
Chapter 28
Model Checking Probabilistic Systems

Christel Baier, Luca de Alfaro, Vojtěch Forejt, and Marta Kwiatkowska

Abstract The model-checking approach was originally formulated for verifying
qualitative properties of systems, for example safety and liveness (see Chap. 2), and
subsequently extended to also handle quantitative features, such as real time (see
Chap. 29), continuous flows (see Chap. 30), as well as stochastic phenomena, where
system evolution is governed by a given probability distribution. Probabilistic model
checking aims to establish the correctness of probabilistic system models against
quantitative probabilistic specifications, such as those capable of expressing, for ex-
ample, the probability of an unsafe event occurring, expected time to termination,
or expected power consumption in the start-up phase. In this chapter, we present the
foundations of probabilistic model checking, focusing on finite-state Markov deci-
sion processes as models and quantitative properties expressed in probabilistic tem-
poral logic. Markov decision processes can be thought of as a probabilistic variant
of labelled transition systems in the following sense: transitions are labelled with ac-
tions, which can be chosen nondeterministically, and successor states for the chosen
action are specified by means of discrete probabilistic distributions, thus specifying
the probability of transiting to each successor state. To reason about expectations,
we additionally annotate Markov decision processes with quantitative costs, which
are incurred upon taking the selected action from a given state. Quantitative prop-
erties are expressed as formulas of the probabilistic computation tree logic (PCTL)
or using linear temporal logic (LTL). We summarise the main model-checking al-
gorithms for both PCTL and LTL, and illustrate their working through examples.
The chapter ends with a brief overview of extensions to more expressive models
and temporal logics, existing probabilistic model-checking tool support, and main
application domains.

C. Baier
Technische Universität Dresden, Dresden, Germany

L. de Alfaro
University of California, Santa Cruz, Santa Cruz, CA, USA

V. Forejt · M. Kwiatkowska (B)
University of Oxford, Oxford, UK
e-mail: marta.kwiatkowska@cs.ox.ac.uk

© Springer International Publishing AG, part of Springer Nature 2018
E.M. Clarke et al. (eds.), Handbook of Model Checking,
DOI 10.1007/978-3-319-10575-8_28

963

mailto:marta.kwiatkowska@cs.ox.ac.uk
http://dx.doi.org/10.1007/978-3-319-10575-8_28

964 C. Baier et al.

28.1 Introduction

Markovian stochastic models, i.e., state-transition graphs annotated with probabili-
ties to model and reason about stochastic phenomena, are central to many applica-
tions. Traditionally, purely stochastic models such as Markov chains [96] have been
applied in, for example, queueing theory, performance evaluation, and the mod-
elling of telecommunication systems and networks [13, 21, 61], but they are also
widely used in other contexts. Dependability properties such as reliability and avail-
ability are expressed probabilistically. In systems biology, for example, stochas-
tic models can be used to reason about biological populations and the evolution
of concentrations of molecules in biological signalling networks [62]. Probabilis-
tic models with nondeterminism, for example Markov decision processes (abbre-
viated as MDPs) [99], which are the main focus of this chapter, are central to the
modelling of distributed coordination protocols that use randomization for medium
access control for wireless networks [85], breaking the symmetry in leader elec-
tion algorithms [68], or modelling security, anonymity and privacy protocols [90],
among many examples. MDPs are also widely used in operations research, eco-
nomics, robotics, and related disciplines that crucially rely on the concept of de-
cision making so as to choose the next action to optimize a certain goal function.
Another application of MDPs is modelling distributed systems that operate with un-
reliable components. For instance, for systems with communication channels that
might corrupt or lose messages, or interact with sensors that deliver wrong values
in certain cases, probability distributions can be used to specify the frequency of
faulty behaviour. Considering stochastic models more generally, further examples
are—ranking algorithms in search engines for the Internet, the analysis of soccer or
baseball matches, reasoning about the stochastic growth of waves of influenza or the
population dynamics of other pathogenic germs, speech recognition, and signature
recognition via biometric identification features. We give a brief overview of related
models at the end of this chapter.

28.1.1 Temporal Logics for Specifying Probabilistic Properties

Probabilistic temporal logics arise as generalisations of established temporal logics
such as computation tree logic (CTL) and linear temporal logic (LTL). Probabilistic
computation tree logic (PCTL) [15, 17, 59] is a probabilistic variant of CTL that
replaces the usual path quantifiers, with which one can reason about all or some
paths satisfying a certain condition, with operators instead imposing quantitative
constraints on the proportion of paths that satisfy this condition. More specifically,
PCTL provides a probabilistic operator whose role is to specify lower or upper prob-
ability bounds for reachability properties, in the sense of requiring that the proba-
bility of reaching a given set of states is above or below a given threshold value.
The reachability properties can be constrained using the CTL path modality “un-
til” U or its step-bounded variant U≤k . For instance, using the probabilistic operator

28 Model Checking Probabilistic Systems 965

one might formally establish the guarantee that a system failure will occur within
the next 100 steps with probability 10−8 or less, or that a leader will eventually be
elected almost surely, that is, with probability 1. Besides the probability operator,
expected cost operators can also be defined, which allow for reasoning, for example,
about the average cost to reach a certain set of target states, or the accumulated cost
within the next k steps. The cost operators can, for instance, be used to assert that the
expected energy consumption within the next 100 steps is less than a given thresh-
old. For Markov decision processes decorated with costs, model checking reduces to
the computation of the minimum or maximum probability/expectation values, over
the possible resolutions of nondeterminism.

While PCTL is a branching-time logic and its formulas express properties that
a state of a probabilistic model might or might not have, probabilistic systems can
also be analysed using purely linear-time (path-based) formalisms such as LTL or
automata over infinite words [11, 40, 97, 105, 106]. We will restrict our attention to
the logic LTL in this chapter. Unlike PCTL, it does not admit path quantifiers, but
it allows us to express more elaborate properties, because it is possible to combine
temporal operators. One can then, for example, express a path property “whenever
button 1 is pressed, the system will be operational until button 2 is pressed”. Such
a property would not be expressible in PCTL. Since the underlying model is prob-
abilistic, after fixing an LTL formula we are interested in quantitatively reasoning
about the proportion of the paths satisfying the specification, analogously to PCTL.
For this purpose we introduce LTL state properties, which are given by an LTL for-
mula and a probability bound, and are true in a state if the maximum probability of
the formula being satisfied is lower than the bound given. The solution methods we
present in this chapter also allow us to ask “quantitative” questions, i.e., to directly
compute the maximum probability that a given LTL formula is satisfied.

The two ways of reasoning about properties of MDPs which we study in this
chapter, i.e., PCTL and LTL state properties, offer different expressive power. Es-
sentially, the properties one can capture are in the same spirit as those in the non-
probabilistic variants, and hence we refer the reader to Chap. 2 for a comprehensive
overview. As in the non-probabilistic case, the properties expressed using LTL are
perhaps easier to obtain from requirements expressed in natural language than PCTL
formulas, but PCTL admits better complexity of model-checking algorithms, which
are also easier to implement. We note that the two logics, PCTL and LTL, can be
combined into a logic PCTL∗.

In this chapter we will present the model-checking approach for Markov deci-
sion processes (MDPs) [4, 87, 99], which for the purposes of the model-checking
algorithms discussed here are equivalent to probabilistic automata due to Segala
[101, 102]. MDPs are of fundamental importance in probabilistic verification, since
they not only serve as a natural representation of many real-world applications, for
example distributed network protocols, but are also key to formulating abstractions
for more complex models which incorporate dense real time and probability, such
as continuous-time Markovian models and probabilistic variants of timed automata.
Both PCTL and LTL can be used for reasoning about qualitative and quantitative
properties of MDPs. Several variants of PCTL and LTL have been proposed for the

966 C. Baier et al.

analysis of probabilistic models that rely on a dense time domain. These will be
briefly addressed in Sect. 28.9.

28.1.2 Model-Checking Algorithms for Probabilistic Systems

For finite-state Markov decision processes, the quantitative analysis against PCTL or
LTL specifications mainly relies on a combination of graph algorithms, automata-
based constructions, and (numerical) algorithms for computing the minimum and
maximum probabilities and expectation values. Compared to the non-probabilistic
case, there is the additional difficulty of solving linear programs, and also the re-
quired graph algorithms are more complex. This makes the state space explosion
problem even more serious than in the non-probabilistic case, and the feasibility of
algorithms for quantitative analysis crucially depends on good heuristics to increase
efficiency. Hence, model-checking tools usually implement advanced versions of
algorithms we present in this chapter, and use intricate data structures to tackle the
state space explosion problem, such as multi-terminal binary decision diagrams [54]
and sparse matrices. We give a more detailed overview of the implementation ap-
proaches in Sect. 28.7.1.

28.1.3 Outline

The remaining sections of this chapter are organized as follows. Section 28.2
presents the definition of Markov decision processes and explains the main concepts
that are relevant for PCTL and LTL model checking. The syntax and semantics of
PCTL will be provided in Sect. 28.3. Section 28.4 summarizes the main steps of
the PCTL model-checking algorithm for MDPs. Section 28.5 introduces the syntax
and semantics of LTL and Sect. 28.6 describes the model-checking algorithm. Sec-
tion 28.7 gives a brief overview of available tools and interesting case studies; it also
mentions outstanding challenges of modelling and verification of probabilistic sys-
tems. Section 28.8 summarises related models and logics, and Sect. 28.9 concludes
the chapter.

28.2 Modelling Probabilistic Concurrent Systems

Markov decision processes [4, 87, 99], which are similar to probabilistic automata
[101, 102], are a convenient representation for distributed or concurrent systems
in which the system evolution is described by discrete probabilities. Intuitively,
a Markov decision process can be understood as a probabilistic variant of a labelled
transition system with transitions and states labelled with action labels and atomic

28 Model Checking Probabilistic Systems 967

propositions, respectively. For each state s and action α that is enabled in state s,
a discrete probability distribution specifies the probabilities for the α-labelled tran-
sitions emanating from s. This corresponds to the so-called reactive model in the
classification of [55]. In addition, a real-valued cost can be associated with each
state s and action α, representing the price one has to pay whenever executing ac-
tion α in state s. Dually, the cost assigned to (s,α) can also be viewed as a reward
that is earned when firing action α in s. To keep the presentation simple, in this chap-
ter we restrict ourselves to cost functions whose range is the non-negative integers.
Furthermore, we assume that all transition probabilities in the MDP are rational.

28.2.1 Preliminaries

Let X be a countable set. A (probability) distribution on X denotes a function D :
X → [0,1] such that

∑

x∈X

D(x) = 1.

The set Supp(D)
def= {x ∈ X : D(x) �= 0} is called the support of D. A distribution

D is Dirac if its support is a singleton. We write Distr(X) to denote the set of all
distributions on X.

As usual, N denotes the set of natural numbers 0,1,2, . . . and Q the set of rational
numbers.

28.2.2 Markov Decision Processes

A Markov decision process is a tuple M = (S,Act,P, sinit,AP,L,C) where

• S is a countable non-empty set of states,
• Act is a finite non-empty set of actions,
• P : S × Act × S → [0,1] ∩Q is the transition probability function such that

∑

s′∈S

P
(
s,α, s′) ∈ {0,1} for all states s ∈ S and actions α ∈ Act,

• sinit ∈ S is the initial state,
• AP is a finite set of atomic propositions,
• L : S → 2AP is a labelling function that labels a state s with those atomic propo-

sitions in AP that are supposed to hold in s,
• C : S × Act → N is a cost function.

968 C. Baier et al.

M is called finite if the state space S and the set of actions Act are finite. In this
chapter we assume that all MDPs are finite, unless specified otherwise. If s ∈ S then
Act(s) denotes the set of actions that are enabled in state s, i.e.

Act(s)
def= {

α ∈ Act : P
(
s,α, s′) > 0 for some s′ ∈ S

}
.

For technical reasons, we suppose that there are no terminal states, i.e., for each
state s ∈ S the set Act(s) is non-empty. Furthermore, we require that C(s,α) = 0 if
α is an action that is not enabled in s, i.e., if α /∈ Act(s).

The intuitive operational behaviour of an MDP can be described as follows. The
MDP starts its computation in the initial state sinit. If after n steps the current state
is sn then, first, an enabled action αn+1 ∈ Act(sn) is chosen nondeterministically.
Firing αn+1 in state sn incurs the cost C(sn,αn+1). The effect of taking action
αn+1 in state sn is given by the distribution P(sn,αn+1, ·). The next state sn+1 be-
longs to the support of P(sn,αn+1, ·) and is chosen probabilistically. The result-
ing infinite sequence of states and actions π = s0 α1 s1 α2 s2 α3 . . . ∈ (S × Act)ω

is called an (infinite) path of M . More generally, any alternating sequence π =
s0 α1 s1 α2 s2 α3 . . . ∈ (S × Act)ω , with P(sn,αn+1, sn+1) > 0 for all n ≥ 0, is called
a path of state s0, and will be written in the form

π = s0
α1−→ s1

α2−→ s2
α3−→ . . .

