Chapter 4
Parallel Architectures for Turbo Product
Codes Decoding

Camille Leroux, Christophe Jego, and Patrick Adde

4.1 Introduction

High throughput telecommunication systems such as long-haul optical transmission
or passive optical networks require powerful error correcting codes in order to
increase their optical budget. In such speed-constrained applications, the classical
(255,239) Reed—Solomon code is gradually being replaced by more powerful
forward error correction (FEC) schemes. In [1], turbo product codes (TPC) [2]
are seen as the third generation FEC for optical transmission systems. TPC tend
to be good candidates for emerging optical systems. The inherent parallel structure
of the product code matrix confers to TPC a good ability for parallel decoding.
Nevertheless, enhancing parallelism rate rapidly induces the use of a prohibitive
amount of memory. Many architectural solutions were proposed to efficiently
exploit parallelism in TPC decoding. Moreover, TPC decoding provides several
level of parallelism and it is not always clear which level is the most efficient. In this
chapter, several parallelism level of TPC decoding are identified. Each parallelism
level is characterized in terms of the potential hardware efficiency that it may bring
to the architecture. From this design space exploration, we focus on one efficient
architecture that exploits different levels of parallelism.

After a brief introduction of the TPC coding and decoding concept in Sect. 4.2, a
straightforward hardware implementation of a TPC decoder is presented in Sect. 4.3
in order to highlight the inherent problem of parallelization in TPC decoding.

C. Leroux * C. Jego (<)
IMS Laboratory, Bordeaux-INP, France
e-mail: camille.leroux @ims-bordeaux.fr; christophe.jego @ims-bordeaux.fr

P. Adde
LabSticc, TELECOM Bretagne, France
e-mail: patrick.adde @telecom-bretagne.eu

© Springer International Publishing Switzerland 2015 47
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7_4

mailto:camille.leroux@ims-bordeaux.fr
mailto:christophe.jego@ims-bordeaux.fr
mailto:patrick.adde@telecom-bretagne.eu

48 C. Leroux et al.

Then, Sect. 4.4 defines and characterizes all the parallelism levels in TPC decoding.
A review of existing architectural solutions is given before the detailed description
of a TPC decoder architecture without any interleaving resource. This TPC decoder
includes a fully parallel SISO decoder architecture which is also described in detail.
Finally, Sect. 4.7 gives some synthesis results and demonstrates the efficiency of the
proposed TPC decoder by comparison with current TPC decoders.

4.2 TPC Coding and Decoding Principles

The concept of product codes is a simple and efficient method to construct
powerful codes with a large minimum Hamming distance d using cyclic linear block
codes [3]. Despite the existence of several other decoding algorithms [4], the Chase—
Pyndiah algorithm [2] is known to give the best trade-off between performance
and decoding complexity [5]. Product codes were adopted in 2001 as an optional
correcting code system for both the up link and down link of the IEEE 802.16
standard (WiMAX) [6].

4.2.1 Product Codes

Let us consider two systematic cyclic linear block codes C; having parameters
(n1,k1,d;) and C, having parameters (n;,kp,d,) where n;, k;, and d; (i = 1,2) stand
for code length, code dimension, and minimum Hamming distance, respectively. As
shown in Fig. 4.1, the product code P = C; x C, is obtained by (a) placing (k; X k7)
information bits in a matrix of k; rows and k> columns, (b) coding the k; rows using
code (», and (c¢) coding the n columns using code Cj.

Considering that C; and C; are linear block codes, n; rows are codewords of C;
exactly as all np columns are codewords of C; by construction. Furthermore, the

W
Information ‘ Checks
n, symbols " on rows
kZ
Checks Checks
on columns on checks

Fig. 4.1 Product code matrix
structure 1y

4 Parallel Architectures for Turbo Product Codes Decoding 49

parameters of the resulting product code Cp(n,,kp,d,) are given by n, = ny X n,
k, = ki X kp, and d, = dy x d,. The code rate R, is given by R, = R| X R;. Thus,
it is possible to construct powerful product codes using two linear block codes. In
the following sections, without loss of generality, we consider a squared product
code, meaning that n; = n, = n. The most commonly used component codes are
Bose Chaudhuri Hocquenghem (BCH) codes. These codes are an infinite class of
linear cyclic block codes that have capabilities for multiple error detection and
correction. Reed—Solomon (RS) codes can also be used as component codes. RS
codes are non-binary codes in which symbols are represented on Mgs = log(n+1)
bits while Mpcy = 1. As discussed later, RS-TPC present several advantage in terms
of parallelism and decoding performance [7, 8]. Without loss of generality, in the
remaining of the chapter, unless specified otherwise, we assume that M = 1.

4.2.2 Iterative Decoding of Product Codes

Product codes usually have high dimension which precludes Maximum-Likelihood
(ML) soft-decision decoding. Yet, the particular structure of this code family lends
itself to an efficient iterative “turbo” decoding algorithm offering close-to-optimum
performance at high enough signal-to-noise-ratios (SNRs). The Turbo-decoding of
product codes consists in successively alternate decoding rows and columns using
soft-input soft-output (SISO) decoders. Repeating this soft-decision decoding dur-
ing several iterations enables the reduction of the bit error rate (BER). Each decoder
has to compute soft information R}, | from the channel received information R
and the information R, computed during the previous half-iteration. Despite the
existence of several other decoding algorithms [4], the Chase—Pyndiah algorithm is
known to give the best trade-off between performance and decoding complexity [5].
The Chase-Pyndiah SISO algorithm for a + = 1 BCH code [2, 9] is summarized
below. f represents the maximum number of correctable errors for the component
code.

1. Search for the L least reliable bits in the previous half-iteration output vector R},
such that A; represents the ith minimum, 1 < i < L.

2. Compute the syndrome S(19) of R},

3. Compute the parity of R,

4. Generate p test patterns 7; obtained by inverting some of the L least reliable bits
(p<2h).

5. For each test pattern (1 <i<p—1)

* Compute the syndrome S(7;),

* Correct the potential error by inverting the bit position S(7;),

* Recompute the parity considering the detection of an error and the parity
of R},

» Compute the square Euclidean distance (metric) M; between R], and the

considered test pattern 7;.

50 C. Leroux et al.

6. Select the Decided Word (DW) among test patterns having the minimal metric

(Mpw) and choose Cw competitors codewords ¢; (1 < i < Cw) having the second,
third, ...,. ith minimum metric.
7. For each symbol of the DW,

e Compute the new reliability Fj:

Bi = (IR,,| + XL | A;) — min(M;)when no competitor exists

Fy=
! F; = miny (M;) — min(M;)otherwise,

¢ Compute extrinsic information Wy = F; — R'j;,
* Add extrinsic information (multiplied by ¢) to the channel received word,
Rliry1 =R+ oWy

As explained in [10], decoding parameters L, p, Cw and the number of
quantization bits g of the soft information have a considerable effect on decoding
performance and complexity. The ¢, coefficient allows decoding decisions to be
damped during the first iterations. fB; is an estimation of Fj; when no competitor
exists. As detailed in [11], it is based on the least reliable bits value.

