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Foreword

For many years, experts more expert than the rest have regularly heralded the
end of research focused on the physical layer of telecommunications. Some claim
that the best has already been delivered from the promises offered by the theory
of communication, others say that the theoretical limits predicted will never be
reached by simple means. As Costello and Forney explained in an award winning
IEEE article [1], this pessimistic standpoint is nothing new and some were already
proclaiming “Coding is dead” in the early 1970s, only 20 years after the pioneering
work of Claude Shannon. Other experts, this time in the field of microelectronics,
have also regularly announced the end of CMOS technology, starting as early as the
mid-1980s when the submicron barrier for mass production seemed insurmountable
to some. “CMOS is dead” was also commonly heard.

Fortunately, these doubts were swept away each time they were raised. And this
was often because of the need for increasingly demanding telecommunications:
farther, faster, more reliable, that microelectronics increased its efforts in the minia-
turization of components. Conversely, the steady progress of the semiconductor
industry has opened the way to new processing information algorithms unforeseen
at the time of the first generations of integrated circuits. Information, as understood
by Shannon, and the transistor were born around the same time in the legendary Bell
Labs and, from that time, have continued to join hands to lead to ever more effective
telecommunications systems which have become indispensable in our daily lives.

Among the processes made possible today by high density integration on silicon,
distributed error correction coding (or channel coding) came to occupy a place of
prime importance. To put it simply, distributed coding is to monolithic coding what a
combination of small mathematical relationships is to one complex equation. It was
by adopting the point of view of distributed computing that error correction coding
proved able to find its best practical solutions to achieve optimality, or nearly. Rather
than trying to build a codeword by a single coding operation and recover it through
a single decoding step, it is wiser to adopt the strategy of “divide and rule”, not at
the cost of lesser performance, quite the contrary.
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In the early 1990s, the competition (all virtual) between monolithic coding
and distributed coding in the race for optimality designated its winner. On the
one hand, a team from the prestigious Jet Propulsion Laboratory in Pasadena was
working to develop a Viterbi decoder for a 16384-state convolutional code: the Big
Viterbi Decoder (BVD) [2]. It had to consist of 256 identical integrated circuits
each processing 64 states, plus additional control circuits. The correction power
significantly exceeded the state of the art but an entire table was needed to lay
the decoder. On the other hand, in a little known French laboratory, an electronics
engineer wondered whether two small convolutional codes, typically of 8 or 16
states, associated in an original way and iteratively decoded one after another could
not do better than the Californian code. The answer was affirmative: three integrated
circuits (same number as iterations) were enough to provide better correction power
than the BVD.

A large part of the community of digital communications therefore became
interested in this new way of building a redundant code that its inventor [3] later
named turbo code [4] to keep it significantly shorter than “parallel concatenation
of recursive systematic convolutional codes decoded iteratively”. It also provided
the opportunity to take a new look at and give a new impetus to LDPC codes
[5, 6] to which many researchers turned their attention, whether for optimization
or implementation. Different distributed structures, in parallel, in series or both
together, were proposed one after the other. From the most compact of distributed
codes—a turbo code with only two component codes—to more distributed—LDPC
codes or the most recent and promising polar codes [7]—all kinds of solutions were
possible. In addition to studies on “modern coding” [8], the philosophy of decoding
by message passing was also expanding its ramifications to applications other than
channel coding, for example equalization [9, 10], demodulation [11] or joint source-
channel coding [12]. “Do not lose any of the pieces of information available in the
receiver whatever the level” became the leitmotif of many researchers.

Some were also questioning what once had been considered absolute certainties:
but no, on balance, coding is not only a matter of mathematics. Because informa-
tion theory was built on non-trivial mathematical concepts, such as entropy and
mutual information, it was indeed long believed that practical solutions would be
exclusively provided by mathematics. But math is especially used to justify and set
parameters, rarely to create and build. While algebra, probability and graph theory
continue to be part of the arsenal of skills of engineers and researchers in commu-
nication technologies, other knowledge and skills have also become indispensable:
computer science, electronics, and, in particular, parallel architectures needed to
obtain high throughputs. The days when it was legitimate to invent a code or any
algorithm without proposing practical ways of decoding or implementation are over.
Not only must processes be compatible with what electronics can provide but other
significant constraints such as energy consumption in embedded systems or the
speed of information transfer in highly distributed structures can be crucial.

The proliferation of new applications (very high throughput cellular systems,
sensor networks, Internet of Things, etc.) and the demand for improved performance
are still ongoing challenges. It is no longer just a matter of bits per second per hertz
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or bit error rate; now it is also necessary to consider other criteria such as joules
per bit (in transmission as in reception processing), flexibility and interoperability.
A new generation of researchers has emerged, mastering at the highest levels
the interdisciplinarity necessary to cope with these multiple constraints. Some
of these researchers have come together to write this book with the latest ideas
and developments in the design of circuits for error correction encoding and
decoding. Tomorrow’s telecommunications are in their hands and we can certainly
say alongside them: “Coding and CMOS are still alive, and for a long time to come”.

[1] Costello DJ, Forney GD (2007) Channel coding: the road to channel capacity.
Proc IEEE 95(6):1150-1177

[2] Statman J, Rabkin J, Siev B (1989) Big Viterbi decoder (BVD) results for
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Chapter 1
User Needs

David Gnaedig

TurboConcept is an industry-reference provider of Intellectual Property Cores (IP
Cores) for advanced Forward Error Correction (FEC) techniques (turbo codes and
LDPC codes). We propose IP Core products, which offer to our customers the best
trade-offs between error correction capability, throughput, silicon cost, and power
consumption. Since 2007, TurboConcept is part of the Newtec group, specializing
in satellite communications equipments and systems. We have developed IP cores
implementing encoders and decoders addressing most of the families of error
correcting codes:

— Turbo codes: since the development of the first DVB-RCS turbo decoder in 1999
(a duo-binary turbo code), we have developed IPs for all flavors of convolutional
turbo codes that are specified in standards such as the CCSDS, WCDMA,
Homeplug AV, WiMAX, LTE.

— LDPC codes since their adoption in 2002 by the DVB-S2 standard. We have
naturally extended this IP to cover also DVB-T2, DVB-C2, and have then
developed products for WiMAX, G.hn, and more recently WiFi 802.11ac.

— Turbo product codes: two- and three-dimensional product codes.

— Convolutional codes for WiFi, LTE, WCDMA.

— BCH codes, that are used in concatenation with LDPC codes in DVB-S2 standard
for instance but also for other proprietary concatenation schemes.

We also propose proprietary error correcting codes based on either turbo or
LDPC codes for various applications: satellite communication, wireless back-
haul, ...

Our FEC IP cores target both ASIC and FPGA designs. During the first years of
the company most IP cores were designed for FPGA devices. But since 2005 with
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the emergence of the WiMAX market and later on with the throughput increase of
3G cellular systems, and in particular the evolution toward LTE, we have developed
a range of IPs that are integrated into ASIC designs. Our sales volume is today
a balance between FPGA and ASIC users. It is also worth noting that for some
markets (for instance LTE base station) we propose two different IP cores, one
optimized for ASIC designs and another optimized for FPGA design. For ASIC,
the IP is optimized for best area and specifically memory area and low power
consumption. For FPGA designs, the IP architecture takes advantage of specific
resources available for “free” in FPGA devices: dual port RAMs, a large number
of registers enabling high pipe-lining and thus very high clock frequency, multiple
clock domains, ...

Our story starts with turbo codes and related iterative decodable codes, back
in the second half of the 1990s. At that time, it was a real challenge to have
an FPGA or an ASIC hosting such a complicated function as a turbo decoding,
especially when compared to legacy convolutional codes. The first prototype
chip initiated by turbo codes inventors was based on a “one-chip-per-iteration”
pipelining [5]. Moore’s law is obviously a great enabler in the wide adoption of
turbo and LDPC codes: it helped greatly to minimize the complexity overhead
of iterative decoding, as compared to legacy FECs, even in the context of ever-
higher-throughput applications. Algorithmic advances also helped significantly: the
transposition of the probabilistic decoding equations into the logarithmic domain
led to low complexity algorithms to decode efficiently turbo codes (log-MAP [1])
or LDPC codes (min-sum [2]). At the architectural level, significant breakthroughs
have enabled to develop low complexity and high throughput decoder architectures.
First, sliding window algorithms [3] enabled to reduce drastically the required
memory of the BCJR algorithm while maintaining acceptable performance. Second,
the concept of parallel soft-in—soft-out implementations accessing in concurrence
to a shared memory, applicable to both turbo and LDPC code decoding enabled to
reach several tens of Mbits/s and up to several Gbits/s for LDPC codes using actual
technologies. Additionally, the concept of “shuffled scheduling” (also referred to
as “layered” or “turbo” scheduling) of LDPC codes has also contributed to almost
dividing by two the required number of iterations and thus increasing the throughput
equivalently. Finally, resolving memory access issues has been a critical issue in
massively parallel architectures. It has been tackled by taking into account the
constraints of the architecture early in the design of the code. Such architecture-
aware code design techniques have been used for:

— Turbo codes through the design of a structured interleaver (e.g., DVB-RCS code
with the ARP interleaver, or quadratic interleaver used in the LTE specification.
This structure of the interleaver can be exploited by the parallel decoding
architecture to enable collision free memory accesses.

— LDPC codes through the design of a prototype parity matrix which specifies the
complete parity matrix of the code in a condensed way. The expansion factor
that enables to derive the binary parity matrix from the prototype matrix offers a
natural level of parallelism that is then exploited when designing high throughput
architectures.
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The choice of a given code for a given application is usually driven by the
requirements of the application in terms of latency, SNR operation range, target
BER, flexibility (block size, code rates, ...). But we have also encountered cases
where the choice of an error correcting code is driven by marketing objectives
rather than technical reasons. For instance LDPC codes are seen sometimes as
a “new” technology while turbo codes are present since many years into various
applications and therefore LDPC may be selected by customers even if turbo codes
may have superior error decoding performance for this application. A single code
family that would outperform other codes over all possible applications does not
exist yet and will to our opinion never exist. Therefore, a trade-off shall be made
depending on the most important application requirement. Usually, turbo codes have
superior BER performance for small block sizes and low code rates and enable a
large flexibility both in block size (using a parametric interleaver) and code rates
(through puncturing). Turbo product codes have very good performance in the high
code rate region typically around above 0.80 with a very low complexity. They are
attractive for very high throughput applications, owing their inherent parallelism
ability, but they offer a poor flexibility. Convolutional codes decoded by the Viterbi
algorithm have their interest for very short block size (typically a few tens of
bits) and/or for applications where the critical factor is the lowest latency due
to the fact that they do not require an iterative decoding scheme. LDPC codes
have better performance for very large (typically a few tens of thousands bits)
to medium block sizes (around a few thousands bits) and have the advantage of
enabling high throughput parallel implementation with an affordable complexity.
They lack however in a large flexibility as each block size-code rate combination
requires to specify one parity check matrix. Also encoding complexity of LDPC
codes grows quadratically with the block size while the encoding complexity of
convolutional code and convolutional turbo code grows only linearly with the
block size. This apparent complexity drawback can however be greatly mitigated
by introducing specific structures in the parity check matrix of LDPC code like a
so-called “staircase” structure of the parity bits sub-matrix.

These general trends are continuously evolving due to large research efforts
devoted to code design. LDPC codes are getting more and more efficient with
small block sizes especially when considering the non-binary LDPC codes. New
interleaver design techniques for turbo code bring significant improvement in the
error floor region over previous generation, especially for high code rates, one of
the turbo code weaknesses. In addition to the evolution of the now “old” turbo
and LDPC code families, brand new code structures are being introduced: spatially
couples LDPC codes, polar codes which are proven to achieve (and not only
approach) capacity of a given channel.

Once the code family is selected, to define a set of codes suitable for the
application, other key parameters have to be determined in light of their impact
on the implementation complexity. For turbo codes, this includes the choice of the
recursive systematic convolutional code (larger memory induces lower error floor
but at the cost of higher complexity), the design of the interleaver that influences
greatly the performance in the error floor region, the puncturing scheme. For an
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LDPC code, the parity check matrix density has an influence on the error floor but
also on the convergence and on the complexity. Also a specific structure in the parity
bits region of the parity check matrix is helpful to enable simple encoding scheme.

With standardized applications, the choice of the code itself is obviously
not part of our degrees of freedom, but a constraint to which the designed IP
core product must comply with. In light of our implementation expertise, we
see however how choices made on code design may be very helpful to reduce
implementation complexity without sacrifying the error decoding performance. For
example, for DVB-S2 codes, there exists the well-known issue of double-diagonal
events present in the protograph matrix. Resolving this issue can be performed
with various architectural solutions that have an impact on the implementation
complexity, throughput, and/or performance. Therefore, if double-diagonal events
can be avoided when designing the code, it would be beneficial for enabling low
complexity LDPC decoder architectures. An active participation to standardization
bodies through the proposition of specific coding schemes is the natural way to
influence the choice of the channel coding scheme. To this end, TurboConcept has
participated to several standardization processes: DVB-RCS, DVB-S2, and more
recently to DVB-SX (as part of Newtec).

Proprietary applications give a larger degree of freedom in the code design and
the adaptation of the code design to the target hardware implementation. These
include satellite communication systems, wireless backhaul, magnetic storage (hard
disk drives), military and governmental... We have developed coding schemes
(association of code and modulation) for some of these applications.

When designing products incorporating error correcting codes we need to take
into account three typical constraints: throughput, area, and power consumption.
First, in terms of throughput we saw the demand for increasing throughput from
a few Mbits/s in the early 2,000 years (e.g., in cellular, satellite communications
applications) to today’s several hundreds of Mbits/s in most wireless applications.
Our latest products are scaled to offer several Gbits/s in a wireless physical layer
system. Optical links and other markets have even higher throughput demands, but
we are not addressing them specifically up to now. Second, for a given throughput
requirement, a low implementation area is always desirable for obvious cost reasons.
The area constraint greatly varies on the market. Indeed the area being mostly a cost
issue, the impact of the area is essentially linked to the other cost elements from
the application (e.g., cost of the radio bandwidth, number of users, other operational
costs). As an example, if we consider the satellite market, the hub operating the
network can afford a large (and expensive) FPGA and therefore a code of higher
implementation complexity for the return link. The gain in signal-to-noise ratio
translates into more available capacity and thus additional users for the same satellite
frequency band. This naturally induces an increased profitability. On the other side,
for a consumer equipment where the cost of implementation is of primary interest,
the constraint on the area is more stringent. On an ASIC target, the area is mainly
driven by the memory area and therefore, the size of the code impacting largely
the memory area is an important trade-off between the implementation complexity
and the error decoding performance of the code. For an FPGA implementation,
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the decoder needs to fit into a low-end FPGA with limited resources (logic and
memory). Assuming a throughput from a few tens of Mbits/s to a few hundreds of
Mbit/s turbo codes, LDPC code can today be implemented even in low cost FPGAs.
Finally, power consumption is obviously getting more and more important, and the
relative importance of low power aspects is increased for mobile equipment. We
characterize our products by actual numbers (technology dependant) but also by
using some design rules and guidelines that ensure the core is not wasting power
useless (systematic use of enable signals propagated along the data path, no free-
running logic, minimal access to memory blocks, ...).

When designing our products especially when targeting very high throughput
architectures we faced several algorithmic and architecture problems that needed to
be solved efficiently. On the algorithmic side, increasing the throughput of decoder
requires specific techniques in order to maintain good error decoding performance
and fast convergence. For example for convolutional turbo code, dealing with
very high code rates induces specific algorithm design as the conventional sliding
window BCJR algorithms using acquisition for initializing border state metrics are
not efficient (and even useless) [4] when code rates grow above 0.95, as it is the case
of HSPA. For LDPC codes, higher throughput requires a higher level of parallelism
that makes more challenging the selection of a good scheduling for layered decoding
architectures. On the architectural side, developing high throughput decoders means
that the interfaces and the interleaver (in a BICM scheme) shall support the same
level of throughput. Therefore the requirement for high throughput induces to design
high speed parallel interleavers. With the increase of the throughput requirement in
the future this issue is getting more and more complex to solve because contrary
to the code design that have been performed in light of parallelism constraints,
it is rarely the case for the associated external interleaver. One last constraint
is related to the validation of the performance for FER as low as 10~!!. This
performance validation is necessary since implementation and especially fixed point
representation may introduce a floor, even if the code itself has no floor, This is
usually achieved by using an FPGA board able to simulate at throughput of several
Gbits/s.

Advanced error correcting codes have made significant progress over the last
20 years and are now used in a large range of applications. There are still areas
that need substantial improvements. First, the choice of a FEC coding scheme
is often based on some simplified channel modeling (AWGN being the simplest
commonality). More progress can be made by considering a refined channel model
of the application and to optimize the code in light of this channel model, which is
not a simple task. Indeed, refining the channel model often results in a (much) larger
design space (e.g., phase noise parameters, multi-path characteristics, non-linearity
models). More theoretical methodologies need to be developed in order to find good
codes in this context. Second, another important aspect is to find techniques for
predicting and designing codes for high order modulations especially in the error
floor region. Bit interleaved coded modulation has been used in the past as a mean to
design independently the code and the modulation and to achieve good performance
on high order modulations. But this technique does not address the optimization
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of the performance in the error floor region. Finally, techniques for finite length
optimization of codes are still an area that needs to be explored. The techniques
that are usually used to characterize code ensembles assume infinite block sizes and
ideal BP decoder that does not suffer from correlation due to cycles in a real iterative
decoder. Finding optimal code for finite length code is still a challenging problem.

The future challenge that needs to be tackled by the next generation codes and
architectures is flexibility. Not flexibility in the sense of an universal decoder that
would supports all types of codes of all possible standards. This kind of universal
decoder does not seem today to be an industrial requirement, and it is sometimes
more complex than using dedicated and optimized cores, one per application. By
flexibility, we mean the ability for the code and the decoder to adapt dynamically
to changing channel conditions in order to always obtain the best error decoding
performance while minimizing power consumption. One mean to achieve this
objective is to design codes that can be decoded algebraically when the SNR is high
thus enabling high throughput and low power. When the SNR is low an iterative
decoder would be used in order to achieve performance close to the Shannon limit.
Algorithms such as the bit-flipping algorithm for LDPC codes seem to be very
promising in this sense.

