
Chapter 9
Hardware Design of Parallel Interleaver
Architectures: A Survey

Cyrille Chavet, Awais Hussain Sani, and Philippe Coussy

9.1 Motivation

Early developers of digital communication systems assumed that information could
be transmitted through noisy channel with high reliability by increasing the signal to
noise ratio. This could only be achieved at that time by increasing transmitted signal
power enough to ensure that signal can reliably be transmitted. The revolutionary
work of Shannon [1] changed this view by proving that it is possible to send digital
data to receiver through noisy channel with high reliability by first encoding digital
message with error correction code at transmitter and then subsequently decode it
at receiver to generate original message.

The function of the encoder is to map X digits message into C digits codeword
where C >X. The code rate r =X/C defines the redundancy introduced by corre-
sponding error correction code. Encoded message passes through channel which
corrupts the message by adding some noise into it. At receiver, error correction
decoder uses this added redundancy to determine the original message despite the
noise introduced by channel. Typical communication chain is shown in Fig. 9.1.

Different error correction codes are introduced in literature. They can be
classified into two broad categories: block codes and convolutional codes. In block
codes, original information sequence is divided into different message blocks and
each message is independently encoded to generate codeword bits whereas in
convolutional codes, encoder takes information sequence as a continuous stream
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Fig. 9.1 Communication system

and generates a continuous stream of codeword bits. Therefore in block codes,
encoder must wait for the entire message block before it starts encoding whereas
convolutional encoder can start encoding and transmitting codeword before it
obtains the entire message.

Many types of block codes are used in different applications but among the
classical ones, Reed–Solomon [2] is the most popular due its widespread use in
CD, DVD, and hard disk drives. Other examples of classical block codes are Golay
codes [3] and Hamming codes [4]. Low density parity check codes (LDPC) is a class
of linear block codes with error correction capabilities very close to the channel
capacity. Due to their excellent error correction performance, it has already been
included in several wireless communication standards such as DVB-S2 and DVB-
T2 [5], WiFi-IEEE 802.11n [6], or WiMAX-IEEE 802.16e [7].

Convolutional codes, such as Turbo codes [8], perform like a finite state
machine which converts continuous stream of X message bits into continuous
stream of C coded bits (where X >C). Due to their simple structure and efficiently
implementable iterative decoding algorithm, convolutional codes are increasingly
used in different telecommunication standards. Thanks to their excellent error
correction capabilities, Turbo codes are part of current telecommunication standards
such as [9, 10] and digital broadcasting [11]. These Turbo codes are constructed
through the parallel concatenation of two convolutional codes to achieve good
error correction performance. Their outstanding performances are also possible
due to the presence of pseudo-random interleaver that scrambles data to break up
neighborhood relations.

Meanwhile, the large acceptance of smart-phones, laptop, digital television, and
mobile broadband devices leads to the era of high data rate wireless applications.
The rapid and huge increase in data traffic strains network capacity and researchers
are developing new techniques to cope with this high throughput requirement. As a
result of this effort, advanced technologies such as OFDM, MIMO, and advanced
error correction techniques are included in different standards to reliably transfer
data at high rates on wireless networks.

However, the excellent performance of error correction codes comes at the
expense of computational complexity. Hence, parallel architectures must be
employed to speed up the decoding process and support required application
throughputs. Moreover, several parameters such as scheduling, parallelism level,
memory organization, and network architecture need to be explored to trade
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off circuit area and performances. This requires the development of dedicated
approaches to efficiently implement decoder architecture. In such implementation
(cf. Fig. 9.2), several processing elements (PEs) are used to obtain the required
throughput. Memory is used to store different messages generated during the
decoding process. These messages are written into and read out of the memory
according to particular permutation defined by a permutation law. This architecture,
however, suffers from memory access collision problem when more than two
processing elements want to access the same memory bank. Collision problem
becomes a significant issue with the increase of code word length and is discussed in
the next section. Moreover, with the growing demand of high data rate applications
and shrinking time to market constraint, this problem proves to be one of the most
problematic factors in designing efficient decoder architectures.

