
Chapter 10
SAT-Based Model Checking

Armin Biere and Daniel Kröning

Abstract Modern satisfiability (SAT) solvers have become the enabling technol-
ogy of many model checkers. In this chapter, we will focus on those techniques
most relevant to industrial practice. In bounded model checking (BMC), a transi-
tion system and a property are jointly unwound for a given number k of steps to
obtain a formula that is satisfiable if there is a counterexample for the property up
to length k. The formula is then passed to an efficient SAT solver. The strength of
BMC is refutation: BMC has been used to discover subtle flaws in digital systems.
We cover the application of BMC to both hardware and software systems, and to
hardware/software co-verification. We also discuss means to make BMC complete,
including k-induction, Craig interpolation, abstraction refinement techniques, and
inductive techniques with iterative strengthening.

10.1 Introduction

Modern satisfiability (SAT) solvers have become the core technology of many
model checkers, greatly improving capacity when compared to BDD-based model
checkers. In this chapter, we will focus on those SAT-based model-checking tech-
niques that are most relevant to industrial practice. In SAT-based bounded model
checking (BMC) [26], a symbolic representation of a transition system and a prop-
erty are jointly unwound for a given number of steps k to obtain a formula that is
satisfiable if there is a counterexample for the property up to length k. The formula
is then passed to an efficient SAT solver.

The idea of using propositional SAT to encode and solve path constraints for
transition systems was discussed before in the AI planning community. Originally
Kautz and Selman [103] observed that direct encodings of planning problems into
a propositional SAT problem outperformed the best planning algorithms by orders

A. Biere (B)
Johannes Kepler University, Linz, Austria
e-mail: biere@jku.at

D. Kröning
University of Oxford, Oxford, UK

© Springer International Publishing AG, part of Springer Nature 2018
E.M. Clarke et al. (eds.), Handbook of Model Checking,
DOI 10.1007/978-3-319-10575-8_10

277

mailto:biere@jku.at
http://dx.doi.org/10.1007/978-3-319-10575-8_10


278 A. Biere and D. Kröning

of magnitude. A more recent experimental survey of using SAT for planning can be
found in [145].

The rationale for using BMC is based on the observation that SAT solvers are
often able to solve much larger formulas than classical techniques based on binary
decision diagrams (BDDs) [40] (see also Chap. 8 of this Handbook). It is now in-
dustrial practice to simply run BMC for a certain amount of time or up to a certain
bound k, fixed for instance in the verification plan.

On the other hand, BDD-based techniques allow efficient implementations of
quantifier elimination, which is crucial for termination checks in symbolic fix-point
algorithms. The detection of the fix-point is essential to prove properties in general,
but not necessary when aiming at refutation.

In this chapter, we cover the application of BMC to both hardware and software
systems, and hardware/software co-verification. In its simplest form, BMC is in-
complete, as bugs that are only exposed with more than k transitions are missed.
These BMC-based techniques therefore either relinquish completeness, or have to
rely on alternative ways to assert that a property holds in general for all bounds. The
chapter therefore covers a range of SAT-based techniques that are able to establish
a proof of correctness for the property for an unbounded depth.

This material has been covered more extensively in other tutorial-style publica-
tions and surveys before [69, 81, 141, 155], including two chapters [24, 110] in the
Handbook of Satisfiability [28], by the same authors as this chapter. Thus, besides
explaining some of the very basic ideas, the rather restricted amount of space avail-
able here is used to give pointers to existing important work on SAT-based model
checking and elaborating on more recent publications.

The outline of the chapter is as follows. We begin with a description of how
to perform BMC on an abstract description of the system, given in the form of a
transition system. We then provide details on how to obtain formal models from
industrial system description languages such as Verilog and ANSI-C, and how to
encode these models and systems properties into a propositional formula. In par-
ticular, we show how model-checking problems for software and hardware can be
encoded into satisfiability checking (SAT). The chapter concludes with a discussion
of means to make BMC complete, including k-induction, Craig interpolation, and
inductive techniques with iterative strengthening.

10.2 Bounded Model Checking on Kripke Structures

10.2.1 Kripke Structures

The behaviors of a program or circuit can be formally captured using a Kripke Struc-
ture, formally defined as follows.

Definition 1 (Kripke structure) A Kripke Structure is a (finite) set of states S, a set
of initial states I ⊆ S, and a transition relation T ⊆ S × S.



10 SAT-Based Model Checking 279

A path in a Kripke structure is a (possibly infinite) sequence of states s0, s1, s2, . . .

such that

• s0 is an initial state, i.e., s0 ∈ I , and
• there is a transition between any si and si+1, i.e., (si , si+1) ∈ T .

The states are typically valuations of a set of state variables, corresponding to
latches and registers in circuits and program variables in software. In the case of
a finite set of states we can always re-encode the Kripke structure to use proposi-
tional variables only. As a result, we obtain purely propositional predicates I and T .
We use the set notation and the state predicates and relations interchangeably, i.e.,
the propositional formula I (si) evaluates to true iff si ∈ I . Similarly, T (si, si+1)

evaluates to true iff (si , si+1) ∈ T .
The key idea of bounded model checking is to construct a formula that is satis-

fiable if there exists a path that violates a given property. We now consider specific
kinds of properties, and will distinguish safety and liveness properties.

10.2.2 Safety Properties

Properties are typically defined using a suitable temporal logic. We refer to Chap. 2
of this Handbook [140] for an introduction to temporal logics. We restrict the dis-
cussion in this chapter to properties given in Linear Temporal Logic (LTL). One
benefit of this restriction is that counterexamples to LTL properties can always be
given in the form of a path, as defined above. A full survey on ways to encode
LTL in a BMC context together with an experimental comparison with BDD-based
techniques is provided by Biere et al. [27]. Note that encodings differ in terms of
compactness, ease of implementation, and of course SAT-solving efficiency.

We begin with LTL properties of the form Gp, where p is a state predicate. This
property establishes that p is a global invariant of the system. A counterexample
for a property of this kind can be given as a finite path that ends with a state s that
satisfies ¬p. This gives rise to a straightforward condition for the existence of a
counterexample path of length k:

∃s0, . . . , sk. I (s0) ∧
k−1∧

i=0

T (si, si+1) ∧ ¬p(sk) (1)

The formula above contains three conjuncts. The first conjunct, I (s0), ensures that
the state s0 is one of the initial states. The second conjunct encodes the requirement
that there is a transition from si to si+1 for each i ∈ {0, . . . , k − 1}. This amounts to
creating k replicas of the transition relation T . Finally, the conjunct ¬p(sk) asserts
that the state sk satisfies ¬p.

Note that the formula obtained in this way has only one level of (existential)
quantification and thus corresponds to a propositional satisfiability problem. Most
modern SAT solvers such as ZChaff [136] or MiniSAT [73] expect to receive the



280 A. Biere and D. Kröning

propositional formula in conjunctive normal form (CNF).1 The transformation of
the quantifier-free propositional formula into CNF is performed using the Tseitin
transformation [151]. This transformation is linear-time, and results in an equi-
satisfiable formula in CNF. Numerous papers on more compact or more efficient
variants of this step have been published, e.g., [45, 72, 153]. Further details on CNF
encodings can also be found in the Handbook of Satisfiability [142]. See also the
discussion on the relation between CNF-level preprocessing and encoding in [97].

10.2.3 Liveness Properties

We will consider further categories of system properties. The simplest type of live-
ness properties are eventualities, e.g., whether a particular state property is guaran-
teed to eventually hold. These properties are written as Fp in LTL. The encoding of
LTL formulas of this form is very similar to the encoding of Gp. We observe that
counterexamples to properties of this form can always be given as a finite (possi-
bly empty) prefix (called the stem) followed by a finite loop. All states on the path
satisfy ¬p. This pattern can be encoded as follows:

∃s0, . . . , sk. I (s0) ∧
k−1∧

i=0

T (si, si+1) ∧
k−1∧

i=0

¬p(si) ∧
k−1∨

i=0

sk = si (2)

As described above, the formula can be converted into propositional logic, and can
then be passed to a propositional SAT solver.

The translation of general LTL formulas is more complex. Techniques for per-
forming this translation can be categorized as syntactic or semantic [58]. Syntac-
tic translations follow the syntactic structure of the LTL property; instances in-
clude [26, 90, 91, 128, 139].

As an alternative semantic translations can be used, which are based on au-
tomata: the formula is transformed into a suitable kind of automaton that accepts
counterexample paths. An instance is the translation of the LTL property ϕ into a
Büchi automaton M¬ϕ that accepts paths that satisfy ¬ϕ [74, 152]. Counterexam-
ples to ϕ then have the form of a path through the product of the Kripke struc-
ture and M¬ϕ that contains infinitely many accepting states. A counterexample in a
finite-state product is thus a loop that does not contain an accepting state. This con-
dition can be encoded using a formula similar to Eq. (2). One key advantage of the
automata-based encoding is that numerous minimization techniques can be applied
to the automaton prior to building the BMC formula.

Semantic translations allow the use of sophisticated automata optimization tech-
niques, but the space requirements might explode for larger formulas, due to explicit
representation of potentially exponentially many states in the automata.

1There are now also non-clausal propositional SAT solvers, e.g., [95].



