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7.1 Introduction

In the last year several standards for both wired and wireless communications have
been proposed. Indeed, modern terminals, such as smartphones and tablets, are
equipped with different modules for ubiquitous access to internet. As argued in [38],
flexibility has become a fundamental property of architectures for digital baseband
processing, as it allows to support different operating modes more efficiently than
simply placing several modules together and turn them on or off. Unfortunately,
the high throughputs to be sustained make actual flexibility implementation a
challenging task, especially in the context of channel code decoder architectures,
where often decoding algorithms are both complex and iterative.

High throughput imposes to have parallel architectures made of several pro-
cessing elements (PEs) connected via and appropriate communication backbone.
The design of an optimized architecture for a single code is a well-established
problem and has been largely investigated in the past. On the contrary, depending on
the amount of required flexibility, the problem of designing efficient architectures
becomes increasingly challenging. In this sense we can have two main classes of
flexibility: (a) architectures that support only one family of codes (such as turbo
codes or LDPC codes) or (b) architectures that support more families of codes
(e.g., both turbo and LDPC codes). In order to achieve interoperability among
different standards, the second class is the most interesting one. Indeed it contains
three sub-classes of particular interest: (1) architectures that support different codes
within a standard (e.g., both turbo and LDPC codes for the WiMAX standard),
(2) architectures that support different codes within more standards (e.g., both turbo
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and LDPC codes for WiFi, WiMAX and LTE standards), (3) architectures that
support different codes and that are future proof or fully flexible, which means
that these architectures can accommodate any code, provided that the amount of
available resources is enough. This last case is the most challenging one as adding
flexibility can lead to less optimized solutions with respect to cases (1) and (2).
Nevertheless, all the aforementioned cases require to design both flexible PEs and
flexible communication structures.

Flexibility in the PEs can be achieved adding some multiplexers to select among
a fixed set of alternatives or via programmable architectures such as Application
Specific Instruction-set Processors (ASIPs). On the other hand, flexibility in the
communication structure can be obtained resorting to crossbars, shuffling-networks,
or borrowing results from the general NoC paradigm.

7.2 Flexibility in the Communication Structure

Some works in the literature propose flexible and efficient communication structures
either for turbo [16] or LDPC codes [4] relying on crossbars, or shuffling-networks.
Unfortunately, these solutions are usually tailored around specific characteristics of
some particular classes of codes, thus not being used or extended in the case of a
general approach. Stemming from the NoC paradigm [12], Neeb et al. [36] proposed
an interesting NoC-based approach to enable flexible and efficient interconnection
among P processing elements (PE) in parallel turbo decoder architectures. Accord-
ing to [43] this approach, where the network structure is used to connect PEs
belonging to the same Intellectual Property (IP), is referred to as intra-IP NoC.
The literature shows that the intra-IP NoC approach has been mainly studied in
the context of (1) parallel turbo decoder architectures [25, 27, 30], (2) semiparallel
LDPC code decoder architectures [14,31,43], (3) flexible turbo/LDPC code decoder
architectures [6, 31]. In the following we will assume that each PE is made of a
processing core and a memory (see Fig. 7.1a), where the processing core implements
LLR (Logarithmic Likelihood Ratio) computation/updating operations and the
memory is used both for the storage of data coming from the network and as an
input buffer for the processing core.

IntraIP-NoCs tailored around iterative channel decoder architectures exhibit
some specific features that are summarized in the following. Since the data block
is partitioned into P subblocks and each PE is assigned one subblock, all nodes
exchange nearly the same amount of data. Moreover, idle times in the PEs are
reduced to maximize the throughput. As a consequence, the nodes exchange the
data at a fairly constant rate. Besides, due to the random nature of interleavers for
turbo codes and H matrices for LDPC codes, the pattern of connection among PE
has little adjacency. One of the main consequences of these properties is that the
injected traffic load tends to be uniform both in time and space. Furthermore, since
decoding algorithms are iterative, minimizing the latency of the single iteration is of
paramount importance to achieve high throughput. Thus, simple routing algorithms
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and routing circuits have to be designed. To this purpose the designer can take
advantage of the uniform traffic load and the homogenous nature of the nodes. It
is worth noting that, as the amount of packets injected into the network is known
and depends on P and on the data block size Nf , flow control is not required.
Nevertheless, it is important to define the packet injection rate r, namely the number
of packets injected in the network by a PE in a clock period. This parameter can
simultaneously model two phenomena: (1) the use of different clock frequencies for
the PEs and the network (usually the maximum clock frequency of PEs is lower than
the one used for the network). (2) the fact that a PE may not produce a valid packet
at each clock cycle. Finally, if the permutation laws of the turbo code interleavers
and the H matrices of the LDPC codes considered by a decoder are known, then
the traffic patterns can be derived by off-line analysis. This leads to the so called
zero-overhead networks introduced in [43] and further developed in [25,30], where
all the routing information is precalculated by the means of a simulator, as the one
in [24], leading to significant simplification in the architecture of the nodes.