To manage this problem, conflicts can be resolved either during definition of
interleaving law or at run time or at design time. Designing conflict free interleaving
law often simplifies the construction of parallel decoder architectures. However, it
traditionally only supports particular parallelism used in decoding algorithms (e.g.,
LTE only supports SISO decoder level parallelism for a subset of block lengths).
Managing conflict problems at runtime (e.g. serializing/postponing conflicting
accesses through buffers) results in additional hardware cost and delay, and may
be less interesting for high data rate and low power applications. In order to
resolveconflict problem for any type of parallelism and interleaving law, design time
conflict resolution is another solution. Here, conflict-free memory mappings are
found off-chip either manually or automatically. In manual approach, the designer
finds the conflict-free memory mapping after analyzing the interleaving law and
then designs a controller using FSM controllers. However, in automatic approach
different dedicated algorithms are developed and run on computer to generate ROM-
based controllers. In order to support multiple block lengths and standards on a
single chip, automated approaches require to pre-calculate memory mapping for
each block length and to store them on-chip which results in large memory footprint.
More recently, a new kind of approach has been proposed based on a hybrid strategy
that aims to benefit both from runtime and design time approaches through on-chip
memory mapping. The idea is to generate on-chip conflict free memory mappings,
during the execution of the application.
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9.2 Problem Formulation

First, we present a problem formulation based on an example based on access order
of turbo decoder. However, it has been already been shown in [12–15] . . . that the
problem is the same for LDPC codes.

In parallel decoder architectures, several processing elements PEs are con-
currently used to decode the received information. In order to increase memory
bandwidth, several memory banks Bs are connected with these PEs through a
dedicated interconnection network (see Fig. 9.2). This network exchanges data
between PEs and Bs according to predefined access orders. These orders are
parameterized by block lengths and PEs parallelism.

Typical parallel decoder architecture is shown in Fig. 9.2. In our example, natural
and interleaved orders are defined as follow:

Natural order = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
Interleaved order = {0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11}

For parallel processing, this codeword is divided into four windows in both
natural and interleaved order and arranged in data access matrices of Fig. 9.3. In
this figure, each row (or window) is processed by one processing element whereas
data in each column (or time instance) need to be accessed concurrently.

To increase memory bandwidth, three memory banks are used so that processing
elements can concurrently get data elements in parallel. Data elements must be
stored in banks in such a manner that at each time instance in natural order, all the
processing elements always access different memory banks as shown in Fig. 9.4a.
However by using this memory mapping, all processing elements always access the
same memory bank at each time instant in interleaved order as shown in Fig. 9.4b.
This results in memory conflict problem [16] and increases latency and thus reduces
system throughput and increases system cost.

To solve this memory conflict problem, several approaches can be proposed in
order to manage concurrent parallel access to all the data elements in both read
and write accesses with or without any conflict and/or with or without dedicated
additional hardware mechanism.

Natural order Matrix

PE1 0 1 2 3

PE2 4 5 6 7

PE3 8 9 10 11

t1 t2 t3 t4

Interleaved order Matrix

PE1 0 3 6 9

PE2 1 4 7 10

PE3 2 5 8 11

t5 t6 t7 t8

PARALLELISM

Fig. 9.3 Data access matrices
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Fig. 9.4 Memory conflict problem in parallel turbo decoder. (a) Conflict-free natural order access.
(b) Conflict-full interleaved order access

9.3 An Overview of Memory Access Conflict Solving
Approaches

In recent standards, different conflict free interleaving laws have been defined.
For example, 3GPP-LTE uses quadratic permutation polynomial (QPP) interleaver
[17] whereas WiMAX [7] uses ARP [18] interleaver to permute the data. These
interleavers often simplify the parallel decoder architecture. However, they are
conflict-free only for particular types (e.g., [19] or [20]) or degrees of parallelism
used in turbo decoding or for a subset of block lengths. Hence, several solutions are
proposed in literature to solve such conflicts at runtime or at design time. At runtime,
architectures use routing and/or buffering techniques in the interconnection network
to serialize conflicting accesses. Design time approaches are able to generate in-
place memory mapping (i.e., a given data is stored in one and only one memory
bank, and one memory address) in order to reduce the cost of the controller. Some
other approaches try to strongly optimize the controllers by moving a data from one
memory place to another between each access to this data.

9.3.1 Conflict Solving During the Definition
of the Interleaving Law

A first class of approach consists in defining conflict free interleaving law. An
example of such solution is proposed in [21] based on Turbo-codes. In this approach
spatial and temporal permutations of data are introduced to construct conflict-free
interleaver with random interleaver like properties. Consider a block length of n
data arranged row by row into a matrix M. Interleaver function is the sum of both
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temporal and spatial permutations of the lines and columns of M. The benefit of this
approach is that one can use barrel shifter interconnection network to realize turbo
decoder for this interleaving law in practical applications. However, the approach is
dedicated, i.e., not standard compliant.

