
Chapter 30
Verification of Hybrid Systems

Laurent Doyen, Goran Frehse, George J. Pappas, and André Platzer

Abstract Hybrid systems are models which combine discrete and continuous be-
havior. They occur frequently in safety-critical applications in various domains such
as health care, transportation, and robotics, as a result of interactions between a dig-
ital controller and a physical environment. They also have relevance in other areas
such as systems biology, in which the discrete dynamics arises as an abstraction of
fast continuous processes. One of the prominent models is that of hybrid automata,
where differential equations are associated with each node, and jump constraints
such as guards and resets are associated with each edge.

In this chapter, we focus on the problem of model checking of hybrid automata
against reachability and invariance properties, enabling the verification of general
temporal logic specifications. We review the main decidability results for hybrid au-
tomata, and since model checking is in general undecidable, we present three com-
plementary analysis approaches based on symbolic representations, abstraction, and
logic. In particular, we illustrate polyhedron-based reachability analysis, finite quo-
tients, abstraction refinement techniques, and logic-based verification. We survey
important tools and application domains of successful hybrid system verification in
this vibrant area of research.

L. Doyen
LSV, CNRS & ENS Paris-Saclay, Cachan, France

G. Frehse
Verimag, University Grenoble Alpes, Grenoble, France

G.J. Pappas
University of Pennsylvania, Philadelphia, PA, USA

A. Platzer (B)
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: aplatzer@cs.cmu.edu

© Springer International Publishing AG, part of Springer Nature 2018
E.M. Clarke et al. (eds.), Handbook of Model Checking,
DOI 10.1007/978-3-319-10575-8_30

1047

mailto:aplatzer@cs.cmu.edu
http://dx.doi.org/10.1007/978-3-319-10575-8_30

1048 L. Doyen et al.

30.1 Introduction

Information technology (IT) has dramatically changed our lives. The first revolution
in information technology led to the birth of the computer. The second informa-
tion technology revolution led to the creation of the Internet, connecting computing
around the world and resulting in the hyper-connected world that we live in. The
third revolution that is now taking place is connecting all the computational power to
the physical world. Computing powerhouses, such as Intel, are investing in wearable
computing and smart watches, Google has invested in self-driving cars and bought
Nest, the makers of a learning thermostat, thereby connecting Google to building
control and energy markets, and Amazon is investing in robotics and unmanned
aerial vehicles. Similarly the most significant innovation in automotive companies
recently came from software-intensive car technology, leading from adaptive cruise
control to driverless cars. There is a plethora of novel medical devices, either wear-
able or implantable, that sense patient vitals and use computer algorithms to diag-
nose medical conditions or even perform life-critical functions. The fundamental
aspect of this third revolution is the fusion of IT with physical devices that interact
with the physical world.

The marriage of IT with the physical world is known as embedded computing
as it consists of computing that is embedded and tightly interacts with the phys-
ical world. A major modeling challenge is how to formally capture the interac-
tion between computing and physics so that we can reason about the effect of
physics on computing and vice versa. This led to the development of hybrid systems
[8, 34, 35, 91, 132], where both discrete and continuous behaviors of the system are
important. Hybrid systems grew out of the necessity to enrich purely digital models
of computing with analog models of physics. As a result, hybrid systems contain
both digital models of computing (such as automata or programs) as well as ana-
log elements (such as differential equations) integrated in such a way that one can
model many embedded computing applications.

The need for formal models of hybrid systems arises from the fact that many
embedded computing problems are safety-critical. They arise in collision avoidance
protocols in air traffic control [31, 100, 113, 129, 149, 174–177], cruising controllers
for automotive vehicles [24, 46, 53, 62, 101, 114, 164, 168], obstacle avoidance al-
gorithms for autonomous ground robots [130, 182], and software-controlled medical
devices that actively regulate life-critical functions or help surgeons with surgical
robotic systems [104]. Therefore there is not only a need for formal models of em-
bedded computing, but also for rigorous verification approaches to guarantee that
the embedded computation, as modeled by a hybrid system, is formally safe. This
has resulted in the development of a new paradigm within the formal methods com-
munity, namely the formal verification of hybrid models of embedded computing.

There is a range of formal models for hybrid systems [8, 27, 29, 35, 52, 91, 118,
120, 131, 132, 134, 135, 143, 167, 179, 180], each with different advantages for
different purposes. This chapter focuses on hybrid automata [8, 91], because they
directly generalize the timed automata that have been considered in Chap. 29. The
basic idea in hybrid automata is to associate differential equations with the nodes of

30 Verification of Hybrid Systems 1049

an automaton. The automaton structure defines how and under which conditions the
system switches between the various differential equations and what happens to the
state if they switch. Timed automata, which are discussed in Chap. 29, are a special
case of hybrid automata, where all differential equations are of the form ẋ = 1 such
that x is a clock variable measuring the progress of time and additional linearity
assumptions are met for the switching conditions. Timed automata are an interest-
ing subclass of hybrid automata, because reachability is decidable in this subclass.
For systems with more general continuous dynamics, e.g., moving, acceleration, or
curving, however, timed automata are not sufficient, and hybrid systems models are
needed instead.

In this chapter, we give a survey of model-checking techniques for hybrid sys-
tems with an emphasis on the handling of continuous dynamics. It has been proved
that continuous dynamics verification is the most fundamental question in hybrid
systems verification [135, 141], because discrete dynamics can be verified exactly
as well as continuous dynamics.

In this section, we survey a set of complementary verification techniques for
hybrid systems, including explicit-state reachability computations with termination
criteria like bounded-horizon (Sect. 30.4, which is related to Chap. 5), abstraction
techniques and abstraction refinement loops (Sect. 30.5, also see Chap. 13), and
logic-based verification approaches (Sect. 30.6, which is related to Chaps. 2, 26,
20, and 15). Other surveys of several aspects of hybrid systems can be found in
the literature [7, 12, 39, 80, 103, 143, 163, 171, 172]. A control-theoretic view on
hybrid systems verification has been reported in a book by Tabuada [165]. A logic
and proofs view on hybrid systems verification can be found in a book by one of the
authors [137]. Introductions to embedded systems from a cyber-physical systems
perspective have been reported in the literature [111, 122] and in university courses.

Hybrid systems has become a very active and successful area of research with
a vibrant community. Giving a complete overview of all relevant approaches is im-
possible in this chapter, instead we focus on giving an overview of some of the most
important representative classes of techniques. By their very nature, hybrid systems
tend to be mathematically demanding, but they can also be exceedingly beautiful.
The broad applicability and scope of the resulting hybrid systems analysis tech-
niques make hybrid systems a very rewarding area of science with the potential for
significant impact on practical applications.

30.2 Basic Definitions

Hybrid systems combine discrete evolutions (namely, mode changes and variable
updates) and continuous evolutions through variables whose dynamics is governed
by differential equations. Hybrid system models have been introduced to deal with
such systems in a uniform way [8, 27, 29, 35, 52, 91, 118, 120, 131, 132, 134–
136, 167, 179, 180]. The original definitions are very general. In this chapter, we
focus on subclasses of particular interest. Timed automata are an important class
of hybrid automata for which safety verification is decidable (see Chap. 29). When

1050 L. Doyen et al.

continuous variables are subject to rectangular flow constraints, that is constraints
of the form ẋ ∈ [a, b], hybrid automata are called rectangular. For that subclass of
hybrid automata, there exists a reasonably efficient algorithm to compute the image
of a (simple) set. Based on this algorithm, there exists an iterative method that com-
putes the exact set of reachable states when it terminates. This semi-algorithm can
be used to establish or refute safety properties. On the other hand, if the evolution
of the continuous variables is subject to more complicated flow constraints, for ex-
ample affine dynamics like ẋ = 3x− y, computing the flow successor is much more
difficult and only approximate methods are known.

30.2.1 Predicates

Let X = {x1, . . . , xn} be a finite set of variables. Given a valuation v : X → R and
Y ⊆X, define v|Y : Y →R by v|Y (x)= v(x) for every x ∈ Y .

Definition 1 (Polynomial term) A polynomial term over a finite set of variables
X = {x1, . . . , xn} is an expression of the form y ≡∑i∈Nn aix

i1
1 . . . x

in
n where ai ∈Q

(i = (i1, . . . , in) ∈ N
n) are rational constants and almost all ai are zero. Given a

valuation v over X, we write [[y]]v for the real number
∑

i∈Nn aiv(x1)
i1 . . . v(xn)

in

obtained by evaluating the polynomial term at v. We denote by PTerm(X) the set of
all polynomial terms over the variables X.

Definition 2 (Polynomial constraint) A polynomial constraint over X (also known
as a semi-algebraic constraint) is a finite formula ϕ defined by the following gram-
mar rule:

ϕ ::= θ �� 0 | ϕ ∧ ϕ | ϕ ∨ ϕ

where θ ∈ PTerm(X) and ��∈ {<,≤,=,>,≥}. We denote by PConstr(X) the class
of polynomial constraints over the set of variables X.

Definition 3 Given a valuation v : X → R and a polynomial constraint ϕ ∈
PConstr(X), we write v |= ϕ and say that v satisfies ϕ, which we define inductively
as:

• v |= θ �� 0 if [[θ]]v �� 0,
• v |= ϕ1 ∧ ϕ2 if v |= ϕ1 and v |= ϕ2,
• v |= ϕ1 ∨ ϕ2 if v |= ϕ1 or v |= ϕ2.

We also write v ∈ [[ϕ]] when v |= ϕ. If v :X→R and w : Y →R are two valuations
for disjoint sets of variables X,Y (with X ∩ Y = ∅), we also write (v,w) ∈ [[ϕ]]
when u |= ϕ where u :X ∪ Y →R is defined such that u|X = v and u|Y =w.

Linear constraints are an Important special case of polynomial constraints. The
set of solutions of a linear constraint describes a set of polyhedra. This geometric

30 Verification of Hybrid Systems 1051

interpretation is sometimes used for model checking since image computations of
polyhedra can be quite efficient.

Definition 4 (Linear constraint) A linear term is a polynomial term of the form
y ≡ a0 +∑xi∈X aixi with ai ∈Q. We denote the set of all linear terms over X by
LTerm(X). A linear constraint is a polynomial constraint where all terms are lin-
ear. It is called conjunctive if it does not contain any disjunctions. We denote by
LConstr(X) the class of linear constraints over X and by LConstrc(X) the class of
conjunctivelinear constraints. The constraints true and false are defined as abbrevi-
ations in a standard way.

Definition 5 (Polyhedron) A set of valuations that can be defined by a conjunc-
tivelinear constraint is called a polyhedron, and a closed and bounded polyhedron is
called a polytope. We denote a polyhedron in its constraint representation as

P =
{

x

∣
∣
∣

m∧

i=0

aT
i x ��i bi

}

, with ��i∈ {<,≤,=,>,≥},1

where the ai ∈ Q
n are called facet normals and the bi ∈ Q

n constants. In vector-
matrix notation, this corresponds to

P = {x |Ax �� b}, with A=
⎛

⎜
⎝

aT
1
...

aT
m

⎞

⎟
⎠ , ��=

⎛

⎜
⎝

��1
...

��m

⎞

⎟
⎠ , b=

⎛

⎜
⎝

b1
...

bm

⎞

⎟
⎠ .

A closed polyhedron P ⊆ R
n can be represented by a pair (V ,R), called the

generators of P , where V ⊆Q
n is a finite set of vertices, and R ⊆Q

n is a finite set
of rays, with:

P =
{∑

vi∈V

λi · vi +
∑

rj∈R

μj · rj
∣
∣
∣ λi ≥ 0,μj ≥ 0,

∑

i

λi = 1

}

.

The representation can be extended with closure points to deal with non-closed
polyhedra [22].

There are algorithms for transforming one representation into the other, namely
the Fourier–Motzkin procedure (or quantifier elimination) for computing the sys-
tem of inequalities from the generators [55, 63], and Chernikova’s algorithm for
computing the generators from a set of predicates [44].

1xTy = ∑n
i=1 xiyi is the scalar product of n-dimensional vectors x = (x1, . . . , xn) and y =

(y1, . . . , yn).

1052 L. Doyen et al.

30.2.2 Hybrid Automata

We define hybrid automata with polynomial dynamics [6, 96].

Definition 6 (Hybrid automaton with polynomial dynamics) A hybrid automaton
H with polynomial dynamics is a tuple

〈Loc,Lab,Edg,X, Init, Inv,Flow, Jump,Final〉
where:

• Loc= {�1, . . . , �m} is a finite set of locations;
• Lab is a finite set of labels, including the silent label τ ;
• Edg⊆ Loc× Lab× Loc is a finite set of edges;
• X = {x1, . . . , xn} is a finite set of variables;
• Init : Loc→ PConstr(X) gives the initial condition Init(�) of location �. The au-

tomaton can start in � with an initial valuation v lying in [[Init(�)]];
• Inv : Loc→ PConstr(X) gives the evolution domain restriction Inv(�) (also called

the invariant) of location �. The automaton can stay in � as long as the values of
its variables lie in [[Inv(�)]];

• Flow : Loc → PConstr(X ∪ Ẋ) is the flow constraint, which constrains the evo-
lution of the variables in each location. In a location �, if the valuation of the
variables is v0 at time t = 0, then at time t ≥ 0, the value of the variables is φ(t)

where φ :R→R
X is such that the flow relation Flow(�)(φ(t), φ̇(t)) holds for the

flow φ(t) and its time-derivative φ̇(t), and φ(0)= v0.2

• Jump : Edg → PConstr(X ∪ X+) with X+ = {x+1 , . . . , x+n } gives the jump con-
dition Jump(e) of edge e. The variables in X+ refer to the updated values of the
variables after the edge has been traversed. Jump conditions are often conjunc-
tions of a guard and a reset constraint. There, the constraints purely on variables
in X are called guards, and the constraints that describe variables in X+ in terms
of variables in X are called updates or resets.

• Final : Loc → PConstr(X) gives the final condition Final(�) of location �. De-
pending on the analysis question at hand, final conditions can either specify the
unsafe states of the system or the desired states of the system.

The labels on edges can be used to synchronize hybrid automata in a composi-
tional design. In the rest of this chapter, we assume that a single automaton is to be
analyzed.

Example Figure 1 represents an affine automaton modeling a single gas-burner that
is shared for heating alternatively two water tanks. It has three locations �0, �1, �2
and two variables x1 and x2, the temperature in the two tanks. The gas-burner can

2Note that the semantics of flow constraints requires some attention, see differential-algebraic con-
straints [136].

30 Verification of Hybrid Systems 1053

Fig. 1 A shared gas-burner

Fig. 2 The evolution of the continuous variables of the shared gas burner example, starting from
location �1 with initial values x1 = 0 and x2 = 50

be either switched off (in �0) or turned on heating one of the two tanks (in �1 or �2).
The dynamics in each location is given by a combination of the predicates ONi and
OFFi (i = 1,2) where the constants ai model the heat exchange rate of the tank
i with the room in which the tanks are located, bi model the heat exchange rate
between the two tanks and hi depends on the power of the gas-burner. On every
edge of the automaton, we have omitted the condition x+1 = x1 ∧ x+2 = x2 also
written as stable(x1, x2) that asks that the values of the variables are maintained
when the edge is traversed. In the sequel, we fix the constants h1 = h2 = 2, a1 =
a2 = 0.01 and b1 = b2 = 0.005. The evolution of the continuous variables over time
is shown in Fig. 2. Starting in location �1, the burner heats up tank 1 until it reaches
a temperature of 100 degrees. Since the temperature of tank 2 is below 80 degrees,
the automaton takes edge toggle to location �2. Note that edge turnoff 1 cannot be

1054 L. Doyen et al.

taken since the evolution I (80,100) domain of the target location is not satisfied
by x2. In location �2, the burner heats up tank 2 until it reaches 100 degrees. Since
x1 is still above 80 degrees, the automaton takes edge turnoff 2 to location �0, where
the burner is off. It briefly remains here until x1 falls to 80 degrees, at which point it
takes edge turnon1 to location �1, where the burner heats up tank 1. The automaton
converges towards a limit cycle of heating tank 1, heating tank 2, and briefly turning
off the burner.

The definitions above define what a hybrid automaton consists of (flows, jumps,
initial regions, . . .) but they do not specify the behavior of a hybrid automaton or
how its state evolves over time. This is the purpose of defining a semantics for hybrid
automata by providing a transition system for each hybrid automaton.

Definition 7 (Semantics of hybrid automata) The semantics of a hybrid au-
tomaton H = 〈Loc,Lab,Edg,X, Init, Inv,Flow, Jump,Final〉 is the transition system
[[H]] = 〈S,S0, Sf ,Σ,→〉 where S = {(�, v) ∈ Loc×R

X | v ∈ [[Inv(�)]]} is the state
space, S0 = {(�, v) ∈ S | v ∈ [[Init(�)]]} is the initial space, Sf = {(�, v) ∈ S | v ∈
[[Final(�)]]} is the final space, the actions are Σ = Lab ∪ {time} (we assume that
time /∈ Lab) and the transition relation → contains all the tuples ((�, v), σ, (k,w))

such that:

• (discrete transition) either there exists e = (�, σ, k) ∈ Edg such that (v,w) ∈
[[Jump(e)]], or

• (continuous transition) �= k, σ = time and there exists an r ∈R
≥0 and a contin-

uously differentiable function ξ : [0, r] → R
X such that ξ(0)= v, ξ(r)= w and

(ξ(t), ξ̇ (t)) ∈ [[Flow(�)]] for all t ∈ [0, r] and ξ(t) ∈ [[Inv(�)]] for all t ∈ [0, r].
We call ξ a trajectory from v to w. We also write (�, v)

r−→ (k,w) to emphasize
that the continuous transition is of duration r . Usually Flow(�) is a differential
equation, in which case ξ is a solution of that differential equation.

We write (�, v)
σ−→ (k,w) if → contains the tuple ((�, v), σ, (k,w)).

A state q = (�, v) ∈ S is reachable if there exists a finite path q0σ0q1σ1 . . . σn−1qn

where q0 ∈ S0, q = qn, and (qi, σi, qi+1) ∈→ for all 0 ≤ i < n. This path gener-
ates the word σ̄ = σ0σ1 . . . σn−1 ∈ Σ∗. If q ∈ Sf is final, we say that the word σ̄

is accepted by H . The set of words that are accepted by H is the language of H ,
denoted L(H). The set of reachable states of [[H]] is denoted by Reach([[H]]). The
transition system [[H]] is safe if Reach([[H]])∩ Sf = ∅.

Safety Verification Problem. Many verification problems for hybrid systems re-
duce to the safety problem for hybrid automata.

Definition 8 (Safety verification problem for hybrid automata) Given a hybrid au-
tomaton H , the safety verification problem for hybrid automata asks whether [[H]]
is safe.

A parameter in a hybrid automaton is a variable which has first derivative 0 in
every location and is never modified by discrete transitions. The parametric safety

30 Verification of Hybrid Systems 1055

verification problem for hybrid automata asks, given a hybrid automaton H and a
parameter p in H , whether there exists a value vp ∈ R such that [[Hp=vp]] is safe,
where Hp=vp is obtained by replacing every constraint ϕ in H by ϕ ∧ (p = vp).

Remark There would be no loss of generality in assuming that there is a location
�bad such that Final(�bad)= true and Final(�)= false for all � �= �bad. Indeed, to re-
duce any hybrid automaton to this form, it suffices to add transitions e� = (�, σ, �bad)

with Jump(e�) = Final(�) for each � ∈ Loc, and to substitute Final(�) with false
for each � �= �bad.

30.3 Decidability and Undecidability Results

We review the most important results about the decidability of the safety verification
problem for subclasses of hybrid automata. Details and proofs can be found in the
given references.

Safety Verification Problem. The safety verification problem is decidable only for
restricted classes of hybrid automata. The main classes for which safety verification
is decidable are timed automata (see Chap. 29), initialized rectangular automata, and
o-minimal hybrid automata [108]. The safety verification problem is undecidable
already for the class of rectangular hybrid automata (and therefore also for linear,
and affine hybrid automata).

A rectangular predicate over X is an expression of the form a ≺ x ≺ b where
x ∈X, ≺∈ {≤,<}, and a ≤ b define a nonempty (possibly unbounded) interval with
endpoints a, b ∈Q ∪ {−∞,∞}. Rectangular hybrid automata are hybrid automata
where (i) the flow constraint in each location � is a conjunction of rectangular predi-
cates over Ẋ, (ii) the initial, final, and evolution domain conditions are conjunctions
of rectangular predicates over X, and (iii) the jump condition of every edge is a
conjunction of rectangular predicates over X+ and expressions of the form x+ = x

for x ∈ X. A hybrid automaton is initialized if for every edge e = (�, σ, k) and
for every variable x such that {v(ẋ) | v ∈ [[Flow(�)]]} �= {v(ẋ) | v ∈ [[Flow(k)]]}, it
holds that the set updatex

e (v)= {w(x+) | (v,w) ∈ [[Jump(e)]]} does not depend on
the valuation v (i.e., updatex

e (v) = updatex
e (v

′) for all valuations v, v′). In words,
whenever the flow condition is changed for a variable x by a discrete transition e,
then this variable is (nondeterministically) reinitialized to a new value in updatex

e

that is independent of the previous value.
The following decidability result is obtained by a translation of initialized rectan-

gular hybrid automata to timed automata, preserving safety (see also Sect. 30.5.1).