Figure 4.2 shows the BER performance of various + = 1 BCH and RS codes.
In general, for a fixed ¢ value, the code rate increases with N. This explains why

the BER curves are shifting to the right when N increases. However, for large
codelengths, the slope is steeper.

|
10-1 |- .'\.\ i
\' *\ Kx& T
10-3 |- A *\.. Yoo
“Wit S
& —®— BCH(16;11)? |
= —a— BCH(32;26) B X
10-7 || —%— BCH(64:57)? v L
—+— BCH(128;120)2
oo || RSUZLSY \ ?
—a— RS(31;29
“— RS(63:61)
10~ H —+— RS(127:125)* =
2 3 4 s
SNR(dB)

Fig. 4.2 BER performance of various BCH and RS product codes on an AWGN channel

4 Parallel Architectures for Turbo Product Codes Decoding 51

4.3 Straightforward Hardware Implementation
of a TPC Decoder

4.3.1 Global TPC Decoder Architecture

In a straightforward implementation of a TPC decoder, the channel information
matrix R (consisting in n? g¢-bits LLRs) is stored in a memory. As shown in
Fig. 4.3, since the SISO decoder reads R4 during the whole decoding process, this
memory has to be duplicated so that the next channel information matrix Rp can
be written while the decoder processes the current matrix R4. A single sequential
SISO decoder reads information from the R memory and performs the decoding
process by updating the R’ messages iteratively. Assuming I decoding iterations,
the SISO decoder should update 2 x I x n? LLRs.! In the most favorable case, let
us assume that the SISO decoder is able to update one LLR per clock cycle, the
resulting throughput is T = f/(2In?), where f is the clock frequency. For a (32,26)?
BCH code with six decoding iterations and a clock frequency of 500 MHz, the
resulting throughput is 40 Kb/s. This kind of architecture is clearly too slow for high
throughput applications. In this chapter, various methods to enhance the parallelism
are reviewed.

4.3.2 Sequential SISO Decoder Architecture

The TPC decoder architecture described in Fig. 4.3 includes a SISO decoder that
sequentially process incoming LLRs. Figure 4.4 shows the structure of such a
sequential SISO decoder. It is subdivided into four units.

The reception unit

¢ computes the syndromes of the incoming vectors,
* selects the p least reliable bits.

Rar
Channel —| SISO
Rt
Fig. 4.3 Sequential B i
implementation of a TPC R/
decoder

1A full iteration corresponds to a row-wise decoding followed by a column-wise decoding, which
explains why the R’ matrix has to be updated 21 times.

52 C. Leroux et al.

PROCESSING

Test Metrics i| Dw-Cw Reliability
computing

patterns computing sorting

Least Reliable t 1)
computing

Scheduling RAM controler
RAMR/R’

Fig. 4.4 Architecture of a SISO decoder

The processing unit

¢ determines the test vectors by inverting some of the least reliable bits,

* computes the metric of each test vector,

 selects the most likely test vector (the one with the minimum soft-distance)
¢ selects the Cw concurrent test vectors (2nd minimum, 3rd minimum, etc.).

The emission unit

* computes the new reliability Fj; of each outcoming bit of the considered vector,
* computes and ponderates the extrinsic information oy Wy,

* generates the soft-output LLRs for the next half-iteration R/

it+1°
The memory unit stores the channel information and the soft information for the
current half-iteration.

In terms of latency, the syndrome and the least reliable bits can only be computed
once the whole nx-LLR vector has been shifted in. Only then, the test vectors
processing and the soft-output computation can be performed. This means that it
takes at least n clock cycles to read R and [R}], 1 clock cycle to perform the test
vector computation,? and n clock cycles to write back the n LLRs in the R’ memory.
This means that n LLRs require at least 2n+ 1 clock cycles to be updated which
corresponds to a throughput of 7 = f/(4In*) (we assume that n > 1). Taking the
SISO latency into account, the previously estimated 40 Kb/s TPC decoder has in
fact a throughput of only 20 Kb/s.

The hardware complexity of a sequential SISO decoder is rather low, thanks
to its serial-processing nature. The SISO decoder designed in [10, 12] has an
equivalent complexity of a few thousands gates. The computational complexity of
the SISO decoder depends on the choice of algorithmic parameters. As mentioned
in Sect.4.2.2, the Chase—Pyndiah algorithm includes parameters L, p,Cw, g which
impact on both the decoding performance and the computational complexity of the

2This assume that one is able to design a parallel processing unit that computes and select metrics
in a single clock cycle.

4 Parallel Architectures for Turbo Product Codes Decoding 53

TPC decoder. Depending on the application one should identify a parameter set that
enables sufficient decoding performance while minimizing the hardware footprint of
the resulting SISO decoder. In [10,12], a case of study is detailed for a (32,26) BCH
code SISO decoder. Depending on the parameter set that is selected, the complexity
of a SISO decoder varies by a factor 2. This shows that the algorithmic parameter
set is an important factor to take into account when designing a TPC decoder.

4.4 From Parallelism Levels to Parallel Architectures

An architecture can be characterized by different metrics such as throughput,
latency, hardware complexity, power consumption, routing density, etc. In this study,
we aim at high speed architectures with low hardware complexities. Consequently,
the performance is measured with throughput (7') while the cost function is the
hardware area (A). In such a context, the efficiency of an architecture is defined as
the throughput/complexity ratio : E = T /A. An efficient architecture would process
a high data rate with a low hardware area.

The parallelism of an architecture can be defined as “the ability of the system
to process several data in parallel.” We formally define the parallelism P of a
decoder as the number of bits that can be processed/decoded in a single clock cycle.
The parallelism directly impacts the performance of an architecture. In order to
quantify the benefit/disadvantage brought by the application of a parallelism P, to
an architecture, we define three metrics, the speed gain Gg, the area ratio R¢, and
the efficiency gain Gg:

Gs(Pi=p) = 7,-

RA(PI = P) = AP[‘-:l

Ge(Pi=p)= E”iiP _ Gs(f;z::ﬁ)

A parallelism level P; is considered to be effective if Gg(P;) > 1, while it is
efficient when Gg(P) > 1 <= Gs(P;) > Ra(P;). One should notice that several
parallelism levels may be combined but it may also be impossible to associate
them. The exploitations of several parallelism levels at the same time depend on
the architecture that implements these levels. In the remaining of this section, all
parallelism levels in TPC decoding are detailed and characterized from the highest
level (frame parallelism) down to the lowest level (intra-symbol parallelism). For
each level, we provide a condition that makes the use of the considered level
efficient. We also provide some reference of existing TPC decoders that use these
parallelism levels.

