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Abstract. The increasing interest in automatic adaptation of pedes-
trian detectors toward specific scenarios is motivated by the drop of
performance of common detectors, especially in video-surveillance low
resolution images. Different works have been recently proposed for un-
supervised adaptation. However, most of these works do not completely
solve the drifting problem: initial false positive target samples used for
training can lead the model to drift. We propose to transform the outlier
rejection problem in a weak classifier selection approach. A large set of
weak classifiers are trained with random subsets of unsupervised target
data and their performance is measured on a labeled source dataset. We
can then select the most accurate classifiers in order to build an ensemble
of weakly dependent detectors for the target domain. The experimental
results we obtained on two benchmarks show that our system outper-
forms other pedestrian adaptation state-of-the-art methods.

Keywords: Pedestrian Detection, Unsupervised Domain Adaptation,
RANSAC.

1 Introduction

There is an increasing interest of the Computer Vision research community in
transfer learning and domain adaptation techniques in the recent years as wit-
nessed by the large number of papers on these subjects. The motivation behind
this interest is due to the bottleneck of the current classifiers’ training proce-
dures which usually need hundreds or thousands of manually labeled samples.
Indeed, manual annotation is an expensive and time consuming activity, and, in
some domains, data acquisition can be a difficult task. On the other hand, the
performance of current detectors usually drastically drops when used (tested) in
scenarios different from the training data [18,10,6]. This is sometimes called the
dataset bias problem [18]: a classifier trained with a specific image resolution,
viewpoint, illumination conditions, etc., will have a poor generalization ability
in a testing situation not fitting the training dataset characteristics. In order
to alleviate this problem different works have been recently proposed which di-
rectly or indirectly use labeled data from a known domain (the source dataset)
together with unsupervised or semisupervised data, acquired from the specific
target domain (i.e., the scenario of interest).
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In this paper we focus on the pedestrian detection case, in which the human
body is the class of interest. However, no specific assumption on the positive
class is done, except the existence of a sufficiently reliable object detector which
is used in the very first stage of our algorithm for extracting candidate target
samples. Collecting target samples using a generic pedestrian detector is an
approach adopted in different other works, such as, for instance [32,29,34,28].
However, the question is: since the generic detector is supposed to poorly perform
on the target domain, and many false positives will presumably belong to the
initial candidate set, can we train an adapted detector using these candidates
and improve the accuracy of the generic detector?
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Fig. 1. (a)-(b) Spatial consensus collection. (a) Four out of five classifiers of our de-
tector ensemble correctly hit the pedestrian in the figure. Bounding boxes of different
colors correspond to positive answers of different classifiers. (b) The final answer of the
ensemble. Note that the small blue rectangle on (a) has not been clustered together
with all the other rectangles because of the scale difference and has not contributed
to computing the average final rectangle on (b). (c) AP on the CUHK Square Test
dataset as a function of M . Error bars show ±1 standard deviation from the mean.

We propose to solve this issue transforming the target sample selection prob-
lem in a classifier selection problem. The target bounding boxes extracted using
a baseline detector run on the target videos are randomly grouped in different
overlapping subsets. In turn, each subset is used to train a different classifier.
We train in this way a large vocabulary V of (weak) classifiers. Each element
C ∈ V will have an accuracy depending on the number of outliers (false positives
of the baseline detector) included in its specific training set. If we could measure
this accuracy, we could prune V . However, due to the lack of labeled target data
(unsupervised training assumption), we cannot directly compute the accuracy
of C. Nevertheless, we can use a different training set (the source dataset), for a
rough estimate of this accuracy. There is an analogy between the approach we
propose and RANSAC [13], where a statistical model is computed using a ran-
dom subset of the available data and then it is verified using the rest of the data.
In our case, the statistical model is C and the verification phase is performed
using a different but similar dataset. V is pruned selecting the most promising
classifiers which will be used at testing time as an ensemble of detectors.
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The second novelty we propose concerns the way in which the ensemble de-
tector reaches a decision on a test image. Rather than using a common voting
approach [36], in which the final decision is taken on each input subwindow, our
ensemble decisions are based on an agreement on spatially related subwindows.
The underlying rationale is that different classifiers can disagree on a specific im-
age window but they usually agree on windows which are close to a real instance
of the class of interest (see Fig. 1(a)-1(b)).

