
Chapter 6
Stochastic Decoders for LDPC Codes

François Leduc-Primeau, Vincent C. Gaudet, and Warren J. Gross

6.1 Introduction

Low density parity check (LDPC) codes have now been established as one of the
leading channel codes for approaching the channel capacity in data storage and
communication systems. Compared to other codes, they stand out by their ability of
being decoded with a message-passing decoding algorithm that offers a large degree
of parallelism, which offers interesting possibilities for simultaneously achieving a
large coding gain and a high data throughput.

Exploiting all the available parallelism in message-passing decoding is difficult
because of the logic area required for replicating processing circuits, but also
because of the large number of wires required for exchanging messages. The use
of stochastic computing was proposed as a way of achieving highly parallel LDPC
decoders with a smaller logic and wiring complexity.

Current decoding algorithms based on stochastic computing do not outperform
standard algorithms on all fronts, but they generally offer a significant advantage in
average processing throughput normalized to circuit area.

We start this Chapter by providing an overview of LDPC codes. Readers familiar
with the topic can safely skip to Sect. 6.3, where we present the stochastic number
representation and the concept of stochastic computing. Section 6.4 then describes
several LDPC decoding algorithms that perform all their computations using the
stochastic representation. It is also possible to use the stochastic representation
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for only a subset of the computations. Section 6.5 presents an algorithm that uses
that approach and presents methods for efficiently converting numbers between a
conventional (deterministic) representation and a stochastic representation. Finally,
Sect. 6.6 presents a stochastic approach for decoding non-binary LDPC codes.

6.2 Overview of LDPC Codes

In this section, we review the aspects of LDPC codes that are required to explain the
stochastic decoding algorithms. We start in Sect. 6.2.1 by describing the structure of
the codes, and Sect. 6.2.2 then presents the standard decoding algorithm, called the
Sum–Product algorithm (SPA).

6.2.1 Structure

LDPC codes are part of the family of linear block codes, which are commonly
defined using a parity-check matrix H of size m×n. The codewords corresponding
to H are the column vectors x of length n for which H · x = 0, where 0 is the zero
vector. LDPC codes can be binary or non-binary. For a binary code, the elements
of H and x are from the Galois Field of order 2, or equivalently H ∈ {0,1}m×n and
x ∈ {0,1}n. Non-binary LDPC codes are defined similarly, but the elements of H
and x are taken from higher order Galois Fields. The rate r of a code expresses the
number of information bits contained in the codeword divided by the code length.
Assuming H is full rank, we have r = 1− m

n .
A block code can also be equivalently represented as a bipartite graph. We call a

node of the first type a variable node (VN), and a node of the second type a check
node (CN). Every row i of H corresponds to a check node ci, and every column j
of H corresponds to a variable node j. An edge exists between ci and v j if H(i, j) is
non-zero. The two equivalent representations are illustrated in Fig. 6.1.

The key property that distinguishes LDPC codes from other linear block codes
is that their parity-check matrix is sparse (or “low density”), in the sense that each
row and each column contains a small number of non-zero elements. Furthermore
this number does not depend on n. In other words, increasing the code size n also
increases the sparsity of H. The number of non-zero elements in a row of H is equal
to the number of edges incident on the corresponding check node and is called the
check node degree, denoted dc. Similarly the number of non-zero elements in a
column is called the variable node degree and denoted dv.

When all the rows of H have the same degree dc and all the columns have the
same degree dv, we say that the code is part of the family of regular (dv,dc) codes.
Code families are important for analyzing the error correction performance of an
LDPC code. When n is sufficiently large, two codes taken from the same family
will have the same error correction performance with high probability when decoded
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Fig. 6.1 Left: Graphical representation of a short binary LDPC code with n = 15 and m = 10.
Circles represent variable nodes and squares represent check nodes. Right: Parity-check matrix
representation of the same code

with the SPA. For a large n it is therefore possible to predict the performance of a
code by instead analyzing the average performance of the corresponding family of
codes, which is a much simpler task. Families of irregular codes can also be defined
by specifying a VN degree distribution and a CN degree distribution. For example,
we can define a family of irregular codes with rate 1

2 by specifying that 40 % of the
VNs have degree 3 and 60 % have degree 4, while 20 % of the CNs have degree 12
and 80 % have degree 6. The reader is advised to consult a reference such as [15]
for more information on the construction and analysis of LDPC codes.

6.2.2 Decoding

LDPC codes can be decoded using a variety of message-passing algorithms that
operate by passing messages on the edges of the code graph. These algorithms
are interesting because they have a low complexity per bit while also offering a
high level of parallelism. If the graph contains no cycles, there exists a message-
passing algorithm that yields the maximum-likelihood estimate of each transmitted
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bit, called the SPA. In practice, all good LDPC codes contain cycles, and in that case
the SPA is not guaranteed to generate the optimal estimate of each symbol. Despite
this fact, the SPA usually performs very well on graphs with cycles, and experiments
have shown that an LDPC code decoded with the SPA can still be used to approach
the channel capacity [4]. The SPA can be defined in terms of various likelihood
metrics, but when decoding binary codes, the log likelihood ratio (LLR) is preferred
because it is better suited to a fixed-point representation and removes the need to
perform multiplications. Suppose that p is the probability that the transmitted bit is
a 1 (and 1− p the probability that it is a 0). The LLR metric Λi is defined as

Λi = ln

(
1− p

p

)
.

