
Chapter 5
VLSI Implementations of Sphere Detectors

Johanna Ketonen, Markus Myllylä, Yang Sun, and Joseph R. Cavallaro

5.1 Soft Detection

The multiple input multiple output (MIMO) detection problem of an uncoded
system can be considered as a so-called integer least squares problem, which can
be solved optimally with a hard-output maximum likelihood (ML) detector [1].
The ML detector solves optimally the so-called closest lattice point problem by
calculating the Euclidean distances (EDs) between the received signal vector and
points in the lattice formed by the channel matrix and the received signal, and selects
the lattice point that minimizes the Euclidean distance to the received vector [2]. The
ML detection problem can be solved with an exhaustive search, i.e., checking all the
possible symbol vectors and selecting the closest point. The ML detector achieves
a full spatial diversity with regard to the number of receive antennas; however,
it is computationally very complex and not feasible as the set of possible points
increases.

The received frequency domain (FD) signal can be described with the equation
y = Hx + η , where x ∈ C

N is the transmitted symbol vector, η ∈ C
M is a

vector containing circularly symmetric complex Gaussian distributed noise with
variance σ2, H∈C

M×N is the frequency domain channel matrix containing complex
Gaussian fading coefficients, and N is the number of transmit (TX) antennas and M
is the number of receive (RX) antennas. The entries of x are chosen independently
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from a complex QAM constellation Ω with sets of Q transmitted coded binary
information bits b = [b1, . . . ,bQ]

T per symbol.
The ML detector calculates the Euclidean distances (EDs) between the received

signal vector y and lattice points Hx, and returns the vector x with the smallest
distance, i.e., it minimizes

x̂ML = arg min
x∈ΩN

||y−Hx||2, (5.1)

where x is the transmitted signal vector and H is the channel matrix. The ML
detector performs an exhaustive search over all possible lattice points and the
complexity is exponential in N.

The ML detector is optimal for uncoded systems, but for coded systems a
posteriori probabilities (APP) for the decoder are required. Practical communication
systems apply forward error correction (FEC) coding in order to achieve near
capacity performance. The optimal way to process the spatially multiplexed and
FEC coded data sequence would be to use a joint detector and decoder for the whole
coded data sequence and decode the most probable data sequence. The complexity
of the optimal receiver would be prohibitive as it depends on the length of the code
block [3]. The optimal receiver is then approximated with an iterative receiver [4]
with a separate soft-input soft-output (SfISfO) detector and soft in soft out (SISO)
decoder, which exchange reliability information between the units. A structure of
such a receiver is presented in Fig. 5.1.

The MAP detector provides the optimal APPs or log-likelihood ratios (LLR) [5]
for the decoder. Given the interleaving of b and assuming the noise in the system
is white Gaussian and the bits are approximately statistically independent, the a
posteriori LLR for the transmitted bit k can be written as [3]

LD(bk|y) = ln
Pr(bk =+1|y)
Pr(bk =−1|y)

= LA(bk)+ ln

∑
b∈Lk,+1

exp(− 1
2σ2 ||y−Hx||2 + 1

2
bT
[k]LA,[k])

∑
b∈Lk,−1

exp(− 1
2σ2 ||y−Hx||2 + 1

2
bT
[k]LA,[k])

, (5.2)
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Fig. 5.1 The iterative receiver
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where Lk,+1
⋂
Bk,+1 is a list of candidate points x. Bk,a is the set of 2NQ−1 bit vectors

having bk = a,a ∈ {−1,1}, b[k] is a subvector of b without bk, and vector LA,[k]
includes all LA values except for bk. The list L can be obtained by neglecting the
insignificant elements in B such that the K candidate points in L include x̂ML and
2MQ > K ≥ 1 [3]. This can be achieved for example with a list sphere detector
(LSD).

The approximation of the logarithm in (5.2) can be calculated using a small look-
up table and the Jacobian logarithm [6]

jacln(a1,a2) := ln(ea1 + ea2) = max(a1,a2)+ ln(1+ exp(−|a1 −a2|)). (5.3)

The Jacobian logarithm in (5.3) can be computed without the logarithm or exponen-
tial functions by storing r(|a1 − a2|) in a look-up table, where r(·) is a refinement
of the approximation max(a1,a2). Max-log approximation further simplifies (5.2)
when the refinement term is left out with negligible loss in performance. With these
simplifications, LD(bk|y)−LA(bk) can be written as

LE(bk|y) = max
b∈Lk,+1

{

− 1
2σ2 ||y−Hx||2 + 1

2
bT
[k]LA,[k]

}

− max
b∈Lk,−1

{
1

2σ2 ||y−Hx||2 + 1
2

bT
[k]LA,[k]

}

. (5.4)

5.1.1 Tree Search Algorithms

The tree search algorithms can be used to solve or approximate the hard output ML
solution with reduced complexity compared to the full-complexity ML detector.
They are based on preprocessing and tree search algorithms and their application to
the MIMO detection problem has gained renewed attention in the literature during
the last few decades [7]. The search over the lattice points can be performed with
a tree structure due to the QR decomposition applied on the channel matrix. The
tree search algorithm then aims to find the shortest path in a search tree formed
by the MIMO channel matrix and the transmitted symbols, i.e., solves the exact
ML solution or suboptimal solution depending on the algorithm search strategy.
The algorithms in the literature are often divided into three categories according to
the search strategy: the breadth-first (BF) search, the depth-first search (DF), and the
metric-first (MF) search [8–10].

A class of algorithms, generally called sphere detectors (SD) [11–15], solve the
ML solution with a reduced number of considered candidate symbol vectors. They
take into account only the lattice points that are inside a sphere of a given radius.
The condition that the lattice point lies inside the sphere can be written as

||y−Hx||2 ≤ C0. (5.5)
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After QR decomposition of the channel matrix H in (5.5), it can be rewritten as
||y′ −Rx||2 ≤ C

′
0, where C

′
0 = C0 − ||(Q′)Hy||2, y′ = QHy, R ∈ C

N×N is an upper
triangular matrix with positive diagonal elements, Q ∈ C

M×N and Q′ ∈ C
M×(M−N)

are orthogonal matrices.
The squared partial Euclidean distance (PED) of xN

i , i.e., the square of the
distance between the partial candidate symbol vector and the partial received vector,
can be calculated as

d(xN
i ) =

N

∑
j=i

∣
∣
∣
∣
∣
y
′
j −

N

∑
l= j

r j,lxl

∣
∣
∣
∣
∣

2

, (5.6)

where i = N . . . ,1, y
′
j is the jth element of y′, r j,l is the j, lth element of the matrix

R, xl is the lth element of the candidate vector xN
i , and xN

i denotes the last N − i+1
components of vector x [15].

Hard output sphere detectors may cause significant performance degradation
when used in a system with FEC. However, there are methods proposed in the
literature to modify hard output detectors to give soft reliability information of the
transmitted bits as an output. A tree search algorithm can be used to obtain a list of
candidates L and their Euclidean distances which are used to calculate the APPs LD

of the coded bits in bp. The size of the candidate list and the bounding of the tree
search define the trade-off between complexity and the quality of the soft output
information. List detector algorithms continue the tree search until a defined list is
obtained. LSDs can be used to approximate the MAP detector and to provide soft
outputs for the decoder [3]. The algorithms can often be derived from the sphere
detector algorithms with minor modifications.

A tree search detector structure is presented in Fig. 5.2. The channel matrix H
is first decomposed as H = QR in the QR-decomposition block. The Euclidean
distances between the received signal vector y and the possible transmitted symbol
vectors are calculated in the tree search block. The candidate symbol list L from
the tree search block is demapped to a binary form. The tree search algorithm can
be any algorithm that produces a list of candidate symbols, for example the LSD.
The LLRs are calculated from the list of Euclidean distances in the LLR block.
Limiting the range of LLRs reduces the required list size [16].