The structure of the packets is common to all the proposed architectures, namely
each packet is made of a header and a payload. The header contains routing
information, such as the identifier of the destination PE that, for P processing
elements, requires log2(P) bits. The payload contains both a refined LLR and the
memory location where the LLR has to be stored. Even if the number of bits
used to represent LLRs impacts on the bit-error-rate performance of a code, 8
bits is a typical value. On the other hand, the memory location is represented on
�log2(Nf /P)� bits.

The NoC-based approaches proposed in the literature for iterative channel
decoder architectures can be divided into two main categories depending on the type
of network they employ: (1) indirect networks [30,31] (2) direct networks [6,14,25].
In the following both approaches are described.

7.2.1 Indirect Networks

The most popular indirect network topologies proposed in the literature for iterative
channel decoder architectures are Multistage Interconnection Networks (MINs)
[10]. MINs rely on the cascade of several switch stages, each of which is often
referred to as router in the literature of NoC-based iterative channel decoder
architectures. On the other hand, PEs are not part of the routers, but they serve
as both the input and the output of the network (see Fig. 7.1a). Examples of such
networks are Clos, Benes, Omega, and Butterfly networks [10]. The number of
stages and the number of switches per stage changes with the topology, as an
example the Butterfly network is made of log2(P) stages where each stage relies
on P/2 switches.

It is worth noting that the degree of connectivity obtained using these networks is
larger than that achievable with shared bus structures, but it is smaller than the one
reachable with crossbars. As a consequence, when two or more paths connecting
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Fig. 7.1 Network and node architecture: (a) indirect network example, (b) direct network example

source/destination PEs cross, conflicts arise. A simple solution to handle conflicts
is to include two FIFO queues in the router architecture. Thus, each router relies
on a 2× 2 switch, two input FIFOs for storing conflicting packets and a routing
and arbitration block that serves the input queues with a round-robin policy and
generates all the required control signals as depicted in the top part of Fig. 7.1a.

The most significant results in the literature concerning indirect networks relate
to Butterfly and Benes networks [27,30]. The Butterfly network features logarithmic
diameter and a highly scalable recursive structure. Moreover, routing in the Butterfly
network is very simple as the bits of the destination PE are used to select the output
port at each stage of the network. On the other hand, this network has no path
diversity, namely there exist only one path connecting two PEs; as a consequence,
conflicts can arise frequently.

An alternative solution to partially solve conflicts is the Benes network. The
Benes network has a larger path diversity than the Butterfly network, even if
its diameter is about two times the diameter of the Butterfly network. However,
conflicts are avoided with the Benes network only if the source/destination pattern is
a permutation of the PE identifiers. Unfortunately, this is not always the case of turbo
and LDPC codes. An interesting solution to solve this problem is the one described
in [30], where a time-division-multiple-access architecture is proposed. The idea
is to exploit the deterministic characteristics of the traffic to assign a time slot to
each packet, that is the cycle when the packet will be injected into the network.
As a consequence, the network inputs are scheduled such that at each cycle there
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is only one packet per output port. Then, the routing information is precalculated
off-line and stored in the packet header, leading to an architecture belonging to the
zero-overhead class.

The analysis presented in [30] refers to r = 0.2 to avoid network congestion
for both Butterfly and Benes networks. Moreover, implementation results shown in
[27] on a 130 nm standard cell technology for P = 16 show that the Benes network
performs better than the Butterfly one both in terms of occupied area and maximum
achievable frequency/throughput. The Butterfly network occupies 0.75 mm2 and
achieves a clock frequency of 345 MHz corresponding to a throughput of 138 Mb/s.
On the other hand, the Benes network occupies only 0.48 mm2 (−35 %) and
achieves a clock frequency of 381 MHz (+10.4 %) and a throughput of 152 Mb/s
(+10 %).

7.2.2 Direct Networks

Direct networks analyzed in the literature [14, 25, 31] rely on P nodes whose
architecture can be seen as a generalization of the one proposed for indirect
networks. Indeed, each node contains one PE, D input, and D output connections
from/to the network, where D is the topology degree, and a routing and arbitration
block (see Fig. 7.1b). Thus, each node relies on D+1 input FIFOs and a (D+1)×
(D+1) switch.

In [31] binary de-Bruijn topologies are proposed to design a flexible interconnec-
tion structure for an LDPC and a turbo/LDPC code decoder respectively. The binary
de-Bruijn network is indeed very appealing to support the communications of a
multiprocessor turbo/LDPC decoder as it features good path diversity properties. In
addition, de-Bruijn networks have logarithmic diameter that leads to small latencies,
and a recursive structure that makes them highly scalable. The analysis presented in
[31] highlights that flexibility comes at the expense of a larger area with respect to
indirect networks. Indeed, scaling the results to a 130 nm standard cell technology
for P = 16 to compare with indirect network results, we obtain that the binary
de-Bruijn network requires 0.64 mm2 for a 244 MHz clock frequency, that is about
+33 % of area and −36 % of clock frequency.

