
Cyrille Chavet · Philippe Coussy Editors

Advanced
Hardware
Design for Error
Correcting
Codes

Advanced Hardware Design for Error
Correcting Codes

Cyrille Chavet • Philippe Coussy
Editors

Advanced Hardware Design
for Error Correcting Codes

123

Editors
Cyrille Chavet Philippe Coussy

ISBN 978-3-319-10568-0 ISBN 978-3-319-10569-7 (eBook)
DOI 10.1007/978-3-319-10569-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014951358

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Université de Bretagne Sud
Lorient, France

Université de Bretagne Sud
Lorient, France

www.springer.com

Foreword

For many years, experts more expert than the rest have regularly heralded the
end of research focused on the physical layer of telecommunications. Some claim
that the best has already been delivered from the promises offered by the theory
of communication, others say that the theoretical limits predicted will never be
reached by simple means. As Costello and Forney explained in an award winning
IEEE article [1], this pessimistic standpoint is nothing new and some were already
proclaiming “Coding is dead” in the early 1970s, only 20 years after the pioneering
work of Claude Shannon. Other experts, this time in the field of microelectronics,
have also regularly announced the end of CMOS technology, starting as early as the
mid-1980s when the submicron barrier for mass production seemed insurmountable
to some. “CMOS is dead” was also commonly heard.

Fortunately, these doubts were swept away each time they were raised. And this
was often because of the need for increasingly demanding telecommunications:
farther, faster, more reliable, that microelectronics increased its efforts in the minia-
turization of components. Conversely, the steady progress of the semiconductor
industry has opened the way to new processing information algorithms unforeseen
at the time of the first generations of integrated circuits. Information, as understood
by Shannon, and the transistor were born around the same time in the legendary Bell
Labs and, from that time, have continued to join hands to lead to ever more effective
telecommunications systems which have become indispensable in our daily lives.

Among the processes made possible today by high density integration on silicon,
distributed error correction coding (or channel coding) came to occupy a place of
prime importance. To put it simply, distributed coding is to monolithic coding what a
combination of small mathematical relationships is to one complex equation. It was
by adopting the point of view of distributed computing that error correction coding
proved able to find its best practical solutions to achieve optimality, or nearly. Rather
than trying to build a codeword by a single coding operation and recover it through
a single decoding step, it is wiser to adopt the strategy of “divide and rule”, not at
the cost of lesser performance, quite the contrary.

v

vi Foreword

In the early 1990s, the competition (all virtual) between monolithic coding
and distributed coding in the race for optimality designated its winner. On the
one hand, a team from the prestigious Jet Propulsion Laboratory in Pasadena was
working to develop a Viterbi decoder for a 16384-state convolutional code: the Big
Viterbi Decoder (BVD) [2]. It had to consist of 256 identical integrated circuits
each processing 64 states, plus additional control circuits. The correction power
significantly exceeded the state of the art but an entire table was needed to lay
the decoder. On the other hand, in a little known French laboratory, an electronics
engineer wondered whether two small convolutional codes, typically of 8 or 16
states, associated in an original way and iteratively decoded one after another could
not do better than the Californian code. The answer was affirmative: three integrated
circuits (same number as iterations) were enough to provide better correction power
than the BVD.

A large part of the community of digital communications therefore became
interested in this new way of building a redundant code that its inventor [3] later
named turbo code [4] to keep it significantly shorter than “parallel concatenation
of recursive systematic convolutional codes decoded iteratively”. It also provided
the opportunity to take a new look at and give a new impetus to LDPC codes
[5, 6] to which many researchers turned their attention, whether for optimization
or implementation. Different distributed structures, in parallel, in series or both
together, were proposed one after the other. From the most compact of distributed
codes—a turbo code with only two component codes—to more distributed—LDPC
codes or the most recent and promising polar codes [7]—all kinds of solutions were
possible. In addition to studies on “modern coding” [8], the philosophy of decoding
by message passing was also expanding its ramifications to applications other than
channel coding, for example equalization [9, 10], demodulation [11] or joint source-
channel coding [12]. “Do not lose any of the pieces of information available in the
receiver whatever the level” became the leitmotif of many researchers.

Some were also questioning what once had been considered absolute certainties:
but no, on balance, coding is not only a matter of mathematics. Because informa-
tion theory was built on non-trivial mathematical concepts, such as entropy and
mutual information, it was indeed long believed that practical solutions would be
exclusively provided by mathematics. But math is especially used to justify and set
parameters, rarely to create and build. While algebra, probability and graph theory
continue to be part of the arsenal of skills of engineers and researchers in commu-
nication technologies, other knowledge and skills have also become indispensable:
computer science, electronics, and, in particular, parallel architectures needed to
obtain high throughputs. The days when it was legitimate to invent a code or any
algorithm without proposing practical ways of decoding or implementation are over.
Not only must processes be compatible with what electronics can provide but other
significant constraints such as energy consumption in embedded systems or the
speed of information transfer in highly distributed structures can be crucial.

The proliferation of new applications (very high throughput cellular systems,
sensor networks, Internet of Things, etc.) and the demand for improved performance
are still ongoing challenges. It is no longer just a matter of bits per second per hertz

Foreword vii

or bit error rate; now it is also necessary to consider other criteria such as joules
per bit (in transmission as in reception processing), flexibility and interoperability.
A new generation of researchers has emerged, mastering at the highest levels
the interdisciplinarity necessary to cope with these multiple constraints. Some
of these researchers have come together to write this book with the latest ideas
and developments in the design of circuits for error correction encoding and
decoding. Tomorrow’s telecommunications are in their hands and we can certainly
say alongside them: “Coding and CMOS are still alive, and for a long time to come”.

[1] Costello DJ, Forney GD (2007) Channel coding: the road to channel capacity.
Proc IEEE 95(6):1150–1177

[2] Statman J, Rabkin J, Siev B (1989) Big Viterbi decoder (BVD) results for
(7,1/2) convolutional code. TDA Progress Report 42–99, JPL, November 1989

[3] Berrou C (1991/1995) Error-correction coding method with at least two
systematic convolutional codings in parallel, corresponding iterative decoding
method, decoding module and decoder. Patents no 9,105,280 (France, April
1991), no 5,446,747 (USA, August 1995)

[4] Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-
correcting coding and decoding: turbo-codes. In: Proceeding of IEEE ICC ’93,
Geneva, pp 1064–1070, May 1993

[5] Gallager RG (1962) Low-density parity-check codes. IRE Trans Inf Theory
IT-8:21–28

[6] MacKay DJC, Neal RM (1995) Good codes based on very sparse matrices. In:
Boyd C (ed) Cryptography and coding 5th IMA Conference, Lecture notes in
computer science, no 1025. Springer, Berlin, pp 100–111

[7] Arikan E (2009) Channel polarization: a method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels. IEEE Trans
Inf Theory 55(7):3051–3073

[8] Richardon T, Urbanke R (2008) Modern coding theory. Cambridge University
Press, New York

[9] Douillard C, Picard A, Didier P, Jézéquel M, Berrou C, Glavieux A (1995)
Iterative correction of intersymbol interference: turbo-equalization. Eur Trans
Telecom 6(5):507–511 (special issue on turbo decoding)

[10] Laot C, Glavieux A, Labat J (2001) Turbo equalization: adaptive equalization
and channel decoding jointly optimized. IEEE J Select Areas Commun
19(9):1744–1752

[11] Hoeher P, Lodge J (1999) Turbo DPSK: iterative differential PSK demodula-
tion and channel decoding. IEEE Trans Commun 47(6):837–843

[12] Hagenauer J, Görtz N (2003) The turbo principle in joint source channel
coding. In: Proceeding of ITW 2003, Paris, pp 275–278, April 2003

Claude Berrou
May 2014

Contents

1 User Needs . 1
David Gnaedig

2 Challenges and Limitations for Very High Throughput
Decoder Architectures for Soft-Decoding . 7
Norbert Wehn, Stefan Scholl, Philipp Schläfer,
Timo Lehnigk-Emden, and Matthias Alles

3 Implementation of Polar Decoders . 33
Gabi Sarkis and Warren J. Gross

4 Parallel Architectures for Turbo Product Codes Decoding 47
Camille Leroux, Christophe Jego, and Patrick Adde

5 VLSI Implementations of Sphere Detectors . 73
Johanna Ketonen, Markus Myllylä, Yang Sun,
and Joseph R. Cavallaro

6 Stochastic Decoders for LDPC Codes . 105
François Leduc-Primeau, Vincent C. Gaudet,
and Warren J. Gross

7 MP-SoC/NoC Architectures for Error Correction . 129
Carlo Condo, Maurizio Martina, and Guido Masera

8 ASIP Design for Multi-Standard Channel Decoders . 151
Purushotham Murugappa, Amer Baghdadi,
and Michel Jezequel

9 Hardware Design of Parallel Interleaver Architectures: A Survey 177
Cyrille Chavet, Awais Hussain Sani, and Philippe Coussy

ix

Chapter 1
User Needs

David Gnaedig

TurboConcept is an industry-reference provider of Intellectual Property Cores (IP
Cores) for advanced Forward Error Correction (FEC) techniques (turbo codes and
LDPC codes). We propose IP Core products, which offer to our customers the best
trade-offs between error correction capability, throughput, silicon cost, and power
consumption. Since 2007, TurboConcept is part of the Newtec group, specializing
in satellite communications equipments and systems. We have developed IP cores
implementing encoders and decoders addressing most of the families of error
correcting codes:

– Turbo codes: since the development of the first DVB-RCS turbo decoder in 1999
(a duo-binary turbo code), we have developed IPs for all flavors of convolutional
turbo codes that are specified in standards such as the CCSDS, WCDMA,
Homeplug AV, WiMAX, LTE.

– LDPC codes since their adoption in 2002 by the DVB-S2 standard. We have
naturally extended this IP to cover also DVB-T2, DVB-C2, and have then
developed products for WiMAX, G.hn, and more recently WiFi 802.11ac.

– Turbo product codes: two- and three-dimensional product codes.
– Convolutional codes for WiFi, LTE, WCDMA.
– BCH codes, that are used in concatenation with LDPC codes in DVB-S2 standard

for instance but also for other proprietary concatenation schemes.

We also propose proprietary error correcting codes based on either turbo or
LDPC codes for various applications: satellite communication, wireless back-
haul, . . .

Our FEC IP cores target both ASIC and FPGA designs. During the first years of
the company most IP cores were designed for FPGA devices. But since 2005 with

D. Gnaedig (�)
TurboConcept, 185 rue Joseph Fourier, 29280 Plouzane, France
e-mail: david.gnaedig@turboconcept.com

© Springer International Publishing Switzerland 2015
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7__1

1

mailto:david.gnaedig@turboconcept.com

2 D. Gnaedig

the emergence of the WiMAX market and later on with the throughput increase of
3G cellular systems, and in particular the evolution toward LTE, we have developed
a range of IPs that are integrated into ASIC designs. Our sales volume is today
a balance between FPGA and ASIC users. It is also worth noting that for some
markets (for instance LTE base station) we propose two different IP cores, one
optimized for ASIC designs and another optimized for FPGA design. For ASIC,
the IP is optimized for best area and specifically memory area and low power
consumption. For FPGA designs, the IP architecture takes advantage of specific
resources available for “free” in FPGA devices: dual port RAMs, a large number
of registers enabling high pipe-lining and thus very high clock frequency, multiple
clock domains, . . .

Our story starts with turbo codes and related iterative decodable codes, back
in the second half of the 1990s. At that time, it was a real challenge to have
an FPGA or an ASIC hosting such a complicated function as a turbo decoding,
especially when compared to legacy convolutional codes. The first prototype
chip initiated by turbo codes inventors was based on a “one-chip-per-iteration”
pipelining [5]. Moore’s law is obviously a great enabler in the wide adoption of
turbo and LDPC codes: it helped greatly to minimize the complexity overhead
of iterative decoding, as compared to legacy FECs, even in the context of ever-
higher-throughput applications. Algorithmic advances also helped significantly: the
transposition of the probabilistic decoding equations into the logarithmic domain
led to low complexity algorithms to decode efficiently turbo codes (log-MAP [1])
or LDPC codes (min-sum [2]). At the architectural level, significant breakthroughs
have enabled to develop low complexity and high throughput decoder architectures.
First, sliding window algorithms [3] enabled to reduce drastically the required
memory of the BCJR algorithm while maintaining acceptable performance. Second,
the concept of parallel soft-in–soft-out implementations accessing in concurrence
to a shared memory, applicable to both turbo and LDPC code decoding enabled to
reach several tens of Mbits/s and up to several Gbits/s for LDPC codes using actual
technologies. Additionally, the concept of “shuffled scheduling” (also referred to
as “layered” or “turbo” scheduling) of LDPC codes has also contributed to almost
dividing by two the required number of iterations and thus increasing the throughput
equivalently. Finally, resolving memory access issues has been a critical issue in
massively parallel architectures. It has been tackled by taking into account the
constraints of the architecture early in the design of the code. Such architecture-
aware code design techniques have been used for:

– Turbo codes through the design of a structured interleaver (e.g., DVB-RCS code
with the ARP interleaver, or quadratic interleaver used in the LTE specification.
This structure of the interleaver can be exploited by the parallel decoding
architecture to enable collision free memory accesses.

– LDPC codes through the design of a prototype parity matrix which specifies the
complete parity matrix of the code in a condensed way. The expansion factor
that enables to derive the binary parity matrix from the prototype matrix offers a
natural level of parallelism that is then exploited when designing high throughput
architectures.

1 User Needs 3

The choice of a given code for a given application is usually driven by the
requirements of the application in terms of latency, SNR operation range, target
BER, flexibility (block size, code rates, . . .). But we have also encountered cases
where the choice of an error correcting code is driven by marketing objectives
rather than technical reasons. For instance LDPC codes are seen sometimes as
a “new” technology while turbo codes are present since many years into various
applications and therefore LDPC may be selected by customers even if turbo codes
may have superior error decoding performance for this application. A single code
family that would outperform other codes over all possible applications does not
exist yet and will to our opinion never exist. Therefore, a trade-off shall be made
depending on the most important application requirement. Usually, turbo codes have
superior BER performance for small block sizes and low code rates and enable a
large flexibility both in block size (using a parametric interleaver) and code rates
(through puncturing). Turbo product codes have very good performance in the high
code rate region typically around above 0.80 with a very low complexity. They are
attractive for very high throughput applications, owing their inherent parallelism
ability, but they offer a poor flexibility. Convolutional codes decoded by the Viterbi
algorithm have their interest for very short block size (typically a few tens of
bits) and/or for applications where the critical factor is the lowest latency due
to the fact that they do not require an iterative decoding scheme. LDPC codes
have better performance for very large (typically a few tens of thousands bits)
to medium block sizes (around a few thousands bits) and have the advantage of
enabling high throughput parallel implementation with an affordable complexity.
They lack however in a large flexibility as each block size-code rate combination
requires to specify one parity check matrix. Also encoding complexity of LDPC
codes grows quadratically with the block size while the encoding complexity of
convolutional code and convolutional turbo code grows only linearly with the
block size. This apparent complexity drawback can however be greatly mitigated
by introducing specific structures in the parity check matrix of LDPC code like a
so-called “staircase” structure of the parity bits sub-matrix.

These general trends are continuously evolving due to large research efforts
devoted to code design. LDPC codes are getting more and more efficient with
small block sizes especially when considering the non-binary LDPC codes. New
interleaver design techniques for turbo code bring significant improvement in the
error floor region over previous generation, especially for high code rates, one of
the turbo code weaknesses. In addition to the evolution of the now “old” turbo
and LDPC code families, brand new code structures are being introduced: spatially
couples LDPC codes, polar codes which are proven to achieve (and not only
approach) capacity of a given channel.

Once the code family is selected, to define a set of codes suitable for the
application, other key parameters have to be determined in light of their impact
on the implementation complexity. For turbo codes, this includes the choice of the
recursive systematic convolutional code (larger memory induces lower error floor
but at the cost of higher complexity), the design of the interleaver that influences
greatly the performance in the error floor region, the puncturing scheme. For an

4 D. Gnaedig

LDPC code, the parity check matrix density has an influence on the error floor but
also on the convergence and on the complexity. Also a specific structure in the parity
bits region of the parity check matrix is helpful to enable simple encoding scheme.

With standardized applications, the choice of the code itself is obviously
not part of our degrees of freedom, but a constraint to which the designed IP
core product must comply with. In light of our implementation expertise, we
see however how choices made on code design may be very helpful to reduce
implementation complexity without sacrifying the error decoding performance. For
example, for DVB-S2 codes, there exists the well-known issue of double-diagonal
events present in the protograph matrix. Resolving this issue can be performed
with various architectural solutions that have an impact on the implementation
complexity, throughput, and/or performance. Therefore, if double-diagonal events
can be avoided when designing the code, it would be beneficial for enabling low
complexity LDPC decoder architectures. An active participation to standardization
bodies through the proposition of specific coding schemes is the natural way to
influence the choice of the channel coding scheme. To this end, TurboConcept has
participated to several standardization processes: DVB-RCS, DVB-S2, and more
recently to DVB-SX (as part of Newtec).

Proprietary applications give a larger degree of freedom in the code design and
the adaptation of the code design to the target hardware implementation. These
include satellite communication systems, wireless backhaul, magnetic storage (hard
disk drives), military and governmental . . . We have developed coding schemes
(association of code and modulation) for some of these applications.

When designing products incorporating error correcting codes we need to take
into account three typical constraints: throughput, area, and power consumption.
First, in terms of throughput we saw the demand for increasing throughput from
a few Mbits/s in the early 2,000 years (e.g., in cellular, satellite communications
applications) to today’s several hundreds of Mbits/s in most wireless applications.
Our latest products are scaled to offer several Gbits/s in a wireless physical layer
system. Optical links and other markets have even higher throughput demands, but
we are not addressing them specifically up to now. Second, for a given throughput
requirement, a low implementation area is always desirable for obvious cost reasons.
The area constraint greatly varies on the market. Indeed the area being mostly a cost
issue, the impact of the area is essentially linked to the other cost elements from
the application (e.g., cost of the radio bandwidth, number of users, other operational
costs). As an example, if we consider the satellite market, the hub operating the
network can afford a large (and expensive) FPGA and therefore a code of higher
implementation complexity for the return link. The gain in signal-to-noise ratio
translates into more available capacity and thus additional users for the same satellite
frequency band. This naturally induces an increased profitability. On the other side,
for a consumer equipment where the cost of implementation is of primary interest,
the constraint on the area is more stringent. On an ASIC target, the area is mainly
driven by the memory area and therefore, the size of the code impacting largely
the memory area is an important trade-off between the implementation complexity
and the error decoding performance of the code. For an FPGA implementation,

1 User Needs 5

the decoder needs to fit into a low-end FPGA with limited resources (logic and
memory). Assuming a throughput from a few tens of Mbits/s to a few hundreds of
Mbit/s turbo codes, LDPC code can today be implemented even in low cost FPGAs.
Finally, power consumption is obviously getting more and more important, and the
relative importance of low power aspects is increased for mobile equipment. We
characterize our products by actual numbers (technology dependant) but also by
using some design rules and guidelines that ensure the core is not wasting power
useless (systematic use of enable signals propagated along the data path, no free-
running logic, minimal access to memory blocks, . . .).

When designing our products especially when targeting very high throughput
architectures we faced several algorithmic and architecture problems that needed to
be solved efficiently. On the algorithmic side, increasing the throughput of decoder
requires specific techniques in order to maintain good error decoding performance
and fast convergence. For example for convolutional turbo code, dealing with
very high code rates induces specific algorithm design as the conventional sliding
window BCJR algorithms using acquisition for initializing border state metrics are
not efficient (and even useless) [4] when code rates grow above 0.95, as it is the case
of HSPA. For LDPC codes, higher throughput requires a higher level of parallelism
that makes more challenging the selection of a good scheduling for layered decoding
architectures. On the architectural side, developing high throughput decoders means
that the interfaces and the interleaver (in a BICM scheme) shall support the same
level of throughput. Therefore the requirement for high throughput induces to design
high speed parallel interleavers. With the increase of the throughput requirement in
the future this issue is getting more and more complex to solve because contrary
to the code design that have been performed in light of parallelism constraints,
it is rarely the case for the associated external interleaver. One last constraint
is related to the validation of the performance for FER as low as 10−11. This
performance validation is necessary since implementation and especially fixed point
representation may introduce a floor, even if the code itself has no floor, This is
usually achieved by using an FPGA board able to simulate at throughput of several
Gbits/s.

Advanced error correcting codes have made significant progress over the last
20 years and are now used in a large range of applications. There are still areas
that need substantial improvements. First, the choice of a FEC coding scheme
is often based on some simplified channel modeling (AWGN being the simplest
commonality). More progress can be made by considering a refined channel model
of the application and to optimize the code in light of this channel model, which is
not a simple task. Indeed, refining the channel model often results in a (much) larger
design space (e.g., phase noise parameters, multi-path characteristics, non-linearity
models). More theoretical methodologies need to be developed in order to find good
codes in this context. Second, another important aspect is to find techniques for
predicting and designing codes for high order modulations especially in the error
floor region. Bit interleaved coded modulation has been used in the past as a mean to
design independently the code and the modulation and to achieve good performance
on high order modulations. But this technique does not address the optimization

6 D. Gnaedig

of the performance in the error floor region. Finally, techniques for finite length
optimization of codes are still an area that needs to be explored. The techniques
that are usually used to characterize code ensembles assume infinite block sizes and
ideal BP decoder that does not suffer from correlation due to cycles in a real iterative
decoder. Finding optimal code for finite length code is still a challenging problem.

The future challenge that needs to be tackled by the next generation codes and
architectures is flexibility. Not flexibility in the sense of an universal decoder that
would supports all types of codes of all possible standards. This kind of universal
decoder does not seem today to be an industrial requirement, and it is sometimes
more complex than using dedicated and optimized cores, one per application. By
flexibility, we mean the ability for the code and the decoder to adapt dynamically
to changing channel conditions in order to always obtain the best error decoding
performance while minimizing power consumption. One mean to achieve this
objective is to design codes that can be decoded algebraically when the SNR is high
thus enabling high throughput and low power. When the SNR is low an iterative
decoder would be used in order to achieve performance close to the Shannon limit.
Algorithms such as the bit-flipping algorithm for LDPC codes seem to be very
promising in this sense.

In conclusion, we envisage the evolution of error correction coding driven by
three main requirements. First, continuous increase of throughput requirements:
next generation broadband wireless access systems target maximal data rate in the
order of 1 Gbits/s on a handheld device. Second, reducing power consumption will
become a major requirement even for non-battery powered applications, and finally,
improved error decoding performance (closer to Shannon capacity) by taking into
account refined channels models during the code design stage.

References

1. Robertson P, Villebrun E, Hoeher P (1995) A comparison of optimal and sub-optimal decoding
algorithm in the log domain. Proceedings IEEE international conference on communications,
Seattle, June 1995, pp 1009–1013

2. Fossorier M, Mihaljevic M, Imai H (1999) Reduced complexity iterative decoding of low-
density parity check codes based on belief propagation. IEEE Trans Commun 47:673–680

3. Viterbi AJ (1998) An intuitive justification and a simplified implementation of the MAP decoder
for convolutional codes. IEEE J Sel Areas Commun 16:260–264

4. Boutillon E, Sanchez-Rojas J-L, Marchand C (2013) Compression of redundancy free trellis
stages in Turbo-decoder. Electron Lett 49(7):460–462

5. CAS 5093 40 Mb/s Turbo code decoder. December Rev 4.1. Comatlas. (May 1995)

Chapter 2
Challenges and Limitations for Very High
Throughput Decoder Architectures
for Soft-Decoding

Norbert Wehn, Stefan Scholl, Philipp Schläfer, Timo Lehnigk-Emden,
and Matthias Alles

2.1 Motivation

In modern communications systems the required data rates are continuously
increasing. Especially consumer electronic applications like video on demand,
IP-TV, or video chat require large amounts of bandwidth. Already today’s
applications require throughputs in the order of Gigabits per second and very short
latency. Current mobile communications systems achieve 1 Gbit/s (LTE [1]) and
wired transmission enables even higher data rates of 10 Gbit/s (e.g., Thunderbolt
[2], Infiniband [3]) up to 100 Gbit/s. For the future it is clearly expected that even
higher data rates become necessary. Early results show throughputs in the order of
100 Tbit/s [4] for optical fiber transmissions.

Satisfying these high date rates poses big challenges for channel coding systems.
Software solutions usually achieve only very small data rates, far away from the
required speed of most applications. Therefore dedicated hardware implementations
on ASIC and FPGA are mandatory to meet the requirements for high speed signal
processing. To achieve speeds of Gigabits per second, these architectures need large
degrees of parallelism.

Parallelism and speed can easily be increased by running several single decoders
in parallel. This is however mostly an inefficient solution, because area and
power increase linearly with parallelism. Moreover it implies a large latency.

N. Wehn (�) • S. Scholl • P. Schläfer
Microelectronic System Design Research Group, University of Kaiserslautern,
Kaiserslautern, Germany
e-mail: wehn@eit.uni-kl.de; scholl@eit.uni-kl.de; schlaefer@eit.uni-kl.de

T. Lehnigk-Emden • M. Alles
Creonic GmbH, Kaiserslautern, Germany
e-mail: info@creonic.com

© Springer International Publishing Switzerland 2015
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7__2

7

mailto:wehn@eit.uni-kl.de
mailto:scholl@eit.uni-kl.de
mailto:schlaefer@eit.uni-kl.de
mailto:info@creonic.com

8 N. Wehn et al.

Thus it is more advantageous to investigate efficient architectures specialized to high
throughput. This may also include modifications to the decoding algorithm itself.

An important metric for analyzing high throughput architectures is area effi-
ciency. Area efficiency is defined as throughput per chip area ([(Gbit/s)/mm2]).
The area efficiency can be increased significantly by new architectural approaches.

We present high throughput decoders for different application relevant coding
schemes, such as Reed–Solomon, LDPC and Turbo codes and point out their
benefits compared to state-of-the-art architectures.

2.2 Architectures for Soft Decision Reed–Solomon Decoders

2.2.1 Introduction

Reed–Solomon (RS) codes are utilized in many applications and communication
standards, either as a stand-alone code or in concatenation with convolutional codes,
e.g., DVB. They are traditionally decoded using hard decision decoding (HDD),
using, e.g., the well-known Berlekamp–Massey algorithm. However, using also the
probabilistic information—so-called soft information—on the received bits can lead
to large improvement of frame error rate (FER) in comparison to HDD.

Numerous algorithms have been proposed for soft decision decoding of RS
codes. They are using different approaches to achieve a gain in FER over HDD
with different complexities. A selection of interesting algorithms can be found in
[5–11]. This chapter will focus on the RS(255,239) and RS(63,55) codes, because
they are widely used in many applications.

Up to now, only few hardware implementations for ASIC and FPGA have
been proposed for soft decoding of RS codes, especially the RS(255,239). One
trend becoming apparent are implementations based on Chase decoding [7] and
the closely related low-complexity chase (LCC) algorithm [8]. Hardware imple-
mentations based on LCC exhibit low hardware complexity [12–14], but this low
complexity comes at the expense of a poor FER gain. Implementations based on
LCC provide only little FER gain over HDD of about 0.3–0.4 dB.

The design of hardware architectures for a larger gain in FER is more challeng-
ing. Architectures and implementations based on adaptive belief propagation and
stochastic Chase decoding exhibit a larger FER gain (0.75 dB), but having a low
throughput [15, 16].

In this chapter a third approach for soft decoding is described that enables a
large gain in FER and high throughput. It is based on a variant of the information
set decoding algorithm, for which an efficient architecture is presented. This
architecture shows a uncompromised gain in FER of 0.75 dB and a high throughput
that exceeds 1 Gbit/s on a Xilinx Virtex 7 FPGA [17].

2 Very High Throughput Decoder Architectures for Soft-Decoding 9

2.2.2 Information Set Decoding

This section introduces the algorithm, which is the basis of the high throughput
hardware architecture. First, the used variant of information set decoding called
ordered statistics decoding (OSD) algorithm [10] is reviewed. Then, a reduced
complexity version of OSD using the syndrome weight [18] is presented.

2.2.2.1 Original OSD

OSD has been proposed in [10] and belongs to the class of information set
decoders [19].

Basically information set decoding works as follows: First, divide the N received
bits ȳ into two groups according to their reliability. The bit reliability is determined
by the absolute value of the corresponding log likelihood ratio (LLR). The first
group contains the set of K reliable bits, called the information set. The second
group contains the M = N −K unreliable bits, also referred to as low reliable bit
positions (LRPs).

Before actual decoding starts the M LRPs are erased. Then the information set
is used to reconstruct the M erased bits using the M parity checks in the parity
check matrix H. To do so, H has to be put in a diagonalized form Ĥ via Gaussian
elimination. If the K bits of the information set are correct, all errors in the M LRPs
can be corrected. This is referred to as order-0 reprocessing in OSD or OSD(0).

To perform successful correction in the case of one error in the information set,
the reconstruction process is repeated several times, each time with exactly one
bit of the information set flipped. This results in a list of K +1 possible codewords
from which the best codeword is selected by evaluating the Euclidean distance to the
received LLRs. This improved decoding is called order-1 reprocessing or OSD(1).

A key part for understanding information set decoding is the reconstruction
process. To successfully reconstruct the M erased bits, the rows of the parity check
matrix are used, as mentioned before. It is required that the parity check equation
in each row covers mostly one of the erased M bits. To fulfill this requirement, H is
put into a diagonalized form by Gaussian elimination, such that each row covers not
more than one erased bit. Note that the Gaussian elimination does not change the
channel code itself, because an RS code is a linear code.

2.2.2.2 Reduced Complexity Algorithm for Hardware

The computational bottleneck of the original algorithm are the reconstructions of the
M erased bits. For example, in case of decoding an RS(255,239) with OSD(1) this
operation is required 2,041 times. To overcome this problem a reduced complexity
algorithm is utilized which makes use of the syndrome ŝ and its weight [18] that
enables fast and efficient reconstruction.

10 N. Wehn et al.

The reduced complexity algorithm starts (as the original OSD) with determining
the information set according to the bit reliabilities and diagonalization of H by
Gaussian elimination.

Original OSD then evaluates the parity check equations given by the rows of
Ĥ whereas the considered low-complexity algorithm merely uses the syndrome to
correct the corrupted bits.

Moreover, if the syndrome vector is calculated using the diagonalized parity
check matrix, i.e., ŝ = ĤȳT, two distinct cases for the binary weight of the syndrome
vector can be observed:

• The syndrome weight is small: In this case, it is assumed that only errors in the
M bits are present, i.e., OSD(0) processing is sufficient.

• The syndrome weight is large: In this case, it is assumed that also errors in the
information set are also present. Then OSD(1) processing is performed.

A fixed weight threshold to decide between the two cases is denoted by Θ ∈ N

and determined by simulation.
OSD(0) (small syndrome weight) is performed by simply flipping the M LRPs

that have led to the 1s in the syndrome vector. Conducting OSD(1) (large syndrome
weight) to correct one error inside the information set is done by first flipping the
bit position

j = argmin
i=0,...,N−1

wgt
(

ŝ⊕ ĥi

)

where ĥi denotes the ith column of Ĥ. After flipping the error inside the information
set at position j, the syndrome is calculated again and the remaining errors outside
the information set (i.e., among the LRPs) are corrected by performing OSD(0).

Note that this algorithm inherently determines the best codewords among the
possible candidates only by looking at the syndrome weight. It is sufficient to select
the candidate with smallest syndrome weight. In case of original OSD the Euclidean
distance between candidate and received LLRs had to be evaluated many times.

For more detailed information on the syndrome weight OSD please refer to
[18] or [17].

2.2.2.3 HDD Aided Decoding

One disadvantage of OSD over other soft decision decoding algorithms is the
tendency for a weak FER performance if SNR increases. To improve FER OSD
is extended with a conventional HDD, whose result is output if OSD fails.

A failure in OSD can be easily detected again by looking at the syndrome weight.
If after OSD(1) reprocessing the updated syndrome still has a large weight, OSD can
be considered as unsuccessful.

2 Very High Throughput Decoder Architectures for Soft-Decoding 11

Fig. 2.1 Reduced complexity OSD(1) based on the syndrome weight that is implemented

2.2.2.4 Implemented OSD Version

The reduced complexity OSD algorithm for hardware implementation is summa-
rized in Fig. 2.1. It features sorting to determine the information set, followed by
Gaussian elimination to diagonalize the matrix. Then the syndrome weight for the
diagonalized matrix is determined and a decoding strategy (OSD(1)+OSD(0) or
OSD(0) only) is selected. HDD is performed only if OSD fails.

2.2.3 Hardware Architecture

In this section a hardware architecture based on the previously introduced algorithm
(Fig. 2.1) is presented.

2.2.3.1 Architecture Overview

Figure 2.2 shows the overall hardware architecture. P LLRs are fed in parallel into
the decoder and stored in the “I/O bit memory.” During data input the received LLRs
are sorted using a parallelized sorter. The M bit positions outside the information
set are stored in the “LRP memory.” Simultaneously, the syndrome is calculated
based on the original (non-eliminated) parity check matrix H for reasons that will
be explained below. Also HDD is carried out, whose result is stored in the “HDD
memory.”

12 N. Wehn et al.

Fig. 2.2 Decoder architecture overview

After that, the column generator generated the columns of H corresponding to
the M LRPs for Gaussian elimination. These LRP columns are fed into the Gaussian
Elimination Unit to dynamically set up the unit (see below) for further processing.
After having set up the Gaussian Elimination Unit, the syndrome s is put into the
elimination unit to obtain ŝ (its version based on the diagonalized matrix).

After determining the initial syndrome ŝ, the Correction Unit calculates the
syndrome weight and determines the decoding strategy (OSD(0) or OSD(1)).
If OSD(1) is executed, the Column Generator outputs successively every column
of H, which are transformed into the columns of Ĥ by the Gaussian Elimination
Unit. The Correction Unit determines the erroneous bit positions based on these
columns and the syndrome and flips these bits in the “I/O bits memory.” Finally, the
Correction Unit decides if the best OSD codeword or the HDD codeword is output.

2.2.3.2 Sorting Unit

The first step of decoding is finding the LRPs by taking the absolute value of the
received LLRs and partially sorting them. This is accomplished by the Sorting Unit
depicted in Fig. 2.3. Sorting is performed by using a shift register based insertion
sort.

In order to reduce the latency for sorting, the shift register is partitioned in
P parts. Each part is calculated in parallel. However, the results provided by the
parallelized Sorting Unit are not exactly the LRPs, but rather an approximation of
the LRPs. This introduces a small loss in FER, but simulations show that this loss is
less than 0.1 dB for the RS(255,239) using an input parallelism of P = 8.

Finally, the LRPs are read out of the shift register and stored in the “LRP
memory” for further processing.

2 Very High Throughput Decoder Architectures for Soft-Decoding 13

Fig. 2.3 Parallelized sorting unit

2.2.3.3 Syndrome Calculation Unit

The subsequent stages require the calculation of the syndrome using the diagonal-
ized matrix ŝ = ĤȳT. However, it is advantageous to first calculate the syndrome
using the original parity check matrix H and afterwards pass it through the Gaussian
Elimination Unit to obtain Ĥ.

This allows to use efficient syndrome calculation using Galois field arithmetic,
as it is well known in literature [20]. The syndrome unit is a parallelized implemen-
tation that can handle one received symbol (P bits) per clock cycle.

2.2.3.4 Column Generator Unit

The column generator consists of a ROM, which holds the original parity check
matrix H. The Column Generator receives a column number at its input and outputs
the requested column of H.

2.2.3.5 Gaussian Elimination Unit

Gaussian Elimination is required to diagonalize H and the syndrome s. This is the
most complex operation in the algorithm. Therefore sophisticated architectures are
required to achieve high throughput.

An elegant architecture for Gaussian elimination has been proposed in [21]. This
architecture consists of a pipelined array, which eliminates the columns on the fly.
The columns of the original matrix H are input from the left and the corresponding

14 N. Wehn et al.

columns of the eliminated matrix Ĥ are output at the right. Each of the M column
eliminators is responsible for carrying out the operations needed to eliminate exactly
one of the M columns corresponding to the LRPs.

The array works in two phases:

1. The Setup Phase: The M columns, which are supposed to become unit vectors
after elimination, (here: the LRPs) are passed into the array to dynamically set
up the structure for row adding in the column eliminators.

2. The Elimination Phase: Columns of the original matrix are passed into the array.
The columns of the eliminated matrix are output after M clock cycles.

Note that linear independency of LRPs is required for full elimination. Possible
dependencies are inherently checked during the setup phase. If an LRP column turns
out to be dependent on some other LRP column, it is simply discarded, so that the
matrix is not fully diagonalized. Since the number of dependent columns is usually
very low the resulting loss in correction performance is negligible.

This two-phase architecture has proven to be an efficient solution for this appli-
cation and outperforms standard Gaussian elimination architectures (e.g., systolic
arrays) as can be seen in Table 2.1. For more information on the functionality and
the architecture of the utilized Gaussian elimination please refer to [21] (Fig. 2.4).

2.2.3.6 Correction Unit

The unit first determines if OSD(0) or OSD(1) has to be performed. To determine
the decoding strategy and the erroneous bit positions the syndrome weight has to

Table 2.1 Comparison of state-of-the-art implementations for Gaussian elimination
of the binary 128×2040 matrix for the RS(255,239) code on a Xilinx Virtex 7 FPGA
using Vivado 2012

Architecture LUTs FFs fmax (MHz) Throughput (matrices/s)

SMITH (estimated) [22] 780k 260k – –

Systolic array [23] 81.7k 98.6k 350 145k

Proposed [21] 16.6k 32.9k 370 171k

Fig. 2.4 Array for Gaussian
elimination (here with M = 4)

ou
t:

co
lu

m
n

of
el

im
in

at
ed

 m
at

rix

in
: c

ol
um

n
of

or
ig

in
al

 m
at

rix
 H

2 Very High Throughput Decoder Architectures for Soft-Decoding 15

be calculated. The weight calculation of binary vectors is accomplished by an adder
tree consisting of P stages. Several pipeline stages have been added between the
adder stages to reduce the critical path.

However, the main task of this unit is to perform the actual error correction.
To determine erroneous bit positions, the syndrome and its correlation to the
columns of Ĥ are evaluated according to Steps 4 and 5 of the decoding algorithm
(Fig. 2.1). In case of an error, the corrupted bits are flipped in the “I/O bits memory.”

2.2.3.7 Hard Decision Decoder

To improve the FER, an additional HDD is employed. For the FPGA imple-
mentation a HDD IP core for decoding RS codes from Xilinx [24] is used. It
supports the considered codes and provides the necessary throughput for the decoder
architecture.

2.2.3.8 Fixed Point Quantization Issues

Since soft information (LLRs) is only processed in the Sorting Unit, quantization
of the LLR values affects only this small part of the decoder. By simulations it is
determined that an LLR quantization of 7 bits for the RS(255,239) and 5 bits for the
RS(63,55) code does not noticeably impact the FER performance.

2.2.3.9 Pipelining and Latency Issues

In the proposed decoding architecture, performing OSD(0) and OSD(1) has a
latency of 795 and 2,838 clock cycles, respectively (RS(255,239)). This shows that
OSD(1) is much more costly than OSD(0). In conjunction with the thresholding
of the syndrome weight (see Sect. 2.2.2.4), decoding throughput can be increased
largely, if OSD(1) is only performed, if it is actually needed. This leads to a large
improvement of throughput, especially for SNR values of practical interest (typical
throughput).

Moreover, a two-stage pipelining is used:

• Stage 1: LLR input, sorting, syndrome calc., HDD
• Stage 2: Gaussian elimination and error correction

2.2.4 Implementation Results

In this section, implementation results for the RS(255,239) and the RS(63,55) codes
based on the new architecture are presented. FPGA implementations have been done
on a Virtex 7 (xc7vx690t-3) device using Xilinx ISE 14.4. All results shown have
been obtained after place & route.

16 N. Wehn et al.

Table 2.2 Implementation
results for the new
architecture for the
RS(255,239) and the
RS(63,55) on a Virtex 7
FPGA

RS(255,239) RS(63,55)

LUTs 15.9k 3100

FFs 41.7k 7480

BRAMs (36K/18K) 7/8 1/5

fmax 280 MHz 300 MHz

Worst case throughput 200 Mbit/s 170 Mbit/s

Typical throughput 1,190 Mbit/s 690 Mbit/s

Gain 0.75 dB 1.4 dB

4.5 5 5.5 6 6.5 7 7.5 8
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 / dB

F
E

R

hardware implementations vs HDD

RS(255,239) HDD

RS(63,55) HDD

RS(255,239) hardware

RS(63,55) hardware

0.75 dB

1.4 dB

Fig. 2.5 FER for the hardware implementations

Implementation results for the RS(255,239) and for the RS(63,55) can be found
in Table 2.2. For typical throughput calculations FER= 10−4 is considered. The
communication performance of the proposed decoder is shown in Fig. 2.5. For the
RS(255,239) a gain of 0.75 dB and for the RS(63,55) a gain of 1.4 dB are achieved.

A comparison with other state-of-the-art FPGA soft decoders for RS codes is
presented in Table 2.3. Since the other decoders rely on older FPGAs, results are
given for Virtex 5, which provides a more fair comparison between the different
implementations.

In terms of FER gain, the new architecture is comparable to other state-of-the-art
implementations (gain of 0.7–0.75 dB). However the decoder achieves this gain in
FER with considerably higher throughput and significantly less resource utilization.

2 Very High Throughput Decoder Architectures for Soft-Decoding 17

Table 2.3 Comparison with other soft decoder implementations for RS(255,239)
on FPGA

Implementation Throughput Gain over HDD
(Algorithm) FPGA LUTs FFs (Mbit/s) (FER= 10−4)

[15] (ABP) Stratix II 43.7k n/a 4 0.75 dB

[16] (Chase) Virtex 5 117k 143k 50 0.7 dB

New proposed Virtex 5 13.7k 41.8k 805 0.75 dB
(information set)

The implementation shows that information set decoding is a viable way
to implement soft decoders for RS codes efficiently, also for large throughput
requirements.

2.3 Architectures for Turbo Code Decoders

Turbo codes are widely used for error correction in mobile communications, e.g.,
in UMTS and LTE systems. Similar as in other areas, their throughput demand is
increasing, currently reaching beyond 1 Gbit/s for LTE.

Turbo code decoding is inherently serial on component and on the decoder
level. A turbo code decoder consists of two component decoders which iteratively
exchange data on block level. A complete data block of length B is fully processed
by one component decoder before the processed block can be sent to the other com-
ponent decoder. This process continues for a certain amount of iterations, typically
between 5 and 8. However, the data is not directly sent to the other component
decoders. Instead the data is interleaved before exchanging. This interleaving is
pseudo-random with limited locality and can result in access conflicts if several
messages are produced in one clock cycle by a component decoder. Resolving these
access conflicts imposes constraints on an interleaver to permit a parallelized data
exchange.

The component decoders are soft-in, soft-out decoders. State-of-the-art turbo
code decoders are using the Bahl, Cocke, Jelinek, and Raviv algorithm, often also
called Maximum-a-posteriori algorithm (MAP) [25]. This algorithm sequentially
processes a block from the beginning to the end, named forward recursion, and vice
versa, called backward recursion [26]. Due to the recursive nature of the forward
and backward calculations, the standard MAP algorithm cannot straightforward be
parallelized. Thus, we are facing two challenges for high throughput turbo code
decoders:

• parallelizing the MAP algorithm and
• parallelizing the data exchange

An overview of different levels of parallelisms for turbo code decoders can be
found in [27]. Parallelizing the MAP algorithm can be achieved by splitting the

18 N. Wehn et al.

complete data block into P smaller sub-blocks. So, the sub-block size is B/P. Since
this splitting breaks up the recursion for forward and backward calculation, it will
result in a large degradation of the communications performance. To counterbalance
this effect, a so-called acquisition can be performed at the sub-block borders for the
forward and/or backwards recursion. This acquisition consists of some additional
recursions steps and approximates the state probability at the borders of the sub-
blocks. The accuracy of this approximation strongly depends on the number of
additional recursion steps. The number of additional steps is named acquisition
length LACQ. In this way each sub-block can be processed independently of the
other sub-block on a dedicated MAP engine. That is, in this case a component
decoder consists of P parallel working MAP engines where each MAP engine
serially processes a sub-block. So, instead of B clock cycles needed to process one
data block of size B (here we assume that one recursion step is performed in one
clock cycle), we need only B/P clock cycles. State-of-the-art MAP decoders use
the same splitting technique to reduce the storage amount when processing this sub-
block inside a MAP engine. This technique is called sliding windowing [28]. We
use the term window instead of sub-block to avoid a confusion with the splitting on
block level. The window length is denoted LWL.

Since one component decoder is always idle while waiting for the result of the
other decoder, we can map both component decoders on the same hardware unit
without degrading the throughput. If we assume that there is no throughput penalty
due to the data exchange between the two component decoders, we can calculate
the throughput T P of a state-of-the-art turbo code decoder with Eq. (2.1).

T P =
B

(B/P+LMAP) ·nhal f_iter
· log2(r) · f [Mbit/s], (2.1)

with f being the frequency and nhal f_iter the number of invocations of a component
decoder. Please note that a component decoder is invoked twotimes per decoding
iteration. r is the used radix. Radix-2 means that the MAP engine processes one
recursion step per clock cycle. In radix-4, two recursion steps are merged into a
single one which can be processed in one clock cycle. This merging increases the
area and slightly decreases the frequency, but reduces the number of clock cycles
for processing a sub-block by a factor 2. LMAP is the overhead due to the parallel
processing of a data block and is composed of three components:

• Lpipeline: a MAP engine is pipelined to increase the frequency. This implies a
certain latency which is typically 10–20 clock cycles.

• LACQ is the aforementioned acquisition length.
• LWL is the window length of the sliding windowing.

From this equation we see a linear increase in the throughput with increasing
parallel processing as long as LMAP can be neglected. We see also that high
throughput decoders require a large P. However a large P increases the impact of
LMAP on T P. Moreover current communication standards like LTE specify high
throughputs only for high code rates (R = 0.95). It can be shown that large code

2 Very High Throughput Decoder Architectures for Soft-Decoding 19

Fig. 2.6 Throughput for different MAP architectures: Non-sliding window MAP with NII and 6
iterations, sliding window MAP with NII and lWS = 64 and 6 iterations, sliding window MAP with
lACQ = lWS = 128 and 6 iterations

rates demand large LACQ for a good communications performance which further
exacerbates the dominance of LMAP, e.g. in LTE LACQ > 64 is mandatory. In other
words, the throughput starts to saturate with large P and high code rate demands, as
shown in Fig. 2.6. This fact poses a further challenge for turbo decoder architectures
when high throughput is required. However we can use two techniques to relax
this problem:

• We can reduce the large acquisition length by exploiting the state probabilities at
the borders of the sub-block from the previous decoding iteration. This technique
is called next iteration initialization and largely helps to reduce LACQ [29].
Sometimes it is even possible to perform no acquisition at all by using only the
information of the previous iteration.

• We quit the sliding window technique inside a MAP engine. This normally
largely increases the memory and energy consumption inside the engine. How-
ever this can be avoided by so-called re-computation [30]. Here, instead of
storing every metric of a forward recursion step, we store only every nth metric
and re-calculate the other n − 1 metrics. That is, we trade-off storage versus
additional computations. It can be proven that the optimum n is

√
B/2P. For

example, this technique reduces the number of metrics to be stored for LTE from
6,144 for the largest block size to 768.

So far we assumed that interleaving implies no additional latency. Obviously
a component decoder produces P data per clock cycle. These data have to be

20 N. Wehn et al.

Table 2.4 Previously published high throughput 3GPP TC decoders

This work [33] [34] [35]

Radix and Parallelism 4/32 2/64 2/8 4/8

Throughput (MBit/s) 2,300 1,200 150 390

@Clock f (MHz) 500 400 300 302

Parameters affecting communications performance

Iterations 6 6 6.5 5.5

Acquisition NII NII 96 + NII 30

Window length 192 64 32 30

Input quantization 6 6 6 5

Technology (nm) 65 65 65 130

Voltage 1.1V 0.9V 1.1V 1.2V

Area (mm2) 7.7 8.3 2.1 3.57

concurrently interleaved. Since each MAP engine has its own memory, random
interleavers can result in access conflicts if we have single- or dual-port memories.
That is, several data have to be written simultaneously into the same memory.
Such conflicts have to be resolved by serialization. Another possibility is to design
the interleaver a-priori in a way such that these conflicts are avoided. Current
communication standards like LTE are based on such interleavers and show no
access conflicts for up to 64 simultaneous produced data. On the other side HSDPA
has no conflict free interleavers due to its downward compatibility with UMTS.
Parallel MAP processing was not yet an issue at the time when UMTS was defined.
Sophisticated techniques exist for run-time conflicts resolution, but this discussion
is not in the scope of this chapter [31]. The influence of the explained techniques on
the achievable throughput is shown in Fig. 2.6.

In [32] an LTE compatible turbo code decoder was presented which used all
the aforementioned techniques. It achieves a throughput of 2.15 Gbit/s on a 65 nm
CMOS bulk technology under worst case PVT parameters. It uses 32 MAP engines
with radix-4, next iteration initialization and no sliding window but re-computation.
The detailed results and comparison with state-of-the-art decoders are shown in
the Table 2.4.

2.4 High Throughput Architectures for Low Density
Parity Check Decoders

As discussed in Sect. 2.3, turbo code based systems cannot provide data rates in the
order of several hundred Gigabits per second. For these applications LDPC codes
are the best choice. The decoding algorithms for LDPC codes have an inherent
parallelism which can be exploited by highly parallel architectures.