10 SAT-Based Model Checking 281

10.2.3.1 Liveness to Safety Translation

Besides these syntactic and semantic translations, a third approach to handle live-
ness is to encode liveness into safety (L2S) and then use model-checking algorithms
for checking safety [25, 146]. This is particularly useful for techniques such as in-
terpolation which only work for safety properties at this point. The L2S encoding
actually increases the size of the model by a factor of two. Thus, it might be pro-
hibitively expensive for BDD-based techniques, which are very sensitive to model
size. However, even for BDD-based model checking there are cases where L2S is
exponentially more efficient.

10.2.3.2 k-Liveness

More recently, a new approach for checking liveness was presented in [49] and
independently discovered in [80] (see also [124]). In [49], the authors called it “k-
liveness”. Their implementation proved to be quite effective in the liveness track
of the Hardware Model Checking Competition 2012 (HWMCC 2012). In this ap-
proach, liveness properties are assumed to be encoded as FGp properties. Then the
approach tries to prove that a witness trace for such a property does not exist. In
case of a finite-state system, a witness trace to FGp can be assumed to be an infi-
nite path which ends in a loop, where the loop contains a state in which p holds.
If FGp cannot be satisfied, then the prefix of any path satisfies p only an arbitrary
(but finite) number of times.

The basic idea of the approach is to count the number of occurrences of p and
then check that the count is smaller than a fixed bound k. Note that this turns the
liveness-checking problem into a simple safety-checking problem. If p can only be
satisfied at most k times, then FGp cannot be satisfied on any initialized path. If
the safety check fails and a path is found on which p can be satisfied more than
k times, the bound k is increased to say k + 1 and a new safety-checking problem
for bound k + 1 is generated. If the property FGp does not hold for a finite-state
system, then this process has to terminate after k reaches the number of states of the
system. In practice the process terminates much earlier, in particular if combined
with a method for extracting additional constraints [49]. In order to find violations
of liveness properties, i.e., witness traces for formulas like FGp, the approach has
to rely on other techniques, such as those discussed above.

10.3 Bounded Model Checking for Hardware Designs

We will now cover techniques to translate system descriptions given in industrial
system description languages into BMC instances. We begin with verification of
designs given in hardware description languages (HDLs), which was one of the
earliest applications of SAT-based BMC (see also Chap. 24 of this Handbook [77]).



282 A. Biere and D. Kröning

10.3.1 Hardware Description Languages (HDLs)

In industrial practice, hardware designs are described by means of modeling lan-
guages. These include languages to describe schematics and net-lists at the lowest
level. Higher levels of abstraction can be achieved by hardware description lan-
guages (HDLs) such as VHDL or Verilog.

The challenges in encoding models given in hardware description languages into
SAT are mostly shared by all model-checking techniques for hardware; they affect
BDD-based and SAT-based methods alike. Most HDLs have both simulation seman-
tics and synthesis semantics. Designers rely heavily on simulation and build models
with simulation semantics in mind. Simulation semantics are typically based on an
event queue, resembling the data structures maintained by event-driven simulators.
On the other hand, the synthesis semantics is closer to the actual hardware produced,
and may uncover design flaws that go unnoticed during simulation.

10.3.2 BMC on Net-Lists

We will briefly elaborate on performing BMC using synthesis semantics. In this
context, the BMC implementation will initially perform several stages of behavioral
synthesis up to the point that a net-list is produced. A net-list is a collection of
primitive elements. A typical way to represent net-lists is to use an and-inverter
graph (AIG) [123], i.e., the net-list consists of “and” gates, inverters and memory
elements referred to as registers.

Definition 2 A net-list N is a directed graph (VN,EN, τN) where VN is a fi-
nite set of vertices, EN ⊆ VN × VN is the set of directed edges and τN : VN →
{AND, INV, REG, INPUT} maps a node to its type, where AND is an “and” gate, INV

is an inverter, REG is a register, and INPUT is a primary input. The in-degree of a
vertex of type AND is at least two, of type INV and REG is exactly one and of type
INPUT is zero. Any cycle in N must contain at least one REG node.

As an example, consider the 3-bit counter whose Verilog module is shown in
Fig. 1 (taken from [47]). The corresponding net-list is shown in Fig. 2. A node drawn
as a box represents a REG. A circle-shaped node is an AND gate. An incoming edge
of a node marked with a circle indicates negation.

A state of a net-list is a mapping of its registers to the Boolean values B = {0,1}.
A net-list N with r registers gives rise to a Kripke structure M = (SN , IN ,TN)

where SN = B
r is the set of states and TN is the transition relation specifying what

pairs of states are connected by transitions. The set IN of initial states is determined
by the values of the registers immediately after reset. In the above example, IN =
¬count[0] ∧ ¬count[1] ∧ ¬count[2]. The state-transition diagram for the circuit
is shown in Fig. 3. Note that SN for the 3-bit counter consists of 23 = 8 states.



10 SAT-Based Model Checking 283

Fig. 1 Verilog module of a
counter

Fig. 2 Net-list for Fig. 1

Fig. 3 State-transition
diagram of the counter in
Fig. 1

Unreachable states are not shown in Fig. 3. An algorithm for obtaining a transition
relation for a net-list is given in [57].

The required property of a circuit can be given as part of the design description
in languages such as PSL [76] or as a System Verilog Assertion [154]. A discussion
of hardware specification languages can also be found in Chap. 24.

10.4 Bounded Model Checking for Software

We focus on BMC-like approaches to software verification; for a broader perspec-
tive on automated techniques for formal software verification, we refer the reader to
a survey [69].



284 A. Biere and D. Kröning

10.4.1 Monolithic Encodings

The most straightforward manner to implement BMC for software is to encode the
transition relation of the program into a circuit representation, and then to perform
BMC as described in Sect. 10.2.

1. The first step is to add a program counter (PC) to the set of state variables of
the model. The program counter determines the instruction that is to be executed
next.

2. Each instruction is turned separately into a transition relation. One way to obtain
such a formula is to convert the arithmetic operators in the program into their
circuit (net-list) equivalents. Arrays and pointers are treated as memories, using
a large case split over the possible values of the address or a first-order array
theory.

We will illustrate the second step by means of an example. Suppose that our
program has three state variables named x, y, and z, and suppose we wish to encode
the following instruction, given in C syntax:

x= y+ 1;
Note that the equal sign = in the C program fragment above indicates an assign-

ment, and not an equality relation. Following the usual convention, we will use x′,
y′ and z′ to denote the next-state values of the state variables. The transition relation
for the statement above is then

x′ = y′ + 1 ∧ y′ = y ∧ z′ = z .

Note that in the above formula, the symbol = denotes mathematical equality, and
not assignment. Also note the second and third conjuncts: these constraints state the
fact that the value of the program variables y and z is not changed by the instruction.

An unwinding using the “monolithic encoding” as described above with k steps
permits all program paths that traverse k (or fewer) instructions to be explored. The
size of this basic unwinding is k times the size of the program. For large programs,
this is prohibitive, and thus, several optimizations have been proposed. These opti-
mizations focus on reducing the size of the encoding by eliminating combinations
of control-flow locations that do not correspond to paths through the program.

As an instance, in the case of sequential programs it is beneficial to merge all
instructions within one basic block into a single big-step instruction. Each basic
block of the program is converted into a formula by transforming it into static single
assignment (SSA) form [3]. This reduces the number of control-flow locations. The
model checker F-SOFT is reported to use an optimized monolithic encoding [94].

10.4.2 Path-Based Encodings

Instead of unwinding the entire transition relation, path-based software analyzers
perform forward symbolic execution [105] or in general symbolic simulation along-
side specific program paths up to a given depth. The resulting formula is then passed



10 SAT-Based Model Checking 285

to the SAT solver [62]. This basic approach has a broad range of applications; e.g., it
can be used to check arbitrary safety properties or to generate test vectors to achieve
particular coverage goals. See [43] for a historical perspective on symbolic execu-
tion.

There are numerous approaches to prune the set of paths that are to be explored,
or to heuristically choose a path that most likely leads to a particular goal [14]. Once
a satisfying assignment is obtained, a counterexample can be extracted. There is
also work on obtaining particularly desirable counterexamples, and attempts to use
information from the BMC instance to explain the root cause of the error [85, 87].

In the most basic form, tools using path-based encodings explore precisely one
path at a time. An advantage of this approach is that the formulas generated this way
are often very simple, and can be solved effectively by modern solvers. However,
this basic approach to path-based exploration suffers from the path explosion prob-
lem, as the number of paths through a program is exponential in the worst case. As
an example, consider a loop with a branch in the body. The branching decision is
potentially independent in each iteration of the loop, and thus, the program has 2n

distinct paths for n loop iterations.
A principal method to address the path explosion problem is path merging. The

idea is to merge the formulas that correspond to two (or more) paths at points of
reconverging control flow. As a result, the number of formulas is reduced, but the
resulting formulas are larger and thus more difficult to solve for the SAT solver.
This enables a trade-off between the number of formulas to solve and their relative
difficulty.

At the extreme end, the CBMC bounded model checker always merges, and thus,
generates only a single formula for a given unwinding bound k [51, 52, 108, 112].
This formula is linear in the size of the program and linear in k even if there is an
exponential number of paths in the program. This corresponds to replicating the ba-
sic blocks along the path k times, followed by a transformation of the concatenation
of these blocks into SSA form [3]. Other tools perform path merging heuristically
in order to contain the total number of formulas.