Theorem 1 ([96]) The safety verification problem is decidable for initialized rect-
angular hybrid automata (and therefore also for timed automata).

The safety verification problem remains decidable for various extensions of
timed automata. For instance, if diagonal constraints of the form x − y �� c for

1056 L. Doyen et al.

x, y ∈ X,��∈ {<,≤,=,>,≥}, and c ∈Q are allowed in guards, or if assignments
of the form x+ = y are allowed in updates, then the safety verification problem
is still decidable [11, 33]. The decidability result for safety verification, useful for
model checking, can be extended to the controller synthesis problem, solved as a
game. We refer to Chap. 29 for games on timed automata, and mention the decid-
ability of discrete-time control for rectangular hybrid automata [95].

The safety verification problem becomes undecidable for automata with rectan-
gular flow constraints.

Theorem 2 ([96]) The safety verification problem is undecidable for rectangular
hybrid automata (and therefore also for linear, and affine hybrid automata).

Note that the class of initialized rectangular hybrid automata (for which safety
verification is decidable) have a finite language-equivalence quotient [94, 156]. The
special case of initialized rectangular hybrid automata with only two variables even
has a finite similarity quotient [94], and the class of timed automata has finite bisim-
ilarity quotient (see also Chap. 29).

The result of Theorem 2 has been refined in several directions [96]. The prob-
lem is undecidable even if there is a single variable x with two different slopes,
i.e., there exist k1, k2 ∈Q with k1 �= k2 such that in every location �, either Flow(�)

implies ẋ = k1, or Flow(�) implies ẋ = k2. The undecidability result holds for all
fixed rational constants k1 �= k2. The problem is also undecidable if diagonal con-
straints or assignments of the form x+ = y are allowed, and one variable has slope
k �= 1. There are extremely simple classes of hybrid systems, stopwatch automata,
i.e., timed automata with only differential equations of the form ẋ = 1 and ẋ = 0,
that are already undecidable [40] (see also Chap. 29). The variant of time-bounded
safety verification asks whether, given a time bound T , there exists a final state
reachable within a total duration of T time units. This problem is also undecid-
able for general rectangular hybrid automata, but it is decidable for a larger class
than plain safety verification, namely for rectangular hybrid automata with mono-
tone dynamics (the rate of every variable is either always non-negative, or always
non-positive [36]).

Note that while differential equations define single continuous executions, the
safety verification problem has been considered under various perturbed semantics
with finite precision where drifting executions or tubes of executions are considered.
It turns out that the undecidability result of Theorem 2 is mostly robust [97], but
some decidability results can be obtained [23, 57, 64, 155].

Systems between timed and hybrid automata may remain decidable, e.g., weigh-
ted timed automata [15, 25]. Even systems with piecewise constant derivatives
quickly become undecidable for dimension three [21]. On the other hand, if the
discrete and the continuous parts of a hybrid system are completely independent of
each other, the system falls apart into separate continuous systems, so that reacha-
bility becomes decidable for certain classes of linear differential equations [108].

Parametric Safety Verification Problem. If parameters are allowed only in the
jump conditions of the edges, then it can be shown that the parametric safety veri-

30 Verification of Hybrid Systems 1057

fication problem is decidable for timed automata with one clock [14, 124], and un-
decidable for timed automata with one parameter and (i) three clocks (all of which
being possibly constrained by the parameter) [124], or (ii) four clocks, but only
one is compared with the parameter [124]. These undecidability results require the
use of equalities in jump conditions. An undecidability result is known for open
timed automata (in which all guards are open sets, thus forbidding equality con-
straints) with two parameters and five clocks (among which two are compared with
the parameters) [59]. If parameters are allowed in the flow constraints, then it can be
shown that the parametric safety verification problem is undecidable for rectangular
automata with three variables and one parameter [181].

Computability and Polynomial Constraints. A frequent misconception about
the definition of hybrid automata is that they should allow an arbitrary subset
Init(�) ⊆ R

n of the real numbers as initial region for each location �, an arbitrary
subset Inv(�) ⊆ R

n as evolution domain restriction, arbitrary relation Flow(�) ⊆
R

n×R
n as flow constraints, arbitrary relation Jump(e)⊆R

n×R
n jump conditions,

and an arbitrary subset Final(�)⊆R
n as final conditions. Generalizations like these

have been suggested in the literature numerous times. They are useful as mathemat-
ical models, but not for any computational or verification purpose. It is important to
understand why.

We can only obtain meaningful model-checking results for a hybrid automaton
if we can describe the hybrid automaton (e.g., as an input file in a computer for
the model checker). There is no way to describe arbitrary sets Init(�), Inv(�)⊆ R

n,
Jump(e)⊆ R

n ×R
n, etc. as inputs, because there are uncountably many such sets,

but model checkers accept only finite input files from a countable set of inputs.
Moreover, even for cases where there is some description of those sets, we still

need to equip the model checker with a way to decide membership in those sets.
Suppose some model-checking algorithm worked hard to find out that the hybrid
automaton will be unsafe when started in a particular state ν ∈R

n. Then, the model
checker still needs to find out whether the hybrid automaton allows ν as an initial
state or not. That is, we need to give the model checker a way of deciding whether
ν ∈ Init(�) for any location � ∈ Loc. Mathematically, this is a simple set inclusion and
looks trivial. But that does not mean there is a computer program that can decide
whether ν ∈ Init(�) or ν /∈ Init(�). For arbitrary sets Init(�) ⊆ R

n, this is impossi-
ble by classical results on the limits of computation due to Turing, Church, Gödel,
and others. The Mandelbrot set is an example of such a set Init(�) for which it is
impossible to decide membership even in a very strong model of real computation
[32].

Similar observations hold for all the other parts of hybrid automata. Conse-
quently, we have to assume more structure on Init(�) and all the parts of the def-
initions of hybrid automata. This is the reason why it is crucial that Definition 6
requires hybrid automata to be described in a definable way. Definition 6 requires
hybrid automata to be described by polynomial constraints with rational coefficients,
which are representable on a computer, unlike constraints with arbitrary real coef-
ficients. This also explains why it is critical to restrict polyhedra to rational coeffi-
cients in Definition 5.

1058 L. Doyen et al.

It should be noted that these observations about the requirements on hybrid au-
tomata are crucial for all model checkers, whether they try to decide fragments
or semidecide fragments or whether they just strive to approximately answer the
reachability problem. Fundamental limits of computation that represent the numer-
ical analogue of the halting problem otherwise cause strong undecidabilities even
for approximate answers [147], unless additional assumptions are imposed on the
hybrid automata [51, 147].

30.4 Set-Based Reachability Analysis

There are two kinds of events that can take place in a hybrid automaton: time can
pass with the state evolving according to the flow constraints, or a jump can take
the system instantaneously to a new state. Starting from the initial states, set-based
reachability analysis exhaustively computes the successor states for both time elapse
and jumps in alternation until this no longer produces any new states. Since this
process might not terminate (see decidability results in Sect. 30.3), an a priori limit
on the search depth is sometimes imposed. The search depth is usually counted in
the number of jumps and, in analogy to discrete automata, this is referred to as
bounded model checking.

Reachability computation can be seen as a generalization of numerical simu-
lation. In numerical simulation, one picks an initial state and tries to compute a
successor state that lies on one of the solutions of the corresponding flow constraint
and also satisfies one of the jump conditions (some intermediate points along the
trajectory are usually kept as well). Then one picks one of the successor states of
the jump and repeats the process. Like numerical simulation, reachability analy-
sis directly follows the transition semantics of hybrid automata (Definition 7), but
considers sets of states instead of single states.

Just like numerical simulation, reachability computation has to use approxima-
tions if the dynamics of the system are complex. Working with sets instead of points,
approximate reachability can be conservative in the sense that the computed sets are
sure to cover all solutions. Computation costs generally increase sharply in terms
of the number of continuous variables. Scalable approximations are available for
certain types of dynamics, as discussed later in this section, but this performance
comes at a price in accuracy. The trade-off between runtime and accuracy remains
a central problem in reachability analysis. Surveys of reachability techniques for
hybrid automata can be found, e.g., in [7, 117, 119, 165].

30.4.1 Reachability Algorithm

The standard method to compute the reachable states is to iterate the following
one-step successor operators for discrete and continuous transitions. Given a set

30 Verification of Hybrid Systems 1059

of states S, let PostC(S) be the set of states reachable by letting time elapse from
any of the states in S,

PostC(S)= {(�,w)
∣
∣ ∃(�, v) ∈ S : (�, v)

time−−→ (�,w)
}
.

Let PostD(S) be the set of states resulting from taking a discrete transition from any
of the states in S,

PostD(S)= {(k,w)
∣
∣ ∃(�, v) ∈ S,∃σ ∈ Lab : (�, v)

σ−→ (k,w)
}
.

The reachable states are obtained by applying PostC(S) and PostD(S) repeatedly
and recording all states that are obtained. The basic algorithm for forward reacha-
bility computes the following sequence, starting from the initial states:

R0 =
{
(�, v)

∣
∣ v ∈ [[Init(�)

]]}
,

Ri+1 = Ri ∪ PostC(Ri)∪ PostD(Ri) for i = 0,1,2,

The algorithm terminates when a fixed point is reached, i.e., when Ri+1 = Ri for
some i ≥ 0 (note that Ri ⊆ Ri+1 for all i ≥ 0). This simple algorithm does not nec-
essarily terminate, even for systems where reachability is decidable. For example,
a system with an (unbounded) counter would enter a new state at each iteration
such that the fixed point is never reached. Abstraction techniques such as widening
[22, 86] are used in program analysis to ensure termination, and while they have
been applied to hybrid systems with simple dynamics [92] it is difficult to obtain
finite-state abtractions for more general cases.

Reachability with Symbolic States. A semi-algorithm used frequently for reacha-
bility of hybrid automata is shown as Algorithm 1. The states of the hybrid automa-
ton H are represented by finite sets of symbolic states (�,P), where � ∈ Loc and P

is a set of continuous states in a suitable set representation such as polyhedra. The
set of states corresponding to such a set R = {(�1,P1), (�2,P2), . . .} is

[[R]] = {(�, v)
∣
∣ ∃(�,P) ∈R : v ∈ P

}
.

If H is safe, Algorithm 1 computes the reachable states by iterating one-step suc-
cessor computations on such a set R, without guarantee of termination. If H is not
safe, the procedure will eventually stop when a nonempty intersection of R with the
final states is found. A similar semi-algorithm implements the backward approach
by iterating a one-step predecessor operator. Other approaches are possible such as
mixed forward-backward, where the forward and backward algorithms are executed
in an interleaved fashion [92]. All these variations are semi-algorithms since the
problem is undecidable.

The one-step successors PostC(S) and PostD(S) are implemented for symbolic
states by enumerating over locations and transitions, respectively, using the follow-
ing operators. The continuous successors of a set of continuous states P in a location

1060 L. Doyen et al.

Algorithm 1: A reachability semi-algorithm using symbolic states
Input : A hybrid automaton H = 〈Loc,Lab,Edg,X,Init,Inv,Flow,Jump,Final〉.
Output: If H is safe then SAFE else UNSAFE.
begin

Bad ←{(�, [[Final(�)]]) | � ∈ Loc} ;
R←{(�,post�([[Init(�)]])) | � ∈ Loc} ;
Rold ←∅ ;
while [[R]]� [[Rold]] do

Rold ←R ;
R←{(�,post�(postε(P))) | (�,P) ∈R ∧ ε = (�, σ, k) ∈ Edg} ;
if [[R]] ∩ [[Bad]] �= ∅ then return UNSAFE;

return SAFE ;
end

� is the set of continuous states

post�(P)= {x′ ∣∣ ∃x ∈ P : (�, x)
time−−→ (

�, x′
)}

.

Similarly, the discrete successors of a set of continuous states P for an edge ε =
(�, σ, k) is the set of continuous states

postε(P)= {x′ ∣∣ ∃x ∈ P : (�, x)
σ−→ (

k, x′
)}

.

Formally, the one-step successors of a set of symbolic states R are expressed using
the above operators as

PostC
([[R]]) = [[{(�,post�(P)

) ∣
∣ ∃(�,P) ∈R

}]]
,

PostD
([[R]]) = [[{(k,postε(P)

) ∣
∣ ∃(�,P) ∈R,ε = (�, σ, k) ∈ Edg

}]]
.

In the following, we discuss the above successor operators post�(P), postε(P)

for different classes of hybrid automata with increasingly complex continuous dy-
namics. We will focus mainly on computing time elapse successors, since this
operation usually dominates costs. Other operations of the reachability algorithm
may also become bottlenecks, e.g., computing the discrete successors, containment
checking, and clustering.

30.4.2 Piecewise Constant Dynamics

Hybrid automata with piecewise constant dynamics (PCDA) are a special case of
hybrid automata with polynomial dynamics (Definition 6), where all constraints are
conjunctivelinear and the flow constraints are linear predicates over dotted variables

30 Verification of Hybrid Systems 1061

only. That is, the derivatives of the variables are independent of the current continu-
ous state. They are also called linear hybrid automata (LHA), where the term linear
refers to trajectories instead of dynamics (they do not allow the linear dynamics dis-
cussed in the next section). In order to avoid possible confusion resulting from this
terminology, we prefer the name PCDA.

Definition 9 (Hybrid automaton with piecewise constant dynamics) A hybrid au-
tomaton H = 〈Loc,Lab,Edg,X, Init, Inv,Flow, Jump,Final〉 with polynomial dy-
namics is called a hybrid automaton with piecewise constant dynamics iff:

• Init, Inv, Final are conjunctivelinear constraints over X,
• Flow are conjunctivelinear constraints over Ẋ, and
• Jump are conjunctivelinear constraints over X ∪X+.

PCDA are of particular interest in formal verification because the one-step suc-
cessors can be computed exactly, which is not the case for the more complex dy-
namics discussed in later sections.

Examples of flow constraints of a PCDA include differential inclusions such as
ẋ ∈ [1,2], and conservation laws such as ẋ+ ẏ = 0. The jump constraints of a PCDA
admit arbitrary linear updates of the variables, which can generate complex behav-
ior. For example, PCDA can model discrete-time affine systems, a widely used class
of control systems, by using jump constraints of the form x+ =Ax+ b. Chaotic be-
havior can arise in PCDA due to switching flows [42] or guarded jumps, with which
one can model piecewise affine maps such as the tent map [48].

Continuous Successors. In the following, we discuss computing the states reach-
able by time elapse in a given location � of a PCDA and write x as shorthand for
the state (�, x). By definition, a trajectory can be an arbitrarily curved function as
long as it is differentiable and satisfies both flow constraints and evolution domain
restrictions. For the purposes of reachability, it suffices to consider only straight-line
trajectories of PCDA, as formalized in the following lemma.

Lemma 1 ([13]) In any given location of a PCDA, there is a trajectory ξ(t) from
x = ξ(0) to x′ = ξ(r) for some r > 0 iff η(t)= x + qt with q = x′−x

r
is a trajectory

from x to x′.

Using this lemma, we now show that the states reachable by time elapse from
a polyhedral set of states P are given by the union of P with a polyhedron that is
readily computable [8, 28]. Consider polyhedra P and Q. The states on straight-line
trajectories starting in P with constant derivative ẋ = q for any q ∈Q are the time
successors

P↗Q= {x′ ∣∣ x ∈ P,q ∈Q, t ∈R
≥0, x′ = x + qt

}
. (1)

We now transform the right-hand term of (1) into a linear constraint. Let P and Q

be polyhedra given in vector-matrix form as P = {x | Ax �� b}, Q= {q | Āq �̄� b̄}.

1062 L. Doyen et al.

Fig. 3 Given a polyhedron P and a polyhedral set of derivatives Q, the time successors P↗Q

can be a convex set that is not a single polyhedron but the union of P with another polyhedron

By separating the case t = 0 from t > 0 in (1) we have q = x′−x
t

. Eliminating q and
multiplying with t yields

P↗Q= P ∪ {x′ ∣∣Ax �� b ∧ Ā
(
x′ − x

) �̄� b̄ · t ∧ t > 0
}
. (2)

The right-hand term of the union in (2) is a polyhedron that can be computed by
quantifier elimination over X ∪ {t} using, e.g., Fourier–Motzkin elimination. If Q

is closed and bounded, the constraint t > 0 in (2) can be replaced by t ≥ 0, so the
right-hand term contains P and P↗Q becomes a single polyhedron. The following
example illustrates that P↗Q can be the union of two polyhedra.

Example 1 For P = {x1 = 0∧ x2 = 0}, and Q, Q′ given in Fig. 3, (2) yields

P↗Q = P ∪ {(x′1, x′2
) ∣
∣ x1 = 0∧ x2 = 0∧ x′1 − x1 = t ∧ x′2 − x2 ≤ t ∧ t > 0

}

= P ∪ {(x′1, x′2
) ∣
∣ x′1 = t ∧ x′2 ≤ t ∧ t > 0

}

= P ∪ {(x′1, x′2
) ∣
∣ x′1 > 0∧ x′2 ≤ x′1

}
.

Here, the closed but unbounded set Q results in a convex set P ↗Q that is not a
polyhedron but the union of two polyhedra. Similarly, the bounded but non-closed
set Q′ results in P↗Q′ = P ∪ {x′1 > 0∧−x′1 ≤ x′2 < x′1}, which is also convex and
not a polyhedron.

The time successor operation can also be carried out using geometrical operations
on the polyhedra P and Q as shown in Fig. 4 [86]. The positive cone of Q is the
polyhedral set pos(Q)= {q · t | q ∈Q, t > 0}. The time successors are given by the
Minkowski sum3 of P and the positive cone of Q,

P↗Q= P ∪ (P ⊕ pos(Q)
)
. (3)

If P and Q are closed with generator representation (V ,R) and (V ′,R′), respec-
tively, then a generator representation of P↗Q is (V ,R ∪ V ′ ∪R′).

3The Minkowski sum is defined as P ⊕Q= {p+ q | p ∈ P,q ∈Q}.

30 Verification of Hybrid Systems 1063

Fig. 4 The time successors
P↗Q using geometric
operations on polyhedra P

and Q

It remains to ensure that the time successors are reachable by trajectories that
satisfy Inv(�). Assuming that P ⊆ [[Inv(�)]], this restriction reduces to x′ ∈ [[Inv(�)]]
since [[Inv(�)]] is convex and only straight line trajectories need to be considered.
This leads us to the following discrete successor operator for PCDA.

Lemma 2 ([8]) The continuous successors of a polyhedron P in a location � of a
PCDA H is the set:

post�(P)= (P↗[[
Flow(�)

]])∩ [[Inv(�)
]]
.

Discrete Successors. The discrete successors of a polyhedron P for an edge ε =
(�, σ, k) of a PCDA H is the set:

postε(P)= {x+ ∣∣ ∃x ∈ P : (x, x+
) ∈ [[Jump(ε)

]] ∧ x+ ∈ [[Inv(k)
]]}

.

This set is defined using existential quantification, and computing it may require
costly quantifier elimination. Frequently occurring special cases can be computed
more efficiently. As an example, consider Jump(e) given by a guard x ∈ G and a
reset x+ = Cx + d , with a constant matrix C and a vector d of appropriate dimen-
sions. The discrete successors are

postε(P)= (C(P ∩G)⊕ {d})∩ [[Inv(k)
]]
. (4)

If C is invertible and all sets are polyhedra in constraint representation, the com-
putation is straightforward since intersection corresponds to concatenation of con-
straints, and for any polyhedron Q= {x |Ax �� b},

CQ⊕ {d} = {x ∣∣AC−1x �� b+C−1d
}
.

Computational Cost. Computing the continuous successors using (3) involves the
cone, Minkowksi sum, and intersection operations, for details see [22, 86]. The cone
and Minkowski sum are efficient only in the generator representation of a polyhe-
dron (see Definition 5). The intersection operation is efficient only in constraint
representation. Translating the polyhedron from constraints to generators and vice
versa can produce a number of generators that is exponential in the number of vari-
ables. For example, consider that an n-dimensional cube has 2n constraints and 2n

vertices. Dually, an n-dimensional cross-polytope (hyperoctahedron) has 2n ver-
tices and 2n constraints. In total, the cost of computing the continuous successors is
exponential in the number of variables. Tools such as HyTech and PHAVer use the

1064 L. Doyen et al.

geometric version (3) of the time successor operator since in practice it is often more
efficient than quantifier elimination [87]. The operator is available in computational
geometry libraries such as the Parma Polyhedra Library (PPL) [22].