PathsM (s), or for short Paths(s), denotes the set of all paths of M starting in
state s, and PathsM , or Paths, denotes the set of all paths. If π is as above then π↑n

denotes the infinite suffix of π that starts in the (n+1)-th state sn, i.e. for the above
π we have

π↑n def= sn
αn+1−−→ sn+1

αn+2−−→ sn+2
αn+3−−→ . . .

Similarly, π↓n denotes the finite prefix that ends in sn, i.e.,

π↓n
def= s0

α1−→ s1
α2−→ s2

α3−→ . . .
αn−→ sn.

We refer to the finite prefixes of (infinite) paths as finite paths and denote the set
of finite paths starting in state s by FinPathsM (s), or for short FinPaths(s), and we
denote the set of all finite paths by FinPathsM or FinPaths. The length of a finite
path ς is given by the number of transitions taken in ς and denoted by |ς |; the
length of an infinite path is ω. We use the notation last(ς) for the last state of a
finite path ς . Similarly, first(·) is used to refer to the first state of a finite or infinite
path. The (n+1)-th state of a path is denoted by π[n]. Thus, if π is as above then
π[0] = first(π) = s0, |π↓n | = n and π[n] = first(π↑n) = last(π↓n) = sn for all
n ∈N.

Given a finite path ς = s0
α1−→ s1

α2−→ . . .
αn−→ sn, the total or cumulated cost of ς

is defined by

cost(ς)
def=

n∑

i=1

C(si−1, αi).

28 Model Checking Probabilistic Systems 969

Fig. 1 A running example of
a Markov decision process
annotated with costs

In addition to the cost function C(s,α) that assigns values to the pairs consisting
of a state and an enabled action, one can also define cost functions just for the
states Cst : S → N, with the intuitive meaning that each visit to state s incurs the
cost Cst(s). Such cost functions are supported, for example, by the tool PRISM (see
Sect. 28.7), but are omitted here since they can be encoded in the variant of MDPs
presented in this chapter. If a cost function Cst for the states, rather than for pairs of
states and actions, is given, then we might switch from Cst to C : S × Act → N as
follows

C(s,α)
def=

{
Cst(s) if α ∈ Act(s)
0 otherwise

to meet the syntax of the MDP definition. Given an MDP as defined in Sect. 28.2.2
and an additional cost function Cst : S → N that specifies the cost incurred upon
visiting state s, the effect of C and Cst can be mimicked by using the single cost
function C′ : S × Act → N given by

C′(s,α)
def= Cst(s) + C(s,α).

Example 1 (Running Example) Consider the MDP M = (S,Act,P, s0,AP,L,C)

from Fig. 1. The MDP models a simple system in which, after some initial step,
two kinds of decisions can be taken. One results in success with relatively high
probability, but can fail completely, and another gives a smaller probability of
immediate success, but cannot result in a non-recoverable failure. Formally, S =
{s0, s1, s2, s3}, Act = {αgo, αwait, αsafe, αrisk, αloop}, and P is as given by the num-
bers on arrows originating from the dots, e.g., P(s1, αsafe, s0) = 0.7. Atomic propo-
sitions are {init, succ, fail}, where the labels of states are as shown in the picture,
e.g., L(s0) = {init}. Costs of the actions are shown in the picture as underlined num-
bers, e.g., C(s1, αwait) = 0.1.

Observe that there is a non-trivial choice of an action only in the state s1, where
one can choose between αwait, αsafe and αrisk. Consider the path

π = s0
αgo−−→ s1

αsafe−−→ s0
αgo−−→ s1

αrisk−−→ s2
αloop−−→ s2

αloop−−→ · · · .

We have π↑2= s0
αgo−−→ s1

αrisk−−→ s2
αloop−−→ s2

αloop−−→ · · · and π↓2= s0
αgo−−→ s1

αsafe−−→ s0.
For the finite path π↓2 we have that the total or cumulated cost cost(π↓2) =
C(s0, αgo) + C(s1, αsafe) = 2. �

970 C. Baier et al.

28.2.3 Markov Chains

Markov chains can be viewed as special instances of Markov decision processes,
where in each state exactly one action is enabled. Thus, there are no nondeterminis-
tic choices in a Markov chain and the operational behaviour is purely probabilistic.
Since, in the above definition of an MDP, the actions are used just to name the non-
deterministic alternatives and group together probabilistic transitions that belong to
the same alternative, the concept of actions is irrelevant for Markov chains. Thus,
the transition probabilities of a Markov chain C can be specified by a function
PC : S × S → [0,1]. Paths are then just sequences s0 s1 s2 . . . of states such that

PC (si , si+1) > 0 for all i ≥ 0.

Using standard concepts of measure and probability theory, any Markov chain nat-
urally induces a probability space, i.e., a triple consisting of the set of outcomes Ω ,
the set of events F ⊆ 2Ω which contains ∅ and is closed under complements and
countable unions, and a probability measure Pr : F → [0,1] which is countably
additive and satisfies Pr(Ω) = 1. More concretely, in the induced probability space
the outcomes are the (infinite) paths and the events can be understood as linear-time
properties, i.e., conditions that an infinite path might satisfy or not (indeed, all LTL
formulas, PCTL path formulas, and even all ω-regular languages over sets of atomic
propositions specify measurable sets of paths [40, 105]). For details we refer to text-
books on Markov chains and probability theory, see, for example, [50, 75, 77], and
just sketch the main ideas. The underlying σ -algebra is the smallest σ -algebra that
contains the cylinder sets, namely, the sets containing all paths that have a common
prefix, i.e., the sets

Cyl(ς)
def= {

π ∈ PathsC : ς is a prefix of π
}

for all finite paths ς in C . Using Carathéodory’s measure extension theorem [7], the
probability measure PrC is the unique probability measure on the σ -algebra such
that for each finite path ς = s0 s1 s2 . . . sn starting in C ’s initial state s0 = sinit we
have:

PrC
(
Cyl(ς)

) = PC (s0, s1) · PC (s1, s2) · . . . · PC (sn−1, sn).

If ς is a finite path that does not start in the initial state then PrC (Cyl(ς)) = 0.

28.2.4 Schedulers

Reasoning about probabilities in an MDP relies on a decision-making approach that
resolves the nondeterministic choices—answering the question which action will be
performed in the current state—and turns an MDP into an infinite tree-like Markov

28 Model Checking Probabilistic Systems 971

chain. We give here just a brief summary of the main concepts. Details can be found
in any textbook on Markov decision processes, e.g., [99].

The decision-making approach can be formalized with the help of the mathemat-
ical notion of a scheduler, often called policy or adversary. Intuitively, a scheduler
takes as input the “history” of a computation—namely, a finite path ς—and chooses
the next action according to some distribution. Formally, a history-dependent ran-
domized scheduler, for short called a scheduler, is a function

U : FinPathsM → Distr(Act)

such that Supp(U (ς)) ⊆ Act(last(ς)) for all finite paths ς . A (finite or infinite) path

π = s0
α1−→ s1

α2−→ s2 . . . is said to be a U -path, if

U (s0
α1−→ . . .

αi−→ si)(αi+1) > 0 for all 0 ≤ i < |π |.
A scheduler U is called deterministic if U (ς) is a Dirac distribution for all finite
paths ς , i.e., for each finite path ς there is some action α with U (ς)(α) = 1, and
U (ς)(β) = 0 for all actions β ∈ Act \ {α}. Scheduler U is called memoryless if

U (ς) = U
(
ς ′) for all finite paths ς,ς ′ such that last(ς) = last

(
ς ′).

Deterministic schedulers are given as functions U : FinPathsM → Act. Memory-
less randomized schedulers can be viewed as functions U : S → Distr(Act). Memo-
ryless deterministic schedulers, also called simple schedulers, are specified as func-
tions U : S → Act. We write Sched to denote the set of all schedulers.

28.2.5 Probability Measures in MDPs

Given an MDP M and a scheduler U , the behaviour of M under U can be for-
malized by an infinite-state tree-like Markov chain C = M |U . The states of that
Markov chain represent the finite U -paths. The successor states of

ς = s0
α1−→ s1

α2−→ . . .
αn−→ sn

have the form ς ′ = ς
β−→ s and the transition probability for moving from ς to ς ′ is

given by

U (ς)(β) · P(sn,β, s).

We write PrM ,U , or for short PrU , to denote the standard probability measure PrC

on that Markov chain. Thus, the probability measure PrU for a given scheduler U
is the unique probability measure on the σ -algebra generated by the finite U -paths
such that

PrU
(
Cyl(ς)

) =
n∏

i=1

U (ς ↓i−1)(αi) · P(si−1, αi, si)

if ς = s0
α1−→ s1

α2−→ . . .
αn−→ sn is a U -path starting in s0 = sinit.

972 C. Baier et al.

Fig. 2 A Markov chain for the running example and the scheduler from Example 2

Given a state s of M , we denote by PrUs the probability measure that is obtained
by U viewed as a scheduler for the MDP Ms that agrees with M , except that
s is the unique initial state of Ms . That is, if M = (S,Act,P, sinit,AP,L,C) then
Ms = (S,Act,P, s,AP,L,C). Note that if U is a deterministic scheduler then

PrUs
(
Cyl(ς)

) =
n∏

i=1

P(si−1, αi, si)

if ς = s0
α1−→ s1

α2−→ . . .
αn−→ sn is a U -path with first(ς) = s0 = s. Given an MDP M ,

a scheduler U and a measurable path property E, then

PrUs (E)
def= PrUs

{
π ∈ PathsM

∣∣ π satisfies E
}

denotes the probability that the path property E holds in M when starting in s and
using scheduler U to resolve the nondeterministic choices.

Example 2 Consider again the MDP M from Fig. 1, together with the scheduler
U that for every path ending in s1 picks the action αsafe or αrisk, both with proba-
bility 0.5. This scheduler is memoryless, but not deterministic, and gives rise to the
Markov chain M |U whose initial fragment is drawn in Fig. 2. For the finite path

π = s0
αgo−−→ s1

αsafe−−→ s0 we have

PrU
(
Cyl(π)

) = U (s0)(αgo) · P(s0, αgo, s1) · U (s0
αgo−−→ s1)(αsafe) · P(s1, αsafe, s0)

= 1 · 1 · 0.5 · 0.7 = 0.35,

and for the set of paths R which never reach s2 or s3 we have PrU (R) = 0. �

28.2.6 Maximal and Minimal Probabilities for Path Events

A typical task for the quantitative analysis of an MDP is to compute minimal or
maximal probabilities for some given property E when ranging over all schedulers.

28 Model Checking Probabilistic Systems 973

If s is a state in M then we define

Prmax
s (E)

def= sup
U ∈Sched

PrUs (E) and Prmin
s (E)

def= inf
U ∈Sched

PrUs (E).

This corresponds to the worst- or best-case analysis of an MDP. If, for example,
E stands for the undesired behaviours then E is guaranteed not to hold with prob-
ability at least 1 − Prmax

s (E) under all schedulers, that is, even for the worst-case
resolution of the nondeterministic choices. For instance, many relevant properties
fall under the class of reachability probabilities where one has to establish a lower
bound for the minimal probability to reach a certain set F of “good” target states,
possibly with some side-constraints on the cumulated cost until an F -state has been
reached.

28.2.7 Maximal and Minimal Expected Cost

Another typical task for analysing an MDP against cost-based properties is to com-
pute the minimal or maximal expected cumulated cost with respect to certain objec-
tives. For reachability objectives, we consider a set F of target states. Given a path

π = s0
α1−→ s1

α2−→ s2
α3−→ . . ., we write π |= ♦F if and only if π eventually visits F ,

i.e., there is an i such that si ∈ F . The cumulated cost of π to reach F is defined as
follows. If π |= ♦F then

cost[♦F](π) = cost(π↓n) =
n∑

i=1

C(si−1, αi)

where sn ∈ F and {si : 0 ≤ i < n} ∩ F = ∅. If π never visits a state in F then
cost[♦F](π) is defined as ∞, irrespective of whether only finitely many actions in
π have nonzero cost (in which case the total cost of π would be finite). Given a
scheduler U for M and a state s in M , the expected cumulated cost for reaching
F from s, denoted ExU

s (cost[♦F]), is the expected value of the random variable
π �→ cost[♦F](π) in the stochastic process (i.e., the Markov chain) induced by U .