10.4.3 Completeness for Bounded Programs

Bounded model checking, when applied as described above, is inherently incom-
plete, as it searches for property violations only up to a given bound and never re-
turns “No Errors”. Bugs that are deeper than the given bound are missed. Neverthe-
less, BMC can be used to prove liveness and safety properties on a particular class
of programs if applied in a slightly different way. The class we consider here are
programs that have a high-level worst-case execution time (WCET). Numerous pro-
grams are required to have this property, especially in the domain of safety-critical
embedded software.

A high-level WCET is typically given by a bound on the maximum number of
loop iterations and is usually computed via a simple syntactic analysis of loop struc-
tures. If the syntactic analysis fails, an iterative algorithm can be applied. First,



286 A. Biere and D. Kröning

a guess k for the bound on the number of loop iterations is made. The loop is then
unrolled up to this bound k using BMC. The property that is checked is that any
path exceeding k loop iterations is infeasible. If the property holds, k is established
as a sound high-level WCET. Otherwise, there are paths in the program exceeding
the bound, and a new guess for the bound is made [52, 112].

10.4.4 BMC for Multi-threaded Programs

The verification of concurrent software is primarily discussed in Chap. 18 of this
Handbook [88]. We will thus only briefly mention those methods in which the use
of SAT, or more general satisfiability modulo theories (SMT) (discussed in Chap. 11
of this Handbook [16]), is most prominent.

The basic approach described above also applies to concurrent software with
interleaving semantics. In BMC for this scenario, path formulas with thread in-
terleavings are built. Due to the potential for path explosion, numerous vari-
ants for restricting the search, path merging and compression have been consid-
ered [60, 78, 82, 143, 144]. An alternative to considering interleavings explicitly
during the encoding is to build a formula in which the interleavings are encoded by
means of clocks [2, 150]. Further constraint-based approaches to analyzing concur-
rent programs include [126, 149]. Concurrent programs can be reduced to sequential
programs by applying a bound on the number of context switches [127, 143]. This
transformation enables the application of analyzers for sequential programs as de-
scribed above.

Verifiers for concurrent systems usually benefit from some form of partial-order
reduction. Instances of BMC-based verifiers for concurrent systems that implement
partial-order reduction are [70, 100, 101].

10.4.5 Bounded Model Checking for HW/SW Co-verification

The encodings described in Sect. 10.3.1 for hardware and Sect. 10.4 for software
can be combined to form a single SAT instance, which enables the verification of
systems that have both a hardware and a software component. This approach is the
baseline for the broad area of “symbolic co-simulation” of two models, where one is
written in C and the other is a hardware model in (for example) Verilog or SystemC.

A typical scenario is checking the correspondence between a “golden” hardware
reference model and an RTL implementation. Another scenario is checking proper-
ties of software–hardware interaction, where the software is in C and the hardware is
modeled in an HDL. There is a broad variety of styles in which ANSI-C programs or
SystemC descriptions are used in these settings as (possibly partial) hardware spec-
ifications. In the special case of sequential equivalence checking between C and an
HDL this is combined with heuristic insertions of equivalence cut points.



10 SAT-Based Model Checking 287

10.5 Encodings into Propositional SAT

In this section we elaborate on the original question of how to encode the model
and the temporal specification into propositional SAT. Due to the widespread use of
C to implement safety-critical software, model checking of C programs, even just
for bug hunting, is an important application of formal verification. The challenge
in making BMC work for a concrete programming language such as C is many-
fold. First, programming languages have complex syntax and semantics which have
to be parsed, analyzed and encoded. Reasoning about memory and in particular
pointer arithmetic requires non-trivial decision procedures for arrays. In order to
model the actual computation, including but not limited to modular arithmetic, bit-
precise reasoning is indispensable.

10.5.1 Encoding Bit Vectors

At the core of SAT-based Model Checking is the encoding of word-level opera-
tions, which correspond to the evaluation of arithmetic expressions in programming
languages or HDLs, into bit-level formulas. This task, also known as bit-blasting,
is very similar to the synthesis of hardware models on the register transfer level
(RTL) into net-lists. Alternatively, operations on the word-level can be modeled in
the first-order theory of bit vectors (QF_BV).

As discussed in Chap. 11, there are various approaches to handle the bit-vector
theory. Here we focus on bit-blasting. As examples we show the encoding of assign-
ments, i.e., equality in BV, and addition of bit vectors. Other arithmetic and logical
operations are treated in a similar way. Note that, in general, bit-blasting is an expo-
nential procedure, if bit-widths, as is usually the case, are encoded logarithmically.
This exponential explosion cannot be avoided, since the decision problem for full
QF_BV is NEXPTIME complete [107].

After encoding models into bit vectors and bit vectors into propositional bit-level
logic there remains a last step of encoding bit-level formulas into conjunctive normal
form (CNF), the common input format of most SAT solvers.

In order to compactly represent formulas we need sharing. This means we use
directed acyclic graphs (DAGs) or simply combinational circuits to represent gen-
erated bit-level formulas and not trees, which can be exponentially larger.

A bit-level data structure commonly used for this purpose is And-Inverter-Graphs
(AIGs) [123]. AIGs are in essence representations of net-lists (Definition 2). In or-
der to obtain a formula in CNF from an AIG it is possible to first translate the
AIG into negation normal form (NNF), which at most doubles the size of the DAG,
and then use the distributivity law to eliminate disjunctions over conjunctions. Each
elimination of a disjunction is quadratic and thus this approach may lead to an ex-
ponential blow-up of the resulting CNF. As a consequence, translating an AIG into
CNF by distribution is only feasible for small and shallow formulas. The common
approach for translating formulas (and AIGs) into CNF is to use a Tseitin encoding
and related optimizations, as discussed in Sect. 10.2.2.



288 A. Biere and D. Kröning

10.5.2 Encoding Memory

Memory occurs in software but also in hardware models. The first-order theory of
arrays is powerful enough to express most memory-related properties of practi-
cal interest. Therefore, decision procedures for the theory of arrays, as presented
in Chap. 11, are essential for bounded model checking. We are mostly interested
in bit-precise semantics. Thus for bounded model checking, we can focus on the
quantifier-free fragment of arrays over bit vectors (QF_ABV).

Most of the time, memory in hardware can be handled by standard decision pro-
cedures for arrays. However, for software there are additional requirements. In par-
ticular, dynamic memory management has to be encoded.

10.5.3 Encodings with Under- and Over-approximation

The direct use of a SAT solver as cited earlier (“bit-blasting”) is the conceptu-
ally simplest way to implement a bit-vector decision procedure. However, the bit-
blasting approach can be too computationally expensive in practice, and there is a
pressing need for better decision procedures for bit-vector arithmetic.

One frequently applied method to obtain faster decision procedures for bit-vector
arithmetic and other theories is abstraction. The key insight is that in many cases,
only a small part of the formula needs to be analyzed to conclude whether it is
satisfiable or unsatisfiable. The goal of abstraction is to focus on this part of the
formula.

Most decision procedures that employ abstraction implement either strict over-
or under-approximations. In both cases, the desired result is a formula φ′ that is
easier to solve than the original formula φ.

An over-approximation of a decision problem permits more solutions than the
original formula. A simple way to obtain an over-approximation for a satisfi-
ability problem is to replace sub-formulas by new variables. In case an over-
approximation φ′ is found to be unsatisfiable, we can conclude that the original
formula is unsatisfiable. Nothing, however, can be concluded if φ′ is satisfiable,
since the satisfying assignment for φ′ need not be a satisfying assignment for φ.

Conversely, an under-approximation of a decision problem permits fewer solu-
tions than the original formula. A simple way to obtain an under-approximation for a
satisfiability problem is to add further constraints or to replace sub-formulas by con-
stants. In case an under-approximation φ′ is found to be satisfiable, we can conclude
that the original formula is satisfiable. Nothing, however, can be concluded if φ′ is
unsatisfiable. A proof of unsatisfiability of φ′ need not be a proof of unsatisfiability
for φ.

Both over- and under-approximations can naturally be combined with forms of
automated abstraction refinement, such as those pioneered in [55]. SMT solvers



10 SAT-Based Model Checking 289

implementing DPLL(T ) [15, 138, 147] can be seen as performing iterative refine-
ment (strengthening) of an over-approximation. The array theory is a very typi-
cal instance of a fragment of first-order logic that is particularly suitable for over-
approximation [120, 137]. Under-approximation is frequently applied in the case of
expensive bit-vector arithmetic operations such as multiplication.

In order to obtain the strengths of both over- and under-approximation, alterna-
tion between the two schemes can be applied. This idea is particularly fruitful if each
of the two phases provides refinement information for the other. An instance of this
scheme for quantifier-free Presburger arithmetic has been presented in [114]; a vari-
ant for quantifier-free bit-vector arithmetic has appeared in [41]. It is also possible
to combine over- and under-approximation in a single abstraction, thereby forming
a mixed abstraction. The resulting formula in general neither implies nor is implied
by the original formula [38, 39].

10.6 Complete Model Checking with SAT

As explained above, the search for a counterexample of fixed length is inherently
incomplete, as means to conclude the absence of counterexamples of any length are
missing. We now discuss methods that enable proofs that a given property holds for
unbounded depth [7].

10.6.1 Completeness Thresholds

Intuitively, if we could search deeply enough, we could guarantee that we have ex-
amined all the relevant behavior of the bounded program, and that searching any
deeper would only exhibit states that we have explored already. A depth that pro-
vides such a guarantee is called a completeness threshold [119]. The notion of com-
pleteness threshold is used to determine an upper bound on the length k of coun-
terexamples that have to be tried before the property can be declared to hold.