Algorithm 1 describes the SPA for binary codes (the SPA for non-binary codes
is described in Sect. 6.6.1). The algorithm takes LLR priors as inputs and outputs an
estimate of each codeword bit. If the modulated bits are represented as xi ∈ {−1,1}
and transmitted over the additive white Gaussian noise channel, the LLR priors Λi

corresponding to each codeword bit i ∈ {1,2, . . . ,n} are obtained from the channel
output yi using

Λi =
−2yi

σ2 ,

where σ2 is the noise variance. The algorithm operates by passing messages on the
code graph. We denote a message passed from a variable node i to a check node
j as ηi, j, and from a check node j to a variable node i as θ j,i. Furthermore, for
each variable node vi we define a set Vi that contains all the check node neighbors
of vi, and similarly for each check node c j, we define a set Cj that contains the
variable node neighbors of c j. The computations can be described by two functions:
a variable node function VAR(S) and a check node function CHK(S), where S is a
set containing the function’s inputs. If we let S = {Λ1,Λ2, . . . ,Λd}, the functions are
defined as follows:

VAR(S) =
d

∑
i=1

Λi (6.1)

CHK(S) = arctanh

(
d

∏
i=1

tanh(Λi)

)
. (6.2)

The algorithm performs up to L iterations, and stops as soon as the bit estimate
vector x̂ forms a valid codeword, that is H · x̂ = 0.
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input : {Λ1,Λ2, . . . ,Λn}
output: x̂ = [x̂1, x̂2, . . . , x̂n]
begin

θ j,i ← 0, ∀i, j
for t ← 1 to L do

for i ← 1 to n do // VN to CN messages
foreach j ∈Vi do

ηi, j ← VAR({Λi}∪{θa,i : a ∈Vi}\{θ j,i})
for j ← 1 to m do // CN to VN messages

foreach i ∈Cj do
θ j,i ← CHK({ηa, j : a ∈Cj}\{ηi, j})

for i ← 1 to n do // Compute the decision vector
Λ ′

i ← VAR({Λi}∪{θa,i : a ∈Vi})
if Λ ′

i ≥ 0 then x̂i ← 0
else x̂i ← 1

Terminate if x̂ is a valid codeword
Declare a decoding failure

Algorithm 1: Sum–Product decoding of an LDPC code using LLR messages

6.3 Stochastic Computing

Stochastic computing was originally studied by Gaines [6] and Poppelbaum [12].
At the time, the motivation was to allow realizing digital circuit implementations of
systems that were too complex to be implemented using a conventional number
representation, by taking advantage of the fact that many computations can be
performed on stochastic streams using very simple circuits. The downside of
stochastic computing is that it has a limited precision, but the combination of low
complexity and low precision is well suited to a number of applications. For exam-
ple, stochastic computing has been proposed for the circuit implementation of neural
networks [3], which can benefit from massive parallelism and can often tolerate low
precision computation. Additionally, with the continuous shrinking of transistors
in CMOS integrated circuits, process variations as well as random fluctuations in
operating parameters have now become important limiting factors for the speed and
energy efficiency of circuits. Because of its random nature, stochastic computing is
naturally fault-tolerant, and there has been renewed interest in using it to achieve
fault-tolerant circuit implementations [14]. A comprehensive survey of applications
for which stochastic computing has been considered can be found in [1].

6.3.1 The Stochastic Stream Representation

To explain stochastic streams, it is useful to make a parallel with analog signals. Let
us consider a discretized version of a real-valued analog signal that we denote a[t],
for t ∈ {1,2,3, . . .}. A stochastic stream x[t] can be thought of as a random sequence
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that is a coarse quantization of a[t], but where the randomness is used to ensure that
the quantization is unbiased, so that the expected value of x[t] is always a[t]. If we
denote the expected value of a random variable X as E[X ], this can be written as
E[x[t]] = a[t].

Since the motivation of stochastic computing is reducing the complexity of the
computing circuits, stochastic streams are usually binary-valued. In that case they
can be communicated using a single wire in the circuit, just like analog signals.
A binary stochastic stream is defined as a sequence of independent random variables
x[t], distributed such that E[x[t]] = a[t]. Note that since x[t] is binary, its distribution
is fully determined by its expected value. Unless otherwise mentioned, the term
stochastic stream refers to a binary stochastic stream. If we label the two values of a
binary stochastic stream as 0 and 1 we have x[t] ∈ {0,1}, and therefore the range of
values that can be represented is 0 ≤E[x[t]]≤ 1. In order to represent analog signals
that are valued over a different range, we can simply map a[t] to a signal a′[t] such
that a′[t] ∈ [0,1]. If the mapping is one-to-one, it can be inverted at the output of the
computation to restore the initial range. We call the sequence E[x[t]] the expectation
sequence of the stochastic stream x[t].

An important aspect of any number representation is its precision. Suppose that
a real number a is represented as â. The precision can be defined as the worst
error of â with respect to a. As a point of comparison, we consider the precision
of representing a as a fixed-point number, since this is the most common approach
in conventional signal processing systems. Suppose that we want to represent a real
number a ∈ [0,1] as an n-bit fixed-point number â. We obtain â using

â =
ROUND(a ·2n)

2n ,

where the rounding is to the nearest integer. Since |â− a| ≤ 1/2n, we say that the
precision is 1/2n.

We can now compare this with the precision of a stochastic stream x[t] where t
runs from 1 to n. Let us first consider a simple case where the expectation sequence
a[t] does not vary in time, that is E[x[t]] = a[t] = c, with c ∈ [0,1]. The sequence a[t]
can be reconstructed from x[t] in an optimal way by using the mean estimator

â[t] =
1
t

t

∑
i=1

x[i]. (6.3)

Since the stochastic stream is generated randomly, the precision of a sequence of
length n is also random. To simplify, let us assume that the length of the sequence
is known in advance, and that the sequence is generated deterministically to get
the best precision possible, which is achieved by choosing the sequence such that
∑n

i=1 x[i] = ROUND(c ·n). In this case we have

|â[t]−a[t]|=
∣∣∣∣ROUND(c · t)

t
− c

∣∣∣∣≤ 1
2t
. (6.4)
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The precision of the stochastic stream improves with time, since the estimation error
|â[t]− a[t]| goes to 0 for all c, as t goes to infinity. However, to obtain the same
precision as a fixed-point representation with n bits, we must wait until t = 2n−1.
If n ≤ 2, the two representations have equivalent precision, but as n increases,
the stochastic representation needs exponentially more bits to achieve the same
precision. Why then use stochastic streams? The hope is that the gains made in the
complexity of the computation circuits are more important than the loss in precision.
Also, a nice consequence of the randomness of stochastic streams is that the desired
precision does not need to be established in advance, but instead can be chosen
dynamically by running the computation for a shorter or longer time. Nonetheless,
it is clear that stochastic streams are only suitable for computations that require
relatively low precision.

