.

2 Method

In this section, we present the details of the proposed hierarchical framework,
consisting of the training stage and testing stage. In the training stage, we or-
ganize a set of atlas forests into a hierarchical structure. In the testing stage,
we go through all levels in the hierarchy to obtain the final labeling result for
the test image. The two stages are elaborated in Section 2.1 and Section 2.2,
respectively.

2.1 Hierarchical Learning of Atlas Forests

Fig. 1 shows an example of a two-level hierarchical structure of atlas forests
developed in the training stage. The block of F i

j in the figure represents the
j-th atlas forest learned in the i-th level. Aj = {Ij , Lj} is the j-th atlas, where
Ij and Lj are the intensity image and the label map of Aj , respectively. We
also have two notations M i

j and Ci
j . M

i
j is the set of atlas forests that are the

children nodes of F i
j in the hierarchical structure, and Ci

j denotes the set of atlas

images utilized by the subtree rooted at F i
j . For example, it can be written as

C1
0 = {A0}, M1

0 = ∅, C2
1 = {A4, A5} and M2

1 = {F 1
4 , F

1
5 } following Fig. 1. Note

that the atlas forest is considered as the classification forest trained with a single
or multiple atlas images.

During the training stage, we build a hierarchical structure from the set of
atlas images. Initially, we follow the single-atlas encoding approach in [5] to train
the atlas forests in the bottom level. The forests obtained from the single-atlas
encoding method may over-fit their corresponding training images, which will
lead to their classifiers with poor generalization power. We resolve this issue by
developing a hierarchical structure of atlas forests. In particular, the atlas forests
that are similar in terms of their labeling capabilities are clustered together, and
the representative forest of each cluster is re-trained upon all atlases in each
cluster.
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Fig. 1. An example of hierarchical atlas forest structure built during the training pro-
cess

Atlas Forest Clustering. Here we propose a novel metric to measure the
similarity of the labeling capabilities between two atlas forests as

S(F i
m, F i

n) =
1

2 |Ci
m|

∑
Aj∈Ci

m

DSC(Aj | F i
n) +

1

2 |Ci
n|

∑
Al∈Ci

n

DSC(Al | F i
m) , (1)

where S(F i
m, F i

n) denotes the similarity between two atlas forests in level i, Ci
m

and Ci
n are the sets of atlas images utilized by F i

m and F i
n respectively, and

DSC(Aj | F i
n) represents the labeling accuracy (measured by the Dice over-

lapping ratio with respect to the ground-truth) of the atlas Aj by using F i
n.

Given the similarity measure between any pair of atlas forests, we can construct
an affinity/similarity matrix, which is used by affinity propagation [7] for atlas
forest clustering.

Atlas Forest Training. After atlas forests are clustered based on the similarity
defined in Eq. 1, we re-train a new atlas forest in the higher level corresponding to
each lower-level cluster. The atlas forests in the higher level utilize the outputs
from the clustered atlas forests in the lower level for improving the labeling
accuracy. Specifically, to train the higher-level F i

j , all the atlases within the set

Ci
j are used as the training data. Before learning the higher-level atlas forest,

we first generate an initial labeling map for every training image by utilizing all
the clustered atlas forests (i.e., F i−1

k ∈ M i
j) in the (i-1)-th level. In particular,

the initial labeling map of the training image Al in the set Ci
j is obtained by

averaging all the labeling results of Al from the clustered atlas forests in the
(i-1)-th level, except the one that is trained with the atlas image Al itself (i.e.,
using atlas forests in the set {F i−1

k | F i−1
k ∈M i

j and Al �∈ Ci−1
k }).

After obtaining the initial label map of Al, we can extract probability features
from the initial label map, in addition to the original image features extracted
from atlas image Al. For each voxel, abundant Haar-like operators are used
for efficient feature extraction. With both the new probability features and the
original image features, the higher-level atlas forest F i

j is learned to classify
the labels of individual voxels. After the new atlas forests are obtained in the
high level, they are clustered again according to the similarity defined in Eq. 1.
Afterwards, the clustered atlas forests also help to learn new atlas forests in the
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next higher level. This iterative clustering and re-training procedure continues
until the number of the existing atlas forests is below a certain threshold.

Generally speaking, compared to the lower-level atlas forests, a certain higher-
level atlas forest is capable of accessing more comprehensive training atlases and
features. The outputs of the lower-level atlas forests are refined by the higher-
level atlas forests. Meanwhile, context features are directly computed from the
lower-level output maps, thus enabling the higher-level atlas forest to gener-
ate a robust and accurate labeling result. The construction of the hierarchical
structure of atlas forests is implemented using an iterative strategy following the
method of auto-context [8]. It is noted that there is an exception occurred when
computing the context features in the bottom level, due to the lack of the tenta-
tive labeling results from lower level. We intend to calculate the spatial prior of
each label instead, by averaging the ground-truth labeling results of all training
images, and then regard the probabilistic prior as the source of the probability
features for each atlas.

2.2 Image Labeling with the Atlas Forest Hierarchy

In this section, we present how the constructed multi-level hierarchical structure
of atlas forests is applied for the labeling process. Similar to the training stage,
the process also goes from the bottom level to the top level following an iterative
manner. Instead of using all of the learned classifiers for labeling as described
in [5], the proposed method selects only the potentially optimal atlas forests.
Therefore, the labeling process can avoid the possible negative influence from
certain atlas forests, which are not suitable for labeling the test image.