2 Very High Throughput Decoder Architectures for Soft-Decoding 21

LDPC codes have been introduced by Gallager in 1962 [36] but the high
decoding complexity made the application at that time impossible. When LDPC
codes have been rediscovered in the late 1990s, the throughput demands have been
moderate. Serial decoder architectures have been sufficient to fulfill the require-
ments. As demands on the throughput rose, partially parallel architectures became
necessary. Today LDPC codes are used in a wide range of applications like 10 Gbit
Ethernet (10 GBASE-T, IEEE802.3an) [37], broadband wireless communication
(UWB, WiGig) [38, 39], and storage in hard disc drives [40]. State-of-the-art
LDPC decoders can already process data rates in the range of 10–50 Gbit/s. This is
sufficient to satisfy the requirements of all mentioned standards. However, as future
standards emerge, current architectures will not be able to facilitate the demanded
throughputs of 100 Gbit/s and more. For higher throughputs even LDPC decoders
reach their limit. This results in a gap in decoder performance which has to be closed
by new approaches. Therefore a new architecture is presented which can overcome
these limitations and the key aspects for next generation LDPC decoders are
discussed. It is shown that new architectures significantly reduce routing congestion
which poses a big problem for high speed LDPC decoders. The presented 65 nm
ASIC implementation results underline the achievable gain in throughput and area
efficiency in comparison to state-of-the-art architectures.

A LDPC decoder system with state-of-the-art communications performance and
a throughput far beyond 100 Gbit/s is presented which is a candidate for future
communications systems.

2.4.1 LDPC Decoding

LDPC codes [36] are linear block codes defined by a sparse parity check matrix
H of dimension M ×N, see Fig. 2.7a. A valid codeword x has to satisfy HxT = 0
in modulo-2 arithmetic. A descriptive graphical representation of the whole code is
given by a Tanner graph. Each row of the parity check matrix is represented by a
check node (CN) and corresponds to one of the M parity checks. Respectively each
column corresponds to a variable node (VN) representing one of the N code bits.
The Tanner graph shown in Fig. 2.7b is the alternative representation for the parity
check matrix of Fig. 2.7a. Edges in the Tanner graph reflect the 1’s in the H matrix.
There is an edge between VN n and CN m if and only if Hmn = 1. LDPC codes can
be decoded by the use of different algorithms. Belief Propagation (BP) is a group

Fig. 2.7 H Matrix and
Tanner graph hardware
mapping

a b

22 N. Wehn et al.

of algorithms which is used in most state-of-the-art decoders. Which type of BP
fits best has to be chosen dependent on the required communications performance.
For example, the λ -min algorithm [41] performs better than the min-sum algorithm
[42] but has a significantly higher implementation complexity. All algorithms have
in common that probabilistic messages are iteratively exchanged between variable
and check nodes until either a valid codeword is found or a maximum number of
iterations is exceeded.

2.4.2 LDPC Decoder Design Space

The LDPC decoder design space comprises a multitude of parameters which have
to be tuned to the specific requirements. Each standard has different needs in means
of error correction performance, number of supported code rates, codeword lengths,
and throughput. There are numerous design decisions which have to be made for
the hardware to satisfy these requirements. Due to their inherent parallelism, LDPC
decoders are of special interest for high throughput applications. Therefore the
focus is on the design decisions concerning the decoder parallelism. They have the
strongest impact on the system’s throughput. An in-depth investigation of the design
space for slower state-of-the-art partially parallel decoders is presented in [43].
This part of the design space is not highlighted as it is orthogonal to the presented
schemes. For example, different check node algorithms can be combined with all
levels or parallelism presented here.

There are multiple dimensions in which the degree of parallelism can be chosen,
see Fig. 2.8. The lowest level of parallelism is on the message level. Each message

Message

Edge

HW
mapping

Iteration

Core

Level

010011

0 P...

010011

0 P/2...

0 10011

0

Parallel Serial

Fig. 2.8 Levels of parallelism in the high throughput LDPC decoder design space

2 Very High Throughput Decoder Architectures for Soft-Decoding 23

Channel values

Decoded bits

Variable Nodes

Check Nodes

Chv Reg

NW-1NW

...

...

...

...

Fig. 2.9 Fully parallel hardware mapping of an LDPC decoder. All variable and check nodes
are instantiated and two networks are required to exchange the messages between them. Massive
routing congestion is observed for this architecture

can be transmitted in tuples of bits or fully parallel. Today fully parallel message
transfer can be found in the vast majority of architectures as it has been shown to
be more efficient. The second degree of parallelism is represented by the number
of parallel edges. The node’s in- and outgoing edges can be processed one after
another, partially parallel or fully parallel. However the choice of the node’s edge
parallelism is directly linked to the so-called hardware mapping. The hardware
mapping describes how many check and variable nodes are instantiated. When
talking of a fully parallel decoder, an architecture instantiating all processing nodes
is meant. In contrast partially parallel decoders have a lower number of physical
nodes than the Tanner graph. They process the parity check matrix in a time
multiplex fashion. This allows for easy adaption of the architecture to new standards
but limits the achievable throughput.

For applications like 10 GBASE-T Ethernet only fully parallel architectures can
achieve the required throughput. Figure 2.9 depicts the high-level structure of such
a decoder. However in general it is not advisable to build this architecture as it
has a serious drawback which is directly related with the two networks between
VNs and CNs. Dependent on the code length and quantization, each of them
comprises between several thousands and hundred thousands of wires which have to
be routed according to the parity check matrix. To achieve a good communications
performance, parity check matrices have long cycles and thus no locality, resulting
in massive routing congestion. It has been shown in earlier publications [44,45] that
the area utilization is heavily impaired by this fact and only 50 % of the chip is used
by logic.

Fully parallel decoders can still satisfy today’s requirements in means of
throughput. They represent the highest level of parallelism used in state-of-the-art
decoder designs. However, for future standards the throughput demands will further
increase and cannot be achieved using the presented dimensions of parallelism.

24 N. Wehn et al.

Channel value

MEM...

MEM
...

LDPC0 LDPC1

MEM...
...

MEM
...

...

LDPCP

MEM...

MEM
...

DEMUX

MUX

C
o
n
t
r
o
l
l
e
r

Decoder output

Fig. 2.10 Core duplication architecture

2.4.3 Exploring a New Dimension in the High Throughput
LDPC Decoder Design Space

Considering the degrees of parallelism which are used for state-of-the-art decoders
no further increase in throughput can be acquired. In the following section two
more degrees in parallelism are discussed which can be explored to overcome the
limitations in LDPC decoder throughput, see Fig. 2.8. Moreover it is shown that the
area efficiency of decoders can even be increased by the proposed techniques.

2.4.3.1 Core Duplication

One solution to achieve the throughputs required by future standards is to instantiate
several LDPC decoder cores in parallel, see Fig. 2.10. There are two possible starting
points for the core duplications. Partially parallel architectures which allow for
flexibility but suffer from high latencies and low throughput. The second option is to
instantiate several fully parallel decoder cores allowing for reduced latency and high
throughput. However due to routing congestion they cannot achieve a satisfying area
efficiency and flexibility. To connect multiple instances of a decoder, a distribution
network and memories are required. Moreover a control unit to keep the blocks in
order must be instantiated in the system.

Summarized straightforward decoder duplication can increase the system
throughput. However the latency issues caused by partially parallel architectures
cannot be solved. Potential enhancements due to the increased parallelism are not
explored and the system’s efficiency is slightly decreased due to the introduced
overhead.

2 Very High Throughput Decoder Architectures for Soft-Decoding 25

Channel value

Variable Nodes

Check Nodes

Pipe RegNW

...

...

Variable Nodes

Check Nodes

Pipe RegNW

...

...

Iteration 0Iteration 0

Iteration 1Iteration 1

Variable Nodes
...

Decoded bits

Iteration PIteration P

...

NW
...

...

...

Fig. 2.11 In an unrolled LDPC decoder architecture each decoding iteration is instantiated as
a dedicated hardware. A feedback from the end of the iteration back to the beginning is no more
required with this approach. One of the two networks between variable and check nodes is removed
and makes the routing feasible. Due to the unidirectional data flow pipelining can be applied
without penalty in throughput. Synthesis results show an increased area efficiency compared to
a fully parallel decoder

2.4.3.2 Unrolling Iterations

A new architecture is proposed in [46], shown in Fig. 2.11 to overcome the
highlighted drawbacks. The iterative decoding loop is unrolled and an unrolled, fully
parallel, pipelined LDPC decoder is instantiated. It has several advantages over core
duplication and is a good choice for very high throughput architectures.

A drawback of this architecture is the need to specify the maximum number of
iterations at design time. Once the decoder is instantiated there is no possibility to
increase the performance by additional decoding iterations. The number of pipeline
stages determines the latency, but the throughput is fixed by the cycle duration. The
decoder can be considered as one big pipeline where received codewords are fed into
and decoded words are returned at the end. Hence this architecture has a throughput
of one codeword per clock cycle and can be pipelined as deep as required to achieve
the target frequency. This allows for ultra-high throughput LDPC decoder cores.

Compared to the core duplication approach, no overhead in means of distribution
networks and memory is introduced by the unrolling. Moreover there is an essential
change in the resulting data flow. Where before data have iteratively been exchanged
between VNs and CNs, now all data flow in one direction. Each iteration has a
dedicated hardware unit and thus the decoder’s overall area scales linear with the

26 N. Wehn et al.

number of decoding iterations. The result is an unidirectional wiring avoiding the
overlap of opposed networks. This is a big benefit for the routing and makes the
architecture more area efficient than state-of-the-art decoders which is shown in
Sect. 2.4.4.

The control flow of the proposed architecture is reduced to a minimum. A valid
flag is fed into the first decoding stage whenever a block is available. This flag is
propagated along the decoding pipeline and enables the corresponding stages as
soon as new data is available. At the same time this implies that all hardware blocks
which are not used currently get clock gated.

Even though the number of decoding iterations is defined at design time, schemes
like early termination can be applied to further reduce the energy consumption.
Once a valid codeword is found all following decoding stages are clock gated for
this block and the decoded data is bypassed in the channel value registers. By this
approach besides some multiplexors no hardware overhead is introduced and the
energy per decoded bit can be reduced significantly.

Even different code rates can be implemented in the unrolled architecture.
Special codes like the one used in the IEEE 802.11ad standard allow for the
operation of one CN instance as two CNs by cutting the node degree by two.
Using these codes only minor modifications are required for the check nodes and
the routing network to support all codes of the IEEE 802.11ad family. For a more
detailed explanation of the CN splitting scheme see [47]. A similar scheme as
proposed there can also be applied on the unrolled architecture. The control flow for
the different code rates can easily be implemented by an additional flag propagated
with the according input block. This allows to change the code rate for every block,
e.g., in each clock cycle. Table 2.5 summarizes the benefits and drawbacks of the
different approaches.

2.4.4 Comparison of Unrolled LDPC Decoders
to State-of-the-Art Architectures

Two decoder architectures are presented which are compared to a state-of-the-
art LDPC decoder from literature. The first decoder presented is a fully parallel
architecture with iterative decoding. The second has also a fully parallel hardware

Table 2.5 Parallel LDPC decoder architectures

Architecture Flexibility Low latency Area efficiency

Parallel inst., partially parallel architecture + − 0

Parallel inst., fully parallel architecture − 0 −
Unrolled, fully parallel architecture − + +

2 Very High Throughput Decoder Architectures for Soft-Decoding 27

Table 2.6 State-of-the-art high throughput LDPC decoder comparison

Decoder [48] Iterative Proposed unrolled

CMOS technology 65 nm 65 nm SVT 65 nm SVT

Frequency (MHz) 400 189 194

Standard IEEE 802.3an IEEE 802.11ad IEEE 802.11ad

Block size 2,048 672 672

Iterations 8 6 6

Quantization (bit) 4 5 5

Post P&R area (mm2) 5.1 1.4 7.0

Throughput (Gbit/s) 8.5 5.3 130.6
Area Eff. (Gbit/s/mm2) 1.7 3.8 18.7

Fig. 2.12 Unrolled fully
parallel LDPC decoder chip
layout. Each iteration is
represented by one of the
vertical areas. Channel
messages ripple from left to
right through the decoder
pipeline. All routing is very
structured and pointing from
one iteration to the next.
A very high utilization of
more than 70 % is achieved
by the simplified routing

mapping but in addition the decoding iterations are completely unrolled. Both
decoders support the same standard (IEEE 802.11ad) and use the same algorithm,
quantization, etc.

The LDPC decoders are implemented on a 65 nm low power bulk CMOS library.
The post place and route (P&R) results are summarized in Table 2.6. The physical
layout of the unrolled LDPC decoder can be seen in Fig. 2.12. Comparing the
synthesis results of the iterative and the unrolled decoder shows that the routing
congestion is significantly reduced by the loop unrolling. The number of introduced
buffers for the interconnect is significantly reduced in the unrolled decoder and leads
to a high utilization of more than 70 %. A five times higher area efficiency of the
unrolled decoder underlines this finding.

28 N. Wehn et al.

For the comparison, in addition to the two presented decoders, a partially
parallel decoder from literature is listed. The number of iterations, quantization, and
algorithm is reasonably similar to allow for a fair comparison. It can be observed
that no state-of-the-art decoder architecture is capable to produce a competitive area
efficiency to the unrolled architecture. The presented architecture has a throughput
which is more than fifteen times higher than the one of state-of-the-art decoders.
Moreover, if more throughput is required the unrolled architecture can easily be
pipelined deeper to increase the core frequency. These results show the great
potential of unrolled decoder architectures for future applications.

2.4.5 Future Work

The unrolled LDPC decoder architecture allows for several optimizations. In this
section the most important of them are presented and current research topics are
pointed out.

Unrolling the decoding loop generates a dedicated hardware instance for each
iteration. While for systems working iteratively, a generic hardware fulfilling the
needs of all iterations needs to be built, an unrolled architecture gives the designer
the freedom to optimize the hardware for each iteration independent of the others.
Thus it is possible to use specialized hardware instances for each iteration. For
example, one can implement different algorithmic approximations. For example, for
a decoder performing P iterations, a simplified decoding algorithm can be applied
for iterations 1 . . . i and an exact but more complex algorithm might be necessary
only for iterations i+1 . . .P. Like this a targeted communications performance can
tightly be met while minimizing the required hardware resources. Even more than
the area efficiency, the energy efficiency can be increased by this approach. Most
blocks are decoded in the simplified first iterations of the decoding process and the
higher complexity part of the decoder must not be used for them. This significantly
reduces the energy per decoded bit and has almost no impact on the communications
performance. Other aspects like message quantization can also be applied to this
scheme and generate many new possibilities in the LDPC decoder design space.
These new possibilities are currently investigated and must be considered for future
architectures.

Regarding energy optimizations the proposed architecture is an excellent can-
didate for a Near-Threshold circuit technique [49]. For example, the throughput
of 10 Gbit/s can already be fulfilled by the presented decoder running at less than
20 MHz. Thus aggressive voltage scaling to 0.5–0.6 V can be applied. This increases
the energy efficiency by at least a factor of three and allows for a better energy
efficiency than any other state-of-the-art decoder.

2 Very High Throughput Decoder Architectures for Soft-Decoding 29

Conclusion
In this chapter, we presented soft decision Reed–Solomon, turbo, and LDPC
decoder implementations with high throughput.

The introduced soft decision decoder architecture for Reed–Solomon
codes is based on information set decoding. It allows a considerable improve-
ment of error rates in combination with a high throughput. The FPGA
implementation shows a throughput of beyond 1 Gbit/s and a gain of 0.75 dB
over HDD for the widely used RS(255,239) code. Further research includes
the evaluation of the architecture using ASIC technology and the further
improvement of the correction performance.

For turbo decoding the design space has been summarized. The key
techniques to a high throughput implementation have been introduced. It was
demonstrated how a LTE turbo code decoder can be implemented that
achieves 2.15 Gbit/s on a 65 mm ASIC technology. In the future, further
investigations have to be made to ultimately increase the throughput of a turbo
code by unrolling iterations.

A new LDPC decoder architecture was presented that achieves an out-
standing throughput and state-of-the-art communications performance. The
ASIC implementation provides a throughput of 130 Gbit/s and has a very high
efficiency. Further optimizations for even higher area and energy efficiency
have been discussed and will be investigated in the future.

Acknowledgements This work has been supported by the Deutsche Forschungsgemeinschaft
(DFG) within the projects “Entwicklung und Implementierung effizienter Decodieralgorithmen
für lineare Blockcodes” and “Optimierung von 100 Gb/s Nahbereichs Funktransceivern unter
Berücksichtigung von Grenzen für die Leistungsaufnahme.”

References

1. Third Generation Partnership Project (2010) 3GPP TS 36.212 V10.0.0; 3rd Generation
Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal
Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 10)

2. Intel (2014) Thunderbolt. URL http://www.thunderbolttechnology.net
3. Infiniband Association (2014). URL http://www.infinibandta.org
4. Qian D, Huang MF, Ip E, Huang YK, Shao Y, Hu J, Wang T (2011) 101.7-Tb/s (370x294-

Gb/s) PDM-128QAM-OFDM transmission over 3x55-km SSMF using pilot-based phase noise
mitigation. In: Optical fiber communication conference and exposition (OFC/NFOEC), 2011
and the national fiber optic engineers conference, pp 1–3

5. Wenyi J, Fossorier M (2008) Towards maximum likelihood soft decision decoding of the
(255,239) Reed Solomon code. IEEE Trans Magn 44(3):423. DOI 10.1109/TMAG.2008.
916381

6. Jiang J (2007) Advanced channel coding techniques using bit-level soft information. Disserta-
tion, Texas A&M University

7. Chase D (1972) Class of algorithms for decoding block codes with channel measurement
information. IEEE Trans Inf Theory 18(1):170. DOI 10.1109/TIT.1972.1054746

http://www.thunderbolttechnology.net
http://www.infinibandta.org

30 N. Wehn et al.

8. Bellorado J, Kavcic A (2006) A low-complexity method for chase-type decoding of Reed-
Solomon codes. In: Proceedings of the IEEE international information theory symposium,
pp 2037–2041. DOI 10.1109/ISIT.2006.261907

9. Koetter R, Vardy A (2003) Algebraic soft-decision decoding of Reed-Solomon codes. IEEE
Trans Inf Theory 49(11):2809. DOI 10.1109/TIT.2003.819332

10. Fossorier MPC, Lin S (1995) Soft-decision decoding of linear block codes based on ordered
statistics. IEEE Trans Inf Theory 41(5):1379. DOI 10.1109/18.412683

11. El-Khamy M, McEliece RJ (2006) Iterative algebraic soft-decision list decoding of Reed-
Solomon codes. IEEE J Sel Areas Commun 24(3):481. DOI 10.1109/JSAC.2005.862399

12. An W (2010) Complete VLSI implementation of improved low complexity chase Reed-
Solomon decoders. Ph.D. thesis, Massachusetts Institute of Technology

13. García-Herrero F, Valls J, Meher P (2011) High-speed RS(255, 239) decoder based on LCC
decoding. Circuits Syst Signal Process 30:1643. DOI 10.1007/s00034-011-9327-4. URL
http://dx.doi.org/10.1007/s00034-011-9327-4

14. Hsu CH, Lin YM, Chang HC, Lee CY (2011) A 2.56 Gb/s soft RS (255,239) decoder chip for
optical communication systems. In: Proceedings of the ESSCIRC (ESSCIRC), pp 79–82. DOI
10.1109/ESSCIRC.2011.6044919

15. Kan M, Okada S, Maehara T, Oguchi K, Yokokawa T, Miyauchi T (2008) Hardware
implementation of soft-decision decoding for Reed-Solomon code. In: Proceedings of the
5th international symposium on turbo codes and related topics, pp 73–77. DOI 10.1109/
TURBOCODING.2008.4658675

16. Heloir R, Leroux C, Hemati S, Arzel M, Gross W (2012) Stochastic chase decoder for reed-
solomon codes. In: 2012 IEEE 10th international conference on new circuits and systems
(NEWCAS), pp 5–8. DOI 10.1109/NEWCAS.2012.6328942

17. Scholl S, Wehn N (2014) Hardware implementation of a Reed-Solomon soft decoder based
on information set decoding. In: Proceedings of the design, automation and test in Europe
(DATE ’14)

18. Ahmed A, Koetter R, Shanbhag NR (2004) Performance analysis of the adaptive parity check
matrix based soft-decision decoding algorithm. In: Proceedings of the conference on signals,
systems and computers record of the thirty-eighth Asilomar conference, vol 2, pp 1995–1999.
DOI 10.1109/ACSSC.2004.1399514

19. Dorsch B (1974) A decoding algorithm for binary block codes andJ-ary output channels
(Corresp.). IEEE Trans Inf Theory 20(3):391. DOI 10.1109/TIT.1974.1055217. URL http://
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1055217

20. Lin S, Costello DJ Jr (2004) Error control coding 2nd edn. Prentice Hall PTR, Upper Saddle
River

21. Scholl S, Stumm C, Wehn N (2013) Hardware implementations of Gaussian elimination over
GF(2) for channel decoding algorithms. In: Proceedings of the IEEE AFRICON

22. Bogdanov A, Mertens M, Paar C, Pelzl J, Rupp A (2006) A parallel hardware architecture for
fast Gaussian elimination over GF(2). In: 14th annual IEEE symposium on field-programmable
custom computing machines, 2006 (FCCM ’06), pp 237–248. DOI 10.1109/FCCM.2006.12

23. Kung HT, Gentleman WM (1982) Matrix triangularization by systolic arrays. Technical Report
Paper 1603, Computer Science Department. URL http://repository.cmu.edu/compsci/1603

24. Xilinx LogiCORE IP Reed-Solomon Decoder (2013). http://www.xilinx.com/products/
intellectual-property/DO-DI-RSD.htm

25. Bahl L, Cocke J, Jelinek F, Raviv J (1974) Optimal decoding of linear codes for minimizing
symbol error rate. IEEE Trans Inf Theory IT-20:284

26. Robertson P, Villebrun E, Hoeher P (1995) A comparison of optimal and sub-optimal MAP
decoding algorithms operating in the log-domain. In: Proceedings of the 1995 international
conference on communications (ICC ’95), Seattle, Washington, 1995, pp 1009–1013

27. Thul MJ, Gilbert F, Vogt T, Kreiselmaier G, Wehn N (2005) A scalable system architecture
for high-throughput turbo-decoders. J VLSI Signal Process Syst (Special Issue on Signal
Processing for Broadband Communications) 39(1/2):63

28. Mansour MM, Shanbhag NR (2003) VLSI architectures for SISO-APP decoders. IEEE Trans
Very Large Scale Integr (VLSI) Syst 11(4):627

http://dx.doi.org/10.1007/s00034-011-9327-4
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1055217
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1055217
http://repository.cmu.edu/compsci/1603
http://www.xilinx.com/products/intellectual-property/DO-DI-RSD.htm
http://www.xilinx.com/products/intellectual-property/DO-DI-RSD.htm

2 Very High Throughput Decoder Architectures for Soft-Decoding 31

29. Dielissen J, Huiskens J (2000) State vector reduction for initialization of sliding windows
MAP. In: Proceedings of the 2nd international symposium on turbo codes & related topics,
Brest, France, pp 387–390

30. Schurgers C, Engels M, Catthoor F (1999) Energy efficient data transfer and storage
organization for a MAP turbo decoder module. In: Proceedings of the 1999 international
symposium on low power electronics and design (ISLPED ’99), San Diego, California, 1999,
pp 76–81

31. Sani A, Coussy P, Chavet C (2013) A first step toward on-chip memory mapping for parallel
turbo and LDPC decoders: a polynomial time mapping algorithm. IEEE Trans Signal Process
61(16):4127. DOI 10.1109/TSP.2013.2264057. URL http://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=6517513

32. Ilnseher T, Kienle F, Weis C, Wehn N (2012) A 2.12Gbit/s turbo code decoder for LTE
advanced base station applications. In: 2012 7th international symposium on turbo codes and
iterative information processing (ISTC) (ISTC 2012), Gothenburg, Sweden, 2012

33. Sun Y, Cavallaro J (2010) Efficient hardware implementation of a highly-parallel 3GPP
LTE/LTE-advance turbo decoder. Integr VLSI J. DOI 10.1016/j.vlsi.2010.07.001

34. May M, Ilnseher T, Wehn N, Raab W (2010) A 150Mbit/s 3GPP LTE turbo code decoder. In:
Proceedings of the design, automation and test in Europe, 2010 (DATE ’10), pp 1420–1425

35. Studer C, Benkeser C, Belfanti S, Huang Q (2011) Design and implementation of a parallel
turbo-decoder ASIC for 3GPP-LTE. IEEE J Solid State Circuits 46(1):8

36. Gallager RG (1962) Low-density parity-check codes. IRE Trans Inf Theory 8(1):21
37. IEEE 802.3an-2006 (2006) Part 3: CSMA/CD Access Method and Physical Layer Specifica-

tions - Amendment: Physical Layer and Management Parameters for 10 Gb/s Operation, Type
10GBASE-T. IEEE 802.3an-2006

38. WiMedia Alliance (2009) Multiband OFDM Physical Layer Specification, Release Candidate
1.5

39. IEEE 802.11ad (2010) Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications - Amendment: Enhancements for Very High Throughput in the 60
GHz Band. IEEE 802.11ad-draft

40. Kavcic A, Patapoutian A (2008) The read channel. Proc IEEE 96(11):1761. DOI 10.1109/
JPROC.2008.2004310

41. Guilloud F, Boutillon E, Danger J (2003) λ -min decoding algorithm of regular and irregular
LDPC codes. In: Proceedings of the 3nd international symposium on turbo codes & related
topics, Brest, France, pp 451–454

42. Chen J, Dholakia A, Eleftheriou E, Fossorier MPC, Hu XY (2005) Reduced-complexity
decoding of LDPC codes. IEEE Trans Commun 53(8):1288

43. Schläfer P, Alles M, Weis C, Wehn N (2012) Design space of flexible multi-gigabit LDPC
decoders. VLSI Des J 2012. DOI 10.1155/2012/942893

44. Blanksby A, Howland CJ (2002) A 690-mW 1-Gb/s, rate-1/2 low-density parity-check code
decoder. IEEE J Solid State Circuits 37(3):404

45. Onizawa N, Hanyu T, Gaudet V (2010) Design of high-throughput fully parallel LDPC
decoders based on wire partitioning. IEEE Trans Very Large Scale Integr (VLSI) Syst
18(3):482. DOI 10.1109/TVLSI.2008.2011360

46. Schläfer P, Wehn N, Lehnigk-Emden T, Alles M (2013) A new dimension of parallelism in ultra
high throughput LDPC decoding. In: IEEE workshop on signal processing systems (SIPS),
Taipei, Taiwan

47. Weiner M, Nikolic B, Zhang Z (2011) LDPC decoder architecture for high-data rate personal-
area networks. In: Proceedings of the IEEE international symposium on circuits and systems
(ISCAS), pp 1784–1787. DOI 10.1109/ISCAS.2011.5937930

48. Zhang Z, Anantharam V, Wainwright M, Nikolic B (2010) An efficient 10GBASE-T ethernet
LDPC decoder design with low error floors. IEEE J Solid State Circuits 45(4):843. DOI 10.
1109/JSSC.2010.2042255

49. Calhoun B, Brooks D (2010) Can subthreshold and near-threshold circuits go mainstream?
IEEE Micro 30(4):80. DOI 10.1109/MM.2010.60

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6517513
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6517513

Chapter 3
Implementation of Polar Decoders

Gabi Sarkis and Warren J. Gross

3.1 Introduction to Polar Codes

3.1.1 Code Construction

In [1], Arikan proved that when two bits, u0 and u1, are transformed as shown in
Fig. 3.1a and transmitted using a binary-input, memoryless, symmetric channel,
denoted W , the probability of correctly estimating one of the bits, u0, decreases,
while that of u1 increases relative to the case where the bits are transmitted
untransformed. This phenomenon is called channel polarization and it increases as
the number of transformed bits, N, increases. As N → ∞, the probability of correct
estimation of each bit approaches either 0.5 (completely unreliable) or 1.0 (perfectly
reliable), and the proportion of reliable bits is the symmetric capacity of the channel
W [1]. The polarizing transformation for more than two bits is applied recursively
as shown in Fig. 3.1b for N = 4. Later works have shown polar codes achieve the
symmetric capacity of any memoryless channel [2, 3].

A polar code of length N and dimension k is constructed by placing the
information bits in the k most reliable locations in the vector uN−1

0 and setting the
remaining bits, known as the frozen bits, to predetermined values, usually 0.

3.1.2 Successive-Cancellation Decoding

Successive cancellation (SC) is the canonical algorithm for decoding polar codes
and is the one used when proving their capacity-achieving performance in [1].

G. Sarkis • W.J. Gross (�)
McGill University, Montréal, QC, Canada
e-mail: gabi.sarkis@mail.mcgill.ca; warren.gross@mcgill.ca

© Springer International Publishing Switzerland 2015
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7__3

33

mailto:gabi.sarkis@mail.mcgill.ca
mailto:warren.gross@mcgill.ca

34 G. Sarkis and W.J. Gross

u0 + W y0

u1 W y1

u0 +
v0

+
x0

W y0

u1
v1

+
x1

W y1

u2 +
v2 x2

W y2

u3
v3 x3

W y3

a

b

Fig. 3.1 Construction of polar codes of lengths 2 and 4, where ⊕ is the XOR operator. (a) N = 2;
(b) N = 4

The SC algorithm estimates bits sequentially using either the predetermined values
for frozen bits, or using the received channel information y and the previously
estimated bits ûi−1

0 according to the following rule for an information bit ui

ûi =

{
0, if λui ≥ 0;

1, otherwise,
(3.1)

where λui is the log-likelihood ratio (LLR) defined as Pr[y, ûi−1
0 |ûi = 0]/

Pr[y, ûi−1
0 |ûi = 1] and can be calculated recursively using the min-sum (MS)

approximation—with negligible impact on error-correction performance as shown
via simulations in [4]—according to

λu0 = f (λv0 ,λv1) = sign(λv0)sign(λv1)min(|λv0 |, |λv1 |); (3.2)

and

λu1 = g(λv0 ,λv1 , û0) =

{
λv0 +λv1 when û0 = 0,

−λv0 +λv1 when û0 = 1
. (3.3)

λv0 and λv1 correspond to inputs and are replaced with y in the last stage of the
recursive decoding.

The recursive approach to the algorithm is not suitable for a hardware implemen-
tation. Instead, the decoder uses the same equation, but proceeds from the received
channel information y until an estimated bit, ûi is reached.

The major disadvantage of SC decoding is its sequential nature that leads to high
decoding latency. Look-ahead techniques can be used to reduce latency as proposed
in [5], where it estimates bits ui and ui+N/2 simultaneously with a minor increase in
complexity. The latency reduction obtained by applying the look-ahead technique
to a larger number of bits is limited to 50 % and results in a significant increase in
complexity.

3 Implementation of Polar Decoders 35

3.1.3 Belief-Propagation Decoding

In [6], it was shown that polar code can be decoded using the belief-propagation
(BP) algorithm. Figure 3.1b shows that a polar code contains two constraint types:
a parity-check and equality constraints corresponding to the ⊕ and • nodes, respec-
tively. The two nodes are identical to those in BP decoding of low-density parity-
check (LDPC) codes and can be decoding using the min-sum approximation as

λa = λb +λc (3.4)

for the equality nodes and

λa = sign(b)sign(c)min(|λb|, |λc|) (3.5)

for the check nodes, where λa is the LLR corresponding to the node output, and λb

and λc correspond to its inputs.
The decoder receives the channel information y and calculates messages stage

by stage until a maximum number of iterations is reached or all the parity-check
constraints are satisfied.

In [7], it was observed that the number of iterations required to match the error-
correction performance of SC decoding was large, negating the benefits of the
increased parallelism.

3.2 The Successive-Cancellation Decoder Implementation

A direct implementation of the SC decoding algorithm uses N/2 processing
elements (PEs), which perform the functions (3.2) and (3.3) [8]. However, it was
observed in [4] that the N/2 PEs were only used simultaneously once in the
decoding, leading to low utilization of the hardware resources. That work shows
that, a decoder implementing P = 64, instead of N/2, processing elements result in
<10 % throughput reduction for codes of length N ≤ 220. Figure 3.2 illustrates these
results for codes of lengths 210, 212, and 220.

The semi-parallel SC (SP-SC) decoder of [4] consists of three major parts: the
processing elements, the partial-sum update logic, and the memory, which will be
briefly described in this section.

3.2.1 Processing Elements

A PE is the core functional unit of the SP-SC decoder and can perform the f (3.2)
and g (3.3) functions. To reduce the implementation complexity, [4] presents a

36 G. Sarkis and W.J. Gross

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
th

ro
ug

hp
ut

0 20 40 60 80 100 120 140
Number of implemented PEs (P)

N = 210

N = 212

N = 220

Fig. 3.2 Throughput of the SP-SC decoder relative to a fully parallel SC decoder at different code
lengths

merged-PE in which hardware resources are shared between the f and g functions.
No contention arises from applying this optimization as a PE is never required
to perform f and g simultaneously. Since the f function is more complex than g,
the decoder uses sign-magnitude representation of LLR values which simplifies the
magnitude comparisons. An array of P processing elements is implemented and is
fed up to 2P LLR values every cycle. In addition, it has access to up to P partial-sum
values when g is performed. A maximum of P LLR values can be produced every
cycle.

3.2.2 Partial-Sum Update Logic

Partial sums are the results of combining bit estimates in various stages of the
decoder and are used as inputs to the g function. Each estimated bit is involved
in multiple partial sums that are updated once the bit estimate is available. This is
accomplished by storing the partial sums in independent registers with appropriate
enable logic.

3.2.3 Memory

There are two major memory groups in the SP-SC decoder: the LLR memory
and the partial-sum memory. The PEs read and write LLR value simultaneously;

3 Implementation of Polar Decoders 37

Table 3.1 FPGA synthesis results on the Altera Stratix IV
EP4SGX530KH40C2 using polar codes of different lengths

N LUT FF RAM (bits) f (MHz) T/P (Mbps)

210 4,130 1,691 15,104 173 85 R

212 8,635 4,769 48,896 152 73 R

214 29,897 17,063 184,064 113 53 R

217 221,471 131,764 1,445,632 10 4.6 R

Table 3.2 ASIC SP-SC
decoder implementation with
N = 1024, k = 512, P = 64

Technology UMC 180 nm

Core area 1.71mm2

Chip area 1.72mm2

Gate count 183,637

Frequency 150MHz

Throughput 48.75Mbps

Voltage 1.3V

Power 67mW

Energy efficiency 1.37nJ/bit

therefore, the LLR memory must be able to provide the new data when write-while-
reading condition occurs. This is achieved using a P-LLR bypass buffer composed
flip-flops whose contents are provided in the case of a write-while-reading; while
a random access memory (RAM) is used for the remaining value to save area. As
mentioned in Sect. 3.2.2, the partial-sum memory is implemented using registers.

3.2.4 Implementation Results

The SP-SC decoder was first implemented on a field-programmable gate-array
(FPGA) [4]. It was able to achieve a coded throughput of 85 Mbps for codes of
length 1024, but the throughput decreased for longer as result of the partial-sum
update logic limiting the decoder frequency. Table 3.1 summarizes the resource
utilization and throughput results when P = 64 PEs were implemented.

An application-specific integrated-circuit (ASIC) implementation of the SP-SC
decoder was presented in [9]. Its differs from [4] in that it uses registers instead of
RAM for the LLR memory, and it implemented the 1-bit look-ahead technique [5],
which increases the throughput by 25 %. Table 3.2 lists these results.

3.3 The Belief-Propagation Decoder Implementation

The first hardware polar decoder implemented was a semi-parallel BP decoder that
uses the min-sum algorithm [7]. It was shown that it required a large number of
iterations, ∼50, to match the error-correction performance of an SC decoder for a

38 G. Sarkis and W.J. Gross

Table 3.3 Implementation results for the BP and SC
decoders on the Xilinx Virtex IV XC4VSX25-12 using
the (1024, 512) polar code

Algorithm LUT FF BRAM T/P (Mbps)

BP 2,794 1,600 12 2.78

SP-SC 2,600 1,181 5 22.22

Fig. 3.3 Decoder trees
corresponding to the SC and
SSC algorithms vαv

βv

αl

βl
αr

βr

SC
SSC

a b

(1024, 512) polar code [4]. Table 3.3 compares the BP decoder [7] with the SP-SC
decoder [4] for the (1024, 512) polar code where both decoders are configured to
have the same error-correction performance. It can be seen from the table that the
SP-SC decoder uses fewer memory resources and has eight times the information
throughput compared to the BP decoder.

This large number of required iterations significantly degrades the BP decoder
throughput in spite of the inherent parallelism of the algorithm and has limited the
research targeted at implementing BP decoders.

3.4 Simplified Successive-Cancellation Decoding

The sequential nature of SC decoding and the large iteration count of BP decoder
have limited the throughput of polar decoder. Simplified successive-cancellation
(SSC) decoding was the first method to offer major improvements in throughput.
It improves on SC decoding by exploiting the recursive nature of polar code con-
struction to increase decoder parallelism. Figure 3.3a shows a tree representation of
a polar code in which each constituent code and the two codes whose concatenation
it corresponds to are represented using a nodes and its two children. The leaf nodes
represent either frozen bits, the white nodes, or information bits, the black nodes.

SC decoding is performed by a node that receives a likelihood vector αv,
calculates the input to its left child, αl , using (3.2) and uses the bit estimate of
that child, βl , to calculate the likelihood input to the right child, αr, according to
(3.3). Once the bit estimate βr is available, it is combined with βl to yield βv, which
is then passed to the parent node. The output βv of a frozen bit is known a priori,
0 when frozen bits are set to 0, and the output of an information node is calculated
according to (3.1) using αv as the LLR value.

3 Implementation of Polar Decoders 39

It was noted in [10] that a node whose descendants are all frozen nodes
corresponds to code of rate 0 and its output βv is known a priori. More importantly,
it was shown that a node whose children are all information bits corresponds to
code of rate 1 that can be decoded using maximum-likelihood decoding by applying
threshold detection on αv directly to obtain βv. Therefore, constituent codes of rate
0 and rate 1 can be decoded directly without traversing the corresponding sub-trees
in the decoder graph. This is illustrated in Fig. 3.3b, where the decoder graph is
trimmed to remove such sub-trees. Such trimming was shown in [11] to improve
the throughput by up to 12 times compared with SC decoding for codes of length
32768.

3.4.1 Two-Phase Successive-Cancellation Decoding

While not fully an SSC decoder, the two-phase successive-cancellation (TPSC)
decoder [12] was the first to employ elements of SSC to improve decoding
throughput in some parts of the decoder graph.

The aim of the TPSC decoder is to reduce implementation complexity and RAM
requirements. This is achieved by exploiting the array structure of the polar codes
and decoding in two distinct phases. The N bit input vector u, including the frozen
bits, is arranged as a

√
N ×√

N array, U , which is encoded using G√
N to yield V :

V =UG√
N . (3.6)

The codeword array, X , is obtained from V using

X =V T G√
N . (3.7)

When X is rearranged into a 1×N vector, it is equal to x = uGN .
The TPSC decoder divides the decoding process into

√
N cycles. Each cycle

consists of two phases: the first corresponds to (3.7) and the second to (3.6). Since
the first phase decoder, P1, corresponds to the larger stages in the polar code, it
stores computations in RAM, which is area efficient and has addressing logic built-
in. While P2 uses flip-flops, which are faster than RAM, but scarcer on FPGAs.

Any soft-input hard-output polar decoder can be used to implement the P2
decoder. The authors in [12] used a parallel SC decoder with 1-bit look-ahead
storing its results in registers. The P1 decoder is a soft-input soft-output SC decoder
that outputs

√
N LLR values in parallel. P1 loads the channel LLR values from RAM

and stores the LLR inputs to the boundary stage, log2

√
N in registers. P2 reads those

values and calculates the partial sums for the boundary stage, which are then used by
P1 to continue decoding. The architecture in [12] makes no provisions for storing the
results of internal calculations in P1, reducing the memory required by the decoder,

40 G. Sarkis and W.J. Gross

Table 3.4 TPSC implementation results on the Altera Stratix IV
EP4SGX530KH40C2

N LUT FF RAM (bits) f (MHz) T/P (Mbps)

210 1,940 748 7,136 239 112R

214 7,815 3,006 114,560 230 118R

but increasing latency as these values are recalculated for every decoding cycle.
To reduce latency, the TPSC decoder implements the SSC rate-0 and rate-1 tree
pruning operations, but only at the boundary stage.

The implementation results, in Table 3.4, show that the TPSC achieves higher
throughput than the SP-SC decoder. The recalculation of P1 results increases
decoder latency; however, the resulting architecture scales well with code length and
is able to maintain a high clock frequency. The utilization of the SSC optimization
also helps in increasing the throughput.

3.5 Fast-SSC Decoding

Fast-SSC decoding [13] expands on SSC decoding by directly decoding more
types of constituent codes with low-complexity maximum-likelihood algorithms. In
addition, it combines multiple operations to reduce the number of memory accesses
and further improve throughput.

Three additional classes of constituent codes are identified in [13]: repetition
codes, single parity-check (SPC) codes, and length-four codes not covered by the
previous two cases.

Repetition constituent codes correspond to sub-trees whose right-most leaf is an
information node while the others are frozen. They are more common in low rate
polar codes than in high rate ones. Their ML decoding is simple: the elements of
the input α are summed and threshold detection is used to determine result which is
replicated to populate the output vector β , i.e., for all i values

β [i] =

{
0 when ∑ j α[j]≥ 0,

1 otherwise.

The implementation of this rule is accomplished using an adder tree. It was found
in [13] that the number of repetition constituent codes of length greater than 16 was
small in the high-rate codes of interest. Therefore, the maximum length of repetition
codes to be directly decoded was set to 16. Due to the small code lengths and the
improved algorithm, the decoding of repetition constituent codes takes one clock
cycle in the Fast-SSC decoder instead of up to nine in the SSC decoder.

3 Implementation of Polar Decoders 41

Table 3.5 Latency of the SPC decoding algorithm for con-
stituent codes of different lengths, Nv, when 512 LLR values
can be read simultaneously

Nv ∈ (0,8] (8,64] (64,256] (256,+∞)

Latency (cycles) 0 1 2 Nv/512 + 3

SPC codes arise when the left-most leaf in a sub-tree is frozen but not any of the
other leaves. The following low-complexity algorithm, in which h(.) refers to the
threshold detection function (3.1), is used to implement ML decoding

β [i] =

{
h(α[i])⊕∑ j h(α[j]) when i = argmin |α[i]|,
h(α[i]) otherwise;

where ⊕ is binary addition (the XOR operation). In other words, the output is the
hard decision of the input with one exception: if the parity check on the hard decision
is not satisfied, the decision of the bit corresponding to the least reliable input is
flipped. As SPC constituent codes are common in high-rate polar codes and their
lengths can be large, a pipelined design was proposed in [13] whose latency values
are shown in Table 3.5, where a latency of 0 cycles indicates that the SPC decoder
output will be ready within one clock cycle. For comparison, an SSC decoder has a
latency of 15 cycles when Nv = 16.

It was observed in [13] that once rate-one, rate-0, repetition, and SPC constituent
codes are accounted for, only one code of length four remains, its generator matrix
is [0001;0100] and can be decoded using exhaustive-search ML by testing four
codewords. Its decoder was implemented using combinational logic.

3.5.1 Node Mergers

The Fast-SSC algorithm further reduces decoding latency by reducing the number of
memory access requests. The first method by which this is achieved is to eliminate
nodes of rate 0: since the β output of a rate 0 node is known a priori to be zero, its
parent can calculate αr immediately once αv is available, without calculating αl and
waiting for βl .

When the right child corresponds to an SPC or rate-1 code, the calculations of
αr, βr, and βv can be performed simultaneously, eliminating multiple memory read
and write operations. If the left child corresponds to a rate-0 code, calculating βv

begins as soon as αv is available.
The final form of node mergers presented in [13] is a special case for constituent

codes of length 8 that correspond to a node with a repetition left child and an
SPC right child. In this case, two SPC decoders are employed simultaneously: one

42 G. Sarkis and W.J. Gross

Table 3.6 The functions performed by the Fast-SSC decoder

Name Description

F Calculate α l

G Calculate αr

COMBINE Calculate β v by combining β l and β r

COMBINE-0R Same as COMBINE, but β l = 0

G-0R Same as G, but β l = 0

P-R1 Calculate β v

P-RSPC Calculate β v

P-01 Same as P-R1, but β l = 0

P-0SPC Same as P-RSPC, but β l = 0

ML Calculate β v using exhaustive-search ML decoding

REP Calculate β v using a repetition decoder

REP-SPC Calculate β v using a repetition-SPC decoder

assumes that the output of the repetition decoder is 0 and the other 1. Once the
output of the repetition decoder is available, the output of the correct SPC decoder
is used to calculate βv.

To summarize, the operations performed by the decoder are listed in Table 3.6.

3.5.2 Overall Decoder Architecture

Due to the large number of nodes and node combinations, it was proposed in [13]
that representing the polar code structure as a precomputed list of instructions would
lead to more efficient decoders. As a result, the proposed decoder has an architecture
similar to that of a processor. An overall view of this decoder is shown in Fig. 3.4.

Before the decoding process starts, instructions are loaded into the instruction
memory. Channel LLR values are loaded into the channel RAM via the channel
loader. The controller fetches the first instruction and the decoding process starts. α
values are read from α-RAM and channel RAM and written to α-RAM. Similarly,
β values are written to and read from β -RAM and the estimated codeword is written
to the codeword RAM. Using separate memories for internal α values and the
channel LLR values is required to enable loading-while-decoding, which is required
to prevent the decoder from stalling and to maintain throughput.

3.5.3 Processing Unit Architecture

The processing unit contains the logic required to perform the operations needed
by all the nodes and the merged nodes. These operations are listed in Table 3.6 and
Fig. 3.5 shows the architecture of the processing unit performing them. The inputs

3 Implementation of Polar Decoders 43

a-RAM Channel RAM

a-Router Channel Loader Channel

Processing Unit Controller

b -Router Instruction RAM Instructions

b -RAM Codeword RAM Estimate

Fig. 3.4 Top-level architecture of the Fast-SSC decoder

a

b 00

0
m0

G

b1

SPC

m2

REP

REP
SPC

ML

m3

Sign

C
O

M
B

IN
E

F

m1 a ′

b ′
0

b ′
1

Fig. 3.5 Processing unit architecture

to this unit are: α a vector of up to 2P valid LLRs, β0 a vector of up to P valid bit
values generated by the left child, β1 a vector of up to P valid bit values generated
by the right child, and 0 a P-bit all-zero vector. The outputs are: α ′ a vector of up to
P valid LLRs corresponding to the αl or αr outputs of the node; and β ′

0 and β ′
0, two

vectors of up to P valid bit values each, corresponding to the β v output of the node.
The two functions producing α outputs are F and G. The multiplexer m1 selects

between their outputs. In addition, G has a specialization when the node’s left child
is a rate-0 node, denoted G-0R. The multiplexer m0 is used to set the β input to G
function to 0.

Repetition, Repetition-SPC, and ML nodes are limited to constituent codes of
length less than or equal to P in [13]. Therefore, their output is entirely contained

44 G. Sarkis and W.J. Gross

Table 3.7 Post-fitting results
for a code of length 32768 on
the Altera Stratix IV
EP4SGX530KH40C2

RAM f
P Q LUTs Registers (bits) (MHz)

64 (6,4,0) 6,830 1,388 571,800 108
(7,5,1) 8,234 858 675,864 100

256 (6,4,0) 25,866 7,209 536,136 108
(7,5,1) 30,051 3,692 700,892 104

in β ′
0. The multiplexer m2 selects the correct β ′

0 from among the candidates, which
also include the first half of COMBINE’s output.

β ′
1 is always the second half of COMBINE’s output. The left input to COMBINE

is selected by m0 as either β0 or 0. Due to node mergers, the second input varies:
when the function performed is P-01 or P-R1, it is the sign of the output from G;
for P-0SPC and P-RSPC, the input come from the SPC decoder that uses the output
of G as its input; finally, in the case of COMBINE and COMBINE-0X, β1 is used.
This selection is process performed by m3.

3.5.4 Implementation Results

The Fast-SSC decoder has been implemented and verified an FPGA using different
quantization schemes. It was noted in [13] that using 7-bit and 5-bit words, including
one fractional bit, to represent internal and channel LLR values, respectively, was
sufficient to match the performance of the floating-point decoder. This scheme is
denoted (7, 5, 1). A (6, 4, 0) scheme was shown to offer excellent performance as
well. The implementation results for codes of length 32768 are shown in Table 3.7.

Memory bandwidth, constrained by P, has a significant impact on throughput:
for the (32768, 29492) code with (6, 4, 0), the information throughput values were
547 and 1,081 Mbps for P = 64 and 256, respectively. The quantization scheme
used did not affect throughput significantly—throughput was degraded from 1,081
to 1,077 Mbps when switching to the (7, 5, 1) scheme—but had a significant impact
on memory resources.

3.6 Implementation Comparison

When comparing the different polar decoder implementations, it is important to
ensure that they are capable of sustaining their throughput. The decoders must
support loading-while-decoding or their throughput will be degraded. The easiest
method to implement loading-while-decoding is to buffer additional codewords.
In this section, the RAM numbers were modified where needed to ensure that the
decoders can buffer an additional codeword. This is indicated using a * next to the
algorithm name in Table 3.8. In that table it can be seen that TP-SC uses the fewest
resources and has the highest clock frequency; while Fast-SSC has the highest

3 Implementation of Polar Decoders 45

Table 3.8 Post-fitting and information throughput results for a (16384,
14746) code on the Altera Stratix IV EP4SGX530KH40C2

RAM f Info. T/P
Algorithm P LUTs Reg. (bits) (MHz) (Mbps)

SP-SC*[4] 64 29,897 17,063 265,984 113 48

TPSC*[12] 128 7,815 3,006 196,480 230 106

Fast-SSC[13] 128 13,388 3,688 273,740 106 824

Fast-SSC[13] 256 25,219 6,529 285,336 106 1,091

throughput. The high frequency of TP-SC is a result of the aggressive buffering
using registers. Fast-SSC uses 1.6, 1.2, and 1.4 times the LUTs, registers, and
RAM compared to TP-SC, respectively, but has 7.8 times the throughput when both
decoders use P = 128. Increasing P to 256 in the Fast-SSC increases the LUTs and
registers used significantly, and increases the information throughput to 1,091 Mbps.