Fig. 5.2 The structure of the
tree search detector
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5.2 Breadth-First Detection

Breadth-first algorithms, such as the M algorithm [10] or the K-best Algorithm
[17, 18] with sphere radius, extend the search in a layer-by-layer basis with multiple
paths and always proceed in the depth direction of the tree. The algorithms always
keep a constant number of candidate paths in each layer of the tree if no sphere
radius constraint is introduced, but also require sorting of the candidate paths at
each tree layer. The fixed complexity sphere decoder (FSD) [19] and the selective
spanning with fast enumeration (SSFE) algorithm [20] also have a fixed complexity
as they search over a fixed number of lattice points around the received signal. They
both have a predefined number of nodes to be searched in the tree. Breadth-first
algorithms guarantee a fixed number of visited nodes, which makes the algorithm
very suitable for implementation. However, the breadth-first search strategy does
not guarantee the ML solution and the search as such is inefficient in term of visited
nodes especially with higher order modulation compared to the other tree search
strategies.

5.2.1 K-Best Detection

The K-best algorithm [17] is a breadth-first search based algorithm, which keeps
the K nodes which have the smallest accumulated Euclidean distances at each level.
If the PED is larger than the squared sphere radius C0, the corresponding node will
not be expanded. The K-best algorithm without the sphere constraint can also be
seen as the M-algorithm [10]. Here, C0 = ∞, but a set the value for K is used instead,
as is common with the K-best algorithms. The K-best LSD algorithm description is
given as Algorithm 1. The main loop of the algorithm runs from i = 1, . . . ,2N in a
real valued system, i.e., the real and complex parts of the signal are treated separately
[15, 21].

The K-best tree search with no sphere constraint is illustrated in Fig. 5.3. A list
size of two is assumed. The tree search proceeds level by level, expanding all the
child nodes of each parent node. If the number of child nodes exceeds the list size,

Algorithm 1 The K-best LSD algorithm

Inputs: Q,R,y, C′
0, K, P (modulation used, P-QAM)

Preprocessing: Calculate y′
Algorithm:
for i = 1, . . . ,N
1. Denote the partial candidate by xN

i+1.
1.1 Determine all admissible candidate child nodes xi

(with given C′
0) and the corresponding PEDs d(xN

i ).
1.2 Store the partial candidates and their PEDs

to a temporary stack memory.

2. Sort the partial candidates according
to their PEDs
3. Store the K smallest PEDs and symbol
vectors to the final list stack memory.
end
Give the candidates and their
EDs as outputs.
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Fig. 5.3 The K-best tree search

sorting is performed to find the K nodes with the smallest PEDs. The tree search
starts from the top of the tree on the first level in the figure. Both nodes are spanned,
and on the second level, all the child nodes are spanned as well. Sorting is performed
to find the two nodes with the smallest PEDs. The tree search continues until the
fourth level is reached and the two leaf nodes with the smallest Euclidean distances
are given as output. The breadth-first tree search can be modified to decrease the
latency [22].

5.2.2 Selective Spanning with Fast Enumeration

The SSFE algorithm [20] can also be thought of as a breadth-first tree search
algorithm. It can be also thought of as a fixed complexity detector. The algorithm
spans each level of the tree based on the node spanning vector m = [m1, . . . ,mM].
The number of spans for each node on a level is specified with the element of m
corresponding to that level. As the spanned nodes are not discarded, the length of the
final candidate list can be obtained by multiplying the elements of m. For example,
in a 2×2 antenna and 64-QAM system, the vector m = [64,8] would lead to a final
candidate list of 512. Here, a real valued system model is used. Such a system model
simplifies the Euclidean distance calculation and the slicing operation as the closest
constellation point selection can be done on a one dimensional axis.

The PED on each level i of the tree search can be calculated as

di(xi) = di+1(xi+1)+
∥
∥ei(xi)

∥
∥2

, (5.7)

where di+1(xi+1) is the PED from the previous level. The slicer unit selects a set of
closest constellation points xi, minimizing
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Fig. 5.4 The slicing operation in SSFE with 64-QAM

Algorithm 2 The SSFE algorithm

Inputs: Q,R,y, m, P (modulation used, P-QAM)
Preprocessing: Calculate y′ and hi = 1/Ri,i

Algorithm:
for i = 1, . . . ,N
1. Calculate ε for each candidate in xi

2. Slice the mi closest points

3. Calculate the PEDs to the sliced lattice
points
end
Give the candidates and their EDs as outputs.

∥
∥ei(xi)

∥
∥2

=

∥
∥
∥
∥
∥

y′i −
M

∑
j=i+1

ri, jx j − ri,ixi

∥
∥
∥
∥
∥

2

. (5.8)

Minimizing
∥
∥ei(xi)

∥
∥2

is equivalent to the minimization of ‖ei(xi)/rii‖2 = ‖(y′i −
∑M

j=i+1 ri, jx j)/ri,i − xi‖2, where ε = (y′i −∑M
j=i+1 ri, jx j)/ri,i. The closest constella-

tion points based on ε are selected in the slicer unit.
The real valued axis for 64-QAM is shown in Fig. 5.4. The slicing order given

ε is also depicted. If five constellation points are sliced, the slicer would select
the constellation points in the order of {−1,−3,1,−5,3}. The process is similar
to the Schnorr–Euchner enumeration (SEE) [23]. The SSFE algorithm could then
be thought of as the M-algorithm combined with SEE. The SSFE algorithm
does not require sorting, which makes it more attractive for implementation than
the M-algorithm or the K-best detector. The SSFE algorithm is summarized as
Algorithm 2.

5.2.2.1 Implementation Choices

The top level architecture of the K-best LSD for a 2×2 antenna system is shown in
Fig. 5.5. The 4×4 antenna system LSD is based on the same architecture, but four
more PED calculation blocks and sorters are added to the design. The architecture
for the SSFE has a similar pipelined structure, where each level of the tree is
processed separately.
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Fig. 5.5 The top level architecture of the 2×2 K-best LSD

The K-best LSD architecture is modified from [24]. A 2×2 and a 4×4 antenna
system with a real signal model [25] is assumed. The received signal vector y is
multiplied with matrix Q in the matrix multiplication block. Matrix R is multiplied
with the possible transmitted symbols after the QRD is performed, i.e., when the
channel realization changes. PEDs between the last symbol in vector y′ and possible
transmitted symbols are calculated in block PED1 in a 2× 2 antenna system with
d(x2

4) = ||y′
4 − r

′
4,4||2. The resulting lists of symbols and PEDs are not sorted at

the first stage. The distances are added to the PEDs d(x2
3) = ||y′

3 − (r
′
3,3 + r

′
3,4)||2

calculated in the PED2 block. The lists are sorted and K partial symbol vectors
with the smallest PEDs are kept. PED3 block calculates d(x2

2) = ||y′
2− (r

′
2,2+ r

′
2,3+

r
′
2,4)||2, which are added to the previous distance and sorted. The last PED block

calculates the PEDs d(x2
1) = ||y′

1 − (r
′
1,1 + r

′
1,2 + r

′
1,3 + r

′
1,4)||2. After adding the

previous distances to d(x2
1), the lists are sorted and the final K symbol vectors are

demapped to bit vectors and their Euclidean distance is used in the LLR calculation.
High level synthesis (HLS) was used to obtain the implementation results. Even

though HLS tools have been developed for decades, only the tools developed in the
last decade have gained a more widespread interest. The main reasons for this are
the use of an input language, such as C, familiar to most designers, the good quality
of results, and their focus on digital signal processing (DSP) [26]. HLS tools are
especially interesting in the context of rapid prototyping where they can be used
for architecture exploration and to produce designs with different parameters [27].
While the results may not always be as optimal as with hand-coded HDL, the tool
allows experimenting with different architectures in a short amount of time. The
complexity results can be close to the hand-coded ones with small designs [28].
There can be a bigger difference with large designs.