The works in [14, 25] extend the analysis to other topologies. Both [14, 25]
analyze 2D-mesh topologies, showing interesting speed-up and scalability results.
Moreover, in [25] several topologies are compared for network degrees ranging
from 2 to 4. The analysis corroborates the results presented in [31] by showing that
logarithmic topologies as the (generalized) de-Bruijn and Kautz ones are the most
suited to achieve both flexibility and high performance. Moreover, experimental
results presented in [25] for a wide number of cases prove that zero-overhead
architectures require less area with respect to the ones where hardware resources
for the routing algorithm are employed. Considering P = 16, r = 0.33 and a
clock frequency of 200 MHz, zero-overhead architectures for generalized Kautz
topologies achieve in the best case a throughput of about 102 Mb/s with an area
of 0.74 mm2 for D = 2 and about 103 Mb/s with 0.92 mm2 for D = 4.
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7.3 Review of Flexible Decoding Architectures

In this section, the state of the art on flexible channel decoders is briefly reviewed
for the two most interesting classes mentioned in Sect. 7.1, namely architectures
supporting different codes within more standards (multi-standard architectures) and
architectures that in principle accommodate any code (fully flexible architectures).

7.3.1 Multi-Standard Architectures

While the same type of code can be used in various standards, code size, rate, and
construction method can vary greatly between one application and the other. A first
step towards flexibility in channel decoders is then guaranteeing support for a single
type of code, taking in account the code parameters employed in different standards.

A flexible turbo code decoder architecture is devised in [19], where a decoder
targeting both 3GPP-LTE and Mobile WiMAX standards is proposed. The different
nature of the considered turbo codes (single-binary in 3GPP-LTE and double-
binary in Mobile WiMAX) is tackled by means of bit-to-symbol and symbol-to-bit
conversions [17], addressed later in Sect. 7.4.1 of this chapter, that allow almost
complete memory sharing. Moreover, a novel dual-mode interleaver is introduced
that reduces the overhead relative to the implementation of the native ARP [15] and
QPP [45] interleavers respectively. The resulting multi-standard decoder can reach
up to 186 Mb/s with moderate complexity.

Multi-standard support is achieved in [1] by means of partially parallel turbo
code decoder based on ASIPs. Support is given for 3GPP-LTE, WiMAX, and DVB-
RCS standards, reaching a maximum throughput of 170 Mb/s and yielding good
efficiency. Different ASIPs are used for the in-order and interleaved phases of
the decoding process, and the complexity and latency are kept in check via smart
information exchange networks and pipeline idle time minimization.

The flexible LDPC decoder described in [43] is one of the first work to consider
a Network-on-Chip (NoC) as a possible interconnection structure. Together with the
design of processing elements, the design of the application-specific NoC is carried
out in detail: it is shown that many of the characteristics of general purpose NoCs
are not necessary, thus reducing the overhead commonly associated with complex
interconnections. The complete decoder is arranged on a toroidal mesh topology.

A decoder with extremely good error correction capabilities is shown in [39].
It is designed targeting LDPC convolutional codes that can be obtained from quasi-
cyclic LDPC codes. Again, the regular structure of these codes allows for easy
design of largely parallel structure. Up to 2 Gb/s are obtained with a frequency
of 100 MHz.
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7.3.2 Fully Flexible Architectures

Few recent works have focused on extending the concept of flexible decoders not
only to multiple codes, but also to multiple code types, providing complete support
for whole standards.

The work in [33] describes the design of a multi-standard turbo/LDPC decoder
based on ASIPs and the sharing of memories between the two code types. Each
ASIP has two separate datapaths, one for each decoding mode: eight ASIPs are
instantiated and connected via a simple but flexible interconnection network that
can be reconfigured when switching decoding mode to adapt to the different
communication patterns. Also in [2] is presented an ASIP-based decoder that
includes convolutional code decoding as well. This work is characterized by
extremely small area occupation and high achievable frequency that helps to meet
most throughput requirements for the considered standards.

The works presented in [11, 35, 42] exploit commonalities between turbo and
LDPC decoding to design a unified architecture for multiple standards. By viewing
an LDPC code as a series of turbo codes [23], the BCJR algorithm can be applied to
both code types. The shared datapath and memories result in an overall area much
lower than separate dedicated decoder implementations.