References

1. Arikan E (2009) Channel polarization: a method for constructing capacity-achieving codes for
symmetric binary-input memoryless channels. IEEE Trans Inf Theory 55(7):3051–3073

2. Sasoglu E, Telatar E, Arikan E (2009) Polarization for arbitrary discrete memoryless channels.
In: Proceedings of the IEEE information theory workshop ITW 2009, pp 144–148

3. Mori R, Tanaka T (2010) Channel polarization on q-ary discrete memoryless channels by
arbitrary kernels. In: Proceedings of the (ISIT) symposium on IEEE international information
theory, pp 894–898

4. Leroux C, Raymond A, Sarkis G, Gross W (2013) A semi-parallel successive-cancellation
decoder for polar codes. IEEE Trans Signal Process 61(2):289–299

5. Zhang C, Yuan B, Parhi K (2012) Reduced-latency SC polar decoder architectures. In: 2012
IEEE International Conference on Communications (ICC), pp 3471–3475

6. Hussami N, Urbanke R, Korada SB (2009) Performance of polar codes for channel and source
coding. In: Proceedings of the IEEE international symposium on information theory ISIT 2009,
pp 1488–1492

7. Pamuk A (2011) An FPGA implementation architecture for decoding of polar codes. In: 2011
8th international symposium on wireless communication systems (ISWCS), pp 437–441

8. Leroux C, Raymond AJ, Sarkis G, Tal I, Vardy A, Gross WJ (2012) Hardware implementation
of successive-cancellation decoders for polar codes. J Signal Process Syst 69(3):305–315

9. Mishra A, Raymond A, Amaru L, Sarkis G, Leroux C, Meinerzhagen P, Burg A, Gross W
(2012) A successive cancellation decoder ASIC for a 1024-bit polar code in 180nm CMOS.
In: 2012 IEEE Asian solid state circuits conference (A-SSCC), pp 205–208

10. Alamdar-Yazdi A, Kschischang FR (2011) A simplified successive-cancellation decoder for
polar codes. IEEE Commun Lett 15(12):1378–1380

11. Sarkis G, Gross WJ (2013) Increasing the throughput of polar decoders. IEEE Commun Lett
17(4):725–728

12. Pamuk A, Arikan E (2013) A two phase successive cancellation decoder architecture for polar
codes. In: Proceedings of the IEEE international symposium on information theory ISIT 2013,
July 2013, pp 1–5

13. Sarkis G, Giard P, Vardy A, Thibeault C, Gross WJ (2014) Fast polar decoders: algorithm and
implementation. IEEE J Sel Areas Commun (JSAC)

Chapter 4
Parallel Architectures for Turbo Product
Codes Decoding

Camille Leroux, Christophe Jego, and Patrick Adde

4.1 Introduction

High throughput telecommunication systems such as long-haul optical transmission
or passive optical networks require powerful error correcting codes in order to
increase their optical budget. In such speed-constrained applications, the classical
(255,239) Reed–Solomon code is gradually being replaced by more powerful
forward error correction (FEC) schemes. In [1], turbo product codes (TPC) [2]
are seen as the third generation FEC for optical transmission systems. TPC tend
to be good candidates for emerging optical systems. The inherent parallel structure
of the product code matrix confers to TPC a good ability for parallel decoding.
Nevertheless, enhancing parallelism rate rapidly induces the use of a prohibitive
amount of memory. Many architectural solutions were proposed to efficiently
exploit parallelism in TPC decoding. Moreover, TPC decoding provides several
level of parallelism and it is not always clear which level is the most efficient. In this
chapter, several parallelism level of TPC decoding are identified. Each parallelism
level is characterized in terms of the potential hardware efficiency that it may bring
to the architecture. From this design space exploration, we focus on one efficient
architecture that exploits different levels of parallelism.

After a brief introduction of the TPC coding and decoding concept in Sect. 4.2, a
straightforward hardware implementation of a TPC decoder is presented in Sect. 4.3
in order to highlight the inherent problem of parallelization in TPC decoding.

C. Leroux • C. Jego (�)
IMS Laboratory, Bordeaux-INP, France
e-mail: camille.leroux@ims-bordeaux.fr; christophe.jego@ims-bordeaux.fr

P. Adde
LabSticc, TELECOM Bretagne, France
e-mail: patrick.adde@telecom-bretagne.eu

© Springer International Publishing Switzerland 2015
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7__4

47

mailto:camille.leroux@ims-bordeaux.fr
mailto:christophe.jego@ims-bordeaux.fr
mailto:patrick.adde@telecom-bretagne.eu

48 C. Leroux et al.

Then, Sect. 4.4 defines and characterizes all the parallelism levels in TPC decoding.
A review of existing architectural solutions is given before the detailed description
of a TPC decoder architecture without any interleaving resource. This TPC decoder
includes a fully parallel SISO decoder architecture which is also described in detail.
Finally, Sect. 4.7 gives some synthesis results and demonstrates the efficiency of the
proposed TPC decoder by comparison with current TPC decoders.

4.2 TPC Coding and Decoding Principles

The concept of product codes is a simple and efficient method to construct
powerful codes with a large minimum Hamming distance d using cyclic linear block
codes [3]. Despite the existence of several other decoding algorithms [4], the Chase–
Pyndiah algorithm [2] is known to give the best trade-off between performance
and decoding complexity [5]. Product codes were adopted in 2001 as an optional
correcting code system for both the up link and down link of the IEEE 802.16
standard (WiMAX) [6].

4.2.1 Product Codes

Let us consider two systematic cyclic linear block codes C1 having parameters
(n1,k1,d1) and C2 having parameters (n2,k2,d2) where ni, ki, and di (i = 1,2) stand
for code length, code dimension, and minimum Hamming distance, respectively. As
shown in Fig. 4.1, the product code P =C1 ×C2 is obtained by (a) placing (k1 ×k2)
information bits in a matrix of k1 rows and k2 columns, (b) coding the k1 rows using
code C2, and (c) coding the n2 columns using code C1.

Considering that C1 and C2 are linear block codes, n1 rows are codewords of C2

exactly as all n2 columns are codewords of C1 by construction. Furthermore, the

Fig. 4.1 Product code matrix
structure

4 Parallel Architectures for Turbo Product Codes Decoding 49

parameters of the resulting product code CP(np,kp,dp) are given by np = n1 × n2,
kp = k1 × k2, and dp = d1 × d2. The code rate Rp is given by Rp = R1 ×R2. Thus,
it is possible to construct powerful product codes using two linear block codes. In
the following sections, without loss of generality, we consider a squared product
code, meaning that n1 = n2 = n. The most commonly used component codes are
Bose Chaudhuri Hocquenghem (BCH) codes. These codes are an infinite class of
linear cyclic block codes that have capabilities for multiple error detection and
correction. Reed–Solomon (RS) codes can also be used as component codes. RS
codes are non-binary codes in which symbols are represented on MRS = log(n+1)
bits while MBCH = 1. As discussed later, RS-TPC present several advantage in terms
of parallelism and decoding performance [7, 8]. Without loss of generality, in the
remaining of the chapter, unless specified otherwise, we assume that M = 1.

4.2.2 Iterative Decoding of Product Codes

Product codes usually have high dimension which precludes Maximum-Likelihood
(ML) soft-decision decoding. Yet, the particular structure of this code family lends
itself to an efficient iterative “turbo” decoding algorithm offering close-to-optimum
performance at high enough signal-to-noise-ratios (SNRs). The Turbo-decoding of
product codes consists in successively alternate decoding rows and columns using
soft-input soft-output (SISO) decoders. Repeating this soft-decision decoding dur-
ing several iterations enables the reduction of the bit error rate (BER). Each decoder
has to compute soft information R′

it+1 from the channel received information R
and the information R′

it computed during the previous half-iteration. Despite the
existence of several other decoding algorithms [4], the Chase–Pyndiah algorithm is
known to give the best trade-off between performance and decoding complexity [5].
The Chase–Pyndiah SISO algorithm for a t = 1 BCH code [2, 9] is summarized
below. t represents the maximum number of correctable errors for the component
code.

1. Search for the L least reliable bits in the previous half-iteration output vector R′
it

such that λi represents the ith minimum, 1 < i < L.
2. Compute the syndrome S(t0) of R′

it ,
3. Compute the parity of R′

it ,
4. Generate p test patterns τi obtained by inverting some of the L least reliable bits

(p ≤ 2L).
5. For each test pattern (1 ≤ i ≤ p−1)

• Compute the syndrome S(τi),
• Correct the potential error by inverting the bit position S(τi),
• Recompute the parity considering the detection of an error and the parity

of R′
it ,

• Compute the square Euclidean distance (metric) Mi between R′
it and the

considered test pattern τi.

50 C. Leroux et al.

6. Select the Decided Word (DW) among test patterns having the minimal metric
(MDW) and choose Cw competitors codewords ci (1 < i <Cw) having the second,
third, . . . ,. ith minimum metric.

7. For each symbol of the DW,

• Compute the new reliability Fit :

Fit =

⎧
⎪⎪⎨
⎪⎪⎩

βit = (|R′
it |+∑L

i=1 λi)−min(Mi)when no competitor exists

Fit = min2(Mi)−min(Mi)otherwise,

• Compute extrinsic information Wit = Fit −R′
it ,

• Add extrinsic information (multiplied by αit) to the channel received word,
R′

it+1 = R+αitWit .

As explained in [10], decoding parameters L, p, Cw and the number of
quantization bits q of the soft information have a considerable effect on decoding
performance and complexity. The αit coefficient allows decoding decisions to be
damped during the first iterations. βit is an estimation of Fit when no competitor
exists. As detailed in [11], it is based on the least reliable bits value.

Figure 4.2 shows the BER performance of various t = 1 BCH and RS codes.
In general, for a fixed t value, the code rate increases with N. This explains why
the BER curves are shifting to the right when N increases. However, for large
codelengths, the slope is steeper.

Fig. 4.2 BER performance of various BCH and RS product codes on an AWGN channel

4 Parallel Architectures for Turbo Product Codes Decoding 51

4.3 Straightforward Hardware Implementation
of a TPC Decoder

4.3.1 Global TPC Decoder Architecture

In a straightforward implementation of a TPC decoder, the channel information
matrix R (consisting in n2 q-bits LLRs) is stored in a memory. As shown in
Fig. 4.3, since the SISO decoder reads RA during the whole decoding process, this
memory has to be duplicated so that the next channel information matrix RB can
be written while the decoder processes the current matrix RA. A single sequential
SISO decoder reads information from the R memory and performs the decoding
process by updating the R′ messages iteratively. Assuming I decoding iterations,
the SISO decoder should update 2× I × n2 LLRs.1 In the most favorable case, let
us assume that the SISO decoder is able to update one LLR per clock cycle, the
resulting throughput is T = f/(2In2), where f is the clock frequency. For a (32,26)2

BCH code with six decoding iterations and a clock frequency of 500 MHz, the
resulting throughput is 40 Kb/s. This kind of architecture is clearly too slow for high
throughput applications. In this chapter, various methods to enhance the parallelism
are reviewed.

4.3.2 Sequential SISO Decoder Architecture

The TPC decoder architecture described in Fig. 4.3 includes a SISO decoder that
sequentially process incoming LLRs. Figure 4.4 shows the structure of such a
sequential SISO decoder. It is subdivided into four units.

The reception unit

• computes the syndromes of the incoming vectors,
• selects the p least reliable bits.

Fig. 4.3 Sequential
implementation of a TPC
decoder

SISOChannel

1A full iteration corresponds to a row-wise decoding followed by a column-wise decoding, which
explains why the R′ matrix has to be updated 2I times.

52 C. Leroux et al.

Test
patterns

Metrics
computing

RAM controler

RAM R / R’

Syndrome

+

+

×

Reliability
computing

Q

Least Reliable
computing

Scheduling

R’it

Rit

L

S(t0) Mi
Dw-Cw

Dw-Cw
sorting

Rit+1

R’it+1

Fit

Wit

α it

αitWit

R’it+1

Rit+1

RECEPTION PROCESSING EMISSION

MEMORY

Fig. 4.4 Architecture of a SISO decoder

The processing unit

• determines the test vectors by inverting some of the least reliable bits,
• computes the metric of each test vector,
• selects the most likely test vector (the one with the minimum soft-distance)
• selects the Cw concurrent test vectors (2nd minimum, 3rd minimum, etc.).

The emission unit

• computes the new reliability Fit of each outcoming bit of the considered vector,
• computes and ponderates the extrinsic information αitWit ,
• generates the soft-output LLRs for the next half-iteration R′

it+1.

The memory unit stores the channel information and the soft information for the
current half-iteration.

In terms of latency, the syndrome and the least reliable bits can only be computed
once the whole n×-LLR vector has been shifted in. Only then, the test vectors
processing and the soft-output computation can be performed. This means that it
takes at least n clock cycles to read R and [R′

it], 1 clock cycle to perform the test
vector computation,2 and n clock cycles to write back the n LLRs in the R′ memory.
This means that n LLRs require at least 2n+ 1 clock cycles to be updated which
corresponds to a throughput of T = f/(4In2) (we assume that n
 1). Taking the
SISO latency into account, the previously estimated 40 Kb/s TPC decoder has in
fact a throughput of only 20 Kb/s.

The hardware complexity of a sequential SISO decoder is rather low, thanks
to its serial-processing nature. The SISO decoder designed in [10, 12] has an
equivalent complexity of a few thousands gates. The computational complexity of
the SISO decoder depends on the choice of algorithmic parameters. As mentioned
in Sect. 4.2.2, the Chase–Pyndiah algorithm includes parameters L, p,Cw,q which
impact on both the decoding performance and the computational complexity of the

2This assume that one is able to design a parallel processing unit that computes and select metrics
in a single clock cycle.

4 Parallel Architectures for Turbo Product Codes Decoding 53

TPC decoder. Depending on the application one should identify a parameter set that
enables sufficient decoding performance while minimizing the hardware footprint of
the resulting SISO decoder. In [10,12], a case of study is detailed for a (32,26) BCH
code SISO decoder. Depending on the parameter set that is selected, the complexity
of a SISO decoder varies by a factor 2. This shows that the algorithmic parameter
set is an important factor to take into account when designing a TPC decoder.

4.4 From Parallelism Levels to Parallel Architectures

An architecture can be characterized by different metrics such as throughput,
latency, hardware complexity, power consumption, routing density, etc. In this study,
we aim at high speed architectures with low hardware complexities. Consequently,
the performance is measured with throughput (T) while the cost function is the
hardware area (A). In such a context, the efficiency of an architecture is defined as
the throughput/complexity ratio : E = T/A. An efficient architecture would process
a high data rate with a low hardware area.

The parallelism of an architecture can be defined as “the ability of the system
to process several data in parallel.” We formally define the parallelism P of a
decoder as the number of bits that can be processed/decoded in a single clock cycle.
The parallelism directly impacts the performance of an architecture. In order to
quantify the benefit/disadvantage brought by the application of a parallelism Pi to
an architecture, we define three metrics, the speed gain GS, the area ratio RC, and
the efficiency gain GE :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GS(Pi = p) =
TPi=p

TPi=1

RA(Pi = p) =
APi=p

APi=1

GE(Pi = p) =
EPi=p

EPi=1
= GS(Pi=p)

RA(Pi=p)

A parallelism level Pi is considered to be effective if GS(Pi) > 1, while it is
efficient when GE(Pi) > 1 ⇐⇒ GS(Pi) > RA(Pi). One should notice that several
parallelism levels may be combined but it may also be impossible to associate
them. The exploitations of several parallelism levels at the same time depend on
the architecture that implements these levels. In the remaining of this section, all
parallelism levels in TPC decoding are detailed and characterized from the highest
level (frame parallelism) down to the lowest level (intra-symbol parallelism). For
each level, we provide a condition that makes the use of the considered level
efficient. We also provide some reference of existing TPC decoders that use these
parallelism levels.

54 C. Leroux et al.

4.4.1 Frame Parallelism

The highest level of parallelism can be observed at the frame level and this is
known as frame parallelism. It is a form of spatial parallelism and is suitable to any
decoding scheme. In TPC decoding, a frame is defined as a product code matrix. The
frame parallelism consists in duplicating the processing resources, e.g., the turbo-
decoder. By using this parallelism level in TPC decoding, Pf rame matrices can be
decoded at the same time. Considering Pf rame turbo-decoders that have the same
throughput T0, the speed gain and area ratio are equivalent: GS = RA = Pf rame.
Consequently the efficiency does not increase with Pf rame: GE = 1. Actually, this
level of parallelism is only limited by the affordable silicon area. Although frame
parallelism makes TPC decoder architecture more effective, it does not improve its
efficiency. Moreover some buffering/multiplexing resources are needed to broadcast
incoming LLRs to the different decoders. The only advantage of frame level
parallelism is the design time since it can be implemented by a straightforward
duplication of resources on the silicon.

4.4.2 Iteration Parallelism

In a sequential TPC decoder implementation, each iteration is performed by the
same SISO decoder that reads and writes data in the Interleaving Memories
(IM). It is however possible to exploit the iteration parallelism by duplicating
the elementary decoder and the associated memories in a pipelined structure. The
memories have to be duplicated so that all SISO decoders can work in parallel. The
maximum depth of such a structure equals to the maximum number of iteration itmax.
Iteration parallelism is a type of temporal parallelism. Here again, the throughput
benefit equals to the complexity ratio : GS = RA = Pit . It means that the iteration
parallelism does not improve efficiency. Figure 4.5 shows a pipelined TPC decoder.
It includes I stages; each of which processing one frame. This explains why the
channel memory R has to be duplicated. It is also possible to implement less than

SISO1Channel SISO2

Fig. 4.5 Pipelined TPC architecture

4 Parallel Architectures for Turbo Product Codes Decoding 55

I stages and to loop back on the hardware resources. The iteration parallelism was
applied in [7] where five iterations are duplicated over five different FPGA devices.
It enables to reach a throughput of 5 Gb/s.

4.4.3 Sub-block Parallelism

In a product code matrix, each row (column) is encoded independently from
the others (See Sect. 4.2.1). This interesting property may also be used during
the decoding process, where each row (column) is decoded independently. In an
implementation prospective, it means that more than one decoder can be assigned to
row (column) decoding. Considering a product code matrix of size n2, a maximum
number of n decoders can be duplicated for row (column) decoding. We designate
this parallelism level as sub-block parallelism Psb. Assuming that the duplication
of SISO decoders does not induce interleaving resources duplication, GE can be
expressed as:

GE =
Psb(ASISO +Aπ)

PsbASISO +Aπ

GE > 1 ⇐⇒ Psb > 1

ASISO and Aπ are the areas of the SISO decoder and the interleaving resource,
respectively.

In [10,13–15] solutions based on Barrel-shifter and Omega network are proposed
to avoid data access conflicts when Psb = n. This makes the complexity ratio
lower than the speed gain, which means that the efficiency gain of the architecture
increases.

4.4.3.1 Barrel Shifter

In a straightforward application of sub-block parallelism, one simply duplicates the
SISO decoders. The decoder is then composed of Psb SISO decoders, a memory
storing n2 q-bits LLRs from the channel R and one memory storing n2 q-bits LLRs
for the matrix [R′

it]. However, this architecture is limited by memory access conflicts.
Depending on the considered iteration, the Psb SISO decoders need to access a total
of Psb data either row-wise or column-wise. In [13], this problem is overcome for
Psb = n: a barrel shifter is introduced between SISO decoders and the interleaving
register file in order to allow row/column-wise data accesses of Psb data in parallel
as shown in Fig. 4.6. This comes at the extra cost of a barrel-shifter with area of
O(n logn). This solution enables to use the sub-block parallelism at its highest
rate only: Psb = n. The extra-complexity consists in a simple barrel shifter with a

56 C. Leroux et al.

SISO

SISO

SISO

SISO

Register file Register file

Register file

Register file

Register file

Register file

Register file

Register file B
ar

re
l s

hi
fte

r

B
ar

re
l s

hi
fte

r

Fig. 4.6 Barrel-shifter-based parallel TPC decoder

Elementary
decoder
for row 1

Elementary
decoder
for row 2

Elementary
decoder
for row n

C
on

ne
ct

io
n

ne
tw

or
k

Elementary
decoder for
column 1

Elementary
decoder for
column 2

Elementary
decoder for
column n

C
on

ne
ct

io
n

ne
tw

or
k

Elementary
decoder
for row 1

Elementary
decoder
for row 2

Elementary
decoder
for row n

C
on

ne
ct

io
n

ne
tw

or
k

Elementary
decoder for
column 1

Elementary
decoder for
column 2

Elementary
decoder for
column n

C
on

ne
ct

io
n

ne
tw

or
k

A module for one iteration

Fig. 4.7 Omega network-based parallel TPC decoder without interleaving memory

complexity of O(n log(n)). However, it still includes a large amount of interleaving
memory for storing R′. This is especially problematic if one wants to use iteration
parallelism where the interleaving resources have to be duplicated.

4.4.3.2 Omega Network

In [10, 14, 15], it is suggested to replace the interleaving memory by a simple
interconnection network (Omega network). This is made possible by the cyclic
nature of the component codes (BCH or RS codes): applying a circular shift on
a codeword ends up in another codeword. In terms of decoding, this means that the
decoding process can start with any bits in the codeword. The decoding process
is then applied on a shifting diagonal. This avoids data access conflicts as long
as data are correctly routed from one iteration to another as shown in Fig. 4.7.

4 Parallel Architectures for Turbo Product Codes Decoding 57

The interleaving-memory-less architecture was prototyped on an FPGA device [10].
This TPC decoder also has a maximal sub-block parallelism (Psb = n), while
the hardware complexity of the interleaving resources is drastically reduced since
interleaving memory is no more needed.

4.4.4 Symbol Parallelism

A finer-grained parallelism is the symbol parallelism. It can be defined as the ability
of a SISO decoder, to process Psym symbols of the same sub-block (row or column)
in parallel. In a sequential SISO decoder, input data are shifted in a serial manner.
Every incoming symbol implies some internal metrics to be updated (syndrome,
least reliable bits, . . .). By increasing Psym, some parts of the decoder datapath have
to be duplicated, (e.g., the reliability computation stage). However, the other blocks,
such as the test pattern metric computation, or the competitor vector determination
block, remain identical when Psym increases. Consequently, the area ratio is lower
than the speed gain : GE > 1. For an architecture that avoid interleaving resource
duplication, the following inequality is verified:

GE > 1 ⇐⇒ ADEC(Psym = p)< p×ADEC(Psym = 1)

ADEC(Psym = p) is the hardware complexity of a SISO decoder with a symbol
parallelism equal to p. Increasing Psym also means that the interleaving memory
should be able to read/write more than one data during the same clock cycle. In
[12, 16] solutions were provided in order to exploit this parallelism while avoiding
interleaving memory duplication. Logic synthesis results confirm that the efficiency
increases with Psym.

4.4.4.1 Memory Merging

In [16] an architecture that uses symbol parallelism in conjunction with sub-block
parallelism is proposed. The idea is to store several LLRs at the same address and to
design elementary decoders able to process Psym =m symbols during the same clock
period (denoted as m-decoders). A half-iteration structure includes n/m decoders
each decoding m symbols in one clock period and an interleaving memory of size
4×q×M×n2. This scheme actually exploits symbol parallelism on one dimension
of the matrix and sub-block parallelism on the other dimension in such a way that
Psb = Psym = m. The resulting throughput is O(m2) while the overhead factor of the

decoder complexity is ∼ m2

2 . In this work, the maximum reached parallelism rate is
m2 = 64, with m = 8 SISO decoders.

58 C. Leroux et al.

a b

Fig. 4.8 Omega network-based parallel TPC decoder (a) and fully parallel SISO-based TPC
decoder architecture (b)

4.4.4.2 Fully Parallel SISO Decoder

In [12], an architecture with Psym = n is proposed. A fully parallel SISO decoder
enables to decode a whole column in a single clock cycle after a few cycles of
latency. The n generated LLRs are then directly fed into n sequential SISO decoders
which perform row decoding. In such an architecture the interleaving resources are
simply removed since generated data are immediately consumed. Logic synthesis
results show the higher efficiency of this architectural solution in comparison with
the previously described ones. This can be easily explained by the fact that the
complexity of one fully parallel SISO decoder is lower than n SISO decoders. This
TPC decoder architecture will be described in detail in Sect. 4.5 (Fig. 4.8).

4.4.5 Intra-symbol Parallelism

In TPC decoding, BCH codes are often used for their good decoding performance/-
complexity trade-off. In [7, 17], it was shown that using RS codes as component
codes can provide similar decoding performance with a reasonable computational
complexity overhead.

4 Parallel Architectures for Turbo Product Codes Decoding 59

From an architectural point of view, the non-binary structure of RS codes enables
to exploit an extra parallelism level, the intra-symbol parallelism Pis. In an RS code
of size n, a symbol consists in M = log(n + 1) bits (see Fig. 4.1). An RS-SISO
decoder can either shift-in symbols bit by bit or symbol by symbol. It provides a
maximal parallelism rate of max(Pis) = log(n+1).

Similarly to the symbol parallelism, the resource sharing within the RS-SISO
decoder increases the efficiency. However the efficiency gain provided by Pis is
hard to estimate because it is highly related to the internal architecture of the SISO
decoder. Nevertheless, it is possible to give a condition that guarantees GE(Pis)> 1:

A(Pis > 1)< Pis ×A(Pis = 1)

In [7], a (31,29)2 RS turbo product code decoder was designed and prototyped. It
has an architecture similar to [10] but it includes RS SISO decoders that process
one RS symbol per clock cycle. Moreover, the iteration parallelism is used in such a
way that the decoding iterations are duplicated on the 5 FPGA devices. The resulting
TPC decoder reaches 5 Gb/s.

4.4.6 Comparison of Parallelism Levels

Table 4.1 summarizes benefits of parallelism levels in TPC decoding. For each
parallelism Pi, the maximum speed gain, the efficiency gain, and the Pi value
that maximizes the efficiency are given. Frame parallelism is only limited by
technological issues (e.g., silicon area). This parallelism improves the effectiveness
of the architecture; it is straightforward to implement but it does not improve
efficiency. Iteration parallelism has the same impact but is upper bounded by the
maximum number of iteration required by the decoding process.

Application of lower levels of parallelism (Psb,Psym, and Pis) improves the
architecture efficiency. It is even maximized for highest parallelism value. However,
the use of these parallelism levels is not as straightforward as Pf rame and Pit . It
requires some specific schedulings and/or implementation strategies.

The TPC decoder architectures mentioned in this section use different levels
of parallelism and end up with different hardware efficiency. Table 4.2 provides
a comparison of the state-of-the-art TPC decoders in terms of parallelism levels and

Table 4.1 Comparison of
parallelism levels in TPC
decoding

Pi max(GS) GE arg(max(E))

Pf rame ∞ 1 [0;+∞[

Pit ITc 1 ITc

Psb n ≥1 n

Psym n ≥1 n

Pis log(n+1) ≥1 log(n+1)

60 C. Leroux et al.

Table 4.2 Current TPC decoder architecture comparison

Architecture Pi Aπ (1/2iter) ADec(1/2iter)

[13] Psb = n O(2qn2)+O(2n log(n)) O(n)

[10, 14] Psb = n O(n log(n)) O(n)

[16] Psb = m;Psym = m O(2qn2) O(m2/2)

[12] Psb = 1;Psym = n /0 < O(n)

hardware area. For each reference, we provide the exploited parallelism levels. The
hardware area is given for a half-iteration for both the interleaving resource and
the decoding resources. All these architectures could use the frame and iteration
parallelism Pf rame and Pit by duplicating resources.

The TPC decoder in [13] uses n sequential SISO decoders, two memories of size
n2 for R and R′ and two barrel shifters. In such an architecture, the critical part is the
memory resources that grow with n2. The TPC decoder in [16] uses a combination of
Psb and Psym. This is the first architecture that uses Psym. However the SISO decoders
were designed for a maximum parallelism of m = 8. Moreover this architecture uses
memory resources for interleaving which dominate the resulting hardware area. In
[10, 14], the sub-block parallelism is fully exploited. The memories and the barrel
shifters are replaced by an omega network to route data from one iteration to the
next. The hardware area is then dominated by the n duplicated SISO decoders.

In [10,13,14,16], the rebuilding of the product code matrix is necessary between
each half-iteration: memory blocks and/or routing networks are used between half-
iterations to read and store R′

it and R. Actually, more than 50 % of the complexity
is in the memory for IM-based architecture, while it represents less than 10 % for
omega network-based structure [14,15]. On the decoding resources side, increasing
the parallelism rate by duplicating computation resources is inefficient since the
reuse of available resources is not optimized. In [12], a fully parallel SISO decoder
is cascaded with n sequential SISO decoders in such a way that interleaving
resources are completely removed. In fact, the internal memory of SISO decoders
is sufficient to store the required R and R′ matrices. The fully parallel SISO decoder
is less complex than n sequential SISO decoders which make this architecture even
more efficient. In the next section, due to its higher efficiency, the TPC decoder
architecture of [12] is described in detail.

4.5 TPC Decoder Architecture Based on Symbol Parallelism

4.5.1 Proposed IM-Free Architecture Using Fully Parallel
SISO Decoder

Considering that one can design a SISO decoder with Psym = n, a product code
matrix can be decoded without any interleaving resource as shown in Fig. 4.9.

4 Parallel Architectures for Turbo Product Codes Decoding 61

Fig. 4.9 Proposed parallel decoding scheduling of a product code matrix

At t = 0, the fully parallel SISO decoder processes the column 1. During the next
clock period, n sequential SISO decoders (Psym = 1) start decoding the first symbol
of each row while the parallel decoder processes the column 2. During the nth clock
period, sequential decoders complete matrix decoding while the parallel decoder
is already decoding the next matrix. Thus, data generated by the parallel decoder
is immediately consumed by the sequential decoders. Consequently, no IM or data
routing resources are required between the fully parallel decoder and sequential
decoders. The resulting architecture is compared to [10, 14] in Fig. 4.10 for one
implemented iteration. This architecture uses row-wise Psb and column-wise Psym.
More specifically, we have:

{
Psym(col) = Psb(row) = n
Psb(col) = Psym(row) = 1

One should notice that Psb(col) = Psym(row) can be further exploited.

62 C. Leroux et al.

a b

Fig. 4.10 Previous TPC decoder architecture (a) and proposed fully parallel SISO-based TPC
decoder architecture (b)

4.5.2 Toward a Maximal Parallelism Rate

Starting from the IM-free architecture presented in the previous section, parallelism
can be further enhanced. Figure 4.11 shows the alternate product code matrix
parallel decoding scheme in which Psb(col) = Psym(row) = m and Psym(col) =
Psb(row) = n. The TPC decoder consists in m× n-decoders for column decoding
and n× m-decoders for row decoding. An m-decoder can process m symbols in
one clock period with 1 ≤ m ≤ n. In such an architecture, the maximum reachable
parallelism rate P = n2 can be achieved by using n fully parallel SISO decoders
for column decoding and n fully parallel SISO decoders for row decoding. Intra-
symbol parallelism can also be exploited to increase the total parallelism to P =
Psb ×Psym ×Pis = n2 log(n). However, all these new architectural solutions require
to design a SISO decoder able to process n symbols in one clock period.

4.6 Architecture of a Fully Parallel Combinational
SISO Decoder

The proposed IM-free TPC decoder architecture requires a fully parallel
combinational SISO decoder. To the best of our knowledge, only sequential SISO
decoders able to process m ≤ n symbols in one clock period have been previously

4 Parallel Architectures for Turbo Product Codes Decoding 63

Fig. 4.11 Alternative turbo decoding scheduling for enhanced parallelism rate

designed. The design of a fully parallel combinatorial SISO decoder is a challenging
issue. In the following section, such an architecture is described.

4.6.1 Algorithmic Parameter Reduction

As explained earlier in Sect. 4.2, the Chase–Pyndiah algorithm includes parame-
ters (L,τp,Cw,q) which impact on both the performance and the complexity of
the turbo decoding. BER simulations were performed with different parameters:
L = {2;3;4;5}, τp = {4;8;16}, Cw = {0;1;2;3}, q = {3;4;5}. Performing eight
iterations, the parameter set P0 = {L = 5,τp = 16,Cw = 3,q = 5} gives the best
BER performance for a high complexity [5]. However, algorithmic simulations
showed that the reduced parameter set P1 = {L = 3,τp = 8,Cw = 0,q = 5}
only induce a performance loss of 0.25 dB at BER= 10−6 while it becomes null
below BER= 10−9. Further reducing these parameters would induce a notable
performance loss. For example by simply reducing the number of test patterns:

64 C. Leroux et al.

Fig. 4.12 Combinatorial version of the fully parallel SISO decoder

P2 = {L = 2,τp = 4,Cw = 3,q = 5}, the performance loss reaches 0.5 dB.
Consequently, using P1 enables the architecture to be simplified at very low
performance lost below BER=10−9.

4.6.2 Fully Parallel SISO Decoder Architecture

Figure 4.12 depicts the architecture of the fully parallel SISO decoder. In the first
attempt a purely combinational architecture was designed. Later, a critical path
study mandated the insertion of pipeline stages within the structure. The SISO
decoder is split into three stages, namely the reception stage, the test pattern
processing stage, and the soft-output computation stage.

4.6.2.1 Reception Stage

The reception stage corresponds to steps (1–3) of the Chase–Pyndiah algorithm
detailed in Sect. 4.2. The syndrome of the incoming vector R′

it can be derived
as S(R′

it) = H × sign(R′
it) where H is the parity check matrix of the BCH code.

A straightforward implementation of such a matrix multiplication is depicted
on Fig. 4.13. The H matrix, the corresponding parity check equations, and the
syndrome S(t0) = [s2,s1,s0] implementation of a BCH(7,4) code are detailed.

It can be noticed that some parity check equations have similar terms. For
instance, the term (x1 ⊕ x0) is used in both s1 and s2 computation. This means
that a reuse of computation resources for an even more efficient implementation is
possible. The parity of the incoming vector R′

it is computed with a similar structure

4 Parallel Architectures for Turbo Product Codes Decoding 65

a c

b

Fig. 4.13 BCH(7,4) code: (a) Parity check matrix. (b) Parity check equations. (c) Syndrome
parallel computation implementation

Fig. 4.14 Sorting network for least reliable bits selection

by “xoring” (n − 1) incoming bits. Selecting the least reliable bits among the
incoming vector in parallel requires a sorting network. Such structures are composed
of interconnected Compare and Select operators (CS). The interconnection scheme
depends on the considered sorting algorithm. Many parallel sorting algorithm are
conceivable [18]. However, most of them are optimized for a complete sorting, while
the Chase–Pyndiah algorithm only requires a partial sorting (i.e., extracting L min-
ima). Consequently we devised a network optimized, in terms of area and critical
path, for the partial sorting of L=3 values among n=32, as depicted in Fig. 4.14.
The structure is based on shuffle networks coupled with local minima computation
blocks. After the first shuffle stage, min1 is in the lower section while the upper
section can either contain min2 or min3 or no minimum. The same reasoning is

66 C. Leroux et al.

applied recursively. After five shuffle stages, the minimum is determined while
five values can still be min2 and min3. A local sorting of five values enables the
determination of min2 and min3 value. This partial sorting network requires 35 CS
operators and 29 minimum elements. The critical path consists of nine comparison
stages.

4.6.2.2 Test Pattern Processing Stage

The test pattern processing stage corresponds to steps (4–5) of the Chase–Pyndiah
algorithm detailed in Sect. 4.2. Instead of being processed sequentially, test patterns
are processed in parallel. The syndrome of each test pattern is computed by adding
S(t0) with the position of the inverted reliable bits. The parity management block
computes the parity of R′

it+1 considering the parity of R′
it and the detection of

an error which is the case when S(ti) �= 0. Metrics of each test pattern are then
computed by adding the contribution of each inverted bit in the current test pattern
(least reliable bits, syndrome corrected bits, and the new parity bit). The minimum
metric is determined in the DW selection block. The structure is a simple minimum
selection tree. The multiplexer selects R′

it(S(ti)) in order to compute test pattern
metrics.

4.6.2.3 Soft-Output Computation Stage

The last stage is a duplication of n soft-output computation blocks. As shown in
Fig. 4.15, this block first computes the new reliability Fit of each symbol. Since no
competitor word is considered, the β value is automatically assigned. The β value
is based on an estimation of the competitor word metric value. It is calculated from
the reliability of the corrected bit and the least reliable bits. Then, the extrinsic
information is computed and damped by the coefficient αit which is devised to
be a power of 2 making the multiplication a simple bit shifting. Finally, the
channel information is added to generate the soft output R′

it+1. Within this block, all
computation are performed in sign and magnitude format. Other arithmetic format
were explored but the chosen one requires less computation resources than others.

Fig. 4.15 Soft-output computation stage

4 Parallel Architectures for Turbo Product Codes Decoding 67

4.7 Comparison with Existing TPC Decoders

4.7.1 Logic Synthesis Results of a BCH(32,26) SISO Decoder

In Sect. 4.4, we demonstrated that exploiting symbol parallelism is efficient if
ADEC(Psym = p) < p × ADEC(Psym = 1). In order to verify this inequality, we

compare one parallel (Psym = n) BCH SISO decoder vs n× sequential (Psym = 1)
SISO decoders. Five versions of the BCH(32,26) parallel SISO decoder that have
from one to five pipeline stages were designed. The one-pipeline stage version
is a fully combinational architecture with register banks only at the input and
output stages. Table 4.3 summarizes logic synthesis results of the five different
parallel SISO decoders and compares them with n = 32 duplicated sequential SISO
decoders. s is the number of pipeline stages inserted in the SISO decoder, fmax is the
maximum frequency reached during logic syntheses. The throughput T is calculated
such that T = P× fmax, A represents the area of the design in equivalent gate count,
and E is the efficiency: E = T

A . Logic syntheses were performed using Synopsys
Design Compiler with an ST-microelectronics 90 nm CMOS process. The area is
transposed in logic gate count. One equivalent logic gate corresponds to the area of
a two-input NAND gate. It enables a more technology-independent measure of the
hardware complexity.

As expected, the maximum frequency of the combinational decoder (s = 1) is
lower than a sequential version. However, by inserting pipeline stages inside the
combinatorial structure, an equivalent frequency is reached with s = 5. For this
last version, the throughput is even higher than n sequential SISO decoders. The
hardware cost of the pipeline stages insertion depends on registers location in the
decoder architecture. This is the reason why A(s = 4)< A(s = 3). In this particular
case, having s = 4 pipeline stages enables register stages to be assigned at regular
intervals, for a lower hardware cost. In terms of efficiency, a parallel SISO decoder
can reach the same throughput as n sequential SISO decoders with a six times lower
complexity. The efficiency gain increases with s.

These synthesis results demonstrate the higher efficiency of parallel SISO
decoding for the code BCH(32,26). Now, if one considers larger code with the

Table 4.3 Comparison of parallel and sequential BCH(32,26) SISO decoder
performance

Parallel SISO decoder (Psym = 32)
32 sequential SISO
decoders (Psym = 1)

s 1 2 3 4 5 3

fmax(MHz) 125 333 500 500 714 700

T (Gb/s) 4.0 10.7 16.0 16.0 22.9 22.4

A (Kgates) 18 26 31 26 34 200

E(Mb/s/gate) 0.15 0.27 0.34 0.41 0.44 0.07

GE 2.1 3.9 4.9 5.9 6.3 1

68 C. Leroux et al.

same correction power (i.e., BCH(64,57), BCH(128,120)), the complexity of the
reception stage and the soft-output computation stage would grow linearly with the
code size n. However the complexity of the test pattern processing stage would only
increase linearly with p < n. Consequently, the overall complexity of the parallel
SISO decoder is lower than a duplication of n sequential SISO decoders. It confirms
that a fully parallel SISO decoder enables a better reuse of computation and memory
resources and makes the whole TPC decoder more efficient.

One should notice that, for higher correction power (t > 1), the algebraic
decoding requires more complex algorithms such as Berlekamp–Massey algorithm
[19, 20] which make the decoder complexity significantly higher. This is the reason
why t = 1 BCH codes were selected is this study.

4.7.2 Comparison with Existing TPC Decoder Architectures

Table 4.4 compares hardware performance of existing TPC decoders architectures
in an ultra-high-throughput context (T > 10Gb/s). For each architectural solution,
the decoder main features, the targeted code, the levels of parallelism that were
used in order to reach T = 10Gb/s, the resulting total parallelism (Ptotal = ∏i Pi),
the maximum number of iteration itmax are given. We consider that one iteration is
actually implemented. The resulting throughput is T = Ptotal × fmax/itmax. Finally,
the gate count (A), the efficiency (E = T/A), and the achieved coding gain at
BER=10−9 are given. Such a low BER is usually targeted in very high speed
application (e.g., data transmission over Passive Optical Networks).

For a fair comparison, architectures described in [7, 13, 14, 16] were synthesized
with the same technology: ST Microelectronics, CMOS 90 nm with a clock fre-
quency fmax = 500MHz. For the remaining architectures, we gathered information
from the published papers and technical reports.

Two versions of the Psym-based TPC decoder were synthesized. The first one
consists in four parallel SISO decoders together with 32 Psym = 4-SISO decoders.
The reached throughput is then sufficient for 10 Gb/s applications. The second
version uses only fully parallel SISO decoder, 32 of such decoders are duplicated
for each half-iteration. The maximum throughput is 85 Gb/s for the best efficiency.
This architecture uses row-wise Psb and column-wise Psym. The barrel-shifter-based
solution [13] can achieve 10 Gb/s with 2.6 Mgates. In order to reach a sufficient
parallelism level, it was necessary to use frame parallelism. The efficiency of this
approach is six times lower than the Psym-based TPC decoders. This low efficiency
is mainly due to the use of interleaving memory.

For the same reason, the TPC decoder with multi-access data [16] has a low
efficiency and also requires the use of frame parallelism to achieve 10 Gb/s.

In [14], the elimination of interleaving memories improves the efficiency but the
maximum parallelism rate is limited by the code size n. This makes the use of frame
parallelism mandatory in an ultra high speed context.

4 Parallel Architectures for Turbo Product Codes Decoding 69

Ta
bl

e
4.

4
C

om
pa

ri
so

ns
of

st
at

e-
of

-t
he

-a
rt

T
PC

de
co

de
rs

C
od

e
P i

P t
ot

al
it m

ax

T
A

re
a

E
C

od
in

g
ga

in
(d

B
)

D
ec

od
er

fe
at

ur
es

(G
b/

s)
(M

ga
te

s)
(K

b/
s/

ga
te

)
@

B
E

R
=

10
−9

T
hi

s
w

or
k

B
C

H
(3

2,
26

)2
P s

ym
=

4,
P s

b
=

32
12

8
6

10
.7

0.
4

26
.8

8.
0

B
C

H
(3

2,
26

)2
P s

ym
=

32
,P

sb
=

32
10

24
6

85
.3

2.
0

42
.7

8.
0

B
ar

re
ls

hi
ft

er
+

IM
[1

3]
B

C
H

(3
2,

26
)2

P s
b
=

32
,P

fr
am

e
=

4
12

8
6

10
.7

2.
6

4.
1

8.
4

O
m

eg
a

ne
tw

or
k
+

no
IM

[1
4]

B
C

H
(3

2,
26

)2
P s

b
=

32
,P

fr
am

e
=

4
12

8
6

10
.7

1.
6

6.
7

8.
4

B
C

H
(6

4,
57

)2
P s

b
=

64
,P

fr
am

e
=

2
12

8
6

10
.7

2.
0

5.
4

8.
6

B
C

H
(1

28
,1

20
)2

P s
b
=

12
8

12
8

6
10

.7
2.

7
4.

0
8.

7

M
ul

ti-
da

ta
ac

ce
ss

IM
[1

6]
B

C
H

(3
2,

26
)2

P s
ym

=
8,

P s
b
=

8,
P

fr
am

e
=

2
12

8
6

10
.7

3.
5

3.
1

8.
4

O
m

eg
a

ne
tw

or
k
+

no
IM

[7
]

R
S(

15
,1

3)
2

P i
s
=

4,
P s

b
=

15
,P

fr
am

e
=

2
12

0
6

10
0.

3
33

.3
8.

4

R
S(

31
,2

9)
2

P i
s
=

5,
P s

b
=

31
15

5
6

12
.9

0.
8

16
.1

8.
4

R
S(

63
,6

1)
2

P i
s
=

3,
P s

b
=

63
37

8
6

15
.8

1.
3

12
.1

7.
5

C
om

m
er

ci
al

R
S

de
co

de
r

R
S(

25
5,

23
9)

P i
s
=

8,
P

fr
am

e
=

4
32

X
10

.7
0.

12
89

5.
0

(A
SI

C
S

w
s)

O
m

eg
a

ne
tw

or
k
+

no
IM

[7
]

R
S(

31
,2

9)
2

P i
s
=

5,
P s

b
=

31
15

5
1

35
0.

4
95

5.
2

C
om

m
er

ci
al

T
PC

de
co

de
r

B
C

H
(1

44
,1

28
)

?
?

4
10

.0
18

.0
0.

6
10

(M
its

ub
is

hi
)

xB
C

H
(2

56
,2

39
)

70 C. Leroux et al.

The study in [7] shows that RS-TPC are a practical solution for 10 Gb/s transmis-
sion over optical networks. As we mentioned in Sect. 4.4, using RS codes enables
the use of intra-symbol parallelism. With an omega-network-based architecture,
this decoder also presents good efficiency gain for similar decoding performance.
One should notice that the Psym-based fully parallel architecture is applicable to
RS decoding as well. We expect that the application of intra-symbol parallelism
would further increase the overall efficiency of the TPC decoder. Moreover, when
comparing a single iteration of RS-TPC decoding with a commercial RS(255,239)
code decoder, one can observe that superior efficiency is achieved for slightly better
decoding performance.

Mitsubishi proposed a TPC decoder for 10 Gb/s optical transmissions. The com-
ponent code is a BCH(144,128)xBCH(256,239). These codes are more powerful
than t = 1 BCH codes that are used in this study. However the implementation is
very costly in terms of hardware complexity. Indeed, 18 Mgates are necessary to
implement such a decoder, which makes the efficiency very small. This is the cost
that has to be paid for a 2 dB extra coding gain provided by this TPC decoder.

Conclusion
TPC decoding is a realistic solution for next generation high throughput
optical communications such as long-haul optical transmissions or passive
optical networks. The structure of the product codes makes them very suitable
for parallelization. However the exploitation of some parallelism levels may
not be efficient in terms of throughput/complexity ratio. This is particularly
true when interleaving memory has to be duplicated.

In this chapter, we review and characterize all parallelism levels in TPC
decoding. This analysis helps to better understand and classify existing TPC
decoders. In these TPC decoders, high throughput architecture complexity
is made prohibitive by the amount of memory usually required for data
interleaving and pipelining.

After this design space exploration, we focus on an architecture that jointly
exploits sub-block parallelism and symbol parallelism. This structure enables
any interleaving resource to be removed. This TPC decoder requires a fully
parallel SISO decoder capable of processing n symbols in one clock period.
Such a SISO decoder architecture is described and includes an optimized
parallel sorting network.

ASIC-based logic syntheses confirm the better efficiency of the IM-free
TPC decoder architecture compared to others. Actually, when compared to
other works, the area is reduced while the same throughput is achieved. A
BCH(32,26)2 product code can be decoded at 33.7 Gb/s with an estimated
silicon area of 10μm2 in 65 nm CMOS technology.

4 Parallel Architectures for Turbo Product Codes Decoding 71

References

1. Akita M, Fujita H, Mizuochi T, Kubo K, Yoshida H, Kuno K, Kurahashi S (2002) Third
generation fec employing turbo product code for long-haul dwdm transmission systems. In:
Optical fiber communication conference and exhibit, 2002 (OFC 2002), 17–22 March 2002,
pp 289–290

2. Pyndiah R, Glavieux A, Picart A, Jacq S (1994) Near optimum decoding of product codes. In:
IEEE Global Telecommunications Conference, 1994 (GLOBECOM ’94)

3. Elias P (1954) Error-free coding. IEEE Trans Inf Theory 4(4):29–37
4. Forney GJ (1966) Generalized minimum distance decoding. IEEE Trans Inf Theory IT-

12:125–131
5. Adde P, Pyndiah R, Raoul O (1996) Performance and complexity of block turbo decoder

circuits. In: Proceedings of the third IEEE international conference on electronics, circuits,
and systems, 1996 (ICECS ’96), vol 1, 13–16 October 1996, pp 172–175

6. IEEE Standard for Local and Metropolitan Area networks (2001) Part 16: Air interface for
fixed broadband wireless access systems, December 2001

7. Bidan RL, Leroux C, Jego C, Adde P, Pyndiah R (2008) Reed-solomon turbo product codes
for optical communications: from code optimization to decoder design. EURASIP J Wirel
Commun Netw 2008:909–912

8. Leroux C, Jego C, Adde P, Jezequel M (2008) On the higher efficiency of parallel reed-
solomon turbo-decoding. In: ICECS’08: 15th international conference on electronics, circuits
and system, 31st August - 3rd September, 2008

9. Chase D (1972) A class of algorithms for decoding block codes with channel measurement
information. IEEE Trans Inf Theory IT:170–182

10. Leroux C, Jego C, Adde P, Jezequel M (2007) Towards Gb/s turbo decoding of product code
onto an FPGA device. In: IEEE international symposium on circuits and systems, 2007 (ISCAS
2007), 27–30 May 2007, pp 909–912

11. Adde P, Pyndiah R (2000) Recent simplifications and improvements in block turbo codes. In:
2nd international symposium on turbo codes & related topics, Brest, France, 4–7 September
2000, pp 133–136

12. Leroux C, et al. (2011) Turbo product code decoder without interleaving resource: from
parallelism exploration to high efficiency architecture. J Signal Process Syst 64(1):17–29

13. Chi Z, Parhi K (2002) High speed VLSI architecture design for block turbo decoder. In: IEEE
international symposium on circuits and systems, 2002 (ISCAS 2002), vol 1, 26–29 May 2002,
pp I-901–I-904

14. Jego C, Adde P, Leroux C (2006) Full-parallel architecture for turbo decoding of product codes.
In: Electronics letters, vol 42, 31 August 2006, pp 55–56

15. Leroux C, et al. (2009) High-throughput block turbo decoding: from full-parallel architecture
to FPGA prototyping. J Signal Process Syst 57(3):349–361

16. Cuevas J, Adde P, Kerouedan S, Pyndiah R (2002) New architecture for high data rate
turbo decoding of product codes. In: IEEE global telecommunications conference, 2002
(GLOBECOM ’02), vol 2, 17–21 November 2002, pp 1363–1367

17. Piriou E, Jego C, Adde P, Le Bidan R, Jezequel M (2006) Efficient architecture for Reed
Solomon block turbo code. In: Proceedings of the IEEE international symposium on circuits
and systems, 2006 (ISCAS 2006), 21–24 May 2006, 4 pp

18. Akl SG (1985) Parallel sorting algorithms. Academic, New York
19. Berlekamp ER (1968) Algebraic coding theory. vol 111, New York, McGraw-Hill
20. Massey JL (1969) Shift-register synthesis and bch decoding. IEEE Trans Inf Theory

IT:122–127

Chapter 5
VLSI Implementations of Sphere Detectors

Johanna Ketonen, Markus Myllylä, Yang Sun, and Joseph R. Cavallaro

5.1 Soft Detection

The multiple input multiple output (MIMO) detection problem of an uncoded
system can be considered as a so-called integer least squares problem, which can
be solved optimally with a hard-output maximum likelihood (ML) detector [1].
The ML detector solves optimally the so-called closest lattice point problem by
calculating the Euclidean distances (EDs) between the received signal vector and
points in the lattice formed by the channel matrix and the received signal, and selects
the lattice point that minimizes the Euclidean distance to the received vector [2]. The
ML detection problem can be solved with an exhaustive search, i.e., checking all the
possible symbol vectors and selecting the closest point. The ML detector achieves
a full spatial diversity with regard to the number of receive antennas; however,
it is computationally very complex and not feasible as the set of possible points
increases.