The cost of computing the discrete successors is exponential for polyhedra in
constraint representation since it involves quantifier elimination. For some fre-
quently occurring special cases the cost is polynomial, e.g., in the case of (4) with
invertible map.

The containment and emptiness tests in Algorithm 1 are carried out pairwise over
the elements of sets of symbolic states. The containment test P ⊆ Q is solvable
with linear programming (and thus in polynomial time) if P,Q are in constraint
representation.4 The emptiness test P = ∅ is solvable as a linear program if P is in
constraint representation and trivial if P is in generator representation.

Path Constraints. A path of a hybrid automaton is a sequence of adjacent edges
(usually from an initial to a final location). An interesting property of PCDA is that
the reachable states along a given path can be encoded by a conjunction of linear
constraints, the so-called path constraints. The reachability problem for a given path
can therefore be solved very efficiently using linear programming. This approach
has been implemented in the tool BACH [37]. The number of paths in a PCDA
can be infinite if there are cycles, so techniques such as CEGAR have been used to
reduce the number of paths to be checked and accelerate termination [162].

30.4.3 Piecewise Affine Dynamics

Hybrid automata with piecewise affine dynamics (PWA) are a special case of hybrid
automata with polynomial dynamics (Definition 6), where all constraints are linear
and the flow constraints are linear ordinary differential equations (ODEs). We divide
the continuous variables into state variables X = {x1, . . . , xn}, whose derivative is
explicitly defined, and input variables U = {u1, . . . , um}, whose derivative is un-
constrained. The input variables can be used to model nondeterminism such as open
inputs to the system, approximation errors, disturbances, etc.

In each location of a PWA, the continuous dynamics are affine, i.e., given by
differential equations of the form

ẋ =Ax +Bu, u ∈ U , (5)

where A and B are matrices of appropriate dimension and the input set U is compact
and convex. Note that differential inclusions like ẋ ∈ U and Ax − b ≤ ẋ ≤ Ax + b

can be brought into this form by introducing auxiliary variables. Similarly, jump
constraints of an edge e define resets of the form

x+ = Cx +Du, (6)

4Checking P ⊆ Q is polynomial unless P is in constraint representation and Q is in generator
representation, in which case it is known to be NP-complete [71].

30 Verification of Hybrid Systems 1065

where x+ denotes the value of x after the jump, u is defined as above and C and
D are matrices of appropriate dimension. The jump constraints also define a set G
called the guard of the edge, and a jump can only take place if x ∈ G. The formal
definition of PWA is as follows.

Definition 10 (Hybrid automaton with piecewise affine dynamics) A hybrid au-
tomaton with piecewise affine dynamics is a hybrid automaton H = 〈Loc,Lab,Edg,

X ∪U, Init, Inv,Flow, Jump,Final〉 where

• Init and Inv are conjunctivelinear constraints over X.
• Inv are conjunctivelinear constraints over X∪U , such that each linear term ranges

over variables exclusively from either X or U (no correlation between state and
input variables). The input set U of a location � is given by the terms of Inv(�)
that range over U and must be closed and bounded.

• Flow are constraints over Ẋ ∪X ∪U of the form ẋ =Ax +Bu.
• Jump are conjunctivelinear constraints over X+∪X∪U whose terms either range

over X or are of the form x+ = Cx +Du. The guard set G of an edge e is given
by the terms of Jump(e) that range over X.

The reachable states of a PWA can be computed using Algorithm 1 from
Sect. 30.4.1, with suitable operators post� for continuous and poste for discrete suc-
cessors that will be presented in the following section.

30.4.3.1 Successor Computations

The successor computations for affine dynamics can be approximated by sequences
of geometric set operations. We first present such a sequence for the continuous
successors, then give the equation for the discrete successors. Different set repre-
sentations can be used to implement these operations, and a selection are discussed
in the subsequent Sect. 30.4.3.2.

Continuous Successors. In the following, we discuss how to compute the states
reachable by time elapse in a given location �. Since � is clear from the context we
call x a (continuous) state. We will initially ignore any evolution domain restriction
on x and discuss it after the basic construction has been presented. The evolution
of the input variables is described by an input signal ζ : R≥0 → U that attributes
to each point in time a value of the input u. The input signal does not need to
be continuous. A trajectory ξ(t) from a state x0 is the solution of the differential
equation (5) for initial condition ξ(0) = x0 and a given input signal ζ . It has the
form

ξx0,ζ (t)= eAtx0 +
∫ t

0
eA(t−s)Bζ(s)ds. (7)

It consists of the superposition of the solution of the autonomous system, obtained
for ζ(t) = 0, and the input integral obtained for x0 = 0. In the following, this de-
composition of (7) will be exploited to obtain efficient and accurate approximations.

1066 L. Doyen et al.

Fig. 5 A sequence of sets
Ω0,Ω1, . . . that covers Xt

over a finite time horizon T .
The choice of set
representation for Ωk

(illustrated here by ellipsoids)
has a substantial impact on
accuracy and computational
complexity

A state x′ is reachable from some initial set of states X0 in time t if for some x0 ∈X0
and some ζ , x′ = ξx0,ζ (t). We now describe the reachable states as sets using (7).
Let Xt be the states reachable in time t from any state in X0 and let Yt be the states
reachable from X0 = {0}, then (7) can be written as

Xt = eAtX0 ⊕Yt . (8)

The goal is to conservatively approximate the reachable states over some finite
time horizon T , i.e., to compute a finite sequence of sets Ω0,Ω1, . . . such that

⋃

0≤t≤T

Xt ⊆Ω0 ∪Ω1 ∪ (9)

We present the construction of a sequence of Ωk for a fixed sampling time δ > 0
such that Ωk covers Xt for t ∈ [kδ, (k + 1)δ], as illustrated in Fig. 5. The so-called
semi-group property of reachability says that, starting from Xs , for any s ≥ 0, and
then waiting r time units leads to the same states as starting from X0 and waiting
r + s time units. Applying this to (8), we obtain that for any r, s ≥ 0,

Xr+s = eArXs ⊕Yr . (10)

Substituting r ← δ, s ← kδ, we obtain a recursive time discretization in the form of

X(k+1)δ = eAδXkδ ⊕Yδ.

It follows that if we have initial approximations Ω0 and Ψδ such that
⋃

0≤t≤δ

Xt ⊆Ω0, Yδ ⊆ Ψδ, (11)

then the sequence

Ωk+1 = eAδΩk ⊕Ψδ (12)

satisfies (9). Note that Ω0 covers the reachable set over an interval of time [0, δ],
while Ψδ covers the values of the input integral at a single time instant δ.

Computing Initial Approximations Ω0 and Ψδ . The set Ω0 needs to cover Xt

from t = 0 to t = δ. A good starting point for such a cover is the convex hull of

30 Verification of Hybrid Systems 1067

Fig. 6 An approximation Ω0
that covers Xt for t ∈ [0, δ]
can be obtained from the
convex hull of X0 and Xδ by
enlarging it enough to
compensate for the curvature
of trajectories

X0 and Xδ . One approach, shown in Fig. 6(a), is to compute the convex hull in
constraint representation, and push the facets out far enough to be conservative [81].
The required values can be computed from a Taylor approximation of (7) [19], or
by solving an optimization problem [45]. Note that the cost of computing the exact
constraints of the convex hull can be exponential in the number of variables, which
limits the scalability of this approach.

A scalable way to obtain Ω0 is to bloat X0 and Xδ enough to compensate for
the curvature of trajectories [75], as illustrated in Fig. 6(b). We present the approach
from [75], which uses uniform bloating and whose approximation error is asymp-
totically linear in the time step δ as δ → 0. This is asymptotically optimal for any
approximation containing the convex hull of X0 and Xδ [110]. The bloating can
be made non-uniform in space and time to obtain a more precise approximation
[68, 110]. The bloating factor is derived from a Taylor approximation of (7), whose
remainder is bounded using norms. To formalize the above statements, we use the
following notation. Let ‖·‖ be a vector norm and let ‖A‖ be its induced matrix
norm.5 Let μ(X) = maxx∈X ‖x‖ and let B be the unit ball of the norm, i.e., the
largest set B such that μ(B)= 1. For a scalar c, let cX = {cx | x ∈X }. The approx-
imation error is measured using the Hausdorff distance between sets X ,Y ,

dH (X ,Y)=max
{

sup
x∈X

inf
y∈Y

‖x − y‖, sup
y∈Y

inf
x∈X

‖x − y‖
}
.

Lemma 3 ([75]) Given a set of initial states X0 and affine dynamics (5), let

αδ = μ(X0) ·
(
e‖A‖δ − 1− ‖A‖δ),

βδ = 1

‖A‖μ(BU) · (e‖A‖δ − 1
)
,

Ω0 = chull
(
X0 ∪ eAδX0

)⊕ (αδ + βδ)B,

Ψδ = βδB.

5For example, the infinity norm ‖x‖∞ = max{|x1|, . . . , |xn|} induces the matrix norm ‖A‖ =
max1≤i≤n

∑m
j=1|aij |, where A is of dimension n×m. Its ball B∞ is a cube of side length 2.

1068 L. Doyen et al.

Then
⋃

0≤t≤δ Xt ⊆Ω0 and Yδ ⊆ Ψδ . Furthermore, if BU is a ball of the norm, i.e.,
BU = μ(BU)B, the approximation error is bounded by

dH

(⋃

0≤t≤δ

Xt ,Ω0

)

≤ δe‖A‖δ
(
μ(BU)+ (1

2 + δ
)‖A‖μ(X0)

)
,

dH (Yδ,Ψδ)≤ δ2‖A‖e‖A‖δμ(BU).

Propagating the initial approximation Ω0 forward in time using (12) gives an ap-
proximation of Xt over a bounded horizon. The following theorem gives a bound
on the total approximation error.

Theorem 3 ([75]) Given Ω0 and Ψδ as defined in Lemma 3, let Ωk+1 =
eAδΩk ⊕ Ψδ for k = 1, . . . ,N − 1. Then

⋃
0≤t≤Nδ Xt ⊆⋃

0≤k≤N−1 Ωk . Further-
more, if BU is a ball of the norm, the approximation error is bounded by

dH

(⋃

0≤t≤Nδ

Xt ,
⋃

0≤k≤N−1

Ωk

)

≤ δe‖A‖Nδ

(

2μ(BU)+
(

1

2
+ δ

)

‖A‖μ(X0)

)

.

Approximations and the Wrapping Effect. The sequence in (12) can be prob-
lematic to compute since the complexity of Ωk may increase sharply with k. We
illustrate this for the case where Ωk is a polytope in generator representation, and a
similar argument can be made for constraint representation. Let Nk be the number
of vertices of Ωk and let Ψδ have M vertices. Since Ωk+1 is the sum of eAδΩk with
Ψδ it can have Nk+1 = Nk ·M vertices. Resolving the recursion, we get the tight
upper bound Nk ≤ N0 ·Mk . To avoid this increase in complexity, we approximate
each Ωk by a simplified set. Let Appr be an approximation function such that for
any set P , P ⊆Appr(P). The sequence (12) then becomes

Ω̂k+1 =Appr
(
eAδΩ̂k ⊕Ψδ

)
. (13)

For example, if Appr computes the interval hull (bounding box) and Ω0 is a poly-
tope, then all Ω̂k are polytopes with 2n facets. However, the recursive application of
the approximation function can lead to an exponential increase in the approximation
error. This phenomenon is known in numerical analysis as the wrapping effect [105]
and is illustrated in Fig. 7.

For affine dynamics, the wrapping effect can be avoided by combining two tech-
niques [77]. First, the approximation operator is chosen such that it distributes over
Minkowski sum, i.e., Appr(P ⊕Q) = Appr(P)⊕ Appr(Q). This is the case, e.g.,
for the interval hull (bounding box). Second, the alternation of the map eAkδ with
the Minkowski sum in (12) is avoided by splitting it into two sequences

Ψ̂k+1 =Appr
(
eAkδΨδ

)⊕ Ψ̂k, with Ψ̂0 = {0},
Ω̂k =Appr

(
eAkδΩ0

)⊕ Ψ̂k.
(14)

30 Verification of Hybrid Systems 1069

Fig. 7 The wrapping effect can lead to an exponential increase in the approximation error that
can be avoided for affine dynamics. This example shows the exact solution eAkδX0 (shaded) and
an interval hull approximation (thick), with eAδ performing a rotation of 45 degrees around the
origin. The wrapping effect occurs if the approximation is applied to the map of the previous
approximation (dashed). To illustrate the effect more clearly, X0 is used here instead of Ω0

For sequence (14) it holds that Ω̂k =Appr(Ωk), which means the resulting approx-
imation is free of the wrapping effect. The total approximation error consists of the
bounds of Theorem 3 plus the error introduced by the operator Appr (measured in
terms of the Hausdorff distance).

The approach is easily extended to variable time steps by adapting Ω0 and Ψδ to
the time step while computing the sequence [68].

Evolution Domain Restriction. So far we have neglected the evolution domain re-
striction (invariant) Inv(�) of the location. Let S = [[Inv(�)]]. A simple but efficient
heuristic tries to find, if it exists, the smallest K such that ΩK lies completely out-
side S . The search for such a K may be combined with finding a suitable time hori-
zon T and a suitable time step δ (this search obviously might not terminate). Then
one computes the sequence Ω0, . . . ,ΩK and obtains the sequence Ω̄k =Ωk ∩ S as
an approximation of the continuous successors over the time horizon T =Kδ.

In cases where the above solution is overly conservative, one can improve the ap-
proximation using the following approach from [83]. Let St be the states reachable
from S (neglecting the evolution domain restriction), and let ξ(τ) be a trajectory in-
side S for all 0≤ τ ≤ t . Then the semi-group property implies that ξ(τ + s) ∈ Ss for
all 0≤ s ≤ t − τ , so that ξ(t) ∈⋂0≤τ≤t Sτ . We may therefore improve the approx-
imation by intersecting Ωk with an approximation of the states reachable from S ,
which we obtain from the sequence in (14) with Ω0 ← S . This leads to the follow-
ing sequence Ω̄k that approximates the continuous successors, starting with k = 0
and Ψ0 = {0}:

Ψk+1 =Appr
(
eAkδΨδ

)⊕Ψk,

Ω̄k =
(
Appr

(
eAkδΩ0

)⊕Ψk

)∩
⋂

0≤i≤k

(
Appr

(
eAiδS

)⊕Ψi

)
.

(15)

1070 L. Doyen et al.

Fig. 8 A zonotope is a
special form of centrally
symmetric polytope, as
illustrated here with
generators v1, v2, v3, v4, and
center c= 0

Discrete Successors. Consider an edge ε = (�, σ, k) of a PWA, whose jump con-
straints define the reset map

x+ = Cx +Du

and the guard set G, which only lets states jump where x ∈ G. Recall that u ∈ U ,
where U is compact, convex, and given by constraints in Inv(�). Let S+ = [[Inv(k)]]
be the evolution domain restriction of the target location. The discrete successors of
a set P can be written using geometric operators as

postε(P)= (C(P ∩ G)⊕DU
)∩ S+.

We now turn to representing the individual sets in the sequences Ψk and Ωk , and
which approximation operator Appr to use.

30.4.3.2 Set Representations

Several set representations have been proposed in the literature for computing the
continuous successors under affine dynamics, using variations of the algorithm pre-
sented in the previous section. To be efficient, scalable implementations or approxi-
mations need to be available for the operators in the algorithm. Using the initial ap-
proximation from Lemma 3 and the recurrence equation (14), the operators are lin-
ear map, Minkowski sum, convex hull, and intersection. The following paragraphs
summarize the results for a selection of prominent representations.

Ellipsoids. The first scalable reachability algorithms for affine dynamics were ob-
tained for ellipsoids, see [107, 133] and references therein. An approximation of
the reachable states using ellipsoids is shown in Fig. 5. A nondegenerate ellipsoid
E(c,Q) ⊆ R

n is represented by a center c ∈ Q
n and a positive definite6 matrix

Q ∈Q
n×n,

E(c,Q)= {x ∣∣ (x − c)TQ−1(x − c)≤ 1
}

(this can be generalized to degenerate ellipsoids). Deterministic affine transforms
can be computed efficiently for ellipsoids. For a matrix A ∈ Q

n×n and vector

6A matrix Q is positive definite iff it is symmetric and xTQx > 0 for all x �= 0.

30 Verification of Hybrid Systems 1071

Fig. 9 A reach set cover
Ω̂0, Ω̂1, . . ., computed with
zonotopes using the
implementation in [3] (solid)

b ∈Q
n,

AE(c,Q)+ b= E
(
Ac+ b,AQAT).

Ellipsoids are not closed under Minkowski sum, convex hull, or intersection. Using
ellipsoids one therefore generally suffers from the wrapping effect unless BU is a
singleton. Efficient approximations are available for Minkowski sum, convex hull,
and special cases of intersection, but the computation of discrete successors can be
problematic in terms of accuracy. For an implementation, see [106].

Zonotopes. Zonotopes are a compact representation for a special form of polytopes
that have been used successfully for reachability analysis due to their computation-
ally attractive features [3, 75]. A zonotope P ⊆R

n is defined by a center c ∈Q
n and

a finite number of generators v1, . . . , vk ∈Q
n that span the polytope as bounded lin-

ear combinations from the center:

P =
{

c+
k∑

i=1

αivi

∣
∣
∣ αi ∈ [−1,1]

}

.

A common denotation for this zonotope is P = (c, 〈v1, . . . , vk〉). A zonotope with
k generators is an affine transformation of a k-dimensional unit hypercube. Zono-
topes are central-symmetric convex polytopes, see Fig. 8 for an illustration. Affine
transformations can be computed efficiently for zonotopes. For a matrix A ∈Q

m×n,
the image of the linear transformation can simply be computed component-wise:

AP = (Ac, 〈Av1, . . . ,Avk〉
)

The Minkowski sum can be computed efficiently for zonotopes P = (c, 〈v1, . . . , vk〉)
and Q= (d, 〈w1, . . . ,wm〉) by a single vector addition and a single list concatena-
tion:

P ⊕Q= (c+ d, 〈v1, . . . , vk,w1, . . . ,wm〉
)
.

Since zonotopes are closed under Minkowski sum, it is straightforward to devise
an approximation operator Appr that distributes over Minkowski sum and use the
wrapping-free sequence (14). When the list of generators of a zonotope becomes
large, one can efficiently compute a smaller list that results in a cover of the original
zonotope [75].

1072 L. Doyen et al.

Fig. 10 Evaluating the support function in a set of directions gives a polyhedral outer approxima-
tion that can be computed very efficiently

Zonotopes are neither closed under convex hull, nor under intersection. Efficient
approximations exist, and the accuracy of approximating the convex hull in the
above reachability algorithm can be improved by taking smaller time steps. How-
ever, the lack of accuracy in intersections can make the computation of discrete
successors with zonotopes problematic. In special cases it can be advantageous to
use an approach called continuization to avoid the intersection operation, see [5].
Instead of intersecting a set of states with the guard set and then applying the dy-
namics of the successor location to the result, the states suspected to intersect with
the guard set (by some approximative measure) are subjected to nondeterministic
dynamics that overapproximate the dynamics both before and after the jump. The
dynamics of the successor location are used once enough time steps have been car-
ried out to be sure the set no longer intersects with the guard set.

Reachability with zonotopes is extremely scalable for affine dynamics [3, 77].
The approach has been extended to nonlinear differential algebraic equations [2].

Support Functions. A support function represents a closed, bounded, and convex
set exactly, somewhat like a characteristic function. Support functions lead to very
scalable algorithms since linear map, Minkowski sum, and convex hull correspond
to simple operations on vectors and scalars [74, 83, 116].

The support function �P :Rn →R of a nonempty, closed, bounded, and convex
set P is

�P (d)=max
{
dTx

∣
∣ x ∈ P

}
.

It attributes to every direction d ∈ R
n the position of the tangent halfspace in that

direction, see Fig. 10(a). The values of the support function over a set of directions
D ⊆R

n define an outer approximation

�P �D =
⋂

d∈D

{
dTx ≤ �P (d)

}
.