54 C. Leroux et al.
4.4.1 Frame Parallelism

The highest level of parallelism can be observed at the frame level and this is
known as frame parallelism. It is a form of spatial parallelism and is suitable to any
decoding scheme. In TPC decoding, a frame is defined as a product code matrix. The
frame parallelism consists in duplicating the processing resources, e.g., the turbo-
decoder. By using this parallelism level in TPC decoding, P4y, matrices can be
decoded at the same time. Considering P4pe turbo-decoders that have the same
throughput 7o, the speed gain and area ratio are equivalent: Gg = Ry = Prrape.
Consequently the efficiency does not increase with Prrne: Gg = 1. Actually, this
level of parallelism is only limited by the affordable silicon area. Although frame
parallelism makes TPC decoder architecture more effective, it does not improve its
efficiency. Moreover some buffering/multiplexing resources are needed to broadcast
incoming LLRs to the different decoders. The only advantage of frame level
parallelism is the design time since it can be implemented by a straightforward
duplication of resources on the silicon.

4.4.2 Iteration Parallelism

In a sequential TPC decoder implementation, each iteration is performed by the
same SISO decoder that reads and writes data in the Interleaving Memories
(IM). It is however possible to exploit the iteration parallelism by duplicating
the elementary decoder and the associated memories in a pipelined structure. The
memories have to be duplicated so that all SISO decoders can work in parallel. The
maximum depth of such a structure equals to the maximum number of iteration it,;, .
Iteration parallelism is a type of temporal parallelism. Here again, the throughput
benefit equals to the complexity ratio : Gg = R4 = P;. It means that the iteration
parallelism does not improve efficiency. Figure 4.5 shows a pipelined TPC decoder.
It includes I stages; each of which processing one frame. This explains why the
channel memory R has to be duplicated. It is also possible to implement less than

RQ ™ RS
@Rl i Rsb)
Channel —» sIso1 SIS02 :
a | RN |
Ry Ry

Fig. 4.5 Pipelined TPC architecture

4 Parallel Architectures for Turbo Product Codes Decoding 55

I stages and to loop back on the hardware resources. The iteration parallelism was
applied in [7] where five iterations are duplicated over five different FPGA devices.
It enables to reach a throughput of 5 Gb/s.

4.4.3 Sub-block Parallelism

In a product code matrix, each row (column) is encoded independently from
the others (See Sect.4.2.1). This interesting property may also be used during
the decoding process, where each row (column) is decoded independently. In an
implementation prospective, it means that more than one decoder can be assigned to
row (column) decoding. Considering a product code matrix of size 7%, a maximum
number of n decoders can be duplicated for row (column) decoding. We designate
this parallelism level as sub-block parallelism Py,. Assuming that the duplication
of SISO decoders does not induce interleaving resources duplication, Gg can be
expressed as:

Py, (Asiso +Ax)

Gg =
PypAsiso +Ar

Gg>1l<=Py>1

Agrso and Ay are the areas of the SISO decoder and the interleaving resource,
respectively.

In [10,13-15] solutions based on Barrel-shifter and Omega network are proposed
to avoid data access conflicts when Py = n. This makes the complexity ratio
lower than the speed gain, which means that the efficiency gain of the architecture
increases.

4.4.3.1 Barrel Shifter

In a straightforward application of sub-block parallelism, one simply duplicates the
SISO decoders. The decoder is then composed of Py SISO decoders, a memory
storing n” g-bits LLRs from the channel R and one memory storing n> g-bits LLRs
for the matrix [R},]. However, this architecture is limited by memory access conflicts.
Depending on the considered iteration, the Py, SISO decoders need to access a total
of Py, data either row-wise or column-wise. In [13], this problem is overcome for
Py, = n: a barrel shifter is introduced between SISO decoders and the interleaving
register file in order to allow row/column-wise data accesses of Py, data in parallel
as shown in Fig.4.6. This comes at the extra cost of a barrel-shifter with area of
O(nlogn). This solution enables to use the sub-block parallelism at its highest
rate only: Py, = n. The extra-complexity consists in a simple barrel shifter with a

56 C. Leroux et al.

[R] —] |[SISO - [E]
2 2
—— < SISO = —
Register file 7)) 7)) Register file
5] o] : e ™ R t fil
! © SISO @
m m Register file
Fig. 4.6 Barrel-shifter-based parallel TPC decoder
Elementary Elementary Elementary] Elementary []
decoder decoder for EEEEE decoder decoder for
for row 1 column 1 for row 1 column 1
i > i >
= = = =
Elementary || £ | Elementary || £ Elementary || 2| Elementary || £
decoder § decoder for E EEEEE | decoder ‘a"é decoder for E
for row 2 o column 2 o for row 2 o column 2 o
2 .2 2 .2
151 k3t u 151 u k3t
2 2 SR | -
= g a = a g
5] 9) S) S)
Q o = @) = @)
Elementary Elementary Elementary Elementary
decoder decoder for EEEEE decoder decoder for
for row n column n for row n column n

A module for one iteration

Fig. 4.7 Omega network-based parallel TPC decoder without interleaving memory

complexity of O(nlog(n)). However, it still includes a large amount of interleaving
memory for storing R'. This is especially problematic if one wants to use iteration
parallelism where the interleaving resources have to be duplicated.

4.4.3.2 Omega Network

In [10, 14, 15], it is suggested to replace the interleaving memory by a simple
interconnection network (Omega network). This is made possible by the cyclic
nature of the component codes (BCH or RS codes): applying a circular shift on
a codeword ends up in another codeword. In terms of decoding, this means that the
decoding process can start with any bits in the codeword. The decoding process
is then applied on a shifting diagonal. This avoids data access conflicts as long
as data are correctly routed from one iteration to another as shown in Fig.4.7.

4 Parallel Architectures for Turbo Product Codes Decoding 57

The interleaving-memory-less architecture was prototyped on an FPGA device [10].
This TPC decoder also has a maximal sub-block parallelism (Py = n), while
the hardware complexity of the interleaving resources is drastically reduced since
interleaving memory is no more needed.