The received frequency domain (FD) signal can be described with the equation
y = Hx + η , where x ∈ C

N is the transmitted symbol vector, η ∈ C
M is a

vector containing circularly symmetric complex Gaussian distributed noise with
variance σ2, H∈C

M×N is the frequency domain channel matrix containing complex
Gaussian fading coefficients, and N is the number of transmit (TX) antennas and M
is the number of receive (RX) antennas. The entries of x are chosen independently

J. Ketonen
Department of Communications Engineering, University of Oulu, Oulu, Finland

M. Myllylä
Nokia Networks, Nokia, Oulu, Finland

Y. Sun • J.R. Cavallaro (�)
ECE Department, Rice University, 6100 Main St., Houston, TX 77005, USA
e-mail: cavallar@rice.edu

© Springer International Publishing Switzerland 2015
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7__5

73

mailto:cavallar@rice.edu

74 J. Ketonen et al.

from a complex QAM constellation Ω with sets of Q transmitted coded binary
information bits b = [b1, . . . ,bQ]

T per symbol.
The ML detector calculates the Euclidean distances (EDs) between the received

signal vector y and lattice points Hx, and returns the vector x with the smallest
distance, i.e., it minimizes

x̂ML = arg min
x∈ΩN

||y−Hx||2, (5.1)

where x is the transmitted signal vector and H is the channel matrix. The ML
detector performs an exhaustive search over all possible lattice points and the
complexity is exponential in N.

The ML detector is optimal for uncoded systems, but for coded systems a
posteriori probabilities (APP) for the decoder are required. Practical communication
systems apply forward error correction (FEC) coding in order to achieve near
capacity performance. The optimal way to process the spatially multiplexed and
FEC coded data sequence would be to use a joint detector and decoder for the whole
coded data sequence and decode the most probable data sequence. The complexity
of the optimal receiver would be prohibitive as it depends on the length of the code
block [3]. The optimal receiver is then approximated with an iterative receiver [4]
with a separate soft-input soft-output (SfISfO) detector and soft in soft out (SISO)
decoder, which exchange reliability information between the units. A structure of
such a receiver is presented in Fig. 5.1.

The MAP detector provides the optimal APPs or log-likelihood ratios (LLR) [5]
for the decoder. Given the interleaving of b and assuming the noise in the system
is white Gaussian and the bits are approximately statistically independent, the a
posteriori LLR for the transmitted bit k can be written as [3]

LD(bk|y) = ln
Pr(bk =+1|y)
Pr(bk =−1|y)

= LA(bk)+ ln

∑
b∈Lk,+1

exp(− 1
2σ2 ||y−Hx||2 + 1

2
bT
[k]LA,[k])

∑
b∈Lk,−1

exp(− 1
2σ2 ||y−Hx||2 + 1

2
bT
[k]LA,[k])

, (5.2)

Soft output
detector

Deinter-
leaver

SISO
Decoder

Inter
leaver

+

+

-

-

LD2

LE2LA1

LD1 LE1 LA2

Fig. 5.1 The iterative receiver

5 VLSI Implementations of Sphere Detectors 75

where Lk,+1
⋂
Bk,+1 is a list of candidate points x. Bk,a is the set of 2NQ−1 bit vectors

having bk = a,a ∈ {−1,1}, b[k] is a subvector of b without bk, and vector LA,[k]
includes all LA values except for bk. The list L can be obtained by neglecting the
insignificant elements in B such that the K candidate points in L include x̂ML and
2MQ > K ≥ 1 [3]. This can be achieved for example with a list sphere detector
(LSD).

The approximation of the logarithm in (5.2) can be calculated using a small look-
up table and the Jacobian logarithm [6]

jacln(a1,a2) := ln(ea1 + ea2) = max(a1,a2)+ ln(1+ exp(−|a1 −a2|)). (5.3)

The Jacobian logarithm in (5.3) can be computed without the logarithm or exponen-
tial functions by storing r(|a1 − a2|) in a look-up table, where r(·) is a refinement
of the approximation max(a1,a2). Max-log approximation further simplifies (5.2)
when the refinement term is left out with negligible loss in performance. With these
simplifications, LD(bk|y)−LA(bk) can be written as

LE(bk|y) = max
b∈Lk,+1

{
− 1

2σ2 ||y−Hx||2 + 1
2

bT
[k]LA,[k]

}

− max
b∈Lk,−1

{
1

2σ2 ||y−Hx||2 + 1
2

bT
[k]LA,[k]

}
. (5.4)

5.1.1 Tree Search Algorithms

The tree search algorithms can be used to solve or approximate the hard output ML
solution with reduced complexity compared to the full-complexity ML detector.
They are based on preprocessing and tree search algorithms and their application to
the MIMO detection problem has gained renewed attention in the literature during
the last few decades [7]. The search over the lattice points can be performed with
a tree structure due to the QR decomposition applied on the channel matrix. The
tree search algorithm then aims to find the shortest path in a search tree formed
by the MIMO channel matrix and the transmitted symbols, i.e., solves the exact
ML solution or suboptimal solution depending on the algorithm search strategy.
The algorithms in the literature are often divided into three categories according to
the search strategy: the breadth-first (BF) search, the depth-first search (DF), and the
metric-first (MF) search [8–10].

A class of algorithms, generally called sphere detectors (SD) [11–15], solve the
ML solution with a reduced number of considered candidate symbol vectors. They
take into account only the lattice points that are inside a sphere of a given radius.
The condition that the lattice point lies inside the sphere can be written as

||y−Hx||2 ≤ C0. (5.5)

76 J. Ketonen et al.

After QR decomposition of the channel matrix H in (5.5), it can be rewritten as
||y′ −Rx||2 ≤ C

′
0, where C

′
0 = C0 − ||(Q′)Hy||2, y′ = QHy, R ∈ C

N×N is an upper
triangular matrix with positive diagonal elements, Q ∈ C

M×N and Q′ ∈ C
M×(M−N)

are orthogonal matrices.
The squared partial Euclidean distance (PED) of xN

i , i.e., the square of the
distance between the partial candidate symbol vector and the partial received vector,
can be calculated as

d(xN
i) =

N

∑
j=i

∣∣∣∣∣y
′
j −

N

∑
l= j

r j,lxl

∣∣∣∣∣
2

, (5.6)

where i = N . . . ,1, y
′
j is the jth element of y′, r j,l is the j, lth element of the matrix

R, xl is the lth element of the candidate vector xN
i , and xN

i denotes the last N − i+1
components of vector x [15].

Hard output sphere detectors may cause significant performance degradation
when used in a system with FEC. However, there are methods proposed in the
literature to modify hard output detectors to give soft reliability information of the
transmitted bits as an output. A tree search algorithm can be used to obtain a list of
candidates L and their Euclidean distances which are used to calculate the APPs LD

of the coded bits in bp. The size of the candidate list and the bounding of the tree
search define the trade-off between complexity and the quality of the soft output
information. List detector algorithms continue the tree search until a defined list is
obtained. LSDs can be used to approximate the MAP detector and to provide soft
outputs for the decoder [3]. The algorithms can often be derived from the sphere
detector algorithms with minor modifications.

A tree search detector structure is presented in Fig. 5.2. The channel matrix H
is first decomposed as H = QR in the QR-decomposition block. The Euclidean
distances between the received signal vector y and the possible transmitted symbol
vectors are calculated in the tree search block. The candidate symbol list L from
the tree search block is demapped to a binary form. The tree search algorithm can
be any algorithm that produces a list of candidate symbols, for example the LSD.
The LLRs are calculated from the list of Euclidean distances in the LLR block.
Limiting the range of LLRs reduces the required list size [16].

Fig. 5.2 The structure of the
tree search detector

QRD
List

sphere
detector

De-map LLR
H Q

R

y

L

d²(L)

b

LA

5 VLSI Implementations of Sphere Detectors 77

5.2 Breadth-First Detection

Breadth-first algorithms, such as the M algorithm [10] or the K-best Algorithm
[17, 18] with sphere radius, extend the search in a layer-by-layer basis with multiple
paths and always proceed in the depth direction of the tree. The algorithms always
keep a constant number of candidate paths in each layer of the tree if no sphere
radius constraint is introduced, but also require sorting of the candidate paths at
each tree layer. The fixed complexity sphere decoder (FSD) [19] and the selective
spanning with fast enumeration (SSFE) algorithm [20] also have a fixed complexity
as they search over a fixed number of lattice points around the received signal. They
both have a predefined number of nodes to be searched in the tree. Breadth-first
algorithms guarantee a fixed number of visited nodes, which makes the algorithm
very suitable for implementation. However, the breadth-first search strategy does
not guarantee the ML solution and the search as such is inefficient in term of visited
nodes especially with higher order modulation compared to the other tree search
strategies.

5.2.1 K-Best Detection

The K-best algorithm [17] is a breadth-first search based algorithm, which keeps
the K nodes which have the smallest accumulated Euclidean distances at each level.
If the PED is larger than the squared sphere radius C0, the corresponding node will
not be expanded. The K-best algorithm without the sphere constraint can also be
seen as the M-algorithm [10]. Here, C0 = ∞, but a set the value for K is used instead,
as is common with the K-best algorithms. The K-best LSD algorithm description is
given as Algorithm 1. The main loop of the algorithm runs from i = 1, . . . ,2N in a
real valued system, i.e., the real and complex parts of the signal are treated separately
[15, 21].

The K-best tree search with no sphere constraint is illustrated in Fig. 5.3. A list
size of two is assumed. The tree search proceeds level by level, expanding all the
child nodes of each parent node. If the number of child nodes exceeds the list size,

Algorithm 1 The K-best LSD algorithm

Inputs: Q,R,y, C′
0, K, P (modulation used, P-QAM)

Preprocessing: Calculate y′
Algorithm:
for i = 1, . . . ,N
1. Denote the partial candidate by xN

i+1.
1.1 Determine all admissible candidate child nodes xi

(with given C′
0) and the corresponding PEDs d(xN

i).
1.2 Store the partial candidates and their PEDs

to a temporary stack memory.

2. Sort the partial candidates according
to their PEDs
3. Store the K smallest PEDs and symbol
vectors to the final list stack memory.
end
Give the candidates and their
EDs as outputs.

78 J. Ketonen et al.

Level 1

Level 2

Level 3

Level 4

sort

sort

Fig. 5.3 The K-best tree search

sorting is performed to find the K nodes with the smallest PEDs. The tree search
starts from the top of the tree on the first level in the figure. Both nodes are spanned,
and on the second level, all the child nodes are spanned as well. Sorting is performed
to find the two nodes with the smallest PEDs. The tree search continues until the
fourth level is reached and the two leaf nodes with the smallest Euclidean distances
are given as output. The breadth-first tree search can be modified to decrease the
latency [22].

5.2.2 Selective Spanning with Fast Enumeration

The SSFE algorithm [20] can also be thought of as a breadth-first tree search
algorithm. It can be also thought of as a fixed complexity detector. The algorithm
spans each level of the tree based on the node spanning vector m = [m1, . . . ,mM].
The number of spans for each node on a level is specified with the element of m
corresponding to that level. As the spanned nodes are not discarded, the length of the
final candidate list can be obtained by multiplying the elements of m. For example,
in a 2×2 antenna and 64-QAM system, the vector m = [64,8] would lead to a final
candidate list of 512. Here, a real valued system model is used. Such a system model
simplifies the Euclidean distance calculation and the slicing operation as the closest
constellation point selection can be done on a one dimensional axis.

The PED on each level i of the tree search can be calculated as

di(xi) = di+1(xi+1)+
∥∥ei(xi)

∥∥2
, (5.7)

where di+1(xi+1) is the PED from the previous level. The slicer unit selects a set of
closest constellation points xi, minimizing

5 VLSI Implementations of Sphere Detectors 79

Fig. 5.4 The slicing operation in SSFE with 64-QAM

Algorithm 2 The SSFE algorithm

Inputs: Q,R,y, m, P (modulation used, P-QAM)
Preprocessing: Calculate y′ and hi = 1/Ri,i

Algorithm:
for i = 1, . . . ,N
1. Calculate ε for each candidate in xi

2. Slice the mi closest points

3. Calculate the PEDs to the sliced lattice
points
end
Give the candidates and their EDs as outputs.

∥∥ei(xi)
∥∥2

=

∥∥∥∥∥y′i −
M

∑
j=i+1

ri, jx j − ri,ixi

∥∥∥∥∥
2

. (5.8)

Minimizing
∥∥ei(xi)

∥∥2
is equivalent to the minimization of ‖ei(xi)/rii‖2 = ‖(y′i −

∑M
j=i+1 ri, jx j)/ri,i − xi‖2, where ε = (y′i −∑M

j=i+1 ri, jx j)/ri,i. The closest constella-
tion points based on ε are selected in the slicer unit.

The real valued axis for 64-QAM is shown in Fig. 5.4. The slicing order given
ε is also depicted. If five constellation points are sliced, the slicer would select
the constellation points in the order of {−1,−3,1,−5,3}. The process is similar
to the Schnorr–Euchner enumeration (SEE) [23]. The SSFE algorithm could then
be thought of as the M-algorithm combined with SEE. The SSFE algorithm
does not require sorting, which makes it more attractive for implementation than
the M-algorithm or the K-best detector. The SSFE algorithm is summarized as
Algorithm 2.

5.2.2.1 Implementation Choices

The top level architecture of the K-best LSD for a 2×2 antenna system is shown in
Fig. 5.5. The 4×4 antenna system LSD is based on the same architecture, but four
more PED calculation blocks and sorters are added to the design. The architecture
for the SSFE has a similar pipelined structure, where each level of the tree is
processed separately.

80 J. Ketonen et al.

Fig. 5.5 The top level architecture of the 2×2 K-best LSD

The K-best LSD architecture is modified from [24]. A 2×2 and a 4×4 antenna
system with a real signal model [25] is assumed. The received signal vector y is
multiplied with matrix Q in the matrix multiplication block. Matrix R is multiplied
with the possible transmitted symbols after the QRD is performed, i.e., when the
channel realization changes. PEDs between the last symbol in vector y′ and possible
transmitted symbols are calculated in block PED1 in a 2× 2 antenna system with
d(x2

4) = ||y′
4 − r

′
4,4||2. The resulting lists of symbols and PEDs are not sorted at

the first stage. The distances are added to the PEDs d(x2
3) = ||y′

3 − (r
′
3,3 + r

′
3,4)||2

calculated in the PED2 block. The lists are sorted and K partial symbol vectors
with the smallest PEDs are kept. PED3 block calculates d(x2

2) = ||y′
2− (r

′
2,2+ r

′
2,3+

r
′
2,4)||2, which are added to the previous distance and sorted. The last PED block

calculates the PEDs d(x2
1) = ||y′

1 − (r
′
1,1 + r

′
1,2 + r

′
1,3 + r

′
1,4)||2. After adding the

previous distances to d(x2
1), the lists are sorted and the final K symbol vectors are

demapped to bit vectors and their Euclidean distance is used in the LLR calculation.
High level synthesis (HLS) was used to obtain the implementation results. Even

though HLS tools have been developed for decades, only the tools developed in the
last decade have gained a more widespread interest. The main reasons for this are
the use of an input language, such as C, familiar to most designers, the good quality
of results, and their focus on digital signal processing (DSP) [26]. HLS tools are
especially interesting in the context of rapid prototyping where they can be used
for architecture exploration and to produce designs with different parameters [27].
While the results may not always be as optimal as with hand-coded HDL, the tool
allows experimenting with different architectures in a short amount of time. The
complexity results can be close to the hand-coded ones with small designs [28].
There can be a bigger difference with large designs.

The implementation of algorithms was done by writing the architecture descrip-
tion with fixed-point ANSI C++ language and then applying the Catapult C
Synthesis tool [29] to produce a register transfer level (RTL) description. After
obtaining the RTL with the desired timing and complexity results, synthesis was per-
formed with Synopsys Design Compiler specific tools to obtain the final complexity
results. The algorithms in this section and in Sect. 5.3.4 were implemented with
0.18 μm complementary metal-oxide semiconductor (CMOS) ASIC technology for
a 4 × 4 MIMO system with 16- and 64-QAM. The ASIC power estimation was

5 VLSI Implementations of Sphere Detectors 81

Table 5.1 Implementation results with 4×4 16-QAM

Gates Power
Receiver Tree search LLR Tree search LLR Detection rate

SSFE/SSFE 135.2 k 19 k/34.6 k 488.9 mW 79 mW/158 mW 186 Mbps/163 Mbps

2 it.

8-best/8-best 97 k 17.3 k/33.1 k 341.5 mW 68.3 mW/140.5 mW 140 Mbps/126 Mbps

2 it.

16-best 148.4 k 20.2 k 499.6 mW 79.2 mW 70 Mbps

Table 5.2 Implementation results with 4×4 64-QAM

Gates Power
Receiver Tree search LLR Tree search LLR Detection rate

SSFE/SSFE 177.4 k 25.7 k/50.4 k 568.6 mW 110.5 mW/236.7 mW 269 Mbps/222 Mbps

2 it.

8-best/8-best 183.7 k 21.5 k/45.2 k 551.4 mW 87 mW/197.9 mW 210 Mbps/180 Mbps

2 it.

16-best 217.2 k 24.5 k 717.3 mW 96.6 mW 105 Mbps

done with the Synopsys PrimeTime tool. Results for the enhanced tree search,
other antenna configurations, adaptive systems, and other detectors can be found
in [30, 31].

5.2.2.2 VLSI Implementation

The complexity and performance of two breadth-first tree search algorithms are
compared. The complexity results for the SSFE and K-best detectors are presented
in Table 5.1 for 16-QAM and in Table 5.2 for 64-QAM. Results for the LLR
calculation are also given for a fair comparison of the two detectors. The detection
rate of a receiver can be calculated as QN

Drec
, where Q is the number of bits per

symbol, Drec = Ddet +(DLLR +Ddec)Niter, Ddet is the latency of the detector, DLLR

is the latency of LLR calculation, Ddec is the latency of the decoder, and Niter is
the number of iterations between the detector and the decoder. LLR calculation
and decoding can be performed simultaneously and in a pipelined manner with
detection and their latency does not have to be included in the throughput latency. In
an iterative receiver, the throughput latency is determined by the minimum of Ddet

and DLLR+Ddec. The receivers were designed to have a detection rate, which would
be enough for the 3GPP Long Term Evolution (LTE) 20 MHz bandwidth.

The word lengths for the K-best LSD and LLR calculation are mainly 16 bits and
computer simulations have been performed to confirm that there is no performance
degradation [30]. The sorters are insertion sorters. The list size values of 16 and 8
are used in the implementation.

82 J. Ketonen et al.

100 150 200 250
30

40

50

60

70

80

90

100

110

120

Complexity [k gates]

G
oo

dp
ut

 [M
bp

s]
4x4 system, Goodput vs. Complexity

16−QAM, mod. corr. channel at 18 dB
16−QAM, corr. channel at 22 dB
64−QAM, mod. corr. channel at 26 dB

16−bestSSFE

16−best

SSFE

SSFE,
2 it.

8−best,
2 it.

SSFE,
2 it.

8−best

8−best,
2 it.

8−best

Fig. 5.6 Complexity-performance trade-off in a 4×4 antenna system

The SSFE list size is 12 and the node spanning vector is [3,2,2,1,1,1,1,1].
The clock frequency of the detectors was 280 MHz except for the 64-QAM SSFE
where only a 269 MHz clock frequency was achieved. In the receiver with two
global iterations, the tree search is performed only once and the complexity is the
same as with one iteration. However, the LLR calculation is different in the two
cases as the feedback from the decoder is used in the iterative detector. Decoding
reduces the detection rate in the iterative receiver. The 8-best detector has a lower
complexity and power consumption than the SSFE in the 16-QAM case, but the
detection rate is also lower. The power consumption is also lower in the 64-QAM
case, but the detection rate of the SSFE is higher.

The complexity-performance trade-off is illustrated in Fig. 5.6. The goodput,
i.e., the minimum of the transmission throughput and hardware detection rate of
information bits in a 20 MHz bandwidth with a 1/2 code rate, is compared to the
hardware complexity. The figure then illustrates the communication performance of
each detector compared to its complexity. The transmission throughput results were
obtained with computer simulations in a realistic communication system model. The
K-best with list size of 16 has a high complexity and low goodput. The goodput
of the SSFE with two global iterations is close to that of the 8-best with one
iteration with 16-QAM, but has a higher complexity. With 64-QAM, SSFE with
two iterations achieves the highest goodput. Extra iterations do not bring any benefit
with the K-best tree search as the detection rate is low. Even though the SSFE
algorithm does not include sorting, the slicing operation induces extra complexity
compared to the K-best algorithm and the difference between the two tree search
algorithms remains small. The iterations between the detector and the decoder can

5 VLSI Implementations of Sphere Detectors 83

improve the communication performance but at the same they increase the latency
and complexity, resulting in a low overall gain. However, some pipelining and
parallelization techniques can be used to improve the throughput [32].

5.3 Depth-First and Metric-First Detection Algorithm
Implementations

In this section, we introduce some examples of soft-output depth-first and metric-
first search based detection algorithms and their VLSI implementations [31]. The
considered soft-output sphere detection algorithms are first presented in Sect. 5.3.1.
Implementation trade-offs are then presented in Sect. 5.3.2, and the architectural
choices in Sect. 5.3.3. Finally, the implementation results are presented in 5.3.4.

5.3.1 Algorithm Descriptions

The considered depth-first and metric-first search based LSD algorithms are intro-
duced in this section.

5.3.1.1 Depth-First Algorithm

Depth-first algorithms are based on a sequential search and go through a variable
number of nodes in the search tree depending on the channel realization and the
signal to noise ratio (SNR). The algorithms explore the tree along the depth until
the cost metric of the path is below a defined threshold called a sphere radius.
They then return and pursue another unexplored path. DF algorithms are able to
find the exact ML solution if the search is not bounded. The Pohst enumeration
method is often considered to be the original sphere algorithm [12]. The algorithm
search complexity is bounded by selecting a constant sphere radius, which limits
the search in the tree to the most likely paths. More advanced adaptive sphere radius
was introduced as the Viterbo–Boutros (VB) implementation [14], and the SEE [23]
can be seen as even more efficient modification of the Pohst enumeration and VB
implementation [11].

We consider a depth-first search based sphere detection algorithm called the
SEE—LSD and it is listed as Algorithm 3. It is an extension of SEE-SD [23]
to a LSD, and the algorithm continues the search until all admissible nodes have
been checked and the required candidate list L has been obtained. The output
candidate list L includes the most probable candidates, i.e., the candidates with the
lowest ED. The sequential algorithm initially starts from the root layer and extends
the partial candidate s = xN

N with the best admissible node determined by the SE
enumeration. The search tree pruning loop in the algorithm extends the considered

84 J. Ketonen et al.

Algorithm 3 [L] = SEE-LSD(y′,R,Ncand,Ω,N)

Initialize set L, and set C0 = ∞, m = 0, n1 = 1, i = N
Initialize N (s = xN

N ,d(s) = 0)
WHILE (i �= N and n1 �= |Ω|) {

IF (n1 = |Ω|) { Set i = i+1, determine n1 and continue with N (s = xN
i+2,d(s)) }

ELSE
Determine the n1th best node xi for sc = (xi,xN

i+1) and calculate d(sc)
IF (d(sc)<C0)

IF (sc is a leaf node, i.e., i = 1)
1. Store NF(sc,d(sc)) in {L}m

2. Set m = m+1 or, if L is full, set m according to {L}m with max ED
and C0 = {d(s)}m

3. Continue with N (s = xN
i+1,d(s)), n1 ++ and i = 1 if n1 +1 ≤ |Ω|

ELSEIF (i �= 1 or n1 +1 = |Ω|) { Set i = i−1 and n1 = 1, and continue with
N (sc,d(sc)) }

ELSEIF (d(s)≥C0 and i �= N −1) { Set i = i+1, determine n1 and continue with
N (s = xN

i+2,d(s)) }
ELSE {End the algorithm} }

partial candidate s = xN
i+1 with the next best available child node in each iteration

until the PED of the extended partial candidate exceeds the sphere radius C0 or a leaf
node s = xN

1 is found. In the case of a leaf node s = xN
1 , the candidate information

N (s,d(s)), which includes the candidate s and the corresponding ED d(s), is added
to the final candidate list L if the ED d(s) is lower than the current sphere radius C0.
The radius is always updated to be equal to the highest ED in the final list when the
final candidate list is full and a new leaf node is found. If the extended candidate
exceeds the C0 or all the admissible nodes have been checked, the algorithm moves
one layer higher and continues with the next best admissible node. The next best
admissible node is determined based on the previously extended nodes.

5.3.1.2 Metric-First Algorithm

Metric-first algorithms are based on a sequential search method and the search
always proceeds along a path with the best cost metric among the stored paths in the
tree search [8, 33]. MF algorithms are based on Dijktra’s algorithm [34, 35], which
was originally used to solve the single-source shortest path problem for a graph.
The application of metric-first algorithms for MIMO detection has been applied
in [36–38]. MF algorithms find the exact ML solution and the search strategy is
efficient in terms of visited nodes in the search tree, but requires storing and ordering
of the paths studied [33].

The increasing radius (IR)—LSD is listed as Algorithm 4. The IR-LSD algorithm
uses the metric-first search strategy and it is a modification of Dijkstra’s algorithm
[34] to a LSD algorithm. The algorithm is optimal in the sense of the number of
nodes in the tree structure visited [33, 34]. The output candidate list L includes the
most probable candidates, i.e., the algorithm always gives exactly the same output

5 VLSI Implementations of Sphere Detectors 85

Algorithm 4 [L] = IR-LSD(y′,R,Ncand,Ω,N)

Initialize sets S and L, and set C0 = ∞, m = 0, n1 = 1
Initialize N (s = xN

N ,d(s) = 0,n2 = 2, i = N)
WHILE (C0 < d(s)) {

1. Determine the n1th best node xi for sc = (xi,xN
i+1)

T and calculate d(sc)
2. Determine the n2th best node xi+1 for father candidate

sf = (xi+1,xN
i+2)

T and calculate d(sf) if n2 ≤ |Ω|
IF (d(sc)<C0)

IF (sc is a leaf node, i.e., i = 1)
1. Store NF(sc,d(sc)) in {L}m

2. Set m = m+1 or, if L is full, set m according to {L}m with max ED and
C0 = {d(s)}m

3. Continue with N (s = xN
i+1,d(s),n1 +1,1) if n1 +1 ≤ |Ω|

ELSE { Store Nc(sc,d(sc),n2 = 2, i−1) in S}
IF (Nf calculated and d(s f)<C0) { Store Nf(sf,d(s)f,n2 +1, i) in S}
3. Continue with N with min PED from S and set n1 = 1}

as the SEE-LSD algorithm. The algorithm always extends the partial candidate
with the lowest PED in one extend loop. The algorithm operates in a sequential
fashion; it initially starts from the root layer with partial candidate s = xN

N and
determines the next best admissible node xi at layer i with SEE. The child candidate
is then defined as sc = (xi,xN

i+1)
T. The algorithm also, if possible, extends the father

candidate s f = xN
i+2 with the next best admissible node xi+1. The SEE, which is

used to determine the next best admissible node, requires the information of already
extended nodes, and the information is defined as n1 and n2 for the considered
candidate and its father candidate, respectively. The algorithm uses two memory sets
for storing the candidates, the final candidate set L and the partial candidate set S . In
the algorithm search, the partial child candidate information NS (sc,d(sc),n1) and
the possible father candidate information NS

(
s f ,d(s f),n2

)
are stored to set S after

each tree pruning loop. In the case the child candidate sc is a leaf node and smaller
than the current radius C0, the candidate information NL (sc,d(sc)) is stored to the
final list set L. The sphere radius C0 is updated when L is full and the candidate with
the largest ED is replaced with a new leaf candidate. After storing the candidate(s),
the algorithm finds the candidate information NS with the minimum PED d(s) from
set S and continues the algorithm if the PED is smaller than the current radius C0.
It should also be noted that n1 = 0 is used in the tree pruning loop if the extended
node is not a leaf node, and the n, which is read from S , is used as n2.

5.3.2 Implementation Trade-Offs

The algorithms presented in Sect. 5.3.1 are not as such directly feasible for hardware
implementation without some modifications. In order to reserve the hardware
resources for the algorithm to meet the given timing constraints, we need to
determine the so-called worst case scenario and determine the algorithm complexity

86 J. Ketonen et al.

accordingly. The SEE-LSD and the IR-LSD, however, visit a variable number
of nodes depending on the channel realization, and the implementation of these
algorithms as such is not feasible for a system with a fixed latency requirement.
A simple way to fix the complexity is to limit the maximum number of Lnode nodes
visited by the LSD algorithm [31]. If the sphere search is not completed within the
defined Lnode, the algorithm is stopped and the current final candidate list L is given
as an output. Another more sophisticated alternative is to use a scheduling algorithm
as, e.g., in [31, 39, 40]. The idea behind the scheduling algorithm is that, e.g., in an
OFDM system, higher maximum limits Lnode can be allocated for subcarriers with
a difficult channel realization while subcarriers with easier channel realization can
be allocated with lower limits.

The LSD algorithms are often assumed to apply a real equivalent system model
[15, 21] especially in the implementation of the algorithms. However, complex
valued signal models are also applied in the literature [3, 39]. The definition of the
signal model does not affect the mathematical equivalence of the expressions, but
it affects the lattice definition where the LSD algorithm search is executed. The
real signal model was shown to be clearly the better choice to be applied with LSD
algorithms [31], and we also consider it here.

5.3.3 Architectural Choices

Architectural design choices for the considered LSD algorithms are presented in this
section.

5.3.3.1 SEE-LSD

A scalable architecture for the SEE-LSD algorithm, which consists of a tree pruning
unit (TPU), a control unit (CNTR), and a memory unit, is shown in Fig. 5.7. The
architecture operates in sequential fashion and prunes a single node in the search tree
in each iteration. The TPU executes the tree pruning, and the CNTR determines the
partial candidate for the next iteration and the possible final candidate to be stored in
the memory unit. The problem of variable complexity is solved by applying an input
variable Lnode, which sets a maximum limit for the number of nodes to be pruned
by the architecture as discussed in Sect. 5.3.2.

The SEE-LSD algorithm TPU microarchitecture is illustrated in Fig. 5.8. The
TPU microarchitecture is divided into two sub-units that can be implemented with
different levels of parallelism and pipelining. It should be noted that the SEE-LSD
algorithm TPU microarchitecture has to be able to calculate the tree pruning for
partial candidates in different search layers. Typically the TPU should be made
as fast as possible with the proper parallelism and pipelining configuration as
the latency of the unit directly affects the throughput of the SEE-LSD algorithm
architecture. The first unit calculates the part of PED calculation that is independent

5 VLSI Implementations of Sphere Detectors 87

Fig. 5.7 A scalable
architecture for the SEE-LSD
algorithm

Ω

Fig. 5.8 The
microarchitecture for the
extension of the candidate

of the new symbol xi in (5.6), where i is the current search layer. The second unit
executes the SEE, i.e., determines the nth best node xi, and calculates the PED of
the extended partial candidate accordingly [31].

The memory unit is used to store the Ncand final candidates with the smallest
EDs, which are found during the SEE-LSD algorithm tree search. The memory unit
is designed as a binary heap [35,41] data structure, which keeps the stored elements
in order according to the selected cost metric. The memory unit L is implemented
as max-heap, where the new element NF(sc,d(sc)) is always ordered in the heap as
it is stored. The heap elements are kept in order so that the final candidate with the
maximum ED is always at the top of the heap [35, 41].

The required control logic in CNTR unit for the SEE-LSD algorithm architecture
is rather simple. The logic determines the next search level i and next admissible
node n1 for the next algorithm iteration based on the partial candidate, which was

88 J. Ketonen et al.

extended in the TPU. If the extended candidate is a leaf node and d(s)<C0, the final
candidate is stored to the memory unit and the sphere radius C0 is possibly updated.
The CNTR unit also terminates the search after Lnode iterations.

The SEE-LSD algorithm architecture operates in sequential fashion a total of
Lnode iterations, where the parameter Lnode should be selected as suitable to provide
the desired performance. The latency of the algorithm iterations consists of the
latency of the CNTR and the latency of the TPU or the memory unit. The TPU
and memory unit operations are designed to be executed in parallel, where the
TPU is typically the slower unit as it includes more operations and the memory
unit is executed only seldom. In order to maximize the throughput of the SEE-LSD
algorithm architecture, the TPU should be implemented with proper parallelism and
pipelining. The parameter Lnode can also be lowered to increase the throughput with
the cost of decreased performance. The SEE-LSD algorithm architecture is as such
scalable for system configurations with different number of transmit antennas N and
different constellation Ω.

5.3.3.2 IR-LSD

The IR-LSD algorithm architecture is shown in Fig. 5.9 and includes a TPU with
two calculation modules, a partial candidate memory unit, a final candidate memory
unit, and a control logic (CNTR) unit. In each iteration, the TPU executes the
tree pruning for two partial candidates, and the CNTR determines the partial
candidate for the next iteration and the possible final candidate to be stored in the

Fig. 5.9 A scalable architecture for the IR-LSD algorithm

5 VLSI Implementations of Sphere Detectors 89

memory unit. The problem of variable complexity is solved by applying an input
variable Lnode, which sets a maximum limit for the number of nodes to be pruned by
the architecture. The IR-LSD algorithm architecture TPU is similar to the TPU in
the SEE-LSD algorithm architecture with two similar candidate extension modules,
which execute the tree pruning for the new selected candidate and the corresponding
father candidate in parallel. The latency of the parallel units, i.e., the parallelism
and pipelining choices, should be designed to be as similar as possible for efficient
design.

There are two memory units in the IR-LSD architecture: the partial candidate
memory set S and the final memory set LF. The memory units are designed as binary
heap [35, 41] data structures, which keep the stored elements in order according to
the selected cost metric. The partial candidate memory set S is implemented as min-
heap, where the elements N (s,d(s),n2, i) are ordered so that the candidate with the
minimum PED is always sorted to be at the top of the heap. The final memory set LF,
which is similar to the memory unit in the SEE-LSD architecture, is implemented
as max-heap, where the stored final candidates N (s,d(s)) are sorted according to
the ED. The size of the partial candidate memory S is equal to Lnode elements.
In practice, ordering of the partial memory elements might become a limiting
factor in the IR-LSD algorithm implementation with a large Lnode. A technique
called as memory sphere radius Cmem is applied to decrease the amount of memory
access [31].

The control logic unit includes an iteration counter for the IR-LSD algorithm
architecture and determines the candidates to be stored in the memory units and to
be used in the search in the next algorithm iteration. The candidate to be used in the
TPU unit in the next iteration is determined as the candidate with minimum PED
from the extended candidates Nc and N f , and the minimum candidate in partial
memory {S}0. If either one of the extended candidates Nc or N f is selected for the
next algorithm iteration, {S}0 remains in the memory. Thus, unnecessary memory
access is minimized as the candidates Nc and N f are not directly stored to the
memory. The extended partial candidate(s) to be stored in S are also conditioned
with Cmem to minimize memory access. If the extended candidate Nc is a leaf node
and d(s)<C0, the final candidate is stored to the memory unit and the sphere radius
C0 is possibly updated.

The IR-LSD algorithm architecture and its timing are designed to minimize the
latency in one algorithm iteration by introducing parallel operations. The straight-
forward data flow mapping of algorithm would first extend the new candidates, then
store them in memory units, and finally determine the new candidate for the next
iteration. However, the data flow can be designed more efficiently to reduce the
latency of one algorithm iteration. After the TPU extends the partial candidates in
the current iteration, the control logic unit determines the new candidate for the TPU
at the next iteration and the stored candidates for the memory units from the current
iteration. The TPU and memory units are then executed in parallel, which decreases
the latency significantly compared to the straightforward mapping of the algorithm.
In order to maximize the throughput of the IR-LSD algorithm architecture, the
TPU and partial memory unit should be implemented with proper parallelism and

90 J. Ketonen et al.

pipelining. Also the parameter Lnode can be lowered to increase the throughput with
the cost of decreased performance. The limit for the number of algorithm iterations
Lnode should be defined separately for different system configurations or according
to the most complex supported configuration. A proper Lnode value depends on the
channel realization and on the search tree size, i.e., on the number of independent
data streams and the constellation size |Ω|.

5.3.4 VLSI Implementation Results

The SEE- and IR-LSD algorithm architectures were implemented for a 4×4 MIMO
system with 16- and 64-QAM with the tools described in 5.2.2.2. The complexity
results are given in area and in gate equivalents (GEs), where one GE corresponds
to the area of a two-input drive-one NAND gate. The fixed-point word lengths
were determined via computer simulations for a 4×4 MIMO–OFDM system and a
maximum of 12 and 15 bits were found adequate for 16- and 64-QAM, respectively.

The SEE-LSD algorithm implementation is based on the architecture presented
in Fig. 5.7. The SEE-LSD architecture TPU for 16-QAM was implemented with
four parallel pipelined MULs in the first subunit and four parallel MULs in the latter
subunit. The TPU for 64-QAM was implemented with four parallel pipelined MULs
in the first subunit and eight parallel MULs in the latter subunit. Both algorithm
implementations are done for output list size Ncand = 15. The synthesis results of the
SEE-LSD algorithm implementation for the 0.18 μm CMOS technology are listed
in Table 5.3. The IR-LSD algorithm implementation is based on the architecture
presented in Fig. 5.9. The IR-LSD architecture TPU for 16-QAM was implemented,
as in the SEE-LSD algorithm, with four parallel pipelined MULs in the first
subunits and four parallel MULs in the latter subunits. The TPU for 64-QAM was
implemented with four parallel pipelined MULs in the first subunit and eight parallel
MULs in the latter subunit. Both algorithm implementations are done for output
list size Ncand = 15. The memory unit S was implemented with dual port RAM
to enhance the memory access. The maximum number of algorithm iterations is
limited to 175 and 225 in the 16- and 64-QAM implementation, respectively. Thus,
the memory unit size was 175× 31 and 225× 35 bits for the 16- and 64-QAM,
respectively. The synthesis results of the IR-LSD algorithm implementation for the
0.18 μm CMOS technology are listed in Table 5.4.

Table 5.3 Synthesis results of the SEE-LSD algorithms for an SM
system with N = 4

SEE-LSD Area (mm2) kGEs Latency Power (mW)

16-QAM 0.13 10.6 13 cc/52 ns per it. 25

64-QAM 0.27 22.0 16 cc/64 ns per it. 38

5 VLSI Implementations of Sphere Detectors 91

Table 5.4 Synthesis results of the IR-LSD algorithms for an SM
system with N = 4

IR-LSD Area (mm2) kGEs Latency Power (mW)

16-QAM 0.31 25.4 14 cc/56 ns per it. 57

64-QAM 0.59 48.2 17 cc/68 ns per it. 90

5.3.4.1 Detection Rates

The results are applied to calculate detection rates of the algorithm implementations.
The detection rate Rdet denotes the amount of transmitted coded bits that the
LSD algorithm implementation is able to detect in a certain time with a given
complexity. The total detection rate Rdet of the LSD algorithm implementation can
be calculated as

Rdet =
NQ
Δtot

bits/s, (5.9)

where Δtot corresponds to the throughput time of the LSD algorithm implementa-
tion. The throughput time for the sequential search algorithm implementations, the
SEE-LSD algorithm and the IR-LSD algorithm, is defined as Δtot = ΔitLit

avg, where
Δit is the latency per algorithm iteration and Lit

avg is the average number of executed
algorithm iterations. Thus, the achievable detection rate Rdet depends on the defined
maximum limit for visited nodes Lnode, which should be properly selected to meet
the desired FER target with a given channel realization and SNR γ . Implementation
results of a K-best-LSD are also added for comparison [31]. It should be noted that
the IR-LSD algorithm implementation checks two nodes in one algorithm iteration
and that the K-best-LSD algorithm implementation detection rate is fixed as the
algorithm search goes through a fixed number of nodes with variable performance
depending on the channel realization and SNR. Also it should be noted that the
implementation of multiple parallel LSD algorithms can be used to achieve a higher
detection rate.

The detection rates of the LSD algorithm ASIC implementations for 16- and
64-QAM in different channel environments are listed in Table 5.5. The listed
SNR range is selected as the operating range of the LSD based receiver with a
given configuration and channel environment. The detection rates of the SEE-LSD
algorithm and IR-LSD algorithm implementations are lower at low SNR as more
algorithm iterations are required to achieve adequate performance. The detection
rates at high SNR correspond to cases where the minimum number of iterations
provides adequate performance. The LSD algorithm implementations have different
performances and complexities, and, thus, we also compare the efficiency of the
implementations. The comparison is done with an algorithm work factor Walg,
which is calculated as a multiplication product between the used resources in
terms of GEs and the implementation throughput time per subcarrier Δtot, and a
smaller value reflects a more efficient implementation [42, 43]. The algorithm work

92 J. Ketonen et al.

Table 5.5 Detection rates of the LSD algorithm ASIC implementations in different channel
environments

R(asic)
det (dB) IR-LSD alg. (Mbps) SEE-LSD alg. (Mbps) K-best-LSD alg. (Mbps)

16-QAM, UNC, [4.14,31.7] [1.07,34.2] 62.5

γ = [13−19]

16-QAM, CORR, [1.70,31.7] [0.35,34.2] 62.5

γ = [21−26]

64-QAM, UNC, [3.71,39.2] [1.12,41.6] 93.8

γ = [20−25]

64-QAM, CORR, [1.62,39.2] [0.30,41.6] 93.8

γ = [30−35]

Table 5.6 Performance and work factor numbers of the LSD algorithm ASIC implementations
in different channel environments

IR-LSD alg. SEE-LSD alg. K-best-LSD alg.

16-QAM, UNC Walg [0.097,0.013] [0.158,0.005] 0.030

γ = [13−19] dB Perf. Max-log—0.6 dB Max-log—0.8 dB Max-log—0.4 dB

16-QAM, CORR Walg [0.239,0.013] [0.472,0.005] 0.030

γ = [21−26] dB Perf. Max-log—0.5 dB Max-log—0.5 dB Max-log—1.2 dB

64-QAM, UNC Walg [0.311,0.029] [0.473,0.013] 0.050

γ = [20−25] dB Perf. Max-log—1.2 dB Max-log—1.2 dB Max-log—0.9 dB

64-QAM, CORR Walg [0.715,0.029] [1.757,0.013] 0.050

γ = [30−35] dB Perf. Max-log—0.7 dB Max-log—0.7 dB Max-log—2.0 dB

factor values of the LSD algorithm ASIC implementations for 16- and 64-QAM in
different channel environments are listed in Table 5.6. Also the performances of the
implementations relative to the max-log-MAP detector are listed in Table 5.6.

All of the LSD algorithm implementations have advantages in certain channel
environments and SNR values. The K-best-LSD algorithm implementation achieves
rather good performance in the uncorrelated channel with a fixed Walg, but the
performance suffers in highly correlated channels. The algorithm work factor Walg

is best in low SNR values, but the performance cannot be tuned with the channel
as in the sequential search algorithms. The SEE-LSD algorithm implementation is
the most efficient in high SNR values, but is the least efficient in low SNR because
of the algorithm search strategy. The IR-LSD algorithm implementation is more
efficient at low SNR compared to the SEE-LSD algorithm implementation and more
efficient at high SNR compared to the K-best-LSD algorithm implementation. Both
sequential search algorithm implementations perform much better compared to the
K-best-LSD algorithm implementation in highly correlated channels with the cost of
additional complexity. The performance of the sequential search algorithms can also
be tuned with the penalty of additional complexity according to the requirements.

We also calculated the required parallel LSD algorithm resources with 0.18 μm
CMOS technology for a downlink receiver in a 3GPP LTE standard transmission
with 20 MHz bandwidth and with Nused = 1,200 subcarriers. We assume a 4× 4

5 VLSI Implementations of Sphere Detectors 93

Table 5.7 The required LSD algorithm ASIC resources in the LSD detection
of 3GPP LTE standard with 20 MHz BW and with Nused = 1,200 subcarriers

4×4 MIMO–OFDM, 16-QAM Area (mm2) kGEs Power (mW)

IR-LSD alg. 2.6–49.0 216–4,010 485–9,000

SEE-LSD alg. 1.0–100 83–8,140 198–19,200

K-best-LSD alg. 6.5 547 1,480

MIMO–OFDM system with 16-QAM, i.e., the LSD algorithm must be capable of
the detection rate of 268.8 Mbps. The required 0.18 μm CMOS technology resources
are scaled linearly from the LSD algorithm implementation results and are listed in
Table 5.7. The required resources with IR-LSD algorithm and SEE-LSD algorithm
implementations depend on the defined performance of the algorithms as discussed
earlier in this section.

5.4 Trellis-Search Based MIMO Detection

In this section, we introduce a trellis-search based detection algorithm for iterative
MIMO detection [44–46]. We use an unconstrained trellis structure as an alternative
to the tree structure to represent the search space of a MIMO signal. We describe
a trellis-based approximate Log-MAP algorithm as a replacement of the typically
used Max-Log algorithm for iterative MIMO detection. We search the trellis to
find a number of most likely paths for each trellis node and compute a log-sum
of a number of exponential terms corresponding to a hypothesized transmitted
bit value. Near-optimal performance can be achieved by choosing an appropriate
number of surviving paths in the trellis-search process. The trellis-based detection
algorithm is a very data-parallel algorithm because the searching operations at
multiple trellis nodes can be performed simultaneously. The local search complexity
at each trellis node is kept very low to reduce the overall processing time. Moreover,
the trellis-based detector can support iterative MIMO detection by utilizing the a
priori information from the outer channel decoder.

5.4.1 Trellis-Search Algorithm

The LLR computation requires calculations of two log-sums of QNt

2 exponential
terms. The brute-force implementation is too expensive. As a balanced trade-
off between complexity and performance, we can use a reduced number (n) of
exponential terms to approximate the Log-MAP algorithm as:

LLR(xk,b) ≈ ln ∑
n:xk,b=+1

exp
(
− 1

2σ2 d(s)
)
− ln ∑

n:xk,b=−1
exp

(
− 1

2σ2 d(s)
)
, (5.10)

94 J. Ketonen et al.

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

Stage 3
(Antenna 3)

Root

Number of transmit antennas (Nt)

C
on

st
el

la
ti
on

 s
iz

e
(Q

)

Sink

vk(q) vk-1(q')
ek-1(q

(k-1))

Stage 2
(Antenna 2)

Stage 1
(Antenna 1)

Stage 0
(Antenna 0)

Fig. 5.10 Trellis model of a 4×4 4-QAM system

where the distance d(s) is defined as:

d(s) =
Nt−1

∑
i=0

(
|(ŷ)i − (Rs)i|2 −σ2

B−1

∑
j=0

xi, j ·LA(xi, j)

)
. (5.11)

In the equation above, ŷ = QHy, and LA(xi, j) is the a priori LLR for bit xi, j. In order
to implement (5.10), we must find n minimum distances d(s) for each hypothesized
transmitted data bit, i.e., xk,b = +1 and xk,b = −1. To realize this, we can use a
trellis-search algorithm to find the n minimum distances.

5.4.2 Trellis Model for Iterative MIMO Detection

The search space of a MIMO signal can be represented with a compact trellis
diagram. As an example, Fig. 5.10 shows the trellis diagram for a 4× 4 4-QAM
system. The trellis has Nt stages corresponding to Nt transmit antennas, and
each stage contains Q different nodes corresponding to Q symbols of a complex
constellation of the transmitted signal. In other words, the trellis is formed of
columns representing the number of transmit antennas and rows representing values
of a number of symbols with nodes at intersections. Each trellis node is physically
mapped to a transmit symbol that belongs to a known modulation alphabet of
the Q constellation symbols. Thus, any path through the trellis represents a possible

5 VLSI Implementations of Sphere Detectors 95

vector (s) of transmitted symbols. Because of the upper triangular property of the
matrix R, the stages of the trellis are labeled in descending order. The trellis is fully
connected, so there are QNt number of different paths from the root node to the sink
node. The nodes in stage k are denoted as vk(q), where q = 0,1, . . . ,Q−1.

To compute the distance metric in (5.11) using the trellis model, we define a
weight function ek−1(q(k−1)) for each edge between node vk(q) in stage k and node
vk−1(q′) in stage k−1 as:

ek−1(q
(k−1)) =

∣∣∣ŷk−1 −
Nt−1

∑
j=k−1

Rk−1, j · s j

∣∣∣
2 −σ2

B−1

∑
b=0

xk−1,b ·LA(xk−1,b), (5.12)

where q(k−1) = [qNt−1 . . . qk qk−1]
T is the partial symbol vector, s j is the complex-

valued QAM symbol s j = QAM(q j), B is the number of bits per constellation point,
and LA(xk−1,b) is the a priori information for data bit xk−1,b provided by the outer
channel decoder. In the first iteration, LA(xk−1,b) is not available and is set to 0. Note
that the weight function not only depends on nodes vk(q) and vk−1(q′), but also
depends on all the nodes prior to node vk(q). In other words, depending on how we
traverse the trellis, the weight function will get different values. We further define a
path weight as the sum of the edge weights along the path. Then the distance metric
as defined in (5.11) can be considered as a path weight, which can be computed
recursively by adding up the edge weights along the path from the root node to the
sink node. If we define a (partial) path metric dk as the sum of the edge weights
along this (partial) path, the path weight is then computed recursively as:

dk−1(q
′) = dk(q)+ ek−1(q

(k−1)), (5.13)

where dk(q) and dk−1(q′) are the path weights associated with nodes vk(q) and
vk−1(q′), respectively, and ek−1(q(k−1)) is the edge weight between node vk(q) and
node vk−1(q′).