The implementation of algorithms was done by writing the architecture descrip-
tion with fixed-point ANSI C++ language and then applying the Catapult C
Synthesis tool [29] to produce a register transfer level (RTL) description. After
obtaining the RTL with the desired timing and complexity results, synthesis was per-
formed with Synopsys Design Compiler specific tools to obtain the final complexity
results. The algorithms in this section and in Sect. 5.3.4 were implemented with
0.18 μm complementary metal-oxide semiconductor (CMOS) ASIC technology for
a 4 × 4 MIMO system with 16- and 64-QAM. The ASIC power estimation was
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Table 5.1 Implementation results with 4×4 16-QAM

Gates Power
Receiver Tree search LLR Tree search LLR Detection rate

SSFE/SSFE 135.2 k 19 k/34.6 k 488.9 mW 79 mW/158 mW 186 Mbps/163 Mbps

2 it.

8-best/8-best 97 k 17.3 k/33.1 k 341.5 mW 68.3 mW/140.5 mW 140 Mbps/126 Mbps

2 it.

16-best 148.4 k 20.2 k 499.6 mW 79.2 mW 70 Mbps

Table 5.2 Implementation results with 4×4 64-QAM

Gates Power
Receiver Tree search LLR Tree search LLR Detection rate

SSFE/SSFE 177.4 k 25.7 k/50.4 k 568.6 mW 110.5 mW/236.7 mW 269 Mbps/222 Mbps

2 it.

8-best/8-best 183.7 k 21.5 k/45.2 k 551.4 mW 87 mW/197.9 mW 210 Mbps/180 Mbps

2 it.

16-best 217.2 k 24.5 k 717.3 mW 96.6 mW 105 Mbps

done with the Synopsys PrimeTime tool. Results for the enhanced tree search,
other antenna configurations, adaptive systems, and other detectors can be found
in [30, 31].

5.2.2.2 VLSI Implementation

The complexity and performance of two breadth-first tree search algorithms are
compared. The complexity results for the SSFE and K-best detectors are presented
in Table 5.1 for 16-QAM and in Table 5.2 for 64-QAM. Results for the LLR
calculation are also given for a fair comparison of the two detectors. The detection
rate of a receiver can be calculated as QN

Drec
, where Q is the number of bits per

symbol, Drec = Ddet +(DLLR +Ddec)Niter, Ddet is the latency of the detector, DLLR

is the latency of LLR calculation, Ddec is the latency of the decoder, and Niter is
the number of iterations between the detector and the decoder. LLR calculation
and decoding can be performed simultaneously and in a pipelined manner with
detection and their latency does not have to be included in the throughput latency. In
an iterative receiver, the throughput latency is determined by the minimum of Ddet

and DLLR+Ddec. The receivers were designed to have a detection rate, which would
be enough for the 3GPP Long Term Evolution (LTE) 20 MHz bandwidth.

The word lengths for the K-best LSD and LLR calculation are mainly 16 bits and
computer simulations have been performed to confirm that there is no performance
degradation [30]. The sorters are insertion sorters. The list size values of 16 and 8
are used in the implementation.
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Fig. 5.6 Complexity-performance trade-off in a 4×4 antenna system

The SSFE list size is 12 and the node spanning vector is [3,2,2,1,1,1,1,1].
The clock frequency of the detectors was 280 MHz except for the 64-QAM SSFE
where only a 269 MHz clock frequency was achieved. In the receiver with two
global iterations, the tree search is performed only once and the complexity is the
same as with one iteration. However, the LLR calculation is different in the two
cases as the feedback from the decoder is used in the iterative detector. Decoding
reduces the detection rate in the iterative receiver. The 8-best detector has a lower
complexity and power consumption than the SSFE in the 16-QAM case, but the
detection rate is also lower. The power consumption is also lower in the 64-QAM
case, but the detection rate of the SSFE is higher.

The complexity-performance trade-off is illustrated in Fig. 5.6. The goodput,
i.e., the minimum of the transmission throughput and hardware detection rate of
information bits in a 20 MHz bandwidth with a 1/2 code rate, is compared to the
hardware complexity. The figure then illustrates the communication performance of
each detector compared to its complexity. The transmission throughput results were
obtained with computer simulations in a realistic communication system model. The
K-best with list size of 16 has a high complexity and low goodput. The goodput
of the SSFE with two global iterations is close to that of the 8-best with one
iteration with 16-QAM, but has a higher complexity. With 64-QAM, SSFE with
two iterations achieves the highest goodput. Extra iterations do not bring any benefit
with the K-best tree search as the detection rate is low. Even though the SSFE
algorithm does not include sorting, the slicing operation induces extra complexity
compared to the K-best algorithm and the difference between the two tree search
algorithms remains small. The iterations between the detector and the decoder can



5 VLSI Implementations of Sphere Detectors 83

improve the communication performance but at the same they increase the latency
and complexity, resulting in a low overall gain. However, some pipelining and
parallelization techniques can be used to improve the throughput [32].

5.3 Depth-First and Metric-First Detection Algorithm
Implementations

In this section, we introduce some examples of soft-output depth-first and metric-
first search based detection algorithms and their VLSI implementations [31]. The
considered soft-output sphere detection algorithms are first presented in Sect. 5.3.1.
Implementation trade-offs are then presented in Sect. 5.3.2, and the architectural
choices in Sect. 5.3.3. Finally, the implementation results are presented in 5.3.4.

5.3.1 Algorithm Descriptions

The considered depth-first and metric-first search based LSD algorithms are intro-
duced in this section.

5.3.1.1 Depth-First Algorithm

Depth-first algorithms are based on a sequential search and go through a variable
number of nodes in the search tree depending on the channel realization and the
signal to noise ratio (SNR). The algorithms explore the tree along the depth until
the cost metric of the path is below a defined threshold called a sphere radius.
They then return and pursue another unexplored path. DF algorithms are able to
find the exact ML solution if the search is not bounded. The Pohst enumeration
method is often considered to be the original sphere algorithm [12]. The algorithm
search complexity is bounded by selecting a constant sphere radius, which limits
the search in the tree to the most likely paths. More advanced adaptive sphere radius
was introduced as the Viterbo–Boutros (VB) implementation [14], and the SEE [23]
can be seen as even more efficient modification of the Pohst enumeration and VB
implementation [11].

We consider a depth-first search based sphere detection algorithm called the
SEE—LSD and it is listed as Algorithm 3. It is an extension of SEE-SD [23]
to a LSD, and the algorithm continues the search until all admissible nodes have
been checked and the required candidate list L has been obtained. The output
candidate list L includes the most probable candidates, i.e., the candidates with the
lowest ED. The sequential algorithm initially starts from the root layer and extends
the partial candidate s = xN

N with the best admissible node determined by the SE
enumeration. The search tree pruning loop in the algorithm extends the considered
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Algorithm 3 [L] = SEE-LSD(y′,R,Ncand,Ω,N)

Initialize set L, and set C0 = ∞, m = 0, n1 = 1, i = N
Initialize N (s = xN

N ,d(s) = 0)
WHILE (i �= N and n1 �= |Ω|) {

IF (n1 = |Ω|) { Set i = i+1, determine n1 and continue with N (s = xN
i+2,d(s)) }

ELSE
Determine the n1th best node xi for sc = (xi,xN

i+1) and calculate d(sc)
IF (d(sc)<C0)

IF (sc is a leaf node, i.e., i = 1)
1. Store NF(sc,d(sc)) in {L}m

2. Set m = m+1 or, if L is full, set m according to {L}m with max ED
and C0 = {d(s)}m

3. Continue with N (s = xN
i+1,d(s)), n1 ++ and i = 1 if n1 +1 ≤ |Ω|

ELSEIF (i �= 1 or n1 +1 = |Ω|) { Set i = i−1 and n1 = 1, and continue with
N (sc,d(sc)) }

ELSEIF (d(s)≥C0 and i �= N −1) { Set i = i+1, determine n1 and continue with
N (s = xN

i+2,d(s)) }
ELSE {End the algorithm} }

partial candidate s = xN
i+1 with the next best available child node in each iteration

until the PED of the extended partial candidate exceeds the sphere radius C0 or a leaf
node s = xN

1 is found. In the case of a leaf node s = xN
1 , the candidate information

N (s,d(s)), which includes the candidate s and the corresponding ED d(s), is added
to the final candidate list L if the ED d(s) is lower than the current sphere radius C0.
The radius is always updated to be equal to the highest ED in the final list when the
final candidate list is full and a new leaf node is found. If the extended candidate
exceeds the C0 or all the admissible nodes have been checked, the algorithm moves
one layer higher and continues with the next best admissible node. The next best
admissible node is determined based on the previously extended nodes.