In conclusion, we envisage the evolution of error correction coding driven by
three main requirements. First, continuous increase of throughput requirements:
next generation broadband wireless access systems target maximal data rate in the
order of 1 Gbits/s on a handheld device. Second, reducing power consumption will
become a major requirement even for non-battery powered applications, and finally,
improved error decoding performance (closer to Shannon capacity) by taking into
account refined channels models during the code design stage.
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Chapter 2

Challenges and Limitations for Very High
Throughput Decoder Architectures

for Soft-Decoding

Norbert Wehn, Stefan Scholl, Philipp Schlifer, Timo Lehnigk-Emden,
and Matthias Alles

2.1 Motivation

In modern communications systems the required data rates are continuously
increasing. Especially consumer electronic applications like video on demand,
IP-TV, or video chat require large amounts of bandwidth. Already today’s
applications require throughputs in the order of Gigabits per second and very short
latency. Current mobile communications systems achieve 1 Gbit/s (LTE [1]) and
wired transmission enables even higher data rates of 10 Gbit/s (e.g., Thunderbolt
[2], Infiniband [3]) up to 100 Gbit/s. For the future it is clearly expected that even
higher data rates become necessary. Early results show throughputs in the order of
100 Thit/s [4] for optical fiber transmissions.

Satisfying these high date rates poses big challenges for channel coding systems.
Software solutions usually achieve only very small data rates, far away from the
required speed of most applications. Therefore dedicated hardware implementations
on ASIC and FPGA are mandatory to meet the requirements for high speed signal
processing. To achieve speeds of Gigabits per second, these architectures need large
degrees of parallelism.

Parallelism and speed can easily be increased by running several single decoders
in parallel. This is however mostly an inefficient solution, because area and
power increase linearly with parallelism. Moreover it implies a large latency.
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8 N. Wehn et al.

Thus it is more advantageous to investigate efficient architectures specialized to high
throughput. This may also include modifications to the decoding algorithm itself.

An important metric for analyzing high throughput architectures is area effi-
ciency. Area efficiency is defined as throughput per chip area ([(Gbit/s)/mm?]).
The area efficiency can be increased significantly by new architectural approaches.

We present high throughput decoders for different application relevant coding
schemes, such as Reed—Solomon, LDPC and Turbo codes and point out their
benefits compared to state-of-the-art architectures.

2.2 Architectures for Soft Decision Reed—Solomon Decoders

2.2.1 Introduction

Reed-Solomon (RS) codes are utilized in many applications and communication
standards, either as a stand-alone code or in concatenation with convolutional codes,
e.g., DVB. They are traditionally decoded using hard decision decoding (HDD),
using, e.g., the well-known Berlekamp—Massey algorithm. However, using also the
probabilistic information—so-called soft information—on the received bits can lead
to large improvement of frame error rate (FER) in comparison to HDD.

Numerous algorithms have been proposed for soft decision decoding of RS
codes. They are using different approaches to achieve a gain in FER over HDD
with different complexities. A selection of interesting algorithms can be found in
[5-11]. This chapter will focus on the RS(255,239) and RS(63,55) codes, because
they are widely used in many applications.

Up to now, only few hardware implementations for ASIC and FPGA have
been proposed for soft decoding of RS codes, especially the RS(255,239). One
trend becoming apparent are implementations based on Chase decoding [7] and
the closely related low-complexity chase (LCC) algorithm [8]. Hardware imple-
mentations based on LCC exhibit low hardware complexity [12—-14], but this low
complexity comes at the expense of a poor FER gain. Implementations based on
LCC provide only little FER gain over HDD of about 0.3-0.4 dB.

The design of hardware architectures for a larger gain in FER is more challeng-
ing. Architectures and implementations based on adaptive belief propagation and
stochastic Chase decoding exhibit a larger FER gain (0.75 dB), but having a low
throughput [15, 16].

In this chapter a third approach for soft decoding is described that enables a
large gain in FER and high throughput. It is based on a variant of the information
set decoding algorithm, for which an efficient architecture is presented. This
architecture shows a uncompromised gain in FER of 0.75 dB and a high throughput
that exceeds 1 Gbit/s on a Xilinx Virtex 7 FPGA [17].
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2.2.2 Information Set Decoding

This section introduces the algorithm, which is the basis of the high throughput
hardware architecture. First, the used variant of information set decoding called
ordered statistics decoding (OSD) algorithm [10] is reviewed. Then, a reduced
complexity version of OSD using the syndrome weight [18] is presented.

2.2.2.1 Original OSD

OSD has been proposed in [10] and belongs to the class of information set
decoders [19].

Basically information set decoding works as follows: First, divide the N received
bits ¥ into two groups according to their reliability. The bit reliability is determined
by the absolute value of the corresponding log likelihood ratio (LLR). The first
group contains the set of K reliable bits, called the information set. The second
group contains the M = N — K unreliable bits, also referred to as low reliable bit
positions (LRPs).

Before actual decoding starts the M LRPs are erased. Then the information set
is used to reconstruct the M erased bits using the M parity checks in the parity
check matrix H. To do so, H has to be put in a diagonalized form H via Gaussian
elimination. If the K bits of the information set are correct, all errors in the M LRPs
can be corrected. This is referred to as order-0 reprocessing in OSD or OSD(0).

To perform successful correction in the case of one error in the information set,
the reconstruction process is repeated several times, each time with exactly one
bit of the information set flipped. This results in a list of K + 1 possible codewords
from which the best codeword is selected by evaluating the Euclidean distance to the
received LLRs. This improved decoding is called order-1 reprocessing or OSD(1).

A key part for understanding information set decoding is the reconstruction
process. To successfully reconstruct the M erased bits, the rows of the parity check
matrix are used, as mentioned before. It is required that the parity check equation
in each row covers mostly one of the erased M bits. To fulfill this requirement, H is
put into a diagonalized form by Gaussian elimination, such that each row covers not
more than one erased bit. Note that the Gaussian elimination does not change the
channel code itself, because an RS code is a linear code.

2.2.2.2 Reduced Complexity Algorithm for Hardware

The computational bottleneck of the original algorithm are the reconstructions of the
M erased bits. For example, in case of decoding an RS(255,239) with OSD(1) this
operation is required 2,041 times. To overcome this problem a reduced complexity
algorithm is utilized which makes use of the syndrome § and its weight [18] that
enables fast and efficient reconstruction.
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The reduced complexity algorithm starts (as the original OSD) with determining
the information set according to the bit reliabilities and diagonalization of H by
Gaussian elimination.

Original OSD then evaluates the parity check equations given by the rows of
A whereas the considered low-complexity algorithm merely uses the syndrome to
correct the corrupted bits.

Moreover, if the syndrome vector is calculated using the diagonalized parity
check matrix, i.e.,§ = ﬁiT, two distinct cases for the binary weight of the syndrome
vector can be observed:

e The syndrome weight is small: In this case, it is assumed that only errors in the
M bits are present, i.e., OSD(0) processing is sufficient.

* The syndrome weight is large: In this case, it is assumed that also errors in the
information set are also present. Then OSD(1) processing is performed.

A fixed weight threshold to decide between the two cases is denoted by ©@ € N
and determined by simulation.

OSD(0) (small syndrome weight) is performed by simply flipping the M LRPs
that have led to the 1s in the syndrome vector. Conducting OSD(1) (large syndrome
weight) to correct one error inside the information set is done by first flipping the
bit position

Jj= argmin wgt (§®ﬁi)
i=0,..,N—1

where h; denotes the ith column of H. After flipping the error inside the information
set at position j, the syndrome is calculated again and the remaining errors outside
the information set (i.e., among the LRPs) are corrected by performing OSD(0).

Note that this algorithm inherently determines the best codewords among the
possible candidates only by looking at the syndrome weight. It is sufficient to select
the candidate with smallest syndrome weight. In case of original OSD the Euclidean
distance between candidate and received LLRs had to be evaluated many times.

For more detailed information on the syndrome weight OSD please refer to
[18] or [17].

2.2.2.3 HDD Aided Decoding

One disadvantage of OSD over other soft decision decoding algorithms is the
tendency for a weak FER performance if SNR increases. To improve FER OSD
is extended with a conventional HDD, whose result is output if OSD fails.

A failure in OSD can be easily detected again by looking at the syndrome weight.
If after OSD(1) reprocessing the updated syndrome still has a large weight, OSD can
be considered as unsuccessful.
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1. Sorting:
determine the information set of K reliable bits
2. Gaussian Elimination:
diagonalize H at the N — K low reliable positions to obtain H

3. calculate the syndrome § = AyT
and its binary weight wgt (8)

4. If wgt (8) > O: /* errors in the information set */
[lip the received bit at position

update the syndrome § =§& flj and wgt (8), goto 5

5. If wgt (8) < O: /* only errors outside the information set remaining (LRP errors) */
For all $; = 1, flip bit position , for which izil =1
output OSD result, terminate
else
perform HDD on ¥ and output HDD result, terminate

Fig. 2.1 Reduced complexity OSD(1) based on the syndrome weight that is implemented

2.2.2.4 Implemented OSD Version

The reduced complexity OSD algorithm for hardware implementation is summa-
rized in Fig.2.1. It features sorting to determine the information set, followed by
Gaussian elimination to diagonalize the matrix. Then the syndrome weight for the
diagonalized matrix is determined and a decoding strategy (OSD(1)+OSD(0) or
OSD(0) only) is selected. HDD is performed only if OSD fails.

2.2.3 Hardware Architecture

In this section a hardware architecture based on the previously introduced algorithm
(Fig.2.1) is presented.

2.2.3.1 Architecture Overview

Figure 2.2 shows the overall hardware architecture. P LLRs are fed in parallel into
the decoder and stored in the “I/O bit memory.” During data input the received LLRs
are sorted using a parallelized sorter. The M bit positions outside the information
set are stored in the “LRP memory.” Simultaneously, the syndrome is calculated
based on the original (non-eliminated) parity check matrix H for reasons that will
be explained below. Also HDD is carried out, whose result is stored in the “HDD
memory.”
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Fig. 2.2 Decoder architecture overview

After that, the column generator generated the columns of H corresponding to
the M LRPs for Gaussian elimination. These LRP columns are fed into the Gaussian
Elimination Unit to dynamically set up the unit (see below) for further processing.
After having set up the Gaussian Elimination Unit, the syndrome s is put into the
elimination unit to obtain § (its version based on the diagonalized matrix).

After determining the initial syndrome §, the Correction Unit calculates the
syndrome weight and determines the decoding strategy (OSD(0) or OSD(1)).
If OSD(1) is executed, the Column Generator outputs successively every column
of H, which are transformed into the columns of H by the Gaussian Elimination
Unit. The Correction Unit determines the erroneous bit positions based on these
columns and the syndrome and flips these bits in the “I/O bits memory.” Finally, the
Correction Unit decides if the best OSD codeword or the HDD codeword is output.

2.2.3.2 Sorting Unit

The first step of decoding is finding the LRPs by taking the absolute value of the
received LLRs and partially sorting them. This is accomplished by the Sorting Unit
depicted in Fig.2.3. Sorting is performed by using a shift register based insertion
sort.

In order to reduce the latency for sorting, the shift register is partitioned in
P parts. Each part is calculated in parallel. However, the results provided by the
parallelized Sorting Unit are not exactly the LRPs, but rather an approximation of
the LRPs. This introduces a small loss in FER, but simulations show that this loss is
less than 0.1 dB for the RS(255,239) using an input parallelism of P = 8.

Finally, the LRPs are read out of the shift register and stored in the “LRP
memory” for further processing.
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Fig. 2.3 Parallelized sorting unit

2.2.3.3 Syndrome Calculation Unit

The subsequent stages require the calculation of the syndrome using the diagonal-
ized matrix § = ﬁyT. However, it is advantageous to first calculate the syndrome
using the original parity check matrix H and afterwards pass it through the Gaussian
Elimination Unit to obtain H.

This allows to use efficient syndrome calculation using Galois field arithmetic,
as it is well known in literature [20]. The syndrome unit is a parallelized implemen-
tation that can handle one received symbol (P bits) per clock cycle.

2.2.3.4 Column Generator Unit

The column generator consists of a ROM, which holds the original parity check
matrix H. The Column Generator receives a column number at its input and outputs
the requested column of H.

2.2.3.5 Gaussian Elimination Unit

Gaussian Elimination is required to diagonalize H and the syndrome s. This is the
most complex operation in the algorithm. Therefore sophisticated architectures are
required to achieve high throughput.

An elegant architecture for Gaussian elimination has been proposed in [21]. This
architecture consists of a pipelined array, which eliminates the columns on the fly.
The columns of the original matrix H are input from the left and the corresponding
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columns of the eliminated matrix H are output at the right. Each of the M column
eliminators is responsible for carrying out the operations needed to eliminate exactly
one of the M columns corresponding to the LRPs.

The array works in two phases:

1. The Setup Phase: The M columns, which are supposed to become unit vectors
after elimination, (here: the LRPs) are passed into the array to dynamically set
up the structure for row adding in the column eliminators.

2. The Elimination Phase: Columns of the original matrix are passed into the array.
The columns of the eliminated matrix are output after M clock cycles.

Note that linear independency of LRPs is required for full elimination. Possible
dependencies are inherently checked during the setup phase. If an LRP column turns
out to be dependent on some other LRP column, it is simply discarded, so that the
matrix is not fully diagonalized. Since the number of dependent columns is usually
very low the resulting loss in correction performance is negligible.

This two-phase architecture has proven to be an efficient solution for this appli-
cation and outperforms standard Gaussian elimination architectures (e.g., systolic
arrays) as can be seen in Table 2.1. For more information on the functionality and
the architecture of the utilized Gaussian elimination please refer to [21] (Fig. 2.4).

2.2.3.6 Correction Unit

The unit first determines if OSD(0) or OSD(1) has to be performed. To determine
the decoding strategy and the erroneous bit positions the syndrome weight has to

Table 2.1 Comparison of state-of-the-art implementations for Gaussian elimination
of the binary 128 x 2040 matrix for the RS(255,239) code on a Xilinx Virtex 7 FPGA

using Vivado 2012
Architecture LUTs | FFs Sfmax (MHz) | Throughput (matrices/s)
SMITH (estimated) [22] | 780k | 260k |- -
Systolic array [23] 81.7k |98.6k | 350 145k
Proposed [21] 16.6k | 329k | 370 171k
> T
T X
5 x 5%
Eg Es
3s > 0%
= .g . 3 %
Fig. 2.4 Array for Gaussian ~\ J_ fixed pivot

elimination (here with M = 4) column eliminators positions
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be calculated. The weight calculation of binary vectors is accomplished by an adder
tree consisting of P stages. Several pipeline stages have been added between the
adder stages to reduce the critical path.

However, the main task of this unit is to perform the actual error correction.
To determine erroneous bit positions, the syndrome and its correlation to the
columns of H are evaluated according to Steps 4 and 5 of the decoding algorithm
(Fig. 2.1). In case of an error, the corrupted bits are flipped in the “I/O bits memory.”

2.2.3.7 Hard Decision Decoder

To improve the FER, an additional HDD is employed. For the FPGA imple-
mentation a HDD IP core for decoding RS codes from Xilinx [24] is used. It
supports the considered codes and provides the necessary throughput for the decoder
architecture.

2.2.3.8 Fixed Point Quantization Issues

Since soft information (LLRs) is only processed in the Sorting Unit, quantization
of the LLR values affects only this small part of the decoder. By simulations it is
determined that an LLR quantization of 7 bits for the RS(255,239) and 5 bits for the
RS(63,55) code does not noticeably impact the FER performance.

2.2.3.9 Pipelining and Latency Issues

In the proposed decoding architecture, performing OSD(0) and OSD(1) has a
latency of 795 and 2,838 clock cycles, respectively (RS(255,239)). This shows that
OSD(1) is much more costly than OSD(0). In conjunction with the thresholding
of the syndrome weight (see Sect.2.2.2.4), decoding throughput can be increased
largely, if OSD(1) is only performed, if it is actually needed. This leads to a large
improvement of throughput, especially for SNR values of practical interest (typical
throughput).
Moreover, a two-stage pipelining is used:

¢ Stage 1: LLR input, sorting, syndrome calc., HDD
* Stage 2: Gaussian elimination and error correction

2.2.4 Implementation Results

In this section, implementation results for the RS(255,239) and the RS(63,55) codes
based on the new architecture are presented. FPGA implementations have been done
on a Virtex 7 (xc7vx690t-3) device using Xilinx ISE 14.4. All results shown have
been obtained after place & route.
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Table 2.2 Implementation RS(255,239) | RS(63,55)
results for the new ’ :
architecture for the LUTs 15.9 3100
RS(255,239) and the FFs 41.7k 7480
RS(63,55) on a Virtex 7 BRAMs (36K/18K) 718 1/5
FPGA Fmas 280MHz | 300 MHz

Worst case throughput | 200 Mbit/s 170 Mbit/s
Typical throughput 1,190 Mbit/s | 690 Mbit/s
Gain 0.75dB 1.4dB

hardware |mplementat|ons vs HDD

100
1071
1072
1073
i
L
[T
104
10°°
i-e- RS(255 239) HDD
. 1-+- RS(63,55) HDD
107 1 —e— RS(255,239) hardware
11— HS(63 55) hardware

45 5 55 6 6.5 7 75 8
Ey/No/ dB

Fig. 2.5 FER for the hardware implementations

Implementation results for the RS(255,239) and for the RS(63,55) can be found
in Table 2.2. For typical throughput calculations FER= 10~ is considered. The
communication performance of the proposed decoder is shown in Fig.2.5. For the
RS(255,239) a gain of 0.75 dB and for the RS(63,55) a gain of 1.4 dB are achieved.

A comparison with other state-of-the-art FPGA soft decoders for RS codes is
presented in Table 2.3. Since the other decoders rely on older FPGAs, results are
given for Virtex 5, which provides a more fair comparison between the different
implementations.