In the trellis diagram, each trellis node vk(q) maps to a complex-valued symbol sk

such that each path from the root node to the sink node maps to a symbol vector s.
With the trellis model, we transform the MIMO detection problem into a per-node
shortest paths problem, which is defined as follows. For each node vk(q) in the
trellis diagram, we find a list of L most likely paths from the root node to the sink
node over the node vk(q). The L most likely paths refer to the paths with the L
shortest distances or the lowest L path weights. For each node, we only keep the
L most likely paths and will discard all the other paths to reduce the complexity.
The detection is performed layer by layer. In the trellis model, a layer corresponds
to a stage in the trellis. In each stage k of the trellis, there are Q nodes, where
each node corresponds to a constellation point. For each node vk(q) in stage k, q =
0,1, . . . ,Q−1, we must find L shortest paths through the trellis, which are denoted

as λ (l)
k (q), l = 0,1, . . . ,L − 1. Then, altogether QL candidates in each stage k of

96 J. Ketonen et al.

the Nt stages of the trellis are used to compute the LLRs for data bits transmitted by
antenna k as follows:

LLR(xk,b)≈ ln ∑
(q,l):xk,b=+1

exp
(
− 1

2σ2 λ (l)
k (q)

)
− ln ∑
(q,l):xk,b=−1

exp
(
− 1

2σ2 λ (l)
k (q)

)
. (5.14)

With the trellis model, the detection problem now becomes a trellis-search
problem. To detect a layer k, we need to search for L shortest paths for each node q
in each stage k of the trellis diagram. The maximum theoretical value of the number
L is Qk, where k = 0,1, . . . ,N − 1 for the first stage, second stage, and etc., of
the trellis. Practically, however, the number L should be kept small to reduce the
complexity. The number L determines the detection performance: a larger L leads to
better error performance. We will show later that even with a small L (such as L = 2
for Q = 16), the trellis-based detector can achieve good detection performance.
To implement this algorithm, an exhaustive trellis-search approach would be very
expensive. In order to reduce the search complexity, we use a greedy trellis-search
algorithm that approximately finds the L shortest paths for each node in the trellis.
In this search process, the trellis is first pruned by removing the unlikely paths. We
refer to this pruning process as the “path reduction” process. In the path reduction
process, the trellis is scanned from left to right, where each node retains the most
likely L incoming paths using the local information it has so far. After the trellis is
pruned, a second process, called the “path extension” process, is applied to extend
the uncompleted paths so that each node will have L full paths through the trellis.

5.4.2.1 Path Reduction

Figure 5.11 illustrates a flow graph demonstrating a path reduction process. The
path reduction process is configured to prune paths for each trellis node to a
smaller number of surviving paths. The stages (columns) of the trellis are labeled
in descending order, starting from stage Nt − 1 and ending with stage 0. Note that
Fig. 5.11 illustrates only three successive stages, k+ 1, k, and k− 1 among the Nt

stages. As an example, we use a Q = 4, L = 2 case to explain the algorithm. In
Fig. 5.11, each node receives QL = 4× 2 = 8 incoming paths from nodes in the
previous stage of the trellis and, then, the L = 2 paths (the ones with the least
cumulative path weights) are selected from the QL candidates. Next, the L survivors
are expanded to the right so that each node will have the best QL outgoing paths
forwarded to the next stage of the trellis. This process repeats until the end of the
trellis. The path reduction process can effectively prune the trellis by keeping only
L best incoming paths at each trellis node. As a result, each trellis node in the last
stage of the trellis has L shortest paths through the trellis. However, other than the
trellis nodes in the last stage, the path reduction process cannot guarantee that every
trellis node will have L shortest paths through the trellis. These paths will be added
as path extensions as described next.

5 VLSI Implementations of Sphere Detectors 97

Q
L

In
co

m
in

g
P
at

h
s

L Survivors

QL Outgoing Paths

Stage k+1 Stage k Stage k-1
N

ode
v

k +
1 (0)

...

...

...
... ...

...

...

...

...

...

...

. . .
. . .

. . .
. . .

N
o
de

v
k+

1 (1)
N

ode
v

k +
1 (i)

N
od

e
v

k+
1 (Q

-1)

N
od

e
v

k (0)
N

o
de

v
k (1)

N
ode

v
k (i)

N
od

e
v

k
(Q

-1)

N
od

e
v

k
- 1

(0)

N
o
de

v
k-1

 (1)

N
ode

v
k - 1 (i)

N
o
de

v
k- 1 (Q

-1)

L Survivors

QL Incoming Paths

Fig. 5.11 Path reduction step

5.4.2.2 Path Extension

An objective of the trellis-based detection algorithm is to find L shortest paths for
every node in the trellis. To achieve this goal, a path extension process is used
after the path reduction process to fill in the missing paths for each trellis node.
The goal is to extend the uncompleted paths so that each node will have L shortest
paths through the trellis. The path extension is performed stage by stage (no path
extension is required for the last stage), and node by node. Figure 5.12 is a flow
graph demonstrating the path extension process. The path extension process is being
demonstrated with respect to a node vk(i) in a stage k (i.e., the highlighted node in
the figure). Note that all of the nodes in the same stage can be extended in parallel
and independently.

As shown in Fig. 5.12, for a trellis node vk(i) (i.e., for the constellation point i in
stage k), the path extension process first retrieves the QL = 8 outgoing path metrics
computed in the path reduction step (at stage k), and then an extension process in
stage k−1 is used to select the best L = 2 outgoing paths from QL = 8 candidates.
Next, each of the L = 2 surviving paths is extended for the next stage of the trellis
(stage k−2). Among the QL extended paths, only the best L = 2 paths are retained.
This process repeats until the trellis has been completely traversed. As a result, the
L shortest paths are obtained for node vk(i). Figure 5.12 shows a path extension

98 J. Ketonen et al.

Stage k Stage k-1 Stage k-2

...

N
ode

v
k (i)

N
ode

v
k- 1 (0)

N
ode

v
k-1 (1)

N
ode

v
k-1 (i)

N
ode

v
k- 1 (Q

-1)

N
ode

v
k-2 (0)

N
ode

v
k-2 (1)

N
ode

v
k-2 (i)

N
ode

v
k- 2 (Q

-1)

Stage k+1

N
ode

v
k+1 (0)

...

...

...

...

N
ode

v
k+1 (1)

N
ode

v
k+1 (i)

N
ode

v
k+1 (Q

-1)

Q
L

Ex
te

nd
ed

 P
at

hs

QL
 E

xt
en

de
d

Pa
th

s

L Survivors

L SurvivorsL Survivors... ...

Path Reduction Path Extension

Fig. 5.12 Path extension step

process for one trellis node. The path reduction process is first performed until stage
k of the trellis and next the path extension procedure is performed until the end of the
trellis (stage 0). Note that the path extension process is to find the L best outgoing
paths extending from a particular node.

5.4.2.3 LLR Computation

The most important feature of the trellis-based detection algorithm is that it will
always guarantee that the bit LLR can be generated for every transmitted bit. For
example, after the path reduction and the path extension processes are employed,
every node vk(q) has successfully found L shortest paths or L minimum distances

denoted as λ (l)
k (q), l = 0,1, . . . ,L− 1. We separate the LLR computation into two

steps. A symbol reliability metric Γk(q) is first computed for each node vk(q) as
follows:

Γk(q) = ln
L−1

∑
l=0

exp
(
− 1

2σ2 λ (l)
k (q)

)
=

∗
max

l

(
− 1

2σ2 λ (l)
k (q)

)
, (5.15)

where the two-input max∗(·) is defined as:

∗
max(a,b)≡ ln∑(exp(a)+ exp(b)) = max(a,b)+ ln(1+ exp(−|a−b|)). (5.16)

5 VLSI Implementations of Sphere Detectors 99

PRU

PEU

LCU
LLRyRAL ˆ, ,, P

P
U

PM Buffer
Cand
Buffer

Fig. 5.13 VLSI architecture of the trellis-based iterative MIMO detector

Moreover, the n-input max∗(·) for n = 4,8,16, etc., can be recursively computed
based on the Jacobian algorithm. Then, the bit LLR is computed based on the
symbol reliabilities Γk(q):

LLR(xk,b) = ln ∑
q:xk,b=+1

exp(Γk(q))− ln ∑
q:xk,b=−1

exp(Γk(q))

=
∗

max
q:xk,b=+1

(Γk(q))− ∗
max

q:xk,b=−1
(Γk(q)). (5.17)

5.4.3 VLSI Architecture

Now we describe a high-speed VLSI architecture for the trellis-search based SfISfO
MIMO detector. As a case study, we introduce a detector architecture with the
surviving path number L = 2 for the 4×4 16-QAM system. Figure 5.13 shows the
top level block diagram for the trellis-search MIMO detector. The detector consists
of six main functional blocks: the path reduction unit (PRU), the path extension
unit (PEU), the LLR calculation unit (LCU), the pre-processing unit (PPU), the
path metric buffer (PM Buffer), and the candidate buffer (Cand Buffer). The PPU
is used to pre-compute the initial path metrics and some constellation-dependent
constant values that will be used by the PRU and the PEU. The PRU and the PEU
are employed to implement the path reduction algorithm (cf. Fig. 5.11) and the path
extension algorithm (cf. Fig. 5.12), respectively. The shortest path metrics found by
the PRU and the PEU are stored in the Cand Buffer, which will then be used by the
LCU to generate the LLR for each data bit based on (5.17). These blocks will be
discussed in more detail in the following subsections.

Figure 5.14 shows the block diagram of PRU, which implements the path
reduction algorithm. The PRU employs Q = 16 path calculation units (PCUs) and
16×2 minimum finder units (MFUs) to simultaneously process all the Q nodes in a
trellis stage. This is a recursive architecture by reusing the hardware for processing
nodes in different trellis stages. In Fig. 5.14, PCU i is used to compute the QL
extended path metrics from node vk(i) to all the nodes in the next stage k − 1.

The extended path metrics are denoted as β (l)
k−1(i, j), where l is the surviving path

100 J. Ketonen et al.

PCU 0
βk-1

(l)(j, 0)

...

βk-1
(l)(0, j)

j = {0,1,…,15}; l = {0,1}

βk-1
(l)(15, j)

...

In
te

rc
on

ne
ct

s

MFU-A 0

MFU-B 0
βk-1

(l)(0, j)

MFU-A 15

MFU-B 15

αk-1
(l)(15)

Back to PCU 0

To PM Buffer

Back to PCU 15

To PM Buffer

αk-1
(l)(0)

βk-1
(l)(j, 15)

βk-1
(l)(15, j)

PCU 15

QL PathsL Paths

αk
(l)(0)

αk
(l)(15)

γk-1
(l)(0)

γk-1
(l)(15)

X 16

Fig. 5.14 Path reduction unit (PRU)

αk
(0)(i)

αk
(1)(i)

βk-1
(0)(i, j)

βk-1
(1)(i, j)

PEDCU

QL=32 Output
path metrics
 j = 0,1,…,15
l = 0,1

βk-1
(l)(i, j)αk

(l)(i)

L=2 Input
path metrics
l = 0,1

dk-1(0-15)dk

PEDCU
dk-1(0-15)dk

Fig. 5.15 Path calculation unit (PCU)

index (l = 0,1, . . . ,L−1), i is the current node index, and j is the node index in the
next stage (j = 0,1, . . . ,Q− 1). Next, the extended path metrics are gathered and
sent to MFUs. In Fig. 5.14, MFU-A i is used to select the best L incoming paths

to node vk−1(i), where the surviving path metrics are denoted as α(l)
k−1(i), where

l = 0,1, . . . ,L− 1. Then, these surviving paths are fed back to PCU i so that it can
continue the processing for the next trellis stage. This operation is repeated until the
trellis is completely traversed. MFU-B i is used to select the best L outgoing paths,

denoted as γ(l)k−1(i), from node vk(i) to any nodes in stage k−1. These best outgoing
paths selected by MFU-B i will be stored into the path metric buffer (PM Buffer),
which will be used later in the path extension process. Each PCU in Fig. 5.14 is used
to compute QL = 32 path metrics in parallel. Figure 5.15 shows the block diagram
of PCU which employs L = 2 PED calculation units (PEDCUs). For a given input
path metric, or PED, dk, one PEDCU needs to compute Q = 16 extended PEDs in
parallel, denoted as dk−1(q), q = 0,1, . . . ,Q− 1. Figure 5.16 shows the hardware
architecture for the PEDCU, which computes Q = 16 PEDs in parallel. Note that
variables R2

k−1,k−1|sk−1(q)|2 and σ2LA(xk−1,b) are pre-computed in the PPU.
The MFU is used to select the best L = 2 path metrics from QL = 32 candidates.

This type of (32,2) sorting can be done quickly by using a comparison tree. Note
that the sorting cost of the trellis-based detector is much lower compared with the
regular K-best detector which typically requires a larger (QK,K) sorting operation.

The PEU implements the path extension algorithm. As previously discussed, a
path extension process is employed after the path reduction process to fill in the

5 VLSI Implementations of Sphere Detectors 101

R
s

1ˆ −ky

T
MULT

+

Rk-1,k-1 ·T*

sk-1(0)

R2
k-1 ,k-1 |sk-1(0)|2

2Re(Rk-1,k-1 ·T*·sk-1(0)) +

dk
dk+|T|2

dk-1(0)

...

D

D

Rk-1,k-1
D

+
-

∑
−1

,
TN

j=k
j jk−1 sR

|T|2

∑
−

=
−

1

0

2 ((
B

b
kAk−1,b xLx σ +

D

D

sk-1(15)

R2
k-1,k-1 |sk-1(15)|2

2Re(Rk-1,k-1 ·T*·sk-1(15)) +
dk-1(15)

+
D

D

...

xk-1(0)

xk-1(15)

Rk-1,k-1 ·T*

dk+|T|2

∑
−

=
−

1

0
1,b

2))((
B

b
kAk−1,b xLx σ

-

-

1,b))

Fig. 5.16 Partial Euclidean distance calculation unit (PEDCU)

missing paths for each node so that every node will have L shortest paths through
the trellis. The PEU has a very similar architecture to the PRU. The PEU employs
Q = 16 PCUs and Q = 16 MFUs so that it can simultaneously extend Q nodes in a
certain trellis stage. The PEU has a recursive architecture. In each iteration, PCU i
calculates the QL extended path candidates based on the L input path metrics, and
then, the MFU i selects the best L paths from these QL extended path candidates.
The initial L input path metrics are retrieved from the PM Buffer, and, then, the PEU
performs the path extension operation recursively.

5.4.4 VLSI Implementation Results

As a case study, we have developed a trellis-search based iterative MIMO detec-
tor ASIC module for a 4 × 4 16-QAM MIMO system. The fixed-point design
parameters are summarized as follows. Each element in the R matrix is scaled
by 1√

10Nt
= 1√

40
, and this scaled R is represented with 11 bits signed data S2.9

(2 integer bits with 9 fractional bits). The received signal y is represented with
11 bits signed data S5.6. The path metrics (PMs) are rounded to 13 bits between
computational blocks. The LLR values are represented with 7 bit signed data S5.2.
With this configuration, the fixed-point simulation result shows about 0.1 ∼ 0.2 dB
performance degradation compared to a floating-point detector. The trellis-search
detector has a pipelined architecture, where the pipeline stages for the PRU and
PEU are T = 4. To maximize the throughput, we can feed four back-to-back MIMO

102 J. Ketonen et al.

Table 5.8 VLSI implementation results for 4×4 trellis-search MIMO detector

Clock frequency Throughput (1 iter.) Core area Gate count Technology

320 MHz 1.7 Gbps 1.58 mm2 1097K 65 nm

symbols in four consecutive cycles, e.g., at t, t + 1, t + 2, t + 3 into the pipeline to
fully utilize the hardware. The processing times for the path reduction process and
the path extension process are both 3T = 12 cycles, i.e., the iteration bound is
12 cycles. Thus, we can feed another four back-to-back MIMO symbols into the
pipeline at t + 12, t + 13, t + 14, t + 15, and so forth. Furthermore, we can overlap
the path reduction process with the path extension process to hide the processing
delay. As a result, the maximum throughput of the detector is 4×16× f clk

12 = 16
3 f clk.

We have described the trellis-search detector with Verilog HDL and we have
synthesized the design for a 1.08 V TSMC 65 nm CMOS technology using Synopsys
Design Compiler. With a 320 MHz clock frequency, the detector can achieve a
maximum throughput of 1.7 Gbps. Table 5.8 summaries the VLSI implementation
results. From Table 5.8, one can observe that the trellis-search detector can achieve a
very high data throughput (1.7 Gbps) while still maintaining a low area requirement
(1.58 mm2).

References

1. Hassibi B, Vikalo H (2005) On the sphere-decoding algorithm I. Expected complexity. IEEE
Trans Signal Process 53(8):2806–2818

2. Paulraj A, Nabar RD, Gore D (2003) Introduction to space-time wireless communications.
Cambridge University Press, Cambridge

3. Hochwald B, ten Brink S (2003) Achieving near-capacity on a multiple-antenna channel. IEEE
Trans Commun 51(3):389–399

4. Hagenauer J (1997) The turbo principle: tutorial introduction and state of the art. In:
Proceedings of the international symposium on turbo codes, Brest, France

5. Hagenauer J, Offer E, Papke L (1996) Iterative decoding of binary block and convolutional
codes. IEEE Trans Inf Theory 42(2):429–445

6. Robertson P, Villebrun E, Hoeher P (1995) A comparison of optimal and sub-optimal MAP
decoding algorithms operating in the log domain. In: Proceedings of the IEEE international
conference on communications, pp 1009–1013

7. Damen MO, Chkeif A, Belfiore J-C (2000) Lattice code decoder for space-time codes. IEEE
Commun Lett 4(5):161–163

8. Murugan A, Gamal HE, Damen M, Caire G (2006) A unified framework for tree search
decoding: rediscovering the sequential decoder. IEEE Trans Inf Theory 52(3):933–953

9. Anderson T (1984) An introduction to multivariate statistical analysis, 2nd edn. Wiley,
New York

10. Anderson J, Mohan S (1984) Sequential coding algorithms: a survey and cost analysis. IEEE
Trans Commun 32(2):169–176

11. Agrell E, Eriksson T, Vardy A, Zeger K (2002) Closest point search in lattices. IEEE Trans Inf
Theory 48(8):2201–2214

5 VLSI Implementations of Sphere Detectors 103

12. Fincke U, Pohst M (1985) Improved methods for calculating vectors of short length in a lattice,
including a complexity analysis. Math Comput 44(5):463–471

13. Pohst M (1981) On the computation of lattice vectors of minimal length, successive minima
and reduced basis with applications. ACM SIGSAM Bull 15:37–44

14. Viterbo E, Boutros J (1999) A universal lattice code decoder for fading channels. IEEE Trans
Inf Theory 45(5):1639–1642

15. Damen MO, Gamal HE, Caire G (2003) On maximum–likelihood detection and the search for
the closest lattice point. IEEE Trans Inf Theory 49(10):2389–2402

16. Myllylä M, Antikainen J, Juntti M, Cavallaro J (2007) The effect of LLR clipping to the
complexity of list sphere detector algorithms. In: Proceedings of the annual Asilomar confer-
ence on signals, systems, and computers, Pacific Grove, 4–7 November 2007, pp 1559–1563

17. Wong K, Tsui C, Cheng RK, Mow W (2002) A VLSI architecture of a K-best lattice decoding
algorithm for MIMO channels. In: Proceedings of the IEEE international symposium on
circuits and systems, vol 3, Scottsdale, AZ, 26–29 May 2002, pp 273–276

18. Guo Z, Nilsson P (2006) Algorithm and implementation of the K-best sphere decoding for
MIMO detection. IEEE J Sel Areas Commun 24(3):491–503

19. Barbero L, Thompson J (2008) Extending a fixed-complexity sphere decoder to obtain likeli-
hood information for turbo-MIMO systems. IEEE Trans Vehicular Technol 57(5):2804–2814

20. Li M, Bougart B, Lopez E, Bourdoux A (2008) Selective spanning with fast enumeration:
a near maximum-likelihood MIMO detector designed for parallel programmable baseband
architectures. In: Proceedings of the IEEE international conference on communication, Beijing,
China, 19–23 May 2008, pp 737–741

21. Guo Z, Nilsson P (2006) Algorithm and implementation of the K-best sphere decoding for
MIMO detection. IEEE J Sel Areas Commun 24(3):491–503

22. Ketonen J, Myllylä M, Juntti M, Cavallaro JR (2008) ASIC implementation comparison of SIC
and LSD receiver for MIMO-OFDM. In: Proceedings of the annual Asilomar conference on
signals, systems, and computers, Pacific Grove, 25–29 October 2008, pp 1881–1885

23. Schnorr CP, Euchner M (1994) Lattice basis reduction: improved practical algorithms and
solving subset sum problems. Math Program 66(2):181–191

24. Ketonen J, Juntti M, Cavallaro J (2010) Performance-complexity comparison of receivers for
a LTE MIMO-OFDM system. IEEE Trans Signal Process 58(6):3360–3372

25. Myllylä M, Juntti M, Cavallaro JR (2007) Implementation aspects of list sphere detector
algorithms. In: Proceedings of the IEEE global telecommunication conference, Washington,
D.C., 26–30 November 2007, pp 3915–3920

26. Martin G, Smith G (2009) High-level synthesis: past, present, and future. IEEE Des Test
Comput 26(4):18–25

27. Casseau E, Gal L, Bomel P, Jego C, Huet S, Martin E (2005) C-based rapid prototyping
for digital signal processing. In: Proceedings of the European signal processing conference,
Antalya, Turkey, 4–8 September 2005

28. Cong J, Liu B, Neuendorffer S, Noguera J, Vissers K, Zhang Z (2011) High-level synthesis for
FPGAs: from prototyping to deployment. IEEE Trans Comput Aided Des Integr Circuits Syst
30(4):473–491

29. Calypto (2014) Catapult C synthesis overview. Technical report. http://calypto.com/en/
products/catapult/overview

30. Ketonen J (2012) Equalization and channel estimation algorithms and implementations for
cellular MIMO-OFDM downlink. Ph.D. dissertation, Acta Univ. Oul., C Technica 423,
University of Oulu, Oulu

31. Myllylä M (2011) Detection algorithms and architectures for wireless spatial multiplexing in
MIMO–OFDM systems. Ph.D. dissertation, Acta Univ. Oul., C Technica 380, University of
Oulu, Oulu

http://calypto.com/en/products/catapult/overview
http://calypto.com/en/products/catapult/overview

104 J. Ketonen et al.

32. Preyss N, Burg A, Studer C (2012) Layered detection and decoding in MIMO wireless
systems. In: Conference on design and architectures for signal and image processing (DASIP),
Karlsruhe, Germany, 23–25 October 2012, pp 1–8

33. Mohan S, Anderson JB (1984) Computationally optimal metric-first code tree search algo-
rithms. IEEE Trans Commun 32(6):710–717

34. Dijkstra EW (1959) A note on two problems in connexion with graphs. In: Numerische
Mathematik, vol 1. Mathematisch Centrum, Amsterdam, pp 269–271

35. Knuth D (1997) The art of computer programming. Volume 3: sorting and searching, 3rd edn.
Addison-Wesley, Reading

36. Baro S, Hagenauer J, Witzke M (2003) Iterative detection of MIMO transmission using
a list-sequential (LISS) detector. In: Proceedings of the IEEE international conference on
communications, vol 4, pp 2653–2657

37. Xu W, Wang Y, Zhou Z, Wang J (2004) A computationally efficient exact ML sphere decoder.
In: Proceedings of the IEEE global telecommunication conference, vol 4, 29 November – 3
December 2004, pp 2594–2598

38. Hagenauer J, Kuhn C (2007) The list-sequential (LISS) algorithm and its application. IEEE
Trans Commun 55(5):918–928

39. Studer C, Burg A, Bolcskei H (2008) Soft-output sphere decoding: algorithms and VLSI
implementation. IEEE J Sel Areas Commun 26(2):290–300

40. Burg A, Borgmanr M, Wenk M, Studer C, Bolcskei H (2006) Advanced receiver algorithms for
MIMO wireless communications. In: Proceedings of the design, automation and test in Europe
(DATE’06), vol 1, March 2006, 6 pp

41. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT Press,
Cambridge

42. Ullman J (1994) Computational aspects of VLSI. Computer Science Press, Rockville
43. Bajwa RS, Owens R, Irwin M (1994) Area time trade-offs in micro-grain VLSI array

architectures. IEEE Trans Comput 43(10):1121–1128
44. Sun Y, Cavallaro JR (2009) High throughput VLSI architecture for soft-output MIMO

detection based on a Greedy graph algorithm. In: ACM great lakes symposium on VLSI design,
May 2009, pp 445–450

45. Sun Y, Cavallaro JR (2012) High-throughput soft-output MIMO detector based on path-
preserving trellis-search algorithm. IEEE Trans Very Large Scale Integr (VLSI) Syst
20(7):1235–1247

46. Sun Y, Cavallaro JR (2012) Trellis-search based soft-input soft-output MIMO detector:
algorithm and VLSI architecture. IEEE Trans Signal Process 60(5):2617–2627

Chapter 6
Stochastic Decoders for LDPC Codes

François Leduc-Primeau, Vincent C. Gaudet, and Warren J. Gross

6.1 Introduction

Low density parity check (LDPC) codes have now been established as one of the
leading channel codes for approaching the channel capacity in data storage and
communication systems. Compared to other codes, they stand out by their ability of
being decoded with a message-passing decoding algorithm that offers a large degree
of parallelism, which offers interesting possibilities for simultaneously achieving a
large coding gain and a high data throughput.

Exploiting all the available parallelism in message-passing decoding is difficult
because of the logic area required for replicating processing circuits, but also
because of the large number of wires required for exchanging messages. The use
of stochastic computing was proposed as a way of achieving highly parallel LDPC
decoders with a smaller logic and wiring complexity.

Current decoding algorithms based on stochastic computing do not outperform
standard algorithms on all fronts, but they generally offer a significant advantage in
average processing throughput normalized to circuit area.

We start this Chapter by providing an overview of LDPC codes. Readers familiar
with the topic can safely skip to Sect. 6.3, where we present the stochastic number
representation and the concept of stochastic computing. Section 6.4 then describes
several LDPC decoding algorithms that perform all their computations using the
stochastic representation. It is also possible to use the stochastic representation

F. Leduc-Primeau • W.J. Gross (�)
McGill University, Montreal, QC, Canada
e-mail: francois.leduc-primeau@mail.mcgill.ca; warren.gross@mcgill.ca

V.C. Gaudet
University of Waterloo, Waterloo, ON, Canada
e-mail: vcgaudet@uwaterloo.ca

© Springer International Publishing Switzerland 2015
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7__6

105

mailto:francois.leduc-primeau@mail.mcgill.ca
mailto:warren.gross@mcgill.ca
mailto:vcgaudet@uwaterloo.ca

106 F. Leduc-Primeau et al.

for only a subset of the computations. Section 6.5 presents an algorithm that uses
that approach and presents methods for efficiently converting numbers between a
conventional (deterministic) representation and a stochastic representation. Finally,
Sect. 6.6 presents a stochastic approach for decoding non-binary LDPC codes.

6.2 Overview of LDPC Codes

In this section, we review the aspects of LDPC codes that are required to explain the
stochastic decoding algorithms. We start in Sect. 6.2.1 by describing the structure of
the codes, and Sect. 6.2.2 then presents the standard decoding algorithm, called the
Sum–Product algorithm (SPA).

6.2.1 Structure

LDPC codes are part of the family of linear block codes, which are commonly
defined using a parity-check matrix H of size m×n. The codewords corresponding
to H are the column vectors x of length n for which H · x = 0, where 0 is the zero
vector. LDPC codes can be binary or non-binary. For a binary code, the elements
of H and x are from the Galois Field of order 2, or equivalently H ∈ {0,1}m×n and
x ∈ {0,1}n. Non-binary LDPC codes are defined similarly, but the elements of H
and x are taken from higher order Galois Fields. The rate r of a code expresses the
number of information bits contained in the codeword divided by the code length.
Assuming H is full rank, we have r = 1− m

n .
A block code can also be equivalently represented as a bipartite graph. We call a

node of the first type a variable node (VN), and a node of the second type a check
node (CN). Every row i of H corresponds to a check node ci, and every column j
of H corresponds to a variable node j. An edge exists between ci and v j if H(i, j) is
non-zero. The two equivalent representations are illustrated in Fig. 6.1.

The key property that distinguishes LDPC codes from other linear block codes
is that their parity-check matrix is sparse (or “low density”), in the sense that each
row and each column contains a small number of non-zero elements. Furthermore
this number does not depend on n. In other words, increasing the code size n also
increases the sparsity of H. The number of non-zero elements in a row of H is equal
to the number of edges incident on the corresponding check node and is called the
check node degree, denoted dc. Similarly the number of non-zero elements in a
column is called the variable node degree and denoted dv.

When all the rows of H have the same degree dc and all the columns have the
same degree dv, we say that the code is part of the family of regular (dv,dc) codes.
Code families are important for analyzing the error correction performance of an
LDPC code. When n is sufficiently large, two codes taken from the same family
will have the same error correction performance with high probability when decoded

6 Stochastic Decoders for LDPC Codes 107

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

1
1
0
0
0
0
0
0
0
0

0
1
1
0
0
0
0
0
0
0

0
0
1
1
0
0
0
0
0
0

0
0
0
1
1
0
0
0
0
0

0
1
0
0
0
1
0
0
0
0

0
0
0
1
0
0
1
0
0
0

1
0
0
0
0
0
0
1
0
0

0
0
1
0
0
0
0
0
1
0

0
0
0
0
1
0
0
0
0
1

0
0
0
0
0
1
0
0
0
1

0
0
0
0
0
1
1
0
0
0

0
0
0
0
0
0
1
1
0
0

0
0
0
0
0
0
0
1
1
0

0
0
0
0
0
0
0
0
1
1

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
0
0
0
1
0
0
0
0
0

Fig. 6.1 Left: Graphical representation of a short binary LDPC code with n = 15 and m = 10.
Circles represent variable nodes and squares represent check nodes. Right: Parity-check matrix
representation of the same code

with the SPA. For a large n it is therefore possible to predict the performance of a
code by instead analyzing the average performance of the corresponding family of
codes, which is a much simpler task. Families of irregular codes can also be defined
by specifying a VN degree distribution and a CN degree distribution. For example,
we can define a family of irregular codes with rate 1

2 by specifying that 40 % of the
VNs have degree 3 and 60 % have degree 4, while 20 % of the CNs have degree 12
and 80 % have degree 6. The reader is advised to consult a reference such as [15]
for more information on the construction and analysis of LDPC codes.

6.2.2 Decoding

LDPC codes can be decoded using a variety of message-passing algorithms that
operate by passing messages on the edges of the code graph. These algorithms
are interesting because they have a low complexity per bit while also offering a
high level of parallelism. If the graph contains no cycles, there exists a message-
passing algorithm that yields the maximum-likelihood estimate of each transmitted

108 F. Leduc-Primeau et al.

bit, called the SPA. In practice, all good LDPC codes contain cycles, and in that case
the SPA is not guaranteed to generate the optimal estimate of each symbol. Despite
this fact, the SPA usually performs very well on graphs with cycles, and experiments
have shown that an LDPC code decoded with the SPA can still be used to approach
the channel capacity [4]. The SPA can be defined in terms of various likelihood
metrics, but when decoding binary codes, the log likelihood ratio (LLR) is preferred
because it is better suited to a fixed-point representation and removes the need to
perform multiplications. Suppose that p is the probability that the transmitted bit is
a 1 (and 1− p the probability that it is a 0). The LLR metric Λi is defined as

Λi = ln

(
1− p

p

)
.

Algorithm 1 describes the SPA for binary codes (the SPA for non-binary codes
is described in Sect. 6.6.1). The algorithm takes LLR priors as inputs and outputs an
estimate of each codeword bit. If the modulated bits are represented as xi ∈ {−1,1}
and transmitted over the additive white Gaussian noise channel, the LLR priors Λi

corresponding to each codeword bit i ∈ {1,2, . . . ,n} are obtained from the channel
output yi using

Λi =
−2yi

σ2 ,

where σ2 is the noise variance. The algorithm operates by passing messages on the
code graph. We denote a message passed from a variable node i to a check node
j as ηi, j, and from a check node j to a variable node i as θ j,i. Furthermore, for
each variable node vi we define a set Vi that contains all the check node neighbors
of vi, and similarly for each check node c j, we define a set Cj that contains the
variable node neighbors of c j. The computations can be described by two functions:
a variable node function VAR(S) and a check node function CHK(S), where S is a
set containing the function’s inputs. If we let S = {Λ1,Λ2, . . . ,Λd}, the functions are
defined as follows:

VAR(S) =
d

∑
i=1

Λi (6.1)

CHK(S) = arctanh

(
d

∏
i=1

tanh(Λi)

)
. (6.2)

The algorithm performs up to L iterations, and stops as soon as the bit estimate
vector x̂ forms a valid codeword, that is H · x̂ = 0.

6 Stochastic Decoders for LDPC Codes 109

input : {Λ1,Λ2, . . . ,Λn}
output: x̂ = [x̂1, x̂2, . . . , x̂n]
begin

θ j,i ← 0, ∀i, j
for t ← 1 to L do

for i ← 1 to n do // VN to CN messages
foreach j ∈Vi do

ηi, j ← VAR({Λi}∪{θa,i : a ∈Vi}\{θ j,i})
for j ← 1 to m do // CN to VN messages

foreach i ∈Cj do
θ j,i ← CHK({ηa, j : a ∈Cj}\{ηi, j})

for i ← 1 to n do // Compute the decision vector
Λ ′

i ← VAR({Λi}∪{θa,i : a ∈Vi})
if Λ ′

i ≥ 0 then x̂i ← 0
else x̂i ← 1

Terminate if x̂ is a valid codeword
Declare a decoding failure

Algorithm 1: Sum–Product decoding of an LDPC code using LLR messages

6.3 Stochastic Computing

Stochastic computing was originally studied by Gaines [6] and Poppelbaum [12].
At the time, the motivation was to allow realizing digital circuit implementations of
systems that were too complex to be implemented using a conventional number
representation, by taking advantage of the fact that many computations can be
performed on stochastic streams using very simple circuits. The downside of
stochastic computing is that it has a limited precision, but the combination of low
complexity and low precision is well suited to a number of applications. For exam-
ple, stochastic computing has been proposed for the circuit implementation of neural
networks [3], which can benefit from massive parallelism and can often tolerate low
precision computation. Additionally, with the continuous shrinking of transistors
in CMOS integrated circuits, process variations as well as random fluctuations in
operating parameters have now become important limiting factors for the speed and
energy efficiency of circuits. Because of its random nature, stochastic computing is
naturally fault-tolerant, and there has been renewed interest in using it to achieve
fault-tolerant circuit implementations [14]. A comprehensive survey of applications
for which stochastic computing has been considered can be found in [1].

6.3.1 The Stochastic Stream Representation

To explain stochastic streams, it is useful to make a parallel with analog signals. Let
us consider a discretized version of a real-valued analog signal that we denote a[t],
for t ∈ {1,2,3, . . .}. A stochastic stream x[t] can be thought of as a random sequence

110 F. Leduc-Primeau et al.

that is a coarse quantization of a[t], but where the randomness is used to ensure that
the quantization is unbiased, so that the expected value of x[t] is always a[t]. If we
denote the expected value of a random variable X as E[X], this can be written as
E[x[t]] = a[t].

Since the motivation of stochastic computing is reducing the complexity of the
computing circuits, stochastic streams are usually binary-valued. In that case they
can be communicated using a single wire in the circuit, just like analog signals.
A binary stochastic stream is defined as a sequence of independent random variables
x[t], distributed such that E[x[t]] = a[t]. Note that since x[t] is binary, its distribution
is fully determined by its expected value. Unless otherwise mentioned, the term
stochastic stream refers to a binary stochastic stream. If we label the two values of a
binary stochastic stream as 0 and 1 we have x[t] ∈ {0,1}, and therefore the range of
values that can be represented is 0 ≤E[x[t]]≤ 1. In order to represent analog signals
that are valued over a different range, we can simply map a[t] to a signal a′[t] such
that a′[t] ∈ [0,1]. If the mapping is one-to-one, it can be inverted at the output of the
computation to restore the initial range. We call the sequence E[x[t]] the expectation
sequence of the stochastic stream x[t].

An important aspect of any number representation is its precision. Suppose that
a real number a is represented as â. The precision can be defined as the worst
error of â with respect to a. As a point of comparison, we consider the precision
of representing a as a fixed-point number, since this is the most common approach
in conventional signal processing systems. Suppose that we want to represent a real
number a ∈ [0,1] as an n-bit fixed-point number â. We obtain â using

â =
ROUND(a ·2n)

2n ,

where the rounding is to the nearest integer. Since |â− a| ≤ 1/2n, we say that the
precision is 1/2n.

We can now compare this with the precision of a stochastic stream x[t] where t
runs from 1 to n. Let us first consider a simple case where the expectation sequence
a[t] does not vary in time, that is E[x[t]] = a[t] = c, with c ∈ [0,1]. The sequence a[t]
can be reconstructed from x[t] in an optimal way by using the mean estimator

â[t] =
1
t

t

∑
i=1

x[i]. (6.3)

Since the stochastic stream is generated randomly, the precision of a sequence of
length n is also random. To simplify, let us assume that the length of the sequence
is known in advance, and that the sequence is generated deterministically to get
the best precision possible, which is achieved by choosing the sequence such that
∑n

i=1 x[i] = ROUND(c ·n). In this case we have

|â[t]−a[t]|=
∣∣∣∣

ROUND(c · t)
t

− c

∣∣∣∣≤
1
2t
. (6.4)

6 Stochastic Decoders for LDPC Codes 111

The precision of the stochastic stream improves with time, since the estimation error
|â[t]− a[t]| goes to 0 for all c, as t goes to infinity. However, to obtain the same
precision as a fixed-point representation with n bits, we must wait until t = 2n−1.
If n ≤ 2, the two representations have equivalent precision, but as n increases,
the stochastic representation needs exponentially more bits to achieve the same
precision. Why then use stochastic streams? The hope is that the gains made in the
complexity of the computation circuits are more important than the loss in precision.
Also, a nice consequence of the randomness of stochastic streams is that the desired
precision does not need to be established in advance, but instead can be chosen
dynamically by running the computation for a shorter or longer time. Nonetheless,
it is clear that stochastic streams are only suitable for computations that require
relatively low precision.

If a[t] varies in time, the optimal estimator will be different from (6.3), but it is
easy to see that in that case the estimation error depends not only on time but also on
the rate of change of a[t] (the smallest error being obtained when a[t] is constant).

6.3.2 Computation Circuits

A stochastic stream x[t] can be generated from a real sequence a[t] ∈ [0,1] by
comparing it with a random threshold T having a uniform distribution over [0,1]:

x[t] =

{
0 if a[t]< T,

1 otherwise.
(6.5)

In some cases, computations can be performed on stochastic streams using very
simple circuits. Unless otherwise specified, circuits for stochastic computation are
designed by assuming that the input streams are mutually independent, which is the
case if they are generated using independent threshold variables. Figure 6.2 shows
two basic computing circuits. The first circuit is an AND gate. Suppose that A and B
are independent binary random variables with Pr(A = 1) = pA and Pr(B = 1) = pB.
Then Pr(C = 1) = pA pB, and therefore the AND gate performs a multiplication.
The second circuit is a multiplexer. Similarly, let Pr(D = 1) = pD, Pr(E = 1) = pE ,
Pr(Z = 1) = pZ , then Pr(F = 1) = (1− pZ)pD + pZ pE , and therefore the circuit
performs a convex combination of streams D and E, with the weights determined
by pZ . Note that it is not possible to directly perform the addition of two streams D
and E, since the domain of pD + pE is [0,2]. However, a normalized addition can be
implemented by using pZ = 1

2 .
Several other circuits have been proposed to implement more complex functions

(see [1] for more examples).

112 F. Leduc-Primeau et al.

Fig. 6.2 Stochastic
computing circuits for (a)
multiplication and (b) convex
combination

0

1

A
B C

D

E
F

Za b

6.4 Fully Stochastic Decoders

This section discusses LDPC decoding algorithms in which all computations are
performed in the stochastic domain, which we refer to as fully stochastic decoders.
Other algorithms that only perform a subset of the computations in the stochastic
domain are described in Sects. 6.5 and 6.6. Section 6.4.1 introduces the fundamental
circuits used in a stochastic LDPC decoder. Following this, Sects. 6.4.2 and 6.4.3
describe two different extensions of the simple stochastic algorithm that both allow
decoding practical LDPC codes.

6.4.1 A Simple Stochastic Decoder

LDPC decoders have the potential to achieve a high throughput because each of
the n codeword bits can be decoded in parallel. However, the length of the codes
used in practice is on the order of 103, going up to 105 or more. This makes it
difficult to make use of all the available parallelism while still respecting circuit
area constraints. One factor influencing area utilization is of course the complexity
of the VAR and CHK functions to be implemented, but because of the nature of
the message-passing algorithm, the wires that carry messages between processing
nodes also have a large influence on the area, as was identified early on in one of the
first circuit implementations of an SPA LDPC decoder [2].

The need to reduce both logic and wiring complexity suggests that stochastic
computing could be a good approach. The use of stochastic computation for
the message-passing decoding of block codes was first proposed by Gaudet and
Rapley [7]. The idea was prompted by the realization that the two SPA functions
VAR and CHK had very simple stochastic implementations when performed in the
probability domain. Let us first consider the CHK function. In the LLR domain, the
function is given by (6.2), which in the probability domain becomes

CHK(p1, p2, . . . , pd) =
1−∏d

i=1(1−2pi)

2
. (6.6)

The implementation of this function in the stochastic domain is simply an exclusive-
OR (XOR) gate. That is, if we have independent binary random variables X1,X2, . . . ,
Xd , each distributed such that Pr(Xi = 1) = pi, then taking

Y = X1 +X2 + · · ·+Xd mod 2 (6.7)

6 Stochastic Decoders for LDPC Codes 113

Fig. 6.3 Stochastic
computation circuit for the
two-input VAR function in the
probability domain

X1[t]

X2[t]

J

K

Q Y[t]

yields Pr(Y = 1) = CHK(p1, p2, . . . , pd). This result is not as surprising as it might
seem. Indeed, the modulo-2 sum is exactly the constraint that must be satisfied by
the codeword bits involved in this check node operation. Using stochastic streams
instead of codeword bits is akin to performing a Monte-Carlo simulation to find the
probability associated with an unknown bit connected to this check node.

A circuit for computing the VAR function with two inputs was also presented in
[7]. In the probability domain, the LLR function of (6.1) with d = 2 is given by

VAR(p1, p2) =
p1 p2

p1 p2 +(1− p1)(1− p2)
. (6.8)

In the stochastic domain, this function can be computed approximately using the
circuit shown in Fig. 6.3. The JK flip-flop becomes 1 if its J input is 1, and 0 if its K
input is 1. Otherwise, it retains its previous value. This implementation is different
in nature from the one used for the CHK function, since it contains a memory. The
behavior of the circuit can be analyzed by modeling the output Y as a Markov chain
with states Y = 0 and Y = 1. Suppose that the stochastic streams X1[t] and X2[t] are
generated according to the expectation sequences p1[t] and p2[t], respectively, and
let the initial state be Y [0] = so. Then, at time t = 1, we have

E[Y [1]] = Pr(Y [1] = 1) =

{
p1[1]p2[1] if so = 0,

p1[1]+ p2[1]− p1[1]p2[1] if so = 1.

None of the expressions above are equal to VAR(p1[1], p2[1]), and therefore the
expected value of the first output of the circuit is incorrect, irrespective of the starting
state. However, if we assume that the input streams are independent and identically
distributed (i.i.d.) with p1[t] = p1 and p2[t] = p2, it is easy to show that the Markov
chain converges to a steady-state such that

lim
t→∞

E[Y [t]] = VAR(p1, p2). (6.9)

To build a circuit that will compute the VAR function for more than two inputs,
we can make use of the fact that the VAR function can be distributed arbitrarily,
which can easily be seen by considering the equivalent LLR-domain formulation in
(6.1). For example we have VAR(p1, p2, p3) = VAR(VAR(p1, p2), p3).

Stochastic decoders built using these circuits were demonstrated for very small
codes, but they are unable to decode realistic LDPC codes. The reason is that (6.9)

114 F. Leduc-Primeau et al.

is not sufficient to guarantee the accuracy of the variable node computation, since
we do not know that the input streams are stationary or close to stationary. In
graphs with cycles, low precision messages can create many fixed points in the
decoder’s iterative dynamics that would not be there otherwise. This was noted in
[21], and the authors proposed to resolve the precision issue by adding an element
called a supernode, which takes one stochastic stream as input and outputs another
stochastic stream. It interrupts the feedback path by using a constant expectation
parameter to generate the output stochastic stream. Simultaneously, it estimates
the mean of the incoming stochastic stream. The decoding is performed in several
iterations, and an iteration is completed once a stochastic stream of length � has
been transmitted on every edge of the graph. Once the iteration completes, the
expectation parameter in each supernode is updated with the output of the mean
estimator. Because the expectation parameter is kept constant while the stochastic
streams are being generated, the precision can be increased by increasing �.

While the supernode approach works, it requires large values of � to achieve
sufficient precision, and therefore a lot of time for transmitting the � bits in each
iteration. However, it is not necessary for the expectation parameter of a stochastic
stream to be constant. Any method that can control the rate of change of the
expectation sequences will allow avoiding fixed points in the decoding algorithm
created by insufficient precision. In particular, this can be achieved by using low-
pass filters, some of which are described in Sect. 6.4.2.

6.4.2 Stochastic Decoders Using Successive Relaxation

Now that we have explained the basic concepts used to build stochastic decoders, we
are ready to present stochastic decoding algorithms that are able to decode practical
LDPC codes. Most such algorithms make use of a smoothing mechanism called
Successive Relaxation. In Sect. 6.4.2.1, we explain how Successive Relaxation was
introduced into the domain of LDPC decoding algorithms, and how it is used in
stochastic decoders. Then, in Sect. 6.4.2.2, we present circuit implementations for
the stochastic computation of the variable node function. Using stochastic streams
to represent likelihood information can sometimes cause precision issues. The main
problem lies in the inability of accurately representing probability values very close
to 0 or 1. Section 6.4.2.3 discusses this range problem and how it can be mitigated.
Finally, Sect. 6.4.2.4 summarizes the performance of a fully stochastic decoder
when decoding the LDPC code standardized by the IEEE 802.3an standard for
10 Gbps Ethernet networking.

6.4.2.1 The Role of Successive Relaxation

Message-passing LDPC decoders are iterative algorithms. We can express their
iterative progress by defining a vector xo of length n containing the information

6 Stochastic Decoders for LDPC Codes 115

received from the channel, and a second vector x[t] of length ne containing the
messages sent from each variable node to its neighboring check nodes at iteration
t, where ne is the number of edges in the graph. The standard SPA decoder for
an LDPC code is an iterative algorithm that is memoryless, by which we mean
that the messages sent on the graph edges at one iteration only depend on the
initial condition, and on the messages sent at the previous iteration. As a result,
the decoder’s progress can be represented as follows:

x[t] = h(x[t −1],xo),

where h() is a function that performs the check node and variable node message
updates, as described in Algorithm 1.

In the past, analog circuit implementations of SPA decoders have been consid-
ered for essentially the same reasons that motivated the research into stochastic
decoders. Since these decoders operate in continuous time, a different approach
was needed to simulate their decoding performance. The authors of [8] proposed to
simulate continuous-time SPA by using a method called successive relaxation (SR).
Under SR, the iterative progress of the algorithm becomes

x[t] = (1−β) ·x[t −1]+β ·h(x[t −1],xo), (6.10)

where 0< β ≤ 1 is known as the relaxation factor. As β → 0, the simulated progress
of the decoder approaches a continuous-time (analog) decoder. However, the most
interesting aspect of this method is that it can be used not only as a simulator, but
also as a decoding algorithm in its own right, usually referred to as Relaxed SPA.
Under certain conditions, Relaxed SPA can provide significantly better decoding
performance than the standard SPA.

In stochastic decoders, SR cannot be applied directly because the vector of
messages x[t] is a binary vector, while x[t] obtained using (6.10) is not if β < 1.
However, if we want to add low-pass filters to a stochastic decoder, we must add
memories that can represent the expectation domain of the stochastic streams.
Suppose that we associate a state memory with each edge, and group these memories
in a vector s[t] of length ne. Since the expectation domain is the probability domain,
the elements of s[t] are in the interval [0,1]. Stochastic messages can be generated
from the edge states by comparing each edge state to a random threshold, as
described in (6.5). We can then rewrite (6.10) as a mean tracking filter, where s[t] is
the vector of estimated means after iteration t, and x[t], xo[t] are vectors of stochastic
bits:

s[t] = (1−β) · s[t −1]+β ·h(x[t −1],xo[t −1]). (6.11)

The value of β controls the rate at which the decoder state can change, and since
E[x[t]] = s[t], it also controls the precision of the stochastic representation.

116 F. Leduc-Primeau et al.

6.4.2.2 Circuit Implementations of the VN Function

We will first consider stochastic variable node circuits with two inputs X1[t] and
X2[t]. As previously, we denote by p1[t] and p2[t] the expectation sequences
associated with each input stream. Let E be the event that X1[t] = X2[t]. We have
that

E[X1[t] |E] = E[X2[t] |E] = VAR(p1[t], p2[t]),

where VAR() is defined in (6.8). Therefore, one way to implement the variable node
function for stochastic streams is to track the mean of the streams at the time instants
when they are equal. As long as Pr(E)> 0, a mean tracker can be as close as desired
to VAR(p1[t], p2[t]) if the rate of change of p1[t], p2[t] is appropriately limited. If the
mean tracker takes the form of (6.11), this corresponds to choosing a sufficiently
small β .