5.3.1.2 Metric-First Algorithm

Metric-first algorithms are based on a sequential search method and the search
always proceeds along a path with the best cost metric among the stored paths in the
tree search [8, 33]. MF algorithms are based on Dijktra’s algorithm [34, 35], which
was originally used to solve the single-source shortest path problem for a graph.
The application of metric-first algorithms for MIMO detection has been applied
in [36–38]. MF algorithms find the exact ML solution and the search strategy is
efficient in terms of visited nodes in the search tree, but requires storing and ordering
of the paths studied [33].

The increasing radius (IR)—LSD is listed as Algorithm 4. The IR-LSD algorithm
uses the metric-first search strategy and it is a modification of Dijkstra’s algorithm
[34] to a LSD algorithm. The algorithm is optimal in the sense of the number of
nodes in the tree structure visited [33, 34]. The output candidate list L includes the
most probable candidates, i.e., the algorithm always gives exactly the same output
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Algorithm 4 [L] = IR-LSD(y′,R,Ncand,Ω,N)

Initialize sets S and L, and set C0 = ∞, m = 0, n1 = 1
Initialize N (s = xN

N ,d(s) = 0,n2 = 2, i = N)
WHILE (C0 < d(s)) {

1. Determine the n1th best node xi for sc = (xi,xN
i+1)

T and calculate d(sc)
2. Determine the n2th best node xi+1 for father candidate

sf = (xi+1,xN
i+2)

T and calculate d(sf) if n2 ≤ |Ω|
IF (d(sc)<C0)

IF (sc is a leaf node, i.e., i = 1)
1. Store NF(sc,d(sc)) in {L}m

2. Set m = m+1 or, if L is full, set m according to {L}m with max ED and
C0 = {d(s)}m

3. Continue with N (s = xN
i+1,d(s),n1 +1,1) if n1 +1 ≤ |Ω|

ELSE { Store Nc(sc,d(sc),n2 = 2, i−1) in S}
IF (Nf calculated and d(s f )<C0) { Store Nf(sf,d(s)f,n2 +1, i) in S}
3. Continue with N with min PED from S and set n1 = 1}

as the SEE-LSD algorithm. The algorithm always extends the partial candidate
with the lowest PED in one extend loop. The algorithm operates in a sequential
fashion; it initially starts from the root layer with partial candidate s = xN

N and
determines the next best admissible node xi at layer i with SEE. The child candidate
is then defined as sc = (xi,xN

i+1)
T. The algorithm also, if possible, extends the father

candidate s f = xN
i+2 with the next best admissible node xi+1. The SEE, which is

used to determine the next best admissible node, requires the information of already
extended nodes, and the information is defined as n1 and n2 for the considered
candidate and its father candidate, respectively. The algorithm uses two memory sets
for storing the candidates, the final candidate set L and the partial candidate set S . In
the algorithm search, the partial child candidate information NS (sc,d(sc),n1) and
the possible father candidate information NS

(
s f ,d(s f ),n2

)
are stored to set S after

each tree pruning loop. In the case the child candidate sc is a leaf node and smaller
than the current radius C0, the candidate information NL (sc,d(sc)) is stored to the
final list set L. The sphere radius C0 is updated when L is full and the candidate with
the largest ED is replaced with a new leaf candidate. After storing the candidate(s),
the algorithm finds the candidate information NS with the minimum PED d(s) from
set S and continues the algorithm if the PED is smaller than the current radius C0.
It should also be noted that n1 = 0 is used in the tree pruning loop if the extended
node is not a leaf node, and the n, which is read from S , is used as n2.

5.3.2 Implementation Trade-Offs

The algorithms presented in Sect. 5.3.1 are not as such directly feasible for hardware
implementation without some modifications. In order to reserve the hardware
resources for the algorithm to meet the given timing constraints, we need to
determine the so-called worst case scenario and determine the algorithm complexity
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accordingly. The SEE-LSD and the IR-LSD, however, visit a variable number
of nodes depending on the channel realization, and the implementation of these
algorithms as such is not feasible for a system with a fixed latency requirement.
A simple way to fix the complexity is to limit the maximum number of Lnode nodes
visited by the LSD algorithm [31]. If the sphere search is not completed within the
defined Lnode, the algorithm is stopped and the current final candidate list L is given
as an output. Another more sophisticated alternative is to use a scheduling algorithm
as, e.g., in [31, 39, 40]. The idea behind the scheduling algorithm is that, e.g., in an
OFDM system, higher maximum limits Lnode can be allocated for subcarriers with
a difficult channel realization while subcarriers with easier channel realization can
be allocated with lower limits.

The LSD algorithms are often assumed to apply a real equivalent system model
[15, 21] especially in the implementation of the algorithms. However, complex
valued signal models are also applied in the literature [3, 39]. The definition of the
signal model does not affect the mathematical equivalence of the expressions, but
it affects the lattice definition where the LSD algorithm search is executed. The
real signal model was shown to be clearly the better choice to be applied with LSD
algorithms [31], and we also consider it here.

5.3.3 Architectural Choices

Architectural design choices for the considered LSD algorithms are presented in this
section.

5.3.3.1 SEE-LSD

A scalable architecture for the SEE-LSD algorithm, which consists of a tree pruning
unit (TPU), a control unit (CNTR), and a memory unit, is shown in Fig. 5.7. The
architecture operates in sequential fashion and prunes a single node in the search tree
in each iteration. The TPU executes the tree pruning, and the CNTR determines the
partial candidate for the next iteration and the possible final candidate to be stored in
the memory unit. The problem of variable complexity is solved by applying an input
variable Lnode, which sets a maximum limit for the number of nodes to be pruned
by the architecture as discussed in Sect. 5.3.2.

The SEE-LSD algorithm TPU microarchitecture is illustrated in Fig. 5.8. The
TPU microarchitecture is divided into two sub-units that can be implemented with
different levels of parallelism and pipelining. It should be noted that the SEE-LSD
algorithm TPU microarchitecture has to be able to calculate the tree pruning for
partial candidates in different search layers. Typically the TPU should be made
as fast as possible with the proper parallelism and pipelining configuration as
the latency of the unit directly affects the throughput of the SEE-LSD algorithm
architecture. The first unit calculates the part of PED calculation that is independent
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Fig. 5.7 A scalable
architecture for the SEE-LSD
algorithm

Ω

Fig. 5.8 The
microarchitecture for the
extension of the candidate

of the new symbol xi in (5.6), where i is the current search layer. The second unit
executes the SEE, i.e., determines the nth best node xi, and calculates the PED of
the extended partial candidate accordingly [31].