The details of our approach are presented in Sec. 3-5, after a brief overview
of the literature in Sec. 2. Experimental results using different protocols are
illustrated in Sec. 6 and we finally conclude in Sec. 7.

2 Related Work

In [25] Pan and Yang present a survey on transfer learning and related areas,
including domain adaptation [3], with a taxonomy of the existing approaches
and the possible settings. One of the most important differences among settings
is the availability at training time of (at least few) labeled target data. In this
paper we assume the complete lack of labels for target data.

Adaptive-SVMs [35] are extended in [1] in an object detection scenario by
introducing a sort of geometric parameter transfer (regularization is enforced
among spatially close cells of a HOG-based SVM template). A similar idea is
presented in [2], in which the target SVM parameters are regularized with parts
borrowed from source templates. In [20] new object classes are learned borrowing
sample instances from other similar classes, possibly after applying various geo-
metric transformations. All these transfer learning approaches require at least a
few target labeled data in order to refine the target classifier’s parameters.

In [19] a shared intra-class representation, based on semantic attributes, is
learned using only source samples, after that no training phase is necessary for
the target class. In [27] an Information-theoretic Metric Learning is used to learn
a linear transformation from the source to the target domain. A Transductive
SVM together with virtual samples obtained using computer graphics techniques
is used in [30] for adaptation in a pedestrian detection scenario.

In [26] a scene specific detection task is dealt with by a grid of classifiers,
where each classifier needs only to learn the visual pattern of the correspond-
ing cell on the image grid. In [22] a domain-specific classifier is selected from
an initial set of pre-trained classifiers using model recommendation methods.
In [23] background subtraction is used for collecting target samples. However,
background subtraction can be unstable, especially in outdoor scenes.

In [32,34,29,28] a baseline pedestrian detector is run on the target videos in
order to collect an initial set of positive samples. In [32] source samples (INRIA
pedestrians) are weighted using the average distance (in HOG space) to the k
nearest neighbours target samples and are used for training an adapted classifier.
The new detector is run on the target video frames in order to acquire new target
data and the process is iterated until convergence. However, if the initial target
samples include a large number of false positives, the whole process can converge
toward a wrong model (drifting problem).
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In [34] a similarity score between the test image and the initial candidate
pedestrian set is computed using a pre-built vocabulary tree and a threshold
is used in order to reject non-pedestrian test images. However, the rejection
threshold and different other parameters need to be manually set on each tar-
get scenario. In [29] the accuracy of a generic pedestrian detector is boosted
using a second, adapted detector (a random fern classifier [24]) trained on target
data only. Target data are acquired using the baseline detector and clustered in
trajectories using position, size and appearance affinities. Different motion and
spatial heuristics are used to partition the trajectories in positive and negative
samples (similarly to [28]).

A problem common to all these methods is that the candidate set of pedes-
trians, acquired with the generic detector, is either pruned using a set of ad
hoc heuristics and confidence thresholds (which need to be tuned on the target
domain, an hard task if we suppose the lack of target labels) or used as it is,
which likely leads to a drift of the train process. We show in Sec. 4 how a large
amount of outliers can be tolerated in the initial training set using a RANSAC-
like strategy and the source dataset for verifying the accuracy of the trained
models.

3 Collecting Candidate Pedestrians

In the first phase of our algorithm we collect positive pedestrian samples running
a generic pedestrian detector on the frames of the target videos. We use the Dalal
and Triggs [7] pedestrian detector provided by the OpenCv implementation.
Other more sophisticated baseline detectors can be used for this task, such as,
for instance, [12], but, since the target videos used for our experiments have been
acquired in far field traffic scenes (see Sec. 6), and the resulting resolution is very
low, part based detectors have a very poor performance on this scenario [32].
Since false positives frequently happen in a same position along a video captured
with a stationary camera, similarly to [32,33], we discard detections with a very
large mutual overlapping on the same position. Other detections are discarded
when they are close to the image borders because people entering and exiting
from the scene are usually truncated (only partially visible).