Computing the smallest such threshold is as hard as the model-checking prob-
lem itself, and thus, one settles in practice for over-approximations. Techniques for
obtaining completeness thresholds include structural analyses of the description of
the transition system [20, 21, 109], and semantic analyses of the model and the
property [5, 58, 115, 119].

The completeness threshold of a design can be lowered significantly by apply-
ing abstraction techniques such as localization reduction [125]. This idea has been
exploited in a number of techniques [130, 135].

10.6.2 Image Computation with SAT

BDD-based model checkers perform forward or backward fixed-point iterations in
order to determine the truth of a property given in temporal logic. The key step in this



290 A. Biere and D. Kröning

procedure is to compute a pre- or post-image of a given set of states with respect to
the transition relation. Attempts have been made to emulate this fixed-point iteration
using SAT solvers [1, 46, 131].

10.6.3 Basic Inductive Techniques

SAT-based techniques are well suited to check whether a given transition system
satisfies a given inductive invariant. Recall that I denotes the initial state predicate,
and that T denotes the transition relation. A state property P is inductive iff

1. P holds in the initial state, i.e., I �⇒ P , and
2. P holds in all states reachable from states that satisfy P , i.e.,

(
P(s) ∧ T

(
s, s′)) �⇒ P

(
s′).

Observe that both conditions are quantifier-free and can therefore be checked effec-
tively using the techniques we have described so far. The main practical problem is
that a property that holds does not have to be inductive. Nothing can be concluded
about P if the second condition fails. We now discuss techniques that attempt to
address this case.

10.6.3.1 Strengthening the Inductive Argument

Induction can be made more likely to succeed when we check a state property P ′
that is stronger than the non-inductive property P . Numerous heuristics have been
proposed to strengthen inductive arguments, both in the case of software and hard-
ware models. Many initial methods relied on careful manual strengthening of prop-
erties to make them inductive, followed by automated heuristics [6].

10.6.3.2 Equivalence Reasoning

Another important preprocessing technique for bit-level model checking is based on
iteratively computing the set of equivalent circuit nodes. This in particular includes
the set of equivalent latches and registers. The pioneering work of van Eijk [75]
consists of a greatest fixpoint computation of this equivalence relation. In essence it
computes the largest equivalence relation among signals which is inductive, i.e., is
preserved under the transition relation, and holds in the initial state. The resulting
equivalence relation can then be used to simplify the model-checking problem by
replacing equivalent nodes by representatives. An important related technique is
SAT sweeping [122]. For a more complete set of references see [104].



10 SAT-Based Model Checking 291

10.6.3.3 Temporal Decomposition

Circuit nodes which are initialized to one specific constant value, true or false, and
then never change, can be found in the same way. However, in many practical prob-
lems, nodes only stabilize after a certain number n of steps. In this situation, the
original model-checking problem should be split into a bounded-model-checking
problem for the first n steps, followed by checking a simplified model where the
signals fixed after n steps are replaced by constants. This technique is called tem-
poral decomposition and was introduced in [44]. Ternary simulation can be used to
quickly compute an approximation of stabilizing signals.

10.6.3.4 k-Induction

An automated way to increase the strength of the inductive argument is to increase
the depth of the unwinding, forming a formula that is very similar to a BMC in-
stance. In k-induction, we first check that there is no counterexample of length k or
less. We then check that no state reachable from a sequence of k-states that satisfy
P violates P . Both checks can be performed effectively using a satisfiability deci-
sion procedure. The technique was first applied to hardware models [148], and then
generalized to include software [64, 65]. The approach is also applicable to liveness
properties, e.g., given in LTL, as ω-regular properties, or as Büchi automata [90, 91].

10.6.4 Craig Interpolation

Model checking with Craig interpolation [132] was the first robust complete SAT-
based model-checking technique and is still considered to be one of the most effec-
tive techniques in practice. It uses an over-approximation of quantifier elimination,
for image computation, which is obtained as an interpolation from a refutation of a
BMC run between the first and the remaining states of the considered path [132].
The crucial part is an algorithm for extracting an interpolant from a resolution proof
in linear time. The technique has been combined with other methods to reduce the
complexity of the model, e.g., abstraction [129].

Interpolating decision procedures have been developed for numerous fragments
of first-order logic, primarily with the goal of application to approximate loop invari-
ants in program analyzers. An algorithm for interpolation in linear real arithmetic
has been given in [133], for transitive relations in [156], and for full quantifier-
free Presburger arithmetic in [36, 113]. An interpolating decision procedure for
quantifier-free Presburger arithmetic with arrays is described in [37]. A full descrip-
tion of interpolation-based model checking is in Chap. 14 of this Handbook [134].



292 A. Biere and D. Kröning

10.6.5 Iterative Inductive Strengthening

A failing inductive argument can be strengthened iteratively in a BMC-like set-
ting, an idea exploited in the seminal algorithm IC3 [33, 34], also called property-
directed reachability checking in [71]. As of 2013, IC3 is considered the most ef-
ficient single-engine model-checking technique for proving properties of bit-level
models. In addition, it is also shown to be able to reach deep counterexamples. IC3
has been extended to full CTL, as demonstrated in [89], as well as to more general
models [48, 93].

The basic idea of IC3 is to generate a relative inductive chain F0 ⊆ F1 ⊆ · · · ⊆ Fk

of over-approximations of reachable states. “Relative inductive” means that all the
successor states of Fi are in Fi+1. Starting with the initial state set F0 = I alone, the
algorithm proceeds by either refining frontiers or by increasing k, which adds a new
frontier. This process is repeated until the chain reaches a fix-point or a bad state is
shown to be reachable.

The frontier sets Fi are refined by adding restrictions on states reachable in one
step backward from a goal state, i.e., a bad state. These restrictions are expressed as
clauses over state literals. In order to minimize their size, and speed up termination
of IC3, the algorithm performs many incremental calls to a SAT solver. Initially
only bad states are goal states, but after one step backward, the negation of an added
clause becomes a goal too (unless the initial state is reached). These goals can thus
be seen as partial models of the transition relation. Finding and minimizing these
partial models is the most time-consuming part of the algorithm, and the current
state of the art either uses SAT-based techniques [35] or uses ternary simulation [71].

In contrast to bounded model checking, IC3 requires many more calls to the SAT
solver, typically in the range of thousands of SAT-solver calls per second. These
calls, however, only check properties of one step, e.g., a single copy of the transition
relation. This is a very different usage scenario for a SAT solver than in BMC.
Further details and a discussion on lifting these ideas to SMT can be found in [34]
or in the original publication on IC3 [33].

10.7 Abstraction Techniques Using SAT

10.7.1 Overview of Predicate Abstraction

Promoted by the success of the SLAM toolkit [8, 12, 13], predicate abstraction is
currently the predominant abstraction technique in software model checking. Graf
and Saïdi use logical predicates to construct an abstract domain by partitioning a
program’s state space [84]. The details of this procedure are described in Chap. 15
of this Handbook [99]. We focus on the use of SAT in this context.

In predicate abstraction, a sound approximation R̂ of R is constructed using pred-
icates over program variables. A predicate P partitions the states of a program into
two classes: one in which P evaluates to true, and one in which it evaluates to false.



10 SAT-Based Model Checking 293

Each class is an abstract state. Let A and B be abstract states. A transition is de-
fined from A to B (i.e., (A,B) ∈ R̂) if there exists a state in A with a transition to
a state in B . This construction yields an existential abstraction of a program, sound
for reachability properties [56]. The abstract program corresponding to R̂ is repre-
sented by a Boolean program [12, 13]; one with only Boolean data types, and the
same control flow constructs as in C programs (including procedures). Together, n

predicates partition the state space into 2n abstract states, one for each truth assign-
ment to all predicates.

10.7.2 Computing Abstractions with SAT

Abstractions are automatically constructed using a decision procedure to decide, for
all pairs of abstract states A,B , and instructions Li, whether Li permits a transition
from A to B . As n predicates lead to 2n abstract states, this method requires (2n)2

calls to a decision procedure to compute an abstraction. In practice, a coarser but
more efficiently computed Cartesian Abstraction (see for instance [11]) is obtained
by constructing an abstraction for each predicate separately and taking the product
of the resulting abstract relations.

The decision procedures are either SMT-based first-order logic theorem provers
combined with theories such as machine arithmetic, for reasoning about the C
programming language (e.g., ZAPATO [10] or SIMPLIFY [63]), or SAT-solvers,
used to decide the satisfiability of a bit-level accurate representation of the formu-
las [53, 59, 120].

We now describe how an abstraction can be verified. Despite the presence of a
potentially unbounded call stack, the reachability problem for sequential Boolean
programs is decidable [42].2

The intuition is that the successor of a state is determined entirely by the top of
the stack and the values of global variables, both of which take values in a finite set.
Thus, for each procedure, the possible pairs of input-output values, called summary
edges, is finite and can be cached and used during model checking [12, 79].

All existing model checkers for Boolean programs are symbolic. BDD-based
tools suffer from scalability issues if the number of variables is very large. SAT-
based methods scale significantly better, but cannot be used to detect fixed points.
For this purpose, solvers for quantified Boolean formulas (QBF) must be used [83,
106]. However, the decision problem for QBF, a classical PSPACE-complete prob-
lem, faces the same scalability issues as BDDs. Most tools used in practice are
therefore still based on BDDs, and the verification phase is often the bottleneck of
predicate abstraction.

2In fact, all ω-regular properties are decidable for sequential Boolean programs [32].