7.4 Improving the Efficiency of NoC-Based Decoders

It has been shown in the previous section that NoCs are extremely flexible
interconnection structures, able to guarantee connectivity among all the nodes of
the network. NoC-based decoders can in fact support up to numerous standards
at the same time [2, 7, 11, 41]. However, flexibility comes at the cost of increased
interconnection complexity and additional latencies that impact heavily on both
throughput and energy consumption, reducing the overall decoder efficiency. NoC-
induced latencies in particular can be a major obstacle in extending the support of
a decoder to multiple standards, whereas excessive energy consumption and area
occupation limit the set of applications in which the decoder can be employed. To
reduce the impact of NoCs on the decoder efficiency, various techniques can be
applied.

7.4.1 Energy Reduction Techniques

The area occupation of a NoC usually consists of 20–40 % of the total decoder
area [9, 26] that results in a proportional impact on the power consumption. It is
consequently desirable to reduce the complexity of the NoC as much as possible.
A set of interesting techniques is considered in [26], aimed at limiting the width of
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the channels between the nodes of NoC-based turbo code decoders by reducing the
number of concurrently transmitted extrinsic metrics and the number of quantization
bits of each metric.

Let us define λ ext [u] as the extrinsic information associated to symbol u, obtained
at the output of the SISO decoder at each half-iteration. All λ ext [u] must be
sent through the NoC according to the interleaving rule: the width of each NoC
channel must accommodate, depending on the nature of the considered code, the
transmission of one or more concurrent extrinsic metrics. In Double-Binary turbo
codes like the ones used in WiMAX, where each symbol u is composed of two
bits, the transmitted λ ext [u] is an array of three elements. However, following the
architecture presented in [18], it is possible to switch between symbol-level λ ext [u]
and bit-level λ ext [A] and λ ext [B]. The width of the transmitted packet is thus reduced
by 1/3, together with the width of the memories in which λ ext [u] is stored. The
consequent area reduction is much more consistent than the increment brought by
the bit-to-symbol and symbol-to-bit conversion units, necessary since the BCJR
algorithm implemented in SISOs requires symbol-level metrics. The conversion
operation, however, introduces an overall Bit Error Rate (BER) performance loss
of about 0.2 dB. A further step towards the reduction of the area occupation of the
NoC and of the decoder in general can be taken by addressing the quantization
of λ ext [A] and λ ext [B]. Applying the Pseudo-Floating-Point (PFP) representation
suggested in [37], it is possible to reduce the quantization without incurring in
significant performance degradation. The idea is based on the fact that bits within
the representation of extrinsic metrics play a different role in the decoding process
according to their weight, as highlighted also in [40, 44]. Analyzing the binary
representation of λ ext [A] and λ ext [B] from the most significant bit to the least
significant bit, it is possible to detect the first zero-to-one or one-to-zero transition.
This signals the starting bit of the significant part of the extrinsic metric. Finally, an
equal number of bits is assigned to the significant parts of both λ ext [A] and λ ext [B],
alongside a common shift factor used at reception to reconstruct the extrinsic values.
It is show in [26] that the joint application of both methods can reduce the total NoC
channel width of more than 50 % that, depending on the router architecture and
decoder structure, can save up to 40 % of the total NoC area.

In iteratively decoded codes like turbo and LDPC codes, the energy required
for the decoding of a frame is directly proportional to the number of performed
iterations: limiting their number is then an effective way of limiting the energy
consumption. A few Early Stopping Criteria (ESCs) can be found in the literature
for turbo codes [13, 28], but many more have been proposed for LDPC codes,
e.g., [3, 22, 29]. Since LDPCs have a straightforward method of identification of
correct decoding, existing ESCs focus on the early identification of situations in
which the decoding is going to fail. This is usually achieved via observation of
the evolution of metrics throughout different iterations. Most ESCs offer limited
flexibility, and their performance can vary substantially when applied to different
codes. The Multi-Standard-ESC (MSESC) proposed in [8] has been designed to
adapt on-the-fly to code parameters and channel conditions, thus being particularly
fit for flexible multi-standard decoders. During each iteration, by comparing the
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Fig. 7.2 MSESC performance for WiMAX codes

Check-Node-Mean-Magnitude metric [3] and the syndrome value against three
thresholds T 1, T 2, and T 3, MSESC decides on the stopping of the decoding process,
effectively identifying both impossible decoding and insufficient available iterations
for successful decoding. The thresholds can be computed as follows:

T 1 = M ·2−6 T 2 = M ·2bits f T 3 = M ·2−5 = T 1 ·2 (7.1)

where M is the number of rows in the LDPC parity check matrix and bits f is the
number of fractional bits assigned to the representation of LLRs. The dependency of
T 1, T 2, and T 3 on code parameters and design choices allows MSESC to maximize
the number of saved iterations without affecting the BER performance with a very
wide range of codes. Figure 7.2 shows the number of performed iterations for the
decoding of three WiMAX codes against the Signal-to-Noise Ratio (SNR), with and
without MSESC. The codes are characterized by different block lengths and rates,
but MSESC maintains its effectiveness with all of them. At low SNR successful
decoding is improbable, and after very few iterations the decoding is stopped, once
impossible decoding is identified. The performed iterations start to rise with the
SNR, reaching a peak in the early waterfall region, where successful decoding is
likely but still requires a high number of iterations. Finally, at high SNR, early
impossible decoding is very rare, and MSESC is almost always deactivated. The
implementation of MSESC reported in [8] shows that the simple logic involved
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in the on-the-fly computation of threshold values guarantees a very small power
consumption overhead that is compensated by the reduced number of iterations.
Compared to decoders implementing no ESCs or alternative solutions, MSESC
shows energy saving ranging from 10 to 90 %.