Let B = {b1, b2, ...} be the set of remaining bounding boxes obtained with the
baseline detector. We estimate the mean μ and the standard deviation σ of the
height values of the bounding boxes in B and we compute an upper (u) and a
lower (l) bound on such values:

l = max(μ− 3σ,min{h(b)|b ∈ B}), (1)

where h(b) is the height of the bounding box b and u is computed similarly.
We prune B discarding those bounding boxes out of the range [l, u], obtaining
B′ = {b|b ∈ B, l ≤ h(b) ≤ u}. Then we rank B′ comparing its elements with our
source dataset S (we use the INRIA dataset [7]). Specifically, let SP = {p1, p2, ...}
be the set of the positive sample bounding boxes of S (recall that S is labeled).
Moreover, let f(b) be the feature vector of b. We use the common HOG features
[7]. A dissimilarity score s for each b ∈ B′ can be computed by means of:
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s(b) =
∑

p∈SP

||f(b)− f(p)||22. (2)

Eq. (2) is conceptually similar to the function used in [17] for computing the
similarity between source support vectors and target data. We use it to rank
B′ and we obtain R = {bi1 , ..., bim} such that: ij < il ⇒ s(bij ) ≤ s(bil) and
m = |B′|. Before extracting HOG features, all the elements in B′ and SP are
normalized to a standard bounding box whose height is l and the width is l/2.
This operation is important because the elements in SP (the INRIA pedestrian
images) have a high resolution, while the elements in B′, acquired from a low
resolution video, have much less gradient information.

Instead of using the whole SP in Eq. (2) we could restrict the sum to only the k
nearest neighbours of f(b) in SP (e.g., similarly to the source sample weighting
process in [32]). However, without using sophisticated data structures, this is
computationally equivalent to our procedure and would require the estimation
of the parameter k (sufficient number of neighbours). In our experiments, the
results obtained with Eq. (2) and a k nearest neighbours approach with various
values of k were basically equivalent, hence we decided in favour of the simplest
solution.

We discard the second half of R based on the assumption that the baseline
detector poorly performs on the target domain and, hence, most of the elements
in B (R) are false positives. A finer solution is to discard a portion of R de-
pending on a measure of the dissimilarity between the distributions generating
B′ and SP , such as the Maximum Mean Discrepancy. However, in the current
implementation we adopted this simple truncation because in our experiments
we found it sufficient to achieve good results across different videos and fairly
stable (e.g., ±10% in the truncation ratio gives basically the same overall sys-
tem’s accuracy). Let T = {b1, ..., bn} correspond to the first half of R (n = m/2).
In the following we use T as our target positive sample set.

The values l and u are used also at testing time to limit the number of analysed
subwindows (Sec. 5) and at training time (Sec. 4) to specialize the classifiers to
a specific scale range. This is reasonable since our goal is the construction of
a detector for a specific scenario and viewpoint, in which the pedestrian scales
are supposed to be constant over time. In [32,33] Wang et al. used our same
target videos and assumed a similar mono-modal Gaussian distribution over the
pedestrian sizes but they used mean shift [5] as to estimate the main mode of the
distribution and the range [l, u]. However, the bandwidth of the mean shift kernel
needs to be manually set thus we preferred a simpler but completely automatic
procedure.

4 Transforming the Sample Selection Problem into a
Classifier Selection Problem

The ranking and pruning operations described in Sec. 3 help in eliminating a
lot of false positives. However, they are not sufficient to guarantee the lack of
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outliers in T , whose number depends on the accuracy of the baseline detector and
the difficulty of the target domain. Using visual inspection, in our experiments
we empirically found an average of about 40 − 50% of outliers in T (errors of
the baseline detector). Since we want to use the elements in T for training our
classifier, we would ideally need an oracle able to select a subset TG ⊆ T of
“good” positive samples to use for training. This idea can be extended since we
not only want that the elements in TG are correct pedestrians images, but we
also want that they are the most informative (or discriminative) for our learning
task: for instance, we would like to avoid including images of the same pedestrian
in the same pose. This problem can be formulated as follows:

TG = arg min
Ti⊆T

E(CTi ,Dt), (3)

where CTi is a classifier trained using the set of positive samples Ti and a given
random set of negatives Ni (see Sec. 4.1), Dt is the target domain and E() is the
generalization error. Since we do not have labeled samples extracted from Dt,
we use samples of the source domain Ds, specifically, S = SP ∪SN , where SN is
the set of negatives in the INRIA dataset. Thus, Eq. (3) is approximated by:

TG = arg min
Ti⊆T

L(CTi , S), (4)

where L() is a suitable loss function for computing the empirical risk on S and

CTi = argmin
C∈C

R(C) + θλ(Ti, Ni), (5)

being C a model of classifiers (e.g., Support Vector Machines), λ(Ti, Ni) a loss
function computed over Ti and Ni (note that, generally speaking, λ() �= L()),
R() is a suitable regularization and finally θ is a weight.