294 A. Biere and D. Kröning

10.7.3 Simulation with SAT

The reachability computation above may discover that an error state is reachable in
the abstract program. Subsequently, a simulation step is used to determine whether
the error exists in the concrete program or is spurious.

Symbolic simulation mentioned in Sect. 10.4.2, in which an abstract state is prop-
agated through the sequence of program locations occurring in the abstract coun-
terexample, is used to determine whether an abstract counterexample is spurious.
If so, the abstraction must be refined to eliminate the spurious trace. This approach
does not produce false error messages.

There are two sources of imprecision in the abstract model. Spurious traces arise
because the set of predicates is not rich enough to distinguish between certain con-
crete states. Spurious transitions arise because the Cartesian abstraction may con-
tain transitions not in the existential abstraction. Spurious traces are eliminated by
adding additional predicates, obtained by computing the weakest precondition (or
strongest postcondition) of the instructions in the trace. An alternative method is
Craig interpolation [92]. Spurious transitions are eliminated by adding constraints
to the abstract model. Such transitions are eliminated by restricting the valuations
of the Boolean variables before and after the transition.

Various techniques to speed up the refinement and the simulation steps have
been proposed. Path slicing eliminates from the counterexample instructions that
do not contribute to a property violation [98]. Loop detection is used to compute
the effect of arbitrary iterations of loops in a counterexample in a single simulation
step [121]. The refinement step can be accelerated by adding statically computed
invariants [22, 96], including those that eliminate a whole class of spurious coun-
terexamples [23]. Proof-based refinement eliminates all counterexamples up to a
certain length, shifting the computational effort from the verification to the refine-
ment phase, and decreasing the number of iterations required [4].

10.7.4 Abstraction-Based Tools

The SATABS model checker uses SAT- or SMT-based abstraction, simulation and
refinement [53, 54], and has also been combined with dynamic execution (test-
ing) [86] and has been applied to concurrent software [18, 19, 157], including the
scenario in which the number of threads is not bounded [102]. A proof-based tech-
nique to approximate images for bit-vector arithmetic has been proposed in [116].
Predicate abstraction has also been applied to hardware verification and HW/SW
co-verification [111] and to SpecC [50] and SystemC models [29–31]. SLAM now
also uses an SMT-based decision procedure [9], and experiments have been reported
using a SAT-based decision procedure [59]. SAT-based checking has also been ap-
plied to the abstraction itself, i.e., to Boolean programs [17]. The LOOPFROG ver-
ifier uses SAT to compute a precise transformer for a given loop body and a given
abstract domain [117, 118].



10 SAT-Based Model Checking 295

10.8 Outlook and Conclusions

We have given an overview of a broad range of SAT-based analysis techniques for
both software and hardware, demonstrating the versatility of the approach.

The extension of techniques that rely on propositional SAT to the more general
case of Satisfiability Modulo Theories (SMT) is often straightforward. The tech-
niques described in Chap. 11 are therefore a very natural starting point for further
development of the methods described here.

Early SAT-based methods have been restricted to bounded search, and are there-
fore typically applied for refutation, i.e., the generation of counterexamples. While
bounded verification has been accepted as a useful paradigm in practical verification
problems, research in recent years has extended this approach in a variety of ways
to enable automated and scalable proofs for non-trivial systems.

Exciting avenues for future research include the generalization of the DPLL algo-
rithm to rich natural domains [61] and the integration of abstraction-based methods
implementing the abstract interpretation framework into SAT solvers over natural
domains [66–68].

References

1. Abdulla, P.A., Bjesse, P., Eén, N.: Symbolic reachability analysis based on SAT-solvers. In:
Graf, S., Schwartzbach, M.I. (eds.) Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). LNCS, vol. 1785, pp. 411–425. Springer, Heidelberg
(2000)

2. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded model check-
ing of concurrent software. In: Intl. Conf. on Computer-Aided Verification (CAV). LNCS,
vol. 8044, pp. 141–157. Springer, Heidelberg (2013)

3. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in programs. In:
Ferrante, J., Mager, P. (eds.) Symp. on Principles of Programming Languages (POPL), pp. 1–
11. ACM, New York (1988)

4. Amla, N., McMillan, K.L.: A hybrid of counterexample-based and proof-based abstraction.
In: Hu, A.J., Martin, A.K. (eds.) Formal Methods in Computer Aided Design (FMCAD).
LNCS, vol. 3312, pp. 260–274. Springer, Heidelberg (2004)

5. Awedh, M., Somenzi, F.: Proving more properties with bounded model checking. In: Alur,
R., Peled, D. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 3114,
pp. 96–108. Springer, Heidelberg (2004)

6. Awedh, M., Somenzi, F.: Automatic invariant strengthening to prove properties in bounded
model checking. In: Sentovich, E. (ed.) Design Automation Conf. (DAC), pp. 1073–1076.
ACM, New York (2006)

7. Awedh, M., Somenzi, F.: Termination criteria for bounded model checking: extensions and
comparison. Electron. Notes Theor. Comput. Sci. 144(1), 51–66 (2006)

8. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., Ondrusek, B.,
Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers. In: Berbers, Y.,
Zwaenepoel, W. (eds.) European Conf. on Computer Systems (EuroSys), pp. 73–85. ACM,
New York (2006)

9. Ball, T., Bounimova, E., Kumar, R., Levin, V.: SLAM2: Static driver verification with under
4% false alarms. In: Bloem, R., Sharygina, N. (eds.) Formal Methods in Computer Aided
Design (FMCAD), pp. 35–42. IEEE, Piscataway (2010)



296 A. Biere and D. Kröning

10. Ball, T., Cook, B., Lahiri, S.K., Zhang, L.: Zapato: automatic theorem proving for predicate
abstraction refinement. In: Alur, R., Peled, D. (eds.) Intl. Conf. on Computer-Aided Verifica-
tion (CAV). LNCS, vol. 3114, pp. 457–461. Springer, Heidelberg (2004)

11. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian abstraction for model check-
ing C programs. In: Margaria, T., Yi, W. (eds.) Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). LNCS, vol. 2031, pp. 268–283. Springer,
Heidelberg (2001)

12. Ball, T., Rajamani, S.K.: Bebop: a symbolic model checker for boolean programs. In:
Havelund, K., Penix, J., Visser, W. (eds.) Intl. Workshop on SPIN Model Checking and Soft-
ware Verification. LNCS, vol. 1885, pp. 113–130. Springer, Heidelberg (2000)

13. Ball, T., Rajamani, S.K.: Boolean programs: a model and process for software analysis. Tech.
rep., Microsoft Research (2000)

14. Barner, S., Eisner, C., Glazberg, Z., Kroening, D., Rabinovitz, I.: ExpliSAT: guiding SAT-
based software verification with explicit states. In: Yorav, K. (ed.) Intl. Haifa Verification
Conference (HVC). LNCS, vol. 4383, pp. 138–154. Springer, Heidelberg (2007)

15. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185, pp. 825–885. IOS Press, Amsterdam
(2009)

16. Barrett, C.W., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E.M., Henzinger, T.A.,
Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018)

17. Basler, G., Kroening, D., Weissenbacher, G.: SAT-based summarization for Boolean pro-
grams. In: Bosnacki, D., Edelkamp, S. (eds.) Intl. Workshop on Model Checking Software
(SPIN). LNCS, vol. 4595, pp. 131–148 (2007)

18. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction for concur-
rent software. In: Bouajjani, A., Maler, O. (eds.) Intl. Conf. on Computer-Aided Verification
(CAV). LNCS, vol. 5643, pp. 64–78. Springer, Heidelberg (2009)

19. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Context-aware counter abstraction. Form.
Methods Syst. Des. 36(3), 223–245 (2010)

20. Baumgartner, J., Kuehlmann, A.: Enhanced diameter bounding via structural transformation.
In: Design, Automation & Test in Europe Conf. and Exposition (DATE), pp. 36–41. IEEE,
Piscataway (2004)

21. Baumgartner, J., Kuehlmann, A., Abraham, J.A.: Property checking via structural analysis.
In: Brinksma, E., Larsen, K.G. (eds.) Intl. Conf. on Computer-Aided Verification (CAV).
LNCS, vol. 2404, pp. 151–165. Springer, Heidelberg (2002)

22. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Invariant synthesis for com-
bined theories. In: Cook, B., Podelski, A. (eds.) Intl. Conf. on Verification, Model Checking
and Abstract Interpretation (VMCAI). LNCS, vol. 4349, pp. 378–394. Springer, Heidelberg
(2007)

23. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In: Ferrante, J.,
McKinley, K.S. (eds.) Conf. on Programming Language Design and Implementation (PLDI),
pp. 300–309. ACM, New York (2007)

24. Biere, A.: Bounded model checking. In: Biere, A., Heule, M., van Maaren, H., Walsh,
T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications,
vol. 185, pp. 457–481. IOS Press, Amsterdam (2009)

25. Biere, A., Artho, C., Schuppan, V.: Liveness checking as safety checking. In: Cleaveland, R.,
Garavel, H. (eds.) Intl. ERCIM Workshop on Formal Methods for Industrial Critical Systems
(FMICS), pp. 160–177. Elsevier, Amsterdam (2002)

26. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, R. (ed.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

27. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.: Linear encodings of
bounded LTL model checking. Log. Methods Comput. Sci. 2(5), 1–64 (2006)