4.4.4 Symbol Parallelism

A finer-grained parallelism is the symbol parallelism. It can be defined as the ability
of a SISO decoder, to process Py, symbols of the same sub-block (row or column)
in parallel. In a sequential SISO decoder, input data are shifted in a serial manner.
Every incoming symbol implies some internal metrics to be updated (syndrome,
least reliable bits, ...). By increasing Py, some parts of the decoder datapath have
to be duplicated, (e.g., the reliability computation stage). However, the other blocks,
such as the test pattern metric computation, or the competitor vector determination
block, remain identical when Py, increases. Consequently, the area ratio is lower
than the speed gain : Gg > 1. For an architecture that avoid interleaving resource
duplication, the following inequality is verified:

GE >1 <:>ADEC(RY)WL = P) <p ><ADEC(Psym = 1)

Apec(Pym = p) is the hardware complexity of a SISO decoder with a symbol
parallelism equal to p. Increasing Py, also means that the interleaving memory
should be able to read/write more than one data during the same clock cycle. In
[12, 16] solutions were provided in order to exploit this parallelism while avoiding
interleaving memory duplication. Logic synthesis results confirm that the efficiency
increases with Py,,.

4.4.4.1 Memory Merging

In [16] an architecture that uses symbol parallelism in conjunction with sub-block
parallelism is proposed. The idea is to store several LLRs at the same address and to
design elementary decoders able to process Py, = m symbols during the same clock
period (denoted as m-decoders). A half-iteration structure includes n/m decoders
each decoding m symbols in one clock period and an interleaving memory of size
4 x g x M x n?. This scheme actually exploits symbol parallelism on one dimension
of the matrix and sub-block parallelism on the other dimension in such a way that
Py, = Py, = m. The resulting throughput is O(m?) while the overhead factor of the

decoder complexity is ~ %2 In this work, the maximum reached parallelism rate is
m? = 64, with m = 8 SISO decoders.

58 C. Leroux et al.

a b
2q . . 2q | 2q
4> Sequential Sequential L« Sequential |,
SISO decoder SISO decoder SISO decoder
2 5 5 2
_/_q) Sequential a Sequential o 7Lq, Sequential _/_q)
SISO decoder 57- SISO decoder gT Parallel SISO decoder
E' g SISO
e X'D R e X'1 R decoder e X1
— =
& &

2 o) S 2 2
_/Z Sequential g Sequential g 7Lq, Sequential _/_,q
SISO decoder | |4 SISO decoder | | 1% SISO decoder

» »
2q . ‘ 2q 124
4| Sequential Sequential < Sequential |/,
SISO decoder SISO decoder SISO decoder
Previous architecture Proposed architecture

Fig. 4.8 Omega network-based parallel TPC decoder (a) and fully parallel SISO-based TPC
decoder architecture (b)

4.4.4.2 Fully Parallel SISO Decoder

In [12], an architecture with Py, = n is proposed. A fully parallel SISO decoder
enables to decode a whole column in a single clock cycle after a few cycles of
latency. The n generated LLRs are then directly fed into n sequential SISO decoders
which perform row decoding. In such an architecture the interleaving resources are
simply removed since generated data are immediately consumed. Logic synthesis
results show the higher efficiency of this architectural solution in comparison with
the previously described ones. This can be easily explained by the fact that the
complexity of one fully parallel SISO decoder is lower than n SISO decoders. This
TPC decoder architecture will be described in detail in Sect. 4.5 (Fig. 4.8).

4.4.5 Intra-symbol Parallelism

In TPC decoding, BCH codes are often used for their good decoding performance/-
complexity trade-off. In [7, 17], it was shown that using RS codes as component
codes can provide similar decoding performance with a reasonable computational
complexity overhead.

4 Parallel Architectures for Turbo Product Codes Decoding 59

From an architectural point of view, the non-binary structure of RS codes enables
to exploit an extra parallelism level, the intra-symbol parallelism P;s. In an RS code
of size n, a symbol consists in M = log(n + 1) bits (see Fig.4.1). An RS-SISO
decoder can either shift-in symbols bit by bit or symbol by symbol. It provides a
maximal parallelism rate of max(P;) = log(n+1).

Similarly to the symbol parallelism, the resource sharing within the RS-SISO
decoder increases the efficiency. However the efficiency gain provided by P is
hard to estimate because it is highly related to the internal architecture of the SISO
decoder. Nevertheless, it is possible to give a condition that guarantees Gg(P;) > 1:

APy > 1)< PyxA(Ps=1)

In [7], a (31,29)2 RS turbo product code decoder was designed and prototyped. It
has an architecture similar to [10] but it includes RS SISO decoders that process
one RS symbol per clock cycle. Moreover, the iteration parallelism is used in such a
way that the decoding iterations are duplicated on the 5 FPGA devices. The resulting
TPC decoder reaches 5 Gb/s.

4.4.6 Comparison of Parallelism Levels

Table 4.1 summarizes benefits of parallelism levels in TPC decoding. For each
parallelism P;, the maximum speed gain, the efficiency gain, and the P, value
that maximizes the efficiency are given. Frame parallelism is only limited by
technological issues (e.g., silicon area). This parallelism improves the effectiveness
of the architecture; it is straightforward to implement but it does not improve
efficiency. Iteration parallelism has the same impact but is upper bounded by the
maximum number of iteration required by the decoding process.

Application of lower levels of parallelism (Pg, Py, and Pyg) improves the
architecture efficiency. It is even maximized for highest parallelism value. However,
the use of these parallelism levels is not as straightforward as Prype and Py. It
requires some specific schedulings and/or implementation strategies.

The TPC decoder architectures mentioned in this section use different levels
of parallelism and end up with different hardware efficiency. Table 4.2 provides
a comparison of the state-of-the-art TPC decoders in terms of parallelism levels and

Table 4..1 Compe}rison of P max(Gs) | Gp | arg(max(E))
parallelism levels in TPC
decoding Pframe Rl ~] [0, +t>°[

Py IT, ~1 |IT,

Py n >1 |n

Psym n >1 'n

P log(n+1) |>1 |log(n+1)

60 C. Leroux et al.

Table 4.2 Current TPC decoder architecture comparison

Architecture | P; Ax(1/2iter) Apec(1/2iter)
[13] Py =n 0(2gn?) +0(2nlog(n)) | O(n)

[10,14] Pp=n O(nlog(n)) O(n)

[16] Py =m; Py =m_| O(2gn?) 0(m*/2)

[12] Py =1LPym=n |0 <O(n)

hardware area. For each reference, we provide the exploited parallelism levels. The
hardware area is given for a half-iteration for both the interleaving resource and
the decoding resources. All these architectures could use the frame and iteration
parallelism P4y and P; by duplicating resources.

The TPC decoder in [13] uses n sequential SISO decoders, two memories of size
n2 for R and R’ and two barrel shifters. In such an architecture, the critical part is the
memory resources that grow with n2. The TPC decoder in [16] uses a combination of
Py, and Py, This is the first architecture that uses Pyy,,,. However the SISO decoders
were designed for a maximum parallelism of m = 8. Moreover this architecture uses
memory resources for interleaving which dominate the resulting hardware area. In
[10, 14], the sub-block parallelism is fully exploited. The memories and the barrel
shifters are replaced by an omega network to route data from one iteration to the
next. The hardware area is then dominated by the n duplicated SISO decoders.

