
Chapter 8
ASIP Design for Multi-Standard
Channel Decoders

Purushotham Murugappa, Amer Baghdadi, and Michel Jezequel

8.1 Flexibility Requirement in Channel Decoder Design

Mobile wireless connectivity is a key feature of a growing number of devices, which
will count soon in tens of billions, from laptops, tablets, cell phones, cameras,
and other portable devices. The variety of applications and traffic types will be
significantly larger than today and will result in more diverse requirements. These
applications are driving the creation of new transmission techniques and design
architectures that push the boundaries to achieve high throughput, low latency, area,
and power efficient implementations.

Channel coding is one of the key techniques that enable reliable high throughput
data transfer through unreliable wireless channels. However, as a large variety of
channel coding options and flavors are specified in existing and emerging digital
communication standards, there is an increasing need for flexible implementations.
In fact, several powerful error correction techniques exist today, each suitable for
specific application parameters (frame size, transmission channel, signal-to-noise
ratio, bandwidth, etc.). Considering the emerging multi-mode and multi-standard
applications, as well as the increasing interest for Software Defined Radio (SDR)
and Cognitive Radio (CR) applications, combination of multiple error correction
techniques becomes mandatory. Table 8.1 shows a representative set of mobile
wireless standards to highlight their differences in data rates and channel encoding
schemes. The most commonly used error correcting codes in these standards
are convolutional codes (CC), turbo codes (SBTC: single-binary turbo codes and
DBTC: double-binary turbo codes), and low-density parity-check (LDPC) codes.

P. Murugappa • A. Baghdadi (�) • M. Jezequel
Institut Mines-Telecom, Telecom Bretagne, CNRS Lab-STICC,
Technopôle Brest-Iroise, 29238 Brest, France
e-mail: Purushotham.Murugappa@telecom-bretagne.eu; Amer.Baghdadi@telecom-bretagne.eu;
Michel.Jezequel@telecom-bretagne.eu

© Springer International Publishing Switzerland 2015
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7__8

151

mailto:Purushotham.Murugappa@telecom-bretagne.eu
mailto:Amer.Baghdadi@telecom-bretagne.eu
mailto:Michel.Jezequel@telecom-bretagne.eu

152 P. Murugappa et al.

Table 8.1 Representative set of mobile wireless standards and related channel
codes and parameters

Frame size Throughput

Standard Codes Rates States (bits) (Mbps)

UMTS CC 1/4..1/2 256 .. 504 <1

SBTC 1/3 8 .. 5,114 .. 2

HSDPA SBTC 1/2–3/4 8 .. 5,114 .. 14.4

CDMA2000 CC 1/6 .. 1/2 256 .. 744 <1

SBTC 1/5–1/2 8 .. 20,730 .. 2

IEEE-802.11n (WiFi) CC 1/2..3/4 64 .. 4,095 .. 450

LDPC 1/2–5/6 - .. 1,620 .. 450

IEEE802.16e (WiMAX) CC 1/2–5/6 64 .. 864 .. 75

DBTC 1/2–3/4 8 .. 4,800 .. 75

LDPC 1/2–5/6 - .. 1,920 .. 75

DVB-S2 LDPC 1/4–9/10 - .. 64,800 .. 90

DVB-RCS DBTC 1/3–6/7 8 .. 1,728 .. 2

3GPP-LTE SBTC 0.33–0.95 8 .. 6,144 .. 150

In this context, and at the receiver side, it is well known that channel decoding
is one of the most computation, communication, and memory intensive, and
thus, power-consuming component. Channel decoder design has been extensively
investigated during the last few years and several implementations have been
proposed. Some of these implementations succeeded in achieving high throughput
for specific standards through the adoption of highly dedicated architectures that
work as hardware accelerators. However, these implementations do not take into
account flexibility and scalability issues. Particularly, this approach implies the
allocation of multiple separated hardware accelerators to realize multi-standard
systems, which often result in poor hardware efficiency. Furthermore, it implies long
design-time which is no more compatible with the severe time-to-market constraints
and the continuous development of new standards and applications.

More recently, several contributions have been proposed targeting flexible, yet
high throughput, implementations of channel decoders. The flexibility varies from
supporting different modes of a single communication standard to the support
of multi-standards multi-modes applications. Other implementations have even
proposed to increase the target flexibility to the support of different channel coding
techniques. As a matter of fact, a knowledge gap is growing quickly in the last
few years between the need for flexibility in the digital base-band processing
segment of modern communication systems, and the actual availability of flexible
while efficient hardware support to the quest for reconfigurability. The main reason
that determines this growing gap is related to the poor area and energy efficiency
of flexible solutions proposed till now and the huge increase of non-recurrent
engineering (NRE) costs in the production of dedicated integrated circuits for
specific applications (ASIC) with new semiconductor technologies.

8 ASIP Design for Multi-Standard Channel Decoders 153

Towards the target of filling the above mentioned gap, it becomes crucial to define
and develop efficient and high performance flexible channel decoder architecture
models for emerging and future digital communication systems. The need of optimal
solutions in terms of performance, area, and power consumption is increasing and
cannot be neglected against flexibility. In common understanding, a blind approach
towards flexibility results in some loss in optimality. The objective of recent
initiatives in this context is to unify flexibility-oriented and optimization-oriented
approaches. The main goal is to deliver enablers and building block solutions in
order to derive, for a specific application need, the best balance between a highly
flexible solution and a specifically optimized one.

This chapter illustrates the use of Application-Specific Instruction-set Processor
(ASIP) models and tools as one of the main recent design approaches towards this
target, enabling the designer to scale and freely tune the flexibility/performance
trade-off as required by the considered application requirements. Related contribu-
tions are emerging rapidly seeking to improve the resulting architecture efficiency
in terms of performance/area and in addition to increase the flexibility support. The
chapter starts by introducing the ASIP design approach and the recently available
methodologies and tools. Then we illustrate the application of this design approach
through two ASIP design examples for multi-standard turbo decoding with different
architecture alternatives and design objectives. Considering the increased flexibility
requirement for the support of multiple types of channel codes, the chapter presents
then a short review of related state-of-the-art contributions to illustrate the trend
towards the use of ASIP-based design approach in this context. The chapter ends
with a summary to highlight the main conclusions and to introduce few related
research perspectives.

8.2 ASIP Design Approach

In traditional design of flexible hardware architectures, the flexibility is incorporated
by the expert designer through the use of initialization parameters loaded from
a configuration memory or input ports of the design. The architecture description
involves manual design of a finite state machine (FSM) that controls the different
design units of the pipeline taking into account the various supported parameters.
But when the number of flexibility parameters increases, the design and validation
of such parametrized control logic become more and more complicated.

On the other hand, instruction-set based processors provide inherently high
flexibility in terms of control logic design through software programmability.
Their architectures have evolved dramatically in the last couple of decades [1]
from microprogrammed FSMs to dynamically reordered parallel pipelines with
multiple levels of parallelism and optimization techniques. More recently, the
trend to design customized instruction-set processors has been made successful
given the development of new design methodologies and tools. Such tools enable
the designers to specify a customizable processor in weeks rather than months.

154 P. Murugappa et al.

Two main approaches can be distinguished in this regard [1]. The first allows to
configure and extend a predefined core or architectural skeleton with application-
specific hardware resources [2–4]. Additional instructions can be defined with
corresponding functional pipelines and application-specific register files or memory
interfaces. The second approach allows to support architects in the effort to design
from scratch a completely custom processor with its complete tool chain (compiler,
simulator, etc.). Ideally, it uses an architectural description language (ADL) to
describe the architecture of the design from which all tools and the synthesizable
description of the core can be generated [5, 6]. All these approaches fall under the
name of customizable processors and often are referred as ASIP for Application-
Specific Instruction-set Processors (ASIPs).