The minimization involved in Eq. (4)-(5) is clearly non-convex. It can be eas-
ily shown that L(CTi , S) is not submodular [14] and it is not adaptive-monotone
[15] (see the Supplementary Material of this paper), thus Eq. (4)-(5) cannot
be approximated using greedy submodular function optimization techniques
[14,15,16]. Moreover, an exhaustive approach in which all the possible subsets of
T are used for training a classifier is intractable. We propose to solve this prob-
lem using a RANSAC-like approach [13]. We fix the cardinality ng (ng < n) of Ti

for all i and we build Ti randomly drawing ng elements of T with replacement.
Ti is then used to train a classifier CTi . We iterate this process a large number
of times, obtaining a vocabulary V of weak classifiers. Then, we “verify” each
statistical model (classifier) in V using S and L() and we select a small subset of
V forming an ensemble which is our final classifier. In the following we provide
the details.

4.1 Training Details

The strategy above proposed is independent of the specific class of classifiers (C)
used for building CTi . In our implementation we used HOG features and holistic
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(non part-based) classifiers based on linear SVMs, as described in [7]. We also
followed the suggestions contained in [7] for setting the training parameters, such
as, for instance, the SVM parameter ’C’, set to 0.01 (which corresponds to θ in
Eq. (5)). Due to the limited number of candidate target pedestrians in T , we
set ng to be a small number: ng = 400, but we actually draw only 200 elements
from T and we obtain Ti by horizontally flipping all the selected bounding boxes.
Jittering could also be used but we do not use it in the current implementation.
The number of positives used for training a classifier is lower than the positive
samples used in [7]. However, our weak classifiers are used at testing time as
an ensemble of weakly-dependent classifiers (weak statistical dependence is due
to the partial overlapping of training data), which mutually compensate their
errors. Moreover, we will show in Sec. 5 how we can further boost the ensemble
performance merging spatially coherent answers.

A set of negatives Ni for the i-th classifier is collected as follows. From the
target videos we randomly extract a few frames. Then we randomly select a
few tens of windows from each of these frames. The total number of elements
of Ni is five times ng, using the same proportion adopted in [7]. The size of
the randomly selected windows in Ni is bounded by [l, u] (Sec. 3). Occasionally,
some of the windows in Ni can overlap with pedestrians, so some of them can
actually be false negatives. However we follow [26], in which a similar technique
is used for unsupervised selection of negatives, exploiting the assumption that
false negatives (random overlap of the selected windows with instances of the
class of interest) happen with a quite low probability. As a consequence, both
the current positive sample set Ti and the current negative set Ni can be noisy.
From Ti and Ni we extract HOG features and we train a linear SVM (for details
we refer to [7]).

Finally, we bootstrap the obtained classifier collecting hard target negatives
(again following the strategy proposed in [7]). Specifically, we randomly select a
second set of frames from the target videos and we run the just trained classifier
on all the subwindows of these frames whose size is bounded by [l, u]. Hard
negatives are all the positive answers of the classifier on the input windows and
they are merged with Ni for a second turn of training, finally obtaining our
weak classifier Ci. During the bootstrap phase we discard those hard negatives
which overlap with elements in T , using the intersection over union criterion
adopted in the PASCAL challenge. Nevertheless, since T does not represent
all the pedestrians in the target videos (because the recall rate of the baseline
classifier is very low), some of the hard negatives are possibly true positives,
hence hard negatives can be noisy. However, since each frame of the training
videos is composed of a huge number of subwindows, this situation happens in
a minor number of cases. In our experiments the noisy hard negatives and the
bootstrap retraining of the classifier largely helps in boosting the performance
of the final classifiers.

We iterate the whole procedure collecting a vocabulary V = {Ci}Mi=1 of weak
classifiers. We set M = 1000. Each element Ci in V is then scored using a loss
function L() (Eq. (4)). We tested different loss functions, based on the overall
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error, the recall or the precision of Ci on S. Surprisingly, the best results have
been obtained with a precision-based criterion, which does not take into account
false negatives on S. This is probably due to the way in which we compute the
ensemble decision (Sec. 5), which exploits the precision of each single classifier
(low number of false positive answers). More in details, our loss function is:

L(Ci, S) = 1− TP

TP + FP
, (6)

where TP is the number of true positives on S (again using the PASCAL inter-
section over union criterion), while FP is the number of false positives, i.e., all
the positively classified subwindows of all the images in S which do not suffi-
ciently overlap with any true source positive sample. Size boundaries (l, u) here
are not necessary and they are not used. We use Eq. (6) to associate each Ci

with an error rate ei = L(Ci, S).
Training and computing the source dataset error of 1000 classifiers is a time

consuming operation. With our non-optimized and non-parallelized C++ im-
plementation, it takes about one day on a standard PC. However, it is a fully
automatic process, in which there is no human intervention and can be faster
and less expensive than manual annotation of hundreds or thousands of target
samples. Moreover, since each classifier training and error computing procedure
is completely independent from the other classifiers, the whole process can be
easily parallelized.

Once the set of errors {ei}Mi=1 has been computed, we rank V in ascending
order and we select the k top most elements. In our experiments we used k = 5.
We show in Sec. 6 the influence of different values of k and M on the final
performance of the ensemble detector. We indicate with E = {Ci}ki=1 the final
set of selected classifiers.

5 Spatial Consensus Collection

The common way to combine the outputs of a classifier ensemble is a (possibly
weighted) voting procedure [36,11]. A test feature x is simultaneously input
to all the classifiers of a given ensemble E = {Ci}ki=1, obtaining k different
outputs. Each output can be associated with a confidence weight which need
to be calibrated [36]. Using a notation similar to [36], a simple, non-weighted
majority vote rule can be expressed by means of:

E(x) = argmax
ω∈Ω

k∑

1=1

vi,ω, (7)

where Ω is the set of all the classes and, for each class ω ∈ Ω, vi,ω = 1 if classifier
Ci chooses class ω, and 0 otherwise. This simple but effective rule is largely used
in classifier ensembles and bagging approaches [36,11].

However, our final goal here is the construction of a detector ensemble. The
difference is that, in a detection scenario, typically based on a sliding window
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scan of the input image, input features x are not each other independent, being
those features extracted from nearby and possibly overlapping windows highly
correlated. In [8] Ding and Xiao observe that “local windows with positive classi-
fier responses often cluster densely around human figures but distribute sparsely
in the background”. They exploit this observation building a context feature
which takes into account the detector’s local responses.

We propose to take advantage of the same observation differently, by com-
bining the outputs of our detector ensemble over different windows which are
close in the scale and translation space. In our case we have only two classes:
Ω = {0, 1}, the positive (1) and the negative (0) class. As is well known, the
negative class is much more frequent in a sliding window approach [31], thus
the classifiers’ responses corresponding to the two classes need to be managed
asymmetrically. A spatially-dependent majority vote rule can be formulated as
follows:

E(G) = 1||vG||0>k/2(G). (8)

In Eq. (8) 1() is the indicator function and k is the cardinality of the ensemble.
G = {d1,d2, ...} is a spatial cluster of positive detections. Each dj = (bj , i) in G
is a pair composed of an image window bj and the index i of the corresponding
classifier Ci whose outcome on bj was positive:

Ci(f(bj)) = 1. (9)

Note that a same image window bj in G can be associated with more than
one positive detection (e.g., (bj , i1), (bj , i2) ∈ G). vG = (v1, ..., vk)

T is a k-
dimensional vote vector, such that, for each i (1 ≤ i ≤ k):

vi = min(1, |{(b, i) ∈ G}|), (10)

and |A| is the cardinality of set A. Note that vG is a vote vector collecting votes
over classifiers and not over classes. Finally, ||x||0 is the 0-norm which counts
the number of non-zero elements in vector x.

The intuitive idea behind Eq. (8) is quite straightforward. Given a cluster of
nearby positive detections G, we simply count the number of different classifiers
which contributed to G. If this number is higher than half of the ensemble
cardinality (simple, non-weighted majority), then the decision of the ensemble
on G is 1, and 0 otherwise (see Fig. 1(a)-1(b)).

Also the implementation is quite straightforward. We independently run every
Ci on the whole image, scanning all those windows whose size is included in
the range [l, u] (see Sec. 3). Then we collect all the positive detections of all
the classifiers in a set D = {d1,d2, ...}. We do not use classifiers’ confidences
(and, thus, we do not need any calibration among classifiers). After that, we
perform standard clustering of the rectangles in D. We adopted the common
procedure described in [31] and briefly summarized in Sec. 5.1. The clustering
outcome is a set of detection groups G1, G2, .... Each Gh is composed of windows
spatially close and with a similar scale. We can now apply Eq. (8) on each Gh.
If E(Gh) = 1, then we compute the average rectangle b̄h using {bj}(bj,i)∈Gh

.
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Fig. 2. Some detection results of our system (right) and the Dalal and Triggs method
(left) on the MIT Traffic dataset (a) and the CUHK Square dataset (b). Black rect-
angles are false positives, white rectangles false negatives and blue rectangles true
positives.