If a[t] varies in time, the optimal estimator will be different from (6.3), but it is
easy to see that in that case the estimation error depends not only on time but also on
the rate of change of a[t] (the smallest error being obtained when a[t] is constant).

6.3.2 Computation Circuits

A stochastic stream x[t] can be generated from a real sequence a[t] ∈ [0,1] by
comparing it with a random threshold T having a uniform distribution over [0,1]:

x[t] =

{
0 if a[t]< T,

1 otherwise.
(6.5)

In some cases, computations can be performed on stochastic streams using very
simple circuits. Unless otherwise specified, circuits for stochastic computation are
designed by assuming that the input streams are mutually independent, which is the
case if they are generated using independent threshold variables. Figure 6.2 shows
two basic computing circuits. The first circuit is an AND gate. Suppose that A and B
are independent binary random variables with Pr(A = 1) = pA and Pr(B = 1) = pB.
Then Pr(C = 1) = pA pB, and therefore the AND gate performs a multiplication.
The second circuit is a multiplexer. Similarly, let Pr(D = 1) = pD, Pr(E = 1) = pE ,
Pr(Z = 1) = pZ , then Pr(F = 1) = (1− pZ)pD + pZ pE , and therefore the circuit
performs a convex combination of streams D and E, with the weights determined
by pZ . Note that it is not possible to directly perform the addition of two streams D
and E, since the domain of pD + pE is [0,2]. However, a normalized addition can be
implemented by using pZ = 1

2 .
Several other circuits have been proposed to implement more complex functions

(see [1] for more examples).
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Fig. 6.2 Stochastic
computing circuits for (a)
multiplication and (b) convex
combination
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6.4 Fully Stochastic Decoders

This section discusses LDPC decoding algorithms in which all computations are
performed in the stochastic domain, which we refer to as fully stochastic decoders.
Other algorithms that only perform a subset of the computations in the stochastic
domain are described in Sects. 6.5 and 6.6. Section 6.4.1 introduces the fundamental
circuits used in a stochastic LDPC decoder. Following this, Sects. 6.4.2 and 6.4.3
describe two different extensions of the simple stochastic algorithm that both allow
decoding practical LDPC codes.

6.4.1 A Simple Stochastic Decoder

LDPC decoders have the potential to achieve a high throughput because each of
the n codeword bits can be decoded in parallel. However, the length of the codes
used in practice is on the order of 103, going up to 105 or more. This makes it
difficult to make use of all the available parallelism while still respecting circuit
area constraints. One factor influencing area utilization is of course the complexity
of the VAR and CHK functions to be implemented, but because of the nature of
the message-passing algorithm, the wires that carry messages between processing
nodes also have a large influence on the area, as was identified early on in one of the
first circuit implementations of an SPA LDPC decoder [2].

The need to reduce both logic and wiring complexity suggests that stochastic
computing could be a good approach. The use of stochastic computation for
the message-passing decoding of block codes was first proposed by Gaudet and
Rapley [7]. The idea was prompted by the realization that the two SPA functions
VAR and CHK had very simple stochastic implementations when performed in the
probability domain. Let us first consider the CHK function. In the LLR domain, the
function is given by (6.2), which in the probability domain becomes

CHK(p1, p2, . . . , pd) =
1−∏d

i=1(1−2pi)

2
. (6.6)

The implementation of this function in the stochastic domain is simply an exclusive-
OR (XOR) gate. That is, if we have independent binary random variables X1,X2, . . . ,
Xd , each distributed such that Pr(Xi = 1) = pi, then taking

Y = X1 +X2 + · · ·+Xd mod 2 (6.7)
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Fig. 6.3 Stochastic
computation circuit for the
two-input VAR function in the
probability domain
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yields Pr(Y = 1) = CHK(p1, p2, . . . , pd). This result is not as surprising as it might
seem. Indeed, the modulo-2 sum is exactly the constraint that must be satisfied by
the codeword bits involved in this check node operation. Using stochastic streams
instead of codeword bits is akin to performing a Monte-Carlo simulation to find the
probability associated with an unknown bit connected to this check node.

A circuit for computing the VAR function with two inputs was also presented in
[7]. In the probability domain, the LLR function of (6.1) with d = 2 is given by

VAR(p1, p2) =
p1 p2

p1 p2 +(1− p1)(1− p2)
. (6.8)

In the stochastic domain, this function can be computed approximately using the
circuit shown in Fig. 6.3. The JK flip-flop becomes 1 if its J input is 1, and 0 if its K
input is 1. Otherwise, it retains its previous value. This implementation is different
in nature from the one used for the CHK function, since it contains a memory. The
behavior of the circuit can be analyzed by modeling the output Y as a Markov chain
with states Y = 0 and Y = 1. Suppose that the stochastic streams X1[t] and X2[t] are
generated according to the expectation sequences p1[t] and p2[t], respectively, and
let the initial state be Y [0] = so. Then, at time t = 1, we have

E[Y [1]] = Pr(Y [1] = 1) =

{
p1[1]p2[1] if so = 0,

p1[1]+ p2[1]− p1[1]p2[1] if so = 1.

None of the expressions above are equal to VAR(p1[1], p2[1]), and therefore the
expected value of the first output of the circuit is incorrect, irrespective of the starting
state. However, if we assume that the input streams are independent and identically
distributed (i.i.d.) with p1[t] = p1 and p2[t] = p2, it is easy to show that the Markov
chain converges to a steady-state such that

lim
t→∞

E[Y [t]] = VAR(p1, p2). (6.9)

To build a circuit that will compute the VAR function for more than two inputs,
we can make use of the fact that the VAR function can be distributed arbitrarily,
which can easily be seen by considering the equivalent LLR-domain formulation in
(6.1). For example we have VAR(p1, p2, p3) = VAR(VAR(p1, p2), p3).