Different from the traditional atlas selection approaches such as the work in
[9], the novel atlas forest selection method is developed based on the clustering
information obtained in the training stage. For a test image, we first compute the
consistency across labeling outputs from individual atlas forests in each cluster,
and then use the consistency measure to gauge the cluster as well as its member
classifiers. Our main reason is that, if a cluster of atlas forests could well handle
the test image, their outputs should be similar to its actual labeling information,
and thus are highly consistent. On the contrary, if the classifiers are more likely
to generate incorrect labeling results with respect to the unknown ground-truth
labels of the test image, their outputs are more inconsistent due to unpredictable
and uncontrollable error patterns in the labeling process.

Our goal in forest selection is to find the optimal cluster(s), whose member
atlas forests are consistent for labeling the test image. Let Î be the test image,
we commence by applying all of forests F i−1

k in the cluster M i
j , and comparing

their labeling outputs with each other using the Dice overlapping ratio in the
(i-1)-th level. The mean value of the pairwise Dice ratios is regarded as the
absolute labeling consistency coefficient for the cluster M i

j , which is denoted as

D(Î ,M i
j).

It is worth noting that D(Î ,M i
j) only depends on the specific clusterM i

j . Thus
the measures cannot be directly compared across individual clusters. To this end,
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we further convert the absolute consistency coefficient into a relative measure,
by dividing over the population-level consistency indicator of each cluster. Then,
the relative consistency measures can be utilized for the selection of optimal atlas
forests.

The population-level consistency indicator is computed by utilizing the infor-
mation contributed by the training images. In particular, the consistency be-
tween any pair of atlas forests of the same cluster is calculated and averaged
upon all training images. Then the population-level consistency indicator of the
cluster D̄(M i

j) is defined as the mean value of all pairwise consistency measures

within the cluster. Finally, we have the metric W (Î ,M i
j) regarded as the relative

labeling consistency coefficient, which is written as

W (Î ,M i
j) =

D(Î ,M i
j)

D̄(M i
j)

. (2)

When the atlas forests with the top W scores are selected, each selected
atlas forest can produce one labeling result. The overall labeling map in the
current level is computed from those labeling estimates using the majority voting
approaches. This obtained map will be used as the initial label map for the next
higher level. In the next higher level, we only consider clusters that contain the
selected atlas forests in the lower level. By iteratively performing atlas selection
and brain labeling in the new level, the labeling result of the test image will be
gradually refined. This iterative process ends when reaching the top-most level.

3 Experimental Results

In this section, we evaluate the proposed framework for anatomical region label-
ing on MR brain images. In particular, the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) dataset1 is adopted. The ADNI dataset provides rich brain
images using 1.5 T MR scans, with two annotated regions representing the left
and the right hippocampi in the adult brains. Before labeling, we perform a se-
ries of standard pre-processing works as introduced in [3] to ensure the validity
of the estimation.

To demonstrate the robustness of the proposed framework, we use 5-fold cross-
validation in the evaluation. Stated succinctly, we randomly select 50 images
from the normal control subjects of ADNI dataset to serve as the experimental
dataset, which are equally divided into 5 groups. In each fold, we select one
group containing 10 images for testing, and the rest for training. Settings for
training the forests are identical in all 5-fold cross validation experiment. There
are 8 trees measured in each forest, the number of tree depths is 30, and each
leaf has at least 8 samples. The voxelwise features are calculated from the 3D
patches with the maximal size of 10× 10× 10 voxels.

Two levels of the hierarchical structure of atlas forests are adopted for efficient
computations. We follow the recommended setting in affinity propagation by

1 http://adni.loni.ucla.edu
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associating parameters in clustering atlas forests to their similarity measures. In
the bottom level, we consider each atlas forest as the individual cluster, thus
there are 40 small clusters. Using the clustering method, we can group the atlas
forests into several larger clusters in the second level.

The experiments conducted present the overall improvements when the pro-
posed framework is implemented. Table 1 compares the baseline method (fol-
lowing the strategy of single-atlas encoding in [5]) with the proposed framework.
It is shown that the proposed framework improves the estimation by more than
10% compared with the single-atlas encoding method [5].

Table 1. Quantitative comparison between the single-atlas encoding method and the
proposed method in labeling the left and right hippocampi

DSC (%) Single-atlas Encoding Proposed Method

Left Hippocampus 64.94 ± 2.20 76.25 ± 2.40

Right Hippocampus 67.15 ± 1.04 76.86 ± 1.21

Overall 66.05 ± 1.62 76.64 ± 1.81

Next we break down two techniques for evaluation, which are: 1) hierarchical
clustering and re-training of atlas forests, and 2) atlas forest selection (AFS).
Fig. 2 shows the comparison results between the ground-truth and the estimates
using the Dice overlapping ratio. The left panel of the figure shows the results of
labeling the left hippocampus, while the other one is for the right hippocampus.
It can be observed that all results in the higher level are better than those in the
lower level, indicating the effectiveness of clustering and re-training atlas forests.
Besides, the labeling accuracies of the proposed framework with (optimal) atlas
selection (blue plots) are always better than that without atlas selection (red
plots). This demonstrates the effectiveness of the AFS module in the proposed
framework.

Fig. 2. Left and right panels show the labeling accuracies of different configurations
on the left and the right hippocampi, respectively. The blue plots indicate the labeling
accuracies with AFS by using different hierarchical levels, and the red plots indicate
the labeling accuracies without AFS by using different hierarchical levels.
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4 Conclusion

In this paper, we propose a novel hierarchical framework for iteratively clus-
tering and learning the atlas forests. Besides, a novel atlas forest selection is
also presented to filter out the potentially negative influences from atlas images.
Experimental results on the ADNI dataset indicate that the proposed frame-
work significantly outperforms the state-of-the-art single-atlas encoding method
[5]. Future research will validate the proposed framework by constructing much
deeper and more complex hierarchical structure of atlas forests. We will also con-
duct comprehensive evaluations by employing more datasets containing multiple
anatomical labels.
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