10 SAT-Based Model Checking 297

28. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

29. Blanc, N., Kroening, D.: Race analysis for SystemC using model checking. In: Intl. Conf. on
Computer-Aided Design (ICCAD), pp. 356–363. IEEE, Piscataway (2008)

30. Blanc, N., Kroening, D.: Race analysis for SystemC using model checking. ACM Trans. Des.
Autom. Electron. Syst. 15(3), 1–32 (2010)

31. Blanc, N., Kroening, D., Sharygina, N.: Scoot: a tool for the analysis of SystemC models. In:
Ramakrishnan, C.R., Rehof, J. (eds.) Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). LNCS, vol. 4963, pp. 467–470. Springer, Heidelberg
(2008)

32. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: applica-
tion to model-checking. In: Mazurkiewicz, A.W., Winkowski, J. (eds.) Intl. Conf. on Con-
currency Theory (CONCUR). LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

33. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D.A.
(eds.) Intl. Conf. on Verification, Model Checking and Abstract Interpretation (VMCAI).
LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

34. Bradley, A.R.: Understanding IC3. In: Cimatti, A., Sebastiani, R. (eds.) Theory and Ap-
plications of Satisfiability Testing (SAT). LNCS, vol. 7317, pp. 1–14. Springer, Heidelberg
(2012)

35. Bradley, A.R., Manna, Z.: Checking safety by inductive generalization of counterexamples
to induction. In: Formal Methods in Computer Aided Design (FMCAD), pp. 173–180. IEEE,
Piscataway (2007)

36. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An interpolating sequent calculus for
quantifier-free Presburger arithmetic. In: Giesl, J., Hähnle, R. (eds.) Intl. Joint Conf. on Au-
tomated Reasoning (IJCAR). LNCS, vol. 6173, pp. 384–399. Springer, Heidelberg (2010)

37. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: Beyond quantifier-free interpolation in ex-
tensions of Presburger arithmetic. In: Jhala, R., Schmidt, D.A. (eds.) Intl. Conf. on Verifica-
tion, Model Checking and Abstract Interpretation (VMCAI). LNCS, vol. 6538, pp. 88–102.
Springer, Heidelberg (2011)

38. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arithmetic. In:
Formal Methods in Computer Aided Design (FMCAD), pp. 69–76. IEEE, Piscataway (2009)

39. Brummayer, R., Biere, A.: Effective bit-width and under-approximation. In: Moreno-Díaz,
R., Pichler, F., Quesada-Arencibia, A. (eds.) Intl. Conf. on Computer Aided Systems Theory
(EUROCAST). LNCS, vol. 5717, pp. 304–311. Springer, Heidelberg (2009)

40. Bryant, R.E.: Graph Based Algorithms for Boolean Function Manipulation. Trans. Comput.
C-35(8), 677–691 (1986)

41. Bryant, R.E., Kroening, D., Ouaknine, J., Seshia, S.A., Strichman, O., Brady, B.: Deciding
bit-vector arithmetic with abstraction. In: Grumberg, O., Huth, M. (eds.) Intl. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS, vol. 4424,
pp. 358–372. Springer, Heidelberg (2007)

42. Büchi, J.R.: Regular canonical systems. Arch. Math. Log. 6(3–4), 91–111 (1964)
43. Cadar, C., Sen, K.: Symbolic execution for software testing: Three decades later. Commun.

ACM 56(2), 82–90 (2013)
44. Case, M.L., Mony, H., Baumgartner, J., Kanzelman, R.: Enhanced verification by temporal

decomposition. In: Formal Methods in Computer Aided Design (FMCAD), pp. 17–24. IEEE,
Piscataway (2009)

45. Chambers, B., Manolios, P., Vroon, D.: Faster SAT solving with better CNF generation. In:
Design, Automation & Test in Europe (DATE), pp. 1590–1595. IEEE, Piscataway (2009)

46. Chauhan, P., Clarke, E.M., Kroening, D.: A SAT-based algorithm for reparameterization in
symbolic simulation. In: Malik, S., Fix, L., Kahng, A.B. (eds.) Design Automation Conf.
(DAC), pp. 524–529. ACM, New York (2004)

47. Chockler, H., Kroening, D., Purandare, M.: Computing mutation coverage in interpolation-
based model checking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 31(5), 765–
778 (2012)



298 A. Biere and D. Kröning

48. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P., Seshia, S.A.
(eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 7358, pp. 277–293.
Springer, Heidelberg (2012)

49. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In: Cabodi, G.,
Singh, S. (eds.) Formal Methods in Computer Aided Design (FMCAD), pp. 52–59. IEEE,
Piscataway (2012)

50. Clarke, E., Jain, H., Kroening, D.: Verification of SpecC using predicate abstraction. Form.
Methods Syst. Des. 30(1), 5–28 (2007)

51. Clarke, E., Kroening, D.: Hardware verification using ANSI-C programs as a reference. In:
Yasuura, H. (ed.) Asia and South Pacific Design Automation Conf. (ASPDAC), pp. 308–311.
IEEE, Piscataway (2003)

52. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K.,
Podelski, A. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004)

53. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI-C pro-
grams using SAT. Form. Methods Syst. Des. 25(2–3), 105–127 (2004)

54. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate abstrac-
tion for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). LNCS, vol. 3440, pp. 570–574.
Springer, Heidelberg (2005)

55. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

56. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. Trans. Program.
Lang. Syst. 16(5), 1512–1542 (1994)

57. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)
58. Clarke, E.M., Kroening, D., Ouaknine, J., Strichman, O.: Computational challenges in

bounded model checking. Softw. Tools Technol. Transf. 7(2), 174–183 (2005)
59. Cook, B., Kroening, D., Sharygina, N.: Cogent: accurate theorem proving for program veri-

fication. In: Etessami, K., Rajamani, S.K. (eds.) Intl. Conf. on Computer-Aided Verification
(CAV). LNCS, vol. 3576, pp. 296–300. Springer, Heidelberg (2005)

60. Cordeiro, L., Fischer, B.: Verifying multi-threaded software using SMT-based context-
bounded model checking. In: Taylor, R.N., Gall, H., Medvidovic, N. (eds.) Intl. Conf. on
Software Engineering (ICSE), pp. 331–340. ACM, New York (2011)

61. Cotton, S.: Natural domain SMT: a preliminary assessment. In: Chatterjee, K., Henzinger,
T.A. (eds.) Intl. Conf. on Formal Modeling and Analysis of Timed Systems (FORMATS).
LNCS, vol. 6246, pp. 77–91. Springer, Heidelberg (2010)

62. Currie, D.W., Hu, A.J., Rajan, S.P.: Automatic formal verification of DSP software. In:
Micheli, G.D. (ed.) Design Automation Conf. (DAC), pp. 130–135. ACM, New York (2000)

63. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. Tech.
rep., HP Labs (2003)

64. Donaldson, A., Haller, L., Kroening, D.: Strengthening induction-based race checking with
lightweight static analysis. In: Jhala, R., Schmidt, D.A. (eds.) Intl. Conf. on Verification,
Model Checking and Abstract Interpretation (VMCAI). LNCS, vol. 6538, pp. 169–183.
Springer, Heidelberg (2011)

65. Donaldson, A., Kroening, D., Rümmer, P.: Automatic analysis of scratch-pad memory code
for heterogeneous multicore processors. In: Esparza, J., Majumdar, R. (eds.) Intl. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). LNCS,
vol. 6015, pp. 280–295. Springer, Heidelberg (2010)

66. D’Silva, V., Haller, L., Kroening, D.: Satisfiability solvers are static analysers. In: Miné, A.,
Schmidt, D. (eds.) Intl. Symp. on Static Analysis (SAS). LNCS, vol. 7460, pp. 317–333.
Springer, Heidelberg (2012)

67. D’Silva, V., Haller, L., Kroening, D.: Abstract conflict driven learning. In: Giacobazzi, R.,
Cousot, R. (eds.) Symp. on Principles of Programming Languages (POPL), pp. 143–154.
ACM, New York (2013)



10 SAT-Based Model Checking 299

68. D’Silva, V., Haller, L., Kroening, D., Tautschnig, M.: Numeric bounds analysis with conflict-
driven learning. In: Flanagan, C., König, B. (eds.) Intl. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). LNCS, vol. 7214, pp. 48–63. Springer,
Berlin (2012)

69. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques for formal
software verification. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(7), 1165–
1178 (2008)

70. Dubrovin, J., Junttila, T.A., Heljanko, K.: Exploiting step semantics for efficient bounded
model checking of asynchronous systems. Sci. Comput. Program. 77(10–11), 1095–1121
(2012)

71. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property directed reach-
ability. In: Bjesse, P., Slobodová, A. (eds.) Formal Methods in Computer Aided Design (FM-
CAD), pp. 125–134. FMCAD, Austin (2011)

72. Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up SAT. In:
Marques-Silva, J., Sakallah, K.A. (eds.) Theory and Applications of Satisfiability Testing
(SAT). LNCS, vol. 4501, pp. 272–286. Springer, Heidelberg (2007)

73. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 2919, pp. 502–518.
Springer, Heidelberg (2003)

74. Eén, N., Sterin, B., Claessen, K.: A circuit approach to LTL model checking. In: Jobstmann,
B., Ray, S. (eds.) Formal Methods in Computer Aided Design (FMCAD), pp. 53–60. IEEE,
Piscataway (2013)

75. van Eijk, C.A.J.: Sequential equivalence checking based on structural similarities. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 19(7), 814–819 (2000)

76. Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg (2006)
77. Eisner, C., Fisman, D.: Functional specification of hardware via temporal logic. In: Clarke,

E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer,
Heidelberg (2018)

78. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: Ball, T., Sagiv, M.
(eds.) Symp. on Principles of Programming Languages (POPL), pp. 411–422. ACM, New
York (2011)

79. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking pushdown
systems. Electron. Notes Theor. Comput. Sci. 9, 27–37 (1997)

80. Gan, X., Dubrovin, J., Heljanko, K.: A symbolic model checking approach to verifying satel-
lite onboard software. Sci. Comput. Program. 82, 44–55 (2014)

81. Ganai, M.K., Gupta, A.: SAT-Based Scalable Formal Verification Solutions. Springer, Hei-
delberg (2007)

82. Ghafari, N., Hu, A.J., Rakamaric, Z.: Context-bounded translations for concurrent software:
an empirical evaluation. In: van de Pol, J., Weber, M. (eds.) Intl. Workshop on Model Check-
ing Software (SPIN). LNCS, vol. 6349, pp. 227–244. Springer, Heidelberg (2010)

83. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified boolean formulas. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers
in Artificial Intelligence and Applications, vol. 185, pp. 761–780. IOS Press, Amsterdam
(2009)

84. Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.)
Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 1254, pp. 72–83. Springer,
Heidelberg (1997)

85. Groce, A., Kroening, D.: Making the most of BMC counterexamples. Electron. Notes Theor.
Comput. Sci. 119, 67–81 (2005)



300 A. Biere and D. Kröning

86. Groce, A., Kroening, D., Clarke, E.: Counterexample guided abstraction refinement via pro-
gram execution. In: Davies, J., Schulte, W., Barnett, M. (eds.) Intl. Conf. on Formal Engi-
neering Methods (ICFEM). LNCS, vol. 3308, pp. 224–238. Springer, Heidelberg (2004)

87. Groce, A., Kroening, D., Lerda, F.: Understanding counterexamples with explain. In: Alur,
R., Peled, D.A. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 3114,
pp. 453–456. Springer, Heidelberg (2004)

88. Gupta, A., Kahlon, V., Qadeer, S., Touili, T.: Model checking concurrent programs. In:
Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking.
Springer, Heidelberg (2018)

89. Hassan, Z., Bradley, A.R., Somenzi, F.: Incremental, inductive CTL model checking. In:
Madhusudan, P., Seshia, S.A. (eds.) Intl. Conf. on Computer-Aided Verification (CAV).
LNCS, vol. 7358, pp. 532–547. Springer, Heidelberg (2012)

90. Heljanko, K., Junttila, T.A., Keinänen, M., Lange, M., Latvala, T.: Bounded model checking
for weak alternating Büchi automata. In: Ball, T., Jones, R.B. (eds.) Intl. Conf. on Computer-
Aided Verification (CAV). LNCS, vol. 4144, pp. 95–108. Springer, Heidelberg (2006)

91. Heljanko, K., Junttila, T.A., Latvala, T.: Incremental and complete bounded model check-
ing for full PLTL. In: Etessami, K., Rajamani, S.K. (eds.) Intl. Conf. on Computer-Aided
Verification (CAV). LNCS, vol. 3576, pp. 98–111. Springer, Heidelberg (2005)

92. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In:
Jones, N.D., Leroy, X. (eds.) Symp. on Principles of Programming Languages (POPL),
pp. 232–244. ACM, New York (2004)

93. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A., Sebas-
tiani, R. (eds.) Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 7317,
pp. 157–171. Springer, Heidelberg (2012)

94. Ivancic, F., Shlyakhter, I., Gupta, A., Ganai, M.K.: Model checking C programs using F-
SOFT. In: Intl. Conf. on Computer Design (ICCD), pp. 297–308. IEEE, Piscataway (2005)

95. Jain, H., Clarke, E.M.: Efficient SAT solving for non-clausal formulas using DPLL, graphs,
and watched cuts. In: Design Automation Conf. (DAC), pp. 563–568. ACM, New York
(2009)

96. Jain, H., Ivancic, F., Gupta, A., Shlyakhter, I., Wang, C.: Using statically computed invari-
ants inside the predicate abstraction and refinement loop. In: Ball, T., Jones, R.B. (eds.) Intl.
Conf. on Computer-Aided Verification (CAV). LNCS, vol. 4144, pp. 137–151. Springer, Hei-
delberg (2006)

97. Järvisalo, M., Biere, A., Heule, M.: Simulating circuit-level simplifications on CNF. J. Au-
tom. Reason. 49(4), 583–619 (2012)

98. Jhala, R., Majumdar, R.: Path slicing. In: Sarkar, V., Hall, M.W. (eds.) Conf. on Programming
Language Design and Implementation (PLDI), pp. 38–47. ACM, New York (2005)

99. Jhala, R., Podelski, A., Rybalchenko, A.: Predicate abstraction for program verification. In:
Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking.
Springer, Heidelberg (2018)

100. Jussila, T., Heljanko, K., Niemelä, I.: BMC via on-the-fly determinization. Electron. Notes
Theor. Comput. Sci. 89(4), 561–577 (2003)

101. Kahlon, V., Wang, C., Gupta, A.: Monotonic partial order reduction: an optimal symbolic
partial order reduction technique. In: Bouajjani, A., Maler, O. (eds.) Intl. Conf. on Computer-
Aided Verification (CAV). LNCS, vol. 5643, pp. 398–413. Springer, Heidelberg (2009)

102. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized concurrent
programs. In: Touili, T., Cook, B., Jackson, P. (eds.) Intl. Conf. on Computer-Aided Verifica-
tion (CAV). LNCS, vol. 6174, pp. 654–659. Springer, Heidelberg (2010)

103. Kautz, H.A., Selman, B.: Pushing the envelope: planning, propositional logic and stochastic
search. In: Clancey, W.J., Weld, D.S. (eds.) National Conf. on Artificial Intelligence (AAAI),
pp. 1194–1201. AAAI Press/MIT Press, Portland/Cambridge (1996)

104. Khasidashvili, Z., Nadel, A.: Implicative simultaneous satisfiability and applications. In:
Eder, K., Lourenço, J., Shehory, O. (eds.) Intl. Haifa Verification Conference (HVC). LNCS,
vol. 7261, pp. 66–79. Springer, Heidelberg (2011)



10 SAT-Based Model Checking 301

105. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
106. Kleine Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Biere, A., Heule,

M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intel-
ligence and Applications, vol. 185, pp. 735–760. IOS Press, Amsterdam (2009)

107. Kovásznai, G., Fröhlich, A., Biere, A.: On the complexity of fixed-size bit-vector logics with
binary encoded bit-width. In: Fontaine, P., Goel, A. (eds.) Intl. Workshop on Satisfiability
Modulo Theories (SMT), pp. 44–55 (2012). EasyChair

108. Kroening, D.: Application specific higher order logic theorem proving. In: Autexier, S., Man-
tel, H. (eds.) Proc. of the Verification Workshop (VERIFY), pp. 5–15 (2002)

109. Kroening, D.: Computing over-approximations with bounded model checking. Electron.
Notes Theor. Comput. Sci. 144(1), 79–92 (2006)

110. Kroening, D.: Software verification. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.)
Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185,
pp. 505–532. IOS Press, Amsterdam (2009)

111. Kroening, D., Clarke, E.: Checking consistency of C and Verilog using predicate abstraction
and induction. In: Intl. Conf. on Computer-Aided Design (ICCAD), pp. 66–72. IEEE/ACM,
Piscataway/New York (2004)

112. Kroening, D., Clarke, E., Yorav, K.: Behavioral consistency of C and Verilog programs using
bounded model checking. In: Design Automation Conf. (DAC), pp. 368–371. ACM, New
York (2003)

113. Kroening, D., Leroux, J., Rümmer, P.: Interpolating quantifier-free Presburger arithmetic.
In: Fermüller, C.G., Voronkov, A. (eds.) Intl. Conf. on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR). LNCS, vol. 6397, pp. 489–503. Springer, Heidelberg
(2010)

114. Kroening, D., Ouaknine, J., Seshia, S., Strichman, O.: Abstraction-based satisfiability solving
of Presburger arithmetic. In: Alur, R., Peled, D.A. (eds.) Intl. Conf. on Computer-Aided
Verification (CAV). LNCS, vol. 3114, pp. 308–320. Springer, Heidelberg (2004)

115. Kroening, D., Ouaknine, J., Strichman, O., Wahl, T., Worrell, J.: Linear completeness thresh-
olds for bounded model checking. In: Gopalakrishnan, G., Qadeer, S. (eds.) Intl. Conf. on
Computer-Aided Verification (CAV). LNCS, vol. 6806, pp. 557–572. Springer, Heidelberg
(2011)

116. Kroening, D., Sharygina, N.: Approximating predicate images for bit-vector logic. In: Her-
manns, H., Palsberg, J. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). LNCS, vol. 3920, pp. 242–256. Springer, Heidelberg (2006)

117. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.: Loopfrog: a static
analyzer for ANSI-C programs. In: Intl. Conf. on Automated Software Engineering (ASE),
pp. 668–670. IEEE, Piscataway (2009)

118. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.: Loop summa-
rization using abstract transformers. In: Cha, S.D., Choi, J., Kim, M., Lee, I., Viswanathan,
M. (eds.) Intl. Symp. on Automated Technology for Verification and Analysis (ATVA).
LNCS, vol. 5311, pp. 111–125. Springer, Heidelberg (2008)

119. Kroening, D., Strichman, O.: Efficient computation of recurrence diameters. In: Zuck, L.D.,
Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) Intl. Conf. on Verification, Model Checking
and Abstract Interpretation (VMCAI). LNCS, vol. 2575, pp. 298–309. Springer, Heidelberg
(2003)

120. Kroening, D., Strichman, O.: Decision Procedures. Springer, Heidelberg (2008)
121. Kroening, D., Weissenbacher, G.: Counterexamples with loops for predicate abstraction.