The memory unit is used to store the Ncand final candidates with the smallest
EDs, which are found during the SEE-LSD algorithm tree search. The memory unit
is designed as a binary heap [35,41] data structure, which keeps the stored elements
in order according to the selected cost metric. The memory unit L is implemented
as max-heap, where the new element NF(sc,d(sc)) is always ordered in the heap as
it is stored. The heap elements are kept in order so that the final candidate with the
maximum ED is always at the top of the heap [35, 41].

The required control logic in CNTR unit for the SEE-LSD algorithm architecture
is rather simple. The logic determines the next search level i and next admissible
node n1 for the next algorithm iteration based on the partial candidate, which was
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extended in the TPU. If the extended candidate is a leaf node and d(s)<C0, the final
candidate is stored to the memory unit and the sphere radius C0 is possibly updated.
The CNTR unit also terminates the search after Lnode iterations.

The SEE-LSD algorithm architecture operates in sequential fashion a total of
Lnode iterations, where the parameter Lnode should be selected as suitable to provide
the desired performance. The latency of the algorithm iterations consists of the
latency of the CNTR and the latency of the TPU or the memory unit. The TPU
and memory unit operations are designed to be executed in parallel, where the
TPU is typically the slower unit as it includes more operations and the memory
unit is executed only seldom. In order to maximize the throughput of the SEE-LSD
algorithm architecture, the TPU should be implemented with proper parallelism and
pipelining. The parameter Lnode can also be lowered to increase the throughput with
the cost of decreased performance. The SEE-LSD algorithm architecture is as such
scalable for system configurations with different number of transmit antennas N and
different constellation Ω.

5.3.3.2 IR-LSD

The IR-LSD algorithm architecture is shown in Fig. 5.9 and includes a TPU with
two calculation modules, a partial candidate memory unit, a final candidate memory
unit, and a control logic (CNTR) unit. In each iteration, the TPU executes the
tree pruning for two partial candidates, and the CNTR determines the partial
candidate for the next iteration and the possible final candidate to be stored in the

Fig. 5.9 A scalable architecture for the IR-LSD algorithm



5 VLSI Implementations of Sphere Detectors 89

memory unit. The problem of variable complexity is solved by applying an input
variable Lnode, which sets a maximum limit for the number of nodes to be pruned by
the architecture. The IR-LSD algorithm architecture TPU is similar to the TPU in
the SEE-LSD algorithm architecture with two similar candidate extension modules,
which execute the tree pruning for the new selected candidate and the corresponding
father candidate in parallel. The latency of the parallel units, i.e., the parallelism
and pipelining choices, should be designed to be as similar as possible for efficient
design.

There are two memory units in the IR-LSD architecture: the partial candidate
memory set S and the final memory set LF. The memory units are designed as binary
heap [35, 41] data structures, which keep the stored elements in order according to
the selected cost metric. The partial candidate memory set S is implemented as min-
heap, where the elements N (s,d(s),n2, i) are ordered so that the candidate with the
minimum PED is always sorted to be at the top of the heap. The final memory set LF,
which is similar to the memory unit in the SEE-LSD architecture, is implemented
as max-heap, where the stored final candidates N (s,d(s)) are sorted according to
the ED. The size of the partial candidate memory S is equal to Lnode elements.
In practice, ordering of the partial memory elements might become a limiting
factor in the IR-LSD algorithm implementation with a large Lnode. A technique
called as memory sphere radius Cmem is applied to decrease the amount of memory
access [31].

The control logic unit includes an iteration counter for the IR-LSD algorithm
architecture and determines the candidates to be stored in the memory units and to
be used in the search in the next algorithm iteration. The candidate to be used in the
TPU unit in the next iteration is determined as the candidate with minimum PED
from the extended candidates Nc and N f , and the minimum candidate in partial
memory {S}0. If either one of the extended candidates Nc or N f is selected for the
next algorithm iteration, {S}0 remains in the memory. Thus, unnecessary memory
access is minimized as the candidates Nc and N f are not directly stored to the
memory. The extended partial candidate(s) to be stored in S are also conditioned
with Cmem to minimize memory access. If the extended candidate Nc is a leaf node
and d(s)<C0, the final candidate is stored to the memory unit and the sphere radius
C0 is possibly updated.

The IR-LSD algorithm architecture and its timing are designed to minimize the
latency in one algorithm iteration by introducing parallel operations. The straight-
forward data flow mapping of algorithm would first extend the new candidates, then
store them in memory units, and finally determine the new candidate for the next
iteration. However, the data flow can be designed more efficiently to reduce the
latency of one algorithm iteration. After the TPU extends the partial candidates in
the current iteration, the control logic unit determines the new candidate for the TPU
at the next iteration and the stored candidates for the memory units from the current
iteration. The TPU and memory units are then executed in parallel, which decreases
the latency significantly compared to the straightforward mapping of the algorithm.
In order to maximize the throughput of the IR-LSD algorithm architecture, the
TPU and partial memory unit should be implemented with proper parallelism and
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pipelining. Also the parameter Lnode can be lowered to increase the throughput with
the cost of decreased performance. The limit for the number of algorithm iterations
Lnode should be defined separately for different system configurations or according
to the most complex supported configuration. A proper Lnode value depends on the
channel realization and on the search tree size, i.e., on the number of independent
data streams and the constellation size |Ω|.

5.3.4 VLSI Implementation Results

The SEE- and IR-LSD algorithm architectures were implemented for a 4×4 MIMO
system with 16- and 64-QAM with the tools described in 5.2.2.2. The complexity
results are given in area and in gate equivalents (GEs), where one GE corresponds
to the area of a two-input drive-one NAND gate. The fixed-point word lengths
were determined via computer simulations for a 4×4 MIMO–OFDM system and a
maximum of 12 and 15 bits were found adequate for 16- and 64-QAM, respectively.

The SEE-LSD algorithm implementation is based on the architecture presented
in Fig. 5.7. The SEE-LSD architecture TPU for 16-QAM was implemented with
four parallel pipelined MULs in the first subunit and four parallel MULs in the latter
subunit. The TPU for 64-QAM was implemented with four parallel pipelined MULs
in the first subunit and eight parallel MULs in the latter subunit. Both algorithm
implementations are done for output list size Ncand = 15. The synthesis results of the
SEE-LSD algorithm implementation for the 0.18 μm CMOS technology are listed
in Table 5.3. The IR-LSD algorithm implementation is based on the architecture
presented in Fig. 5.9. The IR-LSD architecture TPU for 16-QAM was implemented,
as in the SEE-LSD algorithm, with four parallel pipelined MULs in the first
subunits and four parallel MULs in the latter subunits. The TPU for 64-QAM was
implemented with four parallel pipelined MULs in the first subunit and eight parallel
MULs in the latter subunit. Both algorithm implementations are done for output
list size Ncand = 15. The memory unit S was implemented with dual port RAM
to enhance the memory access. The maximum number of algorithm iterations is
limited to 175 and 225 in the 16- and 64-QAM implementation, respectively. Thus,
the memory unit size was 175× 31 and 225× 35 bits for the 16- and 64-QAM,
respectively. The synthesis results of the IR-LSD algorithm implementation for the
0.18 μm CMOS technology are listed in Table 5.4.