Designing an efficient ASIP requires a deep analysis of the target flexibility
parameters and algorithm variants in order to devise the adequate algorithm and
architecture choices that enable efficient hardware resource allocation and sharing.
The application-specific instruction-set can then be derived accordingly. The general
ASIP design methodology comprises the following four steps: (1) analysis of
target application and underlined algorithms with respect to flexibility requirements,
(2) derivation of algorithm/architectural choices for the target flexibility and
parallelism degree, (3) design of basic building blocks of the ASIP with efficient
resource usage and sharing, and (4) design of the complete architecture of the ASIP
including the dedicated instruction-set, datapath, pipeline stages, memory banks,
and I/O interfaces.

One of the most mature ASIP development tools is Processor Designer which
was first commercialized by the startup LISATek and then acquired by CoWare
in 2003 and later by Synopsys in 2010. It was developed with a simulator-centric
view [1] and uses a C-like language (LISA) for design description of programmable
architectures and their peripherals and interfaces. The language syntax provides
a high flexibility to describe the instruction set of various parallelism techniques
with explicit modeling of both data-path and control. The usage of a centralized
description of the processor architecture ensures the consistency of the Instruction-
Set Simulator (ISS), software development tools (compiler, assembler, and linker,
etc.), and RTL (Register Transfer Level) implementation, minimizing the verifica-
tion and debug effort. The benefits of using this design approach are illustrated in
the rest of this chapter through examples related to multi-standard channel decoders
design.

8.3 ASIP-Based Decoders for Turbo Codes

This section illustrates the ASIP design flow for the implementation multi-standard
turbo decoders. After a brief introduction on the hardware-efficient decoding
algorithm for turbo codes, a short review of the related state-of-the-art imple-
mentations is given. Then, two ASIP design examples with different architecture
alternatives and design objectives are presented together with performance analysis
and comparisons.

8 ASIP Design for Multi-Standard Channel Decoders 155

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

α(1)α(1)

Received frame

Forward
recursion

α β Backward
recursion

32
transitions

SISO
Decoder1

SISO
Decoder2

S0, S1

Turbo decoder

Hard
decision

∏–1∏ ∏

Channel LLRs

P0, P1

P0’, P1’

10
{S0,S1}k-1

01
00

11

{S0,S1}k {S0,S1}k+1

.

.

b(3)

Fig. 8.1 Typical turbo codes decoder structure and an 8-states DBTC trellis

8.3.1 Hardware-Efficient Decoding Algorithm

Typical turbo decoder structure consists of two Soft Input Soft Output (SISO)
component decoders iteratively exchanging extrinsic information via an interleaving
(Π) and deinterleaving (Π−1) functions as illustrated in Fig. 8.1. The SISO decoders
often implement the max-log-MAP algorithm [7], which represents the hardware-
efficient version of the maximum a posteriori (MAP) decoding using the BCJR
algorithm known to achieve the minimal symbol error probability. In order to
explain briefly the underlined max-log-MAP computations, let us consider the
8-state DBTC code of WiMAX standard, represented by its trellis in Fig. 8.1. For
each received double binary symbol {S0,S1}k, the SISO decoder computes first
the branch metrics γk(s′,s) which represent the probability of a transition to occur
between two trellis states (s′: starting state, s: ending state). Then the SISO decoder
runs the forward and backward recursions over the trellis (Fig. 8.1). The forward
state metrics αk(s) of the kth symbol are computed recursively using those of
the (k − 1)th symbol and the branch metrics of the corresponding trellis section.
Similarly for the backward state metrics βk(s) which corresponds however to the
backward recursion (traversing the trellis in the reverse direction).

αk(s) = max
s′

(αk−1(s)+ γk(s
′
,s))

∀(s′,s = 0,1, ..7) (8.1)

βk(s) = max
s′

(βk+1(s)+ γk(s
′
,s))

∀(s′,s = 0,1, ..7) (8.2)

156 P. Murugappa et al.

Finally, the extrinsic information Zext
k of the kth symbol is computed for all

possible decisions (00,01,10,11) using the forward state metrics, the backward
state metrics, and the extrinsic part of the branch metrics as formulated in the
following expressions:

Zapos
k (d(s′,s) = x) = max

(s′,s)/d(s′,s)=x
(αk−1(s)+ γk(s

′,s)+βk(s))

∀(x = 00,01,10,11) (8.3)

Zext
k (d(s′,s) = x) = Zapos

k (d(s′,s) = x)− γ intx
k (s′,s)

∀(x = 00,01,10,11) (8.4)

The extrinsic information can be normalized by subtracting the minimum value
in order to reduce the related storage and communication requirements, thus only
three extrinsic information values should be exchanged for each symbol.

Zn.ext
k (d(s′,s) = x) = Zext

k (d(s′,s) = x)−min(Zext
k (d(s′,s) = x))

∀(x = 00,01,10,11) (8.5)

Executing one forward–backward recursion on all symbols of the received frame
in the natural order completes one half iteration. A second half iteration should be
executed in the interleaved order to complete one full turbo decoding iteration. Once
all the iterations are completed (usually 6–7 iterations), the turbo decoder produces
a hard decision for each symbol Zhard dec.

k ∈ (00,01,10,11).
For SBTC, the use of the trellis compression (Radix-4) [8] represents an efficient

parallelism technique and allows for efficient resource sharing with a DBTC SISO
decoder, as two single binary trellis sections (two bits) can be merged into one
double binary trellis section.

8.3.2 State-of-the-Art on Turbo Codes Decoders

Since the discovery of turbo codes in 1993 [9], considerable amount of research
works has been targeting practical VLSI implementations of turbo decoders. Using
mainly the low complexity max-log-MAP algorithm, many contributions have been
proposed targeting diverse design objectives in terms of area efficiency, energy
efficiency, flexibility, scalability, and high throughput. Among the initial efforts
in this context we can cite the examples of [10–13]. Authors of [14] present an
overview of the implementation aspects related to turbo decoding architectures

8 ASIP Design for Multi-Standard Channel Decoders 157

discussing the issues of quantization and iteration stopping criteria. Several joint
algorithmic/architecture optimization techniques have been investigated in [15].
One of the first ASIC implementations was presented in [16] achieving a throughput
of 50 Mbps with ten decoding iterations and an operating frequency of 1 GHz.

Turbo codes have been since widely adopted in wireless communication stan-
dards like CDMA2000, 3GPP, LTE, WiMAX, DVB-RCS, etc. Many implemen-
tations have succeeded to meet the low throughput requirements of the early
standards (e.g., CDMA2000 and 3GPP) using advanced DSP architectures [17–19]
or customizable processors [20]. However, the scalability of such implementations
is limited by the block interleavers specified in these standards which cause memory
access contentions when targeting higher sub-block parallelism degree. The work
presented in [21], targeting LTE, allows multiple SISO decoders (1, 2, 4, or 8)
to concurrently process frame sub-blocks and integrates a three-stage network to
connect the multiple memory and SISO decoder modules. Implemented in 90 nm
CMOS technology, the design achieves a throughput of 129 Mbps with eight
iterations and occupies an area of 2.1 mm2 while exhibiting a power consumption of
219 mW and supporting the maximum specified frame size of 6,144 bits. Targeting
Gbps throughputs, a recent work [22] has proposed an LTE compliant turbo decoder
architecture with 32 parallel SISO decoders. A throughput of 2.15 Gbps is achieved
with an on chip area of 7.1 mm2 using 65 nm CMOS technology. Other works
have proposed the additional support of DBTC specified in WiMAX standard. As
an example, the work in [23] presents an architecture which supports all DBTC
parameters specified in WiMAX and 18 frame sizes of the 188 specified in LTE.
A high area efficiency is achieved by supporting only those frame sizes with
interleaving properties that can be easily mapped to the extrinsic exchange paths of
DBTC. Another example is the parameterized architecture of [24] which supports
both turbo codes modes (DBTC and SBTC) and achieves a high throughput of
187 Mbps with eight parallel MAP decoders.