If D =R
n or D is the ball of a norm, then �P �D = P , which shows that the support

function indeed represents the set exactly. If D is a finite set of directions, the outer
approximation is a polyhedron, as illustrated in Fig. 10(b) and applied to reachabil-
ity in Fig. 11. While for a given direction the numerical value of the support function

30 Verification of Hybrid Systems 1073

Fig. 11 A reach set cover can be computed with support functions and initial approximations Ω0,
Ψδ from a variation of Lemma 3 where the bloating is non-uniform [68]. Evaluating the support
function in a given set of directions results in the shown outer approximation Ω̂0, Ω̂1, . . . (solid)

can often be computed very efficiently, one does not escape the curse of dimension-
ality if the goal is to compute an outer approximation of a given accuracy: To obtain
an outer approximation within a Hausdorff distance ε of P in n dimensions, one
needs to evaluate the support function in O(1

εn−1) directions. Asymptotically op-
timal algorithms to construct ε-close approximations are described, e.g., in [116].
However, for some examples even a small number of directions can lead to reacha-
bility results with an acceptable approximation error [68].

Linear map, Minkowski sum, and convex hull are easily computed with support
functions:

�AP (d) = �P

(
ATd

)
,

�P⊕Q(d) = �P (d)+ �Q(d),

�chull(P∪Q)(d) = max
{
�P (d), �Q(d)

}
.

The intersection operation is more complex, and can be formulated as an optimiza-
tion problem [83].

Thanks to the above properties, support functions serve well as a lazy representa-
tion for sets that arise from the successor computations described in Sect. 30.4.3.1.
Computing the support function of the sequence (14) for a given direction can be
done very efficiently even without the approximation operator Appr [83].

Two issues need to be solved to use support functions efficiently in the reachabil-
ity Algorithm 1. First, the nesting of support functions should be of limited depth,
in particular because evaluating the support function of an intersection operation re-
quires multiple evaluations of its operands. Second, deciding containment is hard for
support functions. Both problems can be solved by switching the set representation
from a support function to its polyhedral outer approximation at appropriate points
in the algorithm [68]. Combining support functions and polyhedral computations for
a fixed set of directions D is closely related to reachability with template polyhedra
[160] and both require that a good set of directions D be chosen. The support func-
tion representation can be extended to represent the entire (non-convex) reachable
set by parameterizing it over time [69].

1074 L. Doyen et al.

Polyhedra. The class of polyhedra is closed under all required operations, i.e., lin-
ear map, Minkowski sum, convex hull, and intersection. However, not all of them
scale well. As mentioned in Sect. 30.4.2, there are no scalable algorithms for com-
puting convex hull and Minkowski sum on polyhedra in constraint representation.
For illustration, consider that using the convex hull of n line segments, each given
by 2n constraints in n dimensions, one can construct a cross-polytope, which has 2n

constraints. Taking the Minkowski sum can lead to a similar explosion in the number
of constraints. This is illustrated by the fact that the Minkowski sum can be com-
puted with a convex hull and an intersection operation in n+1 dimensions using the
Cayley Trick [173]. A polyhedral approximation for the non-scalable operations can
be efficiently computed by a priori fixing the facet normals of the result, e.g., using
the outer approximation of the support function. The accuracy of the approximation
can be increased by including additional directions, leading to a scalable approach
[20].

30.4.3.3 Clustering

The accuracy of the approximation in Lemma 3 depends on the size of the time step.
This property, common to all approaches cited in Sect. 30.4.3, points to a potential
bottleneck: To achieve a desired accuracy, one may end up with a large number of
sets to cover the required time horizon. In the next successor computation, each one
of these sets may become the initial set of yet another sequence, and so one may
easily end up with an exponential increase in the number of sets. If only very few of
these sets intersect with the guard sets, the discrete successor computation results in
few sets and therefore acts as a filter that might just keep the number of sets man-
ageable. But this is not the case in general; note that these sets necessarily overlap.
To prevent an explosion in the number of sets, a common approach is to cluster to-
gether all sets that intersect with the same guard [83]. The clustering operation, e.g.,
taking the convex hull, can itself be costly and adds to the approximation error in
a way that is not easy to quantify. An approach to obtain a suboptimal number of
clusters for a given error bound is presented in [69].

30.4.4 Nonlinear Dynamics

We give a very brief overview of techniques that deal with nonlinear dynamics

ẋ = f (x),

where f is usually assumed to be globally Lipschitz continuous.

Linearization. One way to deal with nonlinear dynamics is to approximate them
with affine dynamics ẋ = Ax + u,u ∈ U and then use reachability algorithms for

30 Verification of Hybrid Systems 1075

affine dynamics. First, the states are confined to a bounded domain S . This can
be the evolution domain restriction in a location, or S can be derived iteratively
by growing suitable bounds around a given set of initial states. Then, a suitable
matrix A and vector b are chosen. For example, linearizing f (x) around a point
x0 ∈ S gives a matrix A with elements aij = ∂fi

∂xj
|x=x0 and a vector b= f (x0)−Ax0.

Finally, one derives a set Uε that bounds the error such that for all x ∈ S ,

f (x)− (Ax + b) ∈ Uε.

Such bounds can be obtained using, e.g., interval arithmetic or optimization tech-
niques. The states reachable using the affine dynamics ẋ = Ax + u, u ∈ Uε ⊕ {b}
cover those of the original nonlinear dynamics. This approach constructs an abstrac-
tion of the system. Such abstractions are discussed more formally in Sect. 30.5.2.

The accuracy of the linearization depends on the size of the domain S . It can be
increased by partitioning S into smaller parts. Each part can then be associated with
smaller error bounds Uε and consequently gives a more accurate approximation of
the reachable set. The switching of the system from one element of the partition to
another is straightforward to model with a hybrid automaton. This process is known
as phase-portrait approximation, see also Sect. 30.5.2. It can be of use even when
dealing with purely continuous dynamical systems, in which case it is also referred
to as hybridization [18]. The abstract model can be simplified by projecting away
variables and adding a clock variable to preserve timing properties [17].

Polynomial Approximations. If the dynamics are polynomial, bringing them into
Bernstein form allows one to compute conservative approximations of successor
sets in polynomial form [54, 152]. Another approach is to use Taylor models, which
are polynomial approximations of a function that are derived from a higher-order
Taylor expansion and an interval bound on the remainder [30]. The resulting ODE
can be solved by iterative approximations using the Picard operator. The reachable
states are approximated by sets that are polyhedra [160] or polynomial images of
intervals [43]. A similar approach uses polynomial images of zonotopes, which are
themselves images of intervals [4]. Since polynomial images of intervals are gen-
erally not closed under intersection, the accuracy may be diminished when com-
puting discrete successors. It can also be shown that additional assumptions, such
as knowledge of a Lipschitz constant, are required in these approaches in order to
ensure computable error bounds [147].

30.5 Abstraction-Based Verification

Explicit-state reachability analysis is very easy to use. Its flat and direct representa-
tion of the system behavior can, however, cause it to run into scalability issues for
bigger systems. One technique that has been very successful for scaling up discrete
model checking is that of abstraction (see also Chap. 13).

1076 L. Doyen et al.

The basic idea is to replace the actual system by a simpler, abstract system, in
which model checking is easier to perform. The verification results about the ab-
stract system, of course, can only be related back to verification results about the
original concrete system under certain conditions on how the abstract and concrete
system are related and whether the particular property in question survives this ab-
straction process.

The options for directly constructing discrete abstractions by finite quotients and
for which subclasses they work have been examined by Henzinger [88, 93] and Laf-
ferriere et al. [108]. Because of the limited scope of discrete abstractions, more
general predicate abstractions [9, 10] and abstraction refinement techniques like
Counterexample-Guided Abstraction Refinement (CEGAR) have been developed
subsequently [9, 46]; see Chap. 13. These directions have again worked success-
fully in discrete and, to some extent, real-time systems.

30.5.1 Discrete Abstractions

We present a general notion of abstraction for transition systems based on simulation
relations [125] and we illustrate the principle of using abstractions in the verification
of hybrid systems for the class of initialized rectangular automata.

Definition 11 (Abstraction) A transition system T A = 〈SA,SA
0 , SA

f ,Σ,→A〉 is an
abstraction of a transition system (with the same alphabet) T = 〈S,S0, Sf ,Σ,→〉
(which is then called the concrete system) if there exists an abstraction mapping
α : S → SA such that the following conditions hold:

1. α(s) ∈ SA
0 for all initial states s ∈ S0;

2. for all σ ∈Σ , for all states s1, s2 ∈ S, if s1
σ−→ s2, then α(s1)

σ−→A α(s2);
3. α(s) ∈ SA

f for all final states s ∈ Sf .

The abstraction mapping α is in fact a particular case of a (time-abstract) simula-
tion relation [126]. It may be convenient to allow the abstraction mapping to map a
state s ∈ S to several abstract states s1

A, s2
A, . . . , sk

A ∈ SA, that is to consider abstrac-

tion mappings α : S → 2SA
or equivalently to consider an abstraction relation over

S× SA, rather than a function. We take the simpler definition which is sufficient for
the purpose of describing the main principles of abstraction for hybrid automata.

The main property of abstractions which is useful for the safety verification
problem of hybrid automata is that they are conservative. Formally, {α(s) | s ∈
Reach(T)} ⊆ Reach(T A), which implies the following.

Lemma 4 Let T A be an abstraction of T . If T A is safe, then T is safe.

By Lemma 4, if we show (e.g., using algorithmic techniques) that the unsafe
states are not reachable in an abstraction of a hybrid system, then we can conclude

30 Verification of Hybrid Systems 1077

that the concrete system is safe. Intuitively, this is because abstractions are over-
approximations of the original system, and therefore they exhibit (or simulate) all
executions of the concrete system, and possibly more. In particular, every path to
an unsafe state has a matching path in the abstraction, which is the main argument
for proving Lemma 4. The converse of this lemma does not hold simply because
abstractions may introduce spurious executions (which have no matching execution
in the concrete system) due to over-approximation.

The main purpose of abstraction for hybrid systems is to obtain finite-state tran-
sition systems which are amenable to model checking by automated tools, and give
useful conclusions about the original system. Remember that the transition systems
of hybrid automata have (uncountably) infinite state space, and (uncountably) infi-
nite branching. In the next subsections, we present ideas for practically constructing
such abstractions.

Initialized Rectangular Automata. We illustrate abstractions with an informal ar-
gument of why the safety verification problem is decidable for initialized rectangular
automata. The idea is that for such hybrid automata H , one can construct a timed
automaton A such that A is an abstraction of H , and H is an abstraction of A, thus
A is safe if and only if H is safe. Note that in this case the constructed abstrac-
tion (the timed automaton A) has infinite state space, but since we know that the
safety verification problem for timed automata is decidable, we obtain decidability
for initialized rectangular hybrid automata by Lemma 4.

We present the main steps behind this construction. In every location, a variable
x with flow constraint k1 ≤ ẋ ≤ k2 is replaced by two variables xl and xu with flow
constraint ẋl = k1 and ẋu = k2 which track the least and greatest possible value of
x respectively. An incoming edge with jump condition a ≤ x+ ≤ b (an update) is
replaced by x+l = a ∧ x+u = b. An edge with jump condition x ≤ b (a guard) that
occurs in conjunction with x+ = x is replaced by two copies of the edge, one with
the constraint (xl ≤ b ∧ xu ≥ b ∧ x+u = b) and the other with the constraint xu ≤ b.
More complicated jump conditions (strict inequalities, and conjunction of simple
jump conditions) are handled analogously, as well as the constraints in initial, final,
and evolution domain conditions (invariants).

After this step, the slope of every variable is a singleton in every location. The
next step is to scale the nonzero slope of the variables to 1. To do this, in each
location we replace flow constraints ẋ = k (when k �= 0) by ẋ = 1 and divide by k

the constants in the guards of outgoing edges, and in the updates of incoming edges.
This ensures that the value stored in variable x remains k times smaller than the
value of x in the original automaton (as long as the flow constraint ẋ = k holds). It
is therefore important that the rectangular automaton is initialized, as it guarantees
that if the constraint x+ = x occurs in the jump condition of an edge (�, σ, �′), then
the slope of variable x is the same in � and in �′. It remains to eliminate variables
with slope 0, which can be done easily by storing the lower and upper value of x in
the finite control structure of the automaton (these values can be changed only by
discrete jumps).

1078 L. Doyen et al.

The technical details of how to deal for instance with strict constraints in a jump
condition like (a < x < b), or unbounded flow constraints (like ẋ ≥ 1) can be found
in [96].

30.5.2 Phase-Portrait Approximation

Phase-portrait approximations are used as abstractions of hybrid automata with
complex flow constraints. We discuss the approach for affine flow constraints, but it
also applies to flow constraints that are much more general (e.g., given by ẋ = f (x)

for a continuous function f). Details about the theory and practice of this approach
can be found, e.g., in [67, 93] and extensions on hybridization in [18] and other
abstractions in [60, 70, 169].

The objective of phase-portrait approximations is to replace complex dynamics
by simple rectangular (or sometimes linear) flow constraints on the dotted variables
only. For example, the flow constraint ẋ = f (x) where f (x)= x + 1 in a location
with evolution domain (invariant) 0≤ x ≤ 10 is replaced by 1≤ ẋ ≤ 11, which over-
approximates the exact dynamics. In general, bounds on the derivative can be de-
rived from bounds on the variables and computed as optimization problems, where
the lower bound should be less than of equal to infv∈[[Inv(�)]] f (v) and symmetri-
cally for the upper bound. Manual or numerical methods can be used as long as the
bounds can be proven to hold.

Formally, a phase-portrait approximation of a hybrid automaton H = 〈Loc,Lab,

Edg,X, Init, Inv,Flow, Jump,Final〉 is a hybrid automaton H ′ = 〈Loc,Lab,Edg,X,

Init, Inv,Flow′, Jump,Final〉 in which all components in H and H ′ are identical, ex-
cept the flow constraint which is such that [[Flow′(�)]] ⊇ [[Flow(�)]] for every loca-
tion � ∈ Loc.

Lemma 5 Let H ′ be a phase-portrait approximation of H . Then [[H ′]] is an ab-
straction of [[H]], and if [[H ′]] is safe, then [[H]] is safe.

The safety verification problem for phase-portrait approximations can be solved
using the algorithms and data structure presented in Sect. 30.4 for reachability anal-
ysis. Rectangular phase-portrait approximations are relatively simple to obtain be-
cause bounds are computed for each variable separately. However, the quality of the
approximation may be too coarse to establish safety. If the bad states are reachable
in the phase-portrait approximation, it may be due to lack of accuracy. More pre-
cise approximations are obtained by splitting the evolution domains. For example,
a location with evolution domain 0≤ x ≤ 10 can be replaced by two locations with
respective evolution domains 0≤ x ≤ 5 and 5≤ x ≤ 10, over which the approxima-
tion of ẋ = x + 1 is more precise, namely 1 ≤ ẋ ≤ 6 and 6 ≤ ẋ ≤ 11 respectively.
Figure 12 shows the states reachable from x = t = 0 (assuming ṫ = 1) in the rect-
angular phase-portrait approximation before splitting (light gray) and after splitting
(dark gray).

30 Verification of Hybrid Systems 1079

Fig. 12 Tighter
approximations using
evolution domain (invariant)
splitting

In general, splitting consists of replacing a location � by k locations �1, . . . , �k

with the same flow constraint as in �, and with evolution domains that cover the
evolution domain of �, i.e., such that [[Inv(�)]] ⊆⋃k

i=1[[Inv(�i)]]. For each incoming
edge (�′, σ, �), new edges (�′, σ, �i) (i = 1, . . . , k) are created with the same jump
condition, and similarly for each outgoing edge. The split locations �1, . . . , �k are
connected by edges with jump condition stable(X)=∧x∈X x′ = x. It can be shown
that location splitting results in hybrid automata that are mutually abstractions of
each other, implying that one is safe if and only if the other is safe. By splitting
locations, rectangular phase-portrait approximation can be made arbitrarily precise
in the following sense. Given a hybrid automaton H and ε > 0, an ε-relaxation of H

is a hybrid automaton with the same locations and transition structure as in H , and
where all predicates φ in H are replaced by predicates φ′ such that [[φ]] ⊆ [[φ′]] ⊆
[[φ]]ε where [[φ]]ε := {v ∈ R

X | ∃u ∈ [[φ]] :maxx∈X|v(x)− u(x)| ≤ ε} is the set of
valuations at a distance at most ε from a valuation satisfying φ.

It can be shown that for every hybrid automaton H and ε > 0, there exists a
rectangular phase-portrait approximation Hε of a splitting of H such that Hε is an
abstraction of H , and there exists an ε-relaxation of H which is an abstraction of
Hε (see [93]). This ensures that if H robustly satisfies a safety property (i.e., both
H and some ε-relaxation satisfy the safety property), then it is possible to establish
the property using rectangular phase-portrait approximation and splitting.

In practice, it is often useful to split locations according to specific information
we may have about the given hybrid automaton. For example, a flow constraint
ẋ = 3 − x suggests the evolution domain should be split along lines parallel to
L≡ 3− x = 0. More generally, a common heuristic is to use linear approximations
of the flow constraints as support for cutting planes.

30.5.3 Predicate Abstractions

This part is a survey of [9, 10, 46]. We provide general ideas and guidelines about
predicate abstraction schemes for hybrid systems. Chapter 13 provides a detailed

1080 L. Doyen et al.

presentation of abstraction techniques for program verification (note that imperative
programs can be viewed as a subclass of hybrid systems).

Reachability analysis based on predicate abstraction consists of tracking the truth
value of a fixed finite set of predicates instead of computing the value of the con-
tinuous variables. The continuous part of the state space is replaced by the Boolean
truth values of the predicates.

Let H be a hybrid system, and let Π = {π1, . . . , πk} be a finite set of linear pred-
icates πi of the form y �� 0 where y ∈ LTerm(X) and ��∈ {<,≤,=,>,≥}. A truth
value for Π is a vector b ∈ B

k where B= {0,1} that assigns a truth value bi to each
predicate πi ∈Π . Truth values induce a partition of the continuous state space into
finitely many abstract states. To obtain an abstraction we require that whenever there
exists a transition between two concrete states, then there is a transition between the
corresponding abstract states. Hence, the transition relation satisfies Definition 11
by construction.

We define an abstraction mapping αΠ as follows. For all states (�, v) of the hy-
brid automaton H , let αΠ(�, v) = (�, b) if b = (b1, . . . , bk) ∈ B

k is the vector of
truth values of the predicates in Π under valuation v, i.e., such that πi(v)= bi for
all 1 ≤ i ≤ k. We sometimes omit the location and write αΠ(v) = b. We denote
by γΠ the concretization function such that γΠ(b)= {v ∈ R

X | αΠ(v) = b} for all
b ∈ B

k .
The predicate abstraction of H induced by Π is the finite-state transition system

HΠ = 〈SΠ,S0, Sf ,Σ,→Π 〉 where:

• S = {(�, b) ∈ Loc×B
k | ∃v ∈ [[Inv(�)]] : αΠ(�, v)= (�, b)}

• S0 = {(�, b0) ∈ SΠ | ∃v ∈ [[Init(�)]] : αΠ(�, v)= (�, b0)};
• Sf = {(�, bf) ∈ SΠ | ∃v ∈ [[Final(�)]] : αΠ(�, v)= (�, bf)};
• Σ = Lab∪ {time} where Lab is the alphabet of H ;
• For each σ ∈ Lab, the transition relation→Π contains all tuples ((�, b), σ, (�′, b′))

such that ∃e= (�, σ, �′) ∈ Edg · ∃v ∈ γΠ(b) · ∃v′ ∈ γΠ(b′) : (�, v)
σ−→ (�′, v′); and

the transition relation →Π contains the tuples ((�, b), time, (�′, b′)) such that
�′ = � and ∃r ≥ 0 · ∃v ∈ γΠ(b) · ∃v′ ∈ γΠ(b′) : (�, v)

r−→ (�, v′).

While predicate abstractions are finite-state, their size can be of prohibitive com-
putational cost. The number of states in HΠ is at most exponential in the number of
predicates in Π . In practice though, many truth value vectors are not feasible (i.e.,
they have an empty concretization). For example, think of a set of 2k predicates over
two variables x and y, where k predicates define a partition of the values for x (e.g.,
x < 0, 0≤ x ≤ 1, and 1 < x) and k predicates define a partition of the values for y.
Then the number of feasible abstract states is at most k2 rather than 22k . Note that
this example would still give a number of abstract states exponential in the number
of variables. The dimension of the space is a well-known source of computational
complexity. The choice of predicates is thus very important to obtain precise approx-
imations at the least cost. The initial set of predicates is usually chosen manually.
Natural candidates are the predicates occurring in the hybrid automaton itself, like
the evolution domains and jump conditions. Automatic construction and refinement
of predicate abstractions is discussed in Sect. 30.5.4.

30 Verification of Hybrid Systems 1081

For reachability analysis, it is usually not necessary to construct the entire tran-
sition systems of the predicate abstractions, because many states may not be reach-
able. On-the-fly approaches are used to simultaneously construct and explore the
abstraction. Starting from the initial states in the abstraction, the transitions to other
abstract states are explored as and when they are computed. A classical strategy is
to explore the discrete successors first (because they are less expensive to compute),
and then the continuous successors for increasing amounts of time, as long as no
new discrete transition is enabled.