• If PrUs ({π ∈ Paths | π |= ♦F }) = 1 then

ExU
s

(
cost[♦F]) =

∑

ς

PrUs
(
Cyl(ς)

) · cost(ς)

where the sum is taken over all finite U -paths ς with first(ς) = s and last(ς) ∈ F ,
while all other states of ς are in S \ F .

• If PrUs ({π ∈ Paths | π |= ♦F }) < 1 then with positive probability U schedules
paths that never visit F . Since the total cost of such paths is infinite, we have
ExU

s (cost[♦F]) = ∞.

974 C. Baier et al.

The extremal expected cumulated cost for reaching F is then obtained by

Exmax
s

(
cost[♦F]) def= sup

U ∈Sched
ExU

s

(
cost[♦F])

Exmin
s

(
cost[♦F]) def= inf

U ∈Sched
ExU

s

(
cost[♦F]).

Note that Exmax
s (cost[♦F]) = ∞ if Prmin

s ({π ∈ Paths | π |= ♦F }) < 1; the other
direction also holds, i.e., Prmin

s ({π ∈ Paths | π |= ♦F }) = 1 implies that
Exmax

s (cost[♦F]) is finite, although the proof is not as obvious.
Similarly, minimal and maximal expected cost for other objectives can be de-

fined. If an MDP is used as a discrete-time model then one might be interested in the
average cost within certain time intervals. This, for instance, permits us to establish
lower or upper bounds on the expected power consumption over one time unit. For
the cost cumulated up to time point k we use the random variable π �→ cost[≤k](π)

that assigns to each path the total cost for the first k steps, i.e., if π = s0
α1−→ s1

α2−→ . . .

then

cost[≤k](π)
def=

k∑

i=1

C(si−1, αi).

Let ExU
s (cost[≤k]) denote the expected value of the random variable cost[≤k] un-

der scheduler U in the MDP Ms , i.e.,

ExU
s

(
cost[≤k]) =

∑

ς

PrUs
(
Cyl(ς)

) · cost(ς)

where the sum is taken over all finite U -paths ς of length k starting in state s.
The supremum and infimum over all schedulers yields the extremal cumulated costs
within the first k steps

Exmax
s

(
cost[≤k]) def= sup

U ∈Sched
ExU

s

(
cost[≤k])

Exmin
s

(
cost[≤k]) def= inf

U ∈Sched
ExU

s

(
cost[≤k]).

When we specify costs for the states by the function Cst : S → N, then it is also
possible to reason about instantaneous costs in the k-th step. This can be defined
with the random variable π �→ cost[=k](π) that assigns to each path π the cost
associated with the k-th action of π . If ExU

s (cost[=k]) denotes the expected value
of random variable cost[=k] under scheduler U then

Exmax
s

(
cost[=k]) = sup

U ∈Sched
ExU

s

(
cost[=k])

Exmin
s

(
cost[=k]) = inf

U ∈Sched
ExU

s

(
cost[=k])

28 Model Checking Probabilistic Systems 975

stand for the extremal average instantaneous costs incurred at the k-th step. These
values can be of interest, for example, when reasoning about the minimal or maxi-
mal expected queue size at some time point k. For this purpose, we work with the
cost function C(t, α) = Cst(t) for all actions α that are enabled in state t , where
Cst(t) denotes the current queue size in state t .

Example 3 Let us return to our running example from Fig. 1, and for clarity of
notation write just s instead of the singleton set {s}. We have that the maximal prob-
ability of reaching s3, i.e., Prmax

s0
({π ∈ Paths | π |= ♦s3}), is equal to 0.5. A (deter-

ministic) scheduler that always chooses αrisk in paths ending with s1 witnesses that
Prmax

s0
({π ∈ Paths | π |= ♦s3}) ≥ 0.5; to see that this probability cannot be higher,

observe that upon taking αrisk half of the paths transition to s2, and both s2 and s3

have self-loops. On the other hand, Prmin
s0

({π ∈ Paths | π |= ♦s3}) = 0, as witnessed
by the scheduler that never chooses αrisk with nonzero probability.

For maximal expected cost, let us consider a single target state s2. We have
Exmax

s0
(cost[♦s2]) = ∞, because there exists a scheduler that with nonzero proba-

bility does not reach s2. For minimal expected cost Exmin
s0

(cost[♦s2]), we obtain the

value equal to 20
3 , as witnessed by the scheduler that always chooses αsafe; to see

that no scheduler can yield a better value is a simple exercise.
As an example of instantaneous cost, let us analyse the value Exmax

s0
(cost[=3]).

It is equal to 4, which can be seen by considering a scheduler that picks αwait in

s0
αgo−−→ s1, and αrisk in s0

αgo−−→ s1
αwait−−→ s1. This is also the maximal value, because

there is in fact no higher cost in the MDP.

28.3 Probabilistic Computation Tree Logic

In this section we present the syntax and semantics of Probabilistic Computation
Tree Logic (PCTL), which is a probabilistic counterpart of the well-known logic
CTL, introduced in Chap. 2. Formulas of this logic aim to express quantitative
probabilistic properties such as “with probability at least 0.99, if we reach a bad
state, we can recover with nonzero probability”. PCTL is a widely used specifica-
tion language in many contexts, including verification of purely probabilistic sys-
tems or systems with probability as well as nondeterminism, and for both finite- and
infinite-state probabilistic systems [15, 22, 81]. Our presentation will focus on the
logic PCTL interpreted over finite-state Markov decision processes.

28.3.1 Syntax of PCTL

As in CTL, the syntax of PCTL has two levels: one for the state formulas (denoted
by uppercase Greek letters Φ,Ψ) and one for the path formulas (denoted by lower-

976 C. Baier et al.

case Greek letters ϕ,ψ). The abstract syntax of state and path formulas is as follows

Φ ::= tt | a | Φ1 ∧ Φ2 | ¬Φ | P∼p(ϕ) | E∼c(♦Φ) | E∼c(≤k) | E∼c(=k)

ϕ ::= ©Φ | Φ1UΦ2 | Φ1U∼cΦ2

where tt stands for the constant truth value “true” and a is a state predicate, i.e., an
atomic proposition in AP. The other symbols are explained below.

The operators P∼p(·) and E∼c(·) are called the probability and expectation oper-
ators. The subscripts ∼ p and ∼ c specify strict or non-strict lower or upper bounds
for probabilities or costs, respectively. Formally, ∼ is a comparison operator ≤, <, ≥
or >, p ∈ [0,1] ∩Q a rational threshold for probabilities, and c ∈ N a non-negative
integer that serves as a lower or upper bound for cumulated or instantaneous cost.

The PCTL state formula P∼p(ϕ) asserts that, under all schedulers, the proba-
bility for the event expressed by the path formula ϕ meets the bound specified by
∼ p. Thus, the probability operator imposes a condition on the probability mea-
sures PrUs for all schedulers U . The probability bounds “∼ p” can be understood as
quantitative counterparts to the CTL path quantifiers ∃ and ∀. Intuitively, the lower
probability bounds ≥ p (with p > 0) or > p (with p ≥ 0) can be understood as the
quantitative counterpart to existential path quantification. (See also Remark 1.)

As in CTL, path formulas are built from one of the temporal modalities © (next)
or U (until), where the arguments of the modalities are state formulas. No Boolean
connectors or nesting of temporal modalities are allowed in the syntax of path for-
mulas. In addition to the standard until-operator, the above syntax for path formulas
includes a cost-bounded version of until.1 The intuitive meaning of the path formula
Φ1U∼cΦ2 is that a Φ2-state (i.e., some state where Φ2 holds) will be reached from
the current state along a finite path ς that yields a witness of minimal length for
the path formula Φ1UΦ2 (i.e., ς ends in a Φ2-state and all other states satisfy the
formula Φ1 ∧ ¬Φ2) and where the total cost of ς meets the constraint ∼ c.

The expectation operator E∼c(·) enables the specification of lower or up-
per bounds for the expected cumulated or instantaneous cost. The state formula
E∼c(♦Φ) holds if the expected cumulated cost until a Φ-state is reached meets
the requirement given by “∼ c” under all schedulers. Similarly, the state formulas
E∼c(≤k) and E∼c(=k) assert that the cost accumulated in the first k steps and the
instantaneous cost at the k-th step, respectively, belong to the interval specified by
“∼ c”.

28.3.2 Semantics of PCTL

Given an MDP, the satisfaction relation |= for state and path formulas is formally
defined below, in accordance with the above intuitive semantics. Let M be an MDP

1We did not introduce the step-bounded version of the until operator. This, however, can be de-
rived using the cost-bounded until operator and changing the MDP to the one with unit cost, i.e.,
C(s,α) = 1 for all states s and actions α ∈ Act(s).

28 Model Checking Probabilistic Systems 977

as in Sect. 28.2.2 and s a state in M .

s |= tt

s |= a iff a ∈ L(s)

s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= ¬Φ iff s �|= Φ

s |= P∼p(ϕ) iff PrUs (ϕ) ∼ p for all schedulers U

where PrUs (ϕ)
def= PrUs {π ∈ Paths | π |= ϕ}

s |= E∼c(♦Φ) iff ExU
s (cost[♦Sat(Φ)]) ∼ c for all schedulers U

where Sat(Φ)
def= {s ∈ S | s |= Φ}

s |= E∼c(≤k) iff ExU
s (cost[≤k]) ∼ c for all schedulers U

s |= E∼c(=k) iff ExU
s (cost[=k]) ∼ c for all schedulers U

MDP M is said to satisfy a PCTL state formula Φ , denoted M |= Φ , if sinit |= Φ .

The semantics of the next- and until-operators is exactly as in CTL. If π = s0
α1−→

s1
α2−→ s2

α3−→ . . . is an infinite path in M then

π |= ©Φ iff s1 |= Φ

π |= Φ1UΦ2 iff there exists k ∈N with sk |= Φ2 and si |= Φ1 for all 0 ≤ i < k.

The semantics of the cost-bounded until-operator is as for the standard until-
operator, except that we require that the shortest prefix of π that ends in a Φ2-state
meets the cost-bound. Formally,

π |= Φ1U∼cΦ2 iff there exists k ∈N such that
(1) sk |= Φ2
(2) si |= Φ1 ∧ ¬Φ2 for all 0 ≤ i < k

(3) cost(π↓k) ∼ c.

We now justify the above definitions. First, using [40, 105] we get that the set
consisting of all paths where a PCTL path formula holds is indeed measurable.
Second, we observe that

s |= P≤p(ϕ) iff Prmax
s {π ∈ Paths | π |= ϕ} ≤ p

s |= P<p(ϕ) iff Prmax
s {π ∈ Paths | π |= ϕ} < p.

The first statement is obvious. The second statement follows from the fact that,
for the events that can be specified by some PCTL path formula ϕ, there exists
a scheduler that maximizes the probability for ϕ, and so the supremum defining
Prmax

s can in fact be replaced with the maximum (see, e.g., [99]). For the next- and
unbounded until-operators such a scheduler can in fact be assumed to be simple.

978 C. Baier et al.

An analogous statement holds for strict or non-strict lower probability bounds
and Prmin

s rather than Prmax
s . Similarly, we have

s |= E≤c(C) iff Exmax
s (C) ≤ c

s |= E<c(C) iff Exmax
s (C) < c

and the analogous statement for lower cost bounds, where C stands for one of the
three options ♦Φ , ≤k, or =k. Here, again, minimal or maximal expected cost for
the random variable associated with C can be achieved by some scheduler, and in
the case of ♦Φ simple schedulers suffice.

Although the above semantics of the probabilistic and expectation operators re-
lies on universal quantification over all schedulers, the existence of at least one
scheduler satisfying a certain condition can be expressed using negation in front of
the operator. For instance, ¬P≤p(ϕ) asserts the existence of a scheduler U where
ϕ holds with probability > p.

Since probabilities are always values in the interval [0,1], there are some trivial
combinations of ∼ and p. For instance, P≥0(ϕ) and P≤1(ϕ) are tautologies, while
P<0(ϕ) and P>1(ϕ) are not satisfiable. In what follows, we write P=1(ϕ) for P≥1(ϕ)

and P=0(ϕ) for P≤0(ϕ). Similarly, as the cost function assigns non-negative cost to
all transitions, the total cost can never be negative. Hence, formulas of the form
E<0(·) are not satisfiable.