Table 5.3 Synthesis results of the SEE-LSD algorithms for an SM
system with N = 4

SEE-LSD Area (mm2) kGEs Latency Power (mW)

16-QAM 0.13 10.6 13 cc/52 ns per it. 25

64-QAM 0.27 22.0 16 cc/64 ns per it. 38
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Table 5.4 Synthesis results of the IR-LSD algorithms for an SM
system with N = 4

IR-LSD Area (mm2) kGEs Latency Power (mW)

16-QAM 0.31 25.4 14 cc/56 ns per it. 57

64-QAM 0.59 48.2 17 cc/68 ns per it. 90

5.3.4.1 Detection Rates

The results are applied to calculate detection rates of the algorithm implementations.
The detection rate Rdet denotes the amount of transmitted coded bits that the
LSD algorithm implementation is able to detect in a certain time with a given
complexity. The total detection rate Rdet of the LSD algorithm implementation can
be calculated as

Rdet =
NQ
Δtot

bits/s, (5.9)

where Δtot corresponds to the throughput time of the LSD algorithm implementa-
tion. The throughput time for the sequential search algorithm implementations, the
SEE-LSD algorithm and the IR-LSD algorithm, is defined as Δtot = ΔitLit

avg, where
Δit is the latency per algorithm iteration and Lit

avg is the average number of executed
algorithm iterations. Thus, the achievable detection rate Rdet depends on the defined
maximum limit for visited nodes Lnode, which should be properly selected to meet
the desired FER target with a given channel realization and SNR γ . Implementation
results of a K-best-LSD are also added for comparison [31]. It should be noted that
the IR-LSD algorithm implementation checks two nodes in one algorithm iteration
and that the K-best-LSD algorithm implementation detection rate is fixed as the
algorithm search goes through a fixed number of nodes with variable performance
depending on the channel realization and SNR. Also it should be noted that the
implementation of multiple parallel LSD algorithms can be used to achieve a higher
detection rate.

The detection rates of the LSD algorithm ASIC implementations for 16- and
64-QAM in different channel environments are listed in Table 5.5. The listed
SNR range is selected as the operating range of the LSD based receiver with a
given configuration and channel environment. The detection rates of the SEE-LSD
algorithm and IR-LSD algorithm implementations are lower at low SNR as more
algorithm iterations are required to achieve adequate performance. The detection
rates at high SNR correspond to cases where the minimum number of iterations
provides adequate performance. The LSD algorithm implementations have different
performances and complexities, and, thus, we also compare the efficiency of the
implementations. The comparison is done with an algorithm work factor Walg,
which is calculated as a multiplication product between the used resources in
terms of GEs and the implementation throughput time per subcarrier Δtot, and a
smaller value reflects a more efficient implementation [42, 43]. The algorithm work
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Table 5.5 Detection rates of the LSD algorithm ASIC implementations in different channel
environments

R(asic)
det (dB) IR-LSD alg. (Mbps) SEE-LSD alg. (Mbps) K-best-LSD alg. (Mbps)

16-QAM, UNC, [4.14,31.7] [1.07,34.2] 62.5

γ = [13−19]

16-QAM, CORR, [1.70,31.7] [0.35,34.2] 62.5

γ = [21−26]

64-QAM, UNC, [3.71,39.2] [1.12,41.6] 93.8

γ = [20−25]

64-QAM, CORR, [1.62,39.2] [0.30,41.6] 93.8

γ = [30−35]

Table 5.6 Performance and work factor numbers of the LSD algorithm ASIC implementations
in different channel environments

IR-LSD alg. SEE-LSD alg. K-best-LSD alg.

16-QAM, UNC Walg [0.097,0.013] [0.158,0.005] 0.030

γ = [13−19] dB Perf. Max-log—0.6 dB Max-log—0.8 dB Max-log—0.4 dB

16-QAM, CORR Walg [0.239,0.013] [0.472,0.005] 0.030

γ = [21−26] dB Perf. Max-log—0.5 dB Max-log—0.5 dB Max-log—1.2 dB

64-QAM, UNC Walg [0.311,0.029] [0.473,0.013] 0.050

γ = [20−25] dB Perf. Max-log—1.2 dB Max-log—1.2 dB Max-log—0.9 dB

64-QAM, CORR Walg [0.715,0.029] [1.757,0.013] 0.050

γ = [30−35] dB Perf. Max-log—0.7 dB Max-log—0.7 dB Max-log—2.0 dB

factor values of the LSD algorithm ASIC implementations for 16- and 64-QAM in
different channel environments are listed in Table 5.6. Also the performances of the
implementations relative to the max-log-MAP detector are listed in Table 5.6.

All of the LSD algorithm implementations have advantages in certain channel
environments and SNR values. The K-best-LSD algorithm implementation achieves
rather good performance in the uncorrelated channel with a fixed Walg, but the
performance suffers in highly correlated channels. The algorithm work factor Walg

is best in low SNR values, but the performance cannot be tuned with the channel
as in the sequential search algorithms. The SEE-LSD algorithm implementation is
the most efficient in high SNR values, but is the least efficient in low SNR because
of the algorithm search strategy. The IR-LSD algorithm implementation is more
efficient at low SNR compared to the SEE-LSD algorithm implementation and more
efficient at high SNR compared to the K-best-LSD algorithm implementation. Both
sequential search algorithm implementations perform much better compared to the
K-best-LSD algorithm implementation in highly correlated channels with the cost of
additional complexity. The performance of the sequential search algorithms can also
be tuned with the penalty of additional complexity according to the requirements.

We also calculated the required parallel LSD algorithm resources with 0.18 μm
CMOS technology for a downlink receiver in a 3GPP LTE standard transmission
with 20 MHz bandwidth and with Nused = 1,200 subcarriers. We assume a 4× 4
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Table 5.7 The required LSD algorithm ASIC resources in the LSD detection
of 3GPP LTE standard with 20 MHz BW and with Nused = 1,200 subcarriers

4×4 MIMO–OFDM, 16-QAM Area (mm2) kGEs Power (mW)

IR-LSD alg. 2.6–49.0 216–4,010 485–9,000

SEE-LSD alg. 1.0–100 83–8,140 198–19,200

K-best-LSD alg. 6.5 547 1,480

MIMO–OFDM system with 16-QAM, i.e., the LSD algorithm must be capable of
the detection rate of 268.8 Mbps. The required 0.18 μm CMOS technology resources
are scaled linearly from the LSD algorithm implementation results and are listed in
Table 5.7. The required resources with IR-LSD algorithm and SEE-LSD algorithm
implementations depend on the defined performance of the algorithms as discussed
earlier in this section.

5.4 Trellis-Search Based MIMO Detection

In this section, we introduce a trellis-search based detection algorithm for iterative
MIMO detection [44–46]. We use an unconstrained trellis structure as an alternative
to the tree structure to represent the search space of a MIMO signal. We describe
a trellis-based approximate Log-MAP algorithm as a replacement of the typically
used Max-Log algorithm for iterative MIMO detection. We search the trellis to
find a number of most likely paths for each trellis node and compute a log-sum
of a number of exponential terms corresponding to a hypothesized transmitted
bit value. Near-optimal performance can be achieved by choosing an appropriate
number of surviving paths in the trellis-search process. The trellis-based detection
algorithm is a very data-parallel algorithm because the searching operations at
multiple trellis nodes can be performed simultaneously. The local search complexity
at each trellis node is kept very low to reduce the overall processing time. Moreover,
the trellis-based detector can support iterative MIMO detection by utilizing the a
priori information from the outer channel decoder.

5.4.1 Trellis-Search Algorithm

The LLR computation requires calculations of two log-sums of QNt

2 exponential
terms. The brute-force implementation is too expensive. As a balanced trade-
off between complexity and performance, we can use a reduced number (n) of
exponential terms to approximate the Log-MAP algorithm as:

LLR(xk,b) ≈ ln ∑
n:xk,b=+1

exp
(
− 1

2σ2 d(s)
)
− ln ∑

n:xk,b=−1
exp

(
− 1

2σ2 d(s)
)
, (5.10)
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Fig. 5.10 Trellis model of a 4×4 4-QAM system

where the distance d(s) is defined as:

d(s) =
Nt−1

∑
i=0

(

|(ŷ)i − (Rs)i|2 −σ2
B−1

∑
j=0

xi, j ·LA(xi, j)

)

. (5.11)

In the equation above, ŷ = QHy, and LA(xi, j) is the a priori LLR for bit xi, j. In order
to implement (5.10), we must find n minimum distances d(s) for each hypothesized
transmitted data bit, i.e., xk,b = +1 and xk,b = −1. To realize this, we can use a
trellis-search algorithm to find the n minimum distances.