The first use of relaxation in the form of (6.11) was proposed in [17], where
the relaxation (or mean tracking) step is performed in the variable node, by using
a variable node circuit that is an extension of the original simple circuit shown in
Fig. 6.3. In the original VN circuit, each graph edge had a corresponding 1-bit flip-
flop. This flip-flop can be extended to an �-bit shift-register, in which a “1” is shifted
in if both inputs X1[t] and X2[t] are equal to 1, and a “0” is shifted in if both inputs
are equal to 0. When a new bit is shifted in, the oldest bit is discarded.

Let us denote the number of “1” bits in the shift-register by w[t], and define the
current mean estimate as s[t] = w[t]/�. If we make the simplifying assumptions that
the bits in the shift register are independent from X1[t] and X2[t], and that when a
bit is added to the shift register, the bit to be discarded is chosen at random, then it
is easy to show that the shift-register implements the successive relaxation rule of
(6.10) in distribution, with β = Pr(E)/�, in the sense that

E[s[t]] =

(
1− Pr(E)

�

)
· s[t −1]+

Pr(E)
�

·VAR(p1[t −1], p2[t −1]).

When the variable node degree is large, it was suggested in [18] to implement
the variable node function using a computation tree with two levels. Let us denote
the computation performed by the first level circuit as VARST1 and by the second
level circuit as VARST2. For example, the circuit for a degree-6 VN can be
implemented as

VARST(xo,x1, . . . ,x5) = VARST2(VARST1(x1,x2,x3),VARST1(x0,x4,x5)),

where xo is the current stochastic bit corresponding to the channel information, and
x1,x2, . . . ,x5 are the stochastic bits received from the neighboring check nodes.
The corresponding circuit is shown in Fig. 6.4. When using such a two-level
implementation, it is proposed in [18] to use small shift-registers for the first level,
and a large one for the second level.

6 Stochastic Decoders for LDPC Codes 117

1

0

2-bit
IM

enable

random address
in out

1

0

2-bit
IM

enable

random address
in out

update
0

1

in
it
ia

liz
at

io
n?

random address

64-bit EM
in out

1

0

ou
tp

ut
 t
o

a
C

N

5
in

pu
ts

 f
ro

m
 C

N
s

channel stochastic bit

Fig. 6.4 Degree-6 stochastic VN circuit corresponding to one output [18]

Using a shift register is interesting from a pedagogical point of view because it
uses a stochastic representation for the mean estimate. However, there are several
reasons that discourage its use in decoders. First, the choice of relaxation factor β is
tied to the precision of the mean estimate, which prevents from freely optimizing
the value of β . Second, because the mean is represented stochastically, storing
a high precision estimate requires a lot of register bits, which are costly circuit
components. Lastly, the relaxation factor β is not constant, since β = Pr(E)/�. This
can complicate the analysis and design of the decoder.

For these reasons, a better approach to performing the mean tracking, proposed
in [19], is to directly represent the mean estimate s[t] as a fixed-point number. The
VN computation with inputs X1, X2 can now be implemented as

s[t +1] =

⎧
⎪⎪⎨
⎪⎪⎩

(1−β) · s[t]+β if X1 = X2 = 1,

(1−β) · s[t] if X1 = X2 = 0,

s[t] otherwise.

If β is chosen as a negative power of 2, the update can be implemented with only
bit shifts and additions.

6.4.2.3 Tweaking the Probability Domain Representation

The stochastic computations used in decoding LDPC codes are expressed in the
probability domain because that greatly simplifies the computation of the check
node function, which becomes a simple XOR gate, as stated in (6.7). It was found

118 F. Leduc-Primeau et al.

that when running SPA in the LLR domain, the performance is adversely affected
if the representable range of LLR values is too limited. The probability domain
representation requires a large number of bits to represent large LLR magnitudes,
and representing the probability as a stochastic stream requires a further exponential
increase in the number of bits used, as was discussed in Sect. 6.3.1. To illustrate this,
consider a stationary stochastic stream of length t. The smallest non-zero probability
value that it can represent is 1/t, and therefore the largest LLR value Λmax less than
infinity that it can represent is

Λmax = ln

(
1− 1

t
1
t

)
= ln(t −1).

For example, the ability to distinguish an LLR value of 2 from larger values requires
a stationary stream of length t ≥ 9, while distinguishing an LLR of 4 from larger
values requires t ≥ 56.

One way to improve the representable range is to note that when decoding
an LDPC code, we are not interested in approximating the true a-posteriori
probabilities of each transmitted bit, but simply of identifying which codeword
is more likely to have been transmitted. Therefore, we can try scaling down the
prior LLR values to increase the representation precision for large LLR magnitudes
(at the expense of decreasing the representation precision for values near zero).
Suppose that we apply a scaling factor α to all LLR values. The minimal length
of a stationary stream that will distinguish Λmax from larger values becomes

t ≥ �eαΛmax +1�

Continuing the previous example, if we set α = 1
2 , distinguishing an LLR value

of Λmax = 2 now requires only t ≥ 4, and t ≥ 9 for Λmax = 4. This LLR scaling
approach was initially proposed in [17] under the name Noise Dependent Scaling,
where it was shown that it is necessary to choose the right scaling factor in order to
achieve a low error rate when the channel signal-to-noise ratio is large.

6.4.2.4 Benchmark Using the IEEE 802.3an Standard

The IEEE 802.3an 10GBASE-T standard (10 Gbps Ethernet networking over CAT-
6 copper cables) uses an LDPC code of length 2,048 and rate 0.841 for error
correction. Because of its industrial relevance and high throughput requirements,
this code became a popular benchmark for LDPC decoders. A stochastic decoder
for this code that uses the techniques presented in Sects. 6.4.2.1–6.4.2.3 was
described in [20]. In addition, this decoder uses a heuristic circuit optimization
called “MTFM” where a single relaxation filter is used simultaneously by the dv

outputs of a variable node circuit.

6 Stochastic Decoders for LDPC Codes 119

The main strength of this stochastic decoder compared to other decoder imple-
mentations is that it achieves a high average decoding throughput, especially when
normalizing for circuit area. Its main inconvenient is that its worst-case decoding
time is significantly larger. This worst case can be dealt with by adding buffering
at the input, but many applications have stringent latency requirements that prevent
such buffering.

6.4.3 The “Delayed” Stochastic Decoder

The simple stochastic decoder discussed in Sect. 6.4.1 is interesting for the very low
complexity of the circuits required, but unfortunately it is unable to decode practical
codes because the precision of the messages exchange is in most cases insufficient to
ensure convergence. The relaxation-based approach presented in Sect. 6.4.2 resolves
this issue by controlling the rate of change of the expectation sequences associated
with each stochastic stream, allowing the decoder to converge. The “delayed”
stochastic (DS) decoder introduced in [11] takes a different approach to resolving
the convergence problem, with the objective of eliminating a large portion of the
register circuits required in relaxation-based decoders.

Instead of controlling the precision of the stochastic streams, the DS decoder
propagates “freeze” flags that indicate whether a stochastic message is reliable or
not. If a check node receives a freeze flag, it propagates the flag to its neighbors and
the messages sent by this check node are ignored in the variable nodes.

6.4.3.1 Simple DS Decoder

In its simplest form, the DS decoder uses the same variable node function as the
simple stochastic decoder of Sect. 6.4.1. In the first iteration, the variable nodes
send a stochastic bit generated from the channel probability. In following iterations,
the variable nodes receive messages from the check nodes, and the reliability of
each output of a VN is determined by the presence of an agreement among input
bits. If there is no agreement for generating a given VN output, a “freeze” flag is
propagated on that output.

6.4.3.2 Some Heuristics for Improved Convergence

In the simple DS algorithm, the proportion of messages that are deemed reliable
was observed to be insufficient in many cases, resulting in very slow convergence.
Two modifications to the algorithm were proposed to improve the decoding time.
First, small memories called “internal memories” (IM) are added to the variable
node circuit to provide some averaging of the stochastic streams. The resulting VN
circuit used to generate one output then becomes identical to the one in Fig. 6.4, but

120 F. Leduc-Primeau et al.

without the 64-bit edge-memory (EM). Instead of sampling from the EM, the DS
circuit outputs a “freeze” flag. Second, a special condition is added to further reduce
the number of “freeze” flags being propagated. When a majority of a VN’s outputs
would be sending “freeze” flags, the VN circuit instead enters a special state where
no “freeze” flags are sent, and the output messages are sampled from the IMs.

6.4.3.3 Benchmark Using the IEEE 802.3an Standard

A hardware decoder for the code specified in the IEEE 802.3an standard is reported
in [11]. The results show that the decoding latency of the DS algorithm is longer
than for the relaxation-based decoder presented in Sect. 6.4.2. The latency can be
made equivalent at the cost of reducing the coding gain by 0.2 dB. However, the DS
decoder occupies a much smaller area: 3.93 mm2 instead of 6.38 mm2 (in a 90 nm
technology). The average throughput of the DS decoder is also 2.8 times higher.

These hardware results show that it is possible for a stochastic decoder to
converge on practical LDPC codes even when the circuit contains a very small
amount of memory. However more work must be done to improve the worst-case
convergence time and the coding gain.

6.5 Mixing Stochastic and Conventional Computations

It is a common occurrence in computer architecture that the complexity of a
computation can be reduced by changing the representation domain of the data. For
example, applying a Fourier transform can simplify a complex convolution opera-
tion into a simpler multiplication, while operating with a logarithmic representation
simplifies multiplications into additions. Besides the issue of numerical precision
which must also be considered, the decision to use an alternate representation in an
implementation must take into account the other computations that are required by
the algorithm, and the cost of converting one representation domain to another.

This situation is found in the SPA. As was presented in Sect. 6.4.1, performing the
check node computation in the stochastic domain results in an exact implementation
(in distribution) of the SPA check node function that has a very low complexity. On
the other hand, the stochastic variable node computation can only become exact if
the input streams are stationary, which is a case of limited interest since it implies
that the decoder is not making any progress. Among exact implementations of the
variable node computation, the simplest is obtained by using the LLR domain, for
which the computation is simply an addition.

In this section, we present an algorithm called the Relaxed Half-Stochastic (RHS)
algorithm [10] that uses the stochastic domain for the check node computation and
the LLR domain for the variable node computation, and which includes mechanisms
to efficiently convert the values between the two domains.

6 Stochastic Decoders for LDPC Codes 121

The stochastic domain has the potential of greatly simplifying some types of
computations, but there are also situations where it is more likely to increase
the complexity, for example when a computation requires a high precision. The
approach presented here could therefore also provide opportunities for other
algorithms that would benefit from using stochastic computation in only a portion
of the algorithm.

6.5.1 The RHS Algorithm

The structure of the RHS algorithm, like all other algorithms presented in this
chapter, is very similar to that of the SPA, described in Algorithm 1. In fact, part of
the variable node computation is identical to the SPA, since it operates in the LLR
domain. When describing the algorithm we assume that messages are exchanged
according to the so-called flooding schedules. The steps described can be trivially
modified to use other schedules.

Like the SPA, the RHS algorithm takes as input a set of n LLR values {Λ1,Λ2, . . . ,
Λn} that correspond to the n bits received from the channel. However, it is easier to
describe the algorithm from the perspective of individual variable nodes and check
nodes. Still following the SPA described in Algorithm 1, the first iteration begins by
generating the LLR values ηi, j, where the index i runs over the variable nodes, while
j runs over the neighboring check nodes of the variable node. When considering
a particular variable node i we can simplify the notation to η j. In RHS, we call
the η j values intermediate VN outputs. These intermediate VN outputs are then
converted to stochastic messages and sent to neighboring check nodes. The check
node computation is performed in the stochastic domain, and stochastic messages
are sent back from check nodes to variable nodes, which completes the iteration.

The main interest of the algorithm lies in the mechanism used to convert to and
from the stochastic domain. This is described in Sects. 6.5.2 and 6.5.3.

6.5.2 Domain Conversion: LLR to Stochastic

The RHS algorithm uses an extended version of stochastic streams where each
stream element consists of a binary vector of length k. Therefore, when a variable
node sends a message to a check node, it transmits k bits, either serially or in
parallel. Let us denote such a message as X = [X1,X2, . . . ,Xk], where each Xi is
an independent binary random variable. In order to use the simple check node
function common to all stochastic LDPC decoders, we define the expectation
parameter in the probability domain. The fact that the k bits in a message vector
are generated simultaneously allows exploring various generation rules, but one
way to define X is to have independent and identically distributed bits, such that
E[X1] =E[X2] = · · ·=E[Xk] = p j. The expectation parameter p j is simply the LLR-
domain intermediate output η j converted to the probability domain:

122 F. Leduc-Primeau et al.

p j =
1

eη j +1
.

One way to generate the stochastic bits is to compare p j to a random threshold,
uniformly distributed over the probability domain. However, the computation of
p j can be avoided by instead converting the threshold to the LLR domain. Let Z
be a uniform random variable over the open interval (0,1). An LLR threshold T
is obtained using T = ln((1− Z)/Z). We then generate a stochastic bit for each
i ∈ [1,k] by comparing the intermediate output with a threshold sampled from T :

Xi =

{
0 if ηi > T,

1 otherwise.
(6.12)

In the circuit implementation, a realization of Z can be generated easily using a
linear feedback shift-register (LFSR) circuit, and the conversion to the LLR domain
can be approximated accurately using a priority encoder circuit and a few additional
logic gates.1

As discussed in Sect. 6.4.1, the stochastic check node circuit composed of XOR
gates implements the SPA check node function provided that the stochastic inputs
are independent. This requirement determines which thresholds in the decoder must
be independent. Any two messages that are sent to different check nodes can be
generated with the same threshold. On the other hand, each of the k bits in the
message vector must be independent. Therefore, k · dc independent thresholds are
required in a complete decoder, where dc is the check node degree. Since kdc � n,
the complexity of the random threshold generator circuit does not have a large
impact on the complexity of the decoder.

6.5.3 Domain Conversion: Stochastic to LLR

A check node is connected to dc variable nodes, and therefore at every decoding
iteration it receives dc messages and outputs dc messages. However, each output
message is generated from only dc−1 messages, following the extrinsic information
principle at the center of the SPA.

The RHS check node function therefore takes dc − 1 stochastic vectors Xi as
inputs, each of length k. Let i ∈ [1,dc −1] be an index running over the check node
inputs, and j ∈ [1,k] an index running over the bits in each vector. Therefore we
can denote an individual bit inside a vector as Xi, j. To simplify the presentation, we
consider the generation of one of the dc check node output messages. Using XOR
gates, the check node function computes an output vector Y = [Y1, . . . ,Yk] as

1A detailed example of a circuit implementation can be found in [9].

6 Stochastic Decoders for LDPC Codes 123

Yj =
dc−1

∑
i=1

Xi, j mod 2,

for j ∈ [1,k].
This output vector Y is then transmitted back to a neighboring variable node.

At this point, we need to use the knowledge of how the vectors {X1, . . . ,Xdc}
were generated to interpret Y. Using the generation rule described in 6.5.2, the
expectation of Y lies in the probability domain, and since the bits are i.i.d., the
maximum-likelihood estimate m̂ of the probability represented by Y is

m̂ =
1
k

k

∑
j=1

Yj. (6.13)

We define a set M such that m̂ ∈M . The set M contains all the possible messages
that can be received by a variable node in a single iteration. Under (6.13), we have
M = {0, 1

k ,
2
k , . . . ,1}, for a total of k+1 distinct messages.

For small k values, the precision of the message received is too crude for the
iterative decoder to converge, and therefore we are interested in tracking the mean
of the messages received over the iterations. Let m̂[t] be a message received on an
input of a variable node at iteration t, and let s[t] be the mean probability estimate at
the end of iteration t, with s[0] = 1

2 . For t ≥ 1, we can apply the relaxation filter to
generate an updated estimate s[t]:

s[t] = (1−β)s[t −1]+β m̂[t]. (6.14)

However, this estimate s[t] is in the probability domain, whereas we are interested
in converting the stochastic message to the LLR domain. For small values of k, we
can design a tracking filter operating in the LLR domain by studying the transfer
function corresponding to each message in M . The LLR domain tracking then
simply amounts to choosing the right transfer function according to the received
message m̂:

Λ [t] = f (Λ [t −1]; m̂[t]),

where Λ [t] is the LLR estimate after iteration t, and f (Λ ; m̂) is the transfer function
corresponding to message m̂. We obtain the ideal transfer functions by expressing
(6.14) in the LLR domain, which yields

Λ [t] = ln

(
eΛ [t−1] +β (1− m̂[t](eΛ [t−1] +1))

1−β (1− m̂[t](eΛ [t−1] +1))

)
.

124 F. Leduc-Primeau et al.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Λ(t−1)

Λ
(t

)

m ^ = 0

m ^ = 1

m ^ =1/2

Fig. 6.5 LLR tracker transfer functions for M = {0, 1
2 ,1} and β = 1

4

However, using the ideal functions directly in the circuit implementation would
result in overly complex circuits. Instead, we must approximate each transfer func-
tion using simple linear functions, or alternatively using look-up tables, leaving the
logic synthesis tool to optimize the circuit. An implementation should also exploit
the symmetry of the transfer functions. We have that f (Λ ; μi) = − f (−Λ ; μk+2−i),
where μi is the i-th largest message in M .

For example, Fig. 6.5 shows the transfer functions for M = {0, 1
2 ,1} (hence

k=2) and β = 1
4 . These functions can be approximated with good accuracy by the

following piecewise-linear functions:

f (Λ ;0)≈
{

Λ +b if Λ ≥ d,

d if Λ < d,
(6.15)

f (Λ ; 1
2)≈

⎧
⎪⎪⎨
⎪⎪⎩

aΛ if − c ≤ Λ ≤ c,

−c if Λ <−c,

c if Λ > c,

(6.16)

where the parameters a,b,c,d are chosen based on the value of β . The f (Λ ;1)
function is obtained using the symmetry rule. Using these approximations, it is
possible to design a very simple circuit that will convert the stochastic messages
into LLR values, while also implementing the relaxation filter.

6 Stochastic Decoders for LDPC Codes 125

6.5.4 Benchmark Using the IEEE 802.3an Standard

Hardware implementation results of an RHS decoder for the LDPC code included
in the IEEE 802.3an standard were reported in [9]. Compared to the other stochastic
decoders presented in this chapter, the decoder based on the RHS algorithm occupies
a larger area. Implemented in a 65 nm CMOS technology, the RHS decoder uses
4.41 mm2, while using a quadratic scaling law, the equivalent area for the relaxation-
based fully stochastic decoder of Sect. 6.4.2 is 3.33 mm2, and that of the delayed
stochastic decoder of Sect. 6.4.3 is 2.05 mm2. In return for the increased area, the
RHS decoder reduces the worst-case latency by 3.6 times, while simultaneously
providing an additional coding gain of 0.2 dB with respect to the relaxation-based
stochastic decoder, and 0.4 dB with respect to the delayed stochastic decoder.
Finally, its average throughput is 2.6 times larger than the relaxation-based decoder,
and similar to that of the delayed stochastic decoder.

6.6 Stochastic Decoders for Non-Binary LDPC Codes

Non-binary LDPC codes were shown to outperform their binary counterpart at an
equivalent bit length [5], and furthermore are particularly interesting for channels
that exhibit bursty error patterns, which are prominent in applications such as
data storage and wireless communication. Unfortunately, they are also difficult to
decode. Stochastic computation is one approach that has been explored to reduce
the complexity of the decoding algorithm.

6.6.1 Message-Passing Decoding

In a non-binary code, codeword symbols can take any value from the Galois Field
(GF) of order q. The field order is usually chosen as a power of 2, and in that case we
denote the power as p, that is 2p = q. The information received about a symbol can
be expressed as a probability mass function (PMF) that, for each of the q possible
values of this symbol, indicates the probability that it was transmitted, given the
channel output. For a PMF U , we denote by U [γ] the probability corresponding to
symbol value γ ∈ GF(q). Decoding is achieved by passing messages representing
PMFs on the graph representation of the code, as in message-passing decoding of
binary codes. However, when describing the algorithm, it is convenient to add a third
node type called a permutation node (PN), which handles part of the computation
associated with the parity-check constraint. The permutation nodes are inserted on
every edge in the graph, such that any message sent from a VN to a CN or from a
CN to a VN passes through a permutation node, resulting in a tripartite graph.

126 F. Leduc-Primeau et al.

At every decoding iteration, a variable node v receives dv PMF messages from
neighboring permutation nodes. A PMF message sent from v to a permutation node

p at iteration t, denoted by U (t)
vp , is given by

U (t)
vp = NORM

(
Lv × ∏

p′ �=p

U (t−1)
p′v

)
, (6.17)

where Lv is the channel PMF, and NORM() is a function that normalizes the PMF so
that all its probabilities sum to 1. A PN p receives a message U (t)

vp from a VN and
generates a message to a CN c by performing

U (t)
pc [γhp] =U (t)

vp [γ], ∀γ ∈ GF(q),

where hp is the element of matrix H that corresponds to VN v (which specifies the
column) and CN c (which specifies the row). A CN c receives dc messages from
permutation nodes and generates messages by performing

U (t)
cp = �

p′ �=p
U (t)

p′c, (6.18)

where � is the convolution operator. Finally, a message sent by a CN also passes
through a PN, but this time the PN performs the inverse operation, given by

U (t)
pv [γh−1

p] =U (t)
cp [γ], ∀γ ∈ GF(q),

where h−1
p is such that hp ×h−1

p = 1.
Among the computations described above, the multiplications required in (6.17)

are costly to implement, but (6.18) has the highest complexity, since the number of
operations required scales exponentially in the field order q and in the CN degree dc.

6.6.2 Stochastic Decoding Algorithms

Several ways of applying stochastic computing to the decoding of non-binary LDPC
codes are proposed in [16]. Among these, the only algorithm that can decode any
code, without restrictions on q or dv, is the non-binary version of the RHS algorithm.
Just like in the binary version presented in Sect. 6.5, the non-binary RHS decoder
uses the stochastic representation for the check node computation only.

A stochastic message sent to a check node consists of a single symbol X ∈
GF(q), which can be represented using p bits. In comparison, messages exchanged
in the SPA consist of complete PMF vectors requiring qQ = 2pQ bits, where
Q is the number of bits used to represent one probability value in the PMF.

6 Stochastic Decoders for LDPC Codes 127

Therefore, stochastic algorithms significantly reduce the routing complexity of a
circuit implementation.

For binary codes, the stochastic check node function is an addition over GF(2),
which requires dc(dc − 1) XOR gates for generating all dc outputs. For non-binary
codes, it is an addition over GF(q). Assuming that q is a power of two, the addition
can still be implemented using only XOR gates, requiring pdc(dc − 1) gates to
generate all outputs. The stochastic check node function is therefore much less
complex than the SPA one. Furthermore, its complexity scales only logarithmically
in q.

Unlike binary codes, non-binary regular LDPC codes with dv = 2 can be good
codes [13], and the low variable node degree has the advantage of reducing the
decoder complexity. A specialized stochastic algorithm called “NoX” is proposed in
[16] for dv = 2 codes. It significantly reduces the decoder’s complexity by extending
the update method based on transfer functions used in the binary RHS algorithm.
The binary RHS algorithm achieves a low complexity by combining the mean
tracking of stochastic streams with the conversion to the LLR domain, and using
low-complexity approximations of the resulting transfer functions (see Sect. 6.5.3).
The NoX algorithm for dv = 2 non-binary codes also includes the VN computation
in these transfer functions. This is rendered manageable by the fact that for dv = 2,

the VN function in (6.17) simplifies to U (t)
vp = NORM(Lv ×U (t−1)

p′v), where p and p′
are the two PNs connected to the VN.

6.6.3 Results

When considering the average number of iterations required for decoding as well
as the number of operations required to perform one iteration, the NoX algorithm
has about the same complexity as a version of the SPA that uses the Fast Fourier
Transform to reduce the complexity of the CN update. The main reason explaining
that NoX does not outperform SPA is that the iterative progress of NoX is slower
than SPA. This could be acceptable since the complexity of one iteration of NoX
is also much less. However, a side effect of the slower progress is that larger
memories are required for storing the current state of the VN circuits, which in
turn increases the complexity of an update. It is likely that the complexity of
NoX can be reduced by increasing the amount of information exchanged in one
iteration, just like the parameter k of the binary RHS algorithm (Sect. 6.5) can be
increased to transmit more information in each message, while still relying on the
low-complexity stochastic CN function.

128 F. Leduc-Primeau et al.

References

1. Alaghi A, Hayes JP (2013) Survey of stochastic computing. ACM Trans Embed Comput Syst
12(2s):92:1–92:19. doi:10.1145/2465787.2465794

2. Blanksby AJ, Howland CJ (2002) A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check
code decoder. IEEE J Solid-State Circuits 37(3):404–412

3. Brown BD, Card HC (2001) Stochastic neural computation I: computational elements. IEEE
Trans Comput 50(9):891–905

4. Chung SY, David Forney J, Richardson TJ, Urbanke R (2001) On the design of low-density
parity-check codes within 0.0045dB of the Shannon limit. IEEE Commun Lett 5(2):58–60

5. Davey M, MacKay D (1998) Low-density parity check codes over gf(q). IEEE Commun Lett
2(6):165–167. doi:10.1109/4234.681360

6. Gaines BR (1967) Stochastic computing. In: Proceedings of the spring joint computer
conference, 18–20 April 1967. ACM, New York, pp 149–156

7. Gaudet V, Rapley A (2003) Iterative decoding using stochastic computation. Electron Lett
39(3):299–301. doi:10.1049/el:20030217

8. Hemati S, Banihashemi A (2006) Dynamics and performance analysis of analog iterative
decoding for low-density parity-check (LDPC) codes. IEEE Trans Commun 54(1):61–70.
doi:10.1109/TCOMM.2005.861668

9. Leduc-Primeau F, Raymond AJ, Giard P, Cushon K, Thibeault C, Gross WJ (2012) High-
throughput LDPC decoding using the RHS algorithm. In: Proceedings of 2012 conference on
design & architectures for signal & image processing (DASIP)

10. Leduc-Primeau F, Hemati S, Mannor S, Gross WJ (2013) Relaxed half-stochastic belief prop-
agation. IEEE Trans Commun 61(5):1648–1659. doi:10.1109/TCOMM.2013.021913.120149

11. Naderi A, Mannor S, Sawan M, Gross W (2011) Delayed stochastic decoding of LDPC codes.
IEEE Trans Signal Process 59(11):5617–5626. doi:10.1109/TSP.2011.2163630

12. Poppelbaum WJ, Afuso C, Esch JW (1967) Stochastic computing elements and systems.
In: Proceedings of the fall joint computer conference, AFIPS ’67 (Fall), 14–16 November
1967. ACM, New York, pp 635–644. doi:10.1145/1465611.1465696. http://doi.acm.org/10.
1145/1465611.1465696

13. Poulliat C, Fossorier M, Declercq D (2008) Design of regular (2,d/sub c/)-ldpc
codes over gf(q) using their binary images. IEEE Trans Commun 56(10):1626–1635.
doi:10.1109/TCOMM.2008.060527

14. Qian W, Li X, Riedel M, Bazargan K, Lilja D (2011) An architecture for fault-tolerant compu-
tation with stochastic logic. IEEE Trans Comput 60(1):93–105. doi:10.1109/TC.2010.202

15. Richardson T, Urbanke R (2008) Modern coding theory. Cambridge University Press,
Cambridge

16. Sarkis G, Hemati S, Mannor S, Gross W (2013) Stochastic decoding of LDPC codes over
GF(q). IEEE Trans Commun 61(3):939–950. doi:10.1109/TCOMM.2013.012913.110340

17. Sharifi Tehrani S, Gross W, Mannor S (2006) Stochastic decoding of LDPC codes. IEEE
Commun Lett 10(10):716–718

18. Sharifi Tehrani S, Mannor S, Gross W (2008) Fully parallel stochastic LDPC decoders. IEEE
Trans Signal Process 56(11):5692–5703. doi:10.1109/TSP.2008.929671

19. Sharifi Tehrani S, Naderi A, Kamendje GA, Mannor S, Gross WJ (2009) Tracking forecast
memories in stochastic decoders. In: Proceedings of IEEE international conference on
acoustics, speech, and signal processing (ICASSP)

20. Sharifi Tehrani S, Naderi A, Kamendje GA, Hemati S, Mannor S, Gross WJ (2010) Majority-
based tracking forecast memories for stochastic LDPC decoding. IEEE Trans Signal Process
58(9):4883–4896. doi:10.1109/TSP.2010.2051434

21. Winstead C, Gaudet VC, Rapley A, Schlegel CB (2005) Stochastic iterative decoders. In:
International symposium on information theory, pp 1116–1120

http://doi.acm.org/10.1145/1465611.1465696
http://doi.acm.org/10.1145/1465611.1465696

Chapter 7
MP-SoC/NoC Architectures for Error
Correction

Carlo Condo, Maurizio Martina, and Guido Masera

7.1 Introduction

In the last year several standards for both wired and wireless communications have
been proposed. Indeed, modern terminals, such as smartphones and tablets, are
equipped with different modules for ubiquitous access to internet. As argued in [38],
flexibility has become a fundamental property of architectures for digital baseband
processing, as it allows to support different operating modes more efficiently than
simply placing several modules together and turn them on or off. Unfortunately,
the high throughputs to be sustained make actual flexibility implementation a
challenging task, especially in the context of channel code decoder architectures,
where often decoding algorithms are both complex and iterative.

High throughput imposes to have parallel architectures made of several pro-
cessing elements (PEs) connected via and appropriate communication backbone.
The design of an optimized architecture for a single code is a well-established
problem and has been largely investigated in the past. On the contrary, depending on
the amount of required flexibility, the problem of designing efficient architectures
becomes increasingly challenging. In this sense we can have two main classes of
flexibility: (a) architectures that support only one family of codes (such as turbo
codes or LDPC codes) or (b) architectures that support more families of codes
(e.g., both turbo and LDPC codes). In order to achieve interoperability among
different standards, the second class is the most interesting one. Indeed it contains
three sub-classes of particular interest: (1) architectures that support different codes
within a standard (e.g., both turbo and LDPC codes for the WiMAX standard),
(2) architectures that support different codes within more standards (e.g., both turbo

C. Condo • M. Martina • G. Masera (�)
Politecnico di Torino, Corso Duca degli Abruzzi, 24 Torino, Italy
e-mail: Carlo.Condo@polito.it; Maurizio.Martina@polito.it; Guido.Masera@polito.it

© Springer International Publishing Switzerland 2015
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7__7

129

mailto:Carlo.Condo@polito.it
mailto:Maurizio.Martina@polito.it
mailto:Guido.Masera@polito.it

130 C. Condo et al.

and LDPC codes for WiFi, WiMAX and LTE standards), (3) architectures that
support different codes and that are future proof or fully flexible, which means
that these architectures can accommodate any code, provided that the amount of
available resources is enough. This last case is the most challenging one as adding
flexibility can lead to less optimized solutions with respect to cases (1) and (2).
Nevertheless, all the aforementioned cases require to design both flexible PEs and
flexible communication structures.

Flexibility in the PEs can be achieved adding some multiplexers to select among
a fixed set of alternatives or via programmable architectures such as Application
Specific Instruction-set Processors (ASIPs). On the other hand, flexibility in the
communication structure can be obtained resorting to crossbars, shuffling-networks,
or borrowing results from the general NoC paradigm.

7.2 Flexibility in the Communication Structure

Some works in the literature propose flexible and efficient communication structures
either for turbo [16] or LDPC codes [4] relying on crossbars, or shuffling-networks.
Unfortunately, these solutions are usually tailored around specific characteristics of
some particular classes of codes, thus not being used or extended in the case of a
general approach. Stemming from the NoC paradigm [12], Neeb et al. [36] proposed
an interesting NoC-based approach to enable flexible and efficient interconnection
among P processing elements (PE) in parallel turbo decoder architectures. Accord-
ing to [43] this approach, where the network structure is used to connect PEs
belonging to the same Intellectual Property (IP), is referred to as intra-IP NoC.
The literature shows that the intra-IP NoC approach has been mainly studied in
the context of (1) parallel turbo decoder architectures [25, 27, 30], (2) semiparallel
LDPC code decoder architectures [14,31,43], (3) flexible turbo/LDPC code decoder
architectures [6, 31]. In the following we will assume that each PE is made of a
processing core and a memory (see Fig. 7.1a), where the processing core implements
LLR (Logarithmic Likelihood Ratio) computation/updating operations and the
memory is used both for the storage of data coming from the network and as an
input buffer for the processing core.

IntraIP-NoCs tailored around iterative channel decoder architectures exhibit
some specific features that are summarized in the following. Since the data block
is partitioned into P subblocks and each PE is assigned one subblock, all nodes
exchange nearly the same amount of data. Moreover, idle times in the PEs are
reduced to maximize the throughput. As a consequence, the nodes exchange the
data at a fairly constant rate. Besides, due to the random nature of interleavers for
turbo codes and H matrices for LDPC codes, the pattern of connection among PE
has little adjacency. One of the main consequences of these properties is that the
injected traffic load tends to be uniform both in time and space. Furthermore, since
decoding algorithms are iterative, minimizing the latency of the single iteration is of
paramount importance to achieve high throughput. Thus, simple routing algorithms

7 MP-SoC/NoC Architectures for Error Correction 131

and routing circuits have to be designed. To this purpose the designer can take
advantage of the uniform traffic load and the homogenous nature of the nodes. It
is worth noting that, as the amount of packets injected into the network is known
and depends on P and on the data block size Nf , flow control is not required.
Nevertheless, it is important to define the packet injection rate r, namely the number
of packets injected in the network by a PE in a clock period. This parameter can
simultaneously model two phenomena: (1) the use of different clock frequencies for
the PEs and the network (usually the maximum clock frequency of PEs is lower than
the one used for the network). (2) the fact that a PE may not produce a valid packet
at each clock cycle. Finally, if the permutation laws of the turbo code interleavers
and the H matrices of the LDPC codes considered by a decoder are known, then
the traffic patterns can be derived by off-line analysis. This leads to the so called
zero-overhead networks introduced in [43] and further developed in [25,30], where
all the routing information is precalculated by the means of a simulator, as the one
in [24], leading to significant simplification in the architecture of the nodes.

The structure of the packets is common to all the proposed architectures, namely
each packet is made of a header and a payload. The header contains routing
information, such as the identifier of the destination PE that, for P processing
elements, requires log2(P) bits. The payload contains both a refined LLR and the
memory location where the LLR has to be stored. Even if the number of bits
used to represent LLRs impacts on the bit-error-rate performance of a code, 8
bits is a typical value. On the other hand, the memory location is represented on
�log2(Nf /P)� bits.

The NoC-based approaches proposed in the literature for iterative channel
decoder architectures can be divided into two main categories depending on the type
of network they employ: (1) indirect networks [30,31] (2) direct networks [6,14,25].
In the following both approaches are described.

7.2.1 Indirect Networks

The most popular indirect network topologies proposed in the literature for iterative
channel decoder architectures are Multistage Interconnection Networks (MINs)
[10]. MINs rely on the cascade of several switch stages, each of which is often
referred to as router in the literature of NoC-based iterative channel decoder
architectures. On the other hand, PEs are not part of the routers, but they serve
as both the input and the output of the network (see Fig. 7.1a). Examples of such
networks are Clos, Benes, Omega, and Butterfly networks [10]. The number of
stages and the number of switches per stage changes with the topology, as an
example the Butterfly network is made of log2(P) stages where each stage relies
on P/2 switches.

It is worth noting that the degree of connectivity obtained using these networks is
larger than that achievable with shared bus structures, but it is smaller than the one
reachable with crossbars. As a consequence, when two or more paths connecting

132 C. Condo et al.

routing and
arbitration

core
processing

memory

node

node node

nodenode
node

node node node node
node

node

router

PE

PE

PE

PE

PE

PE

PE

PE

PE

router router

routerrouter

a b

Fig. 7.1 Network and node architecture: (a) indirect network example, (b) direct network example

source/destination PEs cross, conflicts arise. A simple solution to handle conflicts
is to include two FIFO queues in the router architecture. Thus, each router relies
on a 2× 2 switch, two input FIFOs for storing conflicting packets and a routing
and arbitration block that serves the input queues with a round-robin policy and
generates all the required control signals as depicted in the top part of Fig. 7.1a.

The most significant results in the literature concerning indirect networks relate
to Butterfly and Benes networks [27,30]. The Butterfly network features logarithmic
diameter and a highly scalable recursive structure. Moreover, routing in the Butterfly
network is very simple as the bits of the destination PE are used to select the output
port at each stage of the network. On the other hand, this network has no path
diversity, namely there exist only one path connecting two PEs; as a consequence,
conflicts can arise frequently.

An alternative solution to partially solve conflicts is the Benes network. The
Benes network has a larger path diversity than the Butterfly network, even if
its diameter is about two times the diameter of the Butterfly network. However,
conflicts are avoided with the Benes network only if the source/destination pattern is
a permutation of the PE identifiers. Unfortunately, this is not always the case of turbo
and LDPC codes. An interesting solution to solve this problem is the one described
in [30], where a time-division-multiple-access architecture is proposed. The idea
is to exploit the deterministic characteristics of the traffic to assign a time slot to
each packet, that is the cycle when the packet will be injected into the network.
As a consequence, the network inputs are scheduled such that at each cycle there

7 MP-SoC/NoC Architectures for Error Correction 133

is only one packet per output port. Then, the routing information is precalculated
off-line and stored in the packet header, leading to an architecture belonging to the
zero-overhead class.

The analysis presented in [30] refers to r = 0.2 to avoid network congestion
for both Butterfly and Benes networks. Moreover, implementation results shown in
[27] on a 130 nm standard cell technology for P = 16 show that the Benes network
performs better than the Butterfly one both in terms of occupied area and maximum
achievable frequency/throughput. The Butterfly network occupies 0.75 mm2 and
achieves a clock frequency of 345 MHz corresponding to a throughput of 138 Mb/s.
On the other hand, the Benes network occupies only 0.48 mm2 (−35 %) and
achieves a clock frequency of 381 MHz (+10.4 %) and a throughput of 152 Mb/s
(+10 %).

7.2.2 Direct Networks

Direct networks analyzed in the literature [14, 25, 31] rely on P nodes whose
architecture can be seen as a generalization of the one proposed for indirect
networks. Indeed, each node contains one PE, D input, and D output connections
from/to the network, where D is the topology degree, and a routing and arbitration
block (see Fig. 7.1b). Thus, each node relies on D+1 input FIFOs and a (D+1)×
(D+1) switch.

In [31] binary de-Bruijn topologies are proposed to design a flexible interconnec-
tion structure for an LDPC and a turbo/LDPC code decoder respectively. The binary
de-Bruijn network is indeed very appealing to support the communications of a
multiprocessor turbo/LDPC decoder as it features good path diversity properties. In
addition, de-Bruijn networks have logarithmic diameter that leads to small latencies,
and a recursive structure that makes them highly scalable. The analysis presented in
[31] highlights that flexibility comes at the expense of a larger area with respect to
indirect networks. Indeed, scaling the results to a 130 nm standard cell technology
for P = 16 to compare with indirect network results, we obtain that the binary
de-Bruijn network requires 0.64 mm2 for a 244 MHz clock frequency, that is about
+33 % of area and −36 % of clock frequency.

The works in [14, 25] extend the analysis to other topologies. Both [14, 25]
analyze 2D-mesh topologies, showing interesting speed-up and scalability results.
Moreover, in [25] several topologies are compared for network degrees ranging
from 2 to 4. The analysis corroborates the results presented in [31] by showing that
logarithmic topologies as the (generalized) de-Bruijn and Kautz ones are the most
suited to achieve both flexibility and high performance. Moreover, experimental
results presented in [25] for a wide number of cases prove that zero-overhead
architectures require less area with respect to the ones where hardware resources
for the routing algorithm are employed. Considering P = 16, r = 0.33 and a
clock frequency of 200 MHz, zero-overhead architectures for generalized Kautz
topologies achieve in the best case a throughput of about 102 Mb/s with an area
of 0.74 mm2 for D = 2 and about 103 Mb/s with 0.92 mm2 for D = 4.

134 C. Condo et al.

7.3 Review of Flexible Decoding Architectures

In this section, the state of the art on flexible channel decoders is briefly reviewed
for the two most interesting classes mentioned in Sect. 7.1, namely architectures
supporting different codes within more standards (multi-standard architectures) and
architectures that in principle accommodate any code (fully flexible architectures).

7.3.1 Multi-Standard Architectures

While the same type of code can be used in various standards, code size, rate, and
construction method can vary greatly between one application and the other. A first
step towards flexibility in channel decoders is then guaranteeing support for a single
type of code, taking in account the code parameters employed in different standards.

A flexible turbo code decoder architecture is devised in [19], where a decoder
targeting both 3GPP-LTE and Mobile WiMAX standards is proposed. The different
nature of the considered turbo codes (single-binary in 3GPP-LTE and double-
binary in Mobile WiMAX) is tackled by means of bit-to-symbol and symbol-to-bit
conversions [17], addressed later in Sect. 7.4.1 of this chapter, that allow almost
complete memory sharing. Moreover, a novel dual-mode interleaver is introduced
that reduces the overhead relative to the implementation of the native ARP [15] and
QPP [45] interleavers respectively. The resulting multi-standard decoder can reach
up to 186 Mb/s with moderate complexity.

Multi-standard support is achieved in [1] by means of partially parallel turbo
code decoder based on ASIPs. Support is given for 3GPP-LTE, WiMAX, and DVB-
RCS standards, reaching a maximum throughput of 170 Mb/s and yielding good
efficiency. Different ASIPs are used for the in-order and interleaved phases of
the decoding process, and the complexity and latency are kept in check via smart
information exchange networks and pipeline idle time minimization.

The flexible LDPC decoder described in [43] is one of the first work to consider
a Network-on-Chip (NoC) as a possible interconnection structure. Together with the
design of processing elements, the design of the application-specific NoC is carried
out in detail: it is shown that many of the characteristics of general purpose NoCs
are not necessary, thus reducing the overhead commonly associated with complex
interconnections. The complete decoder is arranged on a toroidal mesh topology.

A decoder with extremely good error correction capabilities is shown in [39].
It is designed targeting LDPC convolutional codes that can be obtained from quasi-
cyclic LDPC codes. Again, the regular structure of these codes allows for easy
design of largely parallel structure. Up to 2 Gb/s are obtained with a frequency
of 100 MHz.

7 MP-SoC/NoC Architectures for Error Correction 135

7.3.2 Fully Flexible Architectures

Few recent works have focused on extending the concept of flexible decoders not
only to multiple codes, but also to multiple code types, providing complete support
for whole standards.

The work in [33] describes the design of a multi-standard turbo/LDPC decoder
based on ASIPs and the sharing of memories between the two code types. Each
ASIP has two separate datapaths, one for each decoding mode: eight ASIPs are
instantiated and connected via a simple but flexible interconnection network that
can be reconfigured when switching decoding mode to adapt to the different
communication patterns. Also in [2] is presented an ASIP-based decoder that
includes convolutional code decoding as well. This work is characterized by
extremely small area occupation and high achievable frequency that helps to meet
most throughput requirements for the considered standards.

The works presented in [11, 35, 42] exploit commonalities between turbo and
LDPC decoding to design a unified architecture for multiple standards. By viewing
an LDPC code as a series of turbo codes [23], the BCJR algorithm can be applied to
both code types. The shared datapath and memories result in an overall area much
lower than separate dedicated decoder implementations.

7.4 Improving the Efficiency of NoC-Based Decoders

It has been shown in the previous section that NoCs are extremely flexible
interconnection structures, able to guarantee connectivity among all the nodes of
the network. NoC-based decoders can in fact support up to numerous standards
at the same time [2, 7, 11, 41]. However, flexibility comes at the cost of increased
interconnection complexity and additional latencies that impact heavily on both
throughput and energy consumption, reducing the overall decoder efficiency. NoC-
induced latencies in particular can be a major obstacle in extending the support of
a decoder to multiple standards, whereas excessive energy consumption and area
occupation limit the set of applications in which the decoder can be employed. To
reduce the impact of NoCs on the decoder efficiency, various techniques can be
applied.

7.4.1 Energy Reduction Techniques

The area occupation of a NoC usually consists of 20–40 % of the total decoder
area [9, 26] that results in a proportional impact on the power consumption. It is
consequently desirable to reduce the complexity of the NoC as much as possible.
A set of interesting techniques is considered in [26], aimed at limiting the width of

136 C. Condo et al.

the channels between the nodes of NoC-based turbo code decoders by reducing the
number of concurrently transmitted extrinsic metrics and the number of quantization
bits of each metric.

Let us define λ ext [u] as the extrinsic information associated to symbol u, obtained
at the output of the SISO decoder at each half-iteration. All λ ext [u] must be
sent through the NoC according to the interleaving rule: the width of each NoC
channel must accommodate, depending on the nature of the considered code, the
transmission of one or more concurrent extrinsic metrics. In Double-Binary turbo
codes like the ones used in WiMAX, where each symbol u is composed of two
bits, the transmitted λ ext [u] is an array of three elements. However, following the
architecture presented in [18], it is possible to switch between symbol-level λ ext [u]
and bit-level λ ext [A] and λ ext [B]. The width of the transmitted packet is thus reduced
by 1/3, together with the width of the memories in which λ ext [u] is stored. The
consequent area reduction is much more consistent than the increment brought by
the bit-to-symbol and symbol-to-bit conversion units, necessary since the BCJR
algorithm implemented in SISOs requires symbol-level metrics. The conversion
operation, however, introduces an overall Bit Error Rate (BER) performance loss
of about 0.2 dB. A further step towards the reduction of the area occupation of the
NoC and of the decoder in general can be taken by addressing the quantization
of λ ext [A] and λ ext [B]. Applying the Pseudo-Floating-Point (PFP) representation
suggested in [37], it is possible to reduce the quantization without incurring in
significant performance degradation. The idea is based on the fact that bits within
the representation of extrinsic metrics play a different role in the decoding process
according to their weight, as highlighted also in [40, 44]. Analyzing the binary
representation of λ ext [A] and λ ext [B] from the most significant bit to the least
significant bit, it is possible to detect the first zero-to-one or one-to-zero transition.
This signals the starting bit of the significant part of the extrinsic metric. Finally, an
equal number of bits is assigned to the significant parts of both λ ext [A] and λ ext [B],
alongside a common shift factor used at reception to reconstruct the extrinsic values.
It is show in [26] that the joint application of both methods can reduce the total NoC
channel width of more than 50 % that, depending on the router architecture and
decoder structure, can save up to 40 % of the total NoC area.

In iteratively decoded codes like turbo and LDPC codes, the energy required
for the decoding of a frame is directly proportional to the number of performed
iterations: limiting their number is then an effective way of limiting the energy
consumption. A few Early Stopping Criteria (ESCs) can be found in the literature
for turbo codes [13, 28], but many more have been proposed for LDPC codes,
e.g., [3, 22, 29]. Since LDPCs have a straightforward method of identification of
correct decoding, existing ESCs focus on the early identification of situations in
which the decoding is going to fail. This is usually achieved via observation of
the evolution of metrics throughout different iterations. Most ESCs offer limited
flexibility, and their performance can vary substantially when applied to different
codes. The Multi-Standard-ESC (MSESC) proposed in [8] has been designed to
adapt on-the-fly to code parameters and channel conditions, thus being particularly
fit for flexible multi-standard decoders. During each iteration, by comparing the

7 MP-SoC/NoC Architectures for Error Correction 137

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

0 1 2 3 4 5

Ite
ra

tio
ns

SNR [dB]

MSESC performance - WiMAX, 10 maximum iterations

No ESC N=576, rate 5/6
No ESC N=2016, rate 1/2
No ESC N=1152, rate 2/3

MSESC N=576, rate 5/6
MSESC N=2016, rate 1/2
MSESC N=1152, rate 2/3

Fig. 7.2 MSESC performance for WiMAX codes

Check-Node-Mean-Magnitude metric [3] and the syndrome value against three
thresholds T 1, T 2, and T 3, MSESC decides on the stopping of the decoding process,
effectively identifying both impossible decoding and insufficient available iterations
for successful decoding. The thresholds can be computed as follows:

T 1 = M ·2−6 T 2 = M ·2bits f T 3 = M ·2−5 = T 1 ·2 (7.1)

where M is the number of rows in the LDPC parity check matrix and bits f is the
number of fractional bits assigned to the representation of LLRs. The dependency of
T 1, T 2, and T 3 on code parameters and design choices allows MSESC to maximize
the number of saved iterations without affecting the BER performance with a very
wide range of codes. Figure 7.2 shows the number of performed iterations for the
decoding of three WiMAX codes against the Signal-to-Noise Ratio (SNR), with and
without MSESC. The codes are characterized by different block lengths and rates,
but MSESC maintains its effectiveness with all of them. At low SNR successful
decoding is improbable, and after very few iterations the decoding is stopped, once
impossible decoding is identified. The performed iterations start to rise with the
SNR, reaching a peak in the early waterfall region, where successful decoding is
likely but still requires a high number of iterations. Finally, at high SNR, early
impossible decoding is very rare, and MSESC is almost always deactivated. The
implementation of MSESC reported in [8] shows that the simple logic involved

138 C. Condo et al.

in the on-the-fly computation of threshold values guarantees a very small power
consumption overhead that is compensated by the reduced number of iterations.
Compared to decoders implementing no ESCs or alternative solutions, MSESC
shows energy saving ranging from 10 to 90 %.

7.4.2 Latency Reduction Techniques

The latency introduced by NoCs with respect to less flexible interconnection struc-
tures is unsustainable for most decoders, due to the strict throughput requirements
of many communication standards. In fact the required throughput imposes an upper
bound on the duration of the decoding process and, consequently, on delivery time
of each message injected in the NoC: high message injection rates, traffic, and
collisions often result in late messages. These, even in small percentages, can be
disastrous for the decoder BER performance.

A common choice to avoid late messages is to stall the decoder between
decoding phases, waiting for the delivery of all information. Unfortunately, a
straightforward implementation of this approach severely limits the achievable
throughput. A possible solution has been studied in [26, 32] for turbo codes and [5]
for LDPC codes, where the reliability of the exchanged information is evaluated
through threshold-based measures. In [32], reliable information is characterized
by a small enough difference between a-priori and extrinsic information, while in
[5] reliable LLRs are those with a large enough magnitude. In both cases, if the
information is deemed reliable it is not exchanged anymore, reducing the traffic on
the NoC and possibly the total delivery time. This technique can be particularly
effective in presence of large networks with light traffic patterns, where up to 20 %
throughput gains have been observed.