28.3.3 Derived Operators

Other Boolean operators can be derived from negation and conjunction as usual,
e.g.,

ff
def= ¬tt and Φ1 ∨ Φ2

def= ¬(¬Φ1 ∧ ¬Φ2).

The eventually operator ♦, a modality for path formulas, can be obtained as in CTL
or LTL by

♦Φ
def= tt UΦ,

and an analogous definition can be derived for the cost-bounded variant

♦∼cΦ
def= tt U∼cΦ.

The always operator � and its cost-bounded variant �∼c can be derived using the
duality of lower and upper probability bounds. For instance, P≤p(�Φ) can be de-
fined as P≥1−p(♦¬Φ), and P>p(�∼cΦ) as P<1−p(♦∼c¬Φ).

28 Model Checking Probabilistic Systems 979

Example 4 (PCTL Formulas for the Running Example) First, we give examples of
properties expressible in PCTL. The property “with probability at least 0.99, when-
ever we reach a bad state, we can recover with nonzero probability” from the be-
ginning of this section can be stated as the formula P≥0.99(�(bad → P>0♦¬bad)).
Another property is “the expected energy consumption in the first 100 steps is at
most 20 units”, which is expressed by E≤20(≤100), assuming that the relevant
cost function quantifies the energy consumed at every step. Further, the formula
P≤0.1(¬initialised U request) states that the probability of a request being made be-
fore the system initialisation phase completes is at most 0.1.

Now, let us return to the MDP from Example 1 to analyse some PCTL formulas
more thoroughly. Consider the formula Φ ≡ P≤0.6(¬succU≤5fail). First, observe
that the formula ¬succ holds in the states s0, s1 and s3, whereas the formula fail
holds only in the state s3. Paths that satisfy ¬succU≤5fail are exactly the paths
that reach s3 and whose cost is at most 5. It is easy to see that the probability of
these paths is maximal under any scheduler that always chooses αrisk determinis-
tically, in which case these paths have probability 0.5. Thus, for any U , we have
PrUs0

(¬succU≤5fail) ≤ 0.6 and the formula Φ is satisfied.
On the other hand, the formula E≤5(≤ 4) is not satisfied. Consider, for example,

the scheduler that chooses αsafe in the path s0
αgo−−→ s1 and αrisk in the path s0

αgo−−→
s1

αsafe−−→ s0
αgo−−→ s1. Under this scheduler, the expected cost cumulated in 4 steps is

5.5, whereas the required upper bound is 5.

Remark 1 (Qualitative Properties) The conditions imposed by PCTL formulas of
the form P>0(ϕ) or P=1(ϕ) are often called qualitative properties. Their meaning
is quite close to CTL formulas ∃ϕ and ∀ϕ which are defined to be true if and only
if for every scheduler U there is a U -path satisfying ϕ (resp. all U -paths satisfy ϕ

in the case of ∀ϕ).
Indeed, if ϕ is a CTL path formula of the form ©a, aUb or aU∼cb where a, b

are atomic propositions, then the PCTL formula P>0(ϕ) is equivalent to the CTL
formula ∃ϕ (interpreted as described above). This is a consequence of the observa-
tion that the set of paths where ϕ holds can be written as a disjoint union of cylinder
sets, and hence the requirement to have at least one path π with π |= ϕ is equivalent
to the requirement that the probability measure of the paths that satisfy ϕ is positive.
Similarly, the PCTL formula P=1(�a) and the CTL formula ∀�a are equivalent: if

there is a path π = s0
α1−→ s1

α2−→ s2
α3−→ . . . where some si does not satisfy a, then no

path starting with s0
α1−→ s1

α2−→ s2
α3−→ . . . si satisfies �a, and so the probability of

paths satisfying �a is strictly lower than 1. The same equality holds for P=1(©a)

and ∀ © a.
However, there is a mild difference between the meaning of the PCTL formula

P=1(♦a) and the CTL formula ∀♦a, because the quantification over “all paths”
is more restrictive than that over “almost all paths” in the case of reachability.
Observe that state s satisfies the CTL formula ∀♦a if and only if all paths starting
from s will eventually enter an a-state (i.e., a state s′ with s′ |= a). Satisfaction of
the PCTL formula P=1(♦a) in state s means that almost all paths will eventually

980 C. Baier et al.

visit an a-state, in the sense that the probability measure of the paths π starting in s

and satisfying ϕ equals 1; this includes paths that never enter an a-state, as long as
their total probability measure is zero. �

28.4 Model-Checking Algorithms for MDPs and PCTL

We now present an algorithm that, given a PCTL state formula and a Markov deci-
sion process, decides whether the formula holds in the MDP or not. The algorithm,
similarly to the algorithm for CTL model checking from Chap. 2, consists of sepa-
rate subprocedures for each (temporal or Boolean) connective. Instead of computing
the validity of a formula in the initial state directly, for each subformula we use the
appropriate subprocedure and compute the set of all states in which the subformula
holds. We start with the smallest subformulas and then proceed to the larger ones,
using the sets of states already computed. Let us now describe the algorithm more
formally, including the aforementioned subprocedures.

The main procedure to check whether a given PCTL state formula Φ0 holds for
an MDP relies on the same concepts as for CTL. An iterative approach is used to
compute the satisfaction sets Sat(Φ) = {s ∈ S | s |= Φ} of all subformulas Φ of Φ0.
The treatment of the propositional logic fragment of PCTL follows directly from
the definition of the semantics. We will concentrate here on explaining how to deal
with probabilistic features. The algorithms we give run in polynomial time if the
cost bounds and cost functions are given in unary. Hence, checking whether a given
formula holds can be done in polynomial time under these assumptions.

In the sequel, let M = (S,Act,P, sinit,AP,L,C) be an MDP as in Sect. 28.2.2.

28.4.1 Probability Operator

Suppose that Φ = P∼p(ϕ). We consider here the case of upper probability bounds,
i.e., ∼∈ {≤,<}, so the task is to compute maximal probabilities of satisfying ϕ for
every state. The set Sat(Φ) can then be identified easily, as we have

Sat(Φ) = {
s ∈ S

∣∣ Prmax
s (ϕ) ∼ p

}
.

Lower probability bounds (i.e., the case when ∼∈ {≥,>}) can be treated similarly,
but using minimum probability instead (see, e.g., [4, 99] for details). We distinguish
three possible cases for the outermost operator of the path formula ϕ. For the proper
state subformulas of ϕ, we can assume that the satisfaction sets Sat(ϕ) have already
been computed. This allows us to treat them as atomic propositions.

First, we consider the next-operator. If ϕ = ©Ψ then the maximal probabilities
for ϕ are obtained by

Prmax
s (ϕ) = max

α∈Act(s)
P
(
s,α,Sat(Ψ)

)

28 Model Checking Probabilistic Systems 981

where P(s, α,Sat(Ψ)) = ∑
t∈Sat(Ψ) P(s,α, t). An optimal simple scheduler simply

assigns an action α to the state s that maximizes the value P(s, α,Sat(Ψ)).
We now address the until-operator and suppose that ϕ = Φ1UΦ2. We first apply

graph algorithms to compute the sets

S0 = {
s ∈ S

∣∣ Prmax
s (Φ1UΦ2) = 0

}

S1 = {
s ∈ S

∣∣ Prmax
s (Φ1UΦ2) = 1

}
.

Note that S0 is equal to the set {s ∈ S | ∀π ∈ Paths(s) | π �|= Φ1UΦ2} which can
be obtained using standard algorithms for non-probabilistic model checking (see
Chap. 2). The set S1 can be computed by iterating the following steps (1) and (2),
where we start with the set of all states and keep pruning all actions and states that
might lead to not satisfying the formula. Step (1) removes all states t from which
no path satisfying Φ1UΦ2 starts. Step (2) considers all the remaining states s and
removes all actions α from Act(s) such that P(s,α, t) > 0 for some state t that has
been removed in step (1). The set of states that are not removed after repeating steps
(1) and (2) constitutes the set S1.

Let S? = S \ (S0 ∪ S1) and xs = Prmax
s (Φ1UΦ2) for s ∈ S. Clearly, xs = 0 if

s ∈ S0, xs = 1 if s ∈ S1 and2 0 < xs = Prmax
s (Φ1US1) < 1 if s ∈ S?. The values xs

for s ∈ S? are obtained as the unique solution of the linear program [72] given by
the inequalities

xs ≥
∑

t∈S?

P(s,α, t) · xt + P(s,α,S1) for all α ∈ Act(s)

where
∑

s∈S?
xs is minimal and where P(s,α,S1) = ∑

u∈S1
P(s,α,u).

Intuitively, the inequalities of the above form capture the idea that the probability
in state s must be at least the weighted sum of probabilities of the one-step succes-
sors, for any action α. Notice that every state is considered at most once in the sum,
since S? ∩ S1 = ∅.

A simple scheduler U with PrUs (Φ1UΦ2) = xs = Prmax
s (Φ1UΦ2) is obtained by

carefully choosing, for each state s ∈ S1, an action α with P(s,α,S1) = 1 and, for
each state s ∈ S?, an action α that maximizes the value

∑

t∈S?

P(s,α, t) · xt + P(s,α,S1).
3

Some care is needed to ensure that the chosen action indeed makes some “progress”
towards reaching a Φ2-state. More formally, it is necessary to ensure that the actions
taken will not avoid a Φ2 state forever (the condition which captures this can be
found in [4]). To illustrate the possible problem, consider the MDP from Fig. 3.

2The notation Φ1US1 is a shorthand for Φ1Ua where a is an atomic proposition satisfying a ∈ L(s)

if and only if s ∈ S1.
3For the states s ∈ S0 an arbitrary action can be chosen.

982 C. Baier et al.

Fig. 3 An MDP showing that care needs to be taken when computing a scheduler U with
PrUs (Φ1UΦ2) = Prmax

s (Φ1UΦ2)

Here, a simple scheduler that maximizes the probability for tt Ub must not take
the action β for s, although P(s, β,S1) = 1 since S1 = {s, t}.

Recall that all coefficients (transition probabilities in the MDP and the probabil-
ity bound p) are rational, and hence the linear program above can be constructed
in time polynomial in the size of M . Because the linear program can be solved in
polynomial time [72], the complexity of the problem to check whether an MDP sat-
isfies a PCTL formula of the form P≤p(Φ1UΦ2) or P<p(Φ1UΦ2) is also polynomial
in the size of M , assuming that the satisfaction sets for Φ1 and Φ2 are given.

Besides using well-known linear programming techniques to compute the vector
�x = (xs)s∈S? , one can use iterative approximation techniques. Most prominent are
value and policy iteration, see, e.g., [99, 100].

In the value iteration approach, one starts with x
(0)
s = 1 for all s ∈ S1 and x

(0)
s = 0

for all s ∈ S? ∪ S0, and then successively computes

x(n+1)
s

def= max
α∈Act(s)

∑

t∈S?

P(s,α, t) · x(n)
t + P(s,α,S1) for all s ∈ S?

until maxs∈S? |x(n+1)
s − x

(n)
s | < ε for some predefined tolerance ε > 0.

The idea of policy iteration is as follows. In each iteration, we select a simple
scheduler U and compute the probabilities PrUs (Φ1US1) for s ∈ S? in the induced
Markov chain (this can be done by solving a linear equation system). The method
then “improves” the current simple scheduler U by searching for some state s ∈ S?
such that

PrUs (Φ1US1) < max
α∈Act(s)

∑

t∈S?

P(s,α, t) · PrUs (Φ1US1) + P(s,α,S1).

It then replaces U with V where U and V agree, except that V (s) = α for some
action α ∈ Act(s) that maximizes

∑
t∈S?

P(s,α, t) · PrUs (Φ1US1) + P(s,α,S1). The
next iteration is then performed with scheduler V . If no improvement is possible,
i.e., if

PrUs (Φ1US1) = max
α∈Act(s)

∑

t∈S?

P(s,α, t) · PrUs (Φ1US1) + P(s,α,S1)

for all s ∈ S?, then U maximizes the probability of Φ1UΦ2.
In practice, both value iteration and policy iteration outperform the linear-

programming method, which does not scale to large models. The relative perfor-
mance of value iteration and policy iteration varies by model, but the space and

28 Model Checking Probabilistic Systems 983

time efficiency of value iteration can be easily improved so that it outperforms pol-
icy iteration. Interested readers are referred to [52] for a brief comparison.

It remains to explain the treatment of the cost-bounded until-operator. We con-
sider here just the case of non-strict upper cost bounds. The task is to compute
Prmax

s (ϕ) for all states s ∈ S, where ϕ = Φ1U≤cΦ2 and c ∈ N. For s ∈ S and d ∈ N

we define

xs(d)
def= Prmax

s

(
Φ1U≤dΦ2

)
.