Finally, b̄h is a positive window of our detector ensemble. Fig. 2 shows some
examples of results. The whole testing phase on a large 1152× 1440 image takes
about 3 seconds on a standard PC (non-parallelized and non-optimized code).

The proposed spatially-dependent majority vote rule is similar to the context
score used in [4,12] and in [21], which is based on a max-pool aggregation of the
detection scores produced by different classifiers on overlapping image windows.
However, in [4,12] the context score is then input to a context-score-based SVM
which needs to be trained with supervised data that we do not have (since Dt

is unlabeled). Similarly, in [21] the context score is linearly combined using the
pre-computed pairwise co-occurrence frequencies of different classifiers, which
need to be trained in a supervised manner.

5.1 Clustering Multiple Detections

Even if clustering of positive detection windows is a standard procedure for
object detection approaches, for completeness we briefly summarize here the
algorithm we adopted. We followed the well known approach described, for in-
stance, in [31]. Given a set of bounding boxes B = {b1, b2, ...}, B is partitioned
in disjoint subsets according to this simple relation: bi and bj are in the same
subset if the ratio of the intersection area over their union area is greater than
0.6. The parameter 0.6 is commonly adopted by many authors (e.g., [4,9]). The
algorithm’s output is the resulting partition. When used for Non Maxima Sup-
pression (NMS), for each cluster an average bounding box is also computed.

6 Experiments

We used the datasets and the experimental protocols adopted in [32] in order to
compare our approach with the methods and the results reported in the same
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article. A detection window is considered a true positive when the intersection
area with a ground truth bounding box over the union of the two rectangles is
at least 50% (PASCAL rule). The x-axis of the ROC curves is the number of
False Positive Per Image (FPPI).

Datasets. We used as target datasets the videos adopted in [32]: the MIT
Traffic dataset and the CUHK Square dataset (see Fig. 2 for some examples).
They are two videos of two different traffic scenes (respectively, 90 and 60 minutes
long), captured with a stationary camera in far field. In both videos there are
low resolution pedestrians, vehicles and frequent occlusions. In [32] 420 frames
were uniformly sampled from the first 45 minutes of the MIT Traffic video and
used for training, and other 100 frames were uniformly sampled from the last
45 minutes and used for testing. Similarly, 350 frames were uniformly sampled
from the first 30 minutes of the CUHK Square video and used for training
and other 100 frames were sampled from the last 30 minutes for testing. Note
that the authors in [32] provide annotations also for the train frames, but these
annotations were not used for training (neither by us nor by the other methods we
compare with). Indeed they are used only for testing purposes in a transductive
learning paradigm (testing is done on the same video used for training because
labeled data are not used). We adopted the same protocol, using the same frames
for training our system (i.e., collecting the candidate pedestrian set T , see Sec.
3: one T used for both CUHK Square Train and Test, and one T used for both
MIT Traffic Train and Test) and then we tested our approach on both the train
and the test frames (Fig. 3). Two different detector ensembles have been trained,
one on the MIT Traffic and the second on the CUHK Square dataset. In both
cases we used the INRIA dataset [7] as source dataset.

Parameter Setting. Few parameters need to be set in our approach because
we followed the standard setting of the common HOG+SVM approach proposed
in [7] for the training phase (Sec. 4.1) and we adopted the NMS setting of [4,9]
for the spatial cluster of the positive windows (Sec. 5.1). The number of positive
samples ng for each weak classifier (Sec. 4.1) was set to 400 (200 not considering
flipping) because of the low number of candidate pedestrians extracted by the
baseline detector in the target videos (a few hundreds per video). We believe that
our method can largely benefit of a possible higher number of initial candidates.
We used the first half of the CUHK Square Train frames as a validation set in
order to select the values of all the remaining parameters, such as k and M (Sec.
4.1) and we kept constant these parameters in all the experiments and across all
the target domains. We show below the effects of different choices for k and M
using the Test frames of the same target video.