Recently, ASIP design approaches have been explored in this application context.
Such an architecture model enables the designer to freely tune the flexibility/perfor-
mance trade-off and thus to meet the increasing flexibility requirement efficiently.
Furthermore, the well-established design methodology and the mature available
tools enable short design-time. The rest of this section will illustrate this trend
through the presentation of two ASIP design examples with different architecture
alternatives and design objectives.

8.3.3 TurbASIP: Highly Flexible ASIP

One of the first proposed ASIPs for flexible turbo decoding has been presented
in [25]. The main design objective for this ASIP, namely TurbASIP, was to explore
the effectiveness of the newly proposed ASIP-design tools in terms of quality of
the generated HDL code and flexibility limitations when targeting this class of
applications. To that end, the target flexibility was set very high to investigate

158 P. Murugappa et al.

the support of any convolutional code trellis of DBTC and SBTC. The number of
trellis states, however, is limited to 8 states in DBTC mode and 16 states in SBTC
mode, as typically adopted in existing wireless communication standards. Another
design objective for this ASIP was the investigation and the exploitation of the
various parallelism techniques available for turbo decoding. Most of the available
parallelism techniques [26] have been exploited. This includes:

1. Metric level parallelism, which concerns the processing of all metrics involved
in the decoding of each received symbol inside a SISO decoder. It exploits the
inherent parallelism of the trellis structure (as the same operations related to the
computation of γ , α , β and the extrinsic information (γext) should be repeated for
all the trellis transitions) and the parallelism of the MAP computations (parallel
computation of the metrics α , β , and extrinsic information γext).

2. SISO decoder level parallelism, which exploits the use of multiple SISO
decoders, each processing a sub-block of the same frame in natural or interleaved
orders. At this level, parallelism can be applied either on sub-blocks and/or on
component decoders (shuffled decoding).

3. Turbo decoder level parallelism, which simply duplicates whole turbo decoder to
process iterations and/or frames in parallel. Nevertheless, this parallelism level is
too area-expensive (all memories and computation resources are duplicated) and
presents no gain in frame decoding latency, and thus it was not considered.

8.3.3.1 Overview of TurbASIP Architecture

Considering these design objectives, adequate algorithm/architectural choices have
been derived to meet the target flexibility and parallelism degree. This step is
followed by the design of basic building blocks of the ASIP with efficient resource
usage and sharing. Figure 8.2 presents the overall architecture of TurbASIP.

The architecture exploits the metric level parallelism through the use of two
hardware recursion units to process concurrently the forward and backward compu-
tations following a butterfly scheduling scheme. Each recursion unit includes a state
metric calculation matrix with 32 adder nodes and 8 max operator nodes to compute
all trellis transitions related metrics in parallel. It includes in addition the required
hardware resources to compute branch metrics and the hard decision with multiple
registers to store intermediate results. The target high flexibility degree is supported
through the use of high number of multiplexers enabling to handle any convolutional
code trellis structure. A main design choice in the ASIP architecture for turbo
decoding concerns the memory organization. Besides the quantization aspects
which impact the width of the memory words, the parallelism degree imposes the
use of multiple memory banks and the flexibility requirement (supported frame
lengths) impacts directly the size of these banks. Figure 8.2 illustrates how particular
is the memory organization for such application and consequently how adequate
is an ASIP design approach compared to general-purpose instruction-set processor

8 ASIP Design for Multi-Standard Channel Decoders 159

Top

Input Data
(sys+par)
Memory

Top

Input Data
(sys+par)
Memory

Extrinsic
Information

RG
x16

RC
x8

RMC
x8

DECISION

BM Generator

PR

Global ALU

State metric calculation matrix

Forward
Recursion

Unit
A

Forward
Recursion

Unit
A

Cross
Memories

A B

x8

Program
Memory

Config
Memory

Extrinsic
Information

TurbASIP

decision

decision

Cross
Memories

B A

x8

Backward
Recursion

Unit
B

Backward
Recursion

Unit
B

From Cross
Memories

To Cross
Memories

Extrinsic
Information

max

max

max
Radd
Or

RMC
Radd

RT(i,j)

Radd
RC

RG

RIE

From extrinsic
memory

RMC

Adder node

State boundary
Memory

Bottom
Input Data
(sys+par)
Memory

Top

Extrinsic
Info.

Memory

Top

Extrinsic
Info.

Memory
Bottom

Extrinsic
Memory

Bottom

Extrinsic
Memory

Control Unit

x2

Send alpha/beta
boundary state metrics

Top

Interleaving
Memory

Top

Interleaving
Memory
Bottom

Interleaving
Memory

Bottom

Interleaving
Memory

PFEPFE

PR_A 0..3

BM2BM2 STSTMAX1MAX1BM1BM1FEFE
ADDRESS_A
ADDRESS_B

FPC
INST

R_SIZE
zol_inst
zol_loop

zol_active
branch_active

branch_address

EXEX

Pipeline regs

a b

c

d

x2

Max node

OPFOPF MAX2MAX2

Fig. 8.2 TurbASIP architecture: (a) overview, (b) recursion unit, (c) adder node, (d) pipeline

architectures. Besides the Input memories (duplicated due to the parallelism implied
by the choice of butterfly scheduling scheme) several memories are required:
Extrinsic memories to store extrinsic messages exchanged between SISO decoders,
Interleaving memories to store interleaving addresses, Cross memories to store
intermediate metrics between the two executed forward/backward recursions, State
boundary memories to store boundary state metrics for metric initialization between
neighboring sub-blocks, Program memory to store program instructions, and Config
memory to store parameters related to the supported codes (trellis definition, block
size, number of iterations, etc.).

Exploiting the second level of parallelism, sub-block parallelism and shuffled
decoding, is done through the instantiation of multiple ASIPs in each component
decoder to process concurrently the received frame, partitioned in sub-blocks, in
natural and interleaved order. The ASIP should feature the required input/output
interfaces and the flexibility to support any interleaving rules and parallelism
degree is met through the use of application-specific network-on-chip (NoC)
architectures [27]. The efficiency of this parallelism level and related analysis of
the architecture scalability are addressed in [26].

160 P. Murugappa et al.

8.3.3.2 Pipeline Architecture and Instruction-Set

The devised pipeline structure for TurbASIP is illustrated in Fig. 8.2. The first
three stages correspond to instruction address generation, instruction fetch, and
instruction decode. The branch metrics are calculated in the two pipeline stages BM1
and BM2. The EX stage executes the adder nodes to compute the 32 state metric
LLRs as defined in (8.1) and (8.2). The MAX1 stage executes the reconfigurable
max operators and computes the α and β state metric LLRs by taking the maximum
of the RADD registers column wise. During extrinsic generation phase, the max
operators are reconfigured to calculate the maximum of the four RADD registers
along the horizontal direction of the state metric calculation matrix. Thus, two
partial a posteriori LLR values are generated per row. The final a posteriori LLRs
are generated by the max operators in the MAX2 pipeline stage that calculates the
maximum of the eight partial a posteriori LLRs to produce the four a posteriori
symbol LLRs γapos. The last stage of the pipeline (ST) generates the extrinsic
information from a posteriori LLRs and the intrinsic LLRs γ int as given by (8.4).