Then, we have xs(d) = 1 for each state s ∈ Sat(Φ2) and each cost bound d ∈ N.
Similarly, xs(d) = 0 for each d ∈ N and state s satisfying Prmax

s (Φ1UΦ2) = 0. Sup-
pose now that Prmax

s (Φ1UΦ2) > 0 and s �|= Φ2. Thus, the recursive equations

xs(d) = max

{∑

t∈S

P(s,α, t) · xt

(
d−C(s,α)

) ∣∣∣ α ∈ Act(s),C(s,α) ≤ d

}

hold true, where the maximum over the empty set is defined to be 0. That is,
xs(d) = 0 if C(s,α) > d for all actions α ∈ Act(s). Assuming that C(s,α) > 0 for
all states s and enabled actions α, the above formulas for xs(d) can be computed by
an iterative procedure, e.g., by employing a dynamic programming approach using
the above equations. This yields the desired values Prmax

s (ϕ) = xs(c). If C(s,α) = 0
for some states s and some actions α ∈ Act(s) then the solution can be obtained as a
solution to the linear program Lc which minimises

∑
s∈S

∑
0≤d≤c xs(d), subject to

xs(d) = 0 for d < 0

xs(d) = 1 for d ≥ 0 and s ∈ Sat(Φ2)

xs(d) ≥
∑

t∈S

P (s,α, t) · xt

(
d − C(s,α)

)
for d ≥ 0, s /∈ Sat(Φ2) and α ∈ Act(s)

where Lc contains variables xs(d) for −M ≤ d ≤ c where M is the maximal number
assigned by C. This approach can be optimised to consecutively solving d +1 linear
programs L′

0, . . . ,L
′
c, where L′

0 = L0 and for 1 ≤ i ≤ c the linear program L′
i is

obtained from Li by turning the variables xs(j) for j < i into constants whose
values were already computed earlier.

28.4.2 Expectation Operator

Suppose now that the task is to compute the satisfaction set Sat(E∼c(C)), where C is
the random variable cost[·] associated with the reachability condition ♦Ψ , the total
cost within the first k steps (i.e., C is “≤k”), or the instantaneous cost incurred by
the k-th step (i.e., C is “=k”). Again, we just consider the case of maximal expected
cost where the goal is to compute Exmax

s (C) for all states s. The set Sat(E∼c(C)) is
then obtained by collecting all states s where Exmax

s (C) ∼ c.

984 C. Baier et al.

Let us first address the case of cumulated cost within k steps. We can rely on
the iterative computation scheme

Exmax
s

(
cost[≤n]) = max

α∈Act(s)

(
C(s,α) +

∑

t∈S

P(s,α, t) · Exmax
t

(
cost[≤n−1])

)

for 1 ≤ n ≤ k and Exmax
s (cost[≤0]) = 0.

In the case of instantaneous cost at time step k, the equations have the form

Exmax
s

(
cost[=1]) = max

α∈Act(s)
C(s,α)

Exmax
s

(
cost[=n]) = max

α∈Act(s)

∑

t∈S

P(s,α, t) · Exmax
t

(
cost[=n−1])

for 1 < n ≤ k.
We now sketch the main steps for the computation of the maximal expected

cost for the reachability objective ♦Ψ . We first apply techniques for the standard
until-operator (see Sect. 28.3) to compute Prmin

s (♦Ψ) for all states s in M .
If t is a state in M with Prmin

t (♦Ψ) < 1 then there exists a scheduler U such
that PrUt (♦Ψ) < 1. But then ExU

t (cost[♦Ψ]) is infinite, and therefore

Exmax
t

(
cost[♦Ψ]) = ∞.

The remaining task is to compute Exmax
s (cost[♦Ψ]) for all states s ∈ S′ where

S′ = {
s ∈ S

∣∣ Prmin
s (♦Ψ) = 1

}
.

Note that, if s ∈ S′ \ Sat(Ψ), then for all actions α ∈ Act(s) and all states u with
P(s,α,u) > 0 we have u ∈ S′. The enabled actions of the states s ∈ Sat(Ψ) are
irrelevant. We may suppose that for these s, Act(s) is a singleton set {α} with
P(s,α, s) = 1. Clearly, for s ∈ Sat(Ψ) we have Exmax

s (cost[♦Ψ]) = 0. For all other
states s ∈ S′ \ Sat(Ψ), we have

Exmax
s

(
cost[♦Ψ]) = max

α∈Act(s)

(
C(s,α) +

∑

u∈S′
P(s,α,u) · Exmax

u

(
cost[♦Ψ])

)
.

These values can again be computed using linear programming techniques or the
value or policy iteration schemes.

Example 5 Consider the MDP from Example 1 and the formula E≤5(≤4). For all
0 ≤ i ≤ 4, let xi denote the tuple

(
Exmax

s0

(
cost[≤i]),Exmax

s1

(
cost[≤i]),Exmax

s2

(
cost[≤i]),Exmax

s3

(
cost[≤i])).

28 Model Checking Probabilistic Systems 985

We iteratively compute the following tuples by applying value iteration

x1 = (1, 4, 0, 0)

x2 = (5, 4, 0, 0)

x3 = (5, 4.5, 0, 0)

x4 = (5.5, 4.5, 0, 0)

and we conclude that the formula E≤5(≤4) is not satisfied, because the maximal
cumulated cost in s0 is 5.5.

Next, consider again the same MDP, but this time together with the formula
P≤0.5(¬init U succ), and suppose we want to know precisely the states in which
the formula holds. We start by parsing the formula from the smallest subformu-
las. The subformula init is satisfied in s0, and succ in s2. Further, the subformula
¬init is satisfied in the states s1, s2, and s3. A more demanding task is to compute
Prmax

s (¬init U succ). We compute the sets S0 and S1, which are

S0 = {s0, s3} and S1 = {s2}.
This leaves us with the set S? = {s1}. We construct the following simple linear pro-
gram

minimize xs1 subject to
xs1 ≥ xs1

xs1 ≥ 0.3.

The solution to the above program is xs1 = 0.3, and hence we can conclude that the
formula P≤0.5(¬init U succ) holds in states s0, s1 and s3.

28.5 Linear Temporal Logic

We continue this chapter with a brief overview of model checking Markov decision
processes against properties expressed in linear temporal logic (LTL). In this sec-
tion we define the logic and in the next section we show how the model-checking
algorithm works. The logic LTL that we will use is standard, as defined in Chap. 2,
except that we use only a subset of LTL which does not allow us to reason about
the past, and whose predicates are actions of an MDP. Having predicates over ac-
tions and not over states is only a matter of convention; all the constructions and
algorithms we present here can be easily modified to work with state predicates.

28.5.1 Syntax of LTL

For the purposes of this chapter, the syntax of LTL is as follows,

ϕ ::= tt | α | ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ | ϕ1Uϕ2

986 C. Baier et al.

where tt stands for the constant truth value “true”, and α is an action, i.e., an element
of the set of actions Act. We write U to denote the until-operator, instead of U used
in Chap. 2.

28.5.2 Semantics of LTL

The semantics of our logic LTL is defined on traces of paths of an MDP. A trace

for an infinite path π = s0
α1−→ s1

α2−→ s2
α3−→ . . . is the infinite word trace(π) =

α1α2α3 . . . of actions. Let w = α0α1 . . . be an infinite word over the alphabet of
actions Act, and let w↑n denote the suffix of w starting with αn. Then,

w |= tt
w |= α iff α = α0
w |= ¬φ iff w �|= φ

w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2

w |= ©ϕ iff w↑1|= ϕ

w |= ϕ1Uϕ2 iff there exists k ∈ N with w↑k|= ϕ2 and w↑i |= ϕ1 for 0 ≤ i < k.

As in the case of PCTL, it can be shown that the set of all infinite paths that satisfy
a given LTL formula is always measurable.

28.5.3 Derived Operators

Similarly to PCTL, we can define Boolean operators such as ff, ∨ and → from
negation and conjunction, for example

ϕ1 ∨ ϕ2
def= ¬(¬ϕ1 ∧ ¬ϕ2) and ϕ1 → ϕ2

def= (¬ϕ1) ∨ ϕ2.

The eventually-operator ♦ and the always-operator � are obtained by

♦ϕ
def= tt Uϕ and �ϕ

def= ¬♦¬ϕ.

For simplicity, we did not introduce a cost-bounded version of the until-operator
U∼c , but in principle there is nothing preventing us from doing so. We point out
that the notation would become cumbersome; in particular, the definition of the
Rabin automaton below would then need to take costs of state-action pairs into
consideration.

28.5.4 LTL Model-Checking Problem

Let M = (S,Act,P, sinit,AP,L,C) be an MDP and P∼p(ϕ) an LTL state property,
where ∼ is a comparison operator ≤ or <, p ∈ [0,1] ∩Q and ϕ is an LTL formula.

28 Model Checking Probabilistic Systems 987

The LTL model-checking problem is to decide whether

Prmax
sinit

{
π ∈ Paths

∣∣ trace(π) |= ϕ
} ∼ p.

We can define the model-checking problem similarly for the comparison operators
≥ or >; in that case we ask whether

Prmin
sinit

{
π ∈ Paths

∣∣ trace(π) |= ϕ
} ∼ p.

Because the LTL formulas are closed under negation, we have

Prmin
sinit

({
π ∈ Paths

∣∣ trace(π) |= ϕ
})

= 1 − Prmax
sinit

({
π ∈ Paths

∣∣ trace(π) �|= ϕ
})

= 1 − Prmax
sinit

({
π ∈ Paths

∣∣ trace(π) |= ¬ϕ
})

and so without loss of generality we can restrict our interest to the case of computing
maximal probabilities.

28.6 Model-Checking Algorithms for MDPs and LTL

In this section we describe a model-checking algorithm for MDPs and LTL. Before
going into formal definitions, let us describe it informally. We solve the LTL model-
checking problem using ω-regular automata. Every LTL formula can be transformed
into an automaton which accepts exactly the words on which the formula holds. We
then build the product of the MDP and the automaton, and show that the problem
of computing the optimal probability with which the automaton accepts traces of
the MDP is equal to the problem of computing the optimal probability of reaching
certain states in the product. The latter can be computed using algorithms from pre-
vious sections. The reader may observe that the outline of the algorithm is similar
to the (non-probabilistic) LTL model-checking algorithm from Chap. 2. The major
difference is that, instead of looking for one path in the product (called synchronous
composition in Chap. 2), we need to determine the probability of certain paths. It
turns out that, for this purpose, the definition of a just discrete system is not suffi-
cient. The solution we present here uses Rabin automata, whose crucial property is
that it has no nondeterminism.

The algorithm runs in time polynomial in the size of the MDP and doubly-
exponential in the size of the LTL formula. From the complexity-theoretic point
of view, the complexity bound is optimal since the model-checking problem for
Markov decision processes and LTL state properties is known to be complete for
the complexity class 2EXPTIME, even for qualitative LTL state properties [40].

Let us now describe the algorithm formally. We begin by introducing the notion
of deterministic Rabin automata and stating that, for every LTL formula ϕ, there is
a deterministic Rabin automaton that accepts exactly the set of words satisfying ϕ.

988 C. Baier et al.

Definition 1 (Deterministic Rabin Automaton (DRA)) A deterministic Rabin au-
tomaton is a tuple A = (Q,Act, δ, qinit,Acc), where Q is a finite set of states,
qinit ∈ Q is an initial state, Act is a finite input alphabet, δ : Q×Act→Q is a
transition function, and Acc={(L1,K1), (L2,K2), . . . , (Lk,Kk)}, for k ∈ N and
Li,Ki ⊆ Q, 1≤i≤k, is a set of accepting tuples of states.

We do not study Rabin automata in detail here and only mention their properties
directly relevant to LTL model checking. We refer the reader to Chap. 4 or to [56]
for additional details.

Let A = (Q,Act, δ, qinit,Acc) be a DRA. For every infinite word w = α0α1α2 . . .

over the input alphabet Act there is a unique sequence q0α0q1α1q2α2 · · · where
q0 = qinit, and δ(qi, αi) = qi+1 for all i ≥ 0. The word w is accepted by A if there
is (L,K) ∈ Acc such that qi ∈ L for only finitely many i, and qj ∈ K for infinitely
many j . The set of all infinite words over Act that A accepts is called the language
of A and is denoted L (A).

As mentioned above, for every LTL formula ϕ we can construct a DRA Aϕ with
the input alphabet Act such that for all w = α1α2 . . . we have

w |= ϕ ⇐⇒ w ∈ L (Aϕ).