Stochastic decoders built using these circuits were demonstrated for very small
codes, but they are unable to decode realistic LDPC codes. The reason is that (6.9)
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is not sufficient to guarantee the accuracy of the variable node computation, since
we do not know that the input streams are stationary or close to stationary. In
graphs with cycles, low precision messages can create many fixed points in the
decoder’s iterative dynamics that would not be there otherwise. This was noted in
[21], and the authors proposed to resolve the precision issue by adding an element
called a supernode, which takes one stochastic stream as input and outputs another
stochastic stream. It interrupts the feedback path by using a constant expectation
parameter to generate the output stochastic stream. Simultaneously, it estimates
the mean of the incoming stochastic stream. The decoding is performed in several
iterations, and an iteration is completed once a stochastic stream of length � has
been transmitted on every edge of the graph. Once the iteration completes, the
expectation parameter in each supernode is updated with the output of the mean
estimator. Because the expectation parameter is kept constant while the stochastic
streams are being generated, the precision can be increased by increasing �.

While the supernode approach works, it requires large values of � to achieve
sufficient precision, and therefore a lot of time for transmitting the � bits in each
iteration. However, it is not necessary for the expectation parameter of a stochastic
stream to be constant. Any method that can control the rate of change of the
expectation sequences will allow avoiding fixed points in the decoding algorithm
created by insufficient precision. In particular, this can be achieved by using low-
pass filters, some of which are described in Sect. 6.4.2.

6.4.2 Stochastic Decoders Using Successive Relaxation

Now that we have explained the basic concepts used to build stochastic decoders, we
are ready to present stochastic decoding algorithms that are able to decode practical
LDPC codes. Most such algorithms make use of a smoothing mechanism called
Successive Relaxation. In Sect. 6.4.2.1, we explain how Successive Relaxation was
introduced into the domain of LDPC decoding algorithms, and how it is used in
stochastic decoders. Then, in Sect. 6.4.2.2, we present circuit implementations for
the stochastic computation of the variable node function. Using stochastic streams
to represent likelihood information can sometimes cause precision issues. The main
problem lies in the inability of accurately representing probability values very close
to 0 or 1. Section 6.4.2.3 discusses this range problem and how it can be mitigated.
Finally, Sect. 6.4.2.4 summarizes the performance of a fully stochastic decoder
when decoding the LDPC code standardized by the IEEE 802.3an standard for
10 Gbps Ethernet networking.

6.4.2.1 The Role of Successive Relaxation

Message-passing LDPC decoders are iterative algorithms. We can express their
iterative progress by defining a vector xo of length n containing the information
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received from the channel, and a second vector x[t] of length ne containing the
messages sent from each variable node to its neighboring check nodes at iteration
t, where ne is the number of edges in the graph. The standard SPA decoder for
an LDPC code is an iterative algorithm that is memoryless, by which we mean
that the messages sent on the graph edges at one iteration only depend on the
initial condition, and on the messages sent at the previous iteration. As a result,
the decoder’s progress can be represented as follows:

x[t] = h(x[t −1],xo),

where h() is a function that performs the check node and variable node message
updates, as described in Algorithm 1.

In the past, analog circuit implementations of SPA decoders have been consid-
ered for essentially the same reasons that motivated the research into stochastic
decoders. Since these decoders operate in continuous time, a different approach
was needed to simulate their decoding performance. The authors of [8] proposed to
simulate continuous-time SPA by using a method called successive relaxation (SR).
Under SR, the iterative progress of the algorithm becomes

x[t] = (1−β ) ·x[t −1]+β ·h(x[t −1],xo), (6.10)

where 0< β ≤ 1 is known as the relaxation factor. As β → 0, the simulated progress
of the decoder approaches a continuous-time (analog) decoder. However, the most
interesting aspect of this method is that it can be used not only as a simulator, but
also as a decoding algorithm in its own right, usually referred to as Relaxed SPA.
Under certain conditions, Relaxed SPA can provide significantly better decoding
performance than the standard SPA.

In stochastic decoders, SR cannot be applied directly because the vector of
messages x[t] is a binary vector, while x[t] obtained using (6.10) is not if β < 1.
However, if we want to add low-pass filters to a stochastic decoder, we must add
memories that can represent the expectation domain of the stochastic streams.
Suppose that we associate a state memory with each edge, and group these memories
in a vector s[t] of length ne. Since the expectation domain is the probability domain,
the elements of s[t] are in the interval [0,1]. Stochastic messages can be generated
from the edge states by comparing each edge state to a random threshold, as
described in (6.5). We can then rewrite (6.10) as a mean tracking filter, where s[t] is
the vector of estimated means after iteration t, and x[t], xo[t] are vectors of stochastic
bits:

s[t] = (1−β ) · s[t −1]+β ·h(x[t −1],xo[t −1]). (6.11)

The value of β controls the rate at which the decoder state can change, and since
E[x[t]] = s[t], it also controls the precision of the stochastic representation.
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6.4.2.2 Circuit Implementations of the VN Function

We will first consider stochastic variable node circuits with two inputs X1[t] and
X2[t]. As previously, we denote by p1[t] and p2[t] the expectation sequences
associated with each input stream. Let E be the event that X1[t] = X2[t]. We have
that

E[X1[t] |E] = E[X2[t] |E] = VAR(p1[t], p2[t]),

where VAR() is defined in (6.8). Therefore, one way to implement the variable node
function for stochastic streams is to track the mean of the streams at the time instants
when they are equal. As long as Pr(E)> 0, a mean tracker can be as close as desired
to VAR(p1[t], p2[t]) if the rate of change of p1[t], p2[t] is appropriately limited. If the
mean tracker takes the form of (6.11), this corresponds to choosing a sufficiently
small β .