Comparison with Other Methods. We compare our approach with other
state-of-the-art systems tested on the same datasets: Wang CVPR12 [32], Wang
CVPR11 [33], Nair CVPR 04, a modified version of [23] (see [32] for details)
and Dalal CVPR 05, the baseline HOG+SVM detector trained on INRIA which
we used for the initial candidate pedestrian extraction (Sec. 3). All the results,
except ours (called Statistical and Spatial Consensus Collection, SSCC) and
Dalal CVPR 05, have been taken from [32]. Note that in [32] the authors also
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use as a baseline a HOG+SVM detector but obtained different results. This
is probably due to the fact that we used the OpenCv implementation of the
Dalal and Triggs method. Moreover, for a fair comparison, we adopted for (Dalal
CVPR 05) the same NMS algorithm used in our system and described in Sec.
5.1. In fact we observed that our self-implemented NMS procedure gives better
results than the OpenCV NMS.

The results are shown in Fig. 3. The ROC curves are computed as follows. We
use a unique threshold τ for all the k classifiers’ confidence values discarding all
those detections dj (Sec. 5) whose SVM confidence is less than τ . Varying τ we
obtain different points on the ROC. Note that the classifiers’ confidences are not
used in Eq. (8). In fact Eq. (8) is simple and effective because it collects spatially-
close votes and it does not need supervised weight learning for combining the
classifiers’ confidences as it is necessary in [4,12,21]. ROC curves can also be
computed thresholding |G| without using confidences at all. However, since G is
usually small, we obtained only few ROC points using this method.

As it is clear from Fig. 3, we outperform all the other methods and the im-
provement is particularly sharp in the CUHK Square dataset. Specifically, the
(large) improvement with respect to our baseline detector (Dalal CVPR 05)
shows that the completely unsupervised method we proposed here for detector
adaptation in a specific scene can effectively obtain much better results than a
generic detector without any need of manual sample annotation. In the Supple-
mentary Material we show further experiments using these datasets.

Experiments on Different Parts of Our Method. In all the remaining
experiments we used the CUHK Square Test dataset. Tab. 1 shows the Aver-
age Precision (AP) difference between the full approach with an ensemble of 5
classifiers (SSCC-5) and the case in which a different number k of final classi-
fiers is selected (SSCC-k). Classifier selection is always performed using the loss
function of Eq. (6). (SSCC-1) is a single classifier: all the others are ensembles
in which an agreement is reached using Eq. (8). The results reported in Tab. 1
show that, with k > 1, the cardinality of the ensemble only marginally influences
the accuracy of the system, which is a good news, because it means that this
parameter does not need to be set using target data.

In the same table we report the results of a “standard”, non-spatially depen-
dent majority vote for the ensemble decision (see Sec. 5), which we call Standard
Ensemble Decision Rule (SEDR-5). The results for (SEDR-5) were obtained as
follows. We used exactly the same classifier ensemble E of (SSCC-5). The only
difference is at testing time, because in (SEDR-5) we collect the ensemble consen-
sus using the rule described in Eq. (7) instead of Eq. (8). More in details, for each
window b of the sliding window process, we extract its HOG representation f(b)
and we input f(b) to all the classifiers in E . Then we use the majority vote (Eq.
(7)) for computing the class of b. Positive windows are collected in a set B (note
that we do not need classifier indexes here) and NMS is applied as described
in Sec. 5.1. The improvement of (SSCC-5) over (SEDR-5) shows the advantage
of a spatially-dependent consensus collection for a detector ensemble based on
a sliding window image scan. Quite surprisingly, (SEDR-5) is even worse than
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(SSCC-1) (no ensemble): 0.4845 AP versus 0.4959 AP, respectively. We believe
that this is a consequence of the interaction with the NMS stage. In fact clas-
sifiers usually agree on neighbouring windows but rarely exactly on the same
window (Fig. 1(a)-1(b)). Consequently, the set B (Sec. 5.1) is more fragmented,
producing slightly more false positives. As an explanatory example, suppose the
best classifier (SSCC-1) outputs a cluster of positive windows around a true
pedestrian. If the other classifiers do not agree on the same windows, many of
them are discarded using Eq. (7). The subsequent NMS can produce different
clusters, some of which non-sufficiently overlapped with the true pedestrian.