Computing Discrete Successors. Discrete successors can be computed as follows.
Given b ∈ B

k , let Π(b) = ∧
i|bi=1 πi ∧∧i|bi=0 πi be the constraint defining the

abstract state b. A transition e = (�, σ, �′) is enabled in a state (�, b) if EN(e) :=
[[∃X ·Π(b)∧ Inv(�)∧ Jump(e)]] ∩ [[Inv(�′)]] �= ∅. The successor states of (�, b) by
enabled transition e are the abstract states (�′, b′) such that Rk �= ∅ where R0 =
EN(e) and for all 1 ≤ i ≤ k, if b′i = 1 then Ri = Ri−1 ∩ [[πi]], and if b′i = 0 then
Ri = Ri−1 ∩ [[πi]]. A procedure for computing b′ can easily be derived from this
definition. Note that it may be that both Ri−1 ∩ [[πi]] �= ∅ and Ri−1 ∩ [[πi]] �= ∅
hold, which would lead b′i = 1 and b′i = 0 to be set successively, and both cases
to be explored. A simple optimization of this procedure is for each 1 ≤ i ≤ k to
set b′i = 1 beforehand if EN(e) ∩ [[πi]] = ∅, and set b′i = 0 if EN(e) ∩ [[πi]] = ∅. If
one of the two cases holds, then the corresponding predicate can be skipped in the
computation of Ri ’s.

Computing Continuous Successors. In general, the continuous successors are not
computed exactly, even according to the abstract transition relation. This is due to
the lack of exact algorithmic methods for solving differential equations. Note that
this is a difficult problem even if the differential equations in the flow constraints
have closed-form solutions, like in linear systems. Given R ⊆ R

X and location �,
we want to compute the set PostC({�} × R) of continuous successor states as de-
fined in Sect. 30.4.1, but over-approximations are sufficient for our purpose. This
is consistent with the framework of abstraction (in the sense of Definition 11), but
strictly speaking we are exploring in this way an over-approximation of the transi-
tion system HΠ defined above.

Optimizations. Various optimizations and heuristics have been defined and evalu-
ated on many examples in the literature, see, e.g., [9, 10, 46]. For example, when
we discover that a new abstract state s is reachable as a continuous successor un-
der some flow constraint, we do not need to explore the continuous successors of s

under the same flow constraint (unless s is also reachable by some discrete transi-
tion). This may significantly prune the search through the abstract state space. The
search can also be guided to discover unsafe reachable states as quickly as possi-
ble. Various exploration strategies have been defined, based on giving priority to
the most promising states, according to some greedy measures. For example, such
measures may estimate the distance from the current state to the unsafe state, such
as the Euclidean distance between the valuation of the variables in the abstract state

1082 L. Doyen et al.

and in the unsafe states, or a discrete distance as the smallest number of discrete
transitions necessary to reach an unsafe state, possibly taking into account the jump
condition on the edges. Combination thereof are also possible [10]. Finally, as in
program verification [90], it may be useful to maintain a set of predicates Π spe-
cific to each location, because certain predicates that are relevant in one location
may not be useful in other locations.

30.5.4 Abstraction Refinement

The abstraction schemes presented in Sect. 30.5.1 and Sect. 30.5.3 may not be suf-
ficient to establish the safety of a system. In particular, we know that safety of the
abstraction implies safety of the original system, but non-safety of the abstraction
is inconclusive. The process of refinement consists of constructing abstractions that
are tighter (or more detailed) than a given abstraction, in order to prove safety. If
the refinement process repeatedly fails in proving safety, then one can reasonably
conclude that even if the original system may indeed be safe, it should not be con-
sidered as acceptable because its correctness is not robust, a small deviation in the
implementation of the system being able to cause violation of the safety require-
ment [58, 155]. Such considerations are used to stop the refinement process when a
specified level of precision is reached [46, 64].

In general, if T A is an abstraction of T , then a refinement T B of T A is an ab-
straction of T which is such that T A is an abstraction of T B .

In the case of splitting and phase-portrait approximations, refinements can be ob-
tained by further splitting locations. For predicate abstractions, adding new predi-
cates gives a refinement. We present one of the most popular frameworks to discover
new predicates automatically, the counterexample-guided abstraction refinement
(CEGAR) [46, 47]. A general framework of abstraction refinement is presented in
Chap. 13.

Spurious Counterexamples. When a predicate abstraction fails to establish safety,
the analysis usually returns a witness path from an initial abstract state to a final

abstract state. Such a path ρ = q0
σ1−→ q1 . . .

σn−→ qn is a spurious counterexample if

there exists no path (�0, v0)
σ1−→ (�1, v1) . . .

σn−→ (�n, vn) in the original system such
that (�i, vi) ∈ γΠ(qi) for all 0≤ i ≤ n. Clearly, if a counterexample is not spurious,
then we can immediately conclude that the original system is not safe. We present a
standard approach to check whether a counterexample is spurious [9].

To simplify the presentation, we assume in this section that every edge has a
different label that identifies it uniquely. The successor operator is

Postσ (S)= {(�′, v′) ∣∣ ∃(�, v) ∈ S : (�, v)
σ−→ (

�′, v′
)}

,

30 Verification of Hybrid Systems 1083

where Posttime(·) = PostC(·) is the one-step continuous successor operator. Simi-
larly, the predecessor operator is

Preσ (S)= {(�, v)
∣
∣ ∃(�′, v′) ∈ S : (�, v)

σ−→ (
�′, v′

)}
.

Let R0 = γΠ(q0) ∩ {(�, v) | v ∈ [[Inv(�)]]}, and Ri+1 = Postσi
(Ri) ∩ γΠ(qi+1) ∩

{(�, v) | v ∈ [[Inv(�)]]} for all i ≥ 0. The counterexample ρ is spurious iff Ri = ∅ for
some 0≤ i ≤ n. Note that over-approximations of Postσi

(·) may suffice to show that
a counterexample is spurious, but under-approximations are necessary to establish
with certainty that a counterexample exists in the original system.

Refinement. Assume that the counterexample is spurious, and let j ≥ 0 such that
Rj �= ∅ and Rj+1 = ∅. Then it is easy to prove that Rj ∩ Preσj+1(γΠ(qj+1)) = ∅.
New predicates should be added to the set Π in order to rule out the counterexample.
Since Rj ∩Preσj+1(γΠ(qj+1))= ∅, we can search for a set of predicates which sep-

arates Rj and Preσj+1(γΠ(qj+1)). A set Π̂ of predicates separates two sets R and

Q if for every truth value b ∈ B
Π̂ , we have either γ

Π̂
(b)∩R = ∅ or γ

Π̂
(b)∩Q= ∅.

Note that to separate closed polyhedra, one simple linear constraint is always suf-
ficient, but since reachable states (and in particular states reachable by continuous
flow) are approximated by non-convex unions of polyhedra, several simple con-
straints may be necessary. Several methods have been developed to separate poly-
hedral sets, which are beyond the scope of this chapter. We refer to [9] for references
and discussion.

In some case, spuriousness can be established by analyzing fragments of the
counterexample [46], i.e., trying to show that a sub-sequence in the counterexample
is not feasible in the original system. Spurious fragments of length 2 are called

locally infeasible in [9] and defined as follows: qi−1
σi−→ qi

σi+1−−→ qi+1 is spurious
if Postσi

(γΠ(qi−1))∩ γΠ(qi)∩ Preσi+1(γΠ(qi+1))= ∅. Refinement is computed as
above using separating predicates.

Various forms of robustness have been considered for hybrid systems, which ba-
sically work by not distinguishing between almost safe and almost unsafe hybrid
systems so that incorrect answers from the analysis procedure are accepted for such
borderline cases, but correct answers are required for clear-cut cases. Different no-
tions of robustness have been considered successfully [64, 157, 158].

30.5.5 Approximate Bisimulations

For discrete systems, the relationships between systems can be described by the no-
tions of language inclusion, simulation, and bisimulation. These concepts have been
transposed to continuous and hybrid systems [85], and extended to take advantage
of metrics over state spaces [78]. While traditional simulation and bisimulation re-
lations require the output traces of related states to be identical, it suffices for metric

1084 L. Doyen et al.

relations that they are sufficiently close. It is then possible to construct a discrete
bisimilar quotient by discretizing the state space. The quotient is then amenable to
verification and controller synthesis techniques for discrete systems [76].

We briefly sketch out the principle of approximate bisimulations in discrete time.
Two states x1, x2 are in ε-bisimulation relation if their output values are within dis-
tance ε and for every successor state x′1 of x1, x2 has a matching successor state
x′2 so that x′1 and x′2 are also in the relation. As a consequence, the output traces
of two states in the relation will never be more than ε apart. Note that the defini-
tion coincides with classical bisimulation for ε = 0. It is generally hard to compute
ε-bisimulation relations exactly, but (under some mild assumptions) one can define
a Lyapunov-like bisimulation function that maps pairs of states to a non-negative
value, and whose sub-level sets are in an approximate bisimulation relation. The ex-
istence of bisimulation relations can be tied to certain types of stability (the tendency
of the system to go to its equilibrium point). For example, a bisimulation function of
a linear continuous system with dynamics ẋ =Ax and output signal y = Cx can be
computed efficiently even for high-dimensional systems by solving a set of linear
matrix inequalities (LMI) of the form M ≥ CTC and ATM +MA ≤ 0. The LMI
always has a solution if the system is stable. Therefore, two stable linear systems
are always ε-bisimilar, and an upper bound on ε can be computed. Note that approx-
imate bisimulations can be used to relate continuous-time to discrete-time systems,
continuous-valued to discrete-valued systems, etc.

Verification by Simulation. Bisimulation relations can also be used to verify
bounded-horizon properties on bounded regions by computing a finite number of
trajectories, a technique called verification by simulation [61, 102]. Here, the prox-
imity measure of the bisimulation relation is combined with a robustness measure
on temporal logic formulas. Given an initial state x0 from which a trajectory satisfies
a temporal formula to some measure, a bisimulation metric allows one to identify
a neighborhood of initial states that all satisfy the same formula. This is possible
since the bisimulation metric guarantees that all trajectories from the neighborhood
(including all trajectories starting in x0) remain sufficiently close together to satisfy
the formula. Given a (dense) bounded region of initial states, it is, under suitable as-
sumptions, possible to identify a finite subset of initial states whose trajectories are
sufficient to show that the system satisfies a temporal logic formula [79]. A similar
approach has been developed for embedded control software [112]. Together with
the work on robustness mentioned in Sect. 30.5.4, these results demonstrate how
stability and robustness can be used to simplify verification tasks.

30.6 Logic-Based Verification

The working principle behind logic-based verification is to use logical formulas to
characterizing some parts of the hybrid systems verification problem and to solve
this verification problem or subproblem entirely by checking the corresponding log-
ical formulas for validity. There are even verification techniques for hybrid systems

30 Verification of Hybrid Systems 1085

that are entirely based on logic and proof [137, 143], which are beyond the scope
of this chapter, however. In this section we survey the basic principles behind these
approaches and show what kind of reasoning can be used to verify safety properties
of hybrid systems or their parts by showing the validity of logical formulas.7

We survey a number of different approaches that represent the verification prob-
lem by various logical formulas or logical constraints:

1. Polynomial barrier certificates [154];
2. Equational certificates from templates [159, 161];
3. Differential invariants [136, 142, 144, 148].

These logic-based verification approaches further have in common that they ar-
gue by invariance and are based on variations of the work of Sophus Lie, of Jean
Gaston Darboux, or of Aleksandr Lyapunov. Differential invariants are based on So-
phus Lie’s 1867–1873 work on what are now called Lie derivatives and Lie groups.
Equational certificates are based on Darboux’s 1878 results [56] on a way to use
Sophus Lie’s approach. Barrier certificates are based on variations of Aleksandr
Lyapunov’s 1884–1892 work on a criterion for stability, which is used for safety
instead [154]. The logic-based verification techniques for hybrid systems are com-
plementary, so barrier certificates, equational templates, and differential invariants
can be used together and also combined as abstractions with reachability analysis
techniques.

Consider a location � of a hybrid automaton with polynomial dynamics defined
by polynomial differential equations. To emphasize that such a differential equation
is considered only once even if it occurs in multiple different locations, it is also
referred to as continuous mode. Let

ẋ1 = f1(x), . . . , ẋn = fn(x)

be the polynomial differential equation system of the mode, which we abbreviate
by the (vectorial) differential equation ẋ = f (x). The mode � has an invariant con-
dition Inv ∈ PConstr(X). What we want to understand in model checking of safety
properties is whether the system will always stay in a safe region when it follows
this continuous evolution mode starting from some initial region. We represent the
desired initial region by a constraint Init ∈ PConstr(X). Finally, we consider a con-
straint Safe ∈ PConstr(X) defining the safe states for which we want to show that
our system never leaves the set of states [[Safe]] satisfying Safe.

Definition 12 (Continuous mode safety problem) Let ẋ = f (x) be a (vectorial)
differential equation, i.e., a polynomial differential equation system

ẋ1 = f1(x), . . . , ẋn = fn(x)

7It should be noted that the other verification techniques surveyed in this chapter benefit from logic
as well, for example in their representation of big sets of states using simple logical formulas.

1086 L. Doyen et al.

for the system variables X = {x1, . . . , xn}. A continuous system (Init, ẋ = f (x), Inv)
consists of a constraint Inv ∈ PConstr(X) for the invariant condition (or evolution
domain restriction), and a constraint Init ∈ PConstr(X) for the initial condition. We
say that the continuous system (Init, ẋ = f (x), Inv) is safe with respect to con-
straint Safe ∈ PConstr(X) iff all δ ∈ R

≥0 and all continuously differentiable func-
tions ϕ : [0, δ] → R

X with ϕ(0) ∈ [[Init]] also satisfy ϕ(δ) ∈ [[Safe]] provided that
ϕ̇(t)= f (ϕ(t)) and f (t) ∈ [[Inv]] for all t ∈ [0, δ]. We also say that the continuous
system (Init, ẋ = f (x), Inv) respects Safe if (Init, ẋ = f (x), Inv) is safe with respect
to property Safe.

Logic-based verification techniques provide easily checkable witnesses to verify
that a continuous system (Init, ẋ = f (x), Inv) respects Safe. The immediate sig-
nificance for model checking is that they induce abstractions that can be used to
terminate a reachability computation.

Lemma 6 (Logical abstraction) Let (Init, ẋ = f (x), Inv) be a continuous system of
a mode � ∈ Loc of a hybrid automaton. If (Init, ẋ = f (x), Inv) respects Safe, then

post�
([[Init]])⊆ [[Safe]].

If the continuous system (Init, ẋ = f (x), Inv) of a mode � ∈ Loc of a hybrid automa-
ton respects the desired safety property Safe, (continuous) reachability computation
can be terminated for all states in any subset P ⊆ [[Init]], because, by monotonicity,
Lemma 6 then implies

post�(P)⊆ [[Safe]].
In particular, notice that it is useful for fast reachability computation if we can iden-
tify big sets Init that make (Init, ẋ = f (x), Inv) respect Safe. These sets Init are often
much bigger than the original initial sets from Definition 6.

The logic-based verification techniques mentioned above have in common that
they provide easily checkable witnesses for the verification. They further enjoy the
benefit that they can be used for highly nonlinear dynamics. The primary challenge
in all cases is the need to first find the witnesses or their shape, which corresponds
to the challenge of finding the right directions for support functions.

An interesting special case of the continuous safety problem from Definition 12
is the case where Init and Safe are the same formula F . If the continuous system
(F, ẋ = f (x), Inv) is safe with respect to F , then F is called a (safety) invariant. In
that case, Lemma 6 implies

post�
([[F]])⊆ [[F]].

That is, the continuous system will never be able to leave F . Thus, without reach-
ability computation, one can conclude that reachable sets that are within [[F]] will
stay there forever.

Observe that, despite the similar name, there is a crucial difference between an
invariant condition Inv of a continuous system (or a mode in a hybrid system) and

30 Verification of Hybrid Systems 1087

a safety invariant F . The difference is that we need to verify whether F is a safety
invariant, while we just assume that the system obeys the invariant condition Inv.
That is why Inv is also called an evolution domain restriction, because it restricts the
admissible evolution domain of the continuous system. So, Inv is part of the system
model, yet F is part of a safety property that we verify for the system model.

One of many possible approaches to logic-based verification is the one that fo-
cuses on showing that a formula F is a global invariant of a hybrid automaton by
showing that it is an invariant for each discrete transition and an invariant for each
continuous transition of the automaton. The best case is if F is the safety property
and turns out to be a global invariant of the system in this manner. This is generally
somewhat overly simplistic, because the verification does not necessarily have to
work with the same invariant F in all places so that multiple invariants need to be
used instead. Nevertheless, having this simple example of a single global invariant
in mind is a useful guiding principle for logic-based verification approaches.

Related arguments have also been used for invariant generation techniques for
abstract interpretation [169]. Based on decidability results for o-minimal hybrid au-
tomata [109], this includes invariant generation techniques for linear systems based
on Gröbner basis computations [169] rather than based on quantifier elimination
[109]. The case of (hyper-rectangle) box invariants has been discussed in more de-
tail elsewhere [170].

30.6.1 Polynomial Barrier Certificates

The basic idea behind barrier certificates is to find a barrier separating good and
bad states that we can easily show to be impenetrable by the continuous system
dynamics. Barrier certificates were proposed for safety verification in [154].

Theorem 4 (Weak barrier certificate [154]) Let (Init, ẋ = f (x), Inv) be a contin-
uous system with safety constraint Safe. If B is a (weak) barrier certificate for a
continuous safety problem, i.e., a polynomial satisfying

B(x)≤ 0 for all initial states x ∈ [[Init]],
B(x) > 0 for all unsafe states x /∈ [[Safe]], and

∂B

∂x
(x)f (x)≤ 0 for all states x ∈ [[Inv]],

then the continuous system (Init, ẋ = f (x), Inv) respects Safe.

Barrier certificates themselves can be defined for more general non-polynomial
cases, but the conditions are generally not computable when fi(x) and B are not
polynomials or Inv, Init, and Safe are not polynomial constraints. The purpose of
a barrier certificate is to separate safe from unsafe states in such a way that initial

1088 L. Doyen et al.

states are safe, and the differential equations can easily be seen to never cross the
barrier between safe and unsafe states.

The importance of barrier certificates comes from the fact that they reduce a
reachability question (can we ever reach an unsafe state) to a simple check on the
directional derivative ∂B

∂x
(x)f (x) along ODE of the Barrier certificate.

It had originally been proposed [153] that barrier certificates only need to be
checked on the boundary of the barrier and that it would be sufficient to check the
third condition in Theorem 4 for all x ∈ [[Inv]] with B(x)= 0:

∂B

∂x
(x)f (x)≤ 0 for all states x ∈ [[Inv]] with B(x)= 0. (16)

This condition is generally not strong enough and can lead to soundness issues, as
the following example shows.

Example 2 When using condition (16), it looks as if the differential equation ẋ = 1
always stays in the region Safe≡ x2 ≤ 0 because condition (16) succeeds as fol-
lows:

∂x2

∂x
1= 2x ≤ 0 for all states x with x2 = 0

This, however, is counterfactual, because the system ẋ = 1 will, of course, leave
region x2 ≤ 0. Thus, the condition (16) is unsound. The same issue occurs for a
suggestion on how to extend this approach to Boolean combinations of inequalities
[84]. A discussion of the assumptions under which the conditions can be restricted
to such subsets without losing soundness can be found in the literature [136, 142,
144, 154].

Checking on the boundary is sound, however, if the condition (16) is modified to
a strict inequality, instead of a weak inequality:

Theorem 5 (Strict barrier certificate [154]) Let (Init, ẋ = f (x), Inv) be a contin-
uous system with safety constraint Safe. If B is a (strict) barrier certificate for a
continuous safety problem, i.e., a polynomial satisfying

B(x)≤ 0 for all initial states x ∈ [[Init]],
B(x) > 0 for all unsafe states x /∈ [[Safe]], and

∂B

∂x
(x)f (x) < 0 for all states x ∈ [[Inv]] with B(x)= 0,

then the continuous system (Init, ẋ = f (x), Inv) respects Safe.

Search procedures for barrier certificates include approaches that choose a
degree-bound for the barrier certificate B(x) and then turn the conditions from The-
orem 4 into a convex optimization problem, which can be solved efficiently [154].

30 Verification of Hybrid Systems 1089

A similar approach has been proposed for Theorem 5, but the optimization problem
is then non-convex [154], so optimizers can get stuck in local optima.

Barrier certificates can be extended to systems with disturbances and to switching
diffusion systems [154]. We refer to the literature for a discussion of these general-
izations and examples [154].