The construction of Aϕ is non-trivial and we do not present it in this chapter, refer-
ring the reader to [14, 41, 107]. Note that, in general, the size of Aϕ can be up to
doubly exponential in the size of ϕ. In practice, however, this is often not a serious
problem since LTL formulas expressing useful properties tend to be small compared
to the size of the MDP.

Having defined the DRA Aϕ , we reduce the problem of computing the maximal
probability of paths satisfying ϕ in M to the problem of reaching a certain set of
states in a product MDP. The product MDP is defined so that its behaviour mimics
that of the original MDP, but in addition it remembers the state of the automaton in
which it ends after reading the sequence of actions performed so far.

Definition 2 (Product of an MDP and a DRA) Let M = (S,Act,P, sinit,AP,L,C)

be an MDP and A = (Q,Act, δ, qinit,Acc) a DRA. Their product M⊗A is the
MDP (S×Q,Act,P′, (sinit, qinit),AP,L′,C′) where for any (s, q) ∈ S×Q and α ∈
Act we define

P′((s, q),α,
(
s′, q ′)) =

{
P(s,α, s′) if δ(q,α) = q ′

0 otherwise.

The elements L′ and C′ are defined arbitrarily.

A path (s0, q0)
α1−→ (s1, q1)

α2−→ (s2, q2)
α3−→ . . . in a product MDP is accepting

if there is (L,K) ∈ Acc such that qi ∈ L for only finitely many i and qj ∈ K for
infinitely many j .

28 Model Checking Probabilistic Systems 989

It can be proved that, for every state s and scheduler U in M , there is a scheduler
V in M⊗A such that

PrM ,U ({
π ∈ PathsM (s)

∣∣ trace(π) ∈ L (A)
})

= PrM⊗A ,V ({
π ∈ PathsM⊗A (

(s, qinit)
) ∣∣ π is an accepting path

})
.

This is essentially because the product only extends the original by keeping track of
a computation of a DRA, and does not alter the power of schedulers.

So far, we have reduced the problem of LTL model checking to the problem
of determining the maximal probability of accepting paths in a product MDP. To
determine this probability, we introduce the notion of accepting end components,
which identify the states for which there is a scheduler ensuring that almost all
paths starting in these states are accepting. An accepting end component (EC) of
M⊗A is a pair (S̄, P̄) comprising a subset S̄ ⊆ S×Q of states and partial transition
probability function P̄ : S̄×Act×S̄ → [0,1]∩Q satisfying the following conditions:

1. (S̄, P̄) determines a sub-MDP of M⊗A , i.e., for all s′ ∈ S̄ and α ∈ Act we
have

∑
s′′∈S̄ P̄(s′, α, s′′) = 1, and, if P̄(s′, α, s′′) is defined, then P̄(s′, α, s′′) =

P′(s′, α, s′′);
2. the underlying graph of (S̄, P̄) is strongly connected;
3. there is (L,K) ∈ Acc such that:

a. all (s, q) ∈ S̄ satisfy q /∈ L;
b. there is (s, q) ∈ S̄ satisfying q ∈ K .

Using the above condition for an accepting path, together with the property that,
once an end component is entered, all its states can be visited infinitely often almost
surely [4], we can further show the following. Let T ⊆ S × Q such that (s′, q ′) ∈ T

if and only if (s′, q ′) appears in some accepting end component of M⊗A , then we
have

Prmax
s

{
π ∈ PathsM (s)

∣∣ trace(π) ∈ L (A)
}

= Prmax
(s,qinit)

({
π ∈ PathsM⊗A (

(s, qinit)
) ∣∣ π contains a state from T

})
.

Thus, we have reduced model checking of LTL properties to (i) the computation
of accepting end components in M⊗Aϕ , and (ii) the computation of maximum
probabilities of reaching these end components. The second step is a special case of
the problems studied in Sect. 28.4. The first step can be done efficiently using the
results of [4, 14]; an approach which is simpler to comprehend, but less efficient,
is to use PCTL model checking to identify all the states that lie in an accepting
component and satisfy the condition 3b. above. These are exactly the states (s, q) for
which there is (L,K) ∈ Acc such that q ∈ K and it is possible to return to (s, q) with
probability 1, passing only through states (s′, q ′) with q ′ /∈ L. A state (s, q) satisfies
this condition if and only if it satisfies a formula ¬P<1(©¬P<1p¬L Up(s,q)) for
some (L,K) ∈ Acc with q ∈ K , where p(s,q) holds only in (s, q) and p¬L holds
in all states (s′, q ′) with q ′ /∈ L. In step (ii) it is then sufficient to maximise the
probability of reaching such states.

990 C. Baier et al.

Fig. 4 A DRA for the
formula ♦(αwait ∧ ©αrisk)

Fig. 5 The product MDP
M⊗A for Example 6

Example 6 Consider the MDP from Example 1 together with the formula Φ =
♦(αwait ∧ ©αrisk), and assume we want to compute the maximal probability of sat-
isfying this formula. We follow the procedure described above and first convert Φ to
an equivalent DRA A = (Q,Act, δ, qinit,Acc). Using one of the cited methods, we
might, for example, obtain the automaton shown in Fig. 4. Here, Q = {q0, q1, q2},
qinit = q0, δ(q,α) = q ′ whenever there is an arrow from q to q ′ labelled with a set
containing α, and Acc = {(∅, {q2})}.

Next, we construct the product of M and A , yielding the MDP M⊗A from
Fig. 5 (note that only the states reachable from the initial state (s0, q0) are drawn).
The MDP M⊗A contains two accepting end components, one containing the state
(s2, q2) and a self-loop, and the other containing the state (s3, q2) and a self-loop.

It is now easy to apply the algorithms from Sect. 28.4 and calculate that the
maximal probability of reaching one of these end components from the initial state
is equal to 1.

28.7 Tools, Applications and Model Construction

28.7.1 Tool Support

There are several software tools which implement probabilistic model checking for
Markov decision processes. One of the most widely used is PRISM [81], an open-
source tool available from [98] which supports both PCTL and LTL model checking
as described here, including the probabilistic and expectation operators. PRISM uses
a probabilistic variant of reactive modules as a modelling notation, and additionally
supports model checking for discrete- and continuous-time Markov chains and prob-
abilistic timed automata. The tools LIQUOR [38] and ProbDiVinE [16] implement

28 Model Checking Probabilistic Systems 991

LTL model checking for MDPs: LIQUOR uses Probmela, which is a variant of the
SPIN Promela modelling language, whereas ProbDiVinE provides a parallel imple-
mentation. RAPTURE [70] and PASS [58] apply abstraction-refinement techniques.

A key challenge when implementing the algorithms is the state-explosion prob-
lem, well known from other fields of model checking, and also discussed in Chap. 8
of this book. Different tools take a different approach to overcome this problem. The
tool PRISM, for example, mainly uses a symbolic approach (see [6, 9] or Chap. 31)
and instead of storing the state space explicitly it stores it using a variant of bi-
nary decision diagrams [54]. ProbDiVinE makes use of distributed model check-
ing, while LIQUOR applies partial-order reduction techniques (see Chap. 6) to re-
duce the state space. Several other methods to tackle the state-explosion problem
have been proposed for probabilistic model checking, including symmetry reduc-
tion [44, 78], game-based quantitative abstraction refinement [74, 80], composi-
tional probabilistic verification [42, 51, 82, 83], or algorithms for simulation and
bisimulation relations [31, 110]. Techniques to improve efficiency of probabilistic
model checking include approximate probabilistic model-checking [88], statistical
model checking [19, 25, 89, 108, 109] and incremental verification [86].

28.7.2 Applications

Probability is pervasive, and Markov decision processes underpin modelling and
analysis of a wide range of applications [99]. Probabilistic model checking, and
PRISM in particular, has been successfully applied to analyse and in some cases de-
tect flaws in a variety of application domains, including analysis of communication,
security, privacy and anonymity protocols, efficiency of power management proto-
cols, correctness of randomised coordination algorithms, performance of computer
systems and nanotechnology designs, in silico exploration of biological signalling,
detecting design flaws in DNA circuits, analysis of spread of diseases, scheduling,
planning, and controller synthesis (see, e.g., [45, 62, 79, 94]). More case studies are
available at the PRISM tool website [98].

28.7.3 Construction of Probabilistic Models

The usefulness and precision of the results obtained by the probabilistic model-
checking techniques presented here crucially depend on the adequacy of the model,
and in particular on the probability values. Several methods have been proposed
in the literature that support the stepwise and compositional design of probabilis-
tic models for systems with many components, ranging from approaches that use
stochastic process algebras (see, e.g., [3, 71]), probabilistic variants of Petri nets
(see, e.g., [2]), or bespoke models (see, e.g., [5]) to high-level modelling languages

992 C. Baier et al.

with guarded commands, probabilistic choice, and imperative programming lan-
guage concepts [8, 20, 60, 66, 73]. Such approaches can indeed be very helpful
when constructing reasonable models that reflect the architectural structure of the
system to be analysed, the control flow of its components, the interaction mech-
anism, and dependencies between components where the probabilities are known
or given, as is the case in randomised protocols. However, such formal modelling
approaches do not support the choice of the probability values. Estimating probabil-
ity distributions is one of the core problems studied in statistics. Indeed, for many
application areas, well-engineered statistical methods are available to derive good
estimates for the probability values in the models used for the quantitative analy-
sis. But even without the application of advanced statistical methods, probabilistic
model-checking techniques can yield useful information on the quantitative system
behavior. Repeated application of probabilistic model-checking techniques on mod-
els that only differ in the probability values might give insights into the significance
or irrelevance of certain probabilistic parameters. The model of Markov decision
processes also permits the representation of incomplete information on the proba-
bility values by nondeterministic choices between several probabilistic distributions.
The results obtained by probabilistic model checking are lower or upper bounds for
all models that result by resolving the nondeterministic choices using any convex
combination of the chosen distributions. Alternatively, there are also methods that
deal with probability intervals rather than specific probability values, and methods
that operate with parametrized probabilistic models, see, e.g., [37, 43, 57, 103].

28.8 Extensions of the Model and Specification Notations

There are various models that extend Markov decision processes, such as stochas-
tic games [33, 34, 36], in which there are two kinds of nondeterminism (some-
times called “angelic” and “demonic” nondeterminism), or probabilistic timed au-
tomata [84, 95], which extend timed automata as defined in Chap. 29 and allow
for reasoning about time by adding real-time constraints on actions. Another class
of related models are continuous-time Markov Chains and continuous-time Markov
decision processes [99] in which we add a notion of time into the system and as-
sume that the steps from one state to another are taken with delays governed by an
exponential probability distribution. Continuous-time Markov Chains find applica-
tions, for example, in biochemistry (see, e.g., [29, 30, 39, 63, 92]). Note that MDPs
as defined in this chapter are sometimes called discrete-time MDPs to reflect the
intuition that each of their steps takes exactly 1 time unit. Also note that adding an
exponential distribution on time makes it more difficult to define parallel composi-
tion of two systems, leading to an alternative model of interactive Markov chains
(see, e.g., [28, 64]).

Probabilistic models with infinite state space have also been studied, where ex-
amples include models generated by pushdown systems (see, e.g., [22, 26, 49]) or
lossy channel systems [1, 10, 69].

28 Model Checking Probabilistic Systems 993

Recently [32], alternatives to deterministic Rabin automata, such as generalized
Rabin automata [47, 76], have been shown suitable for probabilistic model checking.
These automata can be smaller by orders of magnitude and thus induce a smaller
product to be analyzed. See [18] for an overview of available tools for conversion
of LTL to different types of Rabin automata and their performance.

The logics LTL and PCTL can be naturally combined into the logic PCTL∗ [17],
which is itself a probabilistic variant of the logic CTL∗ [46]. There are also nu-
merous reward-based properties not included in our definition of PCTL, for ex-
ample a discounted reward or long-run average reward [4, 99]. There also exist
different logics that allow us to reason about probabilities, one example being the
works [67, 91, 93] which study a probabilistic variant of μ-calculus (see Chap. 26).
A new direction started recently concerns studying multi-objective model-checking
problems for Markov decision processes [23, 35, 48, 53].

A related problem is that of controller synthesis, where the question is whether
there exists a satisfying scheduler (as opposed to the model-checking problem,
where we ask whether all schedulers satisfy the formula). For the unrestricted
controller-synthesis problem, an alternative semantics of PCTL has been stud-
ied [12, 24, 27], yielding undecidability results.