In [10, 13,14, 16], the rebuilding of the product code matrix is necessary between
each half-iteration: memory blocks and/or routing networks are used between half-
iterations to read and store R}, and R. Actually, more than 50 % of the complexity
is in the memory for IM-based architecture, while it represents less than 10 % for
omega network-based structure [14, 15]. On the decoding resources side, increasing
the parallelism rate by duplicating computation resources is inefficient since the
reuse of available resources is not optimized. In [12], a fully parallel SISO decoder
is cascaded with n sequential SISO decoders in such a way that interleaving
resources are completely removed. In fact, the internal memory of SISO decoders
is sufficient to store the required R and R’ matrices. The fully parallel SISO decoder
is less complex than n sequential SISO decoders which make this architecture even
more efficient. In the next section, due to its higher efficiency, the TPC decoder
architecture of [12] is described in detail.

4.5 TPC Decoder Architecture Based on Symbol Parallelism

4.5.1 Proposed IM-Free Architecture Using Fully Parallel
SISO Decoder

Considering that one can design a SISO decoder with Py, = n, a product code
matrix can be decoded without any interleaving resource as shown in Fig. 4.9.

4 Parallel Architectures for Turbo Product Codes Decoding 61

N\ N\
1
2
3
! n=48
5
6
7
8

A\4 \J

t=0 t=1xt,
Undecoded symbol

Column-decoded symbol

Completely decoded
symbol

Sequential row decoder

O Parallel column decoder

t=nXxt,

Fig. 4.9 Proposed parallel decoding scheduling of a product code matrix

Att =0, the fully parallel SISO decoder processes the column 1. During the next
clock period, n sequential SISO decoders (Pyy,, = 1) start decoding the first symbol
of each row while the parallel decoder processes the column 2. During the nth clock
period, sequential decoders complete matrix decoding while the parallel decoder
is already decoding the next matrix. Thus, data generated by the parallel decoder
is immediately consumed by the sequential decoders. Consequently, no IM or data
routing resources are required between the fully parallel decoder and sequential
decoders. The resulting architecture is compared to [10, 14] in Fig.4.10 for one
implemented iteration. This architecture uses row-wise Py, and column-wise Py,
More specifically, we have:

Pyym(col) = Py(row) =n
Py,(col) = Pyy(row) =1

One should notice that Py,(col) = Py, (row) can be further exploited.

62 C. Leroux et al.
a b
2 2 2 2
_/Z Sequential Sequential 72 73, Sequential _/_C{
SISO decoder SISO decoder SISO decoder
nxq
—F—>
2 5 =9 2 2 2
72 Sequential § Sequential § 72 R _/i], Sequential 72
SISO decoder &T SISO decoder § Parallel SISO decoder
E. § SISO
e X' e e X' & decoder vee X'
— =
& 2 n.Xxq
2 e e 2 2 2
7,3 Sequential £ Sequential £ +q) R7’ 7:], Sequential 7,3
SISO decoder | | 1% SISO decoder | [4] it SISO decoder
173 7]

2 2 2 2
_,g Sequential Sequential _,Lq, 72, Sequential _,g
SISO decoder SISO decoder SISO decoder

Previous architecture Proposed architecture

Fig. 4.10 Previous TPC decoder architecture (a) and proposed fully parallel SISO-based TPC
decoder architecture (b)

4.5.2 Toward a Maximal Parallelism Rate

Starting from the IM-free architecture presented in the previous section, parallelism
can be further enhanced. Figure 4.11 shows the alternate product code matrix
parallel decoding scheme in which Py (col) = Pyyu(row) = m and Py, (col) =
Py, (row) = n. The TPC decoder consists in mx n-decoders for column decoding
and nx m-decoders for row decoding. An m-decoder can process m symbols in
one clock period with 1 < m < n. In such an architecture, the maximum reachable
parallelism rate P = n* can be achieved by using n fully parallel SISO decoders
for column decoding and n fully parallel SISO decoders for row decoding. Intra-
symbol parallelism can also be exploited to increase the total parallelism to P =
Py X Py X Py = n? log(n). However, all these new architectural solutions require
to design a SISO decoder able to process n symbols in one clock period.

4.6 Architecture of a Fully Parallel Combinational
SISO Decoder

The proposed IM-free TPC decoder architecture requires a fully parallel
combinational SISO decoder. To the best of our knowledge, only sequential SISO
decoders able to process m < n symbols in one clock period have been previously

4 Parallel Architectures for Turbo Product Codes Decoding 63

L=ty

|:| Undecoded symbol

I]]]]]]]] Column-decoded symbol

Completely decoded
symbol

> Semi-parallel row decoder

O Parallel column decoder

1= (n/m) 1,

Fig. 4.11 Alternative turbo decoding scheduling for enhanced parallelism rate

designed. The design of a fully parallel combinatorial SISO decoder is a challenging
issue. In the following section, such an architecture is described.

4.6.1 Algorithmic Parameter Reduction

As explained earlier in Sect. 4.2, the Chase—Pyndiah algorithm includes parame-
ters (L, T,,Cw,q) which impact on both the performance and the complexity of
the turbo decoding. BER simulations were performed with different parameters:
L ={2;3;4;5}, 7, = {4:8;16}, Cw = {0;1;2;3}, ¢ = {3;4;5}. Performing eight
iterations, the parameter set &y = {L =5,7, = 16,Cw = 3,q = 5} gives the best
BER performance for a high complexity [5]. However, algorithmic simulations
showed that the reduced parameter set & = {L = 3,7, = 8,Cw = 0,9 = 5}
only induce a performance loss of 0.25dB at BER= 10~° while it becomes null
below BER= 10°. Further reducing these parameters would induce a notable
performance loss. For example by simply reducing the number of test patterns:

64 C. Leroux et al.

__

SO computation stage

!] I
1 ! u 1
1) i 1
R ¥ M, :
i ! [
| Parity h Parity DW v i b Soft Output | :
i ' | management Selection i1 [Computation i
: h L_' ' :
1 1 1 , 1
! ¥ st M) T N A
! sl N !
1 1 . 1 1 1
i+ Syndrome : i : T, Syndrome S(t) T, Metrics i ' 1| Soft Output L !
| | Computation computation 11 Computhtion i
1 ! | \ 1 1
1 '] : 1 1
1 I 1 1
: . i1 [Soft Output || !
| H 1 | Computation !
: Least 0 I ' '
[l BN 'l ' 1
| Reliable ¥ R (S(t) i1 [Soft Output | -
! i oL Computation !
1 ! Pl 1
R L i i
T L T \ 1 1

Fig. 4.12 Combinatorial version of the fully parallel SISO decoder

Py ={L = 2,1, = 4,Cw = 3,q = 5}, the performance loss reaches 0.5dB.
Consequently, using &7 enables the architecture to be simplified at very low
performance lost below BER=10"°.