In terms of FER gain, the new architecture is comparable to other state-of-the-art
implementations (gain of 0.7-0.75 dB). However the decoder achieves this gain in
FER with considerably higher throughput and significantly less resource utilization.
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Table 2.3 Comparison with other soft decoder implementations for RS(255,239)

on FPGA
Implementation Throughput | Gain over HDD
(Algorithm) FPGA LUTs | FFs (Mbit/s) (FER= 10"%)
[15] (ABP) Stratix II | 43.7k |n/a 4 0.75dB
[16] (Chase) Virtex 5 | 117k | 143k 50 0.7dB
New proposed Virtex5 | 13.7k 41.8k | 805 0.75dB

(information set)

The implementation shows that information set decoding is a viable way
to implement soft decoders for RS codes efficiently, also for large throughput
requirements.

2.3 Architectures for Turbo Code Decoders

Turbo codes are widely used for error correction in mobile communications, e.g.,
in UMTS and LTE systems. Similar as in other areas, their throughput demand is
increasing, currently reaching beyond 1 Gbit/s for LTE.

Turbo code decoding is inherently serial on component and on the decoder
level. A turbo code decoder consists of two component decoders which iteratively
exchange data on block level. A complete data block of length B is fully processed
by one component decoder before the processed block can be sent to the other com-
ponent decoder. This process continues for a certain amount of iterations, typically
between 5 and 8. However, the data is not directly sent to the other component
decoders. Instead the data is interleaved before exchanging. This interleaving is
pseudo-random with limited locality and can result in access conflicts if several
messages are produced in one clock cycle by a component decoder. Resolving these
access conflicts imposes constraints on an interleaver to permit a parallelized data
exchange.

The component decoders are soft-in, soft-out decoders. State-of-the-art turbo
code decoders are using the Bahl, Cocke, Jelinek, and Raviv algorithm, often also
called Maximum-a-posteriori algorithm (MAP) [25]. This algorithm sequentially
processes a block from the beginning to the end, named forward recursion, and vice
versa, called backward recursion [26]. Due to the recursive nature of the forward
and backward calculations, the standard MAP algorithm cannot straightforward be
parallelized. Thus, we are facing two challenges for high throughput turbo code
decoders:

» parallelizing the MAP algorithm and
e parallelizing the data exchange

An overview of different levels of parallelisms for turbo code decoders can be
found in [27]. Parallelizing the MAP algorithm can be achieved by splitting the
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complete data block into P smaller sub-blocks. So, the sub-block size is B/P. Since
this splitting breaks up the recursion for forward and backward calculation, it will
result in a large degradation of the communications performance. To counterbalance
this effect, a so-called acquisition can be performed at the sub-block borders for the
forward and/or backwards recursion. This acquisition consists of some additional
recursions steps and approximates the state probability at the borders of the sub-
blocks. The accuracy of this approximation strongly depends on the number of
additional recursion steps. The number of additional steps is named acquisition
length Lycp. In this way each sub-block can be processed independently of the
other sub-block on a dedicated MAP engine. That is, in this case a component
decoder consists of P parallel working MAP engines where each MAP engine
serially processes a sub-block. So, instead of B clock cycles needed to process one
data block of size B (here we assume that one recursion step is performed in one
clock cycle), we need only B/P clock cycles. State-of-the-art MAP decoders use
the same splitting technique to reduce the storage amount when processing this sub-
block inside a MAP engine. This technique is called sliding windowing [28]. We
use the term window instead of sub-block to avoid a confusion with the splitting on
block level. The window length is denoted Ly ..

Since one component decoder is always idle while waiting for the result of the
other decoder, we can map both component decoders on the same hardware unit
without degrading the throughput. If we assume that there is no throughput penalty
due to the data exchange between the two component decoders, we can calculate
the throughput TP of a state-of-the-art turbo code decoder with Eq. (2.1).

B .
"= (B/P+Lyap) - Nhaif_iter -logy(r) - f[Mbit /s], (2.1)

with f being the frequency and np4 ¢ .- the number of invocations of a component
decoder. Please note that a component decoder is invoked twotimes per decoding
iteration. r is the used radix. Radix-2 means that the MAP engine processes one
recursion step per clock cycle. In radix-4, two recursion steps are merged into a
single one which can be processed in one clock cycle. This merging increases the
area and slightly decreases the frequency, but reduces the number of clock cycles
for processing a sub-block by a factor 2. Lys4p is the overhead due to the parallel
processing of a data block and is composed of three components:

* Lyipeline: @ MAP engine is pipelined to increase the frequency. This implies a
certain latency which is typically 10-20 clock cycles.

* Lycg is the aforementioned acquisition length.

e Ly is the window length of the sliding windowing.

From this equation we see a linear increase in the throughput with increasing
parallel processing as long as Lyap can be neglected. We see also that high
throughput decoders require a large P. However a large P increases the impact of
Lyap on TP. Moreover current communication standards like LTE specify high
throughputs only for high code rates (R = 0.95). It can be shown that large code
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Fig. 2.6 Throughput for different MAP architectures: Non-sliding window MAP with NII and 6
iterations, sliding window MAP with NII and /yys = 64 and 6 iterations, sliding window MAP with
laco = lws = 128 and 6 iterations

rates demand large Lycp for a good communications performance which further
exacerbates the dominance of Lyap, €.g. in LTE Lycg > 64 is mandatory. In other
words, the throughput starts to saturate with large P and high code rate demands, as
shown in Fig. 2.6. This fact poses a further challenge for turbo decoder architectures
when high throughput is required. However we can use two techniques to relax
this problem:

¢ We can reduce the large acquisition length by exploiting the state probabilities at
the borders of the sub-block from the previous decoding iteration. This technique
is called next iteration initialization and largely helps to reduce Laco [29].
Sometimes it is even possible to perform no acquisition at all by using only the
information of the previous iteration.

e We quit the sliding window technique inside a MAP engine. This normally
largely increases the memory and energy consumption inside the engine. How-
ever this can be avoided by so-called re-computation [30]. Here, instead of
storing every metric of a forward recursion step, we store only every nth metric
and re-calculate the other n — 1 metrics. That is, we trade-off storage versus
additional computations. It can be proven that the optimum n is y/B/2P. For
example, this technique reduces the number of metrics to be stored for LTE from
6,144 for the largest block size to 768.

So far we assumed that interleaving implies no additional latency. Obviously
a component decoder produces P data per clock cycle. These data have to be
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Table 2.4 Previously published high throughput 3GPP TC decoders

This work [33] [34] [35]
Radix and Parallelism 4/32 2/64 2/8 4/8
Throughput (MBit/s) 2,300 1,200 150 390
@Clock f (MHz) 500 400 300 302
Parameters affecting communications performance
Iterations 6 6 6.5 5.5
Acquisition NII NII 96 4 NII 30
Window length 192 64 32 30
Input quantization 6 6 6 5
Technology (nm) 65 65 65 130
Voltage 1.1V 09V 1.1V 1.2V
Area (mm?) 7.7 8.3 2.1 3.57

concurrently interleaved. Since each MAP engine has its own memory, random
interleavers can result in access conflicts if we have single- or dual-port memories.
That is, several data have to be written simultaneously into the same memory.
Such conflicts have to be resolved by serialization. Another possibility is to design
the interleaver a-priori in a way such that these conflicts are avoided. Current
communication standards like LTE are based on such interleavers and show no
access conflicts for up to 64 simultaneous produced data. On the other side HSDPA
has no conflict free interleavers due to its downward compatibility with UMTS.
Parallel MAP processing was not yet an issue at the time when UMTS was defined.
Sophisticated techniques exist for run-time conflicts resolution, but this discussion
is not in the scope of this chapter [31]. The influence of the explained techniques on
the achievable throughput is shown in Fig. 2.6.

In [32] an LTE compatible turbo code decoder was presented which used all
the aforementioned techniques. It achieves a throughput of 2.15 Gbit/s on a 65 nm
CMOS bulk technology under worst case PVT parameters. It uses 32 MAP engines
with radix-4, next iteration initialization and no sliding window but re-computation.
The detailed results and comparison with state-of-the-art decoders are shown in
the Table 2.4.

2.4 High Throughput Architectures for Low Density
Parity Check Decoders

As discussed in Sect. 2.3, turbo code based systems cannot provide data rates in the
order of several hundred Gigabits per second. For these applications LDPC codes
are the best choice. The decoding algorithms for LDPC codes have an inherent
parallelism which can be exploited by highly parallel architectures.
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LDPC codes have been introduced by Gallager in 1962 [36] but the high
decoding complexity made the application at that time impossible. When LDPC
codes have been rediscovered in the late 1990s, the throughput demands have been
moderate. Serial decoder architectures have been sufficient to fulfill the require-
ments. As demands on the throughput rose, partially parallel architectures became
necessary. Today LDPC codes are used in a wide range of applications like 10 Gbit
Ethernet (10 GBASE-T, IEEE802.3an) [37], broadband wireless communication
(UWB, WiGig) [38, 39], and storage in hard disc drives [40]. State-of-the-art
LDPC decoders can already process data rates in the range of 10-50 Gbit/s. This is
sufficient to satisfy the requirements of all mentioned standards. However, as future
standards emerge, current architectures will not be able to facilitate the demanded
throughputs of 100 Gbit/s and more. For higher throughputs even LDPC decoders
reach their limit. This results in a gap in decoder performance which has to be closed
by new approaches. Therefore a new architecture is presented which can overcome
these limitations and the key aspects for next generation LDPC decoders are
discussed. It is shown that new architectures significantly reduce routing congestion
which poses a big problem for high speed LDPC decoders. The presented 65 nm
ASIC implementation results underline the achievable gain in throughput and area
efficiency in comparison to state-of-the-art architectures.

A LDPC decoder system with state-of-the-art communications performance and
a throughput far beyond 100 Gbit/s is presented which is a candidate for future
communications systems.

2.4.1 LDPC Decoding

LDPC codes [36] are linear block codes defined by a sparse parity check matrix
H of dimension M x N, see Fig.2.7a. A valid codeword x has to satisfy Hx' = 0
in modulo-2 arithmetic. A descriptive graphical representation of the whole code is
given by a Tanner graph. Each row of the parity check matrix is represented by a
check node (CN) and corresponds to one of the M parity checks. Respectively each
column corresponds to a variable node (VN) representing one of the N code bits.
The Tanner graph shown in Fig. 2.7b is the alternative representation for the parity
check matrix of Fig. 2.7a. Edges in the Tanner graph reflect the 1’s in the H matrix.
There is an edge between VN n and CN m if and only if H,,, = 1. LDPC codes can
be decoded by the use of different algorithms. Belief Propagation (BP) is a group

a
1100
Fig. 2.7 H Matrix and H=|1111
Tanner graph hardware 0001

mapping
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of algorithms which is used in most state-of-the-art decoders. Which type of BP
fits best has to be chosen dependent on the required communications performance.
For example, the A-min algorithm [41] performs better than the min-sum algorithm
[42] but has a significantly higher implementation complexity. All algorithms have
in common that probabilistic messages are iteratively exchanged between variable
and check nodes until either a valid codeword is found or a maximum number of
iterations is exceeded.

2.4.2 LDPC Decoder Design Space

The LDPC decoder design space comprises a multitude of parameters which have
to be tuned to the specific requirements. Each standard has different needs in means
of error correction performance, number of supported code rates, codeword lengths,
and throughput. There are numerous design decisions which have to be made for
the hardware to satisfy these requirements. Due to their inherent parallelism, LDPC
decoders are of special interest for high throughput applications. Therefore the
focus is on the design decisions concerning the decoder parallelism. They have the
strongest impact on the system’s throughput. An in-depth investigation of the design
space for slower state-of-the-art partially parallel decoders is presented in [43].
This part of the design space is not highlighted as it is orthogonal to the presented
schemes. For example, different check node algorithms can be combined with all
levels or parallelism presented here.

There are multiple dimensions in which the degree of parallelism can be chosen,
see Fig.2.8. The lowest level of parallelism is on the message level. Each message

Level Parallel Serial

Message y 010011 ¥ 010011 Y 010011

Bge Ik F  IF

| H HEL T

| i [} |
Core (:)'“(f;] [;J]'“[P‘/?]

Fig. 2.8 Levels of parallelism in the high throughput LDPC decoder design space
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Channel values

[ Variable Nodes

Check Nodes

Decoded bits

Fig. 2.9 Fully parallel hardware mapping of an LDPC decoder. All variable and check nodes
are instantiated and two networks are required to exchange the messages between them. Massive
routing congestion is observed for this architecture

can be transmitted in tuples of bits or fully parallel. Today fully parallel message
transfer can be found in the vast majority of architectures as it has been shown to
be more efficient. The second degree of parallelism is represented by the number
of parallel edges. The node’s in- and outgoing edges can be processed one after
another, partially parallel or fully parallel. However the choice of the node’s edge
parallelism is directly linked to the so-called hardware mapping. The hardware
mapping describes how many check and variable nodes are instantiated. When
talking of a fully parallel decoder, an architecture instantiating all processing nodes
is meant. In contrast partially parallel decoders have a lower number of physical
nodes than the Tanner graph. They process the parity check matrix in a time
multiplex fashion. This allows for easy adaption of the architecture to new standards
but limits the achievable throughput.

For applications like 10 GBASE-T Ethernet only fully parallel architectures can
achieve the required throughput. Figure 2.9 depicts the high-level structure of such
a decoder. However in general it is not advisable to build this architecture as it
has a serious drawback which is directly related with the two networks between
VNs and CNs. Dependent on the code length and quantization, each of them
comprises between several thousands and hundred thousands of wires which have to
be routed according to the parity check matrix. To achieve a good communications
performance, parity check matrices have long cycles and thus no locality, resulting
in massive routing congestion. It has been shown in earlier publications [44,45] that
the area utilization is heavily impaired by this fact and only 50 % of the chip is used
by logic.

Fully parallel decoders can still satisfy today’s requirements in means of
throughput. They represent the highest level of parallelism used in state-of-the-art
decoder designs. However, for future standards the throughput demands will further
increase and cannot be achieved using the presented dimensions of parallelism.
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Fig. 2.10 Core duplication architecture

2.4.3 Exploring a New Dimension in the High Throughput
LDPC Decoder Design Space

Considering the degrees of parallelism which are used for state-of-the-art decoders
no further increase in throughput can be acquired. In the following section two
more degrees in parallelism are discussed which can be explored to overcome the
limitations in LDPC decoder throughput, see Fig. 2.8. Moreover it is shown that the
area efficiency of decoders can even be increased by the proposed techniques.

2.4.3.1 Core Duplication

One solution to achieve the throughputs required by future standards is to instantiate
several LDPC decoder cores in parallel, see Fig. 2.10. There are two possible starting
points for the core duplications. Partially parallel architectures which allow for
flexibility but suffer from high latencies and low throughput. The second option is to
instantiate several fully parallel decoder cores allowing for reduced latency and high
throughput. However due to routing congestion they cannot achieve a satisfying area
efficiency and flexibility. To connect multiple instances of a decoder, a distribution
network and memories are required. Moreover a control unit to keep the blocks in
order must be instantiated in the system.

Summarized straightforward decoder duplication can increase the system
throughput. However the latency issues caused by partially parallel architectures
cannot be solved. Potential enhancements due to the increased parallelism are not
explored and the system’s efficiency is slightly decreased due to the introduced
overhead.
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Fig. 2.11 In an unrolled LDPC decoder architecture each decoding iteration is instantiated as
a dedicated hardware. A feedback from the end of the iteration back to the beginning is no more
required with this approach. One of the two networks between variable and check nodes is removed
and makes the routing feasible. Due to the unidirectional data flow pipelining can be applied
without penalty in throughput. Synthesis results show an increased area efficiency compared to
a fully parallel decoder

2.4.3.2 Unrolling Iterations

A new architecture is proposed in [46], shown in Fig.2.11 to overcome the
highlighted drawbacks. The iterative decoding loop is unrolled and an unrolled, fully
parallel, pipelined LDPC decoder is instantiated. It has several advantages over core
duplication and is a good choice for very high throughput architectures.

A drawback of this architecture is the need to specify the maximum number of
iterations at design time. Once the decoder is instantiated there is no possibility to
increase the performance by additional decoding iterations. The number of pipeline
stages determines the latency, but the throughput is fixed by the cycle duration. The
decoder can be considered as one big pipeline where received codewords are fed into
and decoded words are returned at the end. Hence this architecture has a throughput
of one codeword per clock cycle and can be pipelined as deep as required to achieve
the target frequency. This allows for ultra-high throughput LDPC decoder cores.

Compared to the core duplication approach, no overhead in means of distribution
networks and memory is introduced by the unrolling. Moreover there is an essential
change in the resulting data flow. Where before data have iteratively been exchanged
between VNs and CNs, now all data flow in one direction. Each iteration has a
dedicated hardware unit and thus the decoder’s overall area scales linear with the
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number of decoding iterations. The result is an unidirectional wiring avoiding the
overlap of opposed networks. This is a big benefit for the routing and makes the
architecture more area efficient than state-of-the-art decoders which is shown in
Sect.2.4.4.

The control flow of the proposed architecture is reduced to a minimum. A valid
flag is fed into the first decoding stage whenever a block is available. This flag is
propagated along the decoding pipeline and enables the corresponding stages as
soon as new data is available. At the same time this implies that all hardware blocks
which are not used currently get clock gated.

Even though the number of decoding iterations is defined at design time, schemes
like early termination can be applied to further reduce the energy consumption.
Once a valid codeword is found all following decoding stages are clock gated for
this block and the decoded data is bypassed in the channel value registers. By this
approach besides some multiplexors no hardware overhead is introduced and the
energy per decoded bit can be reduced significantly.

Even different code rates can be implemented in the unrolled architecture.
Special codes like the one used in the IEEE 802.11ad standard allow for the
operation of one CN instance as two CNs by cutting the node degree by two.
Using these codes only minor modifications are required for the check nodes and
the routing network to support all codes of the IEEE 802.11ad family. For a more
detailed explanation of the CN splitting scheme see [47]. A similar scheme as
proposed there can also be applied on the unrolled architecture. The control flow for
the different code rates can easily be implemented by an additional flag propagated
with the according input block. This allows to change the code rate for every block,
e.g., in each clock cycle. Table 2.5 summarizes the benefits and drawbacks of the
different approaches.