Appropriate instruction-set is designed according to the devised algorithm/archi-
tecture choices and target flexibility described above. An excerpt of assembly code
for the first iteration of the turbo decoding execution is presented in Listing 8.1. It
starts by initializing the ASIP configuration registers setting the mode by reading the
trellis configuration registers (instruction SET_CONF). Next, the size in symbols
of half of the window (SET_SIZE), the scaling factor (SET_SF), number of
windows in the sub-block (SET_WINDOW_N), and the initial window counter
(SET_WINDOW_ID) are set. The value 6 used by the SET_SF command allows to
scale the input extrinsic LLRs by 0.875 before computing the branch metrics. The
initial window boundary state registers of the first window (RMC) are initialized to
be uniform, i.e., all states are initialized to same equiprobable value. Zero overhead
loop (ZOLB) instruction is devised to execute lines (@26) and (@27) 32 times,
i.e., half of window size (as set by the SET_SIZE instruction). The instruction at
line (@26) implements the left side of the butterfly decoding scheme. During the
first iteration of the shuffled decoding the extrinsic memories are uninitialized,
hence the WITHOUT_EXT field of the instruction specifies not to use extrinsic
information in the branch metric calculations. The ADD M field of the instruction
forces the adder nodes to do 32 state metric calculations (α + γ or β + γ) in the EX
stage of the pipeline. The COLUMN field configures the max nodes to calculate
the maximum column-wise. An idle cycle is introduced via NOP instruction at line
(@27) due to data dependency. Once the left side of butterfly decoding schedule
is completed for a window, the right side of the butterfly schedule is processed
by executing the instructions at lines (@30) and (@33) 32 times. The instruction
EXT ADD i LINE computes the extrinsic information. The field LINE configures
the max nodes in the MAX1 pipeline stage to calculate the maximum row-wise.
Additionally, this instruction activates MAX2 stage to finalize the computation of
the extrinsic information and ST stage to fetch the corresponding interleaved/de-
interleaved addresses for NoC packetization.Two other short portions of assembly

8 ASIP Design for Multi-Standard Channel Decoders 161

Listing 8.1 Example of TurbASIP assembly code for the first turbo decoding iteration
�

1 .text
2 ;set configuration wimax
3 SET_CONF 0
4 SET_CONF 1
5 SET_CONF 2
6 SET_CONF 3
7 ;set half window size
8 SET_SIZE 32
9 ; set the scale factor 6=0.875

10 SET_SF 6
11 ;set number of windows and initial
12 ;window id counter to zero
13 SET_WINDOW_N 2
14 SET_WINDOW_ID 0
15 ;set boundary initialization of
16 ;RMC registers as uniform
17 SET_RMC UNIFORM, UNIFORM
18 REPEAT UNTIL _loop0 1 times
19 NOP
20 ;repeat instructions between _RW1 to _CW1
21 ;and between _CW1 to_LW1 SET_SIZE times
22 ZOLB _RW1,_CW1,_LW1
23 W_LD_BETA 0
24 ;configure max units to take max column wise.
25 ;store results in RMC
26 _RW1: DATA LEFT WITHOUT_EXT ADD M COLUMN
27 _CW1: NOP
28 ;configure max units to take max column wise.
29 ;store results in RMC
30 DATA RIGHT WITHOUT_EXT ADD M COLUMN
31 ;configure max units to take max rowwise.
32 ;to calculate extrinsic
33 _LW1: EXT WITHOUT_EXT ADD i LINE
34 ;increment the window number
35 EXC_WINDOW
36 NOP
37 NOP
38 _loop0: NOP

code, presented in [28], are required to process the subsequent iterations of the turbo
decoding which differ by using extrinsic LLRs during branch metric calculation and
computing the hard decision in the last iteration.

8.3.3.3 Results and Architecture Efficiency Definition

The devised architecture for TurbASIP was described in LISA and validated using
Synopsys Processor Designer tool and a bit-true software reference model of the
algorithm. The generated VHDL code has been validated and synthesized targeting
65 nm general purpose CMOS technology. The high flexibility of TurbASIP allows
to support any trellis description at run-time and quantization-related configurations
at design-time. Considering a quantization of 4 bits for input LLRs and 8 bits
for extrinsic information, one TurbASIP occupies a total area of ∼0.19 mm2

(logic and memories) for a maximum clock frequency of 500 MHz. A multi-ASIP
configuration with 4 ASIPs for each component decoder (8 in total) occupies a total
area of ∼1.53 mm2 (including a NoC based on Butterfly topology).

162 P. Murugappa et al.

The following expression allows to compute the achieved turbo decoding
throughput:

T hroughputTurbASIP =
2×Bitssym × fclk ×NA/2

Ninstr ×Niter
(8.6)

where NA = number of ASIPs, Ninstr = number of instructions to process two
symbols, Bitssym = number of bits per symbol, fclk = clock frequency, Niter =
number of iterations.

As TurbASIP needs on average 4 instructions per iteration (2 for left butterfly
and 2 for right butterfly) in order to process two double binary symbols, thus we
have Ninstr = 4 and Bitssym = 2 in DBTC mode. Considering a 4x4 TurbASIP
turbo decoder, and using the above expression where NA = 8, fclk =500 MHz, and
Niter =6, the achieved throughput is around 333 Mbps.

In order to evaluate the effectiveness of the obtained results and to be able to
compare with state-of-the-art implementations, we define the Architecture efficiency
(AE) metric as follows:

AE =
T hroughput ×Niter

AreaNorm × fclk
(8.7)

Its unit of measure is bits/cycle/iteration/mm2 and it represents the number of
decoded bits per clock cycle per iteration per mm2 that the proposed iterative
channel decoder implementation is able to deliver. A high architecture efficiency
indicates an optimized design which exploits efficiently its hardware resources
during its execution time. An interesting point in the above expression of the AE
concerns the normalization of the throughput achieved with respect to the consid-
ered clock frequency (fclk) which increases the fairness when comparisons are done
between different decoding architectures running at different clock frequencies.
Published results in this context consider either the maximum achievable clock
frequency by the proposed architecture or a lower operational clock frequency
which is sufficient to achieve the target throughput. Thus, normalizing the pre-
sented throughput by the considered clock frequency enables to better exhibit the
efficiency of the proposed architectural choices. Towards the same objective, the
above expression of the AE normalizes the throughput by the considered number
of decoding iterations (Niter) as the published results can use slightly different
values which impact the overall throughput. In most of these works, the same
low complexity decoding algorithms, with identical convergence speed, are used.
Similarly, the AE expression uses a normalized area measure (AreaNorm) as the
published decoders are often based on different technology nodes (e.g., 180 nm,
130 nm, 65 nm, etc.). In addition, when the published design area is given post-
place and route a downscaling factor of 2 is applied to obtain a reasonable estimate
of the post-synthesis area. This factor is not very accurate as it depends to many
parameters (technology node, CAD tools, operating conditions, etc.), but it gives a
reasonable idea as it corresponds to the usually (or even worst case) observed ratio.

8 ASIP Design for Multi-Standard Channel Decoders 163

Considering the synthesis results presented above, a 4x4 TurbASIP turbo decoder
presents an architecture efficiency of 2.6 bits/cycle/iteration/mm2. This value is
somehow low compared to recent related state-of-the-art implementations as it will
be illustrated in the next sub-section and this is due to the target design objectives of
high degrees of flexibility and scalability. In fact, the example of this highly flexible
ASIP allows to illustrate the effectiveness of the ASIP design approach allowing
to explore and implement rapidly any desired algorithm/architecture choices and to
generate high quality synthesizable HDL code. It allows also the design of scalable
multi-ASIP turbo decoders meeting the high-throughput requirement. The next sub-
section further illustrates how it is possible to increase significantly the architecture
efficiency of ASIP-based turbo decoders.