4.6.2 Fully Parallel SISO Decoder Architecture

Figure 4.12 depicts the architecture of the fully parallel SISO decoder. In the first
attempt a purely combinational architecture was designed. Later, a critical path
study mandated the insertion of pipeline stages within the structure. The SISO
decoder is split into three stages, namely the reception stage, the test pattern
processing stage, and the soft-output computation stage.

4.6.2.1 Reception Stage

The reception stage corresponds to steps (1-3) of the Chase—Pyndiah algorithm
detailed in Sect.4.2. The syndrome of the incoming vector R, can be derived
as S(R},) = H x sign(R),) where H is the parity check matrix of the BCH code.
A straightforward implementation of such a matrix multiplication is depicted
on Fig.4.13. The H matrix, the corresponding parity check equations, and the
syndrome S(to) = [s2,51,50] implementation of a BCH(7,4) code are detailed.

It can be noticed that some parity check equations have similar terms. For
instance, the term (x; @ xp) is used in both s; and s, computation. This means
that a reuse of computation resources for an even more efficient implementation is
possible. The parity of the incoming vector R}, is computed with a similar structure

4 Parallel Architectures for Turbo Product Codes Decoding 65

2 0001111 Xg X5 Xy X3 Xy X, X
Tlieieten o
b e
§,=x;0 x,® x,0 Xx, @f@— >
§,=x;0 x,0 x,® x, —69167 5,
$,=x,® x,® x,® X, o

Fig. 4.13 BCH(7,4) code: (a) Parity check matrix. (b) Parity check equations. (¢) Syndrome
parallel computation implementation

P _J' Shuffle stage

Minimum computation block

Sl

:-_-_:-: Partial sorting block 5:2

:I:I"”"’ Minimum component
max Compare and Select
" component

min, < min, < min;

Fig. 4.14 Sorting network for least reliable bits selection

by “xoring” (n — 1) incoming bits. Selecting the least reliable bits among the
incoming vector in parallel requires a sorting network. Such structures are composed
of interconnected Compare and Select operators (CS). The interconnection scheme
depends on the considered sorting algorithm. Many parallel sorting algorithm are
conceivable [18]. However, most of them are optimized for a complete sorting, while
the Chase—Pyndiah algorithm only requires a partial sorting (i.e., extracting L min-
ima). Consequently we devised a network optimized, in terms of area and critical
path, for the partial sorting of L=3 values among n=32, as depicted in Fig.4.14.
The structure is based on shuffle networks coupled with local minima computation
blocks. After the first shuffle stage, min; is in the lower section while the upper
section can either contain miny or min3 or no minimum. The same reasoning is

66 C. Leroux et al.

applied recursively. After five shuffle stages, the minimum is determined while
five values can still be min, and mins. A local sorting of five values enables the
determination of min, and min3 value. This partial sorting network requires 35 CS
operators and 29 minimum elements. The critical path consists of nine comparison
stages.

4.6.2.2 Test Pattern Processing Stage

The test pattern processing stage corresponds to steps (4-5) of the Chase—Pyndiah
algorithm detailed in Sect. 4.2. Instead of being processed sequentially, test patterns
are processed in parallel. The syndrome of each test pattern is computed by adding
S(to) with the position of the inverted reliable bits. The parity management block
computes the parity of R, considering the parity of R;, and the detection of
an error which is the case when S(#;) # 0. Metrics of each test pattern are then
computed by adding the contribution of each inverted bit in the current test pattern
(least reliable bits, syndrome corrected bits, and the new parity bit). The minimum
metric is determined in the DW selection block. The structure is a simple minimum
selection tree. The multiplexer selects R}, (S(#;)) in order to compute test pattern
metrics.

4.6.2.3 Soft-Output Computation Stage

The last stage is a duplication of n soft-output computation blocks. As shown in
Fig. 4.15, this block first computes the new reliability Fj; of each symbol. Since no
competitor word is considered, the § value is automatically assigned. The 3 value
is based on an estimation of the competitor word metric value. It is calculated from
the reliability of the corrected bit and the least reliable bits. Then, the extrinsic
information is computed and damped by the coefficient o; which is devised to
be a power of 2 making the multiplication a simple bit shifting. Finally, the
channel information is added to generate the soft output R}, _1- Within this block, all
computation are performed in sign and magnitude format. Other arithmetic format
were explored but the chosen one requires less computation resources than others.

ait
2R .(p)-M F. = /4 ,
n(p:) bw ﬁ Computation it BQ it />J<\ /_I_\ R it+1
TNl NN G AN
R ’it
R

Fig. 4.15 Soft-output computation stage

4 Parallel Architectures for Turbo Product Codes Decoding 67
4.7 Comparison with Existing TPC Decoders

4.7.1 Logic Synthesis Results of a BCH(32,26) SISO Decoder

In Sect. 4.4, we demonstrated that exploiting symbol parallelism is efficient if

Apec(Pym = p) < p X Apec(Pgym = 1). In order to verify this inequality, we
compare one parallel (P, = n) BCH SISO decoder vs nx sequential (P, = 1)
SISO decoders. Five versions of the BCH(32,26) parallel SISO decoder that have
from one to five pipeline stages were designed. The one-pipeline stage version
is a fully combinational architecture with register banks only at the input and
output stages. Table 4.3 summarizes logic synthesis results of the five different
parallel SISO decoders and compares them with n = 32 duplicated sequential SISO
decoders. s is the number of pipeline stages inserted in the SISO decoder, fiax is the
maximum frequency reached during logic syntheses. The throughput 7 is calculated
such that T = P X fy4y, A represents the area of the design in equivalent gate count,
and E is the efficiency: E = AZ. Logic syntheses were performed using Synopsys
Design Compiler with an ST-microelectronics 90 nm CMOS process. The area is
transposed in logic gate count. One equivalent logic gate corresponds to the area of
a two-input NAND gate. It enables a more technology-independent measure of the
hardware complexity.

As expected, the maximum frequency of the combinational decoder (s = 1) is
lower than a sequential version. However, by inserting pipeline stages inside the
combinatorial structure, an equivalent frequency is reached with s = 5. For this
last version, the throughput is even higher than n sequential SISO decoders. The
hardware cost of the pipeline stages insertion depends on registers location in the
decoder architecture. This is the reason why A(s = 4) < A(s = 3). In this particular
case, having s = 4 pipeline stages enables register stages to be assigned at regular
intervals, for a lower hardware cost. In terms of efficiency, a parallel SISO decoder
can reach the same throughput as n sequential SISO decoders with a six times lower
complexity. The efficiency gain increases with s.