More recently, [17] has proposed the QPP interleaver architecture. The authors
show that QPP interleaver is maximum contention-free, i.e., for every window size
W, which is a factor of the interleaver length N, the interleaver is contention free.
QPP interleaver is defined by the following equation:

Π(x) =
(

f1x2 + f2x
)

mod N

where x and Π(x) represent the original and interleaved address respectively, and
integers f1, f2 are different for different block lengths and can be found in the
standard.

This kind of approach has been recently used in standard like LTE. However,
QPP contention-free property is true for SISO decoder level parallelism only. For
higher data rate applications when trellis and recursive units parallelism are also
included in each SISO, QPP interleaver is no more contention-free and requires
additional router and buffer mechanisms to manage problems. Moreover, having no
conflict for QPP interleaver allows to design conflict-free architecture in 3GPP LTE
decoder only: it indeed results in designing a channel interleaver that has to manage
memory conflicts in order to present data to QPP in the required organization.

From LDPC point of view, these codes are completely specified by their parity
matrices. These matrices represent how data (named variable nodes in LDPC)
must be processed by the processing elements (named check nodes in LDPC) in
order to achieve good error correction performances. Hence, proper construction
of such matrices is necessary to obtain excellent error correction capabilities of
LDPC. Different constraints can be added during the construction of parity matrices
either to achieve significant coding gains or to simplify the decoder architecture.
The matrices can also be constructed is such a way that data transfer between
check nodes (CNs) and variable nodes (VNs) is made without any conflict for
partially parallel architecture [22, 23]. The codes obtained during such construction
procedure are called structured codes.

Structured codes remove memory conflict problem because transfer of mes-
sages between (CNs) and (VNs) is carried out through simple rules (like indices
permutation). Also, structured codes simplified the decoder architecture since
interconnection network can be implemented through simple network (like barrel
shifter) by exploiting the regularity introduced during code construction. Due to
simplicity in construction, structured codes are part of current telecommunication
standards; e.g. [6] or [7].

Although it is proved in [22] that performances of structured codes are very close
to random codes, adding constraints to construct structured codes may degrade the
code’s decoding performance. Therefore, special attention should be taken while
selecting constraints to develop structured codes to keep remarkable error correction
capabilities of LDPC. Also, structured codes only support one class of LDPC codes
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Fig. 9.5 Conflict buffering mechanism added to the network architecture

and to handle diverse existing and future classes of LDPC codes (such as no-binary
LDPC codes), a general approach to handle memory mapping problem is required.
Finally, it must be noticed that if the data access order can be defined to be conflict-
free in the decoder part of the architecture; this supposes that this decoder can be fed
with data in a proper order, which can differ from the order of data coming from the
channel. Hence, in this case (like for QPP interleavers) the problem is only moved
from inside the decoder up to its interface, i.e., its environment.

9.3.2 Conflict Solving Through Dedicated Runtime
Approaches

A second class of solution to deal with memory access conflict problem is to simply
store data elements in different memory banks without considering conflicting
accesses and then use additional buffers in the interconnection network to manage
conflicts at runtime [24] see Fig. 9.5.

In [25] the authors propose to add in the interconnection network a dedicated
Double-Buffer based Contention-free (DBCF) to design a HSPA+ decoder. This
architecture is configured, thanks to the statistical property of the memory conflict
based on simulation results analysis. As soon as DBCFs detect conflicts, the
conflicting accesses are routed into a dedicated circular buffer (see Fig. 9.6).

Another example of conflict-solving oriented architecture can be found in [26]. In
this approach, the interconnection network is based on a Network-on-Chip that can
be configured on-the-fly to emulate any “classical” interconnection network such
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Fig. 9.6 Architecture based on DBCF

like Butterfly, Benes, De Bruijn, cross-bar . . . Then, if a memory conflict access
is detected by the routers, then only one access will be performed to the memory
banks, and the other conflicting ones will be re-routed into the network. Then, these
conflicting “packets” could re-try to access the memory banks later on (see Fig. 9.7).

Runtime approaches generally increase the cost and latency of the system due to
presence of interconnection network and buffer management mechanism to manage
conflicts. The total latency of the system is also increased since each conflicting
data access must travel buffers before being stored in the memory banks. Hence,
such approaches are also often referred as time relaxation since additional cycles
can be used to solve memory access conflicts.

9.3.3 Conflict Solving Through Dedicated Memory
Mapping Approaches

A third class of solution to deal with memory access conflict problem is to store data
elements (mapping process) in different memory banks so that all the Processing
Elements (PEs) can access the data without any conflict. Dedicated mapping
algorithms are used to perform some pre-processing steps to determine the memory
locations for each data element used.