28.9 Conclusion

In this chapter, we have given an overview of probabilistic model checking, fo-
cusing on Markov decision processes as an operational model for nondeterministic-
probabilistic systems against specifications given in temporal logics PCTL and LTL.
The PCTL model-checking algorithm is similar to that for the logic CTL, where the
parse tree of the formula is traversed bottom up and each subformula is treated sep-
arately. Model checking for the probabilistic and expectation operator reduces to a
linear programming problem, which can be solved using a variety of methods.

In the case of LTL, we first translate the LTL formula into an equivalent determin-
istic Rabin automaton, and then reduce the model-checking problem to the problem
of calculating the probability of reaching accepting end components in a product of
the MDP and the automaton. The construction of a deterministic Rabin automaton
for a given LTL formula can cause a doubly exponential blowup.

We have also presented a brief summary of tools that implement and extend the
algorithms presented in this chapter, and listed various related formalisms that exist
in the area of probabilistic model checking.

References

1. Abdulla, P., Baier, C., Iyer, P., Jonsson, B.: Reasoning about probabilistic lossy channel sys-
tems. In: Palamidessi, C. (ed.) Proc. CONCUR’00. LNCS, vol. 1877, pp. 320–330. Springer,
Heidelberg (2000)

994 C. Baier et al.

2. Ajmone-Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with
Generalized Stochastic Petri Nets. Wiley Series in Parallel Computing. Wiley, New York
(1995)

3. Aldini, A., Bernardo, M., Corradini, F.: A Process Algebraic Approach to Software Archi-
tecture Design. Springer, Heidelberg (2010)

4. de Alfaro, L.: Formal verification of probabilistic systems. Ph.D. thesis, Stanford University,
Department of Computer Science (1997)

5. de Alfaro, L., Henzinger, T.A., Jhala, R.: Compositional methods for probabilistic systems.
In: Larsen, K.G., Nielsen, M. (eds.) CONCUR. LNCS, vol. 2154, pp. 351–365. Springer,
Heidelberg (2001)

6. de Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic model check-
ing of probabilistic processes using MTBDDs and the Kronecker representation. In: Graf,
S., Schwartzbach, M.I. (eds.) Proc. Tools and Algorithms for Construction and Analysis of
Systems (TACAS). LNCS, vol. 1785, pp. 395–410. Springer, Heidelberg (2000)

7. Ash, R., Doléans-Dade, C.: Probability and Measure Theory. Harcourt/Academic Press, San
Diego (2000)

8. Baier, C., Ciesinski, F., Größer, M.: ProbMeLa: a modeling language for communicating
probabilistic systems. In: Proc. of the 2nd ACM-IEEE International Conference on Formal
Methods and Models for Codesign (MEMOCODE), pp. 57–66. IEEE, Piscataway (2004)

9. Baier, C., Clarke, E., Hartonas-Garmhausen, V., Kwiatkowska, M., Ryan, M.: Sym-
bolic model checking for probabilistic processes. In: Degano, P., Gorrieri, R., Marchetti-
Spaccamela, A. (eds.) Proc. International Colloqium on Automata, Languages and Program-
ming (ICALP). LNCS, vol. 1256, pp. 430–440. Springer, Heidelberg (1997)

10. Baier, C., Engelen, B.: Establishing qualitative properties for probabilistic lossy channel sys-
tems: an algorithmic approach. In: Katoen, J.-P. (ed.) Intl. AMAST Workshop, ARTS. LNCS,
vol. 1601, pp. 34–52. Springer, Heidelberg (1999)

11. Baier, C., Größer, M., Ciesinski, F.: Model checking linear time properties of probabilis-
tic systems. In: Droste, M., Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata,
Monographs in Theoretical Computer Science. An EATCS Series, pp. 519–570. Springer,
Heidelberg (2009)

12. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis for proba-
bilistic systems. In: Lévy, J.J., Mayr, E., Mitchell, J. (eds.) Proc. 3rd IFIP Int. Conf. Theoret-
ical Computer Science (TCS’06), pp. 493–5062. Kluwer Academic, Dordrecht (2004)

13. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Performance evaluation and model
checking join forces. Commun. ACM 53(9), 76–85 (2010)

14. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
15. Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time logic with

fairness. Distrib. Comput. 11, 125–155 (1998)
16. Barnat, J., Brim, L., Černá, I., Češka, M., Tůmová, J.: ProbDiVinE-MC: multi-core LTL

model checker for probabilistic systems. In: Proceedings of the 2008 Fifth International Con-
ference on Quantitative Evaluation of Systems, pp. 77–78. IEEE, Washington (2008)

17. Bianco, A., De Alfaro, L.: Model checking of probabilistic and non-deterministic systems. In:
Thiagarajan, P.S. (ed.) Proceedings of Foundations of Software Technology and Theoretical
Computer Science. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)

18. Blahoudek, F., Kretínský, M., Strejcek, J.: Comparison of LTL to deterministic Rabin au-
tomata translators. In: McMillan, K.L., Middeldorp, A., Voronkov, A. (eds.) Logic for
Programming, Artificial Intelligence, and Reasoning—Proceedings of the 19th Interna-
tional Conference, LPAR-19, Stellenbosch, South Africa, December 14–19, 2013. LNCS,
vol. 8312, pp. 164–172. Springer, Heidelberg (2013)

19. Bogdoll, J., Fioriti, L.M.F., Hartmanns, A., Hermanns, H.: Partial order methods for sta-
tistical model checking and simulation. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE.
LNCS, vol. 6722, pp. 59–74. Springer, Heidelberg (2011)

28 Model Checking Probabilistic Systems 995

20. Bohnenkamp, H., D’Argenio, P., Hermanns, H., Katoen, J.P.: MODEST: a compositional
modeling formalism for hard and softly timed systems. IEEE Trans. Softw. Eng. 32(10),
812–830 (2006)

21. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applications. Wiley-
Interscience, New York (1998)

22. Brázdil, T.: Verification of probabilistic recursive sequential programs. Ph.D. thesis, Masaryk
University (2007)

23. Brázdil, T., Brožek, V., Chatterjee, K., Forejt, V., Kučera, A.: Two views on multiple mean-
payoff objectives in Markov decision processes. In: Proceedings of LICS’11, pp. 33–42.
IEEE, Piscataway (2011)

24. Brázdil, T., Brožek, V., Forejt, V., Kučera, A.: Stochastic games with branching-time winning
objectives. In: 21th IEEE Symp. Logic in Computer Science (LICS 2006), pp. 349–358.
IEEE, Piscataway (2006)

25. Brázdil, T., Chatterjee, K., Chmelík, M., Forejt, V., Křetínský, J., Kwiatkowska, M., Parker,
D., Ujma, M.: Verification of Markov decision processes using learning algorithms. In:
Cassez, F., Raskin, J. (eds.) Proc. 12th International Symposium on Automated Technology
for Verification and Analysis (ATVA’14). LNCS, vol. 8837, pp. 98–114. Springer, Heidelberg
(2014)

26. Brázdil, T., Esparza, J., Kiefer, S., Kučera, A.: Analyzing probabilistic pushdown automata.
Form. Methods Syst. Des. 43(2), 124–163 (2013)

27. Brázdil, T., Forejt, V., Kučera, A.: Controller synthesis and verification for Markov deci-
sion processes with qualitative branching time objectives. In: Aceto, L., Damgård, I., Gold-
berg, L., Halldórsson, M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) Proc. 35th Int. Colloq.
Automata, Languages and Programming, Part II (ICALP’08). LNCS, vol. 5126, pp. 148–
159. Springer, Heidelberg (2008)

28. Brázdil, T., Hermanns, H., Krčál, J., Křetínský, J., Řehák, V.: Verification of open interac-
tive Markov chains. In: D’Souza, D., Kavitha, T., Radhakrishnan, J. (eds.) FSTTCS. LIPIcs,
vol. 18, pp. 474–485. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik, Dagstuhl (2012)

29. Brim, L., Češka, M., Dražan, S., Šafránek, D.: Exploring parameter space of stochastic bio-
chemical systems using quantitative model checking. In: Sharygina and Veith [104], pp. 107–
123

30. Cardelli, L.: Artificial biochemistry. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Win-
free, E. (eds.) Algorithmic Bioprocesses. Natural Computing Series, pp. 429–462. Springer,
Heidelberg (2009)

31. Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim, L.,
Jančar, P., Křetínský, M., Kučera, A. (eds.) Proc. 14th Int. Conf. Concurrency Theory (CON-
CUR’02). LNCS, vol. 2421, pp. 371–385. Springer, Heidelberg (2002)

32. Chatterjee, K., Gaiser, A., Křetínský, J.: Automata with generalized Rabin pairs for proba-
bilistic model checking and LTL synthesis. In: Sharygina and Veith [104], pp. 559–575

33. Chatterjee, K., Jurdzinski, M., Henzinger, T.: Simple stochastic parity games. In: Baaz, M.,
Makowsky, J.A. (eds.) Proceedings of the International Conference for Computer Science
Logic (CSL). LNCS, vol. 2803, pp. 100–113. Springer, Heidelberg (2003)

34. Chatterjee, K., Jurdzinski, M., Henzinger, T.: Quantitative stochastic parity games. In:
Munro, J.I. (ed.) Proceedings of the Annual Symposium on Discrete Algorithms (SODA),
pp. 121–130. SIAM, Philadelphia (2004)

35. Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov decision processes with multiple ob-
jectives. In: Durand, B., Thomas, W. (eds.) STACS. LNCS, vol. 3884, pp. 325–336. Springer,
Heidelberg (2006)

36. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verification of
competitive stochastic systems. Form. Methods Syst. Des. 43(1), 61–92 (2013)

37. Chen, T., Hahn, E.M., Han, T., Kwiatkowska, M., Qu, H., Zhang, L.: Model repair for
Markov decision processes. In: Proc. 7th International Symposium on Theoretical Aspects
of Software Engineering (TASE’13), pp. 85–92. IEEE, Piscataway (2013)

996 C. Baier et al.

38. Ciesinski, F., Baier, C.: LiQuor: a tool for qualitative and quantitative linear time analysis of
reactive systems. In: Proc. QEST 2007, pp. 131–132. IEEE, Piscataway (2007)

39. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biolog-
ical systems. Theor. Comput. Sci. 410(33–34), 3065–3084 (2009)

40. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM
42(4), 857–907 (1995)

41. Daniele, M., Giunchiglia, F., Vardi, M.: Improved automata generation for linear temporal
logic. In: Halbwachs, N., Peled, D. (eds.) Proc. International Conference on Computer Aided
Verification (CAV). LNCS, vol. 1633, pp. 249–260. Springer, Heidelberg (1999)

42. Delahaye, B., Caillaud, B., Legay, A.: Probabilistic contracts: a compositional reasoning
methodology for the design of stochastic systems. In: Proc. 10th Int. Conf. Application of
Concurrency to System Design (ACSD’10), pp. 223–232. IEEE, Piscataway (2010)

43. Delahaye, B., Katoen, J.P., Larsen, K., Legay, A., Pedersen, M., Sher, F., Wasowski, A.:
Abstract probabilistic automata. In: Jhala, R., Schmidt, D.A. (eds.) 12th International Con-
ference on Verification, Model Checking, and Abstract Interpretation (VMCAI). LNCS,
vol. 6538, pp. 324–339. Springer, Heidelberg (2011)

44. Donaldson, A., Miller, A.: Symmetry reduction for probabilistic model checking using
generic representatives. In: Graf, S., Zhang, W. (eds.) Proc. 4th Int. Symp. Automated Tech-
nology for Verification and Analysis (ATVA’06). LNCS, vol. 4218, pp. 9–23. Springer, Hei-
delberg (2006)

45. Duflot, M., Kwiatkowska, M., Norman, G., Parker, D.: A formal analysis of Bluetooth device
discovery. Int. J. Softw. Tools Technol. Transf. 8(6), 621–632 (2006)

46. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theo-
retical Computer Science, vol. B: Formal Models and Semantics, pp. 996–1072. Elsevier,
Amsterdam (1990). Chap. 14

47. Esparza, J., Křetínský, J.: From LTL to deterministic automata: a Safraless compositional
approach. In: Biere, A., Bloem, R. (eds.) Computer Aided Verification—Proceedings of the
26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18–22, 2014. LNCS, vol. 8559, pp. 192–208. Springer,
Heidelberg (2014)

48. Etessami, K., Kwiatkowska, M.Z., Vardi, M.Y., Yannakakis, M.: Multi-objective model
checking of Markov decision processes. Log. Methods Comput. Sci. 4(4) (2008)