These synthesis results demonstrate the higher efficiency of parallel SISO
decoding for the code BCH(32,26). Now, if one considers larger code with the

Table 4.3 Comparison of parallel and sequential BCH(32,26) SISO decoder

performance
32 sequential SISO
Parallel SISO decoder (Pyy, = 32) decoders (Pyy, = 1)
s 1 2 3 4 5 3
Jfmax(MHz) 125 333 500 500 714 700
T(Gbls) 4.0 10.7 16.0 16.0 22.9 224
A (Kgates) 18 26 31 26 34 200

E (Mb/s/gate) 0.15 0.27 0.34 0.41 0.44 0.07
Gg 2.1 39 4.9 5.9 6.3 1

68 C. Leroux et al.

same correction power (i.e., BCH(64,57), BCH(128,120)), the complexity of the
reception stage and the soft-output computation stage would grow linearly with the
code size n. However the complexity of the test pattern processing stage would only
increase linearly with p < n. Consequently, the overall complexity of the parallel
SISO decoder is lower than a duplication of n sequential SISO decoders. It confirms
that a fully parallel SISO decoder enables a better reuse of computation and memory
resources and makes the whole TPC decoder more efficient.

One should notice that, for higher correction power (¢ > 1), the algebraic
decoding requires more complex algorithms such as Berlekamp—Massey algorithm
[19,20] which make the decoder complexity significantly higher. This is the reason
why t = 1 BCH codes were selected is this study.

4.7.2 Comparison with Existing TPC Decoder Architectures

Table 4.4 compares hardware performance of existing TPC decoders architectures
in an ultra-high-throughput context (T > 10Gb/s). For each architectural solution,
the decoder main features, the targeted code, the levels of parallelism that were
used in order to reach T = 10Gb/s, the resulting total parallelism (P, = [T; P),
the maximum number of iteration it,,,, are given. We consider that one iteration is
actually implemented. The resulting throughput is T = P,y X finax/itmax- Finally,
the gate count (A), the efficiency (E = T/A), and the achieved coding gain at
BER=10"" are given. Such a low BER is usually targeted in very high speed
application (e.g., data transmission over Passive Optical Networks).

For a fair comparison, architectures described in [7, 13, 14, 16] were synthesized
with the same technology: ST Microelectronics, CMOS 90 nm with a clock fre-
quency fiuax = S00MHz. For the remaining architectures, we gathered information
from the published papers and technical reports.

Two versions of the Fy,-based TPC decoder were synthesized. The first one
consists in four parallel SISO decoders together with 32 Py, = 4-SISO decoders.
The reached throughput is then sufficient for 10 Gb/s applications. The second
version uses only fully parallel SISO decoder, 32 of such decoders are duplicated
for each half-iteration. The maximum throughput is 85 Gb/s for the best efficiency.
This architecture uses row-wise Py, and column-wise Fjy,,,. The barrel-shifter-based
solution [13] can achieve 10 Gb/s with 2.6 Mgates. In order to reach a sufficient
parallelism level, it was necessary to use frame parallelism. The efficiency of this
approach is six times lower than the Fy,,-based TPC decoders. This low efficiency
is mainly due to the use of interleaving memory.

For the same reason, the TPC decoder with multi-access data [16] has a low
efficiency and also requires the use of frame parallelism to achieve 10 Gb/s.

In [14], the elimination of interleaving memories improves the efficiency but the
maximum parallelism rate is limited by the code size n. This makes the use of frame
parallelism mandatory in an ultra high speed context.

69

4 Parallel Architectures for Turbo Product Codes Decoding

(6£T°9STHOIX (rysiqnsyA)
o1 90 081 001 v oG ¢ (8zI'vvDHOYG 19p003P DL [P10I0WWOD)
TS S6 v'0 S¢ 1| sSI Te=%9c="d A6T°T€)SA | [L] AT ou + Spomiou e3owQ
(sm SOISV)
0 68 Tro L0T X € p = Ui g =y (6£7°5S0)SY 19p003p Y [P10IOWWOD)
SL 121 €1 'Sl 9 8L €9=1"d'c="d 19°€9)s¥
v'8 191 80 6Tl 9 o6l T€=%9‘c="4 621959
v'8 £'ee €0 01 9 0T | T=""Ig I =99 v =" AS1°S)SA | [L] AL ou + >1om)au eSowi
v'8 I'¢ S¢ L01 9 8Tl | T=""Mg g =g '8="%q ,(9zTOHDL [91] T $$999% e1Rp-DINIA
L8 0 LT L0T 9 8Tl 821 = %4 | (0T1'8TDHOE
98 v'S 0C L01 9 8zl T="g 9 =g J(LSYOHDE
'8 L9 9'1 L0l 9| 8t1 y =0l ‘Te =9 Z9TTOHOE | [¥1] NI ou + iomiau e3owQ
v'8 I't 9T L0l 9 szl =)y e =% | [(9T'TOHOL [£1] AL + 39171ys [orieg
08 L'Th 0T €68 9 tz0l e="ace=""9 (9TTOHOY
08 89T 0 L0T 9 8Tl =%y ="59 [9T'TOHOL YoM SIY,
6~ 01=9d4d® | (oS/s/qy) | (seSW) | (s/qD) | *up | 1wy y apo) SQINJESy JOPooa(
(gp) ures Surpo) q vary L

S19pOJ3P DL Me-oy3-Jo-ajess Jo suostedwo) p IqeL

70 C. Leroux et al.

The study in [7] shows that RS-TPC are a practical solution for 10 Gb/s transmis-
sion over optical networks. As we mentioned in Sect. 4.4, using RS codes enables
the use of intra-symbol parallelism. With an omega-network-based architecture,
this decoder also presents good efficiency gain for similar decoding performance.
One should notice that the Fy,-based fully parallel architecture is applicable to
RS decoding as well. We expect that the application of intra-symbol parallelism
would further increase the overall efficiency of the TPC decoder. Moreover, when
comparing a single iteration of RS-TPC decoding with a commercial RS(255,239)
code decoder, one can observe that superior efficiency is achieved for slightly better
decoding performance.

Mitsubishi proposed a TPC decoder for 10 Gb/s optical transmissions. The com-
ponent code is a BCH(144,128)xBCH(256,239). These codes are more powerful
than + = 1 BCH codes that are used in this study. However the implementation is
very costly in terms of hardware complexity. Indeed, 18 Mgates are necessary to
implement such a decoder, which makes the efficiency very small. This is the cost
that has to be paid for a 2 dB extra coding gain provided by this TPC decoder.