The first use of relaxation in the form of (6.11) was proposed in [17], where
the relaxation (or mean tracking) step is performed in the variable node, by using
a variable node circuit that is an extension of the original simple circuit shown in
Fig. 6.3. In the original VN circuit, each graph edge had a corresponding 1-bit flip-
flop. This flip-flop can be extended to an �-bit shift-register, in which a “1” is shifted
in if both inputs X1[t] and X2[t] are equal to 1, and a “0” is shifted in if both inputs
are equal to 0. When a new bit is shifted in, the oldest bit is discarded.

Let us denote the number of “1” bits in the shift-register by w[t], and define the
current mean estimate as s[t] = w[t]/�. If we make the simplifying assumptions that
the bits in the shift register are independent from X1[t] and X2[t], and that when a
bit is added to the shift register, the bit to be discarded is chosen at random, then it
is easy to show that the shift-register implements the successive relaxation rule of
(6.10) in distribution, with β = Pr(E)/�, in the sense that

E[s[t]] =

(
1− Pr(E)

�

)
· s[t −1]+

Pr(E)
�

·VAR(p1[t −1], p2[t −1]).

When the variable node degree is large, it was suggested in [18] to implement
the variable node function using a computation tree with two levels. Let us denote
the computation performed by the first level circuit as VARST1 and by the second
level circuit as VARST2. For example, the circuit for a degree-6 VN can be
implemented as

VARST(xo,x1, . . . ,x5) = VARST2(VARST1(x1,x2,x3),VARST1(x0,x4,x5)),

where xo is the current stochastic bit corresponding to the channel information, and
x1,x2, . . . ,x5 are the stochastic bits received from the neighboring check nodes.
The corresponding circuit is shown in Fig. 6.4. When using such a two-level
implementation, it is proposed in [18] to use small shift-registers for the first level,
and a large one for the second level.
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Fig. 6.4 Degree-6 stochastic VN circuit corresponding to one output [18]

Using a shift register is interesting from a pedagogical point of view because it
uses a stochastic representation for the mean estimate. However, there are several
reasons that discourage its use in decoders. First, the choice of relaxation factor β is
tied to the precision of the mean estimate, which prevents from freely optimizing
the value of β . Second, because the mean is represented stochastically, storing
a high precision estimate requires a lot of register bits, which are costly circuit
components. Lastly, the relaxation factor β is not constant, since β = Pr(E)/�. This
can complicate the analysis and design of the decoder.

For these reasons, a better approach to performing the mean tracking, proposed
in [19], is to directly represent the mean estimate s[t] as a fixed-point number. The
VN computation with inputs X1, X2 can now be implemented as

s[t +1] =

⎧⎪⎪⎨
⎪⎪⎩
(1−β ) · s[t]+β if X1 = X2 = 1,

(1−β ) · s[t] if X1 = X2 = 0,

s[t] otherwise.

If β is chosen as a negative power of 2, the update can be implemented with only
bit shifts and additions.

6.4.2.3 Tweaking the Probability Domain Representation

The stochastic computations used in decoding LDPC codes are expressed in the
probability domain because that greatly simplifies the computation of the check
node function, which becomes a simple XOR gate, as stated in (6.7). It was found
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that when running SPA in the LLR domain, the performance is adversely affected
if the representable range of LLR values is too limited. The probability domain
representation requires a large number of bits to represent large LLR magnitudes,
and representing the probability as a stochastic stream requires a further exponential
increase in the number of bits used, as was discussed in Sect. 6.3.1. To illustrate this,
consider a stationary stochastic stream of length t. The smallest non-zero probability
value that it can represent is 1/t, and therefore the largest LLR value Λmax less than
infinity that it can represent is

Λmax = ln

(
1− 1

t
1
t

)
= ln(t −1).

For example, the ability to distinguish an LLR value of 2 from larger values requires
a stationary stream of length t ≥ 9, while distinguishing an LLR of 4 from larger
values requires t ≥ 56.

One way to improve the representable range is to note that when decoding
an LDPC code, we are not interested in approximating the true a-posteriori
probabilities of each transmitted bit, but simply of identifying which codeword
is more likely to have been transmitted. Therefore, we can try scaling down the
prior LLR values to increase the representation precision for large LLR magnitudes
(at the expense of decreasing the representation precision for values near zero).
Suppose that we apply a scaling factor α to all LLR values. The minimal length
of a stationary stream that will distinguish Λmax from larger values becomes

t ≥ 
eαΛmax +1�

Continuing the previous example, if we set α = 1
2 , distinguishing an LLR value

of Λmax = 2 now requires only t ≥ 4, and t ≥ 9 for Λmax = 4. This LLR scaling
approach was initially proposed in [17] under the name Noise Dependent Scaling,
where it was shown that it is necessary to choose the right scaling factor in order to
achieve a low error rate when the channel signal-to-noise ratio is large.

6.4.2.4 Benchmark Using the IEEE 802.3an Standard

The IEEE 802.3an 10GBASE-T standard (10 Gbps Ethernet networking over CAT-
6 copper cables) uses an LDPC code of length 2,048 and rate 0.841 for error
correction. Because of its industrial relevance and high throughput requirements,
this code became a popular benchmark for LDPC decoders. A stochastic decoder
for this code that uses the techniques presented in Sects. 6.4.2.1–6.4.2.3 was
described in [20]. In addition, this decoder uses a heuristic circuit optimization
called “MTFM” where a single relaxation filter is used simultaneously by the dv

outputs of a variable node circuit.
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The main strength of this stochastic decoder compared to other decoder imple-
mentations is that it achieves a high average decoding throughput, especially when
normalizing for circuit area. Its main inconvenient is that its worst-case decoding
time is significantly larger. This worst case can be dealt with by adding buffering
at the input, but many applications have stringent latency requirements that prevent
such buffering.