Stalling the decoder, however, is often unfeasible, especially in decoders with
heavy traffic loads, in which the transmission times are already long and additional
latency cannot be sustained. A possible approach in these situations can be the
artificial reduction of the rate of packet injection r in the NoC by setting the
frequency of the network at a multiple of that of the processing elements, that is
reducing the value of r. While effective, this solution is extremely expensive in
terms of power consumption. A set of alternative methods have been studied in [9],
aimed at the reduction and optimization of NoC traffic. The Hard Importance (HI)
method is very similar to the threshold-based reliability measures devised in [32]
and [5], while the Soft Importance (SI) allows to discard low-importance packets
in case they collide once they have been injected in the NoC. Both techniques
offer significant advantages in heavy traffic conditions, reducing the percentage
of late messages and the NoC switching activity. The remaining late messages,
however, still cause severe performance degradation in the majority of cases. Traffic
optimization is based on the fact that an estimate of the number of clock cycles
available for message delivery can be sent together with the information and can be
updated in the NoC. This field is used as a priority indicator: most urgent messages

7 MP-SoC/NoC Architectures for Error Correction 139

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10−8

10−6

10−4

10−2

100

SNR

B
E

R

BER, 8 iterations, WiMAX Turbo 2400, 16−PE Generalized Kautz,
Node Degree=3

No network

No traffic handling

HI+SI

BR+U

HI+SI+U+BR

Fig. 7.3 BER performance of WiMAX code on NoC with combinations of traffic reduction and
optimization

are favored in case of collisions. Exploiting this Urgency (U) priority field, NoC
buffers can be changed from FIFOs to urgency-ordered buffers (Buffer Reordering,
BR) so that urgent messages are always the first to be served in routers. These
two traffic optimization methods are extremely effective in guaranteeing on-time
message delivery. Figure 7.3 plots the BER performance of a WiMAX turbo code
mapped on a 16 PE Kautz NoC, under the influence of different traffic handling
techniques. The “No network” represents the achievable performance, with 0 % late
updates, while “No traffic handling” has been obtained without the application of
any of the described methods. It can be noticed how traffic reduction alone (HI+SI)
is not able to bring the BER to acceptable levels. On the contrary, very good results
are shown by traffic optimization (BR+U) and even more performance improvement
is observed when all four techniques work together. Implementation of the four
techniques on the decoder presented in [7] results in a 13 % area overhead and a
15 % power consumption reduction, thanks to the lower NoC frequency [9].

7.5 Dynamic Reconfiguration

Extensive research has been conducted in the last few years on flexible multi-mode
and multi-standard decoding architectures, and large efforts have been spent to limit
the impact of flexibility on achievable throughput and dissipated energy. However,

140 C. Condo et al.

the issue of dynamic reconfiguration has been often neglected in this context.
Surprisingly enough, most of flexible decoders available in the open literature
[2, 11, 25, 27, 27, 31, 35, 42, 43] efficiently work on a wide range of codes, but do
not support the run-time switch from one code to another.

Very few contributions have considered the fundamental requirement of rapidly
reconfiguring the architecture for a new decoding task and the related overheads in
terms of area and energy [7,20,21,34]. Change of decoding mode, standard, or code
parameters requires not only hardware support, but also memory initialization and
specific controls; moreover, since in many standards a code switch can be issued as
early as one data frame ahead, reconfiguration time is also a major need.

In this section, a detailed analysis of the reconfiguration issue is carried out
and the different kinds of reconfiguration are described, together with alternative
solutions and trade-offs.

7.5.1 The Reconfiguration Task

We can distinguish between three levels of dynamic reconfiguration, associated to
growing levels of flexibility and complexity:

1. intra-standard reconfiguration,
2. inter-standard reconfiguration,
3. reconfiguration to a new code.

The first case does not refer to a change of standard, but simply to a change of
communication mode: the decoder has to switch between two codes of the same
family, belonging to the same standard. New and old codes can have different length
and code rate, but they typically share many other elements, such as, the decoding
algorithm and the iteration control. The similarity between the two codes can be
exploited to simplify the configuration process and reduce the amount of data to
be updated. In the second case, the switch is between two codes with potentially
large differences with respect to each other: in addition to code length and rate,
other important features may be changed, such as, the decoding algorithm or the
permutation law. The reconfiguration process tends to be more complex and it
involves a larger amount of data. The last case is of interest for fully flexible or
future-proof decoders, which are able to dynamically adapt to any code in the
considered families (e.g., turbo and LDPC codes). This flexibility is also extended to
codes not yet known at the time of decoder design, provided that the length is within
limits that depend on the size of the internal memories allocated to store received
frames.

The actual complexity of the dynamic reconfiguration and its impact on the
overall decoder in terms of additional occupied area and dissipated energy depend
on the amount of internal data to be updated when switching to a new code and on
the available time to complete this operation.

7 MP-SoC/NoC Architectures for Error Correction 141

In modern wireless communication systems, a code switch can be issued as
early as one data block ahead and the decoder must be reconfigured for the new
data block while it is still running on the previous one. Therefore, a time efficient
reconfiguration technique is mandatory. The worst-case reconfiguration latency can
be simply expressed as

Lrec =
Nf R

T
(7.2)

where Nf is the bit length of the current block, R is the code rate, and T is the
specified throughput. It can be easily seen from (7.2) that Lrec tends to become very
short in the case of short block, low code rate, and high throughput. Considering
current wireless communication standards, it has a typical value of a few μs. As
an example, in the 3GPP LTE standard, 188 different information block sizes are
specified, ranging from 40 to 6,144, the lowest code rate is 1/3 and the throughput
can be as high as 450 Mbit/s for the down-link; the peak throughput is specified
for the largest block, while it scales for shorter blocks. Using the largest block, (7.2)
gives a latency of 13.6 μs. The requirement on Lrec is expected to become even more
severe in LTE Advanced, which specifies a throughput as high as 1 Gbit/s.

Estimating the amount of data to be updated at the reconfiguration of the decoder
is rather difficult, as it is heavily dependent on the specific adopted architecture and
on the kind of addressed reconfiguration.

An FPGA based decoder is intrinsically reconfigurable, as the running decoder
can be stopped at any time and a new design can be loaded into the programmable
device to support a completely different code. Current FPGA technology allows
for run-time partial configuration, which means that the decoder structure can be
modified or extended, while it is serving the current decoding task. These dynamic
reconfiguration techniques offer a large potential flexibility, ranging from the simple
switch between two similar codes, decoded by architectures that share a high
percentage of hardware resources, up to the load of a complete new decoder, running
a different decoding algorithm. However, FPGA configuration is still a slow and
energy inefficient process, which involves the uploading of tens of Mbytes, therefore
it is hardly acceptable for flexible decoding applications, with severe speed and
power consumption constraints.

Large flexibility is also offered by ASIP-based decoders, which are basically
customized processors with specialized datapath and instruction set. In this kind
of decoder, the dynamic reconfiguration can be viewed as a context switch, where
instruction memory and internal registers are dynamically loaded with new contents
when the switch to a new code is requested. In [21], the amount of configuration
data for a multi-ASIP decoder is evaluated as equal to about 1 kbits, due to both
processor instructions (around 2/3 of the total) and parameters (1/3). Proper
hardware resources are necessary to support the context switch (e.g., data busses,
shadow memory, and registers).

As a further alternative, which was explored in [21] and [7], the single processing
element can be implemented in the form of a parameterized dedicated architecture,

142 C. Condo et al.

which only needs a few configuration bits, as there is no instruction memory . If the
decoder flexibility is limited to a small number of standards and both interleaving
laws and parity check matrices are algorithmically generated by means of simple
parameterized hardware components, then the whole configuration becomes very
easy, fast, and involves a reduced amount of data.

Finally, the decoder can be based on an application specific NoC, with param-
eterized processing elements and routing elements [7]. This fully flexible solution
supports the third level of configuration mentioned above and allows for dynamic
switching between any couple of codes, including codes with a structure of either
interleaver or parity check matrix that cannot be generated algorithmically, or is not
known at the design time. In this case, the amount of data that need to be updated is
significantly larger, because it includes the management of the routing. Basically, for
each generated LLR, its destination node in the NoC must be available to properly
forward the LLR. As a consequence, when the decoder is configured for a size N
code, the number of bits to be uploaded tends to grow as O(N�log2N�), where
N is the codes size and �log2N� bits are used to represent each location address.
For example, to support the LTE codes, more than 150,000 reconfiguration bits are
necessary to update the NoC routing.

From these rough evaluations, one can see that the reconfiguration process
implies quite a large throughput of data moved to the decoder. Therefore, an efficient
organization of the configuration process is of utmost importance to confine the
related complexity and energy overheads.

7.5.2 Reconfiguration of ASIP Based Decoders

The problem of dynamically reconfiguring an ASIP based turbo decoder and the
development of an efficient hardware implementation is addressed in [20, 21, 34]. It
is assumed that each received block is associated to a specific configuration and that
the loading of the configuration for a new block is performed during the processing
of the current block.

An already available multi-mode and multi-standard turbo decoder [33] is
initially considered and a set of modifications are applied in order to enable
the dynamic switch between different codes. The original decoder architecture is
organized around two sets of ASIPs interconnected via a Butterfly Network on Chip,
where each set corresponds to a component decoder. Each ASIP unit includes ten
pipeline stages and it is associated to several memories, used to store input channel
LLR values, extrinsic information, state metric, instructions, and configuration data.
The required interleaving/deinterleaving addresses are generated algorithmically
and make use of a set of parameters which depend on the specific code to be
supported and therefore are part of the configuration. From the complete list of
configuration data, the information to be updated at each code switch is classified
into four categories:

7 MP-SoC/NoC Architectures for Error Correction 143

1. component decoder dependent parameters,
2. identical parameters for all ASIPs,
3. ASIP dependent parameters,
4. parameters required only by the last ASIP of a component decoder (for tail bits).

A low latency configuration process is then developed exploiting both multicast and
broadcast mechanisms. Two multicast operations are used to update the first class
of parameters, one multicast operation is necessary for parameters shared among all
ASIPs, and multiple unicast transfers are exploited to upload the ASIP dependent
parameters. Moreover, the ASIP configuration load has been significantly reduced
by adopting a unified program, which works for all considered codes, including
double-binary turbo codes. Finally, the internal configuration memory has been
extended to store multiple configurations at the same time: this allows to save time
in the switch between frequently used codes.

The decoder has been enriched with a dynamic reconfiguration infrastructure that
supports unicast, multicast, and broadcast transfers. The adopted solution consists
of a master-slave 26 bit bus-based structure. A master unit initially receives the
configuration data, which are then moved to one or multiple slave units, based on
the required type of transfer. A dedicated unit allows to select at run-time the target
destination ASIPs. Finally, configuration data are moved from the slave units to their
final destinations.

This configuration infrastructure and the related protocol controller have been
implemented using both FPGA and ASIC technologies. The worst case latency
is lower than 10 μs in the case of FPGA implementation, while 1 μs is reached
with a 65 nm ASIC technology, allowing for a 500 MHz clock frequency. The
corresponding area overhead is around 2 % of the decoder.

The described solution allows to handle the configuration process in two different
ways. In the first approach, the configuration data is generated off-line for all
possible codes and stored in a global memory. At every code switch, a configuration
manager simply reads the new configuration data from the global memory and send
it to the decoder, by means of the dedicated infrastructure. This static solution
is functionally simple, but requires a large global memory to support a large set
of codes and it is not compatible with any extension. The second approach is
dynamic and allows for the run-time generation of new configurations. The single
bus reconfiguration architecture, applied to a multi-ASIP decoder, is shown in
Fig. 7.4a, where a reconfiguration interface (RI) connects each the shared bus to
each ASIP and the reconfiguration data can be provided by either a memory or a
reconfiguration manager.

Although the described reconfiguration technique is tailored around a specific
ASIP based decoder that only supports turbo codes in WiMAX and LTE standards,
it can be easily extended to include more codes. However, since the reconfiguration
infrastructure uses a shared bus, this solution is expected to become less efficient if
the number of ASIPs or PEs to be configured in the decoder is significantly larger
than shown in [21].

144 C. Condo et al.

Reconfiguration Manager/Memory

PE

RI

PE

RI

...

...

PE

RI

ASIP

RI

ASIP

RI

ASIP

RI

ASIP

RI

Communication infrastructure

...

...

...

...

PE

RI

b

a

...

...

Communication infrastructure

Reconfiguration Manager/Memory

Fig. 7.4 Reconfiguration architectures: (a) single bus architecture, (b) multiple bus architecture

7.5.3 Reconfiguration of NoC Based Decoders

For the decoding architecture described in Sect. 7.3.2, the reconfiguration task
affects the content of the location memory, which stores the destination addresses
for each processed message, and a few parameters, such as check node degrees
and the SISO window size. We assume that the whole set of reconfiguration data
are saved in a distributed configuration memory (CM), allocated in each PE of the
decoder. As reconfiguration must occur within the decoding of the previous block,
the NoC interconnects cannot be exploited to update the CM in each processing
element. Instead, Nb buses are dedicated to the configuration task, and each bus
serves P/Nb PEs. The use of multiple buses allows to increase the bandwidth and to
handle larger amount of reconfiguration data. This high level architecture is shown

7 MP-SoC/NoC Architectures for Error Correction 145

rec. time

it1 it2 it3 it4 it1 it2 it3 it4

rec. time

it1 it2 it3 it4 it1 it2

rec. time

it1 it2 it3 it1

a

b

c

Fig. 7.5 Examples of reconfiguration. Reconfiguration can be overlapped with a single decoding
iteration (a), with two iterations (b), or with a number of iterations (c)

in Fig. 7.4b, where multiple buses (Nb) concurrently update the decoding PEs and
reconfiguration data are taken from a memory or from a manager, as in part (a) of
the figure.

The CM is managed as a circular buffer, where two sets of configuration data can
be present at the same time: the one necessary for the decoding of the current block,
and a new one, to be used when the decoder will switch to a new code. Proper read
and write pointers allow to separate old and new configurations. Limiting the size B
of the CM is of interest, because it impacts on area and energy consumption. To this
purpose, multiple strategies can be adopted. The first idea is to partially overlap the
configuration process with the decoding of one or more blocks (No) of the current
code. A second option is to overlap an additional part of the configuration process
with the first decoding iteration of the newly loaded code. A final option is skipping
one or multiple iterations (Nsk) while decoding the last received block: the saved
time can be used to complete the loading of CM before starting the decoding of the
new block. Differently from the other solutions, the last one has an impact on the
error correction performance, because of the skipped iterations.

A few examples of reconfiguration are shown in Fig. 7.5, where distinct patterns
are used to indicate blocks decoded with different codes. In part (a) of the Figure, the
switch to a new code is considered, after four decoding iterations with the previous
code: as new and old codes have similar size, the reconfiguration time is close to the
time length of a single iteration. Therefore, in this case, No = 1 and Nsk = 0. In part
(b), the destination code is longer and reconfiguration time needs to be extended
to cover more than one iteration. Finally, in part (c), the destination code is much
longer than the current code, therefore, one decoding iteration is skipped (Nsk = 1).

146 C. Condo et al.

In general, given a set of standards and turbo or LDPC codes to be supported,
the reconfigurable decoder can be designed by selecting a proper combination of
the four mentioned parameters (the number of busses Nb, the buffer size B, the
number of overlapping blocks No, and the number of skipped iterations Nsk), with
the purpose of minimizing the overall complexity and matching the required latency
at the same time, with minimum impact on the error correction performance.

Intuitively, the global latency decreases with larger Nb, because more PEs can be
reconfigured at the same time. Moreover, increasing B reduces the need for skipped
iterations and overlapping blocks. When the destination code in the reconfiguration
process is larger than the current one, the uploading of CM may require either larger
No or larger Nsk.

A complete analysis of both intra- and inter-standard reconfiguration is presented
in [7], where several codes from a large variety of standards (WiFi, DVB-RCS,
WiMAX, CMMB, DTMB, 3GPP-LTE, and HPAV) are considered. Starting from
the architecture proposed in [6], an extended NoC based fully flexible decoder is
obtained with shared memory and interconnect resources. Moreover configuration
busses, memories, and control logic have been included to support dynamic switch
between different codes. The decoder has been synthetized with a 90 nm CMOS
standard cell technology, with 22 PEs running at 200 and 170 MHz when configured
to support LDPC and turbo decoding respectively; 300 MHz is the target clock
frequency for the NoC. The whole set of turbo and LDPC codes included in
the mentioned standards are fully supported and achievable throughput meets the
specifications until ten iterations for LDPC codes and eight for turbo codes. Post
place & route estimated area is 3.42 mm2 and peak dissipated power is 120 mW.

The reconfiguration process has been tested on every possible couple of codes
in the seven considered standards. From this large set of experiments, the following
conclusions can be drawn.

• The intra-standard reconfiguration is possible with no need for skipped iterations
(Nsk = 0) in all standards, except LTE, which requires Nsk > 0 in 6.8 % of possible
switches between the 188 specified codes.

• Inter-standard reconfiguration is also possible with no skipped iterations when
the new code is not belonging to LTE, CMMB, or DTMB standards.

• Inter-standard reconfigurations towards LTE, CMMB, or DTMB requires Nsk > 0
in a percentage of possible cases which ranges between 5 and 77 %. Moreover,
for all considered cases, Nsk ≤ 3.

The impact of the reconfiguration process and particularly of the skipped
iterations on the decoder performance has been assessed by means of BER
simulations, taking into account the probability that a reconfiguration is required
as a consequence of channel fading. Based on different fading scenarios, the
channel conditions may change at a rate fch between 10 and 150 Hz [7]. The actual
reconfiguration probability can be calculated as

Prec =
fchRN

T
(7.3)

7 MP-SoC/NoC Architectures for Error Correction 147

where the ratio T/N is the number of coded frames received per unit time. Prec

is shown to range between 0.25 and 0.3 % in presence of a fast moving receiver,
while it remains under 0.15 % in the other cases. The effect of Nsk ≤ 3 on
BER performance in such conditions is negligible and lower than 0.05 dB for all
considered codes and standards.

Acknowledgements This work has been partially supported by the Newcom# project.

References

1. Al-Khayat R, Baghdadi A, Jezequel M (2012) Architecture efficiency of application-specific
processors: a 170Mbit/s 0.644mm2 multi-standard turbo decoder. In: 2012 International
symposium on system on chip (SoC), pp 1–7. doi:10.1109/ISSoC.2012.6376368

2. Alles M, Vogt T, Wehn N (2008) FlexiChaP: a reconfigurable ASIP for convolutional, turbo,
and LDPC code decoding. In: 2008 5th International symposium on turbo codes and related
topics, pp 84 –89

3. Cai Z, Hao J, Sethakaset U (2008) Efficient early stopping method for LDPC decoding based
on check-node messages. In: Proceedings of Asilomar conference on signals, systems and
computers, pp 466–469. doi:10.1109/ACSSC.2008.5074448

4. Chen X, Lin S, Akella V (2010) QSN-a simple circular-shift network for reconfigurable quasi-
cyclic LDPC decoders. IEEE Trans Circuits Syst II 57(10):782–786

5. Condo C, Masera G (2011) A flexible NoC-based LDPC code decoder implementation and
bandwidth reduction methods. In: 2011 Conference on design and architectures for signal and
image processing (DASIP), pp 1 –8

6. Condo C, Martina M, Masera G (2012) A network-on-chip-based turbo/ldpc decoder architec-
ture. In: Design, automation and test in Europe conference and exhibition, pp 1525–1530

7. Condo C, Martina M, Masera G (2013) VLSI implementation of a multi-mode turbo/LDPC
decoder architecture. IEEE Trans Circuits Syst I 60(6):1441–1454

8. Condo C, Baghdadi A, Masera G (2014) Energy-efficient multi-standard early stopping crite-
rion for low-density-parity-check iterative decoding, Communications, IET. 8(12):2171, 2180.
doi:10.1049/iet-com.2013.0869

9. Condo C, Baghdadi A, Masera G (to appear) Reducing the dissipated energy in multi-standard
turbo and LDPC decoders. Circuits Syst Signal Process

10. Duato J, Yalamanchili S, Ni L (2003) Interconnection networks: an engineering approach.
Morgan Kaufmann, Los Altos

11. Gentile G, Rovini M, Fanucci L (2010) A multi-standard flexible turbo/LDPC decoder via
ASIC design. In: International symposium on turbo codes & iterative information processing,
pp 294–298

12. Guerrier P, Greiner A (2000) A generic architecture for on-chip packet-switched interconnec-
tions. In: Design, automation and test in Europe conference and exhibition, pp 250–256

13. Hagenauer J, Offer E, Papke L (1996) Iterative decoding of binary block and convolutional
codes. IEEE Trans Inf Theory 42(2):429–445. doi:10.1109/18.485714

14. Hu W-H, Chen C-Y, Bahn JH, Bagherzadeh N (2012) Parallel low-density parity check decod-
ing on a network-on-chip-based multiprocessor platform, Computers & Digital Techniques,
IET. 6(2): 86, 94. doi:10.1049/iet-cdt.2010.0177

15. IEEE Std 802.16, part 16: air interface for fixed broadband wireless access systems (2004)
16. Kim B, Yoo I, Park IC (2013) Low-complexity parallel QPP interleaver based on permutation

patterns. IEEE Trans Circuits Syst II 60(3):162–166

148 C. Condo et al.

17. Kim JH, Park IC (2008) A 50Mbps double-binary turbo decoder for WiMAX based on bit-level
extrinsic information exchange. In: IEEE Asian solid-state circuits conference, pp 305–308.
doi:10.1109/ASSCC.2008.4708788

18. Kim JH, Park IC (2009) Bit-level extrinsic information exchange method for double-binary
turbo codes. IEEE Trans Circuits Syst II 56(1):81–85

19. Kim JH, Park IC (2009) A unified parallel radix-4 turbo decoder for mobile WiMAX and
3GPP-LTE. In: IEEE custom integrated circuits conference, 2009 (CICC ’09), pp 487–490.
doi:10.1109/CICC.2009.5280790

20. Lapotre V, Murugappa P, Gogniat G, Baghdadi A, Diguet JP, Bazin JN, Hubner M (2013)
A reconfigurable multi-standard asip-based turbo decoder for an efficient dynamic reconfig-
uration in a multi-asip context. In: 2013 IEEE computer society annual symposium on VLSI
(ISVLSI), pp 40–45. doi:10.1109/ISVLSI.2013.6654620

21. Lapotre V, Murugappa P, Gogniat G, Baghdadi A, Hubner M, Diguet JP (2013) Stopping-free
dynamic configuration of a multi-asip turbo decoder. In: 2013 Euromicro conference on digital
system design (DSD), pp 155–162. doi:10.1109/DSD.2013.24

22. Li J, You XH, Li J (2006) Early stopping for LDPC decoding: convergence of mean magnitude
(CMM). IEEE Commun Lett 10(9):667–669. doi:10.1109/LCOMM.2006.1714539

23. Mansour M, Shanbhag N (2002) Turbo decoder architectures for low-density parity-check
codes. In: IEEE Global Telecommunications Conference, 2002 (GLOBECOM ’02), vol 2,
pp 1383–1388. doi:10.1109/GLOCOM.2002.1188425

24. Martina M (2010) Turbo NOC: network on chip based turbo decoder architectures. Download-
able at www.vlsilab.polito.it/~martina

25. Martina M, Masera G (2010) Turbo NOC: a framework for the design of network-on-chip-
based turbo decoder architectures. IEEE Trans Circuits Syst I 57(10):2776–2789

26. Martina M, Masera G (2013) Improving network-on-chip-based turbo decoder architectures.
J Signal Process Syst 73(1):83–100

27. Martina M, Masera G, Moussa H, Baghdadi A (2011) On chip interconnects for multiprocessor
turbo decoding architectures. Elsevier Microprocess Microsyst 35(2):167–181

28. Moher M (1993) Decoding via cross-entropy minimization. In: IEEE global telecommu-
nications conference, 1993 (GLOBECOM ’93), including a communications theory mini-
conference. Technical program conference record, IEEE in Houston, vol 2, pp 809–813.
doi:10.1109/GLOCOM.1993.318192

29. Mohsenin T, Shirani-Mehr H, Baas B (2011) Low power LDPC decoder with efficient stopping
scheme for undecodable blocks. In: Proceedings of IEEE international symposium on circuits
and systems

30. Moussa H, Muller O, Baghdadi A, Jezequel M (2007) Butterfly and Benes-based on-chip
communication networks for multiprocessor turbo decoding. In: Design, automation and test
in Europe conference and exhibition, pp 654–659

31. Moussa H, Baghdadi A, Jezequel M (2008) Binary de Bruijn on-chip network for a flexible
multiprocessor LDPC decoder. In: Design automation conference, pp 429–434

32. Muller O, Baghdadi A, Jezequel M (2006) Bandwidth reduction of extrinsic information
exchange in turbo decoding. Electron Lett 42(19):1104–1105. doi:10.1049/el:20062209

33. Murugappa P, Al-Khayat R, Baghdadi A, Jezequel M (2011) A flexible high throughput multi-
ASIP architecture for LDPC and turbo decoding. In: Design, automation and test in Europe
conference and exhibition, pp 1–6

34. Murugappa P, Lapotre V, Baghdadi A, Jezequel M (2013) Rapid design and prototyping of a
reconfigurable decoder architecture for qc-ldpc codes. In: 2013 International symposium on
rapid system prototyping (RSP), pp 87–93. doi:10.1109/RSP.2013.6683963

35. Naessens F, Bougard B, Bressinck S, Hollevoet L, Raghavan P, Van der Perre L, Catthoor
F (2008) A unified instruction set programmable architecture for multi-standard advanced
forward error correction. In: Proceedings of IEEE workshop on signal processing systems,
pp 31–36. doi:10.1109/SIPS.2008.4671733

www.vlsilab.polito.it/~martina

7 MP-SoC/NoC Architectures for Error Correction 149

36. Neeb C, Thul MJ, Wehn N (2005) Network-on-chip-centric approach to interleaving in high
throughput channel decoders. In: IEEE international symposium on circuits and systems,
pp 1766–1769

37. Park SM, Kwak J, Lee K (2008) Extrinsic information memory reduced architecture for non-
binary turbo decoder implementation. In: IEEE vehicular technology conference, 2008 (VTC
Spring 2008), pp 539–543

38. Polydoros A (2008) Algorithmic aspects of radio flexibility. In: IEEE international symposium
on personal, indoor and mobile communications, pp 1–5

39. Sham CW, Chen X, Lau F, Zhao Y, Tam W (2013) A 2.0 Gb/s throughput decoder for
QC-LDPC convolutional codes. IEEE Trans Circuits Syst I Regul Pap 60(7):1857–1869.
doi:10.1109/TCSI.2012.2230506

40. Singh A, Boutillon E, Masera G (2008) Bit-width optimization of extrinsic information in turbo
decoder. In: 2008 5th International symposium on turbo codes and related topics, pp 134–138.
doi:10.1109/TURBOCODING.2008.4658686

41. Studer C, Benkeser C, Belfanti S, Huang Q (2011) Design and implementation of a parallel
turbo-decoder ASIC for 3GPP-LTE. IEEE J Solid State Circuits 46(1):8–17

42. Sun Y, Cavallaro JR (2010) A flexible LDPC/Turbo decoder architecture. J Signal Process Syst
64(1):1–16

43. Vacca F, Moussa H, Baghdadi A, Masera G (2009) Flexible architectures for LDPC decoders
based on network on chip paradigm. In: Euromicro conference on digital system design,
pp 582–589

44. Vogt J, Ertel J, Finger A (2000) Reducing bit width of extrinsic memory in turbo decoder
realisations. Electron Lett 36(20):1714–1716. doi:10.1049/el:20001177

45. 3gpp ts 36.211, evolved universal terrestrial radio access (e- utra): physical channels and
modulation, version 8.4.0 (2008)

Chapter 8
ASIP Design for Multi-Standard
Channel Decoders

Purushotham Murugappa, Amer Baghdadi, and Michel Jezequel

8.1 Flexibility Requirement in Channel Decoder Design

Mobile wireless connectivity is a key feature of a growing number of devices, which
will count soon in tens of billions, from laptops, tablets, cell phones, cameras,
and other portable devices. The variety of applications and traffic types will be
significantly larger than today and will result in more diverse requirements. These
applications are driving the creation of new transmission techniques and design
architectures that push the boundaries to achieve high throughput, low latency, area,
and power efficient implementations.

Channel coding is one of the key techniques that enable reliable high throughput
data transfer through unreliable wireless channels. However, as a large variety of
channel coding options and flavors are specified in existing and emerging digital
communication standards, there is an increasing need for flexible implementations.
In fact, several powerful error correction techniques exist today, each suitable for
specific application parameters (frame size, transmission channel, signal-to-noise
ratio, bandwidth, etc.). Considering the emerging multi-mode and multi-standard
applications, as well as the increasing interest for Software Defined Radio (SDR)
and Cognitive Radio (CR) applications, combination of multiple error correction
techniques becomes mandatory. Table 8.1 shows a representative set of mobile
wireless standards to highlight their differences in data rates and channel encoding
schemes. The most commonly used error correcting codes in these standards
are convolutional codes (CC), turbo codes (SBTC: single-binary turbo codes and
DBTC: double-binary turbo codes), and low-density parity-check (LDPC) codes.

P. Murugappa • A. Baghdadi (�) • M. Jezequel
Institut Mines-Telecom, Telecom Bretagne, CNRS Lab-STICC,
Technopôle Brest-Iroise, 29238 Brest, France
e-mail: Purushotham.Murugappa@telecom-bretagne.eu; Amer.Baghdadi@telecom-bretagne.eu;
Michel.Jezequel@telecom-bretagne.eu

© Springer International Publishing Switzerland 2015
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7__8

151

mailto:Purushotham.Murugappa@telecom-bretagne.eu
mailto:Amer.Baghdadi@telecom-bretagne.eu
mailto:Michel.Jezequel@telecom-bretagne.eu

152 P. Murugappa et al.

Table 8.1 Representative set of mobile wireless standards and related channel
codes and parameters

Frame size Throughput

Standard Codes Rates States (bits) (Mbps)

UMTS CC 1/4..1/2 256 .. 504 <1

SBTC 1/3 8 .. 5,114 .. 2

HSDPA SBTC 1/2–3/4 8 .. 5,114 .. 14.4

CDMA2000 CC 1/6 .. 1/2 256 .. 744 <1

SBTC 1/5–1/2 8 .. 20,730 .. 2

IEEE-802.11n (WiFi) CC 1/2..3/4 64 .. 4,095 .. 450

LDPC 1/2–5/6 - .. 1,620 .. 450

IEEE802.16e (WiMAX) CC 1/2–5/6 64 .. 864 .. 75

DBTC 1/2–3/4 8 .. 4,800 .. 75

LDPC 1/2–5/6 - .. 1,920 .. 75

DVB-S2 LDPC 1/4–9/10 - .. 64,800 .. 90

DVB-RCS DBTC 1/3–6/7 8 .. 1,728 .. 2

3GPP-LTE SBTC 0.33–0.95 8 .. 6,144 .. 150

In this context, and at the receiver side, it is well known that channel decoding
is one of the most computation, communication, and memory intensive, and
thus, power-consuming component. Channel decoder design has been extensively
investigated during the last few years and several implementations have been
proposed. Some of these implementations succeeded in achieving high throughput
for specific standards through the adoption of highly dedicated architectures that
work as hardware accelerators. However, these implementations do not take into
account flexibility and scalability issues. Particularly, this approach implies the
allocation of multiple separated hardware accelerators to realize multi-standard
systems, which often result in poor hardware efficiency. Furthermore, it implies long
design-time which is no more compatible with the severe time-to-market constraints
and the continuous development of new standards and applications.

More recently, several contributions have been proposed targeting flexible, yet
high throughput, implementations of channel decoders. The flexibility varies from
supporting different modes of a single communication standard to the support
of multi-standards multi-modes applications. Other implementations have even
proposed to increase the target flexibility to the support of different channel coding
techniques. As a matter of fact, a knowledge gap is growing quickly in the last
few years between the need for flexibility in the digital base-band processing
segment of modern communication systems, and the actual availability of flexible
while efficient hardware support to the quest for reconfigurability. The main reason
that determines this growing gap is related to the poor area and energy efficiency
of flexible solutions proposed till now and the huge increase of non-recurrent
engineering (NRE) costs in the production of dedicated integrated circuits for
specific applications (ASIC) with new semiconductor technologies.

8 ASIP Design for Multi-Standard Channel Decoders 153

Towards the target of filling the above mentioned gap, it becomes crucial to define
and develop efficient and high performance flexible channel decoder architecture
models for emerging and future digital communication systems. The need of optimal
solutions in terms of performance, area, and power consumption is increasing and
cannot be neglected against flexibility. In common understanding, a blind approach
towards flexibility results in some loss in optimality. The objective of recent
initiatives in this context is to unify flexibility-oriented and optimization-oriented
approaches. The main goal is to deliver enablers and building block solutions in
order to derive, for a specific application need, the best balance between a highly
flexible solution and a specifically optimized one.

This chapter illustrates the use of Application-Specific Instruction-set Processor
(ASIP) models and tools as one of the main recent design approaches towards this
target, enabling the designer to scale and freely tune the flexibility/performance
trade-off as required by the considered application requirements. Related contribu-
tions are emerging rapidly seeking to improve the resulting architecture efficiency
in terms of performance/area and in addition to increase the flexibility support. The
chapter starts by introducing the ASIP design approach and the recently available
methodologies and tools. Then we illustrate the application of this design approach
through two ASIP design examples for multi-standard turbo decoding with different
architecture alternatives and design objectives. Considering the increased flexibility
requirement for the support of multiple types of channel codes, the chapter presents
then a short review of related state-of-the-art contributions to illustrate the trend
towards the use of ASIP-based design approach in this context. The chapter ends
with a summary to highlight the main conclusions and to introduce few related
research perspectives.

8.2 ASIP Design Approach

In traditional design of flexible hardware architectures, the flexibility is incorporated
by the expert designer through the use of initialization parameters loaded from
a configuration memory or input ports of the design. The architecture description
involves manual design of a finite state machine (FSM) that controls the different
design units of the pipeline taking into account the various supported parameters.
But when the number of flexibility parameters increases, the design and validation
of such parametrized control logic become more and more complicated.

On the other hand, instruction-set based processors provide inherently high
flexibility in terms of control logic design through software programmability.
Their architectures have evolved dramatically in the last couple of decades [1]
from microprogrammed FSMs to dynamically reordered parallel pipelines with
multiple levels of parallelism and optimization techniques. More recently, the
trend to design customized instruction-set processors has been made successful
given the development of new design methodologies and tools. Such tools enable
the designers to specify a customizable processor in weeks rather than months.

154 P. Murugappa et al.

Two main approaches can be distinguished in this regard [1]. The first allows to
configure and extend a predefined core or architectural skeleton with application-
specific hardware resources [2–4]. Additional instructions can be defined with
corresponding functional pipelines and application-specific register files or memory
interfaces. The second approach allows to support architects in the effort to design
from scratch a completely custom processor with its complete tool chain (compiler,
simulator, etc.). Ideally, it uses an architectural description language (ADL) to
describe the architecture of the design from which all tools and the synthesizable
description of the core can be generated [5, 6]. All these approaches fall under the
name of customizable processors and often are referred as ASIP for Application-
Specific Instruction-set Processors (ASIPs).

Designing an efficient ASIP requires a deep analysis of the target flexibility
parameters and algorithm variants in order to devise the adequate algorithm and
architecture choices that enable efficient hardware resource allocation and sharing.
The application-specific instruction-set can then be derived accordingly. The general
ASIP design methodology comprises the following four steps: (1) analysis of
target application and underlined algorithms with respect to flexibility requirements,
(2) derivation of algorithm/architectural choices for the target flexibility and
parallelism degree, (3) design of basic building blocks of the ASIP with efficient
resource usage and sharing, and (4) design of the complete architecture of the ASIP
including the dedicated instruction-set, datapath, pipeline stages, memory banks,
and I/O interfaces.

One of the most mature ASIP development tools is Processor Designer which
was first commercialized by the startup LISATek and then acquired by CoWare
in 2003 and later by Synopsys in 2010. It was developed with a simulator-centric
view [1] and uses a C-like language (LISA) for design description of programmable
architectures and their peripherals and interfaces. The language syntax provides
a high flexibility to describe the instruction set of various parallelism techniques
with explicit modeling of both data-path and control. The usage of a centralized
description of the processor architecture ensures the consistency of the Instruction-
Set Simulator (ISS), software development tools (compiler, assembler, and linker,
etc.), and RTL (Register Transfer Level) implementation, minimizing the verifica-
tion and debug effort. The benefits of using this design approach are illustrated in
the rest of this chapter through examples related to multi-standard channel decoders
design.

8.3 ASIP-Based Decoders for Turbo Codes

This section illustrates the ASIP design flow for the implementation multi-standard
turbo decoders. After a brief introduction on the hardware-efficient decoding
algorithm for turbo codes, a short review of the related state-of-the-art imple-
mentations is given. Then, two ASIP design examples with different architecture
alternatives and design objectives are presented together with performance analysis
and comparisons.

8 ASIP Design for Multi-Standard Channel Decoders 155

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

α(1)α(1)

Received frame

Forward
recursion

α β Backward
recursion

32
transitions

SISO
Decoder1

SISO
Decoder2

S0, S1

Turbo decoder

Hard
decision

∏–1∏ ∏

Channel LLRs

P0, P1

P0’, P1’

10
{S0,S1}k-1

01
00

11

{S0,S1}k {S0,S1}k+1

.

.

b(3)

Fig. 8.1 Typical turbo codes decoder structure and an 8-states DBTC trellis

8.3.1 Hardware-Efficient Decoding Algorithm

Typical turbo decoder structure consists of two Soft Input Soft Output (SISO)
component decoders iteratively exchanging extrinsic information via an interleaving
(Π) and deinterleaving (Π−1) functions as illustrated in Fig. 8.1. The SISO decoders
often implement the max-log-MAP algorithm [7], which represents the hardware-
efficient version of the maximum a posteriori (MAP) decoding using the BCJR
algorithm known to achieve the minimal symbol error probability. In order to
explain briefly the underlined max-log-MAP computations, let us consider the
8-state DBTC code of WiMAX standard, represented by its trellis in Fig. 8.1. For
each received double binary symbol {S0,S1}k, the SISO decoder computes first
the branch metrics γk(s′,s) which represent the probability of a transition to occur
between two trellis states (s′: starting state, s: ending state). Then the SISO decoder
runs the forward and backward recursions over the trellis (Fig. 8.1). The forward
state metrics αk(s) of the kth symbol are computed recursively using those of
the (k − 1)th symbol and the branch metrics of the corresponding trellis section.
Similarly for the backward state metrics βk(s) which corresponds however to the
backward recursion (traversing the trellis in the reverse direction).

αk(s) = max
s′

(αk−1(s)+ γk(s
′
,s))

∀(s′,s = 0,1, ..7) (8.1)

βk(s) = max
s′

(βk+1(s)+ γk(s
′
,s))

∀(s′,s = 0,1, ..7) (8.2)

156 P. Murugappa et al.

Finally, the extrinsic information Zext
k of the kth symbol is computed for all

possible decisions (00,01,10,11) using the forward state metrics, the backward
state metrics, and the extrinsic part of the branch metrics as formulated in the
following expressions:

Zapos
k (d(s′,s) = x) = max

(s′,s)/d(s′,s)=x
(αk−1(s)+ γk(s

′,s)+βk(s))

∀(x = 00,01,10,11) (8.3)

Zext
k (d(s′,s) = x) = Zapos

k (d(s′,s) = x)− γ intx
k (s′,s)

∀(x = 00,01,10,11) (8.4)

The extrinsic information can be normalized by subtracting the minimum value
in order to reduce the related storage and communication requirements, thus only
three extrinsic information values should be exchanged for each symbol.

Zn.ext
k (d(s′,s) = x) = Zext

k (d(s′,s) = x)−min(Zext
k (d(s′,s) = x))

∀(x = 00,01,10,11) (8.5)

Executing one forward–backward recursion on all symbols of the received frame
in the natural order completes one half iteration. A second half iteration should be
executed in the interleaved order to complete one full turbo decoding iteration. Once
all the iterations are completed (usually 6–7 iterations), the turbo decoder produces
a hard decision for each symbol Zhard dec.

k ∈ (00,01,10,11).
For SBTC, the use of the trellis compression (Radix-4) [8] represents an efficient

parallelism technique and allows for efficient resource sharing with a DBTC SISO
decoder, as two single binary trellis sections (two bits) can be merged into one
double binary trellis section.

8.3.2 State-of-the-Art on Turbo Codes Decoders

Since the discovery of turbo codes in 1993 [9], considerable amount of research
works has been targeting practical VLSI implementations of turbo decoders. Using
mainly the low complexity max-log-MAP algorithm, many contributions have been
proposed targeting diverse design objectives in terms of area efficiency, energy
efficiency, flexibility, scalability, and high throughput. Among the initial efforts
in this context we can cite the examples of [10–13]. Authors of [14] present an
overview of the implementation aspects related to turbo decoding architectures

8 ASIP Design for Multi-Standard Channel Decoders 157

discussing the issues of quantization and iteration stopping criteria. Several joint
algorithmic/architecture optimization techniques have been investigated in [15].
One of the first ASIC implementations was presented in [16] achieving a throughput
of 50 Mbps with ten decoding iterations and an operating frequency of 1 GHz.

Turbo codes have been since widely adopted in wireless communication stan-
dards like CDMA2000, 3GPP, LTE, WiMAX, DVB-RCS, etc. Many implemen-
tations have succeeded to meet the low throughput requirements of the early
standards (e.g., CDMA2000 and 3GPP) using advanced DSP architectures [17–19]
or customizable processors [20]. However, the scalability of such implementations
is limited by the block interleavers specified in these standards which cause memory
access contentions when targeting higher sub-block parallelism degree. The work
presented in [21], targeting LTE, allows multiple SISO decoders (1, 2, 4, or 8)
to concurrently process frame sub-blocks and integrates a three-stage network to
connect the multiple memory and SISO decoder modules. Implemented in 90 nm
CMOS technology, the design achieves a throughput of 129 Mbps with eight
iterations and occupies an area of 2.1 mm2 while exhibiting a power consumption of
219 mW and supporting the maximum specified frame size of 6,144 bits. Targeting
Gbps throughputs, a recent work [22] has proposed an LTE compliant turbo decoder
architecture with 32 parallel SISO decoders. A throughput of 2.15 Gbps is achieved
with an on chip area of 7.1 mm2 using 65 nm CMOS technology. Other works
have proposed the additional support of DBTC specified in WiMAX standard. As
an example, the work in [23] presents an architecture which supports all DBTC
parameters specified in WiMAX and 18 frame sizes of the 188 specified in LTE.
A high area efficiency is achieved by supporting only those frame sizes with
interleaving properties that can be easily mapped to the extrinsic exchange paths of
DBTC. Another example is the parameterized architecture of [24] which supports
both turbo codes modes (DBTC and SBTC) and achieves a high throughput of
187 Mbps with eight parallel MAP decoders.

Recently, ASIP design approaches have been explored in this application context.
Such an architecture model enables the designer to freely tune the flexibility/perfor-
mance trade-off and thus to meet the increasing flexibility requirement efficiently.
Furthermore, the well-established design methodology and the mature available
tools enable short design-time. The rest of this section will illustrate this trend
through the presentation of two ASIP design examples with different architecture
alternatives and design objectives.

8.3.3 TurbASIP: Highly Flexible ASIP

One of the first proposed ASIPs for flexible turbo decoding has been presented
in [25]. The main design objective for this ASIP, namely TurbASIP, was to explore
the effectiveness of the newly proposed ASIP-design tools in terms of quality of
the generated HDL code and flexibility limitations when targeting this class of
applications. To that end, the target flexibility was set very high to investigate

158 P. Murugappa et al.

the support of any convolutional code trellis of DBTC and SBTC. The number of
trellis states, however, is limited to 8 states in DBTC mode and 16 states in SBTC
mode, as typically adopted in existing wireless communication standards. Another
design objective for this ASIP was the investigation and the exploitation of the
various parallelism techniques available for turbo decoding. Most of the available
parallelism techniques [26] have been exploited. This includes:

1. Metric level parallelism, which concerns the processing of all metrics involved
in the decoding of each received symbol inside a SISO decoder. It exploits the
inherent parallelism of the trellis structure (as the same operations related to the
computation of γ , α , β and the extrinsic information (γext) should be repeated for
all the trellis transitions) and the parallelism of the MAP computations (parallel
computation of the metrics α , β , and extrinsic information γext).

2. SISO decoder level parallelism, which exploits the use of multiple SISO
decoders, each processing a sub-block of the same frame in natural or interleaved
orders. At this level, parallelism can be applied either on sub-blocks and/or on
component decoders (shuffled decoding).

3. Turbo decoder level parallelism, which simply duplicates whole turbo decoder to
process iterations and/or frames in parallel. Nevertheless, this parallelism level is
too area-expensive (all memories and computation resources are duplicated) and
presents no gain in frame decoding latency, and thus it was not considered.

8.3.3.1 Overview of TurbASIP Architecture

Considering these design objectives, adequate algorithm/architectural choices have
been derived to meet the target flexibility and parallelism degree. This step is
followed by the design of basic building blocks of the ASIP with efficient resource
usage and sharing. Figure 8.2 presents the overall architecture of TurbASIP.

The architecture exploits the metric level parallelism through the use of two
hardware recursion units to process concurrently the forward and backward compu-
tations following a butterfly scheduling scheme. Each recursion unit includes a state
metric calculation matrix with 32 adder nodes and 8 max operator nodes to compute
all trellis transitions related metrics in parallel. It includes in addition the required
hardware resources to compute branch metrics and the hard decision with multiple
registers to store intermediate results. The target high flexibility degree is supported
through the use of high number of multiplexers enabling to handle any convolutional
code trellis structure. A main design choice in the ASIP architecture for turbo
decoding concerns the memory organization. Besides the quantization aspects
which impact the width of the memory words, the parallelism degree imposes the
use of multiple memory banks and the flexibility requirement (supported frame
lengths) impacts directly the size of these banks. Figure 8.2 illustrates how particular
is the memory organization for such application and consequently how adequate
is an ASIP design approach compared to general-purpose instruction-set processor

8 ASIP Design for Multi-Standard Channel Decoders 159

Top

Input Data
(sys+par)
Memory

Top

Input Data
(sys+par)
Memory

Extrinsic
Information

RG
x16

RC
x8

RMC
x8

DECISION

BM Generator

PR

Global ALU

State metric calculation matrix

Forward
Recursion

Unit
A

Forward
Recursion

Unit
A

Cross
Memories

A B

x8

Program
Memory

Config
Memory

Extrinsic
Information

TurbASIP

decision

decision

Cross
Memories

B A

x8

Backward
Recursion

Unit
B

Backward
Recursion

Unit
B

From Cross
Memories

To Cross
Memories

Extrinsic
Information

max

max

max
Radd
Or

RMC
Radd

RT(i,j)

Radd
RC

RG

RIE

From extrinsic
memory

RMC

Adder node

State boundary
Memory

Bottom
Input Data
(sys+par)
Memory

Top

Extrinsic
Info.

Memory

Top

Extrinsic
Info.

Memory
Bottom

Extrinsic
Memory

Bottom

Extrinsic
Memory

Control Unit

x2

Send alpha/beta
boundary state metrics

Top

Interleaving
Memory

Top

Interleaving
Memory
Bottom

Interleaving
Memory

Bottom

Interleaving
Memory

PFEPFE

PR_A 0..3

BM2BM2 STSTMAX1MAX1BM1BM1FEFE
ADDRESS_A
ADDRESS_B

FPC
INST

R_SIZE
zol_inst
zol_loop

zol_active
branch_active

branch_address

EXEX

Pipeline regs

a b

c

d

x2

Max node

OPFOPF MAX2MAX2

Fig. 8.2 TurbASIP architecture: (a) overview, (b) recursion unit, (c) adder node, (d) pipeline

architectures. Besides the Input memories (duplicated due to the parallelism implied
by the choice of butterfly scheduling scheme) several memories are required:
Extrinsic memories to store extrinsic messages exchanged between SISO decoders,
Interleaving memories to store interleaving addresses, Cross memories to store
intermediate metrics between the two executed forward/backward recursions, State
boundary memories to store boundary state metrics for metric initialization between
neighboring sub-blocks, Program memory to store program instructions, and Config
memory to store parameters related to the supported codes (trellis definition, block
size, number of iterations, etc.).

Exploiting the second level of parallelism, sub-block parallelism and shuffled
decoding, is done through the instantiation of multiple ASIPs in each component
decoder to process concurrently the received frame, partitioned in sub-blocks, in
natural and interleaved order. The ASIP should feature the required input/output
interfaces and the flexibility to support any interleaving rules and parallelism
degree is met through the use of application-specific network-on-chip (NoC)
architectures [27]. The efficiency of this parallelism level and related analysis of
the architecture scalability are addressed in [26].

160 P. Murugappa et al.

8.3.3.2 Pipeline Architecture and Instruction-Set

The devised pipeline structure for TurbASIP is illustrated in Fig. 8.2. The first
three stages correspond to instruction address generation, instruction fetch, and
instruction decode. The branch metrics are calculated in the two pipeline stages BM1
and BM2. The EX stage executes the adder nodes to compute the 32 state metric
LLRs as defined in (8.1) and (8.2). The MAX1 stage executes the reconfigurable
max operators and computes the α and β state metric LLRs by taking the maximum
of the RADD registers column wise. During extrinsic generation phase, the max
operators are reconfigured to calculate the maximum of the four RADD registers
along the horizontal direction of the state metric calculation matrix. Thus, two
partial a posteriori LLR values are generated per row. The final a posteriori LLRs
are generated by the max operators in the MAX2 pipeline stage that calculates the
maximum of the eight partial a posteriori LLRs to produce the four a posteriori
symbol LLRs γapos. The last stage of the pipeline (ST) generates the extrinsic
information from a posteriori LLRs and the intrinsic LLRs γ int as given by (8.4).