In: Ball, T., Jones, R.B. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS,
vol. 4144, pp. 152–165. Springer, Heidelberg (2006)

122. Kuehlmann, A.: Dynamic transition relation simplification for bounded property check-
ing. In: Intl. Conf. on Computer-Aided Design (ICCAD), pp. 50–57. IEEE/ACM, Piscat-
away/New York (2004)



302 A. Biere and D. Kröning

123. Kuehlmann, A., Paruthi, V., Krohm, F., Ganai, M.K.: Robust boolean reasoning for equiva-
lence checking and functional property verification. IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst. 21(12), 1377–1394 (2002)

124. Kuismin, T., Heljanko, K.: Increasing confidence in liveness model checking results with
proofs. In: Bertacco, V., Legay, A. (eds.) Intl. Haifa Verification Conference (HVC). LNCS,
vol. 8244, pp. 32–43. Springer, Heidelberg (2013)

125. Kurshan, R.P.: Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. Princeton University Press, Princeton (1994)

126. Lahiri, S.K., Qadeer, S., Rakamaric, Z.: Static and precise detection of concurrency errors in
systems code using SMT solvers. In: Bouajjani, A., Maler, O. (eds.) Intl. Conf. on Computer-
Aided Verification (CAV). LNCS, vol. 5643, pp. 509–524. Springer, Heidelberg (2009)

127. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to sequential anal-
ysis. Form. Methods Syst. Des. 35(1), 73–97 (2009)

128. Latvala, T., Biere, A., Heljanko, K., Junttila, T.A.: Simple bounded LTL model checking. In:
Hu, A.J., Martin, A.K. (eds.) Formal Methods in Computer Aided Design (FMCAD). LNCS,
vol. 3312, pp. 186–200. Springer, Heidelberg (2004)

129. Li, B., Somenzi, F.: Efficient abstraction refinement in interpolation-based unbounded model
checking. In: Hermanns, H., Palsberg, J. (eds.) Intl. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). LNCS, vol. 3920, pp. 227–241. Springer,
Heidelberg (2006)

130. Li, B., Wang, C., Somenzi, F.: Abstraction refinement in symbolic model checking using
satisfiability as the only decision procedure. Softw. Tools Technol. Transf. 7(2), 143–155
(2005)

131. McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In:
Brinksma, E., Larsen, K.G. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS,
vol. 2404, pp. 250–264. Springer, Heidelberg (2002)

132. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A. Jr., Somenzi,
F. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2725, pp. 1–13.
Springer, Heidelberg (2003)

133. McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A. (eds.) Intl.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)

134. McMillan, K.L.: Interpolation and model checking. In: Clarke, E.M., Henzinger, T.A., Veith,
H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg (2018)

135. McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H.,
Hatcliff, J. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS, vol. 2619, pp. 2–
17. Springer, Heidelberg (2003)

136. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: Design Automation Conf. (DAC), pp. 530–535. ACM, New York
(2001)

137. de Moura, L.M., Bjørner, N.: Generalized, efficient array decision procedures. In: Formal
Methods in Computer Aided Design (FMCAD), pp. 45–52. IEEE, Piscataway (2009)

138. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: From an
abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53(6), 937–
977 (2006)

139. Penczek, W., Wozna, B., Zbrzezny, A.: Bounded model checking for the universal fragment
of CTL. Fundam. Inform. 51(1–2), 135–156 (2002)

140. Piterman, N., Pnueli, A.: Temporal logic and fair discrete systems. In: Clarke, E.M., Hen-
zinger, T.A., Veith, H., Bloem, R. (eds.) Handbook of Model Checking. Springer, Heidelberg
(2018)

141. Prasad, M., Biere, A., Gupta, A.: A survey on recent advances in SAT-based formal verifica-
tion. Softw. Tools Technol. Transf. 7(2), 156–173 (2005)



10 SAT-Based Model Checking 303

142. Prestwich, S.D.: CNF encodings. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.)
Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185,
pp. 75–97. IOS Press, Amsterdam (2009)

143. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halb-
wachs, N., Zuck, L.D. (eds.) Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). LNCS, vol. 3440, pp. 93–107. Springer, Heidelberg (2005)

144. Rabinovitz, I., Grumberg, O.: Bounded model checking of concurrent programs. In: Etes-
sami, K., Rajamani, S.K. (eds.) Intl. Conf. on Computer-Aided Verification (CAV). LNCS,
vol. 3576, pp. 82–97. Springer, Heidelberg (2005)

145. Rintanen, J.: Planning as satisfiability: heuristics. Artif. Intell. 193, 45–86 (2012)
146. Schuppan, V., Biere, A.: Efficient reduction of finite state model checking to reachability

analysis. Softw. Tools Technol. Transf. 5(1–2), 185–204 (2004)
147. Sebastiani, R.: Lazy satisfiability modulo theories. J. Satisf. Boolean Model. Comput. 3(3–4),

141–224 (2007)
148. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a SAT-

solver. In: Hunt, W.A. Jr., Johnson, S.D. (eds.) Formal Methods in Computer Aided Design
(FMCAD). LNCS, vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

149. Sinha, N., Wang, C.: Staged concurrent program analysis. In: Roman, G.C., Sullivan, K.J.
(eds.) Intl. Symp. on Foundations of Software Engineering (FSE), pp. 47–56. ACM, New
York (2010)

150. Sinha, N., Wang, C.: On interference abstractions. In: Ball, T., Sagiv, M. (eds.) Symp. on
Principles of Programming Languages (POPL), pp. 423–434. ACM, New York (2011)

151. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Studies in Con-
structive Mathematics and Mathematical Logic, Part II. Seminars in Mathematics, vol. 8,
pp. 234–259 (1968). V.A. Steklov Mathematical Institute. English Translation, Consultants
Bureau, pp. 115–125 (1970)

152. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput. 115(1), 1–37
(1994)

153. Velev, M.N.: Efficient translation of boolean formulas to CNF in formal verification of micro-
processors. In: Imai, M. (ed.) Asia and South Pacific Design Automation Conf. (ASPDAC),
pp. 310–315. IEEE, Piscataway (2004)

154. Vijayaraghavan, S., Ramanathan, M.: A Practical Guide for SystemVerilog Assertions.
Springer, Heidelberg (2005)

155. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their applica-
tions in model checking. Proc. IEEE 103(11), 2021–2035 (2015). doi:10.1109/JPROC.
2015.2455034

156. Weissenbacher, G., Kroening, D.: An interpolating decision procedure for transitive relations
with uninterpreted functions. In: Namjoshi, K.S., Zeller, A., Ziv, A. (eds.) Intl. Haifa Verifi-
cation Conference (HVC). LNCS, vol. 6405, pp. 150–168. Springer, Heidelberg (2009)

157. Witkowski, T., Blanc, N., Weissenbacher, G., Kroening, D.: Model checking concurrent
Linux device drivers. In: Stirewalt, R.E.K., Egyed, A., Fischer, B. (eds.) Intl. Conf. on Auto-
mated Software Engineering (ASE), pp. 501–504. ACM, New York (2007)

http://dx.doi.org/10.1109/JPROC.2015.2455034
http://dx.doi.org/10.1109/JPROC.2015.2455034

	Chapter 10: SAT-Based Model Checking
	10.1 Introduction
	10.2 Bounded Model Checking on Kripke Structures
	10.2.1 Kripke Structures
	10.2.2 Safety Properties
	10.2.3 Liveness Properties
	10.2.3.1 Liveness to Safety Translation
	10.2.3.2 k-Liveness


	10.3 Bounded Model Checking for Hardware Designs
	10.3.1 Hardware Description Languages (HDLs)
	10.3.2 BMC on Net-Lists

	10.4 Bounded Model Checking for Software
	10.4.1 Monolithic Encodings
	10.4.2 Path-Based Encodings
	10.4.3 Completeness for Bounded Programs
	10.4.4 BMC for Multi-threaded Programs
	10.4.5 Bounded Model Checking for HW/SW Co-veriﬁcation

	10.5 Encodings into Propositional SAT
	10.5.1 Encoding Bit Vectors
	10.5.2 Encoding Memory
	10.5.3 Encodings with Under- and Over-approximation

	10.6 Complete Model Checking with SAT
	10.6.1 Completeness Thresholds
	10.6.2 Image Computation with SAT
	10.6.3 Basic Inductive Techniques
	10.6.3.1 Strengthening the Inductive Argument
	10.6.3.2 Equivalence Reasoning
	10.6.3.3 Temporal Decomposition
	10.6.3.4 k-Induction

	10.6.4 Craig Interpolation
	10.6.5 Iterative Inductive Strengthening

	10.7 Abstraction Techniques Using SAT
	10.7.1 Overview of Predicate Abstraction
	10.7.2 Computing Abstractions with SAT
	10.7.3 Simulation with SAT
	10.7.4 Abstraction-Based Tools

	10.8 Outlook and Conclusions
	References