Table 1. AP over the CUHK Test dataset with different ensembles and decision rules

SEDR5 SSCC1 SSCC3 SSCC5 SSCC7 SSCC9 SSCC11

0.4845 0.4959 0.5118 0.5184 0.5183 0.5172 0.5175

Table 2. AP over the CUHK Test dataset using different loss functions for classifier
selection

Precision Recall Error Random Random-1

0.5184 0.4750 0.4789 0.4494 (0.0232) 0.4382 (0.0408 )

In Fig. 1(c) we show how the AP of our method varies as a function of the
cardinality M of the classifier vocabulary V (Sec. 4.1). In this experiment, the
cardinality of the final ensemble is fixed (k = 5) and we always used the loss
function of Eq. (6) and the decision rule of Eq. (8). For every discrete value of M
we randomly pre-selectedM classifiers from our vocabulary V (before computing
their accuracy on S) and we averaged the results over 10 tests.

Finally, Tab. 2 shows the impact of using different loss functions when com-
puting the classifier’s error on S (Sec. 4.1). All the tested ensembles are composed
of 5 classifiers. The only difference is the loss function adopted for scoring their
accuracy. Precision indicates the approach presented in the other sections of this
paper, based on Eq. (6). Conversely, Recall is defined by:

L(Ci, S) = 1− TP

TP + FN
, (11)

where FN is the number of false negatives (missed detections of Ci on S) and
TP is the same as in Sec. 4.1. Error is based on:

L(Ci, S) = FP + FN. (12)

In Random we simply randomly chose 5 classifiers from the vocabulary V .
In case of Random, we repeated the experiment 10 times and the results were
averaged in order to decrease the variance of the outcome (in brackets the stan-
dard deviation). Tab. 2 motivates our choice in favour of Eq. (6). Random-1 was
computed as Random but using only one classifier (drawn at random from V ).
Comparing Random-1 with SSCC1 it is clear that using the source dataset for
selecting the best classifier(s) is of crucial importance.
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Fig. 3. ROC curves comparing our system (SSCC) with Wang CVPR12 [32], Wang
CVPR11 [33], Nair CVPR 04 [23] and Dalal CVPR 05 [7]. The datasets used are: the
MIT Traffic Train set (a), the MIT Traffic Test set (b), the CUHK Square Train set
(c) and the CUHK Square Test set (d) (better seen at a high magnification).

7 Conclusions

In this paper we proposed two novelties: (1) Transforming the problem of reject-
ing outliers from an unsupervised target training dataset in a classifier selection
problem using random subsets of the target data and a labeled source dataset
for verification. (2) A spatially-dependent decision rule for detector ensembles.
In contrast with most of the state-of-the-art people detector adaptation works,
our method does not rely on sophisticated heuristics or target-dependent param-
eters for the rejection of outliers. Conversely, our proposed approach allows a
simple yet effective and completely automatic construction of a small ensemble
of detectors from a very noisy initial bunch of images.

We tested our approach on difficult, low resolution videos obtaining a large
accuracy increment with respect to generic pedestrian detectors and state-of-
the-art detector adaptation methods.
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30. Vázquez, D., López, A.M., Ponsa, D.: Unsupervised domain adaptation of virtual
and real worlds for pedestrian detection. In: ICPR, pp. 3492–3495 (2012)

31. Viola, P., Jones, M.: Robust real-time face detection. Int. J. Computer Vision 57(2),
137–154 (2004)

32. Wang, M., Li, W., Wang, X.: Transferring a generic pedestrian detector towards
specific scenes. In: CVPR, pp. 3274–3281 (2012)

33. Wang, M., Wang, X.: Automatic adaptation of a generic pedestrian detector to a
specific traffic scene. In: CVPR, pp. 3401–3408 (2011)

34. Wang, X., Hua, G., Han, T.X.: Detection by detections: Non-parametric detector
adaptation for a video. In: CVPR, pp. 350–357 (2012)

35. Yang, J., Yan, R., Hauptmann, A.G.: Adapting svm classifiers to data with shifted
distributions, pp. 69–76. IEEE Computer Society (2007)

36. Zhang, C., Ma, Y.: Ensemble Machine Learning. Springer (2012)


	Statistical and Spatial Consensus Collection
for Detector Adaptation


	1 Introduction
	2 Related Work
	3 Collecting Candidate Pedestrians
	4 Transforming the Sample Selection Problem into a Classifier Selection Problem
	4.1 Training Details

	5 Spatial Consensus Collection
	5.1 Clustering Multiple Detections

	6 Experiments
	7 Conclusions
	References