5.4.2 Trellis Model for Iterative MIMO Detection

The search space of a MIMO signal can be represented with a compact trellis
diagram. As an example, Fig. 5.10 shows the trellis diagram for a 4× 4 4-QAM
system. The trellis has Nt stages corresponding to Nt transmit antennas, and
each stage contains Q different nodes corresponding to Q symbols of a complex
constellation of the transmitted signal. In other words, the trellis is formed of
columns representing the number of transmit antennas and rows representing values
of a number of symbols with nodes at intersections. Each trellis node is physically
mapped to a transmit symbol that belongs to a known modulation alphabet of
the Q constellation symbols. Thus, any path through the trellis represents a possible
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vector (s) of transmitted symbols. Because of the upper triangular property of the
matrix R, the stages of the trellis are labeled in descending order. The trellis is fully
connected, so there are QNt number of different paths from the root node to the sink
node. The nodes in stage k are denoted as vk(q), where q = 0,1, . . . ,Q−1.

To compute the distance metric in (5.11) using the trellis model, we define a
weight function ek−1(q(k−1)) for each edge between node vk(q) in stage k and node
vk−1(q′) in stage k−1 as:

ek−1(q
(k−1)) =

∣
∣
∣ŷk−1 −

Nt−1

∑
j=k−1

Rk−1, j · s j

∣
∣
∣
2 −σ2

B−1

∑
b=0

xk−1,b ·LA(xk−1,b), (5.12)

where q(k−1) = [qNt−1 . . . qk qk−1]
T is the partial symbol vector, s j is the complex-

valued QAM symbol s j = QAM(q j), B is the number of bits per constellation point,
and LA(xk−1,b) is the a priori information for data bit xk−1,b provided by the outer
channel decoder. In the first iteration, LA(xk−1,b) is not available and is set to 0. Note
that the weight function not only depends on nodes vk(q) and vk−1(q′), but also
depends on all the nodes prior to node vk(q). In other words, depending on how we
traverse the trellis, the weight function will get different values. We further define a
path weight as the sum of the edge weights along the path. Then the distance metric
as defined in (5.11) can be considered as a path weight, which can be computed
recursively by adding up the edge weights along the path from the root node to the
sink node. If we define a (partial) path metric dk as the sum of the edge weights
along this (partial) path, the path weight is then computed recursively as:

dk−1(q
′) = dk(q)+ ek−1(q

(k−1)), (5.13)

where dk(q) and dk−1(q′) are the path weights associated with nodes vk(q) and
vk−1(q′), respectively, and ek−1(q(k−1)) is the edge weight between node vk(q) and
node vk−1(q′).

In the trellis diagram, each trellis node vk(q) maps to a complex-valued symbol sk

such that each path from the root node to the sink node maps to a symbol vector s.
With the trellis model, we transform the MIMO detection problem into a per-node
shortest paths problem, which is defined as follows. For each node vk(q) in the
trellis diagram, we find a list of L most likely paths from the root node to the sink
node over the node vk(q). The L most likely paths refer to the paths with the L
shortest distances or the lowest L path weights. For each node, we only keep the
L most likely paths and will discard all the other paths to reduce the complexity.
The detection is performed layer by layer. In the trellis model, a layer corresponds
to a stage in the trellis. In each stage k of the trellis, there are Q nodes, where
each node corresponds to a constellation point. For each node vk(q) in stage k, q =
0,1, . . . ,Q−1, we must find L shortest paths through the trellis, which are denoted

as λ (l)
k (q), l = 0,1, . . . ,L − 1. Then, altogether QL candidates in each stage k of
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the Nt stages of the trellis are used to compute the LLRs for data bits transmitted by
antenna k as follows:

LLR(xk,b)≈ ln ∑
(q,l):xk,b=+1

exp
(
− 1

2σ2 λ (l)
k (q)

)
− ln ∑
(q,l):xk,b=−1

exp
(
− 1

2σ2 λ (l)
k (q)

)
. (5.14)

With the trellis model, the detection problem now becomes a trellis-search
problem. To detect a layer k, we need to search for L shortest paths for each node q
in each stage k of the trellis diagram. The maximum theoretical value of the number
L is Qk, where k = 0,1, . . . ,N − 1 for the first stage, second stage, and etc., of
the trellis. Practically, however, the number L should be kept small to reduce the
complexity. The number L determines the detection performance: a larger L leads to
better error performance. We will show later that even with a small L (such as L = 2
for Q = 16), the trellis-based detector can achieve good detection performance.
To implement this algorithm, an exhaustive trellis-search approach would be very
expensive. In order to reduce the search complexity, we use a greedy trellis-search
algorithm that approximately finds the L shortest paths for each node in the trellis.
In this search process, the trellis is first pruned by removing the unlikely paths. We
refer to this pruning process as the “path reduction” process. In the path reduction
process, the trellis is scanned from left to right, where each node retains the most
likely L incoming paths using the local information it has so far. After the trellis is
pruned, a second process, called the “path extension” process, is applied to extend
the uncompleted paths so that each node will have L full paths through the trellis.

5.4.2.1 Path Reduction

Figure 5.11 illustrates a flow graph demonstrating a path reduction process. The
path reduction process is configured to prune paths for each trellis node to a
smaller number of surviving paths. The stages (columns) of the trellis are labeled
in descending order, starting from stage Nt − 1 and ending with stage 0. Note that
Fig. 5.11 illustrates only three successive stages, k+ 1, k, and k− 1 among the Nt

stages. As an example, we use a Q = 4, L = 2 case to explain the algorithm. In
Fig. 5.11, each node receives QL = 4× 2 = 8 incoming paths from nodes in the
previous stage of the trellis and, then, the L = 2 paths (the ones with the least
cumulative path weights) are selected from the QL candidates. Next, the L survivors
are expanded to the right so that each node will have the best QL outgoing paths
forwarded to the next stage of the trellis. This process repeats until the end of the
trellis. The path reduction process can effectively prune the trellis by keeping only
L best incoming paths at each trellis node. As a result, each trellis node in the last
stage of the trellis has L shortest paths through the trellis. However, other than the
trellis nodes in the last stage, the path reduction process cannot guarantee that every
trellis node will have L shortest paths through the trellis. These paths will be added
as path extensions as described next.
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Fig. 5.11 Path reduction step

5.4.2.2 Path Extension

An objective of the trellis-based detection algorithm is to find L shortest paths for
every node in the trellis. To achieve this goal, a path extension process is used
after the path reduction process to fill in the missing paths for each trellis node.
The goal is to extend the uncompleted paths so that each node will have L shortest
paths through the trellis. The path extension is performed stage by stage (no path
extension is required for the last stage), and node by node. Figure 5.12 is a flow
graph demonstrating the path extension process. The path extension process is being
demonstrated with respect to a node vk(i) in a stage k (i.e., the highlighted node in
the figure). Note that all of the nodes in the same stage can be extended in parallel
and independently.

As shown in Fig. 5.12, for a trellis node vk(i) (i.e., for the constellation point i in
stage k), the path extension process first retrieves the QL = 8 outgoing path metrics
computed in the path reduction step (at stage k), and then an extension process in
stage k−1 is used to select the best L = 2 outgoing paths from QL = 8 candidates.
Next, each of the L = 2 surviving paths is extended for the next stage of the trellis
(stage k−2). Among the QL extended paths, only the best L = 2 paths are retained.
This process repeats until the trellis has been completely traversed. As a result, the
L shortest paths are obtained for node vk(i). Figure 5.12 shows a path extension
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process for one trellis node. The path reduction process is first performed until stage
k of the trellis and next the path extension procedure is performed until the end of the
trellis (stage 0). Note that the path extension process is to find the L best outgoing
paths extending from a particular node.