8.3.4 TDecASIP: Parameterized Area-Efficient ASIP

In this sub-section we present another example of ASIP for multi-standard turbo
decoding and we analyze and discuss the architecture efficiency with respect to
related state-of-the-art implementations. The design objective behind this ASIP
design example, namely TDecASIP [29], is twofold: (1) investigate the maximum
attainable architecture efficiency for ASIP-based turbo decoding, and related to
this first objective (2) investigate the possibility to design application-specific
parametrized cores using the available ASIP design flow. Such possibility can
potentially lead to a higher architecture efficiency by simplifying the instruction
decoding logic and removing the program memory. Furthermore, it is still keeping
the benefit of the short design cycle enabled by the well-established ASIP design
tools.

8.3.4.1 Overview of TDecASIP Architecture

A first key element to increase the architecture efficiency is to limit the flexibility
degree to the exact target application at design-time. Rather than supporting any
trellis code as in TurbASIP, in this design example of TDecASIP the target flexibility
is set to cover only the turbo codes and related parameters specified in 3GPP-LTE,
WiMAX, and DVB-RCS standards. In addition, this choice enables to compare the
results with existing state-of-the-art implementations.

The second key element concerns the algorithm/architectures choices in terms
of parallelism techniques and degrees. Most appropriate choices have been made
targeting a throughput in the range of hundreds Mbps, as specified in the considered
standards. In order to fully exploit the metric level parallelism, two recursion units
are devised using backward–forward schedule for window processing. The first
recursion unit (processing in the backward direction of the trellis) processes a
window j while the second recursion unit (processing in the forward direction of the
trellis) executes on the window j−1 in parallel as illustrated in Fig. 8.3. This enables

164 P. Murugappa et al.

Time

S
ub

bl
oc

k0

… … … … …

T
D

ec
A

S
IP

0

W1

W2

WL

W1

W2

WL

S
ub

bl
oc

k1

T
D

ec
A

S
IP

1

Iteration 1 …

Backward recursion (β)

Forward recursion (α)
& Extrinsic generation

Boundary α metrics
Exchange inside TDecASIP

Boundary α metrics
Exchange btw. TDecASIPs
(via the α- β network)

Boundary β metrics
Exchange inside TDecASIP
(between iterations)

Boundary β metrics
Exchange btw. TDecASIPs
(via the α- β network)

Iteration 2

… … … … …

… … … … … …

… … … … … …

binit

binit

ainit

ainit

Processing repeated twice for the
two half iterations by TDecASIP 0 & 1

Fig. 8.3 Windowing and backward–forward schedule in TDecASIP

to achieve the throughput equivalent to butterfly schedule (as in TurbASIP design),
yet the using of the backward–forward schedule further enables efficient use of
hardware interleave address generators for extrinsic memory addressing.

Regarding the exploitation of the second level of parallelism (SISO decoder
level), only sub-blocking parallelism with a degree of two is devised as it allows to
meet the target throughputs. Shuffled decoding efficiency is demonstrated only for
very high parallelism degrees [26]. Thus, in TDecASIP, half iterations are performed
in serial order, i.e., all processing cores perform first half iteration by reading
the systematic and extrinsic information sequentially from memories, followed by
the second half iteration where the systematic and extrinsic memories are read in
interleaved order. The generated extrinsic data are written at the same location as
it was read from. In both of these half iteration cycles the parity memory is always
read sequentially. This type of scheduling presents the following advantages:

• Only one copy of systematic information bits is needed to be stored. This reduces
the number of memory banks required and the configuration network complexity.

• Only sequential counter and interleaved address generator are needed for
addressing the memories while the shuffled decoding needs in addition a
deinterleaved address sequence. Given the adopted low sub-block parallelism
degree, this serial decoding reduces the memory access complexity as only
low number of multiplexers would be sufficient (read/write exchange network).
WiMAX interleavers support sub-blocking of 2 and 4 while LTE interleavers
support sub-blocking of at least 2 and 4 [30] (with a maximum of 64).

• Small number of memory banks also results in less address decoding logic and
hence reduced total memory area, resulting in area-efficient decoding core.

8 ASIP Design for Multi-Standard Channel Decoders 165

Fig. 8.4 Overview and memory organization of the 2-TDecASIP turbo decoder architecture [29]

Based on the above design motivations and choices, Fig. 8.4 illustrates the overall
architecture of the two core turbo decoder. Each core (TDecASIP) processes a
sub-block of the input frame and has direct access to configuration, CrossMetric,
BoundaryState, and input Parity memories. The input Systematic and Extrinsic
memory banks are connected to the cores through a simple read/write exchange
network.

Figure 8.5 presents a detailed architecture of TDecASIP core. As for TurbASIP,
the pipeline is structured in eight stages, of which the first three stages are dedicated
for the data fetch from the memories and for the control of the pipeline. A modified
ASIP design flow is proposed to enable parameterized core design. Rather than
defining specialized instructions, the corresponding FSM is directly described in
LISA. The current state of the FSM is treated as an instruction. This approach can
be effective when the application exhibits a reduced number of flexible parameters

166 P. Murugappa et al.

Fig. 8.5 Detailed pipeline architecture and FSM of the TDecASIP parametrized core [29]

8 ASIP Design for Multi-Standard Channel Decoders 167

and the corresponding processing presents a reduced number of control states. The
target application in this study (flexible turbo decoding) is a good example with
six states (as shown in Fig. 8.5) and few flexible parameters that do not change
during the decoding process (code type, number of iterations, window size, number
of windows, and extrinsic address generation initialization values). This FSM is
implemented in the OperandFetch pipeline stage to generate appropriate control
signals to activate or deactivate the appropriate stages of the pipeline (Fig. 8.5).
As soon as the start signal is asserted, the processor starts with the Initialize
state, initializing the registers to the default values and reading the configuration
parameters mentioned above. At the end of the initialization, the FSM reaches S1
state generating appropriate signals for the backward recursion execution. If the
processor is executing the first half iteration, the generated addresses for systematic
and extrinsic memories are sequential otherwise interleaved addresses are generated.
The addresses for parity memories are always sequential. All FSM transitions in
Fig. 8.5 occur when the window boundary is reached. In S2 state both forward
and backward recursions are executed in parallel (on two different windows). The
complete presentation of the FSM control states and the pipeline execution can be
found in [29].

The memory organization of the proposed architecture is illustrated in Fig. 8.4.
With negligible performance loss, the channel LLRs can be quantized to 5 bits
and the normalized extrinsic information to 7 bits. As radix-4 is adopted in SBTC,
systematic LLRs are stored in two memory banks, and similarly for extrinsic LLRs.
This memory organization and the corresponding efficient address generation are
allowed by the QPP (quadratic permutation polynomial) interleaver adopted in LTE
standard which maps even addresses to even addresses and odd to odd. The total
depth of these memories allow to store up to 6,144 LLRs, which corresponds to
the maximum specified LTE frame length. As the parity LLRs are always read in
sequence, the consecutive parity LLRs information bits are combined and stored in
one memory bank as shown in Fig. 8.4.

8.3.4.2 Results and Discussions

TDecASIP was modeled using Synopsys Processor Designer tool and the corre-
sponding VHDL description was generated and synthesized targeting 65 nm general
purpose CMOS technology (worst case 0.9v and 125C). The total logic area,
including the interleaver, is 0.065 mm2 while the memory area for one processor
is 0.15 mm2. The total area (post-synthesis) for the two core turbo decoder is
0.438 mm2 with a clock frequency of 510 MHz. The error rate performance of
the hardware implementation has negligible degradation (less than 0.1 dB) when
compared to the floating point C-simulations using BPSK modulation over an
additive white gaussian noise (AWGN) channel (Fig. 8.6). The throughput can be
expressed as follows:

168 P. Murugappa et al.

Fig. 8.6 Error rate performance comparison between the hardware implementation and the
floating point simulation for WiMAX frame size 1,920 bits

T hroughputT DecASIP =
N × fclk

((
�Nsym/W�
Numprocs

+1)×W +Npip)× (2×Niter)
(8.8)

For the presented architecture: Numprocs = 2 processors, number of pipeline stages
Npip = 8, window size W = 64 symbols, maximum clock frequency is fclk =
510 MHz, considering the largest LTE frame size Nsym = 3,072 symbols or N =
6,144 bits and Niter = 6.5 iterations, the throughput obtained is 150 Mbps.