Conclusion

TPC decoding is a realistic solution for next generation high throughput
optical communications such as long-haul optical transmissions or passive
optical networks. The structure of the product codes makes them very suitable
for parallelization. However the exploitation of some parallelism levels may
not be efficient in terms of throughput/complexity ratio. This is particularly
true when interleaving memory has to be duplicated.

In this chapter, we review and characterize all parallelism levels in TPC
decoding. This analysis helps to better understand and classify existing TPC
decoders. In these TPC decoders, high throughput architecture complexity
is made prohibitive by the amount of memory usually required for data
interleaving and pipelining.

After this design space exploration, we focus on an architecture that jointly
exploits sub-block parallelism and symbol parallelism. This structure enables
any interleaving resource to be removed. This TPC decoder requires a fully
parallel SISO decoder capable of processing n symbols in one clock period.
Such a SISO decoder architecture is described and includes an optimized
parallel sorting network.

ASIC-based logic syntheses confirm the better efficiency of the IM-free
TPC decoder architecture compared to others. Actually, when compared to
other works, the area is reduced while the same throughput is achieved. A
BCH(32,26)> product code can be decoded at 33.7 Gb/s with an estimated
silicon area of 10pum? in 65 nm CMOS technology.

4 Parallel Architectures for Turbo Product Codes Decoding 71

References

L.

10.

11.

12.

13.

14.

15.

16.

17.

18

Akita M, Fujita H, Mizuochi T, Kubo K, Yoshida H, Kuno K, Kurahashi S (2002) Third
generation fec employing turbo product code for long-haul dwdm transmission systems. In:
Optical fiber communication conference and exhibit, 2002 (OFC 2002), 17-22 March 2002,
pp 289-290

. Pyndiah R, Glavieux A, Picart A, Jacq S (1994) Near optimum decoding of product codes. In:

IEEE Global Telecommunications Conference, 1994 (GLOBECOM ’94)

. Elias P (1954) Error-free coding. IEEE Trans Inf Theory 4(4):29-37
. Forney GJ (1966) Generalized minimum distance decoding. IEEE Trans Inf Theory IT-

12:125-131

. Adde P, Pyndiah R, Raoul O (1996) Performance and complexity of block turbo decoder

circuits. In: Proceedings of the third IEEE international conference on electronics, circuits,
and systems, 1996 (ICECS ’96), vol 1, 13—16 October 1996, pp 172-175

. IEEE Standard for Local and Metropolitan Area networks (2001) Part 16: Air interface for

fixed broadband wireless access systems, December 2001

. Bidan RL, Leroux C, Jego C, Adde P, Pyndiah R (2008) Reed-solomon turbo product codes

for optical communications: from code optimization to decoder design. EURASIP J Wirel
Commun Netw 2008:909-912

. Leroux C, Jego C, Adde P, Jezequel M (2008) On the higher efficiency of parallel reed-

solomon turbo-decoding. In: ICECS’08: 15th international conference on electronics, circuits
and system, 31st August - 3rd September, 2008

. Chase D (1972) A class of algorithms for decoding block codes with channel measurement

information. IEEE Trans Inf Theory IT:170-182

Leroux C, Jego C, Adde P, Jezequel M (2007) Towards Gb/s turbo decoding of product code
onto an FPGA device. In: IEEE international symposium on circuits and systems, 2007 (ISCAS
2007), 27-30 May 2007, pp 909-912

Adde P, Pyndiah R (2000) Recent simplifications and improvements in block turbo codes. In:
2nd international symposium on turbo codes & related topics, Brest, France, 47 September
2000, pp 133-136

Leroux C, et al. (2011) Turbo product code decoder without interleaving resource: from
parallelism exploration to high efficiency architecture. J Signal Process Syst 64(1):17-29

Chi Z, Parhi K (2002) High speed VLSI architecture design for block turbo decoder. In: IEEE
international symposium on circuits and systems, 2002 (ISCAS 2002), vol 1, 26-29 May 2002,
pp 1-901-1-904

Jego C, Adde P, Leroux C (2006) Full-parallel architecture for turbo decoding of product codes.
In: Electronics letters, vol 42, 31 August 2006, pp 55-56

Leroux C, et al. (2009) High-throughput block turbo decoding: from full-parallel architecture
to FPGA prototyping. J Signal Process Syst 57(3):349-361

Cuevas J, Adde P, Kerouedan S, Pyndiah R (2002) New architecture for high data rate
turbo decoding of product codes. In: IEEE global telecommunications conference, 2002
(GLOBECOM °02), vol 2, 17-21 November 2002, pp 1363-1367

Piriou E, Jego C, Adde P, Le Bidan R, Jezequel M (2006) Efficient architecture for Reed
Solomon block turbo code. In: Proceedings of the IEEE international symposium on circuits
and systems, 2006 (ISCAS 2006), 21-24 May 2006, 4 pp

. Akl SG (1985) Parallel sorting algorithms. Academic, New York
19.
20.

Berlekamp ER (1968) Algebraic coding theory. vol 111, New York, McGraw-Hill
Massey JL (1969) Shift-register synthesis and bch decoding. IEEE Trans Inf Theory
IT:122-127

	4 Parallel Architectures for Turbo Product Codes Decoding
	4.1 Introduction
	4.2 TPC Coding and Decoding Principles
	4.2.1 Product Codes
	4.2.2 Iterative Decoding of Product Codes

	4.3 Straightforward Hardware Implementation of a TPC Decoder
	4.3.1 Global TPC Decoder Architecture
	4.3.2 Sequential SISO Decoder Architecture

	4.4 From Parallelism Levels to Parallel Architectures
	4.4.1 Frame Parallelism
	4.4.2 Iteration Parallelism
	4.4.3 Sub-block Parallelism
	4.4.3.1 Barrel Shifter
	4.4.3.2 Omega Network

	4.4.4 Symbol Parallelism
	4.4.4.1 Memory Merging
	4.4.4.2 Fully Parallel SISO Decoder

	4.4.5 Intra-symbol Parallelism
	4.4.6 Comparison of Parallelism Levels

	4.5 TPC Decoder Architecture Based on Symbol Parallelism
	4.5.1 Proposed IM-Free Architecture Using Fully Parallel SISO Decoder
	4.5.2 Toward a Maximal Parallelism Rate

	4.6 Architecture of a Fully Parallel Combinational SISO Decoder
	4.6.1 Algorithmic Parameter Reduction
	4.6.2 Fully Parallel SISO Decoder Architecture
	4.6.2.1 Reception Stage
	4.6.2.2 Test Pattern Processing Stage
	4.6.2.3 Soft-Output Computation Stage

	4.7 Comparison with Existing TPC Decoders
	4.7.1 Logic Synthesis Results of a BCH(32,26) SISO Decoder
	4.7.2 Comparison with Existing TPC Decoder Architectures

	References