2.4.4 Comparison of Unrolled LDPC Decoders
to State-of-the-Art Architectures

Two decoder architectures are presented which are compared to a state-of-the-
art LDPC decoder from literature. The first decoder presented is a fully parallel
architecture with iterative decoding. The second has also a fully parallel hardware

Table 2.5 Parallel LDPC decoder architectures

Architecture Flexibility | Low latency | Area efficiency
Parallel inst., partially parallel architecture | + — 0

=]

Parallel inst., fully parallel architecture -

Unrolled, fully parallel architecture — + +
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Table 2.6 State-of-the-art high throughput LDPC decoder comparison

Decoder [48] Iterative Proposed unrolled
CMOS technology 65 nm 65nm SVT 65nm SVT
Frequency (MHz) 400 189 194

Standard IEEE 802.3an | IEEE 802.11ad | IEEE 802.11ad
Block size 2,048 672 672

Iterations 8 6 6

Quantization (bit) 4 5 5

Post P&R area (mm?) 5.1 1.4 7.0

Throughput (Gbit/s) 8.5 53 130.6

Area Eff. (Gbit/s/rmm?) | 1.7 38 18.7

Fig. 2.12 Unrolled fully
parallel LDPC decoder chip
layout. Each iteration is
represented by one of the
vertical areas. Channel
messages ripple from left to
right through the decoder
pipeline. All routing is very
structured and pointing from
one iteration to the next.

A very high utilization of
more than 70 % is achieved

by the simplified routing

mapping but in addition the decoding iterations are completely unrolled. Both
decoders support the same standard (IEEE 802.11ad) and use the same algorithm,
quantization, etc.

The LDPC decoders are implemented on a 65 nm low power bulk CMOS library.
The post place and route (P&R) results are summarized in Table 2.6. The physical
layout of the unrolled LDPC decoder can be seen in Fig.2.12. Comparing the
synthesis results of the iterative and the unrolled decoder shows that the routing
congestion is significantly reduced by the loop unrolling. The number of introduced
buffers for the interconnect is significantly reduced in the unrolled decoder and leads
to a high utilization of more than 70 %. A five times higher area efficiency of the
unrolled decoder underlines this finding.
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For the comparison, in addition to the two presented decoders, a partially
parallel decoder from literature is listed. The number of iterations, quantization, and
algorithm is reasonably similar to allow for a fair comparison. It can be observed
that no state-of-the-art decoder architecture is capable to produce a competitive area
efficiency to the unrolled architecture. The presented architecture has a throughput
which is more than fifteen times higher than the one of state-of-the-art decoders.
Moreover, if more throughput is required the unrolled architecture can easily be
pipelined deeper to increase the core frequency. These results show the great
potential of unrolled decoder architectures for future applications.

2.4.5 Future Work

The unrolled LDPC decoder architecture allows for several optimizations. In this
section the most important of them are presented and current research topics are
pointed out.

Unrolling the decoding loop generates a dedicated hardware instance for each
iteration. While for systems working iteratively, a generic hardware fulfilling the
needs of all iterations needs to be built, an unrolled architecture gives the designer
the freedom to optimize the hardware for each iteration independent of the others.
Thus it is possible to use specialized hardware instances for each iteration. For
example, one can implement different algorithmic approximations. For example, for
a decoder performing P iterations, a simplified decoding algorithm can be applied
for iterations 1...7 and an exact but more complex algorithm might be necessary
only for iterations i+ 1...P. Like this a targeted communications performance can
tightly be met while minimizing the required hardware resources. Even more than
the area efficiency, the energy efficiency can be increased by this approach. Most
blocks are decoded in the simplified first iterations of the decoding process and the
higher complexity part of the decoder must not be used for them. This significantly
reduces the energy per decoded bit and has almost no impact on the communications
performance. Other aspects like message quantization can also be applied to this
scheme and generate many new possibilities in the LDPC decoder design space.
These new possibilities are currently investigated and must be considered for future
architectures.

Regarding energy optimizations the proposed architecture is an excellent can-
didate for a Near-Threshold circuit technique [49]. For example, the throughput
of 10 Gbit/s can already be fulfilled by the presented decoder running at less than
20 MHz. Thus aggressive voltage scaling to 0.5-0.6 V can be applied. This increases
the energy efficiency by at least a factor of three and allows for a better energy
efficiency than any other state-of-the-art decoder.
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Conclusion
In this chapter, we presented soft decision Reed—Solomon, turbo, and LDPC
decoder implementations with high throughput.

The introduced soft decision decoder architecture for Reed—Solomon
codes is based on information set decoding. It allows a considerable improve-
ment of error rates in combination with a high throughput. The FPGA
implementation shows a throughput of beyond 1 Gbit/s and a gain of 0.75 dB
over HDD for the widely used RS(255,239) code. Further research includes
the evaluation of the architecture using ASIC technology and the further
improvement of the correction performance.

For turbo decoding the design space has been summarized. The key
techniques to a high throughput implementation have been introduced. It was
demonstrated how a LTE turbo code decoder can be implemented that
achieves 2.15 Gbit/s on a 65mm ASIC technology. In the future, further
investigations have to be made to ultimately increase the throughput of a turbo
code by unrolling iterations.

A new LDPC decoder architecture was presented that achieves an out-
standing throughput and state-of-the-art communications performance. The
ASIC implementation provides a throughput of 130 Gbit/s and has a very high
efficiency. Further optimizations for even higher area and energy efficiency
have been discussed and will be investigated in the future.
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Chapter 3
Implementation of Polar Decoders

Gabi Sarkis and Warren J. Gross

3.1 Introduction to Polar Codes

3.1.1 Code Construction

In [1], Arikan proved that when two bits, uy and u;, are transformed as shown in
Fig.3.1a and transmitted using a binary-input, memoryless, symmetric channel,
denoted W, the probability of correctly estimating one of the bits, ug, decreases,
while that of u; increases relative to the case where the bits are transmitted
untransformed. This phenomenon is called channel polarization and it increases as
the number of transformed bits, N, increases. As N — oo, the probability of correct
estimation of each bit approaches either 0.5 (completely unreliable) or 1.0 (perfectly
reliable), and the proportion of reliable bits is the symmetric capacity of the channel
W [1]. The polarizing transformation for more than two bits is applied recursively
as shown in Fig. 3.1b for N = 4. Later works have shown polar codes achieve the
symmetric capacity of any memoryless channel [2, 3].

A polar code of length N and dimension k is constructed by placing the
information bits in the k most reliable locations in the vector ul(;] ~! and setting the
remaining bits, known as the frozen bits, to predetermined values, usually O.

3.1.2 Successive-Cancellation Decoding

Successive cancellation (SC) is the canonical algorithm for decoding polar codes
and is the one used when proving their capacity-achieving performance in [1].
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Fig. 3.1 Construction of polar codes of lengths 2 and 4, where & is the XOR operator. (a) N = 2;
(b)N=4

The SC algorithm estimates bits sequentially using either the predetermined values
for frozen bits, or using the received channel information y and the previously
estimated bits %71 according to the following rule for an information bit u;

if A, >0
ﬁ:{o’ if Ay 2 0; (3.1)

1, otherwise,

where A, is the log-likelihood ratio (LLR) defined as Prly,a) ' = 0]/
Prly, @ty '|a; = 1] and can be calculated recursively using the min-sum (MS)
approximation—with negligible impact on error-correction performance as shown

via simulations in [4]—according to

Mg = f(Avgs Av,) = sign(Ay, )sign(A,, ) min(| Ay, |, |A, |)s (3.2)
and

Aoy + A, when iy = 0,

(3.3)
—Ay+A, whenip=1

Ay = 8(Mvg, Ay s o) = {

Ay, and A,, correspond to inputs and are replaced with y in the last stage of the
recursive decoding.

The recursive approach to the algorithm is not suitable for a hardware implemen-
tation. Instead, the decoder uses the same equation, but proceeds from the received
channel information y until an estimated bit, ; is reached.

The major disadvantage of SC decoding is its sequential nature that leads to high
decoding latency. Look-ahead techniques can be used to reduce latency as proposed
in [5], where it estimates bits u; and u; 5/, simultaneously with a minor increase in
complexity. The latency reduction obtained by applying the look-ahead technique
to a larger number of bits is limited to 50 % and results in a significant increase in
complexity.
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3.1.3 Belief-Propagation Decoding

In [6], it was shown that polar code can be decoded using the belief-propagation
(BP) algorithm. Figure 3.1b shows that a polar code contains two constraint types:
a parity-check and equality constraints corresponding to the & and e nodes, respec-
tively. The two nodes are identical to those in BP decoding of low-density parity-
check (LDPC) codes and can be decoding using the min-sum approximation as

Ao =Ap+ Ac 34
for the equality nodes and
Aq = sign(b)sign(c) min(|Ap|, |Ac|) (3.5)

for the check nodes, where A, is the LLR corresponding to the node output, and A,
and A, correspond to its inputs.

The decoder receives the channel information y and calculates messages stage
by stage until a maximum number of iterations is reached or all the parity-check
constraints are satisfied.

In [7], it was observed that the number of iterations required to match the error-
correction performance of SC decoding was large, negating the benefits of the
increased parallelism.

3.2 The Successive-Cancellation Decoder Implementation

A direct implementation of the SC decoding algorithm uses N/2 processing
elements (PEs), which perform the functions (3.2) and (3.3) [8]. However, it was
observed in [4] that the N/2 PEs were only used simultaneously once in the
decoding, leading to low utilization of the hardware resources. That work shows
that, a decoder implementing P = 64, instead of N /2, processing elements result in
<10 % throughput reduction for codes of length N < 22°, Figure 3.2 illustrates these
results for codes of lengths 210 212 and 220,

The semi-parallel SC (SP-SC) decoder of [4] consists of three major parts: the
processing elements, the partial-sum update logic, and the memory, which will be
briefly described in this section.

3.2.1 Processing Elements

A PE is the core functional unit of the SP-SC decoder and can perform the f (3.2)
and g (3.3) functions. To reduce the implementation complexity, [4] presents a
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Relative throughput

0 20 40 60 80 100 120 140
Number of implemented PEs (P)

Fig. 3.2 Throughput of the SP-SC decoder relative to a fully parallel SC decoder at different code
lengths

merged-PE in which hardware resources are shared between the f and g functions.
No contention arises from applying this optimization as a PE is never required
to perform f and g simultaneously. Since the f function is more complex than g,
the decoder uses sign-magnitude representation of LLR values which simplifies the
magnitude comparisons. An array of P processing elements is implemented and is
fed up to 2P LLR values every cycle. In addition, it has access to up to P partial-sum
values when g is performed. A maximum of P LLR values can be produced every
cycle.

3.2.2 Partial-Sum Update Logic

Partial sums are the results of combining bit estimates in various stages of the
decoder and are used as inputs to the g function. Each estimated bit is involved
in multiple partial sums that are updated once the bit estimate is available. This is
accomplished by storing the partial sums in independent registers with appropriate
enable logic.

3.2.3 Memory

There are two major memory groups in the SP-SC decoder: the LLR memory
and the partial-sum memory. The PEs read and write LLR value simultaneously;
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Table 3.1 FPGA synthesis results on the Altera Stratix IV
EP4SGX530KH40C2 using polar codes of different lengths

N | LUT FF RAM (bits) | f (MHz) | T/P (Mbps)
210 4,130 1,691 15,104 173 85R
212 8,635 4,769 48,896 152 73R
2141 29,897 | 17,063 184,064 113 53R
217 1221,471 |131,764 | 1,445,632 10 4.6R
Table 3'_2 ASIC SP'.SC . Technology UMC 180 nm
decoder implementation with Core area 171 mm?
N=1024, k=512, P =64
Chip area 1.72mm?
Gate count 183,637
Frequency 150MHz
Throughput 48.75Mbps
Voltage 1.3V
Power 67mW

Energy efficiency | 1.37nJ/bit

therefore, the LLR memory must be able to provide the new data when write-while-
reading condition occurs. This is achieved using a P-LLR bypass buffer composed
flip-flops whose contents are provided in the case of a write-while-reading; while
a random access memory (RAM) is used for the remaining value to save area. As
mentioned in Sect. 3.2.2, the partial-sum memory is implemented using registers.

3.2.4 Implementation Results

The SP-SC decoder was first implemented on a field-programmable gate-array
(FPGA) [4]. It was able to achieve a coded throughput of 85 Mbps for codes of
length 1024, but the throughput decreased for longer as result of the partial-sum
update logic limiting the decoder frequency. Table 3.1 summarizes the resource
utilization and throughput results when P = 64 PEs were implemented.

An application-specific integrated-circuit (ASIC) implementation of the SP-SC
decoder was presented in [9]. Its differs from [4] in that it uses registers instead of
RAM for the LLR memory, and it implemented the 1-bit look-ahead technique [5],
which increases the throughput by 25 %. Table 3.2 lists these results.

3.3 The Belief-Propagation Decoder Implementation

The first hardware polar decoder implemented was a semi-parallel BP decoder that
uses the min-sum algorithm [7]. It was shown that it required a large number of
iterations, ~50, to match the error-correction performance of an SC decoder for a
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Table 3.3 Implementation results for the BP and SC
decoders on the Xilinx Virtex IV XC4VSX25-12 using
the (1024, 512) polar code

Algorithm | LUT FF BRAM | T/P (Mbps)
BP 2,794 1,600 |12 2.78
SP-SC 2,600 1,181 5 22.22

Fig. 3.3 Decoder trees
corresponding to the SC and
SSC algorithms

SSC

(1024, 512) polar code [4]. Table 3.3 compares the BP decoder [7] with the SP-SC
decoder [4] for the (1024, 512) polar code where both decoders are configured to
have the same error-correction performance. It can be seen from the table that the
SP-SC decoder uses fewer memory resources and has eight times the information
throughput compared to the BP decoder.

This large number of required iterations significantly degrades the BP decoder
throughput in spite of the inherent parallelism of the algorithm and has limited the
research targeted at implementing BP decoders.

3.4 Simplified Successive-Cancellation Decoding

The sequential nature of SC decoding and the large iteration count of BP decoder
have limited the throughput of polar decoder. Simplified successive-cancellation
(SSC) decoding was the first method to offer major improvements in throughput.
It improves on SC decoding by exploiting the recursive nature of polar code con-
struction to increase decoder parallelism. Figure 3.3a shows a tree representation of
a polar code in which each constituent code and the two codes whose concatenation
it corresponds to are represented using a nodes and its two children. The leaf nodes
represent either frozen bits, the white nodes, or information bits, the black nodes.

SC decoding is performed by a node that receives a likelihood vector o,
calculates the input to its left child, ¢y, using (3.2) and uses the bit estimate of
that child, 3, to calculate the likelihood input to the right child, o, according to
(3.3). Once the bit estimate f3, is available, it is combined with §; to yield f,, which
is then passed to the parent node. The output f3, of a frozen bit is known a priori,
0 when frozen bits are set to 0, and the output of an information node is calculated
according to (3.1) using o, as the LLR value.
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It was noted in [10] that a node whose descendants are all frozen nodes
corresponds to code of rate 0 and its output f3, is known a priori. More importantly,
it was shown that a node whose children are all information bits corresponds to
code of rate 1 that can be decoded using maximum-likelihood decoding by applying
threshold detection on ¢, directly to obtain f3,. Therefore, constituent codes of rate
0 and rate 1 can be decoded directly without traversing the corresponding sub-trees
in the decoder graph. This is illustrated in Fig. 3.3b, where the decoder graph is
trimmed to remove such sub-trees. Such trimming was shown in [11] to improve
the throughput by up to 12 times compared with SC decoding for codes of length
32768.

3.4.1 Two-Phase Successive-Cancellation Decoding

While not fully an SSC decoder, the two-phase successive-cancellation (TPSC)
decoder [12] was the first to employ elements of SSC to improve decoding
throughput in some parts of the decoder graph.

The aim of the TPSC decoder is to reduce implementation complexity and RAM
requirements. This is achieved by exploiting the array structure of the polar codes
and decoding in two distinct phases. The N bit input vector u, including the frozen
bits, is arranged as a VN x /N array, U, which is encoded using G /N o yield V:

V= UG\/N. (3.6)
The codeword array, X, is obtained from V using
X=V'G . 3.7)

When X is rearranged into a 1 X N vector, it is equal to x = uGy.

The TPSC decoder divides the decoding process into /N cycles. Each cycle
consists of two phases: the first corresponds to (3.7) and the second to (3.6). Since
the first phase decoder, P1, corresponds to the larger stages in the polar code, it
stores computations in RAM, which is area efficient and has addressing logic built-
in. While P2 uses flip-flops, which are faster than RAM, but scarcer on FPGAs.

Any soft-input hard-output polar decoder can be used to implement the P2
decoder. The authors in [12] used a parallel SC decoder with 1-bit look-ahead
storing its results in registers. The P1 decoder is a soft-input soft-output SC decoder
that outputs v/N LLR values in parallel. P1 loads the channel LLR values from RAM
and stores the LLR inputs to the boundary stage, log, V/N in registers. P2 reads those
values and calculates the partial sums for the boundary stage, which are then used by
P1 to continue decoding. The architecture in [ 12] makes no provisions for storing the
results of internal calculations in P1, reducing the memory required by the decoder,
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Table 3.4 TPSC implementation results on the Altera Stratix IV

EP4SGX530KH40C2

N |LUT |FF RAM (bits) | f (MHz) | T/P (Mbps)
210 11,940 748 7,136 239 112R
214 1 7815 | 3,006 | 114,560 230 118R

but increasing latency as these values are recalculated for every decoding cycle.
To reduce latency, the TPSC decoder implements the SSC rate-0 and rate-1 tree
pruning operations, but only at the boundary stage.

The implementation results, in Table 3.4, show that the TPSC achieves higher
throughput than the SP-SC decoder. The recalculation of P1 results increases
decoder latency; however, the resulting architecture scales well with code length and
is able to maintain a high clock frequency. The utilization of the SSC optimization
also helps in increasing the throughput.

3.5 Fast-SSC Decoding

Fast-SSC decoding [13] expands on SSC decoding by directly decoding more
types of constituent codes with low-complexity maximum-likelihood algorithms. In
addition, it combines multiple operations to reduce the number of memory accesses
and further improve throughput.