Considering the architecture efficiency definition given in the previous sub-
section, the proposed 2 processor turbo decoder achieves an architecture efficiency
of 4.37 bits/cycle/iteration/mm2. Furthermore, the proposed architecture is scalable
and can be extended to 4 processing cores, since both LTE and WiMAX interleavers
support sub-blocking level of 4 with conflict-free memory accesses. In this case, the
memory area of one processing core decoder becomes 0.097 mm2 which results in
a total area occupancy of 0.65 mm2. The architecture efficiency in this case is 5.88
bits/cycle/iteration/mm2. This further illustrates the area efficiency of the sub-block
parallelism, where the throughput is doubled while the occupied area is increased
only by 1.47 times (rather than doubled). This is due to the fact that Systematic,
Parity, Extrinsic, and BoundaryState memory requirements remain unchanged. The
achieved results of this design are summarized and compared along with few recent
related works in Table 8.2. The cited three implementations [24, 31, 32] use a
conventional parametrized design approach with almost similar internal computa-
tion, interleaving, and storage optimization techniques. However, each of them has
selected a different sub-blocking parallelism level (8, 16, and 32). The increased

8 ASIP Design for Multi-Standard Channel Decoders 169

Table 8.2 Results and comparison with few recent related works

TDecASIP [24] [31] [32]

Standard
supported

LTE, WiMAX LTE, WiMAX LTE LTE

LTE modes
supported #

188 188 188 188

WiMAX modes
supported #

17 17 – –

Technology (nm) 65 130 90 65

Core area (mm2) 0.438 0.65 10.7a 2.1 7.7a

AreaNorm @65 nm
(mm2)

0.438 0.65 1.335 1.1 3.85

Throughput (Mbps) 150 @6.5iter 300 @6.5iter 187 @8iter 284 @5iter 2150 @6iter

Parallel MAPs # 2 4 8 16 32
fclk (MHz) 510 250 200 450

AE
(bits/cycle/iter/mm2)

4.37 5.88 4.48 6.49 7.45

a Post place and route

architecture efficiency with the sub-blocking parallelism degree is coherent with
the above discussed results of the proposed 2- and 4-TDecASIP architectures. The
4-TDecASIP architecture achieves even a slightly better architecture efficiency than
the one presented in [24] which supports both turbo modes (DBTC and SBTC)
and uses 8 parallel MAP decoders. The LTE-dedicated implementations presented
in [31] and [32] exploit the available higher sub-blocking parallelism degrees in
this standard (parallel interleaving with conflict-free memory accesses). Results
comparison illustrates how the TDecASIP architecture achieves a high architecture
efficiency while using such an ASIP-based parameterized core approach by select-
ing the appropriate parallelism and optimization techniques.

8.4 Flexibility Increase to Support Multiple
Channel Code Classes

Flexibility requirement of channel decoding architectures becomes more and more
crucial when considering the emerging multi-mode and multi-standard applications,
as well as the increasing interest for SDR and Cognitive Radio concepts. Even
for a single standard like WiMAX, several error correction codes (convolutional,
turbo, LDPC, and block turbo) are specified as mandatory or optional. Hence,
in the last few years, several multi-code architectures have been explored and
proposed to support the decoding of two or more different classes of error correction
codes. The aim is to propose novel optimization and resource sharing techniques of
the memory, logic, and/or communication interconnects in order to achieve better

170 P. Murugappa et al.

efficiency in terms of area when compared to the direct assembly of dedicated
individual decoders. This section presents a short review of the related state-of-
the-art contributions to introduce the trend towards the use of ASIP-based design
approach in this context. Due to the limited space, presenting few detailed examples
and an exhaustive analysis is not affordable, yet a set of recent references is
provided.

In this context, few initial initiatives have investigated the support of both
convolutional and turbo codes. Authors of [33] and [34] have proposed a unified
architecture designed for UMTS base-stations. A dual mode Viterbi/turbo decoder,
sharing path metric calculation and extrinsic information memories, is proposed.
A trellis processor used to update path metrics in both supported decoding algo-
rithms. A 2 Mbps throughput at 88 MHz clock frequency is demonstrated when
performing 10 turbo decoding iterations. In [35], another combined architecture is
proposed. In this architecture the datapath and the memories are shared. A max-log-
MAP algorithm is used for decoding both convolutional and turbo codes. However,
this is only possible when the throughput requirement for convolutional codes (e.g.,
12.2 kbps) is much lower than that of turbo codes (e.g., 384 kbps). In another effort
to combine the two types of decoders, soft Viterbi decoding is used for turbo
decoding and hard output Viterbi decoding is used for convolutional codes [36].

Similarly, unified decoder architectures for LDPC and turbo codes have been
presented in [37–40]. Multi-code decoding is achieved in [37] by employing flexible
add-compare-select (FACS) units. By representing LDPC codes as parallel con-
catenated Single Parity Check (SPC) codes, the authors have efficiently reused the
turbo decoding hardware resources for LDPC decoding functions. The architecture
supports decoding of SBTC codes of LTE and LDPC codes of WiFi and WiMAX.
When implemented in 90 nm CMOS technology, the work reports a maximum
throughput of 450 Mbps for SBTC decoding and 600 Mbps for LDPC decoding
while occupying a total area of 3.2 mm2. Similar architecture is presented in [40]
to share logic and memory resources with additional decoding support of turbo
codes specified in 3GPP, DVB-SH, and WiMAX standards. The entire design
is implemented in 45 nm CMOS technology occupying an area of 0.9 mm2 and
clocked at 150 MHz to achieve low power and yet meeting the target throughput.
However, studies presented in [41] conclude that such datapath sharing for LDPC
and turbo decoding has little benefits and only for special configurations which have
similar memory requirements between the decoding modes (LDPC/turbo). It further
mentions that even in such cases, sharing memory is much more attractive than
sharing computational hardware. In fact, the best match for a combined LDPC/turbo
datapath can be achieved when both have the same granularity, e.g., at the check-
node and log-butterfly operator level [41].

Besides the above-mentioned multi-code decoder architectures which can be
considered as parameterized cores, several recent initiatives have explored ASIP-
based design in this application context. As an example, the FlexiTreP ASIP
presented in [42] supports trellis-based channel codes (i.e., convolutional, SBTC,
and DBTC) for few target standards. Decoding of LDPC codes was later added to

8 ASIP Design for Multi-Standard Channel Decoders 171

this architecture and presented in [43] as FlexiChap where memory sharing across
turbo and LDPC modes was explored. Targeting the support of WiFi and WiMAX,
the total area of the channel decoder has increased from 0.42 mm2 for FlexiTreP to
0.62 mm2 for FlexiChap in 65 nm CMOS technology. Moreover, in [39], the authors
propose an ASIP architecture addressing in a unified way the turbo and LDPC
coding requirements of LTE, WiFi, WiMAX, and DVB-S2/T2 with datapath and
memory reuse across the different FEC families. Results illustrate how the obtained
area was lower than the cumulated area of dedicated individual turbo and LDPC
decoder solutions. Furthermore, the authors of this chapter have presented in [28]
several contributions belonging to these last efforts targeting ASIP-based multi-code
channel decoding architectures. Promising results are presented while investigating
the maximum achievable architecture efficiency when adopting the rapid design
methodology and well-established tools related to ASIP design concept.