7.4.2 Latency Reduction Techniques

The latency introduced by NoCs with respect to less flexible interconnection struc-
tures is unsustainable for most decoders, due to the strict throughput requirements
of many communication standards. In fact the required throughput imposes an upper
bound on the duration of the decoding process and, consequently, on delivery time
of each message injected in the NoC: high message injection rates, traffic, and
collisions often result in late messages. These, even in small percentages, can be
disastrous for the decoder BER performance.

A common choice to avoid late messages is to stall the decoder between
decoding phases, waiting for the delivery of all information. Unfortunately, a
straightforward implementation of this approach severely limits the achievable
throughput. A possible solution has been studied in [26, 32] for turbo codes and [5]
for LDPC codes, where the reliability of the exchanged information is evaluated
through threshold-based measures. In [32], reliable information is characterized
by a small enough difference between a-priori and extrinsic information, while in
[5] reliable LLRs are those with a large enough magnitude. In both cases, if the
information is deemed reliable it is not exchanged anymore, reducing the traffic on
the NoC and possibly the total delivery time. This technique can be particularly
effective in presence of large networks with light traffic patterns, where up to 20 %
throughput gains have been observed.

Stalling the decoder, however, is often unfeasible, especially in decoders with
heavy traffic loads, in which the transmission times are already long and additional
latency cannot be sustained. A possible approach in these situations can be the
artificial reduction of the rate of packet injection r in the NoC by setting the
frequency of the network at a multiple of that of the processing elements, that is
reducing the value of r. While effective, this solution is extremely expensive in
terms of power consumption. A set of alternative methods have been studied in [9],
aimed at the reduction and optimization of NoC traffic. The Hard Importance (HI)
method is very similar to the threshold-based reliability measures devised in [32]
and [5], while the Soft Importance (SI) allows to discard low-importance packets
in case they collide once they have been injected in the NoC. Both techniques
offer significant advantages in heavy traffic conditions, reducing the percentage
of late messages and the NoC switching activity. The remaining late messages,
however, still cause severe performance degradation in the majority of cases. Traffic
optimization is based on the fact that an estimate of the number of clock cycles
available for message delivery can be sent together with the information and can be
updated in the NoC. This field is used as a priority indicator: most urgent messages
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are favored in case of collisions. Exploiting this Urgency (U) priority field, NoC
buffers can be changed from FIFOs to urgency-ordered buffers (Buffer Reordering,
BR) so that urgent messages are always the first to be served in routers. These
two traffic optimization methods are extremely effective in guaranteeing on-time
message delivery. Figure 7.3 plots the BER performance of a WiMAX turbo code
mapped on a 16 PE Kautz NoC, under the influence of different traffic handling
techniques. The “No network” represents the achievable performance, with 0 % late
updates, while “No traffic handling” has been obtained without the application of
any of the described methods. It can be noticed how traffic reduction alone (HI+SI)
is not able to bring the BER to acceptable levels. On the contrary, very good results
are shown by traffic optimization (BR+U) and even more performance improvement
is observed when all four techniques work together. Implementation of the four
techniques on the decoder presented in [7] results in a 13 % area overhead and a
15 % power consumption reduction, thanks to the lower NoC frequency [9].

7.5 Dynamic Reconfiguration

Extensive research has been conducted in the last few years on flexible multi-mode
and multi-standard decoding architectures, and large efforts have been spent to limit
the impact of flexibility on achievable throughput and dissipated energy. However,
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the issue of dynamic reconfiguration has been often neglected in this context.
Surprisingly enough, most of flexible decoders available in the open literature
[2, 11, 25, 27, 27, 31, 35, 42, 43] efficiently work on a wide range of codes, but do
not support the run-time switch from one code to another.

Very few contributions have considered the fundamental requirement of rapidly
reconfiguring the architecture for a new decoding task and the related overheads in
terms of area and energy [7,20,21,34]. Change of decoding mode, standard, or code
parameters requires not only hardware support, but also memory initialization and
specific controls; moreover, since in many standards a code switch can be issued as
early as one data frame ahead, reconfiguration time is also a major need.

In this section, a detailed analysis of the reconfiguration issue is carried out
and the different kinds of reconfiguration are described, together with alternative
solutions and trade-offs.