These algorithms can be categorized as (1) unconstrained, i.e., the targeted
interconnection network supports any permutations (e.g., Benes networks, cross-
bar . . . ), (2) hard-constrained, i.e., the designer wants to use a cheaper (from
architecture point of view, e.g., a barrel-shifter) interconnection network, but at
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the expense of a strong limitation of the set of possible permutations, and (3) soft-
constrained, i.e., the architecture can be modified during the memory mapping step
in order to reduce its final complexity.

9.3.3.1 Unconstrained Memory Mapping Approaches

Several unconstrained mapping approaches are proposed in state of the art to find a
memory mapping that will be natively conflict free; i.e., each processing elements
can access all its data without any conflict at each time instance [13–15, 27] . . .

Simulated annealing approaches like [13] (in-place memory mapping only) or
[14, 15] (in-place memory mapping and multi-read/multi-write memory mapping)
are able to find a conflict-free memory mapping for both Turbo-codes and LDPC.
In order to apply the proposed approach on LDPC, the authors of [13] proposed
to modify memory access schedule by using a static single assignment (SSA) form
which results in oversized memory architecture to store data since each data access
is stored in a dedicated memory address. However, in [14, 15] the authors removed
this limitation by using several memory locations for each data and by sharing this
memory location among multiple data.

In [27] authors take leverages of Bipartite Edge Coloring techniques to solve
the mapping problem for both turbo and LDPC codes in polynomial time. Hence,
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they first transform data access matrices for Turbo Codes and mapping matrices
for LDPC into bipartite graphs. Afterwards, bipartite edge coloring algorithm is
applied on these graphs to solve mapping problem. Since edge coloring algorithm
is always able to color the edges of bipartite graph with minimum colors, therefore
it is always possible to solve memory mapping problems for both turbo and LDPC
codes in polynomial time.

However, these approaches store data “randomly” in memory banks. Parallel
interleaver architectures could thus be significantly optimized in terms of intercon-
nection network and memory controller costs. Indeed no regularity can be easily
extracted from the control words generated by the memory controller, and as a
consequence, no optimization can be efficiently performed. Even if the designer
would prefer to use an optimized network (e.g., Butterfly, Barrel-shifter . . . ), if no
dedicated memory mapping approach is proposed then the resulting interconnection
network must be a full crossbar or a Benes network. Hopefully, some approaches
are able to find conflict free memory mapping that is fully compatible with a user-
defined interconnection network.

9.3.3.2 Hard-Constrained Memory Mapping Approaches

In [14, 15], an approach called Static Address Generation Easing—SAGE—is
presented that considers a target interconnection network to find memory mapping.
In this approach, two empty matrices called SAGE Mapping Matrices are used to
store banks information during algorithm execution. To find architecture-oriented
memory mapping, two constraints are defined to be respected during algorithm
execution. First, each column of the mapping matrices (see Sect. 9.2) should
contain different memory banks and second, if the interleaving law allows, each
column should respect the rules of the steering network component. This approach
guaranties if the target interconnection network is compatible with the interleaving
law, then the final memory mapping will respect it.

In [28], an approach based on transportation problem modeling which finds
conflict-free memory mapping for every type of turbo codes and which optimizes
the resulting interleaving architecture has been proposed. The mapping problem for
turbo codes is transformed as transportation problem by considering all the data
nodes as producers and all the time nodes as consumers. The main interest of this
approach is that the designer is able to obtain conflict-free memory mapping in
polynomial time and this mapping respects the targeted interconnection network, if
it is compatible with the interleaving law.

The main weakness of this kind of approaches is that they are limited to one
targeted interconnection network defined at design time. Moreover, they cannot be
applied to any data permutation approaches since they are limited to Turbo-codes
based systems.
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9.3.3.3 Soft-Constrained Memory Mapping Approaches

The last class of approaches tries to take advantage of both runtime approach
mechanisms and design time approach efficiency. In previous mapping approaches,
the generated memory mappings induce sets of control words in order to control
the memories and the network of the decoder architecture. If no regularity can
be extracted from these control words no optimization can be performed. On the
contrary, if such regularity can be extracted, the addressing sequence, and the
associated controller cost can be greatly reduced.

Such regularity can be obtained by applying the approach described in [12]: in
this solution, additional registers are used to store conflicting data but also some
non-conflicting data if and only if this enables to simplify the memory controller
architecture (see Fig. 9.8). This approach, referred as Memory relaxation (i.e.,
additional memory elements—registers or FIFOs—can be allocated to remove
conflicts or to enable strong optimization of the controllers) is also able to
generate a conflict-free memory mapping with respect to a target interconnection
network (Barrel-Shifter, Butterfly . . . ). However the final architecture suffers from
hardware overhead due to additional registers and their dedicated additional steering
logic. This overhead depends on the compatibility between interleaving law and
permutation characteristics on the targeted interconnection network. For higher
incompatibilities, the approach results in higher hardware overhead and latency.