Finally, several scalable multiprocessor architectures based on the use of ded-
icated NoC for combined LDPC/turbo decoding were investigated. High decoder
parallelism degrees are necessary to achieve the increasing throughput requirement
imposed by the emerging applications. However, this incurs memory access con-
flicts due to the interleaving rules specified in the turbo and LDPC codes. Efficient
algorithms which can compute collision-free memory mapping of interleaving
laws with no constraint imposed on the code itself and the target parallelism
degree are proposed in [44] and [45]. The latter further proposes novel technique
that allows for low-latency dynamic reconfiguration. Another, or complementary,
alternative proposes the use of adequate NoC topologies with optimized message
transfer techniques. Several flexible on-chip interconnection networks have been
proposed with the aim of fully exploiting the parallelism of the LDPC/turbo decoder
architecture by reducing the message latency, alleviating the memory conflicts and
efficiently routing any permutation law. Among the recent related contributions we
can cite the work presented in [46] which proposes a NoC architecture based on
binary de Bruijn topology and the work presented in [47] which proposes a NoC-
based multiprocessor architecture, based on generalized Kautz topology.

8.5 Summary

This chapter has illustrated the use of ASIP models and tools as one of the main
recent design approaches towards the target of unify flexibility and efficiency in
the design of multi-standard channel decoders. Many contributions are emerging
rapidly in this domain, seeking to increase the flexibility support and to improve
the resulting architecture efficiency. The presented design examples of ASIP for
turbo decoding illustrate how this approach enables to implement any set of
architecture choices targeting different design objectives. The flexibility degree can
be tuned to be very high or very limited; even parameterized architecture models
can be developed using ASIP design tools. The main benefits correspond to the

172 P. Murugappa et al.

structured and rapid design approach which accelerates the design and validation
flow and enables high design-time flexibility with respect to traditional digital
design practices.

The chapter illustrated how flexibility, architecture efficiency, and rapid design-
time can be combined when using an ASIP design methodology and tools to
implement novel cores for multi-standard turbo decoding. The highly optimized
parameterized core presented supports both SBTC of 3GPP-LTE and DBTC of
WiMAX and DVB-RCS standards. It achieves, in both modes, a high architecture
efficiency of 4.37 bits/cycle/iteration/mm2 and meets the 150 Mbps maximum
targeted throughput of the LTE standard. The proposed architecture is scalable
and the architecture efficiency increases with the sub-block parallelism degree.
Detailed analysis and comparisons with relevant state-of-the-art solutions have been
discussed.

Same approach of exploring the maximum achievable architecture efficiency
using ASIP design concept in LDPC decoding can be found in [48]. This design
trend has been further shown in the proposal of flexible channel decoder supporting
multiple code types; in particular the support of LDPC and turbo codes as specified
in recent wireless communication standards. The chapter has presented in this
context a short review of the related state-of-the-art contributions. Finally, although
the chapter has mainly considered the evaluation of the architecture efficiency,
similar conclusions should be driven evaluating the energy consumption and
efficiency. Furthermore, several recent initiatives have proposed to tackle the aspect
of reconfiguration optimization and efficient management for multi-standard ASIP-
based channel decoders [49]. Finally, the promising results demonstrated in recent
state-of-the-art in channel decoding have paved the way to extend this design
approach to other key components of advanced communication systems. Several
recent contributions start appearing in this context, e.g., for MIMO detection, and
even beyond digital communication applications domain.

References

1. Ienne P, Leupers R (2006) Customizable embedded processors–design technologies and
applications. Morgan Kaufmann, San Mateo

2. Cadence Xtensa Customizable Processors (formerly product of Tensilica) (2014). http://ip.
cadence.com/ipportfolio/tensilica-ip/xtensa-customizable

3. Stretch Software-Configurable Processors (2014). http://www.stretchinc.com/technology/
4. Mei B, Lambrechts A, Mignolet J-Y, Verkest D, Lauwereins R (2005) Architecture exploration

for a reconfigurable architecture template. IEEE Trans Des Test Comput 22(2):90–101
5. Synopsys Processor Designer (formerly product of CoWare) (2014). http://www.synopsys.

com/Systems/BlockDesign/ProcessorDev
6. Synopsys IP Designer (formerly product of Target Compiler Technologies) (2014). http://www.

synopsys.com/IP/ProcessorIP/asip/ip-mp-designer
7. Robertson P, Hoeher P, Villebrun E (1997) Optimal and sub-optimal maximum a posteriori

algorithms suitable for turbo decoding. Eur Trans Telecommun 8(2):119–125

http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
http://www.stretchinc.com/technology/
http://www.synopsys.com/Systems/BlockDesign/ProcessorDev
http://www.synopsys.com/Systems/BlockDesign/ProcessorDev
http://www.synopsys.com/IP/ProcessorIP/asip/ip-mp-designer
http://www.synopsys.com/IP/ProcessorIP/asip/ip-mp-designer

8 ASIP Design for Multi-Standard Channel Decoders 173

8. Bickerstaff M, Davis L, Thomas C, Garrett D, Nicol C (2003) A 24Mb/s radix-4 logMAP
turbo decoder for 3GPP-HSDPA mobile wireless. In: Proceedings of the IEEE international
solid-state circuits conference (ISSCC), vol 1, pp 150–484

9. Berrou C (1991) Procédé de décodage itératif, module de décodage et décodeur corre-
spondants/Iterative decoding method, corresponding decoding module and decoder, Patent
EP0735696 B1, France Telecom & TDF.

10. Hsu J-M, Wang C-L (1998) A parallel decoding scheme for turbo codes. In: Proceedings of the
IEEE international symposium on circuits and systems (ISCAS)

11. Wang Z, Suzuki H, Parhi K (1999) VLSI implementation issues of TURBO decoder design
for wireless applications. In: Proceedings of the IEEE workshop on signal processing systems
(SiPS’99), pp 503–512

12. Kwon TW, Kim DW, Kim WT, Joo EK, Choi JR, Choi P, Kong JJ, Choi SH, Chung
WH, Lee KW (1999) A modified two-step sova-based turbo decoder for low power and
high performance. In: Proceedings of the IEEE region 10 conference (TENCON’99), vol 1,
pp 297–300

13. Chaikalis C, Noras J (2002) Implementation of an improved reconfigurable sova/log-map
turbo decoder in 3gpp. In: Proceedings of the third international conference on 3G mobile
communication technologies, May, pp 146–150

14. Boutillon E, Douillard C, Montorsi G (2007) Iterative decoding of concatenated convolutional
codes: implementation issues. Proc IEEE 95(6):1201–1227

15. Gnaedig D (2005) Optimisation des architectures de décodage des turbo-codes. Ph.D. disser-
tation, Telecom Bretagne – UBS

16. Viglione F, Masera G, Piccinini G, Ruo Roch R, Zamboni M (2000) A 50 mbit/s iterative turbo-
decoder. In: Proceedings of the ACM/IEEE design, automation and test in Europe conference
and exhibition (DATE’00), pp 176–180

17. TMS320C64x DSP turbo-decoder coprocessor (2004). http://www.ti.com/lit/ug/spru534b/
spru534b.pdf

18. Loo K, Alukaidey T, Jimaa S (2003) High performance parallelised 3GPP turbo decoder. In:
Proceedings of the 5th European personal mobile communications conference

19. Zhong Z, Peng T, Zhong Z, Wang W, Liu Z (2010) Hardware implementation of Turbo coder
in LTE system based on PICOCHIP PC203. In: Proceedings of the 12th IEEE international
conference on communication technology (ICCT)

20. Gilbert F, Thul M, Wehn N (2003) Communication centric architectures for turbo-decoding
on embedded multiprocessors. In: Proceedings of the design, automation and test in Europe
conference & exhibition (DATE)