Three additional classes of constituent codes are identified in [13]: repetition
codes, single parity-check (SPC) codes, and length-four codes not covered by the
previous two cases.

Repetition constituent codes correspond to sub-trees whose right-most leaf is an
information node while the others are frozen. They are more common in low rate
polar codes than in high rate ones. Their ML decoding is simple: the elements of
the input o are summed and threshold detection is used to determine result which is
replicated to populate the output vector f3, i.e., for all i values

. fo when3;alj] >0,
ﬂM={ /
1 otherwise.
The implementation of this rule is accomplished using an adder tree. It was found
in [13] that the number of repetition constituent codes of length greater than 16 was
small in the high-rate codes of interest. Therefore, the maximum length of repetition
codes to be directly decoded was set to 16. Due to the small code lengths and the
improved algorithm, the decoding of repetition constituent codes takes one clock
cycle in the Fast-SSC decoder instead of up to nine in the SSC decoder.
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Table 3.5 Latency of the SPC decoding algorithm for con-
stituent codes of different lengths, N,, when 512 LLR values
can be read simultaneously

N, € (0,8] | (8,64] | (64,256] |(256,+c0)
Latency (cycles) |0 1 2 N,/512+3

SPC codes arise when the left-most leaf in a sub-tree is frozen but not any of the
other leaves. The following low-complexity algorithm, in which A(.) refers to the
threshold detection function (3.1), is used to implement ML decoding

Bli] = h(afi]) © ¥ ;h(a]j]) wheni=argmin|oa[i]],
h(afi]) otherwise;

where & is binary addition (the XOR operation). In other words, the output is the
hard decision of the input with one exception: if the parity check on the hard decision
is not satisfied, the decision of the bit corresponding to the least reliable input is
flipped. As SPC constituent codes are common in high-rate polar codes and their
lengths can be large, a pipelined design was proposed in [13] whose latency values
are shown in Table 3.5, where a latency of O cycles indicates that the SPC decoder
output will be ready within one clock cycle. For comparison, an SSC decoder has a
latency of 15 cycles when N, = 16.

It was observed in [13] that once rate-one, rate-0, repetition, and SPC constituent
codes are accounted for, only one code of length four remains, its generator matrix
is [0001;0100] and can be decoded using exhaustive-search ML by testing four
codewords. Its decoder was implemented using combinational logic.

3.5.1 Node Mergers

The Fast-SSC algorithm further reduces decoding latency by reducing the number of
memory access requests. The first method by which this is achieved is to eliminate
nodes of rate 0: since the  output of a rate 0 node is known a priori to be zero, its
parent can calculate o, immediately once «, is available, without calculating oy and
waiting for f3;.

When the right child corresponds to an SPC or rate-1 code, the calculations of
o, B, and B, can be performed simultaneously, eliminating multiple memory read
and write operations. If the left child corresponds to a rate-0 code, calculating 3,
begins as soon as «, is available.

The final form of node mergers presented in [13] is a special case for constituent
codes of length 8 that correspond to a node with a repetition left child and an
SPC right child. In this case, two SPC decoders are employed simultaneously: one
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Table 3.6 The functions performed by the Fast-SSC decoder

Name Description
F Calculate o
G Calculate o,

COMBINE Calculate 3, by combining f3; and f3,
COMBINE-OR | Same as COMBINE, but 3; =0

G-OR Same as G, but §;, =0

P-R1 Calculate f3,

P-RSPC Calculate 3,

P-01 Same as P-R1, but §; =0

P-0SPC Same as P-RSPC, but 3, =0

ML Calculate 3, using exhaustive-search ML decoding
REP Calculate 3, using a repetition decoder

REP-SPC Calculate 3, using a repetition-SPC decoder

assumes that the output of the repetition decoder is O and the other 1. Once the
output of the repetition decoder is available, the output of the correct SPC decoder
is used to calculate f,.

To summarize, the operations performed by the decoder are listed in Table 3.6.

3.5.2 Overall Decoder Architecture

Due to the large number of nodes and node combinations, it was proposed in [13]
that representing the polar code structure as a precomputed list of instructions would
lead to more efficient decoders. As a result, the proposed decoder has an architecture
similar to that of a processor. An overall view of this decoder is shown in Fig. 3.4.

Before the decoding process starts, instructions are loaded into the instruction
memory. Channel LLR values are loaded into the channel RAM via the channel
loader. The controller fetches the first instruction and the decoding process starts. o
values are read from o.-RAM and channel RAM and written to a-RAM. Similarly,
B values are written to and read from 3-RAM and the estimated codeword is written
to the codeword RAM. Using separate memories for internal o values and the
channel LLR values is required to enable loading-while-decoding, which is required
to prevent the decoder from stalling and to maintain throughput.

3.5.3 Processing Unit Architecture

The processing unit contains the logic required to perform the operations needed
by all the nodes and the merged nodes. These operations are listed in Table 3.6 and
Fig. 3.5 shows the architecture of the processing unit performing them. The inputs
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| a-RAM | [ ChannelRAM |
| a-Router | [ Channel Loader |«— Channel

i

| Processing Unit |<—| Controller |

| B-Router | | Instruction RAM |<— Instructions

| B-RAM | [ Codeword RAM _|— Estimate

Fig. 3.4 Top-level architecture of the Fast-SSC decoder
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Fig. 3.5 Processing unit architecture

to this unit are: o a vector of up to 2P valid LLRs, By a vector of up to P valid bit
values generated by the left child, §; a vector of up to P valid bit values generated
by the right child, and 0 a P-bit all-zero vector. The outputs are: &’ a vector of up to
P valid LLRs corresponding to the ¢ or o, outputs of the node; and 3 and ), two
vectors of up to P valid bit values each, corresponding to the 3, output of the node.

The two functions producing o outputs are F and G. The multiplexer m; selects
between their outputs. In addition, G has a specialization when the node’s left child
is a rate-0 node, denoted G-OR. The multiplexer my is used to set the f input to G
function to 0.

Repetition, Repetition-SPC, and ML nodes are limited to constituent codes of
length less than or equal to P in [13]. Therefore, their output is entirely contained
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;I‘able 3(.17 lg(l)st-ﬁtltligg 7rg;ults RAM F
or a code of lengt on ) i

the Altera Stratix IV P Q LUTs | Registers | (bits) (MHz)
EP4SGX530KH40C2 64 6,830 | 1,388 571,800 | 108

)

) | 8234 858 675,864 | 100
) | 25,866 | 7,209 536,136 | 108
)

(6,4
(775
256 | (6,4,
(7,5 30,051 | 3,692 700,892 | 104

in ). The multiplexer m; selects the correct f3) from among the candidates, which
also include the first half of COMBINE’s output.

Bj is always the second half of COMBINE’s output. The left input to COMBINE
is selected by my as either By or 0. Due to node mergers, the second input varies:
when the function performed is P-01 or P-R1, it is the sign of the output from G;
for P-OSPC and P-RSPC, the input come from the SPC decoder that uses the output
of G as its input; finally, in the case of COMBINE and COMBINE-0X, f; is used.
This selection is process performed by m3.

3.5.4 Implementation Results

The Fast-SSC decoder has been implemented and verified an FPGA using different
quantization schemes. It was noted in [13] that using 7-bit and 5-bit words, including
one fractional bit, to represent internal and channel LLR values, respectively, was
sufficient to match the performance of the floating-point decoder. This scheme is
denoted (7, 5, 1). A (6, 4, 0) scheme was shown to offer excellent performance as
well. The implementation results for codes of length 32768 are shown in Table 3.7.

Memory bandwidth, constrained by P, has a significant impact on throughput:
for the (32768, 29492) code with (6, 4, 0), the information throughput values were
547 and 1,081 Mbps for P = 64 and 256, respectively. The quantization scheme
used did not affect throughput significantly—throughput was degraded from 1,081
to 1,077 Mbps when switching to the (7, 5, 1) scheme—but had a significant impact
on memory resources.

3.6 Implementation Comparison

When comparing the different polar decoder implementations, it is important to
ensure that they are capable of sustaining their throughput. The decoders must
support loading-while-decoding or their throughput will be degraded. The easiest
method to implement loading-while-decoding is to buffer additional codewords.
In this section, the RAM numbers were modified where needed to ensure that the
decoders can buffer an additional codeword. This is indicated using a * next to the
algorithm name in Table 3.8. In that table it can be seen that TP-SC uses the fewest
resources and has the highest clock frequency; while Fast-SSC has the highest
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Table 3.8 Post-fitting and information throughput results for a (16384,
14746) code on the Altera Stratix IV EP4ASGX530KH40C2

RAM f Info. T/P
Algorithm P LUTs |Reg. (bits) (MHz) | (Mbps)
SP-SC*[4] 64 29,897 | 17,063 | 265,984 | 113 48
TPSC*[12] 128 | 7,815 | 3,006 | 196,480 | 230 106
Fast-SSC[13] | 128 | 13,388 | 3,688 | 273,740 | 106 824

Fast-SSC[13] | 256 |25,219 | 6,529 | 285,336 | 106 1,091

throughput. The high frequency of TP-SC is a result of the aggressive buffering
using registers. Fast-SSC uses 1.6, 1.2, and 1.4 times the LUTSs, registers, and
RAM compared to TP-SC, respectively, but has 7.8 times the throughput when both
decoders use P = 128. Increasing P to 256 in the Fast-SSC increases the LUTs and
registers used significantly, and increases the information throughput to 1,091 Mbps.
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Chapter 4
Parallel Architectures for Turbo Product
Codes Decoding

Camille Leroux, Christophe Jego, and Patrick Adde

4.1 Introduction

High throughput telecommunication systems such as long-haul optical transmission
or passive optical networks require powerful error correcting codes in order to
increase their optical budget. In such speed-constrained applications, the classical
(255,239) Reed—Solomon code is gradually being replaced by more powerful
forward error correction (FEC) schemes. In [1], turbo product codes (TPC) [2]
are seen as the third generation FEC for optical transmission systems. TPC tend
to be good candidates for emerging optical systems. The inherent parallel structure
of the product code matrix confers to TPC a good ability for parallel decoding.
Nevertheless, enhancing parallelism rate rapidly induces the use of a prohibitive
amount of memory. Many architectural solutions were proposed to efficiently
exploit parallelism in TPC decoding. Moreover, TPC decoding provides several
level of parallelism and it is not always clear which level is the most efficient. In this
chapter, several parallelism level of TPC decoding are identified. Each parallelism
level is characterized in terms of the potential hardware efficiency that it may bring
to the architecture. From this design space exploration, we focus on one efficient
architecture that exploits different levels of parallelism.

After a brief introduction of the TPC coding and decoding concept in Sect. 4.2, a
straightforward hardware implementation of a TPC decoder is presented in Sect. 4.3
in order to highlight the inherent problem of parallelization in TPC decoding.
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Then, Sect. 4.4 defines and characterizes all the parallelism levels in TPC decoding.
A review of existing architectural solutions is given before the detailed description
of a TPC decoder architecture without any interleaving resource. This TPC decoder
includes a fully parallel SISO decoder architecture which is also described in detail.
Finally, Sect. 4.7 gives some synthesis results and demonstrates the efficiency of the
proposed TPC decoder by comparison with current TPC decoders.

4.2 TPC Coding and Decoding Principles

The concept of product codes is a simple and efficient method to construct
powerful codes with a large minimum Hamming distance d using cyclic linear block
codes [3]. Despite the existence of several other decoding algorithms [4], the Chase—
Pyndiah algorithm [2] is known to give the best trade-off between performance
and decoding complexity [5]. Product codes were adopted in 2001 as an optional
correcting code system for both the up link and down link of the IEEE 802.16
standard (WiMAX) [6].

4.2.1 Product Codes

Let us consider two systematic cyclic linear block codes C; having parameters
(n1,k1,d;) and C, having parameters (n;,kp,d,) where n;, k;, and d; (i = 1,2) stand
for code length, code dimension, and minimum Hamming distance, respectively. As
shown in Fig. 4.1, the product code P = C; x C, is obtained by (a) placing (k; X k7)
information bits in a matrix of k; rows and k> columns, (b) coding the k; rows using
code (», and (c¢) coding the n columns using code Cj.

Considering that C; and C; are linear block codes, n; rows are codewords of C;
exactly as all np columns are codewords of C; by construction. Furthermore, the

W
Information ‘ Checks
n, symbols " on rows
kZ
Checks Checks
on columns on checks

Fig. 4.1 Product code matrix
structure 1y




4 Parallel Architectures for Turbo Product Codes Decoding 49

parameters of the resulting product code Cp(n,,kp,d,) are given by n, = ny X n,
k, = ki X kp, and d, = dy x d,. The code rate R, is given by R, = R| X R;. Thus,
it is possible to construct powerful product codes using two linear block codes. In
the following sections, without loss of generality, we consider a squared product
code, meaning that n; = n, = n. The most commonly used component codes are
Bose Chaudhuri Hocquenghem (BCH) codes. These codes are an infinite class of
linear cyclic block codes that have capabilities for multiple error detection and
correction. Reed—Solomon (RS) codes can also be used as component codes. RS
codes are non-binary codes in which symbols are represented on Mgs = log(n+1)
bits while Mpcy = 1. As discussed later, RS-TPC present several advantage in terms
of parallelism and decoding performance [7, 8]. Without loss of generality, in the
remaining of the chapter, unless specified otherwise, we assume that M = 1.

4.2.2 Iterative Decoding of Product Codes

Product codes usually have high dimension which precludes Maximum-Likelihood
(ML) soft-decision decoding. Yet, the particular structure of this code family lends
itself to an efficient iterative “turbo” decoding algorithm offering close-to-optimum
performance at high enough signal-to-noise-ratios (SNRs). The Turbo-decoding of
product codes consists in successively alternate decoding rows and columns using
soft-input soft-output (SISO) decoders. Repeating this soft-decision decoding dur-
ing several iterations enables the reduction of the bit error rate (BER). Each decoder
has to compute soft information R}, | from the channel received information R
and the information R, computed during the previous half-iteration. Despite the
existence of several other decoding algorithms [4], the Chase—Pyndiah algorithm is
known to give the best trade-off between performance and decoding complexity [5].
The Chase-Pyndiah SISO algorithm for a + = 1 BCH code [2, 9] is summarized
below. f represents the maximum number of correctable errors for the component
code.

1. Search for the L least reliable bits in the previous half-iteration output vector R},
such that A; represents the ith minimum, 1 < i < L.

2. Compute the syndrome S(19) of R},

3. Compute the parity of R,

4. Generate p test patterns 7; obtained by inverting some of the L least reliable bits
(p<2h).

5. For each test pattern (1 <i<p—1)

* Compute the syndrome S(7;),

* Correct the potential error by inverting the bit position S(7;),

* Recompute the parity considering the detection of an error and the parity
of R},

» Compute the square Euclidean distance (metric) M; between R], and the

considered test pattern 7;.
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6. Select the Decided Word (DW) among test patterns having the minimal metric

(Mpw) and choose Cw competitors codewords ¢; (1 < i < Cw) having the second,
third, ...,. ith minimum metric.
7. For each symbol of the DW,

e Compute the new reliability Fj:

Bi = (IR,,| + XL | A;) — min(M;)when no competitor exists

Fy=
! F; = miny (M;) — min(M;)otherwise,

¢ Compute extrinsic information Wy = F; — R'j;,
* Add extrinsic information (multiplied by ¢) to the channel received word,
Rliry1 =R+ oWy

As explained in [10], decoding parameters L, p, Cw and the number of
quantization bits g of the soft information have a considerable effect on decoding
performance and complexity. The ¢, coefficient allows decoding decisions to be
damped during the first iterations. fB; is an estimation of Fj; when no competitor
exists. As detailed in [11], it is based on the least reliable bits value.

Figure 4.2 shows the BER performance of various + = 1 BCH and RS codes.
In general, for a fixed ¢ value, the code rate increases with N. This explains why

the BER curves are shifting to the right when N increases. However, for large
codelengths, the slope is steeper.

|
10-1 |- .'\.\ i
\' *\ Kx& T
10-3 |- A *\.. Yoo
“Wit S
& —®— BCH(16;11)? |
= —a— BCH(32;26) B X
10-7 || —%— BCH(64:57)? v L
—+— BCH(128;120)2
oo || RSUZLSY \ ?
—a—  RS(31;29
“—  RS(63:61)
10~ H —+— RS(127:125)* =
2 3 4 s
SNR(dB)

Fig. 4.2 BER performance of various BCH and RS product codes on an AWGN channel
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4.3 Straightforward Hardware Implementation
of a TPC Decoder

4.3.1 Global TPC Decoder Architecture

In a straightforward implementation of a TPC decoder, the channel information
matrix R (consisting in n? g¢-bits LLRs) is stored in a memory. As shown in
Fig. 4.3, since the SISO decoder reads R4 during the whole decoding process, this
memory has to be duplicated so that the next channel information matrix Rp can
be written while the decoder processes the current matrix R4. A single sequential
SISO decoder reads information from the R memory and performs the decoding
process by updating the R’ messages iteratively. Assuming I decoding iterations,
the SISO decoder should update 2 x I x n? LLRs.! In the most favorable case, let
us assume that the SISO decoder is able to update one LLR per clock cycle, the
resulting throughput is T = f/(2In?), where f is the clock frequency. For a (32,26)?
BCH code with six decoding iterations and a clock frequency of 500 MHz, the
resulting throughput is 40 Kb/s. This kind of architecture is clearly too slow for high
throughput applications. In this chapter, various methods to enhance the parallelism
are reviewed.

4.3.2 Sequential SISO Decoder Architecture

The TPC decoder architecture described in Fig. 4.3 includes a SISO decoder that
sequentially process incoming LLRs. Figure 4.4 shows the structure of such a
sequential SISO decoder. It is subdivided into four units.

The reception unit

¢ computes the syndromes of the incoming vectors,
* selects the p least reliable bits.

Rar
Channel —| SISO
Rt
Fig. 4.3 Sequential B i
implementation of a TPC R/
decoder

1A full iteration corresponds to a row-wise decoding followed by a column-wise decoding, which
explains why the R’ matrix has to be updated 21 times.
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Fig. 4.4 Architecture of a SISO decoder

The processing unit

¢ determines the test vectors by inverting some of the least reliable bits,

* computes the metric of each test vector,

 selects the most likely test vector (the one with the minimum soft-distance)
¢ selects the Cw concurrent test vectors (2nd minimum, 3rd minimum, etc.).