Since interconnection network also impacts the cost of the architecture [28], then
a smart memory mapping approach could also focuses on optimizing this network
in order to adapt its structure to the interleaving law.
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Ur Rehman et al. [29] presents a mapping approach that considers the cus-
tomization of the interconnection network and reduces the cost of the controller
architecture. This approach, referred as Network relaxation, modifies the original
network by adding additional multiplexers/switches (see Fig. 9.9). The mapping
step aims to fully explore the memory mapping solution space by checking all the
permutations of the selected network. If no memory mapping solution exists for
this network, then the set of permutations will be extended by adding a steering
component which results into a customized network architecture with enriched set
of permutations.

This approach proved to be the most efficient (compared to state of the art) in
terms of hardware cost and latency. However, this approach, like the other ones
from the literature, generates a static architecture that cannot be modified on-
the-fly depending on system requirements (QoS, application switching, changing
application parameters . . . ).

9.3.4 Hybrid Approach: On-chip Memory Mapping Approach

In parallel decoder architectures, design time approaches require storing into ROM
the control words to drive the network and to address data memories for particular
block length or/and interleaving law. So, in order to design flexible decoder
architectures that support multiple block lengths and multiple interleaving laws,
several ROMs are needed (see Fig. 9.10) which results in an important hardware
overhead.

In order to be flexible at a reasonable hardware cost (i.e., reduced memory
footprint), a solution where the mapping algorithm is run on chip has been proposed.
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Fig. 9.10 Parallel decoder architecture supporting multiple block lengths

The approach starts by computing new mapping information on the fly as soon as
a new block length needs to be decoded and updates these new generated control
information in the memory.

Since this approach requires a fast on-chip mapping algorithm, then a novel poly-
nomial time algorithm [29] derived from [30] is used for on-chip implementation.
Low computational cost of this algorithm enables memory mapping approaches to
implement this algorithm on chip using embedded processor, an ASIP or a dedicated
hardware accelerator and to generate network and addressing control bits on-chip.
This approach supports multiple standards and block lengths on single chip with
reduced memory footprint.

The hardware architecture for embedded memory mapping is shown in Fig. 9.11.
Control unit includes a dedicated processing element (General Purpose Processor
GPP, Application Specific Instruction set Processor ASIP or Application Specific
Integrated Circuit ASIC) to execute the mapping algorithm. The multiple networks
and addressing ROMs are replaced by two RAMs, i.e., Network RAM and Address-
ing RAM. Control Unit executes the mapping algorithm and updates RAMs if
required as soon as the decoder requires decoding a new block length or a new
application (e.g., LTE, HSPA+, Wifi).

The execution flow is shown in Fig. 9.12. In the first step, the data access order
is generated based on the particular interleaving law along with other required
input parameters like block length, parallelism, and scheduling. This first step
can be avoided if the designer wants to feed the system with pre-computed data
consumption orders. This data access order is simply a scheduling of data accesses.
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Fig. 9.11 Parallel decoder
architecture to embed
memory mapping algorithms
on chip
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However, the conflict-free memory mapping still need to be generated which is the
goal of the second step of the design flow. Finally, the last step generates the routing
and control information for the interconnection network and the memory banks.

Low computational cost of the mapping algorithm enables to implement this
algorithm on chip using embedded processor, an ASIP or a dedicated hardware
accelerator and to generate network and addressing control bits online. This
approach will enable designers to support multiple standards and block lengths on
single chip with reduced memory footprints.
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The significant reduction in execution time and area obtained using this approach
encourages embedding memory mapping and routing algorithm in future telecom-
munication devices.

Conclusion
In this chapter, we have presented a survey of existing solutions to deal with
memory conflict accesses in parallel hardware decoder architectures of Turbo-
codes and LDPC. The first type of approaches is based on definition “natively
conflict-free” interleaving laws. A second family of approaches proposes to
use dedicated hardware mechanisms to deal with conflicts at runtime, but with
the expense of additional hardware components and latency. The third family
of solutions proposes to find conflict-free memory mappings at design time,
but at the expense of important memory footprint and hardware overhead
when designing flexible decoders. Finally, a new class of approach that runs
mapping algorithm on chip has been presented. In this context, a polynomial
time memory mapping approach and a dedicated routing algorithm are
embedded in the decoder architecture.
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