6.4.3 The “Delayed” Stochastic Decoder

The simple stochastic decoder discussed in Sect. 6.4.1 is interesting for the very low
complexity of the circuits required, but unfortunately it is unable to decode practical
codes because the precision of the messages exchange is in most cases insufficient to
ensure convergence. The relaxation-based approach presented in Sect. 6.4.2 resolves
this issue by controlling the rate of change of the expectation sequences associated
with each stochastic stream, allowing the decoder to converge. The “delayed”
stochastic (DS) decoder introduced in [11] takes a different approach to resolving
the convergence problem, with the objective of eliminating a large portion of the
register circuits required in relaxation-based decoders.

Instead of controlling the precision of the stochastic streams, the DS decoder
propagates “freeze” flags that indicate whether a stochastic message is reliable or
not. If a check node receives a freeze flag, it propagates the flag to its neighbors and
the messages sent by this check node are ignored in the variable nodes.

6.4.3.1 Simple DS Decoder

In its simplest form, the DS decoder uses the same variable node function as the
simple stochastic decoder of Sect. 6.4.1. In the first iteration, the variable nodes
send a stochastic bit generated from the channel probability. In following iterations,
the variable nodes receive messages from the check nodes, and the reliability of
each output of a VN is determined by the presence of an agreement among input
bits. If there is no agreement for generating a given VN output, a “freeze” flag is
propagated on that output.

6.4.3.2 Some Heuristics for Improved Convergence

In the simple DS algorithm, the proportion of messages that are deemed reliable
was observed to be insufficient in many cases, resulting in very slow convergence.
Two modifications to the algorithm were proposed to improve the decoding time.
First, small memories called “internal memories” (IM) are added to the variable
node circuit to provide some averaging of the stochastic streams. The resulting VN
circuit used to generate one output then becomes identical to the one in Fig. 6.4, but
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without the 64-bit edge-memory (EM). Instead of sampling from the EM, the DS
circuit outputs a “freeze” flag. Second, a special condition is added to further reduce
the number of “freeze” flags being propagated. When a majority of a VN’s outputs
would be sending “freeze” flags, the VN circuit instead enters a special state where
no “freeze” flags are sent, and the output messages are sampled from the IMs.

6.4.3.3 Benchmark Using the IEEE 802.3an Standard

A hardware decoder for the code specified in the IEEE 802.3an standard is reported
in [11]. The results show that the decoding latency of the DS algorithm is longer
than for the relaxation-based decoder presented in Sect. 6.4.2. The latency can be
made equivalent at the cost of reducing the coding gain by 0.2 dB. However, the DS
decoder occupies a much smaller area: 3.93 mm2 instead of 6.38 mm2 (in a 90 nm
technology). The average throughput of the DS decoder is also 2.8 times higher.

These hardware results show that it is possible for a stochastic decoder to
converge on practical LDPC codes even when the circuit contains a very small
amount of memory. However more work must be done to improve the worst-case
convergence time and the coding gain.

6.5 Mixing Stochastic and Conventional Computations

It is a common occurrence in computer architecture that the complexity of a
computation can be reduced by changing the representation domain of the data. For
example, applying a Fourier transform can simplify a complex convolution opera-
tion into a simpler multiplication, while operating with a logarithmic representation
simplifies multiplications into additions. Besides the issue of numerical precision
which must also be considered, the decision to use an alternate representation in an
implementation must take into account the other computations that are required by
the algorithm, and the cost of converting one representation domain to another.

This situation is found in the SPA. As was presented in Sect. 6.4.1, performing the
check node computation in the stochastic domain results in an exact implementation
(in distribution) of the SPA check node function that has a very low complexity. On
the other hand, the stochastic variable node computation can only become exact if
the input streams are stationary, which is a case of limited interest since it implies
that the decoder is not making any progress. Among exact implementations of the
variable node computation, the simplest is obtained by using the LLR domain, for
which the computation is simply an addition.

In this section, we present an algorithm called the Relaxed Half-Stochastic (RHS)
algorithm [10] that uses the stochastic domain for the check node computation and
the LLR domain for the variable node computation, and which includes mechanisms
to efficiently convert the values between the two domains.
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The stochastic domain has the potential of greatly simplifying some types of
computations, but there are also situations where it is more likely to increase
the complexity, for example when a computation requires a high precision. The
approach presented here could therefore also provide opportunities for other
algorithms that would benefit from using stochastic computation in only a portion
of the algorithm.

6.5.1 The RHS Algorithm

The structure of the RHS algorithm, like all other algorithms presented in this
chapter, is very similar to that of the SPA, described in Algorithm 1. In fact, part of
the variable node computation is identical to the SPA, since it operates in the LLR
domain. When describing the algorithm we assume that messages are exchanged
according to the so-called flooding schedules. The steps described can be trivially
modified to use other schedules.

Like the SPA, the RHS algorithm takes as input a set of n LLR values {Λ1,Λ2, . . . ,
Λn} that correspond to the n bits received from the channel. However, it is easier to
describe the algorithm from the perspective of individual variable nodes and check
nodes. Still following the SPA described in Algorithm 1, the first iteration begins by
generating the LLR values ηi, j, where the index i runs over the variable nodes, while
j runs over the neighboring check nodes of the variable node. When considering
a particular variable node i we can simplify the notation to η j. In RHS, we call
the η j values intermediate VN outputs. These intermediate VN outputs are then
converted to stochastic messages and sent to neighboring check nodes. The check
node computation is performed in the stochastic domain, and stochastic messages
are sent back from check nodes to variable nodes, which completes the iteration.

The main interest of the algorithm lies in the mechanism used to convert to and
from the stochastic domain. This is described in Sects. 6.5.2 and 6.5.3.

6.5.2 Domain Conversion: LLR to Stochastic

The RHS algorithm uses an extended version of stochastic streams where each
stream element consists of a binary vector of length k. Therefore, when a variable
node sends a message to a check node, it transmits k bits, either serially or in
parallel. Let us denote such a message as X = [X1,X2, . . . ,Xk], where each Xi is
an independent binary random variable. In order to use the simple check node
function common to all stochastic LDPC decoders, we define the expectation
parameter in the probability domain. The fact that the k bits in a message vector
are generated simultaneously allows exploring various generation rules, but one
way to define X is to have independent and identically distributed bits, such that
E[X1] =E[X2] = · · ·=E[Xk] = p j. The expectation parameter p j is simply the LLR-
domain intermediate output η j converted to the probability domain:
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p j =
1

eη j +1
.