30.6.2 Equational Certificates

Equational certificates [159, 161] serve a purpose that has quite some similarity to
barrier certificates. They were introduced [161] at the same time as barrier certifi-
cates [154], and later rephrased and generalized [159] similarly to a matrix refor-
mulation of that idea [123]. Equational certificates have been investigated earlier by
Darboux in 1878 [56] for continuous systems not in the context of hybrid systems.
Like barrier certificates, the conditions of equational certificates make a reachabil-
ity analysis superfluous, because they give a simple certificate showing a property
of the system. One major difference of equational certificates compared to barrier
certificates is that an equational certificate consists of a single polynomial equa-
tion p(x) = 0, while a barrier certificate consists of a single polynomial inequal-
ity B(x) ≤ 0. The other major difference is the condition itself. It is an equational
criterion, not using inequalities. Another minor difference is that an equational cer-
tificate p(x) = 0 shows invariance of the property p(x) = 0 instead of separating
initial states from bad states. That is a minor difference, though, because Safe is an
invariance property that can be read off from a barrier certificate that separates Init
from ¬Safe.

Theorem 6 (Equational certificates [161]) Let p(x) be a polynomial and let
(p(x) = 0, ẋ = f (x), Inv) be a continuous system. If there is a polynomial g(x)

such that

∂p

∂x
(x)f (x)= g(x)p(x)

for all x ∈ [[Inv]], then (p(x) = 0, ẋ = f (x), Inv) respects p(x) = 0. In particular,
p(x)= 0 is an invariant of (p(x)= 0, ẋ = f (x), Inv).

The equational template approach for equational certificates [161] works as fol-
lows. The user chooses a template for the polynomial equation p(x) = 0 and the
system then uses linear equation solving and/or Gröbner basis computations [38] to
check whether the equational certificate condition from Theorem 6 holds. In gen-
eral, the approach may use the decision procedures of quantifier elimination in real
closed fields [49] to handle the nonlinear real arithmetic.

Common special cases of equational certificates include those where only num-
bers or only 0 is chosen for the polynomial g(x). It had originally been proposed

1090 L. Doyen et al.

informally [161] that it should also be sufficient in Theorem 6 to check

∂p

∂x
(x)f (x)= 0 for all x ∈ [[Inv]] with p(x)= 0. (17)

This variation is generally not strong enough and can lead to soundness issues.

Example 3 When using condition (17), it may seem as if x2 = 0 were an invariant
of the differential equation ẋ = 1, because condition (17) succeeds as follows:

∂x2

∂x
1= 2x = 0 for all x with x2 = 0

This, however, is counterfactual, because the system ẋ = 1 will, of course, falsify the
safety condition x2 = 0 right away. Thus, the condition (17) is an unsound variation
of Theorem 6. We refer to the literature [136, 142] for a discussion of the conditions
under which stronger assumptions can be assumed without losing soundness.

There are additional conditions on the system dynamics and p, however, under
which the restriction (17) remains correct [142]. That line of research also identifies
under which conditions equational templates and equational differential invariants
are complete for verifying equational safety properties [142].

30.6.3 Differential Invariants and Logical Certificates

Differential invariants are a generalized form of logic-based witness techniques for
hybrid systems and generalize equational certificates [161] and barrier certificates
[153, 154]. Like equational certificates [161], a differential invariant can be an equa-
tion p(x) = 0. Like barrier certificates [153, 154], differential invariants can be
inequalities like p(x) ≤ 0. Differential invariants can be general logical formulas
with propositional combinations of mixed equations, strict inequalities, and weak
inequalities, and can be extended to contain quantifiers for distributed hybrid sys-
tems [138]. Differential invariants have been introduced in 2008 [136] and later
refined to an automatic verification procedure that searches for differential invari-
ants [148]. Further results about the theory of differential invariants can be found in
the literature [142, 144].

Given a continuous system (Init, ẋ = f (x), Inv), we want to check whether it re-
spects Safe. As a short notation, we say that the formula Init→[ẋ = f (x)&Inv]Safe
is valid if the continuous system (Init, ẋ = f (x), Inv) respects the safety condition
Safe. That is, if that continuous system always stays in the region Safe when it fol-
lows differential equation ẋ = f (x) restricted to the evolution domain region Inv and
when started in any initial state satisfying Init. Even though more complex represen-
tations can be used, we assume Init,Safe, and Inv to be (semi-algebraic) polynomial
constraints. A simple form corresponds to the case where Init and Safe are the same

30 Verification of Hybrid Systems 1091

formula F . If F →[ẋ = f (x)&Inv]F is valid, then F is called a continuous invari-
ant of the dynamics ẋ = f (x)&Inv. That is, if the continuous system starts in F ,
then it will always stay in F .

In fact, the notation Init→[ẋ = f (x)&Inv]Safe can be understood as a log-
ical formula. The logical formula [ẋ = f (x)&Inv]Safe uses the modal operator
[ẋ = f (x)&Inv] to say that formula Safe holds in all states that are reachable along
the differential equation ẋ = f (x) within evolution domain Inv. The implication
Init→ in Init→[ẋ = f (x)&Inv]Safe restricts this to only the set of initial states
that satisfy Init. The same principle extends to a logic for hybrid systems [135–
137, 141, 143] and to a logic for distributed hybrid systems [140]; see [143] for an
overview. Both of these logics are relatively complete (similarly to relative com-
pleteness of Hoare calculus). That is, they can prove every valid formula about hy-
brid systems or (distributed) hybrid systems from elementary properties of differen-
tial equations. These results also give a precise construction lifting all verification
techniques for continuous systems to hybrid systems [141].

Differential invariants can be equational formulas like equational certificates,
they can include inequalities like barrier certificates, but they also include mixed
cases, Boolean combinations, and cases with more complicated logical formulas.

Definition 13 (Continuous invariant) Let (Init, ẋ = f (x), Inv) be a continuous
system with safety constraint Safe. Constraint F is a continuous invariant of
Init→[ẋ = f (x)&Inv]Safe iff the following formulas are valid (true in all states):

1. Init∧ Inv→ F (induction start), and
2. F →[ẋ = f (x)&Inv]F (induction step).

A continuous invariant F is sufficiently strong for Init→[ẋ = f (x)&Inv]Safe if, in
addition, F → Safe is valid, because Init→[ẋ = f (x)&Inv]Safe is then valid.

It is easy to see that the existence of a sufficiently strong continuous invariant for
Init→[ẋ = f (x)&Inv]Safe implies that the property Init→[ẋ = f (x)&Inv]Safe is
valid.

Continuous invariants are useful notions, but they are not computational per se,
because we still need to find a way to check the induction step. The induction start
is reasonable, because it is just a constraint, which is a logical formula of first-
order real arithmetic and thus decidable by quantifier elimination in real closed
fields [49, 50, 166]. But we need to find a checkable representation of the induction
step. A checkable condition is made formally precise using the notion of differential
invariants.

Definition 14 (Differential invariant) Let (Init, ẋ = f (x), Inv) be a continuous sys-
tem with safety constraint Safe. A polynomial constraint F is a differential invariant
of Init→[ẋ = f (x)&Inv]Safe iff the following formulas are valid:

1. Init∧ Inv→ F (induction start), and
2. Inv→∇ẋ=f (x)F (induction step),

1092 L. Doyen et al.

Fig. 13 Differential
invariant F

where ∇ẋ=f (x)F is the conjunction of all directional derivatives of atomic formulas
in F in the direction of the vector field of ẋ = f (x) (the partial derivative of b by xi

is ∂b
∂xi

):

∇ẋ=f (x)F ≡
∧

(b∼c)∈F

(
n∑

i=1

∂b

∂xi

fi(x)

)

∼
(

n∑

i=1

∂c

∂xi

fi(x)

)

where ∼∈ {=,≥,>,≤,<}.
A differential invariant F is sufficiently strong for Init→[ẋ = f (x)&Inv]Safe if, in
addition, F → Safe is valid (because Init→[ẋ = f (x)&Inv]Safe is then valid by
Corollary 2 below).

The respective partial derivatives of terms are well defined in the Euclidean space
spanned by the variables and can be computed symbolically [136, 137]. Differential
invariants capture the condition showing that the formula F is only becoming more
true when following the dynamics, not less true, see Fig. 13.

The central property of differential invariants for verification purposes is that
they replace infeasible or impossible reachability analysis with feasible symbolic
computation.

Theorem 7 (Principle of differential induction [136]) All differential invariants are
continuous invariants.

Corollary 1 If F is a differential invariant for Init→[ẋ = f (x)&Inv]Safe, then
Init→[ẋ = f (x)&Inv]F is valid.

Corollary 2 If F is a differential invariant for Init→[ẋ = f (x)&Inv]Safe that is
sufficiently strong, then F is a continuous invariant that is sufficiently strong for
Init→[ẋ = f (x)&Inv]Safe. In particular, Init→[ẋ = f (x)&Inv]Safe is valid.

Example 4 Consider the dynamics ẋ = x4, ẏ =−2. We are interested in seeing
whether 2x ≥ 5y is an invariant of this dynamics. With differential invariants it is
easy to show that this is an invariant for the dynamics without using any state-based
reachability verification. We just compute symbolically:

∇ẋ=x4,ẏ=−2(2x ≥ 5y)≡ ∂2x

∂x
x4 + ∂2x

∂y
(−2)≥ ∂5y

∂x
x4 + ∂5y

∂y
(−2)≡ 2x4 ≥−10.

30 Verification of Hybrid Systems 1093

Fig. 14 Example of a
differential invariant indicated
by the thick boundary

Since the latter formula is easily found to be valid, 2x ≥ 5y is proven to be a dif-
ferential invariant and thus stays true whenever it holds for the initial state of the
dynamics.

Consider the case where ẋ = x4, ẏ =−2 is the dynamics of one location of a
hybrid automaton. Then we know that 2x ≥ 5y is true after staying in this location
arbitrarily long, if only we know that 2x ≥ 5y is also true initially when entering the
location. This is a prototypical scenario where local verification results also need to
be combined together in order to verify the whole hybrid automaton.

Example 5 Consider the dynamics

ẋ1 = 2x4
1x2 + 4x2

1x3
2 − 6x2

1x2, ẋ2 =−4x3
1x2

2 − 2x1x
4
2 + 6x1x

2
2 .

Using differential invariants it is easy to show that x4
1x2

2 + x2
1x4

2 − 3x2
1x2

2 + 1≤ c is
an invariant of this dynamics, as illustrated in Fig. 14. The justification again follows
by simple symbolic computation as in Example 4:

∇ẋ1=2x4
1x2+4x2

1x3
2−6x2

1x2,ẋ2=−4x3
1x2

2−2x1x
4
2+6x1x

2
2

(
x4

1x2
2 + x2

1x4
2 − 3x2

1x2
2 + 1≤ c

)

≡ ∂
(
x4

1x2
2 + x2

1x4
2 − 3x2

1x2
2 + 1

)

∂x1

(
2x4

1x2 + 4x2
1x3

2 − 6x2
1x2

)

+ ∂
(
x4

1x2
2 + x2

1x4
2 − 3x2

1x2
2 + 1

)

∂x2

(−4x3
1x2

2 − 2x1x
4
2 + 6x1x

2
2

)≤ 0

which simplifies to true.

Differential invariants work somewhat like loop invariants but for differential
equations instead of loops. When checking a loop invariant F , we can assume it
holds before the loop in the induction step. It thus looks as if we should be able to
assume F when proving the induction step Case 2 of Definition 14 and prove

Inv∧ F →∇ẋ=f (x)F (18)

1094 L. Doyen et al.

instead. Or, better, yet, only check the condition on the boundary of the domain like
for barrier certificates. Neither of those would be sound, however, according to the
following counterexamples from [136, 148]:

Example 6 When using condition (18), it looks as if x2 ≤ 0 were an invariant of
the differential equation ẋ = 1, because condition (18) succeeds as follows:

(
x2 ≤ 0→∇ẋ=1x

2 ≤ 0
)≡

(

x2 ≤ 0→ ∂x2

∂x
1≤ 0

)

≡ (x2 ≤ 0→ 2x ≤ 0
)

This, however, is counterfactual, because the system ẋ = 1 will, of course, leave
region x2 ≤ 0. Thus, the condition (18) is unsound. The same example shows that
checking on the boundary of F is unsound in general. We refer to the original work
[136] for a discussion of the conditions under which stronger assumptions can be
made without losing soundness.

A further elaboration of these phenomena as well as an identification of the con-
ditions under which such extra assumptions would be sound can be found in the
literature [142, 144].

It turns out that some properties cannot be verified using differential invariants
alone but that additional verification techniques are needed [144]. Differential sat-
uration (repeated application of differential cuts [136, 144]) has been introduced
together with differential invariants in 2008 [136] as a sound alternative that can be
used to add conditions iteratively without compromising soundness.

Theorem 8 (Differential saturation [136, 144]) Assume that F is a continuous in-
variant (e.g., a differential invariant) of Init→[ẋ = f (x)&Inv]Safe, then

Init→[ẋ = f (x)&Inv]Safe iff Init→[ẋ = f (x)&Inv∧ F]Safe.

An evolution domain constraint Inv (also confusingly referred to as the invari-
ant of a location) is an entirely different entity than an invariant property F of a
system. An automaton model assumes or prescribes that the system dynamics can
only be followed along traces that do not leave Inv, because the system will stop
all executions that leave Inv. In contrast, a differential invariant proves that the sys-
tem will never leave F whether it wants to or not. Nevertheless, Theorem 8 gives
a sound way of translating a proved differential invariant into a prescriptive evolu-
tion domain constraint. Theorem 8 can be used to strengthen the evolution domain
constraints to subregions, which then become available for subsequent verification
in a sound way. The differential cut principle underlying Theorem 8 is particularly
powerful when used repeatedly until saturation [136, 148]. That is, verification with
differential invariants often proceeds in stages, where a number of formulas F are
verified to be invariants and then used to constrain the evolution of the system using
the right-hand side of Theorem 8. This process repeats until all unsafe states have

30 Verification of Hybrid Systems 1095

been verified to be removable from the state space and so verification becomes triv-
ial. Repeating this process in a fixed-point loop has been shown to work successfully
in practice [148].

Differential invariants are computationally attractive concepts, because their in-
duction start and induction step are just polynomial constraints, which are formulas
of first-order real arithmetic, and are thus decidable by quantifier elimination in real
closed fields [49, 50, 166]. Also the check whether a differential invariant F is suf-
ficiently strong to imply a polynomial safety constraint Safe is decidable. The steps
needed to compute the induction step of a differential invariant are simple algebraic
computations that can be automated easily.

Differential invariants are always sound. That is, every property that can be ver-
ified using a differential invariant is correct. The converse question is that of com-
pleteness, whether all relevant properties can be verified. It turns out that differential
invariants alone are not complete.

Example 7 x > 0→[ẋ =−x&true]x > 0 is valid, but x > 0 is not a differential
invariant of ẋ =−x, not a barrier certificate, and does not qualify as an equational
template either.

More generally, it can be shown that there are properties like Example 7 that are
true but cannot be verified [144], except when using an additional verification tech-
nique known as differential auxiliaries (alias differential ghosts) that adds additional
variables and additional dynamics for verification purposes [144]. Thus, differential
auxiliaries are a fundamental extension that is required for verification.

Search procedures for differential invariants include degree-bounded enumera-
tion and fixed-point loops [148]. For completeness guarantees and numerous prov-
ability relationships on classes of differential invariants, see [141, 144]. The case
of equational differential invariants is elaborated in [142], in which case differential
invariants are a necessary and sufficient criterion for invariant functions according
to a corresponding result by Lie.

Theorem 9 (Invariant function characterization) A (polynomial) function p is an
invariant function of ẋ = f (x), i.e., the value of p along all solutions is constant,
iff p = 0 is a differential invariant of ẋ = f (x).

A corresponding necessary and sufficient characterization of all algebraic invari-
ant equations of algebraic differential equations is possible with a higher-order gen-
eralization of equational differential invariants called differential radical invariants
[73].

For hybrid systems, differential invariants are used by allowing separate invari-
ants for the respective locations of the hybrid automaton. Consider the hybrid au-
tomaton in Fig. 15 and, for the moment, suppose that there are no discrete jumps,
i.e., the reset relations are the identity relation. Then, we need to show that start-
ing in F1 for dynamics ẋ = θ1 will always stay in the region F2. In addition, we
need to show that, when starting in F2 the dynamics ẋ = θ2 will always stay in

1096 L. Doyen et al.

Fig. 15 Example of a
verification loop for a hybrid
automaton

the region F3, and so on. That is, in general we need to show that, when starting
in Fi , the dynamics ẋ = θi will always stay in the region F(i+1)%5. In the presence
of non-trivial discrete jump relations, we also need to show that these jump rela-
tions preserve the respective invariant. That means, we need to show that the jump
relation (including its guard) will always transform every state within the invariant
region Fi of its source into the invariant region F(i+1)%5 of its target. Finally, we
only know that the reachable states of the hybrid automaton are contained in the
respective invariant regions Fi if the automaton also starts in the required invariant
region F0 of the initial location. That is, we need to check that the initial state is
contained in F0.

To make this principle concrete, consider a flyable roundabout maneuver for air
traffic control [149], which is a variation of roundabouts that have been proposed
a decade before [175]. Flyable roundabouts follow a hybrid automaton similar to
Fig. 15, but with locations that correspond to the various phases of the roundabout
as depicted schematically in Fig. 16. The aircraft are initially in free flight (free),
then, when a conflict arises, agree on a compatible roundabout collision avoidance
maneuver (agree), approach the roundabout with an entry procedure (entry), follow
the roundabout (circ), and then leave the roundabout (exit), until they are far enough
away to enter free flight again. Such roundabout collision avoidance maneuvers for
aircraft can be verified using differential invariants, see elsewhere [149] for details.

For an investigation of the theory of differential invariants, we refer to [73, 136,
142–144]. That line of research studies the theoretical and provability properties
of differential invariants. It identifies a dozen relations either equating or separat-

Fig. 16 Phases of flyable roundabout maneuver and protocol cycle

30 Verification of Hybrid Systems 1097

Fig. 17 Differential invariance chart: identifies how classes of differential invariants relate to each
other, where the operators in the differential invariants are restricted as indicated in subscript Ω

ing the verification power of various classes of differential invariants (Fig. 17 in-
dicates strict inclusion, equivalence, and incomparability of verification power, re-
spectively). These relations further imply that the inclusion of Boolean operators
that differential invariants support makes it possible to verify more systems com-
pared to the single polynomial inequalities of barrier certificates or the single poly-
nomial equations of equational templates [144]. The subclass of systems that have
equational systems as invariants, however, already have a single equational invari-
ant [144]. Differential cuts, differential saturation, and differential auxiliaries have
been identified as fundamental extensions [136, 144]. The surprisingly close rela-
tionship of differential invariants to classical discrete invariants has been explored in
the literature [141]. The relationship of differential invariants to Lie’s seminal work,
a differential operator view, and partial differential equations has been investigated
along with a technique called the inverse characteristic method for generating dif-
ferential invariants [142]. The generalization of differential radical invariants can be
generated efficiently using symbolic linear algebra [73].

For a generalization of differential invariants to systems with disturbances and
differential-algebraic equations, we refer to the literature [136, 137]. Differential
invariants can be generalized to the case of quantified first-order formulas and to
distributed hybrid systems [138]. The approach extends to a relatively complete
logic for hybrid systems [135–137, 141, 143] and to a relatively complete logic for
distributed hybrid systems [140]. Generalizations to reachability and progress con-
ditions can be found elsewhere [136]. Generalizations to stochastic hybrid systems
with stochastic differential equations have been proposed [139].

30.7 Verification Tools

Despite the undecidability of the general case, the safety verification problem has
been attacked algorithmically: many of the classical tools (among others D/DT [19],
CheckMate [45], HYTECH [89]) and many of the more recent tools (PHAVER [67])
use a symbolic analysis of the hybrid automaton with a forward and/or backward ap-
proach: starting from the initial (resp. unsafe) states, iterate the Post operator (resp.

1098 L. Doyen et al.

Pre) until a fixed point is reached and then check emptiness of the intersection with
the unsafe (resp. initial) states. By Theorem 2, these procedures are not guaranteed
to terminate in general. As discussed in Sect. 30.4, a major issue is scalability, as
the computational cost increases sharply with the number of continuous variables.
Performance is achieved by overapproximating the Post operator, and overapprox-
imation can also be used to force termination of the fixed-point procedure. The
challenge is to find methods that scale and are still accurate enough to show safety.