49. Etessami, K., Yannakakis, M.: Model checking of recursive probabilistic systems. ACM
Trans. Comput. Log. 13(2), 1–40 (2012)

50. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York
(1950)

51. Feng, L., Kwiatkowska, M., Parker, D.: Compositional verification of probabilistic sys-
tems using learning. In: Proc. 7th Int. Conf. Quantitative Evaluation of Systems (QEST’10),
pp. 133–142. IEEE, Piscataway (2010)

52. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques
for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) Formal Methods for Eternal
Networked Software Systems (SFM’11). LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg
(2011)

53. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Quantitative multi-objective
verification for probabilistic systems. In: Abdulla, P., Leino, K. (eds.) Proc. 17th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’11). LNCS, vol. 6605, pp. 112–127. Springer, Heidelberg (2011)

54. Fujita, M., McGeer, P.C., Yang, J.C.Y.: Multi-terminal binary decision diagrams: an efficient
data structure for matrix representation. Form. Methods Syst. Des. 10(2/3), 149–169 (1997)

55. van Glabbeek, R., Smolka, S.A., Steffen, B., Tofts, C.M.N.: Reactive, generative, and strat-
ified models of probabilistic processes. In: Proc. 5th Annual Symposium on Logic in Com-
puter Science (LICS), pp. 130–141. IEEE, Piscataway (1990)

28 Model Checking Probabilistic Systems 997

56. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide
to Current Research [outcome of a Dagstuhl seminar, February 2001]. LNCS, vol. 2500.
Springer, Heidelberg (2002)

57. Hahn, E., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for parametric
Markov models. In: Touili, T., Cook, B., Jackson, P. (eds.) 22nd International Conference on
Computer Aided Verification (CAV). LNCS, vol. 6174, pp. 660–664. Springer, Heidelberg
(2010)

58. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: abstraction refinement for infi-
nite probabilistic models. In: Esparza, J., Majumdar, R. (eds.) Proc. TACAS 2010. LNCS,
vol. 6015, pp. 353–357. Springer, Heidelberg (2010)

59. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Form. Asp. Com-
put. 6(5), 512–535 (1994)

60. Hartonas-Garmhausen, V., Campos, S., Clarke, E.: ProbVerus: probabilistic symbolic model
checking. In: Katoen, J. (ed.) 5th International AMAST Workshop on Formal Methods for
Real-Time and Probabilistic Systems (ARTS). LNCS, vol. 1601, pp. 96–110. Springer, Hei-
delberg (1999)

61. Haverkort, B.: Performance of Computer Communication Systems: A Model-Based Ap-
proach. Wiley, Chichester (1998)

62. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model
checking of complex biological pathways. Theor. Comput. Sci. 319(3), 239–257 (2008)

63. Henzinger, T.A., Mateescu, M.: Propagation models for computing biochemical reaction net-
works. In: Fages, F. (ed.) Proc. CMSB’11, pp. 1–3. ACM, New York (2011)

64. Hermanns, H., Katoen, J.P.: The how and why of interactive Markov chains. In: de Boer,
F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO’09. LNCS, vol. 6286,
pp. 311–337. Springer, Heidelberg (2010)

65. Hermanns, H., Segala, R. (eds.): Proc. 2nd Joint Int. Workshop Process Algebra and Prob-
abilistic Methods, Performance Modeling and Verification (PAPM-PROBMIV). LNCS,
vol. 2399. Springer, Heidelberg (2002)

66. Hurd, J., McIver, A., Morgan, C.: Probabilistic guarded commands mechanized in HOL.
Theor. Comput. Sci. 346(1), 96–112 (2005)

67. Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: Proc. 12th An-
nual IEEE Symposium on Logic in Computer Science (LICS’97), pp. 111–122. IEEE, Pis-
cataway (1997)

68. Itai, A., Rodeh, M.: Symmetry breaking in distributed networks. Inf. Comput. 88(1), 60–87
(1990)

69. Iyer, P., Narasimha, M.: Probabilistic lossy channel systems. In: Bidoit, M., Dauchet, M.
(eds.) TAPSOFT ’97: Theory and Practice of Software Development. LNCS, vol. 1214,
pp. 667–681. Springer, Heidelberg (1997)

70. Jeannet, B., d’Argenio, P.R., Larsen, K.G.: Rapture: A tool for verifying Markov Decision
Processes. In: Tools Day’02, Technical Report. Masaryk University, Brno (2002)

71. Jonsson, B., Larsen, K., Yi, W.: Probabilistic extensions of process algebras. In: Bergstra,
J.A., Pomse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 685–710. Elsevier,
Amsterdam (2001)

72. Karloff, H.: Linear Programming. Birkhäuser, Boston (1991)
73. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: Abstraction refinement for proba-

bilistic software. In: Jones, N., Müller-Olm, M. (eds.) Proc. 10th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI’09). LNCS, vol. 5403,
pp. 182–197. Springer, Heidelberg (2009)

74. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: A game-based abstraction-
refinement framework for Markov decision processes. Form. Methods Syst. Des. 36(3), 246–
280 (2010)

75. Kemeny, J., Snell, J.: Finite Markov Chains. Van Nostrand, Princeton (1960)

998 C. Baier et al.

76. Komárková, Z., Křetínský, J.: Rabinizer 3: Safraless translation of LTL to small determin-
istic automata. In: Cassez, F., Raskin, J. (eds.) Automated Technology for Verification and
Analysis—Proceedings of the 12th International Symposium, ATVA 2014, Sydney, NSW,
Australia, November 3–7, 2014. LNCS, vol. 8837, pp. 235–241. Springer, Heidelberg (2014)

77. Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman & Hall, London
(1995)

78. Kwiatkowska, M., Norman, G., Parker, D.: Symmetry reduction for probabilistic model
checking. In: Ball, T., Jones, R.B. (eds.) Proc. of the 18th International Conference on Com-
puter Aided Verification (CAV). LNCS, vol. 4144, pp. 234–248. Springer, Heidelberg (2006)

79. Kwiatkowska, M., Norman, G., Parker, D.: Using probabilistic model checking in systems
biology. ACM SIGMETRICS Perform. Eval. Rev. 35(4), 14–21 (2008)

80. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic games for verification of probabilistic
timed automata. In: Ouaknine, J., Vaandrager, F.W. (eds.) Proc. 7th International Conference
on Formal Modelling and Analysis of Timed Systems (FORMATS’09). LNCS, vol. 5813,
pp. 212–227. Springer, Heidelberg (2009)

81. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Proc. 23rd International Conference
on Computer Aided Verification (CAV’11). LNCS, vol. 6806, pp. 585–591. Springer, Hei-
delberg (2011)

82. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verification for prob-
abilistic systems. In: Esparza, R.M.J. (ed.) 16th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 6015, pp. 23–37
(2010)

83. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Compositional probabilistic verification
through multi-objective model checking. Inf. Comput. 232, 38–65 (2013)

84. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time
systems with discrete probability distributions. Theor. Comput. Sci. 282, 101–150 (2002)

85. Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic model checking of the IEEE
802.11 wireless local area network protocol. In: Hermanns, H., Segala, R. (eds.) Proc. 2nd
Joint International Workshop on Process Algebra and Probabilistic Methods, Performance
Modeling and Verification (PAPM/PROBMIV’02). LNCS, vol. 2399, pp. 169–187. Springer,
Heidelberg (2002)

86. Kwiatkowska, M., Parker, D., Qu, H.: Incremental quantitative verification for Markov de-
cision processes. In: Proc. IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN-PDS’11), pp. 359–370. IEEE, Piscataway (2011)

87. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28
(1991)

88. Lassaigne, R., Peyronnet, S.: Approximate verification of probabilistic systems. In: [65],
pp. 213–214 (2002)

89. Lassaigne, R., Peyronnet, S.: Approximate planning and verification for large Markov deci-
sion processes. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing,
SAC ’12, pp. 1314–1319. ACM, New York (2012)

90. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
91. McIver, A., Morgan, C.: Games, probability and the quantitative μ-calculus qMμ. In: Baaz,

M., Voronkov, A. (eds.) Proc. LPAR 2002. LNCS, vol. 2514, pp. 292–310. Springer, Heidel-
berg (2002)

92. Mikeev, L., Sandmann, W., Wolf, V.: Numerical approximation of rare event probabilities
in biochemically reacting systems. In: Gupta, A., Henzinger, T.A. (eds.) Proc. CMSB 2013.
LNCS, vol. 8130, pp. 5–18. Springer, Heidelberg (2013)

93. Mio, M.: Probabilistic modal μ-calculus with independent product. Log. Methods Comput.
Sci. 8(4), 1–36 (2012)

28 Model Checking Probabilistic Systems 999

94. Norman, G., Parker, D., Kwiatkowska, M., Shukla, S., Gupta, R.: Using probabilistic model
checking for dynamic power management. In: Leuschel, M., Gruner, S., Presti, S.L. (eds.)
Proc. 3rd Workshop on Automated Verification of Critical Systems (AVoCS’03), Technical
Report DSSE-TR-2003-2, University of Southampton, pp. 202–215 (2003)

95. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed automata. Form.
Methods Syst. Des. 43(2), 164–190 (2013)

96. Norris, J.R.: Markov chains. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, Cambridge (1998)

97. Pnueli, A., Zuck, L.: Probabilistic verification by tableaux. In: Proc. Annual Symposium on
Logic in Computer Science (LICS), pp. 322–331. IEEE, Piscataway (1986)

98. PRISM web site. www.prismmodelchecker.org. Accessed 20 August 2013
99. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wi-

ley, New York (1994)
100. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Heidelberg

(2003)
101. Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D.

thesis, Massachusetts Institute of Technology (1995)
102. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B.,

Parrow, J. (eds.) Proc. CONCUR ’94. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg
(1994)

103. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence of
uncertainties. In: Hermanns, H., Palsberg, J. (eds.) 12th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 3920,
pp. 394–410. Springer, Heidelberg (2006)

104. Sharygina, N., Veith, H. (eds.): Computer Aided Verification—Proceedings of the 25th In-
ternational Conference, CAV 2013, Saint Petersburg, Russia, July 13–19, 2013. LNCS,
vol. 8044. Springer, Heidelberg (2013)

105. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In:
Proc. 26th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 327–338.
IEEE, Piscataway (1985)

106. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Symposium on Logic in Computer Science (LICS’86), pp. 332–345. IEEE, Piscataway
(1986)

107. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37
(1994)

108. Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical probabilistic
model checking. Int. J. Softw. Tools Technol. Transf. 8(3), 216–228 (2006)

109. Younes, H., Simmons, R.: Probabilistic verification of discrete event systems using accep-
tance sampling. In: Brinksma, E., Larsen, K.G. (eds.) Proc. 14th International Conference on
Computer Aided Verification (CAV). LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg
(2002)

110. Zhang, L., Hermanns, H.: Deciding simulations on probabilistic automata. In: Namjoshi, K.,
Yoneda, T., Higashino, T., Okamura, Y. (eds.) Proc. 5th Int. Symp. Automated Technology
for Verification and Analysis (ATVA’07). LNCS, vol. 4762, pp. 207–222. Springer, Heidel-
berg (2007)

http://www.prismmodelchecker.org

	Chapter 28: Model Checking Probabilistic Systems
	28.1 Introduction
	28.1.1 Temporal Logics for Specifying Probabilistic Properties
	28.1.2 Model-Checking Algorithms for Probabilistic Systems
	28.1.3 Outline

	28.2 Modelling Probabilistic Concurrent Systems
	28.2.1 Preliminaries
	28.2.2 Markov Decision Processes
	28.2.3 Markov Chains
	28.2.4 Schedulers
	28.2.5 Probability Measures in MDPs
	28.2.6 Maximal and Minimal Probabilities for Path Events
	28.2.7 Maximal and Minimal Expected Cost

	28.3 Probabilistic Computation Tree Logic
	28.3.1 Syntax of PCTL
	28.3.2 Semantics of PCTL
	28.3.3 Derived Operators

	28.4 Model-Checking Algorithms for MDPs and PCTL
	28.4.1 Probability Operator
	28.4.2 Expectation Operator

	28.5 Linear Temporal Logic
	28.5.1 Syntax of LTL
	28.5.2 Semantics of LTL
	28.5.3 Derived Operators
	28.5.4 LTL Model-Checking Problem

	28.6 Model-Checking Algorithms for MDPs and LTL
	28.7 Tools, Applications and Model Construction
	28.7.1 Tool Support
	28.7.2 Applications
	28.7.3 Construction of Probabilistic Models

	28.8 Extensions of the Model and Speciﬁcation Notations
	28.9 Conclusion
	References