One way to generate the stochastic bits is to compare p j to a random threshold,
uniformly distributed over the probability domain. However, the computation of
p j can be avoided by instead converting the threshold to the LLR domain. Let Z
be a uniform random variable over the open interval (0,1). An LLR threshold T
is obtained using T = ln((1− Z)/Z). We then generate a stochastic bit for each
i ∈ [1,k] by comparing the intermediate output with a threshold sampled from T :

Xi =

{
0 if ηi > T,

1 otherwise.
(6.12)

In the circuit implementation, a realization of Z can be generated easily using a
linear feedback shift-register (LFSR) circuit, and the conversion to the LLR domain
can be approximated accurately using a priority encoder circuit and a few additional
logic gates.1

As discussed in Sect. 6.4.1, the stochastic check node circuit composed of XOR
gates implements the SPA check node function provided that the stochastic inputs
are independent. This requirement determines which thresholds in the decoder must
be independent. Any two messages that are sent to different check nodes can be
generated with the same threshold. On the other hand, each of the k bits in the
message vector must be independent. Therefore, k · dc independent thresholds are
required in a complete decoder, where dc is the check node degree. Since kdc � n,
the complexity of the random threshold generator circuit does not have a large
impact on the complexity of the decoder.

6.5.3 Domain Conversion: Stochastic to LLR

A check node is connected to dc variable nodes, and therefore at every decoding
iteration it receives dc messages and outputs dc messages. However, each output
message is generated from only dc−1 messages, following the extrinsic information
principle at the center of the SPA.

The RHS check node function therefore takes dc − 1 stochastic vectors Xi as
inputs, each of length k. Let i ∈ [1,dc −1] be an index running over the check node
inputs, and j ∈ [1,k] an index running over the bits in each vector. Therefore we
can denote an individual bit inside a vector as Xi, j. To simplify the presentation, we
consider the generation of one of the dc check node output messages. Using XOR
gates, the check node function computes an output vector Y = [Y1, . . . ,Yk] as

1A detailed example of a circuit implementation can be found in [9].
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Yj =
dc−1

∑
i=1

Xi, j mod 2,

for j ∈ [1,k].
This output vector Y is then transmitted back to a neighboring variable node.

At this point, we need to use the knowledge of how the vectors {X1, . . . ,Xdc}
were generated to interpret Y. Using the generation rule described in 6.5.2, the
expectation of Y lies in the probability domain, and since the bits are i.i.d., the
maximum-likelihood estimate m̂ of the probability represented by Y is

m̂ =
1
k

k

∑
j=1

Yj. (6.13)

We define a set M such that m̂ ∈M . The set M contains all the possible messages
that can be received by a variable node in a single iteration. Under (6.13), we have
M = {0, 1

k ,
2
k , . . . ,1}, for a total of k+1 distinct messages.

For small k values, the precision of the message received is too crude for the
iterative decoder to converge, and therefore we are interested in tracking the mean
of the messages received over the iterations. Let m̂[t] be a message received on an
input of a variable node at iteration t, and let s[t] be the mean probability estimate at
the end of iteration t, with s[0] = 1

2 . For t ≥ 1, we can apply the relaxation filter to
generate an updated estimate s[t]:

s[t] = (1−β )s[t −1]+β m̂[t]. (6.14)

However, this estimate s[t] is in the probability domain, whereas we are interested
in converting the stochastic message to the LLR domain. For small values of k, we
can design a tracking filter operating in the LLR domain by studying the transfer
function corresponding to each message in M . The LLR domain tracking then
simply amounts to choosing the right transfer function according to the received
message m̂:

Λ [t] = f (Λ [t −1]; m̂[t]),

where Λ [t] is the LLR estimate after iteration t, and f (Λ ; m̂) is the transfer function
corresponding to message m̂. We obtain the ideal transfer functions by expressing
(6.14) in the LLR domain, which yields

Λ [t] = ln

(
eΛ [t−1] +β (1− m̂[t](eΛ [t−1] +1))

1−β (1− m̂[t](eΛ [t−1] +1))

)
.
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However, using the ideal functions directly in the circuit implementation would
result in overly complex circuits. Instead, we must approximate each transfer func-
tion using simple linear functions, or alternatively using look-up tables, leaving the
logic synthesis tool to optimize the circuit. An implementation should also exploit
the symmetry of the transfer functions. We have that f (Λ ; μi) = − f (−Λ ; μk+2−i),
where μi is the i-th largest message in M .

For example, Fig. 6.5 shows the transfer functions for M = {0, 1
2 ,1} (hence

k=2) and β = 1
4 . These functions can be approximated with good accuracy by the

following piecewise-linear functions:

f (Λ ;0)≈
{

Λ +b if Λ ≥ d,

d if Λ < d,
(6.15)

f (Λ ; 1
2 )≈

⎧⎪⎪⎨
⎪⎪⎩

aΛ if − c ≤ Λ ≤ c,

−c if Λ <−c,

c if Λ > c,

(6.16)

where the parameters a,b,c,d are chosen based on the value of β . The f (Λ ;1)
function is obtained using the symmetry rule. Using these approximations, it is
possible to design a very simple circuit that will convert the stochastic messages
into LLR values, while also implementing the relaxation filter.
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6.5.4 Benchmark Using the IEEE 802.3an Standard

Hardware implementation results of an RHS decoder for the LDPC code included
in the IEEE 802.3an standard were reported in [9]. Compared to the other stochastic
decoders presented in this chapter, the decoder based on the RHS algorithm occupies
a larger area. Implemented in a 65 nm CMOS technology, the RHS decoder uses
4.41 mm2, while using a quadratic scaling law, the equivalent area for the relaxation-
based fully stochastic decoder of Sect. 6.4.2 is 3.33 mm2, and that of the delayed
stochastic decoder of Sect. 6.4.3 is 2.05 mm2. In return for the increased area, the
RHS decoder reduces the worst-case latency by 3.6 times, while simultaneously
providing an additional coding gain of 0.2 dB with respect to the relaxation-based
stochastic decoder, and 0.4 dB with respect to the delayed stochastic decoder.
Finally, its average throughput is 2.6 times larger than the relaxation-based decoder,
and similar to that of the delayed stochastic decoder.