21. Wong C-C, Lee Y-Y, Chang H-C (2009) A 188-size 2.1mm2 reconfigurable turbo decoder chip
with parallel architecture for 3GPP LTE system. In: Proceedings of the symposium on VLSI
circuits, pp 288–289

22. Ilnseher T, Kienle F, Weis C, Wehn N (2012) A 2.15GBit/s turbo code decoder for LTE
advanced base station applications. In: Proceedings of the international symposium on turbo
codes and iterative information processing (ISTC)

23. Lin C-H, Chen C-Y, Chang E-J, Wu A-Y (2011) A 0.16nJ/bit/iteration 3.38mm2 turbo decoder
chip for WiMAX/LTE standards. In: Proceedings of the international symposium on integrated
circuits (ISIC)

24. Kim J-H, Park I-C (2009) A unified parallel radix-4 turbo decoder for mobile WiMAX and
3GPP-LTE. In: Proceedings of the IEEE custom integrated circuits conference (CICC)

25. Muller O, Baghdadi A, Jezequel M (2006) ASIP-based multiprocessor SoC design for simple
and double binary turbo decoding. In: Proceedings of the design, automation test in Europe
conference & exhibition (DATE)

26. Muller O, Baghdadi A, Jezequel M (2010) Parallelism efficiency in convolutional turbo
decoding. EURASIP J Adv Signal Process 2010:927920. doi:10.1155/2010/927920

27. Moussa H, Muller O, Baghdadi A, Jezequel M (2007) Butterfly and Benes-based on-chip
communication networks for multiprocessor turbo decoding. In: Proceedings of the design,
automation test in Europe conference & exhibition (DATE)

http://www.ti.com/lit/ug/spru534b/spru534b.pdf
http://www.ti.com/lit/ug/spru534b/spru534b.pdf

174 P. Murugappa et al.

28. Murugappa P (2012) Towards optimized flexible multi-ASIP architectures for LDPC/turbo
decoding. Ph.D. dissertation, Telecom Bretagne – UBS

29. Murugappa P, Baghdadi A, Jezequel M (2013) Parameterized area-efficient multi-standard
turbo decoder. In: Proceedings of the design, automation test in Europe conference & exhibition
(DATE)

30. Sun Y, Zhu Y, Goel M, Cavallaro J (2008) Configurable and scalable high throughput turbo
decoder architecture for multiple 4G wireless standards. In: Proceedings of the international
conference on application-specific systems, architectures and processors (ASAP)

31. Ahmed A, Awais M, Rehman A, Maurizio M, Masera G (2011) A high throughput Turbo
decoder VLSI architecture for 3GPP LTE standard. In: Proceedings of the IEEE 14th
international multitopic conference (INMIC), pp 340–346

32. Ilnseher T, Kienle F, Weis C, Wehn N (2012) A 2.15GBit/s turbo code decoder for LTE
advanced base station applications. In: Proceedings of the 7th international symposium on
turbo codes (ISTC)

33. Bickerstaff M, Garrett D, Prokop T, Thomas C, Widdup B, Zhou G, Davis L, Woodward G,
Nicol C, Yan R-H (2002) A unified turbo/viterbi channel decoder for 3gpp mobile wireless in
0.18-mm cmos. IEEE J Solid-State Circuits 37(11):1555–1564

34. Thomas C, Bickerstaff MA, Davis LM, Prokop T, Widdup B, Zhou G, Garrett D, Nichol C
(2003, April) Integrated circuits for channel coding in 3g cellular mobile wireless systems.
IEEE Commun Mag 150–159

35. Kreiselmaier G, Vogt T, Wehn N (2004) Combined turbo and convolutional decoder architec-
ture for UMTS wireless applications. In: Proceedings of the design, automation test in Europe
conference & exhibition (DATE)

36. Cavallaro JR, Vaya M (2003) VITURBO: a reconfigurable architecture for Viterbi and turbo
decoding. In: Proceedings of the international conference on acoustics, speech, and signal
processing (ICASSP)

37. Sun Y, Cavallaro JR (2008) Unified decoder architecture for LDPC/Turbo codes. In: Proceed-
ings of the IEEE workshop on signal processing systems (SiPS)

38. Sun Y, Cavallaro J (2011) A flexible LDPC/turbo decoder architecture. J Signal Process Syst
64(1):1–16

39. Naessens F, Bougard B, Bressinck S, Hollevoet L, Raghavan P, Van der Perre L, Catthoor
F (2008) A unified instruction set programmable architecture for multi-standard advanced
forward error correction. In: Proceedings of the IEEE workshop on signal processing systems
(SiPS)

40. Giuseppe Gentile MR, Fanucci L (2010) A multi-standard flexible turbo/LDPC decoder via
ASIC design. In: Proceedings of the 6th international symposium on turbo codes and iterative
information processing

41. Dielissen J, Engin N, Sawitzki S, van Berkel K (2008) Multistandard fec decoders for wireless
devices. IEEE Trans Circuits Syst II Express Briefs 55(3):284–288

42. Vogt T, Wehn N (2008) A reconfigurable application specific instruction set processor for
convolutional and turbo decoding in a sdr environment. In: Proceedings of the design,
automation test in Europe conference & exhibition (DATE)

43. Alles M, Vogt T, Wehn N (2008) FlexiChaP: a reconfigurable ASIP for convolutional, turbo,
and LDPC code decoding. In: Proceedings of the 5th international symposium on turbo codes
and related topics

44. Tarable A, Benedetto S, Montorsi G (2004) Mapping interleaver laws to parallel turbo and ldpc
decoders architectures. IEEE Trans Inf Theory 50(9):2002–2009

45. Sani A, Coussy P, Chavet C (2013) A first step toward on-chip memory mapping for parallel
turbo and LDPC decoders: a polynomial time mapping algorithm. IEEE Trans Signal Process
61(16):4127–4140

46. Moussa H, Baghdadi A, Jezequel M (2008) Binary de Bruijn on-chip network for a flexible
multiprocessor LDPC decoder. In: Proceedings of the 45th design automation conference
(DAC)

8 ASIP Design for Multi-Standard Channel Decoders 175

47. Condo C, Martina M, Masera G (2012) A network-on-chip-based turbo/LDPC decoder
architecture. In: Proceedings of the design, automation test in Europe conference & exhibition
(DATE)

48. Murugappa P, Lapotre V, Baghdadi A, Jezequel M (2013) Rapid design and prototyping
of a reconfigurable decoder architecture for QC-LDPC codes. In: Proceedings of the IEEE
international symposium on rapid system prototyping (RSP)

49. Lapotre V, Murugappa P, Gogniat G, Baghdadi A, Diguet J-P, Bazin J-N, Hubner (2013)
Optimizations for an efficient reconfiguration of an ASIP-based turbo decoder. In: Proceedings
of the IEEE international symposium on circuits and systems (ISCAS)

	8 ASIP Design for Multi-Standard Channel Decoders
	8.1 Flexibility Requirement in Channel Decoder Design
	8.2 ASIP Design Approach
	8.3 ASIP-Based Decoders for Turbo Codes
	8.3.1 Hardware-Efficient Decoding Algorithm
	8.3.2 State-of-the-Art on Turbo Codes Decoders
	8.3.3 TurbASIP: Highly Flexible ASIP
	8.3.3.1 Overview of TurbASIP Architecture
	8.3.3.2 Pipeline Architecture and Instruction-Set
	8.3.3.3 Results and Architecture Efficiency Definition

	8.3.4 TDecASIP: Parameterized Area-Efficient ASIP
	8.3.4.1 Overview of TDecASIP Architecture
	8.3.4.2 Results and Discussions

	8.4 Flexibility Increase to Support Multiple Channel Code Classes
	8.5 Summary
	References