7.5.1 The Reconfiguration Task

We can distinguish between three levels of dynamic reconfiguration, associated to
growing levels of flexibility and complexity:

1. intra-standard reconfiguration,
2. inter-standard reconfiguration,
3. reconfiguration to a new code.

The first case does not refer to a change of standard, but simply to a change of
communication mode: the decoder has to switch between two codes of the same
family, belonging to the same standard. New and old codes can have different length
and code rate, but they typically share many other elements, such as, the decoding
algorithm and the iteration control. The similarity between the two codes can be
exploited to simplify the configuration process and reduce the amount of data to
be updated. In the second case, the switch is between two codes with potentially
large differences with respect to each other: in addition to code length and rate,
other important features may be changed, such as, the decoding algorithm or the
permutation law. The reconfiguration process tends to be more complex and it
involves a larger amount of data. The last case is of interest for fully flexible or
future-proof decoders, which are able to dynamically adapt to any code in the
considered families (e.g., turbo and LDPC codes). This flexibility is also extended to
codes not yet known at the time of decoder design, provided that the length is within
limits that depend on the size of the internal memories allocated to store received
frames.

The actual complexity of the dynamic reconfiguration and its impact on the
overall decoder in terms of additional occupied area and dissipated energy depend
on the amount of internal data to be updated when switching to a new code and on
the available time to complete this operation.
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In modern wireless communication systems, a code switch can be issued as
early as one data block ahead and the decoder must be reconfigured for the new
data block while it is still running on the previous one. Therefore, a time efficient
reconfiguration technique is mandatory. The worst-case reconfiguration latency can
be simply expressed as

Lrec =
Nf R

T
(7.2)

where Nf is the bit length of the current block, R is the code rate, and T is the
specified throughput. It can be easily seen from (7.2) that Lrec tends to become very
short in the case of short block, low code rate, and high throughput. Considering
current wireless communication standards, it has a typical value of a few μs. As
an example, in the 3GPP LTE standard, 188 different information block sizes are
specified, ranging from 40 to 6,144, the lowest code rate is 1/3 and the throughput
can be as high as 450 Mbit/s for the down-link; the peak throughput is specified
for the largest block, while it scales for shorter blocks. Using the largest block, (7.2)
gives a latency of 13.6 μs. The requirement on Lrec is expected to become even more
severe in LTE Advanced, which specifies a throughput as high as 1 Gbit/s.

Estimating the amount of data to be updated at the reconfiguration of the decoder
is rather difficult, as it is heavily dependent on the specific adopted architecture and
on the kind of addressed reconfiguration.

An FPGA based decoder is intrinsically reconfigurable, as the running decoder
can be stopped at any time and a new design can be loaded into the programmable
device to support a completely different code. Current FPGA technology allows
for run-time partial configuration, which means that the decoder structure can be
modified or extended, while it is serving the current decoding task. These dynamic
reconfiguration techniques offer a large potential flexibility, ranging from the simple
switch between two similar codes, decoded by architectures that share a high
percentage of hardware resources, up to the load of a complete new decoder, running
a different decoding algorithm. However, FPGA configuration is still a slow and
energy inefficient process, which involves the uploading of tens of Mbytes, therefore
it is hardly acceptable for flexible decoding applications, with severe speed and
power consumption constraints.

Large flexibility is also offered by ASIP-based decoders, which are basically
customized processors with specialized datapath and instruction set. In this kind
of decoder, the dynamic reconfiguration can be viewed as a context switch, where
instruction memory and internal registers are dynamically loaded with new contents
when the switch to a new code is requested. In [21], the amount of configuration
data for a multi-ASIP decoder is evaluated as equal to about 1 kbits, due to both
processor instructions (around 2/3 of the total) and parameters (1/3). Proper
hardware resources are necessary to support the context switch (e.g., data busses,
shadow memory, and registers).

As a further alternative, which was explored in [21] and [7], the single processing
element can be implemented in the form of a parameterized dedicated architecture,
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which only needs a few configuration bits, as there is no instruction memory . If the
decoder flexibility is limited to a small number of standards and both interleaving
laws and parity check matrices are algorithmically generated by means of simple
parameterized hardware components, then the whole configuration becomes very
easy, fast, and involves a reduced amount of data.

Finally, the decoder can be based on an application specific NoC, with param-
eterized processing elements and routing elements [7]. This fully flexible solution
supports the third level of configuration mentioned above and allows for dynamic
switching between any couple of codes, including codes with a structure of either
interleaver or parity check matrix that cannot be generated algorithmically, or is not
known at the design time. In this case, the amount of data that need to be updated is
significantly larger, because it includes the management of the routing. Basically, for
each generated LLR, its destination node in the NoC must be available to properly
forward the LLR. As a consequence, when the decoder is configured for a size N
code, the number of bits to be uploaded tends to grow as O(N�log2N�), where
N is the codes size and �log2N� bits are used to represent each location address.
For example, to support the LTE codes, more than 150,000 reconfiguration bits are
necessary to update the NoC routing.