The emission unit

* computes the new reliability Fj; of each outcoming bit of the considered vector,
* computes and ponderates the extrinsic information oy Wy,

* generates the soft-output LLRs for the next half-iteration R/

it+1°
The memory unit stores the channel information and the soft information for the
current half-iteration.

In terms of latency, the syndrome and the least reliable bits can only be computed
once the whole nx-LLR vector has been shifted in. Only then, the test vectors
processing and the soft-output computation can be performed. This means that it
takes at least n clock cycles to read R and [R}], 1 clock cycle to perform the test
vector computation,? and n clock cycles to write back the n LLRs in the R’ memory.
This means that n LLRs require at least 2n+ 1 clock cycles to be updated which
corresponds to a throughput of 7 = f/(4In*) (we assume that n > 1). Taking the
SISO latency into account, the previously estimated 40 Kb/s TPC decoder has in
fact a throughput of only 20 Kb/s.

The hardware complexity of a sequential SISO decoder is rather low, thanks
to its serial-processing nature. The SISO decoder designed in [10, 12] has an
equivalent complexity of a few thousands gates. The computational complexity of
the SISO decoder depends on the choice of algorithmic parameters. As mentioned
in Sect.4.2.2, the Chase—Pyndiah algorithm includes parameters L, p,Cw, g which
impact on both the decoding performance and the computational complexity of the

2This assume that one is able to design a parallel processing unit that computes and select metrics
in a single clock cycle.
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TPC decoder. Depending on the application one should identify a parameter set that
enables sufficient decoding performance while minimizing the hardware footprint of
the resulting SISO decoder. In [10,12], a case of study is detailed for a (32,26) BCH
code SISO decoder. Depending on the parameter set that is selected, the complexity
of a SISO decoder varies by a factor 2. This shows that the algorithmic parameter
set is an important factor to take into account when designing a TPC decoder.

4.4 From Parallelism Levels to Parallel Architectures

An architecture can be characterized by different metrics such as throughput,
latency, hardware complexity, power consumption, routing density, etc. In this study,
we aim at high speed architectures with low hardware complexities. Consequently,
the performance is measured with throughput (7') while the cost function is the
hardware area (A). In such a context, the efficiency of an architecture is defined as
the throughput/complexity ratio : E = T /A. An efficient architecture would process
a high data rate with a low hardware area.

The parallelism of an architecture can be defined as “the ability of the system
to process several data in parallel.” We formally define the parallelism P of a
decoder as the number of bits that can be processed/decoded in a single clock cycle.
The parallelism directly impacts the performance of an architecture. In order to
quantify the benefit/disadvantage brought by the application of a parallelism P, to
an architecture, we define three metrics, the speed gain Gg, the area ratio R¢, and
the efficiency gain Gg:

Gs(Pi=p) = 7,-

RA(PI = P) = AP[‘-:l

Ge(Pi=p)= E”iiP _ Gs(f;z::ﬁ)

A parallelism level P; is considered to be effective if Gg(P;) > 1, while it is
efficient when Gg(P) > 1 <= Gs(P;) > Ra(P;). One should notice that several
parallelism levels may be combined but it may also be impossible to associate
them. The exploitations of several parallelism levels at the same time depend on
the architecture that implements these levels. In the remaining of this section, all
parallelism levels in TPC decoding are detailed and characterized from the highest
level (frame parallelism) down to the lowest level (intra-symbol parallelism). For
each level, we provide a condition that makes the use of the considered level
efficient. We also provide some reference of existing TPC decoders that use these
parallelism levels.
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4.4.1 Frame Parallelism

The highest level of parallelism can be observed at the frame level and this is
known as frame parallelism. It is a form of spatial parallelism and is suitable to any
decoding scheme. In TPC decoding, a frame is defined as a product code matrix. The
frame parallelism consists in duplicating the processing resources, e.g., the turbo-
decoder. By using this parallelism level in TPC decoding, P4y, matrices can be
decoded at the same time. Considering P4pe turbo-decoders that have the same
throughput 7o, the speed gain and area ratio are equivalent: Gg = Ry = Prrape.
Consequently the efficiency does not increase with Prrne: Gg = 1. Actually, this
level of parallelism is only limited by the affordable silicon area. Although frame
parallelism makes TPC decoder architecture more effective, it does not improve its
efficiency. Moreover some buffering/multiplexing resources are needed to broadcast
incoming LLRs to the different decoders. The only advantage of frame level
parallelism is the design time since it can be implemented by a straightforward
duplication of resources on the silicon.

4.4.2 Iteration Parallelism

In a sequential TPC decoder implementation, each iteration is performed by the
same SISO decoder that reads and writes data in the Interleaving Memories
(IM). It is however possible to exploit the iteration parallelism by duplicating
the elementary decoder and the associated memories in a pipelined structure. The
memories have to be duplicated so that all SISO decoders can work in parallel. The
maximum depth of such a structure equals to the maximum number of iteration it,;, .
Iteration parallelism is a type of temporal parallelism. Here again, the throughput
benefit equals to the complexity ratio : Gg = R4 = P;. It means that the iteration
parallelism does not improve efficiency. Figure 4.5 shows a pipelined TPC decoder.
It includes I stages; each of which processing one frame. This explains why the
channel memory R has to be duplicated. It is also possible to implement less than

RQ ™ RS
@Rl i Rsb)
Channel —» sIso1 SIS02 :
a | RN |
Ry Ry

Fig. 4.5 Pipelined TPC architecture
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I stages and to loop back on the hardware resources. The iteration parallelism was
applied in [7] where five iterations are duplicated over five different FPGA devices.
It enables to reach a throughput of 5 Gb/s.

4.4.3 Sub-block Parallelism

In a product code matrix, each row (column) is encoded independently from
the others (See Sect.4.2.1). This interesting property may also be used during
the decoding process, where each row (column) is decoded independently. In an
implementation prospective, it means that more than one decoder can be assigned to
row (column) decoding. Considering a product code matrix of size 7%, a maximum
number of n decoders can be duplicated for row (column) decoding. We designate
this parallelism level as sub-block parallelism Py,. Assuming that the duplication
of SISO decoders does not induce interleaving resources duplication, Gg can be
expressed as:

Py, (Asiso +Ax)

Gg =
PypAsiso +Ar

Gg>1l<=Py>1

Agrso and Ay are the areas of the SISO decoder and the interleaving resource,
respectively.

In [10,13-15] solutions based on Barrel-shifter and Omega network are proposed
to avoid data access conflicts when Py = n. This makes the complexity ratio
lower than the speed gain, which means that the efficiency gain of the architecture
increases.

4.4.3.1 Barrel Shifter

In a straightforward application of sub-block parallelism, one simply duplicates the
SISO decoders. The decoder is then composed of Py SISO decoders, a memory
storing n” g-bits LLRs from the channel R and one memory storing n> g-bits LLRs
for the matrix [R},]. However, this architecture is limited by memory access conflicts.
Depending on the considered iteration, the Py, SISO decoders need to access a total
of Py, data either row-wise or column-wise. In [13], this problem is overcome for
Py, = n: a barrel shifter is introduced between SISO decoders and the interleaving
register file in order to allow row/column-wise data accesses of Py, data in parallel
as shown in Fig.4.6. This comes at the extra cost of a barrel-shifter with area of
O(nlogn). This solution enables to use the sub-block parallelism at its highest
rate only: Py, = n. The extra-complexity consists in a simple barrel shifter with a
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Fig. 4.7 Omega network-based parallel TPC decoder without interleaving memory

complexity of O(nlog(n)). However, it still includes a large amount of interleaving
memory for storing R'. This is especially problematic if one wants to use iteration
parallelism where the interleaving resources have to be duplicated.

4.4.3.2 Omega Network

In [10, 14, 15], it is suggested to replace the interleaving memory by a simple
interconnection network (Omega network). This is made possible by the cyclic
nature of the component codes (BCH or RS codes): applying a circular shift on
a codeword ends up in another codeword. In terms of decoding, this means that the
decoding process can start with any bits in the codeword. The decoding process
is then applied on a shifting diagonal. This avoids data access conflicts as long
as data are correctly routed from one iteration to another as shown in Fig.4.7.
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The interleaving-memory-less architecture was prototyped on an FPGA device [10].
This TPC decoder also has a maximal sub-block parallelism (Py = n), while
the hardware complexity of the interleaving resources is drastically reduced since
interleaving memory is no more needed.

4.4.4 Symbol Parallelism

A finer-grained parallelism is the symbol parallelism. It can be defined as the ability
of a SISO decoder, to process Py, symbols of the same sub-block (row or column)
in parallel. In a sequential SISO decoder, input data are shifted in a serial manner.
Every incoming symbol implies some internal metrics to be updated (syndrome,
least reliable bits, ... ). By increasing Py, some parts of the decoder datapath have
to be duplicated, (e.g., the reliability computation stage). However, the other blocks,
such as the test pattern metric computation, or the competitor vector determination
block, remain identical when Py, increases. Consequently, the area ratio is lower
than the speed gain : Gg > 1. For an architecture that avoid interleaving resource
duplication, the following inequality is verified:

GE >1 <:>ADEC(RY)WL = P) <p ><ADEC(Psym = 1)

Apec(Pym = p) is the hardware complexity of a SISO decoder with a symbol
parallelism equal to p. Increasing Py, also means that the interleaving memory
should be able to read/write more than one data during the same clock cycle. In
[12, 16] solutions were provided in order to exploit this parallelism while avoiding
interleaving memory duplication. Logic synthesis results confirm that the efficiency
increases with Py,,.

4.4.4.1 Memory Merging

In [16] an architecture that uses symbol parallelism in conjunction with sub-block
parallelism is proposed. The idea is to store several LLRs at the same address and to
design elementary decoders able to process Py, = m symbols during the same clock
period (denoted as m-decoders). A half-iteration structure includes n/m decoders
each decoding m symbols in one clock period and an interleaving memory of size
4 x g x M x n?. This scheme actually exploits symbol parallelism on one dimension
of the matrix and sub-block parallelism on the other dimension in such a way that
Py, = Py, = m. The resulting throughput is O(m?) while the overhead factor of the

decoder complexity is ~ %2 In this work, the maximum reached parallelism rate is
m? = 64, with m = 8 SISO decoders.
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Fig. 4.8 Omega network-based parallel TPC decoder (a) and fully parallel SISO-based TPC
decoder architecture (b)

4.4.4.2 Fully Parallel SISO Decoder

In [12], an architecture with Py, = n is proposed. A fully parallel SISO decoder
enables to decode a whole column in a single clock cycle after a few cycles of
latency. The n generated LLRs are then directly fed into n sequential SISO decoders
which perform row decoding. In such an architecture the interleaving resources are
simply removed since generated data are immediately consumed. Logic synthesis
results show the higher efficiency of this architectural solution in comparison with
the previously described ones. This can be easily explained by the fact that the
complexity of one fully parallel SISO decoder is lower than n SISO decoders. This
TPC decoder architecture will be described in detail in Sect. 4.5 (Fig. 4.8).

4.4.5 Intra-symbol Parallelism

In TPC decoding, BCH codes are often used for their good decoding performance/-
complexity trade-off. In [7, 17], it was shown that using RS codes as component
codes can provide similar decoding performance with a reasonable computational
complexity overhead.
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From an architectural point of view, the non-binary structure of RS codes enables
to exploit an extra parallelism level, the intra-symbol parallelism P;s. In an RS code
of size n, a symbol consists in M = log(n + 1) bits (see Fig.4.1). An RS-SISO
decoder can either shift-in symbols bit by bit or symbol by symbol. It provides a
maximal parallelism rate of max(P;) = log(n+1).

Similarly to the symbol parallelism, the resource sharing within the RS-SISO
decoder increases the efficiency. However the efficiency gain provided by P is
hard to estimate because it is highly related to the internal architecture of the SISO
decoder. Nevertheless, it is possible to give a condition that guarantees Gg(P;) > 1:

APy > 1)< PyxA(Ps=1)

In [7], a (31,29)2 RS turbo product code decoder was designed and prototyped. It
has an architecture similar to [10] but it includes RS SISO decoders that process
one RS symbol per clock cycle. Moreover, the iteration parallelism is used in such a
way that the decoding iterations are duplicated on the 5 FPGA devices. The resulting
TPC decoder reaches 5 Gb/s.

4.4.6 Comparison of Parallelism Levels

Table 4.1 summarizes benefits of parallelism levels in TPC decoding. For each
parallelism P;, the maximum speed gain, the efficiency gain, and the P, value
that maximizes the efficiency are given. Frame parallelism is only limited by
technological issues (e.g., silicon area). This parallelism improves the effectiveness
of the architecture; it is straightforward to implement but it does not improve
efficiency. Iteration parallelism has the same impact but is upper bounded by the
maximum number of iteration required by the decoding process.

Application of lower levels of parallelism (Pg, Py, and Pyg) improves the
architecture efficiency. It is even maximized for highest parallelism value. However,
the use of these parallelism levels is not as straightforward as Prype and Py. It
requires some specific schedulings and/or implementation strategies.

The TPC decoder architectures mentioned in this section use different levels
of parallelism and end up with different hardware efficiency. Table 4.2 provides
a comparison of the state-of-the-art TPC decoders in terms of parallelism levels and

Table 4..1 Compe}rison of P max(Gs) | Gp | arg(max(E))
parallelism levels in TPC
decoding Pframe Rl ~] [0, +t>°[

Py IT, ~1 |IT,

Py n >1 |n

Psym n >1 'n

P log(n+1) |>1 |log(n+1)
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Table 4.2 Current TPC decoder architecture comparison

Architecture | P; Ax(1/2iter) Apec(1/2iter)
[13] Py =n 0(2gn?) +0(2nlog(n)) | O(n)

[10,14] Pp=n O(nlog(n)) O(n)

[16] Py =m; Py =m_| O(2gn?) 0(m*/2)

[12] Py =1LPym=n |0 <O(n)

hardware area. For each reference, we provide the exploited parallelism levels. The
hardware area is given for a half-iteration for both the interleaving resource and
the decoding resources. All these architectures could use the frame and iteration
parallelism P4y and P; by duplicating resources.

The TPC decoder in [13] uses n sequential SISO decoders, two memories of size
n2 for R and R’ and two barrel shifters. In such an architecture, the critical part is the
memory resources that grow with n2. The TPC decoder in [16] uses a combination of
Py, and Py, This is the first architecture that uses Pyy,,,. However the SISO decoders
were designed for a maximum parallelism of m = 8. Moreover this architecture uses
memory resources for interleaving which dominate the resulting hardware area. In
[10, 14], the sub-block parallelism is fully exploited. The memories and the barrel
shifters are replaced by an omega network to route data from one iteration to the
next. The hardware area is then dominated by the n duplicated SISO decoders.

In [10, 13,14, 16], the rebuilding of the product code matrix is necessary between
each half-iteration: memory blocks and/or routing networks are used between half-
iterations to read and store R}, and R. Actually, more than 50 % of the complexity
is in the memory for IM-based architecture, while it represents less than 10 % for
omega network-based structure [14, 15]. On the decoding resources side, increasing
the parallelism rate by duplicating computation resources is inefficient since the
reuse of available resources is not optimized. In [12], a fully parallel SISO decoder
is cascaded with n sequential SISO decoders in such a way that interleaving
resources are completely removed. In fact, the internal memory of SISO decoders
is sufficient to store the required R and R’ matrices. The fully parallel SISO decoder
is less complex than n sequential SISO decoders which make this architecture even
more efficient. In the next section, due to its higher efficiency, the TPC decoder
architecture of [12] is described in detail.

4.5 TPC Decoder Architecture Based on Symbol Parallelism

4.5.1 Proposed IM-Free Architecture Using Fully Parallel
SISO Decoder

Considering that one can design a SISO decoder with Py, = n, a product code
matrix can be decoded without any interleaving resource as shown in Fig. 4.9.
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Fig. 4.9 Proposed parallel decoding scheduling of a product code matrix

Att =0, the fully parallel SISO decoder processes the column 1. During the next
clock period, n sequential SISO decoders (Pyy,, = 1) start decoding the first symbol
of each row while the parallel decoder processes the column 2. During the nth clock
period, sequential decoders complete matrix decoding while the parallel decoder
is already decoding the next matrix. Thus, data generated by the parallel decoder
is immediately consumed by the sequential decoders. Consequently, no IM or data
routing resources are required between the fully parallel decoder and sequential
decoders. The resulting architecture is compared to [10, 14] in Fig.4.10 for one
implemented iteration. This architecture uses row-wise Py, and column-wise Py,
More specifically, we have:

Pyym(col) = Py(row) =n
Py,(col) = Pyy(row) =1

One should notice that Py,(col) = Py, (row) can be further exploited.
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decoder architecture (b)

4.5.2 Toward a Maximal Parallelism Rate

Starting from the IM-free architecture presented in the previous section, parallelism
can be further enhanced. Figure 4.11 shows the alternate product code matrix
parallel decoding scheme in which Py (col) = Pyyu(row) = m and Py, (col) =
Py, (row) = n. The TPC decoder consists in mx n-decoders for column decoding
and nx m-decoders for row decoding. An m-decoder can process m symbols in
one clock period with 1 < m < n. In such an architecture, the maximum reachable
parallelism rate P = n* can be achieved by using n fully parallel SISO decoders
for column decoding and n fully parallel SISO decoders for row decoding. Intra-
symbol parallelism can also be exploited to increase the total parallelism to P =
Py X Py X Py = n? log(n). However, all these new architectural solutions require
to design a SISO decoder able to process n symbols in one clock period.

4.6 Architecture of a Fully Parallel Combinational
SISO Decoder

The proposed IM-free TPC decoder architecture requires a fully parallel
combinational SISO decoder. To the best of our knowledge, only sequential SISO
decoders able to process m < n symbols in one clock period have been previously
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designed. The design of a fully parallel combinatorial SISO decoder is a challenging
issue. In the following section, such an architecture is described.