6.6 Stochastic Decoders for Non-Binary LDPC Codes

Non-binary LDPC codes were shown to outperform their binary counterpart at an
equivalent bit length [5], and furthermore are particularly interesting for channels
that exhibit bursty error patterns, which are prominent in applications such as
data storage and wireless communication. Unfortunately, they are also difficult to
decode. Stochastic computation is one approach that has been explored to reduce
the complexity of the decoding algorithm.

6.6.1 Message-Passing Decoding

In a non-binary code, codeword symbols can take any value from the Galois Field
(GF) of order q. The field order is usually chosen as a power of 2, and in that case we
denote the power as p, that is 2p = q. The information received about a symbol can
be expressed as a probability mass function (PMF) that, for each of the q possible
values of this symbol, indicates the probability that it was transmitted, given the
channel output. For a PMF U , we denote by U [γ ] the probability corresponding to
symbol value γ ∈ GF(q). Decoding is achieved by passing messages representing
PMFs on the graph representation of the code, as in message-passing decoding of
binary codes. However, when describing the algorithm, it is convenient to add a third
node type called a permutation node (PN), which handles part of the computation
associated with the parity-check constraint. The permutation nodes are inserted on
every edge in the graph, such that any message sent from a VN to a CN or from a
CN to a VN passes through a permutation node, resulting in a tripartite graph.
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At every decoding iteration, a variable node v receives dv PMF messages from
neighboring permutation nodes. A PMF message sent from v to a permutation node

p at iteration t, denoted by U (t)
vp , is given by

U (t)
vp = NORM

(
Lv × ∏

p′ �=p

U (t−1)
p′v

)
, (6.17)

where Lv is the channel PMF, and NORM() is a function that normalizes the PMF so
that all its probabilities sum to 1. A PN p receives a message U (t)

vp from a VN and
generates a message to a CN c by performing

U (t)
pc [γhp] =U (t)

vp [γ ], ∀γ ∈ GF(q),

where hp is the element of matrix H that corresponds to VN v (which specifies the
column) and CN c (which specifies the row). A CN c receives dc messages from
permutation nodes and generates messages by performing

U (t)
cp = �

p′ �=p
U (t)

p′c, (6.18)

where � is the convolution operator. Finally, a message sent by a CN also passes
through a PN, but this time the PN performs the inverse operation, given by

U (t)
pv [γh−1

p ] =U (t)
cp [γ ], ∀γ ∈ GF(q),

where h−1
p is such that hp ×h−1

p = 1.
Among the computations described above, the multiplications required in (6.17)

are costly to implement, but (6.18) has the highest complexity, since the number of
operations required scales exponentially in the field order q and in the CN degree dc.

6.6.2 Stochastic Decoding Algorithms

Several ways of applying stochastic computing to the decoding of non-binary LDPC
codes are proposed in [16]. Among these, the only algorithm that can decode any
code, without restrictions on q or dv, is the non-binary version of the RHS algorithm.
Just like in the binary version presented in Sect. 6.5, the non-binary RHS decoder
uses the stochastic representation for the check node computation only.

A stochastic message sent to a check node consists of a single symbol X ∈
GF(q), which can be represented using p bits. In comparison, messages exchanged
in the SPA consist of complete PMF vectors requiring qQ = 2pQ bits, where
Q is the number of bits used to represent one probability value in the PMF.



6 Stochastic Decoders for LDPC Codes 127

Therefore, stochastic algorithms significantly reduce the routing complexity of a
circuit implementation.

For binary codes, the stochastic check node function is an addition over GF(2),
which requires dc(dc − 1) XOR gates for generating all dc outputs. For non-binary
codes, it is an addition over GF(q). Assuming that q is a power of two, the addition
can still be implemented using only XOR gates, requiring pdc(dc − 1) gates to
generate all outputs. The stochastic check node function is therefore much less
complex than the SPA one. Furthermore, its complexity scales only logarithmically
in q.

Unlike binary codes, non-binary regular LDPC codes with dv = 2 can be good
codes [13], and the low variable node degree has the advantage of reducing the
decoder complexity. A specialized stochastic algorithm called “NoX” is proposed in
[16] for dv = 2 codes. It significantly reduces the decoder’s complexity by extending
the update method based on transfer functions used in the binary RHS algorithm.
The binary RHS algorithm achieves a low complexity by combining the mean
tracking of stochastic streams with the conversion to the LLR domain, and using
low-complexity approximations of the resulting transfer functions (see Sect. 6.5.3).
The NoX algorithm for dv = 2 non-binary codes also includes the VN computation
in these transfer functions. This is rendered manageable by the fact that for dv = 2,

the VN function in (6.17) simplifies to U (t)
vp = NORM(Lv ×U (t−1)

p′v ), where p and p′
are the two PNs connected to the VN.

6.6.3 Results

When considering the average number of iterations required for decoding as well
as the number of operations required to perform one iteration, the NoX algorithm
has about the same complexity as a version of the SPA that uses the Fast Fourier
Transform to reduce the complexity of the CN update. The main reason explaining
that NoX does not outperform SPA is that the iterative progress of NoX is slower
than SPA. This could be acceptable since the complexity of one iteration of NoX
is also much less. However, a side effect of the slower progress is that larger
memories are required for storing the current state of the VN circuits, which in
turn increases the complexity of an update. It is likely that the complexity of
NoX can be reduced by increasing the amount of information exchanged in one
iteration, just like the parameter k of the binary RHS algorithm (Sect. 6.5) can be
increased to transmit more information in each message, while still relying on the
low-complexity stochastic CN function.
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