From these rough evaluations, one can see that the reconfiguration process
implies quite a large throughput of data moved to the decoder. Therefore, an efficient
organization of the configuration process is of utmost importance to confine the
related complexity and energy overheads.

7.5.2 Reconfiguration of ASIP Based Decoders

The problem of dynamically reconfiguring an ASIP based turbo decoder and the
development of an efficient hardware implementation is addressed in [20, 21, 34]. It
is assumed that each received block is associated to a specific configuration and that
the loading of the configuration for a new block is performed during the processing
of the current block.

An already available multi-mode and multi-standard turbo decoder [33] is
initially considered and a set of modifications are applied in order to enable
the dynamic switch between different codes. The original decoder architecture is
organized around two sets of ASIPs interconnected via a Butterfly Network on Chip,
where each set corresponds to a component decoder. Each ASIP unit includes ten
pipeline stages and it is associated to several memories, used to store input channel
LLR values, extrinsic information, state metric, instructions, and configuration data.
The required interleaving/deinterleaving addresses are generated algorithmically
and make use of a set of parameters which depend on the specific code to be
supported and therefore are part of the configuration. From the complete list of
configuration data, the information to be updated at each code switch is classified
into four categories:
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1. component decoder dependent parameters,
2. identical parameters for all ASIPs,
3. ASIP dependent parameters,
4. parameters required only by the last ASIP of a component decoder (for tail bits).

A low latency configuration process is then developed exploiting both multicast and
broadcast mechanisms. Two multicast operations are used to update the first class
of parameters, one multicast operation is necessary for parameters shared among all
ASIPs, and multiple unicast transfers are exploited to upload the ASIP dependent
parameters. Moreover, the ASIP configuration load has been significantly reduced
by adopting a unified program, which works for all considered codes, including
double-binary turbo codes. Finally, the internal configuration memory has been
extended to store multiple configurations at the same time: this allows to save time
in the switch between frequently used codes.

The decoder has been enriched with a dynamic reconfiguration infrastructure that
supports unicast, multicast, and broadcast transfers. The adopted solution consists
of a master-slave 26 bit bus-based structure. A master unit initially receives the
configuration data, which are then moved to one or multiple slave units, based on
the required type of transfer. A dedicated unit allows to select at run-time the target
destination ASIPs. Finally, configuration data are moved from the slave units to their
final destinations.

This configuration infrastructure and the related protocol controller have been
implemented using both FPGA and ASIC technologies. The worst case latency
is lower than 10 μs in the case of FPGA implementation, while 1 μs is reached
with a 65 nm ASIC technology, allowing for a 500 MHz clock frequency. The
corresponding area overhead is around 2 % of the decoder.

The described solution allows to handle the configuration process in two different
ways. In the first approach, the configuration data is generated off-line for all
possible codes and stored in a global memory. At every code switch, a configuration
manager simply reads the new configuration data from the global memory and send
it to the decoder, by means of the dedicated infrastructure. This static solution
is functionally simple, but requires a large global memory to support a large set
of codes and it is not compatible with any extension. The second approach is
dynamic and allows for the run-time generation of new configurations. The single
bus reconfiguration architecture, applied to a multi-ASIP decoder, is shown in
Fig. 7.4a, where a reconfiguration interface (RI) connects each the shared bus to
each ASIP and the reconfiguration data can be provided by either a memory or a
reconfiguration manager.

Although the described reconfiguration technique is tailored around a specific
ASIP based decoder that only supports turbo codes in WiMAX and LTE standards,
it can be easily extended to include more codes. However, since the reconfiguration
infrastructure uses a shared bus, this solution is expected to become less efficient if
the number of ASIPs or PEs to be configured in the decoder is significantly larger
than shown in [21].
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Fig. 7.4 Reconfiguration architectures: (a) single bus architecture, (b) multiple bus architecture

7.5.3 Reconfiguration of NoC Based Decoders

For the decoding architecture described in Sect. 7.3.2, the reconfiguration task
affects the content of the location memory, which stores the destination addresses
for each processed message, and a few parameters, such as check node degrees
and the SISO window size. We assume that the whole set of reconfiguration data
are saved in a distributed configuration memory (CM), allocated in each PE of the
decoder. As reconfiguration must occur within the decoding of the previous block,
the NoC interconnects cannot be exploited to update the CM in each processing
element. Instead, Nb buses are dedicated to the configuration task, and each bus
serves P/Nb PEs. The use of multiple buses allows to increase the bandwidth and to
handle larger amount of reconfiguration data. This high level architecture is shown



7 MP-SoC/NoC Architectures for Error Correction 145

rec. time

it1 it2 it3 it4 it1 it2 it3 it4

rec. time

it1 it2 it3 it4 it1 it2

rec. time

it1 it2 it3 it1

a

b

c

Fig. 7.5 Examples of reconfiguration. Reconfiguration can be overlapped with a single decoding
iteration (a), with two iterations (b), or with a number of iterations (c)

in Fig. 7.4b, where multiple buses (Nb) concurrently update the decoding PEs and
reconfiguration data are taken from a memory or from a manager, as in part (a) of
the figure.