4.6.1 Algorithmic Parameter Reduction

As explained earlier in Sect. 4.2, the Chase—Pyndiah algorithm includes parame-
ters (L, T,,Cw,q) which impact on both the performance and the complexity of
the turbo decoding. BER simulations were performed with different parameters:
L ={2;3;4;5}, 7, = {4:8;16}, Cw = {0;1;2;3}, ¢ = {3;4;5}. Performing eight
iterations, the parameter set &y = {L =5,7, = 16,Cw = 3,q = 5} gives the best
BER performance for a high complexity [5]. However, algorithmic simulations
showed that the reduced parameter set & = {L = 3,7, = 8,Cw = 0,9 = 5}
only induce a performance loss of 0.25dB at BER= 10~° while it becomes null
below BER= 10°. Further reducing these parameters would induce a notable
performance loss. For example by simply reducing the number of test patterns:
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Fig. 4.12 Combinatorial version of the fully parallel SISO decoder

Py ={L = 2,1, = 4,Cw = 3,q = 5}, the performance loss reaches 0.5dB.
Consequently, using &7 enables the architecture to be simplified at very low
performance lost below BER=10"°.

4.6.2 Fully Parallel SISO Decoder Architecture

Figure 4.12 depicts the architecture of the fully parallel SISO decoder. In the first
attempt a purely combinational architecture was designed. Later, a critical path
study mandated the insertion of pipeline stages within the structure. The SISO
decoder is split into three stages, namely the reception stage, the test pattern
processing stage, and the soft-output computation stage.

4.6.2.1 Reception Stage

The reception stage corresponds to steps (1-3) of the Chase—Pyndiah algorithm
detailed in Sect.4.2. The syndrome of the incoming vector R, can be derived
as S(R},) = H x sign(R),) where H is the parity check matrix of the BCH code.
A straightforward implementation of such a matrix multiplication is depicted
on Fig.4.13. The H matrix, the corresponding parity check equations, and the
syndrome S(to) = [s2,51,50] implementation of a BCH(7,4) code are detailed.

It can be noticed that some parity check equations have similar terms. For
instance, the term (x; @ xp) is used in both s; and s, computation. This means
that a reuse of computation resources for an even more efficient implementation is
possible. The parity of the incoming vector R}, is computed with a similar structure
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Fig. 4.13 BCH(7,4) code: (a) Parity check matrix. (b) Parity check equations. (¢) Syndrome
parallel computation implementation
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Fig. 4.14 Sorting network for least reliable bits selection

by “xoring” (n — 1) incoming bits. Selecting the least reliable bits among the
incoming vector in parallel requires a sorting network. Such structures are composed
of interconnected Compare and Select operators (CS). The interconnection scheme
depends on the considered sorting algorithm. Many parallel sorting algorithm are
conceivable [18]. However, most of them are optimized for a complete sorting, while
the Chase—Pyndiah algorithm only requires a partial sorting (i.e., extracting L min-
ima). Consequently we devised a network optimized, in terms of area and critical
path, for the partial sorting of L=3 values among n=32, as depicted in Fig.4.14.
The structure is based on shuffle networks coupled with local minima computation
blocks. After the first shuffle stage, min; is in the lower section while the upper
section can either contain miny or min3 or no minimum. The same reasoning is
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applied recursively. After five shuffle stages, the minimum is determined while
five values can still be min, and mins. A local sorting of five values enables the
determination of min, and min3 value. This partial sorting network requires 35 CS
operators and 29 minimum elements. The critical path consists of nine comparison
stages.

4.6.2.2 Test Pattern Processing Stage

The test pattern processing stage corresponds to steps (4-5) of the Chase—Pyndiah
algorithm detailed in Sect. 4.2. Instead of being processed sequentially, test patterns
are processed in parallel. The syndrome of each test pattern is computed by adding
S(to) with the position of the inverted reliable bits. The parity management block
computes the parity of R, considering the parity of R;, and the detection of
an error which is the case when S(#;) # 0. Metrics of each test pattern are then
computed by adding the contribution of each inverted bit in the current test pattern
(least reliable bits, syndrome corrected bits, and the new parity bit). The minimum
metric is determined in the DW selection block. The structure is a simple minimum
selection tree. The multiplexer selects R}, (S(#;)) in order to compute test pattern
metrics.

4.6.2.3 Soft-Output Computation Stage

The last stage is a duplication of n soft-output computation blocks. As shown in
Fig. 4.15, this block first computes the new reliability Fj; of each symbol. Since no
competitor word is considered, the § value is automatically assigned. The 3 value
is based on an estimation of the competitor word metric value. It is calculated from
the reliability of the corrected bit and the least reliable bits. Then, the extrinsic
information is computed and damped by the coefficient o; which is devised to
be a power of 2 making the multiplication a simple bit shifting. Finally, the
channel information is added to generate the soft output R}, _1- Within this block, all
computation are performed in sign and magnitude format. Other arithmetic format
were explored but the chosen one requires less computation resources than others.

ait
2R .(p)-M F. = /4 ,
n(p:) bw ﬁ Computation it BQ it />J<\ /_I_\ R it+1
TNl NN G AN
R ’it
R

Fig. 4.15 Soft-output computation stage
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4.7 Comparison with Existing TPC Decoders

4.7.1 Logic Synthesis Results of a BCH(32,26) SISO Decoder

In Sect. 4.4, we demonstrated that exploiting symbol parallelism is efficient if

Apec(Pym = p) < p X Apec(Pgym = 1). In order to verify this inequality, we
compare one parallel (P, = n) BCH SISO decoder vs nx sequential (P, = 1)
SISO decoders. Five versions of the BCH(32,26) parallel SISO decoder that have
from one to five pipeline stages were designed. The one-pipeline stage version
is a fully combinational architecture with register banks only at the input and
output stages. Table 4.3 summarizes logic synthesis results of the five different
parallel SISO decoders and compares them with n = 32 duplicated sequential SISO
decoders. s is the number of pipeline stages inserted in the SISO decoder, fiax is the
maximum frequency reached during logic syntheses. The throughput 7 is calculated
such that T = P X fy4y, A represents the area of the design in equivalent gate count,
and E is the efficiency: E = AZ. Logic syntheses were performed using Synopsys
Design Compiler with an ST-microelectronics 90 nm CMOS process. The area is
transposed in logic gate count. One equivalent logic gate corresponds to the area of
a two-input NAND gate. It enables a more technology-independent measure of the
hardware complexity.

As expected, the maximum frequency of the combinational decoder (s = 1) is
lower than a sequential version. However, by inserting pipeline stages inside the
combinatorial structure, an equivalent frequency is reached with s = 5. For this
last version, the throughput is even higher than n sequential SISO decoders. The
hardware cost of the pipeline stages insertion depends on registers location in the
decoder architecture. This is the reason why A(s = 4) < A(s = 3). In this particular
case, having s = 4 pipeline stages enables register stages to be assigned at regular
intervals, for a lower hardware cost. In terms of efficiency, a parallel SISO decoder
can reach the same throughput as n sequential SISO decoders with a six times lower
complexity. The efficiency gain increases with s.

These synthesis results demonstrate the higher efficiency of parallel SISO
decoding for the code BCH(32,26). Now, if one considers larger code with the

Table 4.3 Comparison of parallel and sequential BCH(32,26) SISO decoder

performance
32 sequential SISO
Parallel SISO decoder (Pyy, = 32) decoders (Pyy, = 1)
s 1 2 3 4 5 3
Jfmax(MHz) 125 333 500 500 714 700
T(Gbls) 4.0 10.7 16.0 16.0 22.9 224
A (Kgates) 18 26 31 26 34 200

E (Mb/s/gate) 0.15 0.27 0.34 0.41 0.44 0.07
Gg 2.1 39 4.9 5.9 6.3 1
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same correction power (i.e., BCH(64,57), BCH(128,120)), the complexity of the
reception stage and the soft-output computation stage would grow linearly with the
code size n. However the complexity of the test pattern processing stage would only
increase linearly with p < n. Consequently, the overall complexity of the parallel
SISO decoder is lower than a duplication of n sequential SISO decoders. It confirms
that a fully parallel SISO decoder enables a better reuse of computation and memory
resources and makes the whole TPC decoder more efficient.

One should notice that, for higher correction power (¢ > 1), the algebraic
decoding requires more complex algorithms such as Berlekamp—Massey algorithm
[19,20] which make the decoder complexity significantly higher. This is the reason
why t = 1 BCH codes were selected is this study.

4.7.2 Comparison with Existing TPC Decoder Architectures

Table 4.4 compares hardware performance of existing TPC decoders architectures
in an ultra-high-throughput context (T > 10Gb/s). For each architectural solution,
the decoder main features, the targeted code, the levels of parallelism that were
used in order to reach T = 10Gb/s, the resulting total parallelism (P, = [T; P),
the maximum number of iteration it,,,, are given. We consider that one iteration is
actually implemented. The resulting throughput is T = P,y X finax/itmax- Finally,
the gate count (A), the efficiency (E = T/A), and the achieved coding gain at
BER=10"" are given. Such a low BER is usually targeted in very high speed
application (e.g., data transmission over Passive Optical Networks).

For a fair comparison, architectures described in [7, 13, 14, 16] were synthesized
with the same technology: ST Microelectronics, CMOS 90 nm with a clock fre-
quency fiuax = S00MHz. For the remaining architectures, we gathered information
from the published papers and technical reports.

Two versions of the Fy,-based TPC decoder were synthesized. The first one
consists in four parallel SISO decoders together with 32 Py, = 4-SISO decoders.
The reached throughput is then sufficient for 10 Gb/s applications. The second
version uses only fully parallel SISO decoder, 32 of such decoders are duplicated
for each half-iteration. The maximum throughput is 85 Gb/s for the best efficiency.
This architecture uses row-wise Py, and column-wise Fjy,,,. The barrel-shifter-based
solution [13] can achieve 10 Gb/s with 2.6 Mgates. In order to reach a sufficient
parallelism level, it was necessary to use frame parallelism. The efficiency of this
approach is six times lower than the Fy,,-based TPC decoders. This low efficiency
is mainly due to the use of interleaving memory.

For the same reason, the TPC decoder with multi-access data [16] has a low
efficiency and also requires the use of frame parallelism to achieve 10 Gb/s.

In [14], the elimination of interleaving memories improves the efficiency but the
maximum parallelism rate is limited by the code size n. This makes the use of frame
parallelism mandatory in an ultra high speed context.
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The study in [7] shows that RS-TPC are a practical solution for 10 Gb/s transmis-
sion over optical networks. As we mentioned in Sect. 4.4, using RS codes enables
the use of intra-symbol parallelism. With an omega-network-based architecture,
this decoder also presents good efficiency gain for similar decoding performance.
One should notice that the Fy,-based fully parallel architecture is applicable to
RS decoding as well. We expect that the application of intra-symbol parallelism
would further increase the overall efficiency of the TPC decoder. Moreover, when
comparing a single iteration of RS-TPC decoding with a commercial RS(255,239)
code decoder, one can observe that superior efficiency is achieved for slightly better
decoding performance.

Mitsubishi proposed a TPC decoder for 10 Gb/s optical transmissions. The com-
ponent code is a BCH(144,128)xBCH(256,239). These codes are more powerful
than + = 1 BCH codes that are used in this study. However the implementation is
very costly in terms of hardware complexity. Indeed, 18 Mgates are necessary to
implement such a decoder, which makes the efficiency very small. This is the cost
that has to be paid for a 2 dB extra coding gain provided by this TPC decoder.

Conclusion

TPC decoding is a realistic solution for next generation high throughput
optical communications such as long-haul optical transmissions or passive
optical networks. The structure of the product codes makes them very suitable
for parallelization. However the exploitation of some parallelism levels may
not be efficient in terms of throughput/complexity ratio. This is particularly
true when interleaving memory has to be duplicated.

In this chapter, we review and characterize all parallelism levels in TPC
decoding. This analysis helps to better understand and classify existing TPC
decoders. In these TPC decoders, high throughput architecture complexity
is made prohibitive by the amount of memory usually required for data
interleaving and pipelining.

After this design space exploration, we focus on an architecture that jointly
exploits sub-block parallelism and symbol parallelism. This structure enables
any interleaving resource to be removed. This TPC decoder requires a fully
parallel SISO decoder capable of processing n symbols in one clock period.
Such a SISO decoder architecture is described and includes an optimized
parallel sorting network.

ASIC-based logic syntheses confirm the better efficiency of the IM-free
TPC decoder architecture compared to others. Actually, when compared to
other works, the area is reduced while the same throughput is achieved. A
BCH(32,26)> product code can be decoded at 33.7 Gb/s with an estimated
silicon area of 10pum? in 65 nm CMOS technology.
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Chapter 5
VLSI Implementations of Sphere Detectors

Johanna Ketonen, Markus Myllyld, Yang Sun, and Joseph R. Cavallaro

5.1 Soft Detection

The multiple input multiple output (MIMO) detection problem of an uncoded
system can be considered as a so-called integer least squares problem, which can
be solved optimally with a hard-output maximum likelihood (ML) detector [1].
The ML detector solves optimally the so-called closest lattice point problem by
calculating the Euclidean distances (EDs) between the received signal vector and
points in the lattice formed by the channel matrix and the received signal, and selects
the lattice point that minimizes the Euclidean distance to the received vector [2]. The
ML detection problem can be solved with an exhaustive search, i.e., checking all the
possible symbol vectors and selecting the closest point. The ML detector achieves
a full spatial diversity with regard to the number of receive antennas; however,
it is computationally very complex and not feasible as the set of possible points
increases.

The received frequency domain (FD) signal can be described with the equation
y = Hx 4+ 1, where x € CV is the transmitted symbol vector, n € C is a
vector containing circularly symmetric complex Gaussian distributed noise with
variance 62, H € C¥*V is the frequency domain channel matrix containing complex
Gaussian fading coefficients, and N is the number of transmit (TX) antennas and M
is the number of receive (RX) antennas. The entries of x are chosen independently
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from a complex QAM constellation Q with sets of Q transmitted coded binary
information bits b = [by,...,bg|" per symbol.

The ML detector calculates the Euclidean distances (EDs) between the received
signal vector y and lattice points Hx, and returns the vector x with the smallest
distance, i.e., it minimizes

XML = arg min Hy—Htz, (5.1)
xeQN

where x is the transmitted signal vector and H is the channel matrix. The ML
detector performs an exhaustive search over all possible lattice points and the
complexity is exponential in N.

The ML detector is optimal for uncoded systems, but for coded systems a
posteriori probabilities (APP) for the decoder are required. Practical communication
systems apply forward error correction (FEC) coding in order to achieve near
capacity performance. The optimal way to process the spatially multiplexed and
FEC coded data sequence would be to use a joint detector and decoder for the whole
coded data sequence and decode the most probable data sequence. The complexity
of the optimal receiver would be prohibitive as it depends on the length of the code
block [3]. The optimal receiver is then approximated with an iterative receiver [4]
with a separate soft-input soft-output (SfISfO) detector and soft in soft out (SISO)
decoder, which exchange reliability information between the units. A structure of
such a receiver is presented in Fig.5.1.

The MAP detector provides the optimal APPs or log-likelihood ratios (LLR) [5]
for the decoder. Given the interleaving of b and assuming the noise in the system
is white Gaussian and the bits are approximately statistically independent, the a
posteriori LLR for the transmitted bit k can be written as [3]

Pr(by = +1ly)
LD(bk|y) = lnPr(bk — _lly)
1 2 1 T
; CXP(—TGz |ly — Hx|| +§b[k]LA,[k])
b X
= Lso(by) +1n €£+1 1 S 1., , (5.2)
exp(—5— ||y — Hx|[" + S bjyLa i)
bE[,k‘,l 262 2 [ ] [ ]

LE1 .
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Fig. 5.1 The iterative receiver
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where Ly 1By +1 is a list of candidate points x. By , is the set of 2NO-1 bt vectors
having by = a,a € {—1,1}, by is a subvector of b without b, and vector Ly
includes all Ly values except for b;. The list £ can be obtained by neglecting the
insignificant elements in B such that the K candidate points in £ include Xy, and
2MQ > K > 1 [3]. This can be achieved for example with a list sphere detector
(LSD).

The approximation of the logarithm in (5.2) can be calculated using a small look-
up table and the Jacobian logarithm [6]

jacln(aj,az) := In(e” +€“?) = max(aj,az) +1In(1 +exp(—|a; —az|)). (5.3)

The Jacobian logarithm in (5.3) can be computed without the logarithm or exponen-
tial functions by storing r(|a; — az|) in a look-up table, where r(-) is a refinement
of the approximation max(aj,a;). Max-log approximation further simplifies (5.2)
when the refinement term is left out with negligible loss in performance. With these
simplifications, Lp(bi|y) — La(by) can be written as

1 2, 1.7
Lp(bly) = max {—WHY—HXH +2b[k]LA=[k]}

beLy 41

1 2 1 T
-, max {262||Y—Hx|| +2b[k]LA,[k]}. (5.4)

5.1.1 Tree Search Algorithms

The tree search algorithms can be used to solve or approximate the hard output ML
solution with reduced complexity compared to the full-complexity ML detector.
They are based on preprocessing and tree search algorithms and their application to
the MIMO detection problem has gained renewed attention in the literature during
the last few decades [7]. The search over the lattice points can be performed with
a tree structure due to the QR decomposition applied on the channel matrix. The
tree search algorithm then aims to find the shortest path in a search tree formed
by the MIMO channel matrix and the transmitted symbols, i.e., solves the exact
ML solution or suboptimal solution depending on the algorithm search strategy.
The algorithms in the literature are often divided into three categories according to
the search strategy: the breadth-first (BF) search, the depth-first search (DF), and the
metric-first (MF) search [8-10].

A class of algorithms, generally called sphere detectors (SD) [11-15], solve the
ML solution with a reduced number of considered candidate symbol vectors. They
take into account only the lattice points that are inside a sphere of a given radius.
The condition that the lattice point lies inside the sphere can be written as

|ly —Hx||* < Gp. (5.5)
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After QR decomposition of the channel matrix H in (5.5), it can be rewritten as
|ly’ — Rx||? < G, where Cy = Cy — ||(Q')Hy]|%, ¥ = Q%y, R € CV*V is an upper
triangular matrix with positive diagonal elements, Q € CM*N and ' € CM*(M-N)
are orthogonal matrices.