5.4.2.3 LLR Computation

The most important feature of the trellis-based detection algorithm is that it will
always guarantee that the bit LLR can be generated for every transmitted bit. For
example, after the path reduction and the path extension processes are employed,
every node vk(q) has successfully found L shortest paths or L minimum distances

denoted as λ (l)
k (q), l = 0,1, . . . ,L− 1. We separate the LLR computation into two

steps. A symbol reliability metric Γk(q) is first computed for each node vk(q) as
follows:

Γk(q) = ln
L−1

∑
l=0

exp
(
− 1

2σ2 λ (l)
k (q)

)
=

∗
max

l

(
− 1

2σ2 λ (l)
k (q)

)
, (5.15)

where the two-input max∗(·) is defined as:

∗
max(a,b)≡ ln∑(exp(a)+ exp(b)) = max(a,b)+ ln(1+ exp(−|a−b|)). (5.16)
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Fig. 5.13 VLSI architecture of the trellis-based iterative MIMO detector

Moreover, the n-input max∗(·) for n = 4,8,16, etc., can be recursively computed
based on the Jacobian algorithm. Then, the bit LLR is computed based on the
symbol reliabilities Γk(q):

LLR(xk,b) = ln ∑
q:xk,b=+1

exp(Γk(q))− ln ∑
q:xk,b=−1

exp(Γk(q))

=
∗

max
q:xk,b=+1

(Γk(q))− ∗
max

q:xk,b=−1
(Γk(q)). (5.17)

5.4.3 VLSI Architecture

Now we describe a high-speed VLSI architecture for the trellis-search based SfISfO
MIMO detector. As a case study, we introduce a detector architecture with the
surviving path number L = 2 for the 4×4 16-QAM system. Figure 5.13 shows the
top level block diagram for the trellis-search MIMO detector. The detector consists
of six main functional blocks: the path reduction unit (PRU), the path extension
unit (PEU), the LLR calculation unit (LCU), the pre-processing unit (PPU), the
path metric buffer (PM Buffer), and the candidate buffer (Cand Buffer). The PPU
is used to pre-compute the initial path metrics and some constellation-dependent
constant values that will be used by the PRU and the PEU. The PRU and the PEU
are employed to implement the path reduction algorithm (cf. Fig. 5.11) and the path
extension algorithm (cf. Fig. 5.12), respectively. The shortest path metrics found by
the PRU and the PEU are stored in the Cand Buffer, which will then be used by the
LCU to generate the LLR for each data bit based on (5.17). These blocks will be
discussed in more detail in the following subsections.

Figure 5.14 shows the block diagram of PRU, which implements the path
reduction algorithm. The PRU employs Q = 16 path calculation units (PCUs) and
16×2 minimum finder units (MFUs) to simultaneously process all the Q nodes in a
trellis stage. This is a recursive architecture by reusing the hardware for processing
nodes in different trellis stages. In Fig. 5.14, PCU i is used to compute the QL
extended path metrics from node vk(i) to all the nodes in the next stage k − 1.

The extended path metrics are denoted as β (l)
k−1(i, j), where l is the surviving path
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index (l = 0,1, . . . ,L−1), i is the current node index, and j is the node index in the
next stage ( j = 0,1, . . . ,Q− 1). Next, the extended path metrics are gathered and
sent to MFUs. In Fig. 5.14, MFU-A i is used to select the best L incoming paths

to node vk−1(i), where the surviving path metrics are denoted as α(l)
k−1(i), where

l = 0,1, . . . ,L− 1. Then, these surviving paths are fed back to PCU i so that it can
continue the processing for the next trellis stage. This operation is repeated until the
trellis is completely traversed. MFU-B i is used to select the best L outgoing paths,

denoted as γ(l)k−1(i), from node vk(i) to any nodes in stage k−1. These best outgoing
paths selected by MFU-B i will be stored into the path metric buffer (PM Buffer),
which will be used later in the path extension process. Each PCU in Fig. 5.14 is used
to compute QL = 32 path metrics in parallel. Figure 5.15 shows the block diagram
of PCU which employs L = 2 PED calculation units (PEDCUs). For a given input
path metric, or PED, dk, one PEDCU needs to compute Q = 16 extended PEDs in
parallel, denoted as dk−1(q), q = 0,1, . . . ,Q− 1. Figure 5.16 shows the hardware
architecture for the PEDCU, which computes Q = 16 PEDs in parallel. Note that
variables R2

k−1,k−1|sk−1(q)|2 and σ2LA(xk−1,b) are pre-computed in the PPU.
The MFU is used to select the best L = 2 path metrics from QL = 32 candidates.

This type of (32,2) sorting can be done quickly by using a comparison tree. Note
that the sorting cost of the trellis-based detector is much lower compared with the
regular K-best detector which typically requires a larger (QK,K) sorting operation.

The PEU implements the path extension algorithm. As previously discussed, a
path extension process is employed after the path reduction process to fill in the
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Fig. 5.16 Partial Euclidean distance calculation unit (PEDCU)

missing paths for each node so that every node will have L shortest paths through
the trellis. The PEU has a very similar architecture to the PRU. The PEU employs
Q = 16 PCUs and Q = 16 MFUs so that it can simultaneously extend Q nodes in a
certain trellis stage. The PEU has a recursive architecture. In each iteration, PCU i
calculates the QL extended path candidates based on the L input path metrics, and
then, the MFU i selects the best L paths from these QL extended path candidates.
The initial L input path metrics are retrieved from the PM Buffer, and, then, the PEU
performs the path extension operation recursively.

5.4.4 VLSI Implementation Results

As a case study, we have developed a trellis-search based iterative MIMO detec-
tor ASIC module for a 4 × 4 16-QAM MIMO system. The fixed-point design
parameters are summarized as follows. Each element in the R matrix is scaled
by 1√

10Nt
= 1√

40
, and this scaled R is represented with 11 bits signed data S2.9

(2 integer bits with 9 fractional bits). The received signal y is represented with
11 bits signed data S5.6. The path metrics (PMs) are rounded to 13 bits between
computational blocks. The LLR values are represented with 7 bit signed data S5.2.
With this configuration, the fixed-point simulation result shows about 0.1 ∼ 0.2 dB
performance degradation compared to a floating-point detector. The trellis-search
detector has a pipelined architecture, where the pipeline stages for the PRU and
PEU are T = 4. To maximize the throughput, we can feed four back-to-back MIMO
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Table 5.8 VLSI implementation results for 4×4 trellis-search MIMO detector

Clock frequency Throughput (1 iter.) Core area Gate count Technology

320 MHz 1.7 Gbps 1.58 mm2 1097K 65 nm

symbols in four consecutive cycles, e.g., at t, t + 1, t + 2, t + 3 into the pipeline to
fully utilize the hardware. The processing times for the path reduction process and
the path extension process are both 3T = 12 cycles, i.e., the iteration bound is
12 cycles. Thus, we can feed another four back-to-back MIMO symbols into the
pipeline at t + 12, t + 13, t + 14, t + 15, and so forth. Furthermore, we can overlap
the path reduction process with the path extension process to hide the processing
delay. As a result, the maximum throughput of the detector is 4×16× f clk

12 = 16
3 f clk.

We have described the trellis-search detector with Verilog HDL and we have
synthesized the design for a 1.08 V TSMC 65 nm CMOS technology using Synopsys
Design Compiler. With a 320 MHz clock frequency, the detector can achieve a
maximum throughput of 1.7 Gbps. Table 5.8 summaries the VLSI implementation
results. From Table 5.8, one can observe that the trellis-search detector can achieve a
very high data throughput (1.7 Gbps) while still maintaining a low area requirement
(1.58 mm2).
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