The CM is managed as a circular buffer, where two sets of configuration data can
be present at the same time: the one necessary for the decoding of the current block,
and a new one, to be used when the decoder will switch to a new code. Proper read
and write pointers allow to separate old and new configurations. Limiting the size B
of the CM is of interest, because it impacts on area and energy consumption. To this
purpose, multiple strategies can be adopted. The first idea is to partially overlap the
configuration process with the decoding of one or more blocks (No) of the current
code. A second option is to overlap an additional part of the configuration process
with the first decoding iteration of the newly loaded code. A final option is skipping
one or multiple iterations (Nsk) while decoding the last received block: the saved
time can be used to complete the loading of CM before starting the decoding of the
new block. Differently from the other solutions, the last one has an impact on the
error correction performance, because of the skipped iterations.

A few examples of reconfiguration are shown in Fig. 7.5, where distinct patterns
are used to indicate blocks decoded with different codes. In part (a) of the Figure, the
switch to a new code is considered, after four decoding iterations with the previous
code: as new and old codes have similar size, the reconfiguration time is close to the
time length of a single iteration. Therefore, in this case, No = 1 and Nsk = 0. In part
(b), the destination code is longer and reconfiguration time needs to be extended
to cover more than one iteration. Finally, in part (c), the destination code is much
longer than the current code, therefore, one decoding iteration is skipped (Nsk = 1).
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In general, given a set of standards and turbo or LDPC codes to be supported,
the reconfigurable decoder can be designed by selecting a proper combination of
the four mentioned parameters (the number of busses Nb, the buffer size B, the
number of overlapping blocks No, and the number of skipped iterations Nsk), with
the purpose of minimizing the overall complexity and matching the required latency
at the same time, with minimum impact on the error correction performance.

Intuitively, the global latency decreases with larger Nb, because more PEs can be
reconfigured at the same time. Moreover, increasing B reduces the need for skipped
iterations and overlapping blocks. When the destination code in the reconfiguration
process is larger than the current one, the uploading of CM may require either larger
No or larger Nsk.

A complete analysis of both intra- and inter-standard reconfiguration is presented
in [7], where several codes from a large variety of standards (WiFi, DVB-RCS,
WiMAX, CMMB, DTMB, 3GPP-LTE, and HPAV) are considered. Starting from
the architecture proposed in [6], an extended NoC based fully flexible decoder is
obtained with shared memory and interconnect resources. Moreover configuration
busses, memories, and control logic have been included to support dynamic switch
between different codes. The decoder has been synthetized with a 90 nm CMOS
standard cell technology, with 22 PEs running at 200 and 170 MHz when configured
to support LDPC and turbo decoding respectively; 300 MHz is the target clock
frequency for the NoC. The whole set of turbo and LDPC codes included in
the mentioned standards are fully supported and achievable throughput meets the
specifications until ten iterations for LDPC codes and eight for turbo codes. Post
place & route estimated area is 3.42 mm2 and peak dissipated power is 120 mW.

The reconfiguration process has been tested on every possible couple of codes
in the seven considered standards. From this large set of experiments, the following
conclusions can be drawn.

• The intra-standard reconfiguration is possible with no need for skipped iterations
(Nsk = 0) in all standards, except LTE, which requires Nsk > 0 in 6.8 % of possible
switches between the 188 specified codes.

• Inter-standard reconfiguration is also possible with no skipped iterations when
the new code is not belonging to LTE, CMMB, or DTMB standards.

• Inter-standard reconfigurations towards LTE, CMMB, or DTMB requires Nsk > 0
in a percentage of possible cases which ranges between 5 and 77 %. Moreover,
for all considered cases, Nsk ≤ 3.

The impact of the reconfiguration process and particularly of the skipped
iterations on the decoder performance has been assessed by means of BER
simulations, taking into account the probability that a reconfiguration is required
as a consequence of channel fading. Based on different fading scenarios, the
channel conditions may change at a rate fch between 10 and 150 Hz [7]. The actual
reconfiguration probability can be calculated as

Prec =
fchRN

T
(7.3)
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where the ratio T/N is the number of coded frames received per unit time. Prec

is shown to range between 0.25 and 0.3 % in presence of a fast moving receiver,
while it remains under 0.15 % in the other cases. The effect of Nsk ≤ 3 on
BER performance in such conditions is negligible and lower than 0.05 dB for all
considered codes and standards.
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