The squared partial Euclidean distance (PED) of xf’ , 1.e., the square of the
distance between the partial candidate symbol vector and the partial received vector,
can be calculated as

N 2
dx) =Y.

J=i

; (5.6)

, N
)’j—zrj,le
I=j

wherei=N...,1, ylj is the jth element of y', r;; is the j,Ith element of the matrix
R, x; is the /th element of the candidate vector va , and Xiv denotes the last N —i+ 1
components of vector x [15].

Hard output sphere detectors may cause significant performance degradation
when used in a system with FEC. However, there are methods proposed in the
literature to modify hard output detectors to give soft reliability information of the
transmitted bits as an output. A tree search algorithm can be used to obtain a list of
candidates £ and their Euclidean distances which are used to calculate the APPs Lp
of the coded bits in b),. The size of the candidate list and the bounding of the tree
search define the trade-off between complexity and the quality of the soft output
information. List detector algorithms continue the tree search until a defined list is
obtained. LSDs can be used to approximate the MAP detector and to provide soft
outputs for the decoder [3]. The algorithms can often be derived from the sphere
detector algorithms with minor modifications.

A tree search detector structure is presented in Fig.5.2. The channel matrix H
is first decomposed as H = QR in the QR-decomposition block. The Euclidean
distances between the received signal vector y and the possible transmitted symbol
vectors are calculated in the tree search block. The candidate symbol list £ from
the tree search block is demapped to a binary form. The tree search algorithm can
be any algorithm that produces a list of candidate symbols, for example the LSD.
The LLRs are calculated from the list of Euclidean distances in the LLR block.
Limiting the range of LLRs reduces the required list size [16].

List
sphere
detector (L)

Q
H
Fig. 5.2 The structure of the @ R

tree search detector
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5.2 Breadth-First Detection

Breadth-first algorithms, such as the M algorithm [10] or the K-best Algorithm
[17, 18] with sphere radius, extend the search in a layer-by-layer basis with multiple
paths and always proceed in the depth direction of the tree. The algorithms always
keep a constant number of candidate paths in each layer of the tree if no sphere
radius constraint is introduced, but also require sorting of the candidate paths at
each tree layer. The fixed complexity sphere decoder (FSD) [19] and the selective
spanning with fast enumeration (SSFE) algorithm [20] also have a fixed complexity
as they search over a fixed number of lattice points around the received signal. They
both have a predefined number of nodes to be searched in the tree. Breadth-first
algorithms guarantee a fixed number of visited nodes, which makes the algorithm
very suitable for implementation. However, the breadth-first search strategy does
not guarantee the ML solution and the search as such is inefficient in term of visited
nodes especially with higher order modulation compared to the other tree search
strategies.

5.2.1 K-Best Detection

The K-best algorithm [17] is a breadth-first search based algorithm, which keeps
the K nodes which have the smallest accumulated Euclidean distances at each level.
If the PED is larger than the squared sphere radius Cy, the corresponding node will
not be expanded. The K-best algorithm without the sphere constraint can also be
seen as the M-algorithm [10]. Here, Cy = o, but a set the value for K is used instead,
as is common with the K-best algorithms. The K-best LSD algorithm description is
given as Algorithm 1. The main loop of the algorithm runs fromi=1,...,2N in a
real valued system, i.e., the real and complex parts of the signal are treated separately
[15,21].

The K-best tree search with no sphere constraint is illustrated in Fig. 5.3. A list
size of two is assumed. The tree search proceeds level by level, expanding all the
child nodes of each parent node. If the number of child nodes exceeds the list size,

Algorithm 1 The K-best LSD algorithm
Inputs: Q,R,y, C(’), K, P (modulation used, P-QAM) 2. Sort the partial candidates according

Preprocessing: Calculate y’ to their PEDs

Algorithm: 3. Store the K smallest PEDs and symbol
fori=1,...,.N vectors to the final list stack memory.

1. Denote the partial candidate by X?_/H. end

1.1 Determine all admissible candidate child nodes x; Give the candidates and their
(with given C}) and the corresponding PEDs d(xY). EDs as outputs.
1.2 Store the partial candidates and their PEDs

to a temporary stack memory.
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Fig. 5.3 The K-best tree search

sorting is performed to find the K nodes with the smallest PEDs. The tree search
starts from the top of the tree on the first level in the figure. Both nodes are spanned,
and on the second level, all the child nodes are spanned as well. Sorting is performed
to find the two nodes with the smallest PEDs. The tree search continues until the
fourth level is reached and the two leaf nodes with the smallest Euclidean distances
are given as output. The breadth-first tree search can be modified to decrease the
latency [22].

5.2.2 Selective Spanning with Fast Enumeration

The SSFE algorithm [20] can also be thought of as a breadth-first tree search
algorithm. It can be also thought of as a fixed complexity detector. The algorithm
spans each level of the tree based on the node spanning vector m = [my,...,my].
The number of spans for each node on a level is specified with the element of m
corresponding to that level. As the spanned nodes are not discarded, the length of the
final candidate list can be obtained by multiplying the elements of m. For example,
in a 2 x 2 antenna and 64-QAM system, the vector m = [64, 8] would lead to a final
candidate list of 512. Here, a real valued system model is used. Such a system model
simplifies the Euclidean distance calculation and the slicing operation as the closest
constellation point selection can be done on a one dimensional axis.
The PED on each level i of the tree search can be calculated as

di(x) = iy (x1) + [|es(x) | (5.7)
where d;, 1 (x'*1) is the PED from the previous level. The slicer unit selects a set of
closest constellation points X/, minimizing
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Fig. 5.4 The slicing operation in SSFE with 64-QAM

Algorithm 2 The SSFE algorithm
Inputs: Q,R,y, m, P (modulation used, P-QAM) 3. Calculate the PEDs to the sliced lattice

Preprocessing: Calculate y’ and h; = 1/R;; points
Algorithm: end
fori=1,...,.N Give the candidates and their EDs as outputs.

1. Calculate € for each candidate in x’
2. Slice the m; closest points

2
2 , M
Hei(Xl)H =1yi— z r,-.jxj—r,-’,-x,- . (58)
j=it1
Minimizing ||ei(xi){’2 is equivalent to the minimization of ||e;(x’)/ri||*> = ||(yi —

ZI}/[:,'+1 ri %) /rii — xi||*, where € = (3} — Z]}/’:iH ri.jxj)/ri;. The closest constella-
tion points based on € are selected in the slicer unit.

The real valued axis for 64-QAM is shown in Fig.5.4. The slicing order given
€ is also depicted. If five constellation points are sliced, the slicer would select
the constellation points in the order of {—1,—3,1,—5,3}. The process is similar
to the Schnorr—Euchner enumeration (SEE) [23]. The SSFE algorithm could then
be thought of as the M-algorithm combined with SEE. The SSFE algorithm
does not require sorting, which makes it more attractive for implementation than
the M-algorithm or the K-best detector. The SSFE algorithm is summarized as
Algorithm 2.

5.2.2.1 Implementation Choices

The top level architecture of the K-best LSD for a 2 x 2 antenna system is shown in
Fig.5.5. The 4 x 4 antenna system LSD is based on the same architecture, but four
more PED calculation blocks and sorters are added to the design. The architecture
for the SSFE has a similar pipelined structure, where each level of the tree is
processed separately.
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Fig. 5.5 The top level architecture of the 2 x 2 K-best LSD

The K-best LSD architecture is modified from [24]. A 2 x 2 and a 4 x 4 antenna
system with a real signal model [25] is assumed. The received signal vector y is
multiplied with matrix Q in the matrix multiplication block. Matrix R is multiplied
with the possible transmitted symbols after the QRD is performed, i.e., when the
channel realization changes. PEDs between the last symbol in vector y’ and possible
transmitted symbols are calculated in block PED1 in a 2 x 2 antenna system with
d(x3) = Hy; - r;MHZ. The resulting lists of symbols and PEDs are not sorted at

the first stage. The distances are added to the PEDs d(x3) = ||y; — (rgﬁ + 75412
calculated in the PED2 block. The lists are sorted and K partial symbol vectors
with the smallest PEDs are kept. PED3 block calculates d(x3) = |[yy — (5 5 +75 3 +
r'274)||2, which are added to the previous distance and sorted. The last PED block
calculates the PEDs d(x?) = ||y/1 - (r'm + r/1_2 + r/173 + r;‘4)\|2. After adding the
previous distances to d(x7), the lists are sorted and the final K symbol vectors are
demapped to bit vectors and their Euclidean distance is used in the LLR calculation.

High level synthesis (HLS) was used to obtain the implementation results. Even
though HLS tools have been developed for decades, only the tools developed in the
last decade have gained a more widespread interest. The main reasons for this are
the use of an input language, such as C, familiar to most designers, the good quality
of results, and their focus on digital signal processing (DSP) [26]. HLS tools are
especially interesting in the context of rapid prototyping where they can be used
for architecture exploration and to produce designs with different parameters [27].
While the results may not always be as optimal as with hand-coded HDL, the tool
allows experimenting with different architectures in a short amount of time. The
complexity results can be close to the hand-coded ones with small designs [28].
There can be a bigger difference with large designs.

The implementation of algorithms was done by writing the architecture descrip-
tion with fixed-point ANSI C++ language and then applying the Catapult C
Synthesis tool [29] to produce a register transfer level (RTL) description. After
obtaining the RTL with the desired timing and complexity results, synthesis was per-
formed with Synopsys Design Compiler specific tools to obtain the final complexity
results. The algorithms in this section and in Sect.5.3.4 were implemented with
0.18 wm complementary metal-oxide semiconductor (CMOS) ASIC technology for
a 4 x 4 MIMO system with 16- and 64-QAM. The ASIC power estimation was
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Table 5.1 Implementation results with 4 x4 16-QAM

Gates Power
Receiver Tree search| LLR Tree search| LLR Detection rate
SSFE/SSFE | 135.2k 19k/34.6k |488.9mW | 79 mW/158 mW 186 Mbps/163 Mbps
2 it.

8-best/8-best| 97 k 17.3 k/33.1 k| 341.5mW | 68.3 mW/140.5 mW | 140 Mbps/126 Mbps
2 it.
16-best 148.4 k 202k 499.6 mW | 79.2mW 70 Mbps

Table 5.2 Implementation results with 4 x4 64-QAM

Gates Power
Receiver Tree search| LLR Tree search| LLR Detection rate
SSFE/SSFE | 177.4 k 25.7 k/50.4 k| 568.6 mW | 110.5 mW/236.7 mW | 269 Mbps/222 Mbps
2 it.
8-best/8-best| 183.7 k 21.5k/452k| 551.4mW |87 mW/197.9mW | 210 Mbps/180 Mbps
2 it.
16-best 2172k 245k 717.3mW | 96.6 mW 105 Mbps

done with the Synopsys PrimeTime tool. Results for the enhanced tree search,
other antenna configurations, adaptive systems, and other detectors can be found
in [30,31].

5.2.2.2 VLSI Implementation

The complexity and performance of two breadth-first tree search algorithms are
compared. The complexity results for the SSFE and K-best detectors are presented
in Table 5.1 for 16-QAM and in Table 5.2 for 64-QAM. Results for the LLR
calculation are also given for a fair comparison of the two detectors. The detection
rate of a receiver can be calculated as %, where Q is the number of bits per
symbol, Dyec = Dget + (DLLR + Ddec ) Niter» Daet 18 the latency of the detector, Dy r
is the latency of LLR calculation, Dy, is the latency of the decoder, and Nj; is
the number of iterations between the detector and the decoder. LLR calculation
and decoding can be performed simultaneously and in a pipelined manner with
detection and their latency does not have to be included in the throughput latency. In
an iterative receiver, the throughput latency is determined by the minimum of Dy,
and Dy R + Dgec. The receivers were designed to have a detection rate, which would
be enough for the 3GPP Long Term Evolution (LTE) 20 MHz bandwidth.

The word lengths for the K-best LSD and LLR calculation are mainly 16 bits and
computer simulations have been performed to confirm that there is no performance
degradation [30]. The sorters are insertion sorters. The list size values of 16 and 8
are used in the implementation.
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4x4 system, Goodput vs. Complexity
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Fig. 5.6 Complexity-performance trade-off in a 4 x4 antenna system

The SSFE list size is 12 and the node spanning vector is [3,2,2,1,1,1,1,1].
The clock frequency of the detectors was 280 MHz except for the 64-QAM SSFE
where only a 269 MHz clock frequency was achieved. In the receiver with two
global iterations, the tree search is performed only once and the complexity is the
same as with one iteration. However, the LLR calculation is different in the two
cases as the feedback from the decoder is used in the iterative detector. Decoding
reduces the detection rate in the iterative receiver. The 8-best detector has a lower
complexity and power consumption than the SSFE in the 16-QAM case, but the
detection rate is also lower. The power consumption is also lower in the 64-QAM
case, but the detection rate of the SSFE is higher.

The complexity-performance trade-off is illustrated in Fig.5.6. The goodput,
i.e., the minimum of the transmission throughput and hardware detection rate of
information bits in a 20 MHz bandwidth with a 1/2 code rate, is compared to the
hardware complexity. The figure then illustrates the communication performance of
each detector compared to its complexity. The transmission throughput results were
obtained with computer simulations in a realistic communication system model. The
K-best with list size of 16 has a high complexity and low goodput. The goodput
of the SSFE with two global iterations is close to that of the 8-best with one
iteration with 16-QAM, but has a higher complexity. With 64-QAM, SSFE with
two iterations achieves the highest goodput. Extra iterations do not bring any benefit
with the K-best tree search as the detection rate is low. Even though the SSFE
algorithm does not include sorting, the slicing operation induces extra complexity
compared to the K-best algorithm and the difference between the two tree search
algorithms remains small. The iterations between the detector and the decoder can
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improve the communication performance but at the same they increase the latency
and complexity, resulting in a low overall gain. However, some pipelining and
parallelization techniques can be used to improve the throughput [32].

5.3 Depth-First and Metric-First Detection Algorithm
Implementations

In this section, we introduce some examples of soft-output depth-first and metric-
first search based detection algorithms and their VLSI implementations [31]. The
considered soft-output sphere detection algorithms are first presented in Sect. 5.3.1.
Implementation trade-offs are then presented in Sect.5.3.2, and the architectural
choices in Sect. 5.3.3. Finally, the implementation results are presented in 5.3.4.

5.3.1 Algorithm Descriptions

The considered depth-first and metric-first search based LSD algorithms are intro-
duced in this section.

5.3.1.1 Depth-First Algorithm

Depth-first algorithms are based on a sequential search and go through a variable
number of nodes in the search tree depending on the channel realization and the
signal to noise ratio (SNR). The algorithms explore the tree along the depth until
the cost metric of the path is below a defined threshold called a sphere radius.
They then return and pursue another unexplored path. DF algorithms are able to
find the exact ML solution if the search is not bounded. The Pohst enumeration
method is often considered to be the original sphere algorithm [12]. The algorithm
search complexity is bounded by selecting a constant sphere radius, which limits
the search in the tree to the most likely paths. More advanced adaptive sphere radius
was introduced as the Viterbo—Boutros (VB) implementation [14], and the SEE [23]
can be seen as even more efficient modification of the Pohst enumeration and VB
implementation [11].

We consider a depth-first search based sphere detection algorithm called the
SEE—LSD and it is listed as Algorithm 3. It is an extension of SEE-SD [23]
to a LSD, and the algorithm continues the search until all admissible nodes have
been checked and the required candidate list £ has been obtained. The output
candidate list £ includes the most probable candidates, i.e., the candidates with the
lowest ED. The sequential algorithm initially starts from the root layer and extends
the partial candidate s = x} with the best admissible node determined by the SE
enumeration. The search tree pruning loop in the algorithm extends the considered
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Algorithm 3 [£] = SEE-LSD(Y, R, Neana, @, N)

Initialize set £, andset Ch =0, m=0,n =1,i =N
Initialize N (s = x/,d(s) = 0)
WHILE (i £ N and n; # Q) {
IF (n; =|QJ) { Seti =i+ 1, determine n; and continue with N'(s = xZ,,,d(s)) }
ELSE
Determine the 7 th best node x; for s = (x;,xL, ) and calculate d(s.)
IF (d(s.) < Co)
IF (s. is a leaf node, i.e.,i = 1)
1. Store Ng(sc,d(sc)) in {L}"
2.Setm =m+1 or, if £ is full, set m according to {£}" with max ED
and Cp = {d(s)}"
3. Continue with N'(s = x¥ ,,d(s)), ni ++and i = 1 if ny + 1 < |Q]
ELSEIF (i # 1orn; +1=|Q|) { Seti=i— 1 and n; = 1, and continue with
N(Smd(sc)) }
ELSEIF (d(s) > Cpand i #N — 1) { Seti =i+ 1, determine n; and continue with
N(s=x.d(s)) }
ELSE {End the algorithm} }

partial candidate s = xﬁr 1 with the next best available child node in each iteration
until the PED of the extended partial candidate exceeds the sphere radius Cy or a leaf
node s = X11V is found. In the case of a leaf node s = x11V , the candidate information
N (s,d(s)), which includes the candidate s and the corresponding ED d(s), is added
to the final candidate list £ if the ED d(s) is lower than the current sphere radius Cp.
The radius is always updated to be equal to the highest ED in the final list when the
final candidate list is full and a new leaf node is found. If the extended candidate
exceeds the Cy or all the admissible nodes have been checked, the algorithm moves
one layer higher and continues with the next best admissible node. The next best
admissible node is determined based on the previously extended nodes.

5.3.1.2 Metric-First Algorithm

Metric-first algorithms are based on a sequential search method and the search
always proceeds along a path with the best cost metric among the stored paths in the
tree search [8,33]. MF algorithms are based on Dijktra’s algorithm [34, 35], which
was originally used to solve the single-source shortest path problem for a graph.
The application of metric-first algorithms for MIMO detection has been applied
in [36-38]. MF algorithms find the exact ML solution and the search strategy is
efficient in terms of visited nodes in the search tree, but requires storing and ordering
of the paths studied [33].

The increasing radius (IR)—LSD is listed as Algorithm 4. The IR-LSD alg