We discuss a selection of hybrid systems verification tools representing differ-
ent classes of approaches that we survey here. A complete overview of all tools is
beyond the scope of this chapter. We focus on a subset of the verification tools for
which a dedicated tool paper and at least some documentation is available. A more
complete collection of tools can be found on the Web.8

HSolver: Interval Constraint Propagation

HSolver9 [158] is an open-source software package for the formal verification of
safety properties of continuous-time hybrid systems. It allows hybrid systems with
nonlinear ordinary differential equations and nonlinear jumps assuming a global
compact domain restriction on all variables. Even though HSolver is based on
fast machine-precision floating point arithmetic, it uses sound rounding, and hence
the correctness of its results cannot be hampered by round-off errors. HSolver not
only verifies (unbounded horizon) reachability properties of hybrid systems, but—
in addition—it also computes abstractions of the input system. So, even for input
systems that are unsafe, or for which exhaustive formal verification is too difficult,
it will compute abstractions that can be used by other tools. For example, the ab-
stractions could be used for guiding search for error trajectories of unsafe systems.

HSolver is not optimized for special classes of hybrid systems (e.g., systems such
as linear hybrid automata that have very simple continuous dynamics). Moreover it
does not yet provide mature support for finding counterexamples for unsafe input
systems. The method used by HSolver is abstraction refinement based on interval
constraint propagation [158], which incrementally refines an abstraction of the in-
put system. Special care is taken to reflect as much information as possible in the
abstraction without increasing its size.

HyTech: The HYbrid TECHnology Tool

HyTech10 [89] was the first tool for reachability analysis of PCDA (Linear Hy-
brid Automata). The system is specified as a product of automata that synchronize

8http://wiki.grasp.upenn.edu/.
9http://hsolver.sourceforge.net/.
10http://embedded.eecs.berkeley.edu/research/hytech/.

http://wiki.grasp.upenn.edu/
http://hsolver.sourceforge.net/
http://embedded.eecs.berkeley.edu/research/hytech/

30 Verification of Hybrid Systems 1099

on transitions that share the same label. The tool has a simple command language
similar to a basic imperative language, allowing the user to program his own explo-
ration algorithms. The basic data type represents a union of polyhedra associated
with each location of the product automaton. Operations such as Boolean opera-
tions, existential quantification, emptiness test, and reachability computation (using
the Post operation) are provided. Error traces (counterexamples) can be produced in
combination with reachability analysis.

HyTech uses polyhedra with the double description method, which combines
constraint and generator representations. The post operators are those described in
Sect. 30.4.2 and implemented with exact arithmetic. HyTech can be used for para-
metric analysis by viewing parameters as variables with first derivative equal to zero.
For instance, existential quantification on the reachable states can be used to extract
a constraint on the parameters such that a given region is reachable. HyTech has
been used to model check an audio control protocol [99] and a steam boiler [98].
A main limitation of HyTech lies in its use of standard integer data types, which
quickly leads to integer overflow.

KeYmaera: Logic and Differential Invariants for Compositional Verification

KeYmaera11 [135–137, 141, 150] is a hybrid verification tool for hybrid systems
that combines deductive, real algebraic, and computer algebraic prover technolo-
gies. It is an automated and interactive theorem prover for a natural specification
and verification logic for hybrid systems. With this, the verification principle behind
KeYmaera is fundamentally different and complementary to tools like HyTech [89],
PHAVer [67], and SpaceEx [68]. KeYmaera supports differential dynamic logic (dL)
[135, 137, 141], which is a real-valued first-order dynamic logic for hybrid pro-
grams [135, 137, 141], a program notation for hybrid systems. KeYmaera also sup-
ports hybrid systems with nonlinear discrete jumps, nonlinear differential equations,
differential-algebraic equations, differential inequalities, and systems with nonde-
terministic discrete or continuous input.

For automation, KeYmaera implements a number of automated proof strategies
that decompose the hybrid system symbolically and prove properties of the full sys-
tem by proving properties of its parts [137]. This compositional verification prin-
ciple helps scale up verification, because KeYmaera verifies large systems by ver-
ifying properties of subsystems (also see assume-guarantee reasoning, Chap. 12).
KeYmaera implements fixed-point procedures [148] that compute differential in-
variants and invariants in fixed-point loops, somewhat like the way classical model
checkers compute reachable sets in fixed-point loops. KeYmaera is typically more
suitable for verifying parametric hybrid systems than systems with a single numer-
ical state, where simulation is more appropriate. KeYmaera has been used success-
fully for verifying case studies in train control [151], car control [114, 115], air

11http://symbolaris.com/info/KeYmaera.html.

http://symbolaris.com/info/KeYmaera.html

1100 L. Doyen et al.

traffic management [149], mobile robotics [130] and surgical robotics [104]. The
KeYmaera approach is described in a book about Logical Analysis of Hybrid Sys-
tems [137].

A comprehensive introduction is provided in a textbook on the logical founda-
tions of cyber-physical systems [146]. This textbook also explains how the successor
tool KeYmaera12 [72] can achieve the same from a minimal soundness-critical core
[145].

PHAVer: Polyhedral Hybrid Automaton Verifyer

PHAVer13 [67] follows the same basic principles as HyTech. PHAVer is a formal
verification tool for computing reachability and simulation relations of PCDA (Lin-
ear Hybrid Automata) from Sect. 30.4.2.

PHAVer uses standard operations on polyhedra for reachability computations
over an infinite time horizon (similar to those used in HyTech), and the algorithm
for computing simulation relations is a straightforward extension of these. Using
unbounded integer arithmetic, the computations are exact and formally sound. In
addition to PCDA reachability, PHAVer can overapproximate piecewise affine dy-
namics on the fly, computing an overapproximation of the reachable states that is in-
variant (all trajectories that start within the set stay within the set). While PCDA are
undecidable, PHAVer provides formally sound and precise overapproximation and
widening operators that can force termination at the cost of reduced precision. These
operators also simplify the computed continuous sets and dynamics of the system,
and may result in a considerable speed-up without much loss in precision. The
checking of abstraction and equivalence with simulation relations can be applied
compositionally, and a sound non-circular assume-guarantee rule is implemented
[66]. However, since the required exact computations on polyhedra do not scale
well, this approach is limited to very small systems.

With its exact computations and controllable overapproximations, PHAVer is
suited to verifying formally stringent properties on small systems with simple dy-
namics, such as communication protocols with drifting clocks or buffer networks.
PHAVer’s disadvantage is that the employed polyhedra computations are gener-
ally exponential in the number of variables, so that scalability is limited. PHAVer
has been used to verify oscillation properties of a voltage-controlled oscillator cir-
cuit with three state variables [70], and various academic benchmarks with simple
dynamics and up to 14 continuous variables. Since 2011, PHAVer is part of the
SpaceEx tool platform [68].

12http://keymaeraX.org/.
13http://www-verimag.imag.fr/~frehse/phaver_web/index.html.

http://keymaeraX.org/
http://www-verimag.imag.fr/~frehse/phaver_web/index.html

30 Verification of Hybrid Systems 1101

SpaceEx: State Space Explorer

SpaceEx14 [68] is a tool platform for verifying hybrid systems. It can handle hybrid
automata whose continuous and jump dynamics are piecewise affine with nonde-
terministic inputs, i.e., PWA from Sect. 30.4.3. Nondeterministic inputs are par-
ticularly useful for modeling the approximation error when nonlinear systems are
brought into piecewise affine form. SpaceEx comes with a compositional model-
ing language. It allows one to specify complex systems in a modular fashion as a
network of interacting hybrid automata with templates and nesting. In the SpaceEx
model editor, components are connected in block diagrams known from control the-
ory, and the evolution of continuous variables is specified by hybrid automata with
differential algebraic equations and inequalities.

Several different algorithms are implemented on the SpaceEx platform, including
an exact algorithm for PCDA and a simulator that can handle nonlinear dynamics.
The main verification algorithms, called LGG [68] and STC [69], combine explicit
set representations (polyhedra), implicit set representations (support functions), and
linear programming to achieve high scalability while maintaining high accuracy.
The reachable states are overapproximated in the form of template polyhedra, which
are polyhedra whose facets are oriented according to a user-provided set of template
directions. The algorithms use adaptive time steps to ensure that the approximation
error in each template direction remains below a given value. Empirical measure-
ments indicate that the complexity of the image computations is linear in the number
of variables, quadratic in the number of template directions, and linear in the number
of time-discretization steps.

The accuracy of the overapproximation can be increased arbitrarily by choosing
smaller time steps and adding more template directions. To attain a given approx-
imation error (in the Hausdorff sense), the number of template directions is worst-
case exponential. In case studies, the developers of SpaceEx observe that a linear
number of user-specified directions, possibly augmented by a small set of critical
directions, often suffices. The LGG and STC algorithms use floating-point compu-
tations that do not formally guarantee soundness. SpaceEx has been used to verify
continuous and hybrid systems with more than 100 continuous variables.

ToolboxLS: Level Set Methods

Level set methods are a class of algorithms designed for approximating the solu-
tion of the Hamilton–Jacobi partial differential equation (PDE) [127], which arises
in many fields including optimal control, differential games, and dynamic implicit
surfaces. In particular, dynamic implicit surfaces can be used to compute backward
reachable sets and tubes for nonlinear, nondeterministic, continuous dynamic sys-
tems with control and/or disturbance inputs; in other words, inputs and parameters to

14http://spaceex.imag.fr/.

http://spaceex.imag.fr/

1102 L. Doyen et al.

the model can be treated in a worst case and/or best case fashion. The strengths and
weaknesses of the Hamilton–Jacobi PDE formulation of reachability are very sim-
ilar to those of viability theory: it can treat very general dynamics with adversarial
inputs and can represent very general sets, but the known computational algorithms
require resources that grow exponentially with the number of dimensions (number
of variables); for example, in ToolboxLS15 the level set algorithms run on a Carte-
sian grid of the state space. The ToolboxLS algorithms also do not guarantee the
sign of computational errors, but they deliver higher accuracy for a given resolution
than that available from typical sound alternatives.

Because ToolboxLS [128] is designed for dynamic implicit surfaces rather than
specifically for reachability, it does not include a specialized verification interface;
however, it has a 140-page user manual documenting the software and over twenty
complete examples including three reachable-set computations. It has been used pri-
marily for reachability of systems with two to four continuous dimensions, including
collision avoidance, quadrotor flips, aerial refueling, automated landing, and glide-
path recapture.

Acknowledgements The authors thank the anonymous reviewers of this chapter for helpful
feedback, as well as David Henriques and João Martins for their proofreading help. We also thank
Andrew Sogokon for suggesting the nice illustration shown in Fig. 14.

References

1. Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE (2012)

2. Althoff, M., Krogh, B.: Reachability analysis of nonlinear differential-algebraic systems.
IEEE Trans. Autom. Control 59, 371–383 (2014)

3. Althoff, M., Krogh, B.H., Stursberg, O.: Analyzing reachability of linear dynamic systems
with parametric uncertainties. In: Rauh, A., Auer, E. (eds.) Modeling, Design, and Simulation
of Systems with Uncertainties. Springer, Heidelberg (2011)

4. Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomializa-
tion and non-convex sets. In: Proceedings of the 16th International Conference on Hybrid
Systems: Computation and Control, pp. 173–182. ACM, New York (2013)

5. Althoff, M., Krogh, B.H.: Avoiding geometric intersection operations in reachability analysis
of hybrid systems. In: Proceedings of the 15th ACM International Conference on Hybrid
Systems: Computation and Control, pp. 45–54. ACM, New York (2012)

6. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero,
A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci.
138, 3–34 (1995)

7. Alur, R.: Formal verification of hybrid systems. In: Chakraborty et al. [41], pp. 273–278
8. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic

approach to the specification and verification of hybrid systems. In: Grossman et al. [82],
pp. 209–229

9. Alur, R., Dang, T., Ivancic, F.: Counterexample-guided predicate abstraction of hybrid sys-
tems. Theor. Comput. Sci. 354(2), 250–271 (2006)

15http://www.cs.ubc.ca/~mitchell/ToolboxLS/.

http://www.cs.ubc.ca/~mitchell/ToolboxLS/

30 Verification of Hybrid Systems 1103

10. Alur, R., Dang, T., Ivancic, F.: Predicate abstraction for reachability analysis of hybrid sys-
tems. ACM Trans. Embed. Comput. Syst. 5(1), 152–199 (2006)

11. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235
(1994)

12. Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems.
Proc. IEEE 88(7), 971–984 (2000)

13. Alur, R., Henzinger, T.A., Ho, P.-H.: Automatic symbolic verification of embedded systems.
IEEE Trans. Softw. Eng. 22(3), 181–201 (1996)

14. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: ACM Symposium
on Theory of Computing, pp. 592–601 (1993)

15. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Domenica
Di Benedetto, M., Sangiovanni-Vincentelli, A.L. (eds.) HSCC. LNCS, vol. 2034, pp. 49–62.
Springer, Heidelberg (2001)

16. Alur, R., Pappas, G.J. (eds.): Hybrid Systems: Computation and Control, Proceedings of
the 7th International Workshop, HSCC 2004, Philadelphia, PA, USA, March 25–27, 2004.
LNCS, vol. 2993. Springer, Heidelberg (2004)

17. Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In:
Alur and Pappas [16], pp. 32–47

18. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems.
Acta Inform. 43(7), 451–476 (2007)

19. Asarin, E., Dang, T., Maler, O., Bournez, O.: Approximate reachability analysis of piecewise-
linear dynamical systems. In: Proc. HSCC 00: Hybrid Systems—Computation and Control.
LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)

20. Asarin, E., Dang, T., Maler, O., Testylier, R.: Using redundant constraints for refinement.
In: Automated Technology for Verification and Analysis, pp. 37–51. Springer, Heidelberg
(2010)

21. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having
piecewise-constant derivatives. Theor. Comput. Sci. 138(1), 35–65 (1995)

22. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a complete set
of numerical abstractions for the analysis and verification of hardware and software systems.
Sci. Comput. Program. 72(1–2), 3–21 (2008)

23. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Almost-sure model checking of
infinite paths in one-clock timed automata. In: Proc. of LICS, pp. 217–226. IEEE, Piscataway
(2008)

24. Balluchi, A., Di Natale, F., Sangiovanni-Vincentelli, A.L., van Schuppen, J.H.: Synthesis for
idle speed control of an automotive engine. In: Alur and Pappas [16], pp. 80–94

25. Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager,
F.W.: Minimum-cost reachability for priced timed automata. In: Proc. of HSCC. LNCS,
vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

26. Bemporad, A., Bicchi, A., Buttazzo, G. (eds.): Hybrid Systems: Computation and Control,
Proceedings of the 10th International Conference, HSCC 2007, Pisa, Italy. LNCS, vol. 4416.
Springer, Heidelberg (2007)

27. Bemporad, A., Morari, M.: Verification of hybrid systems via mathematical programming.
In: Vaandrager and van Schuppen [178], pp. 31–45

28. Benerecetti, M., Faella, M., Minopoli, S.: Automatic synthesis of switching controllers for
linear hybrid systems: safety control. Theor. Comput. Sci. 493, 116–138 (2013)

29. Bergstra, J.A., Middelburg, C.A.: Process algebra for hybrid systems. Theor. Comput. Sci.
335(2–3), 215–280 (2005)

30. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic
methods on high-order Taylor models. Reliab. Comput. 4(4), 361–369 (1998)

31. Bicchi, A., Pallottino, L.: On optimal cooperative conflict resolution for air traffic manage-
ment systems. IEEE Trans. Intell. Transp. Syst. 1(4), 221–231 (2000)

32. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, New
York (1998)

1104 L. Doyen et al.

33. Bouyer, P., Dufourd, C., Fleury, E., Petit, A.: Updatable timed automata. Theor. Comput.
Sci. 321(2–3), 291–345 (2004)

34. Branicky, M.S.: General hybrid dynamical systems: modeling, analysis, and control. In: Alur,
R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems, vol. 1066, pp. 186–200. Springer,
Heidelberg (1995)

35. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model
and optimal control theory. IEEE Trans. Autom. Control 43(1), 31–45 (1998)

36. Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J.-F., Worrell, J.: On reachability
for hybrid automata over bounded time. In: Proceedings of ICALP 2011: International Collo-
quium on Automata, Languages and Programming (Part II). LNCS, vol. 6756, pp. 416–427.
Springer, Heidelberg (2011)

37. Bu, L., Li, Y., Wang, L., Li, X.: BACH: bounded reachability checker for linear hybrid au-
tomata. In: Formal Methods in Computer-Aided Design, 2008. FMCAD’08, pp. 1–4. IEEE,
Piscataway (2008)

38. Buchberger, B.: An algorithm for finding the basis elements of the residue class ring of a
zero dimensional polynomial ideal. PhD thesis, University of Innsbruck (1965)

39. Carloni, L.P., Passerone, R., Pinto, A., Sangiovanni-Vincentelli, A.L.: Languages and tools
for hybrid systems design. Found. Trends Electron. Des. Autom. 1(1/2), 1–193 (2006)

40. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: CONCUR, pp. 138–152
(2000)

41. Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds.): Proceedings of the 11th
International Conference on Embedded Software, EMSOFT 2011, Part of the Seventh Em-
bedded Systems Week, ESWeek 2011, Taipei, Taiwan, October 9–14, 2011. ACM, New York
(2011)

42. Chase, C., Serrano, J., Ramadge, P.J.: Periodicity and chaos from switched flow systems:
contrasting examples of discretely controlled continuous systems. IEEE Trans. Autom. Con-
trol 38(1), 70–83 (1993)

43. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-
linear hybrid systems. In: RTSS, pp. 183–192. IEEE, Piscataway (2012)

44. Chernikova, N.V.: Algorithm for discovering the set of all solutions of a linear programming
problem. USSR Comput. Math. Math. Phys. 8(6), 282–293 (1968)

45. Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polyg-
onal flow pipe approximations. In: Vaandrager and van Schuppen [178], pp. 76–90

46. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O., Theobald, M.:
Abstraction and counterexample-guided refinement in model checking of hybrid systems.
Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)

47. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement. In: Proc. of CAV 2000: Computer Aided Verification. LNCS, vol. 1855, pp. 154–
169. Springer, Heidelberg (2000)

48. Collet, P., Eckmann, J.P.: Iterated Maps on the Interval as Dynamical Systems, vol. 1.
Springer, Heidelberg (1980)

49. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decom-
position. In: Barkhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33,
pp. 134–183. Springer, Heidelberg (1975)

50. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimina-
tion. J. Symb. Comput. 12(3), 299–328 (1991)

51. Collins, P.: Optimal semicomputable approximations to reachable and invariant sets. Theory
Comput. Syst. 41(1), 33–48 (2007)

52. Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. J. Log. Algebraic Program. 62(2),
191–245 (2005)

53. Damm, W., Hungar, H., Olderog, E.-R.: Verification of cooperating traffic agents. Int. J.
Control 79(5), 395–421 (2006)

54. Dang, T., Testylier, R.: Reachability analysis for polynomial dynamical systems using the
Bernstein expansion. Reliab. Comput. 17(2), 128–152 (2012)

30 Verification of Hybrid Systems 1105

55. Dantzig, G.B., Eaves, B.C.: Fourier-Motzkin elimination and its dual. J. Comb. Theory 14,
288–297 (1973)

56. Darboux, J.-G.: Mémoire sur les équations différentielles algébriques du premier ordre et du
premier degré. Bull. Sci. Math. Astron. 2(1), 151–200 (1878)

57. De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata. Form.
Methods Syst. Des. 33(1–3), 45–84 (2008)

58. De Wulf, M., Doyen, L., Raskin, J.-F.: Almost ASAP semantics: from timed models to timed
implementations. Form. Asp. Comput. 17(3), 319–341 (2005)

59. Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett. 102(5),
208–213 (2007)

60. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic rectangular refinement of affine hybrid
systems. In: Proc. of FORMATS 2005: Formal Modelling and Analysis of Timed Systems.
LNCS, vol. 3829, pp. 144–161. Springer, Heidelberg (2005)

61. Fainekos, G.E., Girard, A., Pappas, G.J.: Temporal logic verification using simulation. In:
Formal Modeling and Analysis of Timed Systems, pp. 171–186. Springer, Heidelberg (2006)

62. Fehnker, A., Krogh, B.H.: Hybrid system verification is not a sinecure—the electronic throt-
tle control case study. Int. J. Found. Comput. Sci. 17(4), 885–902 (2006)

63. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with
order. SIAM J. Comput. 4(1), 69–76 (1975)

64. Fränzle, M.: Analysis of hybrid systems: an ounce of realism can save an infinity of states.
In: CSL. LNCS, vol. 1683, pp. 126–140. Springer, Heidelberg (1999)

65. Frazzoli, E., Grosu, R. (eds.): Proceedings of the 14th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2011, Chicago, USA, April 12–14, 2011.
ACM, New York (2011)

66. Frehse, G.: Compositional verification of hybrid systems using simulation relations. PhD
thesis, Radboud Universiteit Nijmegen (October 2005)

67. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int. J. Softw.
Tools Technol. Transf. 10(3), 263–279 (2008)

68. Frehse, G., Le Guernic, C., Donzé, A., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T.,
Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer,
S. (eds.) CAV. LNCS, vol. 6806. Springer, Heidelberg (2011)

69. Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering in space-time.
In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and
Control, pp. 203–212. ACM, New York (2013)

70. Frehse, G., Krogh, B.H., Rutenbar, R.A.: Verifying analog oscillator circuits using for-
ward/backward abstraction refinement. In: Gielen, G.G.E. (ed.) DATE, pp. 257–262. Eu-
ropean Design and Automation Association, Leuven (2006)

71. Freund, R.M., Orlin, J.B.: On the complexity of four polyhedral set containment problems.
Math. Program. 33(2), 139–145 (1985)

72. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tac-
tical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) Automated
Deduction, CADE-25. LNCS, vol. 9195, pp. 527–538. Springer, Heidelberg (2015)

73. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants.
In: Ábrahám, E., Havelund, K. (eds.) TACAS. LNCS, vol. 8413, pp. 279–294. Springer,
Heidelberg (2014)

74. Ghosh, P.K., Kumar, K.V.: Support function representation of convex bodies, its application
in geometric computing, and some related representations. Comput. Vis. Image Underst.
72(3), 379–403 (1998)

75. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele,
L. (eds.) HSCC. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)

76. Girard, A.: Controller synthesis for safety and reachability via approximate bisimulation.
Automatica 48(5), 947–953 (2012)

1106 L. Doyen et al.

77. Girard, A., Le Guernic, C., Maler, O.: Efficient computation of reachable sets of linear time-
invariant systems with inputs. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC. LNCS, vol. 3927,
pp. 257–271. Springer, Heidelberg (2006)

78. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. IEEE
Trans. Autom. Control 52(5), 782–798 (2007)

79. Girard, A., Zheng, G.: Verification of safety and liveness properties of metric transition sys-
tems. ACM Trans. Embed. Comput. Syst. 11(S2), 54 (2012)

80. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid dynamical systems. IEEE Control Syst. Mag.
29(2), 28–93 (2009)

81. Greenstreet, M.R.: Verifying safety properties of differential equations. In: Computer Aided
Verification. LNCS, vol. 1102, pp. 277–287. Springer, Heidelberg (1996)

82. Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.): Hybrid Systems. LNCS, vol. 736.
Springer, Heidelberg (1993)

83. Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions.
In: Bouajjani, A., Maler, O. (eds.) CAV. LNCS, vol. 5643, pp. 540–554. Springer, Heidelberg
(2009)

84. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta,
A., Malik, S. (eds.) CAV. LNCS, vol. 5123, pp. 190–203. Springer, Heidelberg (2008)

85. Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynamical, control, and
hybrid systems. Theor. Comput. Sci. 342(2), 229–261 (2005)

86. Halbwachs, N., Proy, Y.-E., Raymond, P.: Verification of linear hybrid systems by means
of convex approximations. In: International Static Analysis Symposium, SAS’94, Namur
(1994)

87. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: the next generation. In: Proceedings of
the 16th IEEE Real-Time Systems Symposium (RTSS ’95), p. 56. IEEE, Piscataway (1995)

88. Henzinger, T.A.: Hybrid automata with finite bisimulations. In: ICALP: Automata, Lan-
guages, and Programming. LNCS, vol. 944, pp. 324–335. Springer, Heidelberg (1995)

89. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid systems.
Softw. Tools Technol. Transf. 1, 110–122 (1997)

90. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Proceedings of the
29th Annual Symposium on Principles of Programming Languages, pp. 58–70. ACM, New
York (2002)

91. Henzinger, T.A.: The theory of hybrid automata. In: Inan, M.K., Kurshan, R.P. (eds.) Verifi-
cation of Digital and Hybrid Systems. NATO ASI Series F: Computer and Systems Sciences,
vol. 170, pp. 265–292. Springer, Heidelberg (2000)

92. Henzinger, T.A., Ho, P.-H.: A note on abstract interpretation strategies for hybrid automata.
In: Hybrid Systems II, pp. 252–264. Springer, Heidelberg (1995)

93. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Algorithmic analysis of nonlinear hybrid systems.
IEEE Trans. Autom. Control 43, 540–554 (1998)

94. Henzinger, T.A., Kopke, P.W.: State equivalences for rectangular hybrid automata. In: CON-
CUR: Concurrency Theory. LNCS, vol. 1119, pp. 530–545. Springer, Heidelberg (1996)

95. Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theor.
Comput. Sci. 221, 369–392 (1999)

96. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata?
J. Comput. Syst. Sci. 57, 94–124 (1998)

97. Henzinger, T.A., Raskin, J.-F.: Robust undecidability of timed and hybrid systems. In: Proc.
of HSCC 00: Hybrid Systems—Computation and Control. LNCS, vol. 1790, pp. 145–159.
Springer, Heidelberg (2000)

98. Henzinger, T.A., Wong-Toi, H.: Using HyTech to synthesize control parameters for a steam
boiler. In: Abrial, J.-R., Börger, E., Langmaack, H. (eds.) Formal Methods for Industrial
Applications. LNCS, vol. 1165, pp. 265–282. Springer, Heidelberg (1995)

99. Ho, P.-H., Wong-Toi, H.: Automated analysis of an audio control protocol. In: Wolper, P.
(ed.) CAV. LNCS, vol. 939, pp. 381–394. Springer, Heidelberg (1995)

30 Verification of Hybrid Systems 1107

100. Johnson, T.T., Mitra, S.: Parametrized verification of distributed cyber-physical systems: an
aircraft landing protocol case study. In: ICCPS, pp. 161–170. IEEE, Piscataway (2012)

101. Jula, H., Kosmatopoulos, E.B., Ioannou, P.A.: Collision avoidance analysis for lane chang-
ing and merging. PATH Research Report UCB-ITS-PRR-99-13, Institute of Transportation
Studies, University of California, Berkeley (1999)

102. Agung Julius, A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust test generation
and coverage for hybrid systems. In: Hybrid Systems: Computation and Control, pp. 329–
342. Springer, Heidelberg (2007)

103. Kim, K.-D., Kumar, P.R.: Cyber-physical systems: a perspective at the centennial. Proc. IEEE
100, 1287–1308 (2012). Centennial-Issue

104. Kouskoulas, Y., Renshaw, D.W., Platzer, A., Kazanzides, P.: Certifying the safe design of a
virtual fixture control algorithm for a surgical robot. In: Belta, C., Ivancic, F. (eds.) HSCC,
pp. 263–272. ACM, New York (2013)

105. Kühn, W.: Rigorously computed orbits of dynamical systems without the wrapping effect.
Computing 61(1), 47–67 (1998)

106. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal toolbox (ET). In: 45th IEEE Conference on De-
cision and Control, pp. 1498–1503. IEEE, Piscataway (2006)

107. Kurzhanskiy, A.A., Varaiya, P.: Ellipsoidal techniques for reachability analysis of discrete-
time linear systems. IEEE Trans. Autom. Control 52(1), 26–38 (2007)

108. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Math. Control Signals
Syst. 13(1), 1–21 (2000)

109. Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for families of
linear vector fields. J. Symb. Comput. 32(3), 231–253 (2001)

110. Le Guernic, C.: Reachability analysis of hybrid systems with linear continuous dynamics.
PhD thesis, Université Grenoble 1, Joseph Fourier (2009)

111. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems—A Cyber-Physical Systems
Approach (2013). Lulu.com

112. Lerda, F., Kapinski, J., Clarke, E.M., Krogh, B.H.: Verification of supervisory control soft-
ware using state proximity and merging. In: Hybrid Systems: Computation and Control,
pp. 344–357. Springer, Heidelberg (2008)

113. Livadas, C., Lygeros, J., Lynch, N.A.: High-level modeling and analysis of TCAS. Proc.
IEEE 88(7), 926–947 (2000)

114. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed, and now for-
mally verified. In: Butler, M., Schulte, W. (eds.) FM. LNCS, vol. 6664, pp. 42–56. Springer,
Heidelberg (2011)

115. Loos, S.M., Witmer, D., Steenkiste, P., Platzer, A.: Efficiency analysis of formally verified
adaptive cruise controllers. In: Hegyi, A., De Schutter, B. (eds.) ITSC. Springer, Heidelberg
(2013)

116. Lotov, A.V., Bushenkov, V.A., Kamenev, G.K.: Interactive Decision Maps. Applied Opti-
mization, vol. 89. Kluwer Academic, Boston (2004)

117. Lunze, J., Lamnabhi-Lagarrigue, F.: Handbook of Hybrid Systems Control: Theory, Tools,
Applications. Cambridge University Press, Cambridge (2009)

118. Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Inf. Comput. 185(1), 105–
157 (2003)

119. Maler, O.: Algorithmic verification of continuous and hybrid systems. In: Int. Workshop on
Verification of Infinite-State System (Infinity) (2013)

120. Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: de Bakker, J.W., Huizing,
C., de Roever, W.P., Rozenberg, G. (eds.) REX Workshop, vol. 600, pp. 447–484. Springer,
Heidelberg (1991)

121. Maler, O., Pnueli, A. (eds.): Hybrid Systems: Computation and Control, Proceedings of the
6th International Workshop, HSCC 2003, Prague, Czech Republic, April 3–5, 2003. LNCS,
vol. 2623. Springer, Heidelberg (2003)

122. Marwedel, P.: Embedded System Design: Embedded Systems Foundations of Cyber-
Physical Systems. Springer, Heidelberg (2010)

http://Lulu.com

1108 L. Doyen et al.

123. Matringe, N., Vieira Moura, A., Rebiha, R.: Generating invariants for non-linear hybrid sys-
tems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS. LNCS, vol. 6337,
pp. 373–389. Springer, Heidelberg (2010)

124. Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hy-
brid automata. In: Proc. of HSCC 00: Hybrid Systems—Computation and Control. LNCS,
vol. 1790, pp. 296–309. Springer, Heidelberg (2000)

125. Milner, R.: An algebraic definition of simulation between programs. In: Cooper, D.C. (ed.)
Proc. of the 2nd Int. Joint Conference on Artificial Intelligence, London, UK, September
1971. pp. 481–489. William Kaufmann, British Computer Society, London (1971)

126. Milner, R.: A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg
(1980)

127. Mitchell, I.M., Bayen, A.M., Tomlin, C.J.: A time-dependent Hamilton-Jacobi formulation
of reachable sets for continuous dynamic games. IEEE Trans. Autom. Control 50(7), 947–
957 (2005)

128. Mitchell, I.M., Templeton, J.A.: A toolbox of Hamilton-Jacobi solvers for analysis of nonde-
terministic continuous and hybrid systems. In: Morari, M., Thiele, L. (eds.) Hybrid Systems:
Computation and Control. LNCS, vol. 3414, pp. 480–494. Springer, Heidelberg (2005)

129. Mitra, S., Wang, Y., Lynch, N.A., Feron, E.: Safety verification of model helicopter controller
using hybrid input/output automata. In: Maler and Pnueli [121], pp. 343–358

130. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for autonomous
robotic ground vehicles. In: Robotics: Science and Systems (2013)

131. Nerode, A., Yakhnis, A.: Modelling hybrid systems as games. In: Proceedings of the 31st
IEEE Conference on Decision and Control, vol. 3, pp. 2947–2952 (1992)

132. Nerode, A., Kohn, W.: Models for hybrid systems: automata, topologies, controllability, ob-
servability. In: Grossman et al. [82], pp. 317–356

133. Neumaier, A.: The wrapping effect, ellipsoid arithmetic, stability and confidence regions. In:
Validation Numerics, pp. 175–190. Springer, Heidelberg (1993)

134. Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: An approach to the description and analysis
of hybrid systems. In: Grossman et al. [82], pp. 149–178

135. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2), 143–189
(2008)

136. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log.
Comput. 20(1), 309–352 (2010)

137. Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.
Springer, Heidelberg (2010)

138. Platzer, A.: Quantified differential invariants. In: Frazzoli and Grosu [65], pp. 63–72
139. Platzer, A.: Stochastic differential dynamic logic for stochastic hybrid programs. In: Bjørner,

N., Sofronie-Stokkermans, V. (eds.) CADE. LNCS, vol. 6803, pp. 431–445. Springer, Hei-
delberg (2011)

140. Platzer, A.: A complete axiomatization of quantified differential dynamic logic for distributed
hybrid systems. Log. Methods Comput. Sci. 8(4), 1–44 (2012). Special issue for selected
papers from CSL’10

141. Platzer, A.: The complete proof theory of hybrid systems. In: LICS [1], pp. 541–550
142. Platzer, A.: A differential operator approach to equational differential invariants. In: Beringer,

L., Felty, A. (eds.) ITP. LNCS, vol. 7406, pp. 28–48. Springer, Heidelberg (2012)
143. Platzer, A.: Logics of dynamical systems. In: LICS [1], pp. 13–24
144. Platzer, A.: The structure of differential invariants and differential cut elimination. Log.

Methods Comput. Sci. 8(4), 1–38 (2012)
145. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic. J. Au-

tom. Reason. 59(2), 219–265 (2017)
146. Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Heidelberg (2018)
147. Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model check-

ing. In: Bemporad et al. [26], pp. 473–486

30 Verification of Hybrid Systems 1109

148. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints.
Form. Methods Syst. Des. 35(1), 98–120 (2009)

149. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance maneu-
vers: a case study. In: Cavalcanti, A., Dams, D. (eds.) FM. LNCS, vol. 5850, pp. 547–562.
Springer, Heidelberg (2009)

150. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems. In: Ar-
mando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. LNCS, vol. 5195, pp. 171–178.
Springer, Heidelberg (2008)

151. Platzer, A., Quesel, J.-D.: European Train Control System: a case study in formal verification.
In: Breitman, K., Cavalcanti, A. (eds.) ICFEM. LNCS, vol. 5885, pp. 246–265. Springer,
Heidelberg (2009)

152. Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow computations.
In: Frazzoli and Grosu [65], pp. 133–142

153. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In:
Alur and Pappas [16], pp. 477–492

154. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety
verification using barrier certificates. IEEE Trans. Autom. Control 52(8), 1415–1429 (2007)

155. Puri, A.: Dynamical properties of timed automata. In: FTRTFT ’98. LNCS, vol. 1486,
pp. 210–227. Springer, Heidelberg (1998)

156. Puri, A., Varaiya, P.: Decidability of hybrid systems with rectangular differential inclusion.
In: Proc. of CAV. LNCS, vol. 818, pp. 95–104. Springer, Heidelberg (1994)

157. Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-semidecidable. In:
TAMC 2010: 7th Annual Conference on Theory and Applications of Models of Computation.
LNCS, vol. 6108, pp. 397–408. Springer, Heidelberg (2010)

158. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based
abstraction refinement. Trans. Embed. Comput. Syst. 6(1), 8 (2007)

159. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using ideal fixed
points. In: Johansson, K.H., Yi, W. (eds.) HSCC, pp. 221–230. ACM, New York (2010)

160. Sankaranarayanan, S., Dang, T., Ivančić, F.: Symbolic model checking of hybrid systems
using template polyhedra. In: Tools and Algorithms for the Construction and Analysis of
Systems, pp. 188–202. Springer, Heidelberg (2008)

161. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems.
Form. Methods Syst. Des. 32(1), 25–55 (2008)

162. Segelken, M.: Abstraction and counterexample-guided construction of ω-automata for model
checking of step-discrete linear hybrid models. In: Damm, W., Hermanns, H. (eds.) CAV.
LNCS, vol. 4590, pp. 433–448. Springer, Heidelberg (2007)

163. Sokolsky, O., Lee, I., Heimdahl, M.P.E.: Challenges in the regulatory approval of medical
cyber-physical systems. In: Chakraborty et al. [41], pp. 227–232

164. Stursberg, O., Fehnker, A., Han, Z., Krogh, B.H.: Verification of a cruise control system
using counterexample-guided search. Control Eng. Pract. 12(10), 1269–1278 (2004)

165. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer,
Heidelberg (2009)

166. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University
of California Press, Berkeley (1951)

167. Tavernini, L.: Differential automata and their discrete simulators. Nonlinear Anal. 11(6),
665–683 (1987)

168. Tiwari, A.: Approximate reachability for linear systems. In: Maler and Pnueli [121], pp. 514–
525

169. Tiwari, A.: Abstractions for hybrid systems. Form. Methods Syst. Des. 32(1), 57–83 (2008)
170. Tiwari, A.: Generating box invariants. In: Egerstedt, M., Mishra, B. (eds.) HSCC. LNCS,

vol. 4981, pp. 658–661. Springer, Heidelberg (2008)
171. Tiwari, A.: Logic in software, dynamical and biological systems. In: LICS, pp. 9–10. IEEE,

Piscataway (2011)

1110 L. Doyen et al.

172. Tiwari, A., Shankar, N., Rushby, J.M.: Invisible formal methods for embedded control sys-
tems. Proc. IEEE 91(1), 29–39 (2003)

173. Tiwary, H.R.: On the hardness of computing intersection, union and Minkowski sum of poly-
topes. Discrete Comput. Geom. 40(3), 469–479 (2008)

174. Tomlin, C., Pappas, G., Košecká, J., Lygeros, J., Sastry, S.: Advanced air traffic automation:
a case study in distributed decentralized control. In: Siciliano, B., Valavanis, K. (eds.) Control
Problems in Robotics and Automation. Lecture Notes in Control and Information Sciences,
vol. 230, pp. 261–295. Springer, Heidelberg (1998)

175. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: a study in
multi-agent hybrid systems. IEEE Trans. Autom. Control 43(4), 509–521 (1998)

176. Umeno, S., Lynch, N.A.: Proving safety properties of an aircraft landing protocol using I/O
automata and the PVS theorem prover: a case study. In: Misra, J., Nipkow, T., Sekerinski, E.
(eds.) FM, vol. 4085, pp. 64–80. Springer, Heidelberg (2006)

177. Umeno, S., Lynch, N.A.: Safety verification of an aircraft landing protocol: a refinement
approach. In: Bemporad et al. [26], pp. 557–572

178. Vaandrager, F.W., van Schuppen, J.H. (eds.) Hybrid Systems: Computation and Control, Pro-
ceedings of the Second International Workshop, HSCC’99, Berg en Dal, The Netherlands,
March 29–31, 1999. LNCS, vol. 1569, Springer, Heidelberg (1999)

179. van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax and
consistent equation semantics of hybrid Chi. J. Log. Algebraic Program. 68(1–2), 129–210
(2006)

180. van Beek, D.A., Reniers, M.A., Schiffelers, R.R.H., Rooda, J.E.: Concrete syntax and se-
mantics of the compositional interchange format for hybrid systems. In: 17th IFAC World
Congress (2008)

181. Wong-Toi, H.: Analysis of slope-parametric rectangular automata. In: Hybrid Systems.
LNCS, vol. 1567, pp. 390–413. Springer, Heidelberg (1997)

182. Wongpiromsarn, T., Mitra, S., Murray, R.M., Lamperski, A.G.: Periodically controlled hy-
brid systems. In: Majumdar, R., Tabuada, P. (eds.) HSCC. LNCS, vol. 5469, pp. 396–410.
Springer, Heidelberg (2009)

	Chapter 30: Veriﬁcation of Hybrid Systems
	30.1 Introduction
	30.2 Basic Deﬁnitions
	30.2.1 Predicates
	30.2.2 Hybrid Automata

	30.3 Decidability and Undecidability Results
	30.4 Set-Based Reachability Analysis
	30.4.1 Reachability Algorithm
	30.4.2 Piecewise Constant Dynamics
	30.4.3 Piecewise Afﬁne Dynamics
	30.4.3.1 Successor Computations
	30.4.3.2 Set Representations
	30.4.3.3 Clustering

	30.4.4 Nonlinear Dynamics

	30.5 Abstraction-Based Veriﬁcation
	30.5.1 Discrete Abstractions
	30.5.2 Phase-Portrait Approximation
	30.5.3 Predicate Abstractions
	30.5.4 Abstraction Reﬁnement
	30.5.5 Approximate Bisimulations

	30.6 Logic-Based Veriﬁcation
	30.6.1 Polynomial Barrier Certiﬁcates
	30.6.2 Equational Certiﬁcates
	30.6.3 Differential Invariants and Logical Certiﬁcates

	30.7 Veriﬁcation Tools
	HSolver: Interval Constraint Propagation
	HyTech: The HYbrid TECHnology Tool
	KeYmaera: Logic and Differential Invariants for Compositional Veriﬁcation
	PHAVer: Polyhedral Hybrid Automaton Verifyer
	SpaceEx: State Space Explorer
	ToolboxLS: Level Set Methods

	References