Appropriate instruction-set is designed according to the devised algorithm/archi-
tecture choices and target flexibility described above. An excerpt of assembly code
for the first iteration of the turbo decoding execution is presented in Listing 8.1. It
starts by initializing the ASIP configuration registers setting the mode by reading the
trellis configuration registers (instruction SET_CONF). Next, the size in symbols
of half of the window (SET_SIZE), the scaling factor (SET_SF), number of
windows in the sub-block (SET_WINDOW_N), and the initial window counter
(SET_WINDOW_ID) are set. The value 6 used by the SET_SF command allows to
scale the input extrinsic LLRs by 0.875 before computing the branch metrics. The
initial window boundary state registers of the first window (RMC) are initialized to
be uniform, i.e., all states are initialized to same equiprobable value. Zero overhead
loop (ZOLB) instruction is devised to execute lines (@26) and (@27) 32 times,
i.e., half of window size (as set by the SET_SIZE instruction). The instruction at
line (@26) implements the left side of the butterfly decoding scheme. During the
first iteration of the shuffled decoding the extrinsic memories are uninitialized,
hence the WITHOUT_EXT field of the instruction specifies not to use extrinsic
information in the branch metric calculations. The ADD M field of the instruction
forces the adder nodes to do 32 state metric calculations (α + γ or β + γ) in the EX
stage of the pipeline. The COLUMN field configures the max nodes to calculate
the maximum column-wise. An idle cycle is introduced via NOP instruction at line
(@27) due to data dependency. Once the left side of butterfly decoding schedule
is completed for a window, the right side of the butterfly schedule is processed
by executing the instructions at lines (@30) and (@33) 32 times. The instruction
EXT ADD i LINE computes the extrinsic information. The field LINE configures
the max nodes in the MAX1 pipeline stage to calculate the maximum row-wise.
Additionally, this instruction activates MAX2 stage to finalize the computation of
the extrinsic information and ST stage to fetch the corresponding interleaved/de-
interleaved addresses for NoC packetization.Two other short portions of assembly

8 ASIP Design for Multi-Standard Channel Decoders 161

Listing 8.1 Example of TurbASIP assembly code for the first turbo decoding iteration
�

1 .text
2 ;set configuration wimax
3 SET_CONF 0
4 SET_CONF 1
5 SET_CONF 2
6 SET_CONF 3
7 ;set half window size
8 SET_SIZE 32
9 ; set the scale factor 6=0.875

10 SET_SF 6
11 ;set number of windows and initial
12 ;window id counter to zero
13 SET_WINDOW_N 2
14 SET_WINDOW_ID 0
15 ;set boundary initialization of
16 ;RMC registers as uniform
17 SET_RMC UNIFORM, UNIFORM
18 REPEAT UNTIL _loop0 1 times
19 NOP
20 ;repeat instructions between _RW1 to _CW1
21 ;and between _CW1 to_LW1 SET_SIZE times
22 ZOLB _RW1,_CW1,_LW1
23 W_LD_BETA 0
24 ;configure max units to take max column wise.
25 ;store results in RMC
26 _RW1: DATA LEFT WITHOUT_EXT ADD M COLUMN
27 _CW1: NOP
28 ;configure max units to take max column wise.
29 ;store results in RMC
30 DATA RIGHT WITHOUT_EXT ADD M COLUMN
31 ;configure max units to take max rowwise.
32 ;to calculate extrinsic
33 _LW1: EXT WITHOUT_EXT ADD i LINE
34 ;increment the window number
35 EXC_WINDOW
36 NOP
37 NOP
38 _loop0: NOP

code, presented in [28], are required to process the subsequent iterations of the turbo
decoding which differ by using extrinsic LLRs during branch metric calculation and
computing the hard decision in the last iteration.

8.3.3.3 Results and Architecture Efficiency Definition

The devised architecture for TurbASIP was described in LISA and validated using
Synopsys Processor Designer tool and a bit-true software reference model of the
algorithm. The generated VHDL code has been validated and synthesized targeting
65 nm general purpose CMOS technology. The high flexibility of TurbASIP allows
to support any trellis description at run-time and quantization-related configurations
at design-time. Considering a quantization of 4 bits for input LLRs and 8 bits
for extrinsic information, one TurbASIP occupies a total area of ∼0.19 mm2

(logic and memories) for a maximum clock frequency of 500 MHz. A multi-ASIP
configuration with 4 ASIPs for each component decoder (8 in total) occupies a total
area of ∼1.53 mm2 (including a NoC based on Butterfly topology).

162 P. Murugappa et al.

The following expression allows to compute the achieved turbo decoding
throughput:

T hroughputTurbASIP =
2×Bitssym × fclk ×NA/2

Ninstr ×Niter
(8.6)

where NA = number of ASIPs, Ninstr = number of instructions to process two
symbols, Bitssym = number of bits per symbol, fclk = clock frequency, Niter =
number of iterations.

As TurbASIP needs on average 4 instructions per iteration (2 for left butterfly
and 2 for right butterfly) in order to process two double binary symbols, thus we
have Ninstr = 4 and Bitssym = 2 in DBTC mode. Considering a 4x4 TurbASIP
turbo decoder, and using the above expression where NA = 8, fclk =500 MHz, and
Niter =6, the achieved throughput is around 333 Mbps.

In order to evaluate the effectiveness of the obtained results and to be able to
compare with state-of-the-art implementations, we define the Architecture efficiency
(AE) metric as follows:

AE =
T hroughput ×Niter

AreaNorm × fclk
(8.7)

Its unit of measure is bits/cycle/iteration/mm2 and it represents the number of
decoded bits per clock cycle per iteration per mm2 that the proposed iterative
channel decoder implementation is able to deliver. A high architecture efficiency
indicates an optimized design which exploits efficiently its hardware resources
during its execution time. An interesting point in the above expression of the AE
concerns the normalization of the throughput achieved with respect to the consid-
ered clock frequency (fclk) which increases the fairness when comparisons are done
between different decoding architectures running at different clock frequencies.
Published results in this context consider either the maximum achievable clock
frequency by the proposed architecture or a lower operational clock frequency
which is sufficient to achieve the target throughput. Thus, normalizing the pre-
sented throughput by the considered clock frequency enables to better exhibit the
efficiency of the proposed architectural choices. Towards the same objective, the
above expression of the AE normalizes the throughput by the considered number
of decoding iterations (Niter) as the published results can use slightly different
values which impact the overall throughput. In most of these works, the same
low complexity decoding algorithms, with identical convergence speed, are used.
Similarly, the AE expression uses a normalized area measure (AreaNorm) as the
published decoders are often based on different technology nodes (e.g., 180 nm,
130 nm, 65 nm, etc.). In addition, when the published design area is given post-
place and route a downscaling factor of 2 is applied to obtain a reasonable estimate
of the post-synthesis area. This factor is not very accurate as it depends to many
parameters (technology node, CAD tools, operating conditions, etc.), but it gives a
reasonable idea as it corresponds to the usually (or even worst case) observed ratio.

8 ASIP Design for Multi-Standard Channel Decoders 163

Considering the synthesis results presented above, a 4x4 TurbASIP turbo decoder
presents an architecture efficiency of 2.6 bits/cycle/iteration/mm2. This value is
somehow low compared to recent related state-of-the-art implementations as it will
be illustrated in the next sub-section and this is due to the target design objectives of
high degrees of flexibility and scalability. In fact, the example of this highly flexible
ASIP allows to illustrate the effectiveness of the ASIP design approach allowing
to explore and implement rapidly any desired algorithm/architecture choices and to
generate high quality synthesizable HDL code. It allows also the design of scalable
multi-ASIP turbo decoders meeting the high-throughput requirement. The next sub-
section further illustrates how it is possible to increase significantly the architecture
efficiency of ASIP-based turbo decoders.

8.3.4 TDecASIP: Parameterized Area-Efficient ASIP

In this sub-section we present another example of ASIP for multi-standard turbo
decoding and we analyze and discuss the architecture efficiency with respect to
related state-of-the-art implementations. The design objective behind this ASIP
design example, namely TDecASIP [29], is twofold: (1) investigate the maximum
attainable architecture efficiency for ASIP-based turbo decoding, and related to
this first objective (2) investigate the possibility to design application-specific
parametrized cores using the available ASIP design flow. Such possibility can
potentially lead to a higher architecture efficiency by simplifying the instruction
decoding logic and removing the program memory. Furthermore, it is still keeping
the benefit of the short design cycle enabled by the well-established ASIP design
tools.

8.3.4.1 Overview of TDecASIP Architecture

A first key element to increase the architecture efficiency is to limit the flexibility
degree to the exact target application at design-time. Rather than supporting any
trellis code as in TurbASIP, in this design example of TDecASIP the target flexibility
is set to cover only the turbo codes and related parameters specified in 3GPP-LTE,
WiMAX, and DVB-RCS standards. In addition, this choice enables to compare the
results with existing state-of-the-art implementations.

The second key element concerns the algorithm/architectures choices in terms
of parallelism techniques and degrees. Most appropriate choices have been made
targeting a throughput in the range of hundreds Mbps, as specified in the considered
standards. In order to fully exploit the metric level parallelism, two recursion units
are devised using backward–forward schedule for window processing. The first
recursion unit (processing in the backward direction of the trellis) processes a
window j while the second recursion unit (processing in the forward direction of the
trellis) executes on the window j−1 in parallel as illustrated in Fig. 8.3. This enables

164 P. Murugappa et al.

Time

S
ub

bl
oc

k0

… … … … …

T
D

ec
A

S
IP

0

W1

W2

WL

W1

W2

WL

S
ub

bl
oc

k1

T
D

ec
A

S
IP

1

Iteration 1 …

Backward recursion (β)

Forward recursion (α)
& Extrinsic generation

Boundary α metrics
Exchange inside TDecASIP

Boundary α metrics
Exchange btw. TDecASIPs
(via the α- β network)

Boundary β metrics
Exchange inside TDecASIP
(between iterations)

Boundary β metrics
Exchange btw. TDecASIPs
(via the α- β network)

Iteration 2

… … … … …

… … … … … …

… … … … … …

binit

binit

ainit

ainit

Processing repeated twice for the
two half iterations by TDecASIP 0 & 1

Fig. 8.3 Windowing and backward–forward schedule in TDecASIP

to achieve the throughput equivalent to butterfly schedule (as in TurbASIP design),
yet the using of the backward–forward schedule further enables efficient use of
hardware interleave address generators for extrinsic memory addressing.

Regarding the exploitation of the second level of parallelism (SISO decoder
level), only sub-blocking parallelism with a degree of two is devised as it allows to
meet the target throughputs. Shuffled decoding efficiency is demonstrated only for
very high parallelism degrees [26]. Thus, in TDecASIP, half iterations are performed
in serial order, i.e., all processing cores perform first half iteration by reading
the systematic and extrinsic information sequentially from memories, followed by
the second half iteration where the systematic and extrinsic memories are read in
interleaved order. The generated extrinsic data are written at the same location as
it was read from. In both of these half iteration cycles the parity memory is always
read sequentially. This type of scheduling presents the following advantages:

• Only one copy of systematic information bits is needed to be stored. This reduces
the number of memory banks required and the configuration network complexity.

• Only sequential counter and interleaved address generator are needed for
addressing the memories while the shuffled decoding needs in addition a
deinterleaved address sequence. Given the adopted low sub-block parallelism
degree, this serial decoding reduces the memory access complexity as only
low number of multiplexers would be sufficient (read/write exchange network).
WiMAX interleavers support sub-blocking of 2 and 4 while LTE interleavers
support sub-blocking of at least 2 and 4 [30] (with a maximum of 64).

• Small number of memory banks also results in less address decoding logic and
hence reduced total memory area, resulting in area-efficient decoding core.

8 ASIP Design for Multi-Standard Channel Decoders 165

Fig. 8.4 Overview and memory organization of the 2-TDecASIP turbo decoder architecture [29]

Based on the above design motivations and choices, Fig. 8.4 illustrates the overall
architecture of the two core turbo decoder. Each core (TDecASIP) processes a
sub-block of the input frame and has direct access to configuration, CrossMetric,
BoundaryState, and input Parity memories. The input Systematic and Extrinsic
memory banks are connected to the cores through a simple read/write exchange
network.

Figure 8.5 presents a detailed architecture of TDecASIP core. As for TurbASIP,
the pipeline is structured in eight stages, of which the first three stages are dedicated
for the data fetch from the memories and for the control of the pipeline. A modified
ASIP design flow is proposed to enable parameterized core design. Rather than
defining specialized instructions, the corresponding FSM is directly described in
LISA. The current state of the FSM is treated as an instruction. This approach can
be effective when the application exhibits a reduced number of flexible parameters

166 P. Murugappa et al.

Fig. 8.5 Detailed pipeline architecture and FSM of the TDecASIP parametrized core [29]

8 ASIP Design for Multi-Standard Channel Decoders 167

and the corresponding processing presents a reduced number of control states. The
target application in this study (flexible turbo decoding) is a good example with
six states (as shown in Fig. 8.5) and few flexible parameters that do not change
during the decoding process (code type, number of iterations, window size, number
of windows, and extrinsic address generation initialization values). This FSM is
implemented in the OperandFetch pipeline stage to generate appropriate control
signals to activate or deactivate the appropriate stages of the pipeline (Fig. 8.5).
As soon as the start signal is asserted, the processor starts with the Initialize
state, initializing the registers to the default values and reading the configuration
parameters mentioned above. At the end of the initialization, the FSM reaches S1
state generating appropriate signals for the backward recursion execution. If the
processor is executing the first half iteration, the generated addresses for systematic
and extrinsic memories are sequential otherwise interleaved addresses are generated.
The addresses for parity memories are always sequential. All FSM transitions in
Fig. 8.5 occur when the window boundary is reached. In S2 state both forward
and backward recursions are executed in parallel (on two different windows). The
complete presentation of the FSM control states and the pipeline execution can be
found in [29].

The memory organization of the proposed architecture is illustrated in Fig. 8.4.
With negligible performance loss, the channel LLRs can be quantized to 5 bits
and the normalized extrinsic information to 7 bits. As radix-4 is adopted in SBTC,
systematic LLRs are stored in two memory banks, and similarly for extrinsic LLRs.
This memory organization and the corresponding efficient address generation are
allowed by the QPP (quadratic permutation polynomial) interleaver adopted in LTE
standard which maps even addresses to even addresses and odd to odd. The total
depth of these memories allow to store up to 6,144 LLRs, which corresponds to
the maximum specified LTE frame length. As the parity LLRs are always read in
sequence, the consecutive parity LLRs information bits are combined and stored in
one memory bank as shown in Fig. 8.4.

8.3.4.2 Results and Discussions

TDecASIP was modeled using Synopsys Processor Designer tool and the corre-
sponding VHDL description was generated and synthesized targeting 65 nm general
purpose CMOS technology (worst case 0.9v and 125C). The total logic area,
including the interleaver, is 0.065 mm2 while the memory area for one processor
is 0.15 mm2. The total area (post-synthesis) for the two core turbo decoder is
0.438 mm2 with a clock frequency of 510 MHz. The error rate performance of
the hardware implementation has negligible degradation (less than 0.1 dB) when
compared to the floating point C-simulations using BPSK modulation over an
additive white gaussian noise (AWGN) channel (Fig. 8.6). The throughput can be
expressed as follows:

168 P. Murugappa et al.

Fig. 8.6 Error rate performance comparison between the hardware implementation and the
floating point simulation for WiMAX frame size 1,920 bits

T hroughputT DecASIP =
N × fclk

((
�Nsym/W�
Numprocs

+1)×W +Npip)× (2×Niter)
(8.8)

For the presented architecture: Numprocs = 2 processors, number of pipeline stages
Npip = 8, window size W = 64 symbols, maximum clock frequency is fclk =
510 MHz, considering the largest LTE frame size Nsym = 3,072 symbols or N =
6,144 bits and Niter = 6.5 iterations, the throughput obtained is 150 Mbps.

Considering the architecture efficiency definition given in the previous sub-
section, the proposed 2 processor turbo decoder achieves an architecture efficiency
of 4.37 bits/cycle/iteration/mm2. Furthermore, the proposed architecture is scalable
and can be extended to 4 processing cores, since both LTE and WiMAX interleavers
support sub-blocking level of 4 with conflict-free memory accesses. In this case, the
memory area of one processing core decoder becomes 0.097 mm2 which results in
a total area occupancy of 0.65 mm2. The architecture efficiency in this case is 5.88
bits/cycle/iteration/mm2. This further illustrates the area efficiency of the sub-block
parallelism, where the throughput is doubled while the occupied area is increased
only by 1.47 times (rather than doubled). This is due to the fact that Systematic,
Parity, Extrinsic, and BoundaryState memory requirements remain unchanged. The
achieved results of this design are summarized and compared along with few recent
related works in Table 8.2. The cited three implementations [24, 31, 32] use a
conventional parametrized design approach with almost similar internal computa-
tion, interleaving, and storage optimization techniques. However, each of them has
selected a different sub-blocking parallelism level (8, 16, and 32). The increased

8 ASIP Design for Multi-Standard Channel Decoders 169

Table 8.2 Results and comparison with few recent related works

TDecASIP [24] [31] [32]

Standard
supported

LTE, WiMAX LTE, WiMAX LTE LTE

LTE modes
supported #

188 188 188 188

WiMAX modes
supported #

17 17 – –

Technology (nm) 65 130 90 65

Core area (mm2) 0.438 0.65 10.7a 2.1 7.7a

AreaNorm @65 nm
(mm2)

0.438 0.65 1.335 1.1 3.85

Throughput (Mbps) 150 @6.5iter 300 @6.5iter 187 @8iter 284 @5iter 2150 @6iter

Parallel MAPs # 2 4 8 16 32
fclk (MHz) 510 250 200 450

AE
(bits/cycle/iter/mm2)

4.37 5.88 4.48 6.49 7.45

a Post place and route

architecture efficiency with the sub-blocking parallelism degree is coherent with
the above discussed results of the proposed 2- and 4-TDecASIP architectures. The
4-TDecASIP architecture achieves even a slightly better architecture efficiency than
the one presented in [24] which supports both turbo modes (DBTC and SBTC)
and uses 8 parallel MAP decoders. The LTE-dedicated implementations presented
in [31] and [32] exploit the available higher sub-blocking parallelism degrees in
this standard (parallel interleaving with conflict-free memory accesses). Results
comparison illustrates how the TDecASIP architecture achieves a high architecture
efficiency while using such an ASIP-based parameterized core approach by select-
ing the appropriate parallelism and optimization techniques.

8.4 Flexibility Increase to Support Multiple
Channel Code Classes

Flexibility requirement of channel decoding architectures becomes more and more
crucial when considering the emerging multi-mode and multi-standard applications,
as well as the increasing interest for SDR and Cognitive Radio concepts. Even
for a single standard like WiMAX, several error correction codes (convolutional,
turbo, LDPC, and block turbo) are specified as mandatory or optional. Hence,
in the last few years, several multi-code architectures have been explored and
proposed to support the decoding of two or more different classes of error correction
codes. The aim is to propose novel optimization and resource sharing techniques of
the memory, logic, and/or communication interconnects in order to achieve better

170 P. Murugappa et al.

efficiency in terms of area when compared to the direct assembly of dedicated
individual decoders. This section presents a short review of the related state-of-
the-art contributions to introduce the trend towards the use of ASIP-based design
approach in this context. Due to the limited space, presenting few detailed examples
and an exhaustive analysis is not affordable, yet a set of recent references is
provided.

In this context, few initial initiatives have investigated the support of both
convolutional and turbo codes. Authors of [33] and [34] have proposed a unified
architecture designed for UMTS base-stations. A dual mode Viterbi/turbo decoder,
sharing path metric calculation and extrinsic information memories, is proposed.
A trellis processor used to update path metrics in both supported decoding algo-
rithms. A 2 Mbps throughput at 88 MHz clock frequency is demonstrated when
performing 10 turbo decoding iterations. In [35], another combined architecture is
proposed. In this architecture the datapath and the memories are shared. A max-log-
MAP algorithm is used for decoding both convolutional and turbo codes. However,
this is only possible when the throughput requirement for convolutional codes (e.g.,
12.2 kbps) is much lower than that of turbo codes (e.g., 384 kbps). In another effort
to combine the two types of decoders, soft Viterbi decoding is used for turbo
decoding and hard output Viterbi decoding is used for convolutional codes [36].

Similarly, unified decoder architectures for LDPC and turbo codes have been
presented in [37–40]. Multi-code decoding is achieved in [37] by employing flexible
add-compare-select (FACS) units. By representing LDPC codes as parallel con-
catenated Single Parity Check (SPC) codes, the authors have efficiently reused the
turbo decoding hardware resources for LDPC decoding functions. The architecture
supports decoding of SBTC codes of LTE and LDPC codes of WiFi and WiMAX.
When implemented in 90 nm CMOS technology, the work reports a maximum
throughput of 450 Mbps for SBTC decoding and 600 Mbps for LDPC decoding
while occupying a total area of 3.2 mm2. Similar architecture is presented in [40]
to share logic and memory resources with additional decoding support of turbo
codes specified in 3GPP, DVB-SH, and WiMAX standards. The entire design
is implemented in 45 nm CMOS technology occupying an area of 0.9 mm2 and
clocked at 150 MHz to achieve low power and yet meeting the target throughput.
However, studies presented in [41] conclude that such datapath sharing for LDPC
and turbo decoding has little benefits and only for special configurations which have
similar memory requirements between the decoding modes (LDPC/turbo). It further
mentions that even in such cases, sharing memory is much more attractive than
sharing computational hardware. In fact, the best match for a combined LDPC/turbo
datapath can be achieved when both have the same granularity, e.g., at the check-
node and log-butterfly operator level [41].

Besides the above-mentioned multi-code decoder architectures which can be
considered as parameterized cores, several recent initiatives have explored ASIP-
based design in this application context. As an example, the FlexiTreP ASIP
presented in [42] supports trellis-based channel codes (i.e., convolutional, SBTC,
and DBTC) for few target standards. Decoding of LDPC codes was later added to

8 ASIP Design for Multi-Standard Channel Decoders 171

this architecture and presented in [43] as FlexiChap where memory sharing across
turbo and LDPC modes was explored. Targeting the support of WiFi and WiMAX,
the total area of the channel decoder has increased from 0.42 mm2 for FlexiTreP to
0.62 mm2 for FlexiChap in 65 nm CMOS technology. Moreover, in [39], the authors
propose an ASIP architecture addressing in a unified way the turbo and LDPC
coding requirements of LTE, WiFi, WiMAX, and DVB-S2/T2 with datapath and
memory reuse across the different FEC families. Results illustrate how the obtained
area was lower than the cumulated area of dedicated individual turbo and LDPC
decoder solutions. Furthermore, the authors of this chapter have presented in [28]
several contributions belonging to these last efforts targeting ASIP-based multi-code
channel decoding architectures. Promising results are presented while investigating
the maximum achievable architecture efficiency when adopting the rapid design
methodology and well-established tools related to ASIP design concept.

Finally, several scalable multiprocessor architectures based on the use of ded-
icated NoC for combined LDPC/turbo decoding were investigated. High decoder
parallelism degrees are necessary to achieve the increasing throughput requirement
imposed by the emerging applications. However, this incurs memory access con-
flicts due to the interleaving rules specified in the turbo and LDPC codes. Efficient
algorithms which can compute collision-free memory mapping of interleaving
laws with no constraint imposed on the code itself and the target parallelism
degree are proposed in [44] and [45]. The latter further proposes novel technique
that allows for low-latency dynamic reconfiguration. Another, or complementary,
alternative proposes the use of adequate NoC topologies with optimized message
transfer techniques. Several flexible on-chip interconnection networks have been
proposed with the aim of fully exploiting the parallelism of the LDPC/turbo decoder
architecture by reducing the message latency, alleviating the memory conflicts and
efficiently routing any permutation law. Among the recent related contributions we
can cite the work presented in [46] which proposes a NoC architecture based on
binary de Bruijn topology and the work presented in [47] which proposes a NoC-
based multiprocessor architecture, based on generalized Kautz topology.

8.5 Summary

This chapter has illustrated the use of ASIP models and tools as one of the main
recent design approaches towards the target of unify flexibility and efficiency in
the design of multi-standard channel decoders. Many contributions are emerging
rapidly in this domain, seeking to increase the flexibility support and to improve
the resulting architecture efficiency. The presented design examples of ASIP for
turbo decoding illustrate how this approach enables to implement any set of
architecture choices targeting different design objectives. The flexibility degree can
be tuned to be very high or very limited; even parameterized architecture models
can be developed using ASIP design tools. The main benefits correspond to the

172 P. Murugappa et al.

structured and rapid design approach which accelerates the design and validation
flow and enables high design-time flexibility with respect to traditional digital
design practices.

The chapter illustrated how flexibility, architecture efficiency, and rapid design-
time can be combined when using an ASIP design methodology and tools to
implement novel cores for multi-standard turbo decoding. The highly optimized
parameterized core presented supports both SBTC of 3GPP-LTE and DBTC of
WiMAX and DVB-RCS standards. It achieves, in both modes, a high architecture
efficiency of 4.37 bits/cycle/iteration/mm2 and meets the 150 Mbps maximum
targeted throughput of the LTE standard. The proposed architecture is scalable
and the architecture efficiency increases with the sub-block parallelism degree.
Detailed analysis and comparisons with relevant state-of-the-art solutions have been
discussed.

Same approach of exploring the maximum achievable architecture efficiency
using ASIP design concept in LDPC decoding can be found in [48]. This design
trend has been further shown in the proposal of flexible channel decoder supporting
multiple code types; in particular the support of LDPC and turbo codes as specified
in recent wireless communication standards. The chapter has presented in this
context a short review of the related state-of-the-art contributions. Finally, although
the chapter has mainly considered the evaluation of the architecture efficiency,
similar conclusions should be driven evaluating the energy consumption and
efficiency. Furthermore, several recent initiatives have proposed to tackle the aspect
of reconfiguration optimization and efficient management for multi-standard ASIP-
based channel decoders [49]. Finally, the promising results demonstrated in recent
state-of-the-art in channel decoding have paved the way to extend this design
approach to other key components of advanced communication systems. Several
recent contributions start appearing in this context, e.g., for MIMO detection, and
even beyond digital communication applications domain.

References

1. Ienne P, Leupers R (2006) Customizable embedded processors–design technologies and
applications. Morgan Kaufmann, San Mateo

2. Cadence Xtensa Customizable Processors (formerly product of Tensilica) (2014). http://ip.
cadence.com/ipportfolio/tensilica-ip/xtensa-customizable

3. Stretch Software-Configurable Processors (2014). http://www.stretchinc.com/technology/
4. Mei B, Lambrechts A, Mignolet J-Y, Verkest D, Lauwereins R (2005) Architecture exploration

for a reconfigurable architecture template. IEEE Trans Des Test Comput 22(2):90–101
5. Synopsys Processor Designer (formerly product of CoWare) (2014). http://www.synopsys.

com/Systems/BlockDesign/ProcessorDev
6. Synopsys IP Designer (formerly product of Target Compiler Technologies) (2014). http://www.

synopsys.com/IP/ProcessorIP/asip/ip-mp-designer
7. Robertson P, Hoeher P, Villebrun E (1997) Optimal and sub-optimal maximum a posteriori

algorithms suitable for turbo decoding. Eur Trans Telecommun 8(2):119–125

http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
http://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
http://www.stretchinc.com/technology/
http://www.synopsys.com/Systems/BlockDesign/ProcessorDev
http://www.synopsys.com/Systems/BlockDesign/ProcessorDev
http://www.synopsys.com/IP/ProcessorIP/asip/ip-mp-designer
http://www.synopsys.com/IP/ProcessorIP/asip/ip-mp-designer

8 ASIP Design for Multi-Standard Channel Decoders 173

8. Bickerstaff M, Davis L, Thomas C, Garrett D, Nicol C (2003) A 24Mb/s radix-4 logMAP
turbo decoder for 3GPP-HSDPA mobile wireless. In: Proceedings of the IEEE international
solid-state circuits conference (ISSCC), vol 1, pp 150–484

9. Berrou C (1991) Procédé de décodage itératif, module de décodage et décodeur corre-
spondants/Iterative decoding method, corresponding decoding module and decoder, Patent
EP0735696 B1, France Telecom & TDF.

10. Hsu J-M, Wang C-L (1998) A parallel decoding scheme for turbo codes. In: Proceedings of the
IEEE international symposium on circuits and systems (ISCAS)

11. Wang Z, Suzuki H, Parhi K (1999) VLSI implementation issues of TURBO decoder design
for wireless applications. In: Proceedings of the IEEE workshop on signal processing systems
(SiPS’99), pp 503–512

12. Kwon TW, Kim DW, Kim WT, Joo EK, Choi JR, Choi P, Kong JJ, Choi SH, Chung
WH, Lee KW (1999) A modified two-step sova-based turbo decoder for low power and
high performance. In: Proceedings of the IEEE region 10 conference (TENCON’99), vol 1,
pp 297–300

13. Chaikalis C, Noras J (2002) Implementation of an improved reconfigurable sova/log-map
turbo decoder in 3gpp. In: Proceedings of the third international conference on 3G mobile
communication technologies, May, pp 146–150

14. Boutillon E, Douillard C, Montorsi G (2007) Iterative decoding of concatenated convolutional
codes: implementation issues. Proc IEEE 95(6):1201–1227

15. Gnaedig D (2005) Optimisation des architectures de décodage des turbo-codes. Ph.D. disser-
tation, Telecom Bretagne – UBS

16. Viglione F, Masera G, Piccinini G, Ruo Roch R, Zamboni M (2000) A 50 mbit/s iterative turbo-
decoder. In: Proceedings of the ACM/IEEE design, automation and test in Europe conference
and exhibition (DATE’00), pp 176–180

17. TMS320C64x DSP turbo-decoder coprocessor (2004). http://www.ti.com/lit/ug/spru534b/
spru534b.pdf

18. Loo K, Alukaidey T, Jimaa S (2003) High performance parallelised 3GPP turbo decoder. In:
Proceedings of the 5th European personal mobile communications conference

19. Zhong Z, Peng T, Zhong Z, Wang W, Liu Z (2010) Hardware implementation of Turbo coder
in LTE system based on PICOCHIP PC203. In: Proceedings of the 12th IEEE international
conference on communication technology (ICCT)

20. Gilbert F, Thul M, Wehn N (2003) Communication centric architectures for turbo-decoding
on embedded multiprocessors. In: Proceedings of the design, automation and test in Europe
conference & exhibition (DATE)

21. Wong C-C, Lee Y-Y, Chang H-C (2009) A 188-size 2.1mm2 reconfigurable turbo decoder chip
with parallel architecture for 3GPP LTE system. In: Proceedings of the symposium on VLSI
circuits, pp 288–289

22. Ilnseher T, Kienle F, Weis C, Wehn N (2012) A 2.15GBit/s turbo code decoder for LTE
advanced base station applications. In: Proceedings of the international symposium on turbo
codes and iterative information processing (ISTC)

23. Lin C-H, Chen C-Y, Chang E-J, Wu A-Y (2011) A 0.16nJ/bit/iteration 3.38mm2 turbo decoder
chip for WiMAX/LTE standards. In: Proceedings of the international symposium on integrated
circuits (ISIC)

24. Kim J-H, Park I-C (2009) A unified parallel radix-4 turbo decoder for mobile WiMAX and
3GPP-LTE. In: Proceedings of the IEEE custom integrated circuits conference (CICC)

25. Muller O, Baghdadi A, Jezequel M (2006) ASIP-based multiprocessor SoC design for simple
and double binary turbo decoding. In: Proceedings of the design, automation test in Europe
conference & exhibition (DATE)

26. Muller O, Baghdadi A, Jezequel M (2010) Parallelism efficiency in convolutional turbo
decoding. EURASIP J Adv Signal Process 2010:927920. doi:10.1155/2010/927920

27. Moussa H, Muller O, Baghdadi A, Jezequel M (2007) Butterfly and Benes-based on-chip
communication networks for multiprocessor turbo decoding. In: Proceedings of the design,
automation test in Europe conference & exhibition (DATE)

http://www.ti.com/lit/ug/spru534b/spru534b.pdf
http://www.ti.com/lit/ug/spru534b/spru534b.pdf

174 P. Murugappa et al.

28. Murugappa P (2012) Towards optimized flexible multi-ASIP architectures for LDPC/turbo
decoding. Ph.D. dissertation, Telecom Bretagne – UBS

29. Murugappa P, Baghdadi A, Jezequel M (2013) Parameterized area-efficient multi-standard
turbo decoder. In: Proceedings of the design, automation test in Europe conference & exhibition
(DATE)

30. Sun Y, Zhu Y, Goel M, Cavallaro J (2008) Configurable and scalable high throughput turbo
decoder architecture for multiple 4G wireless standards. In: Proceedings of the international
conference on application-specific systems, architectures and processors (ASAP)

31. Ahmed A, Awais M, Rehman A, Maurizio M, Masera G (2011) A high throughput Turbo
decoder VLSI architecture for 3GPP LTE standard. In: Proceedings of the IEEE 14th
international multitopic conference (INMIC), pp 340–346

32. Ilnseher T, Kienle F, Weis C, Wehn N (2012) A 2.15GBit/s turbo code decoder for LTE
advanced base station applications. In: Proceedings of the 7th international symposium on
turbo codes (ISTC)

33. Bickerstaff M, Garrett D, Prokop T, Thomas C, Widdup B, Zhou G, Davis L, Woodward G,
Nicol C, Yan R-H (2002) A unified turbo/viterbi channel decoder for 3gpp mobile wireless in
0.18-mm cmos. IEEE J Solid-State Circuits 37(11):1555–1564

34. Thomas C, Bickerstaff MA, Davis LM, Prokop T, Widdup B, Zhou G, Garrett D, Nichol C
(2003, April) Integrated circuits for channel coding in 3g cellular mobile wireless systems.
IEEE Commun Mag 150–159

35. Kreiselmaier G, Vogt T, Wehn N (2004) Combined turbo and convolutional decoder architec-
ture for UMTS wireless applications. In: Proceedings of the design, automation test in Europe
conference & exhibition (DATE)

36. Cavallaro JR, Vaya M (2003) VITURBO: a reconfigurable architecture for Viterbi and turbo
decoding. In: Proceedings of the international conference on acoustics, speech, and signal
processing (ICASSP)

37. Sun Y, Cavallaro JR (2008) Unified decoder architecture for LDPC/Turbo codes. In: Proceed-
ings of the IEEE workshop on signal processing systems (SiPS)

38. Sun Y, Cavallaro J (2011) A flexible LDPC/turbo decoder architecture. J Signal Process Syst
64(1):1–16

39. Naessens F, Bougard B, Bressinck S, Hollevoet L, Raghavan P, Van der Perre L, Catthoor
F (2008) A unified instruction set programmable architecture for multi-standard advanced
forward error correction. In: Proceedings of the IEEE workshop on signal processing systems
(SiPS)

40. Giuseppe Gentile MR, Fanucci L (2010) A multi-standard flexible turbo/LDPC decoder via
ASIC design. In: Proceedings of the 6th international symposium on turbo codes and iterative
information processing

41. Dielissen J, Engin N, Sawitzki S, van Berkel K (2008) Multistandard fec decoders for wireless
devices. IEEE Trans Circuits Syst II Express Briefs 55(3):284–288

42. Vogt T, Wehn N (2008) A reconfigurable application specific instruction set processor for
convolutional and turbo decoding in a sdr environment. In: Proceedings of the design,
automation test in Europe conference & exhibition (DATE)

43. Alles M, Vogt T, Wehn N (2008) FlexiChaP: a reconfigurable ASIP for convolutional, turbo,
and LDPC code decoding. In: Proceedings of the 5th international symposium on turbo codes
and related topics

44. Tarable A, Benedetto S, Montorsi G (2004) Mapping interleaver laws to parallel turbo and ldpc
decoders architectures. IEEE Trans Inf Theory 50(9):2002–2009

45. Sani A, Coussy P, Chavet C (2013) A first step toward on-chip memory mapping for parallel
turbo and LDPC decoders: a polynomial time mapping algorithm. IEEE Trans Signal Process
61(16):4127–4140

46. Moussa H, Baghdadi A, Jezequel M (2008) Binary de Bruijn on-chip network for a flexible
multiprocessor LDPC decoder. In: Proceedings of the 45th design automation conference
(DAC)

8 ASIP Design for Multi-Standard Channel Decoders 175

47. Condo C, Martina M, Masera G (2012) A network-on-chip-based turbo/LDPC decoder
architecture. In: Proceedings of the design, automation test in Europe conference & exhibition
(DATE)

48. Murugappa P, Lapotre V, Baghdadi A, Jezequel M (2013) Rapid design and prototyping
of a reconfigurable decoder architecture for QC-LDPC codes. In: Proceedings of the IEEE
international symposium on rapid system prototyping (RSP)

49. Lapotre V, Murugappa P, Gogniat G, Baghdadi A, Diguet J-P, Bazin J-N, Hubner (2013)
Optimizations for an efficient reconfiguration of an ASIP-based turbo decoder. In: Proceedings
of the IEEE international symposium on circuits and systems (ISCAS)

Chapter 9
Hardware Design of Parallel Interleaver
Architectures: A Survey

Cyrille Chavet, Awais Hussain Sani, and Philippe Coussy

9.1 Motivation

Early developers of digital communication systems assumed that information could
be transmitted through noisy channel with high reliability by increasing the signal to
noise ratio. This could only be achieved at that time by increasing transmitted signal
power enough to ensure that signal can reliably be transmitted. The revolutionary
work of Shannon [1] changed this view by proving that it is possible to send digital
data to receiver through noisy channel with high reliability by first encoding digital
message with error correction code at transmitter and then subsequently decode it
at receiver to generate original message.

The function of the encoder is to map X digits message into C digits codeword
where C >X. The code rate r =X/C defines the redundancy introduced by corre-
sponding error correction code. Encoded message passes through channel which
corrupts the message by adding some noise into it. At receiver, error correction
decoder uses this added redundancy to determine the original message despite the
noise introduced by channel. Typical communication chain is shown in Fig. 9.1.

Different error correction codes are introduced in literature. They can be
classified into two broad categories: block codes and convolutional codes. In block
codes, original information sequence is divided into different message blocks and
each message is independently encoded to generate codeword bits whereas in
convolutional codes, encoder takes information sequence as a continuous stream

C. Chavet (�) • P. Coussy
Lab-STICC laboratory, Université de Bretagne Sud, 4 Rue Jean Zay, 56100 Lorient, France
e-mail: cyrille.chavet@univ-ubs.fr; philippe.coussy@univ-ubs.fr

A.H. Sani
SATT Ouest Valorisation, 14C rue du Pâtis Tatelin Métropolis 2, CS 80804,
35708 Rennes Cedex 7, France
e-mail: awais-hussain.sani@ouest-valorisation.fr

© Springer International Publishing Switzerland 2015
C. Chavet, P. Coussy (eds.), Advanced Hardware Design for Error
Correcting Codes, DOI 10.1007/978-3-319-10569-7__9

177

mailto:cyrille.chavet@univ-ubs.fr
mailto:philippe.coussy@univ-ubs.fr
mailto:awais-hussain.sani@ouest-valorisation.fr

178 C. Chavet et al.

DecoderEncoder Channel
X C

Transmitter Receiver
C’ X’

Fig. 9.1 Communication system

and generates a continuous stream of codeword bits. Therefore in block codes,
encoder must wait for the entire message block before it starts encoding whereas
convolutional encoder can start encoding and transmitting codeword before it
obtains the entire message.

Many types of block codes are used in different applications but among the
classical ones, Reed–Solomon [2] is the most popular due its widespread use in
CD, DVD, and hard disk drives. Other examples of classical block codes are Golay
codes [3] and Hamming codes [4]. Low density parity check codes (LDPC) is a class
of linear block codes with error correction capabilities very close to the channel
capacity. Due to their excellent error correction performance, it has already been
included in several wireless communication standards such as DVB-S2 and DVB-
T2 [5], WiFi-IEEE 802.11n [6], or WiMAX-IEEE 802.16e [7].

Convolutional codes, such as Turbo codes [8], perform like a finite state
machine which converts continuous stream of X message bits into continuous
stream of C coded bits (where X >C). Due to their simple structure and efficiently
implementable iterative decoding algorithm, convolutional codes are increasingly
used in different telecommunication standards. Thanks to their excellent error
correction capabilities, Turbo codes are part of current telecommunication standards
such as [9, 10] and digital broadcasting [11]. These Turbo codes are constructed
through the parallel concatenation of two convolutional codes to achieve good
error correction performance. Their outstanding performances are also possible
due to the presence of pseudo-random interleaver that scrambles data to break up
neighborhood relations.

Meanwhile, the large acceptance of smart-phones, laptop, digital television, and
mobile broadband devices leads to the era of high data rate wireless applications.
The rapid and huge increase in data traffic strains network capacity and researchers
are developing new techniques to cope with this high throughput requirement. As a
result of this effort, advanced technologies such as OFDM, MIMO, and advanced
error correction techniques are included in different standards to reliably transfer
data at high rates on wireless networks.

However, the excellent performance of error correction codes comes at the
expense of computational complexity. Hence, parallel architectures must be
employed to speed up the decoding process and support required application
throughputs. Moreover, several parameters such as scheduling, parallelism level,
memory organization, and network architecture need to be explored to trade

9 Hardware Design of Parallel Interleaver Architectures: A Survey 179

Fig. 9.2 Decoder parallel
architecture Bank1

Bank2

Bank3
Interconnection N

etw
ork

PEn
Bankn

PE3

PE2

PE1

off circuit area and performances. This requires the development of dedicated
approaches to efficiently implement decoder architecture. In such implementation
(cf. Fig. 9.2), several processing elements (PEs) are used to obtain the required
throughput. Memory is used to store different messages generated during the
decoding process. These messages are written into and read out of the memory
according to particular permutation defined by a permutation law. This architecture,
however, suffers from memory access collision problem when more than two
processing elements want to access the same memory bank. Collision problem
becomes a significant issue with the increase of code word length and is discussed in
the next section. Moreover, with the growing demand of high data rate applications
and shrinking time to market constraint, this problem proves to be one of the most
problematic factors in designing efficient decoder architectures.

To manage this problem, conflicts can be resolved either during definition of
interleaving law or at run time or at design time. Designing conflict free interleaving
law often simplifies the construction of parallel decoder architectures. However, it
traditionally only supports particular parallelism used in decoding algorithms (e.g.,
LTE only supports SISO decoder level parallelism for a subset of block lengths).
Managing conflict problems at runtime (e.g. serializing/postponing conflicting
accesses through buffers) results in additional hardware cost and delay, and may
be less interesting for high data rate and low power applications. In order to
resolveconflict problem for any type of parallelism and interleaving law, design time
conflict resolution is another solution. Here, conflict-free memory mappings are
found off-chip either manually or automatically. In manual approach, the designer
finds the conflict-free memory mapping after analyzing the interleaving law and
then designs a controller using FSM controllers. However, in automatic approach
different dedicated algorithms are developed and run on computer to generate ROM-
based controllers. In order to support multiple block lengths and standards on a
single chip, automated approaches require to pre-calculate memory mapping for
each block length and to store them on-chip which results in large memory footprint.
More recently, a new kind of approach has been proposed based on a hybrid strategy
that aims to benefit both from runtime and design time approaches through on-chip
memory mapping. The idea is to generate on-chip conflict free memory mappings,
during the execution of the application.

180 C. Chavet et al.

9.2 Problem Formulation

First, we present a problem formulation based on an example based on access order
of turbo decoder. However, it has been already been shown in [12–15] . . . that the
problem is the same for LDPC codes.

In parallel decoder architectures, several processing elements PEs are con-
currently used to decode the received information. In order to increase memory
bandwidth, several memory banks Bs are connected with these PEs through a
dedicated interconnection network (see Fig. 9.2). This network exchanges data
between PEs and Bs according to predefined access orders. These orders are
parameterized by block lengths and PEs parallelism.

Typical parallel decoder architecture is shown in Fig. 9.2. In our example, natural
and interleaved orders are defined as follow:

Natural order = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
Interleaved order = {0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11}

For parallel processing, this codeword is divided into four windows in both
natural and interleaved order and arranged in data access matrices of Fig. 9.3. In
this figure, each row (or window) is processed by one processing element whereas
data in each column (or time instance) need to be accessed concurrently.

To increase memory bandwidth, three memory banks are used so that processing
elements can concurrently get data elements in parallel. Data elements must be
stored in banks in such a manner that at each time instance in natural order, all the
processing elements always access different memory banks as shown in Fig. 9.4a.
However by using this memory mapping, all processing elements always access the
same memory bank at each time instant in interleaved order as shown in Fig. 9.4b.
This results in memory conflict problem [16] and increases latency and thus reduces
system throughput and increases system cost.

To solve this memory conflict problem, several approaches can be proposed in
order to manage concurrent parallel access to all the data elements in both read
and write accesses with or without any conflict and/or with or without dedicated
additional hardware mechanism.

Natural order Matrix

PE1 0 1 2 3

PE2 4 5 6 7

PE3 8 9 10 11

t1 t2 t3 t4

Interleaved order Matrix

PE1 0 3 6 9

PE2 1 4 7 10

PE3 2 5 8 11

t5 t6 t7 t8

PARALLELISM

Fig. 9.3 Data access matrices

9 Hardware Design of Parallel Interleaver Architectures: A Survey 181

Bank1

0, 1, 2, 3

Interconnection N
etw

ork

Controller

R/W

PE3

PE2

PE1

PE3

PE2

PE1

Bank2

4, 5, 6, 7

Bank3

8, 9, 10, 11

Bank1

0, 1, 2, 3
Interconnection N

etw
ork

Bank2

4, 5, 6, 7

Bank3

8, 9, 10, 11

Conflicts

Controller

R/W

a b

Fig. 9.4 Memory conflict problem in parallel turbo decoder. (a) Conflict-free natural order access.
(b) Conflict-full interleaved order access

9.3 An Overview of Memory Access Conflict Solving
Approaches

In recent standards, different conflict free interleaving laws have been defined.
For example, 3GPP-LTE uses quadratic permutation polynomial (QPP) interleaver
[17] whereas WiMAX [7] uses ARP [18] interleaver to permute the data. These
interleavers often simplify the parallel decoder architecture. However, they are
conflict-free only for particular types (e.g., [19] or [20]) or degrees of parallelism
used in turbo decoding or for a subset of block lengths. Hence, several solutions are
proposed in literature to solve such conflicts at runtime or at design time. At runtime,
architectures use routing and/or buffering techniques in the interconnection network
to serialize conflicting accesses. Design time approaches are able to generate in-
place memory mapping (i.e., a given data is stored in one and only one memory
bank, and one memory address) in order to reduce the cost of the controller. Some
other approaches try to strongly optimize the controllers by moving a data from one
memory place to another between each access to this data.

9.3.1 Conflict Solving During the Definition
of the Interleaving Law

A first class of approach consists in defining conflict free interleaving law. An
example of such solution is proposed in [21] based on Turbo-codes. In this approach
spatial and temporal permutations of data are introduced to construct conflict-free
interleaver with random interleaver like properties. Consider a block length of n
data arranged row by row into a matrix M. Interleaver function is the sum of both

182 C. Chavet et al.

temporal and spatial permutations of the lines and columns of M. The benefit of this
approach is that one can use barrel shifter interconnection network to realize turbo
decoder for this interleaving law in practical applications. However, the approach is
dedicated, i.e., not standard compliant.

More recently, [17] has proposed the QPP interleaver architecture. The authors
show that QPP interleaver is maximum contention-free, i.e., for every window size
W, which is a factor of the interleaver length N, the interleaver is contention free.
QPP interleaver is defined by the following equation:

Π(x) =
(

f1x2 + f2x
)

mod N

where x and Π(x) represent the original and interleaved address respectively, and
integers f1, f2 are different for different block lengths and can be found in the
standard.

This kind of approach has been recently used in standard like LTE. However,
QPP contention-free property is true for SISO decoder level parallelism only. For
higher data rate applications when trellis and recursive units parallelism are also
included in each SISO, QPP interleaver is no more contention-free and requires
additional router and buffer mechanisms to manage problems. Moreover, having no
conflict for QPP interleaver allows to design conflict-free architecture in 3GPP LTE
decoder only: it indeed results in designing a channel interleaver that has to manage
memory conflicts in order to present data to QPP in the required organization.

From LDPC point of view, these codes are completely specified by their parity
matrices. These matrices represent how data (named variable nodes in LDPC)
must be processed by the processing elements (named check nodes in LDPC) in
order to achieve good error correction performances. Hence, proper construction
of such matrices is necessary to obtain excellent error correction capabilities of
LDPC. Different constraints can be added during the construction of parity matrices
either to achieve significant coding gains or to simplify the decoder architecture.
The matrices can also be constructed is such a way that data transfer between
check nodes (CNs) and variable nodes (VNs) is made without any conflict for
partially parallel architecture [22, 23]. The codes obtained during such construction
procedure are called structured codes.

Structured codes remove memory conflict problem because transfer of mes-
sages between (CNs) and (VNs) is carried out through simple rules (like indices
permutation). Also, structured codes simplified the decoder architecture since
interconnection network can be implemented through simple network (like barrel
shifter) by exploiting the regularity introduced during code construction. Due to
simplicity in construction, structured codes are part of current telecommunication
standards; e.g. [6] or [7].

Although it is proved in [22] that performances of structured codes are very close
to random codes, adding constraints to construct structured codes may degrade the
code’s decoding performance. Therefore, special attention should be taken while
selecting constraints to develop structured codes to keep remarkable error correction
capabilities of LDPC. Also, structured codes only support one class of LDPC codes

9 Hardware Design of Parallel Interleaver Architectures: A Survey 183

Bank1

Bank2

Bank3

Interconnection N
etw

ork

PEn
Bankn

Controller

R/W

PE3

PE2

PE1
Register

FIFO

M
U

X
M

U
X

Fig. 9.5 Conflict buffering mechanism added to the network architecture

and to handle diverse existing and future classes of LDPC codes (such as no-binary
LDPC codes), a general approach to handle memory mapping problem is required.
Finally, it must be noticed that if the data access order can be defined to be conflict-
free in the decoder part of the architecture; this supposes that this decoder can be fed
with data in a proper order, which can differ from the order of data coming from the
channel. Hence, in this case (like for QPP interleavers) the problem is only moved
from inside the decoder up to its interface, i.e., its environment.

9.3.2 Conflict Solving Through Dedicated Runtime
Approaches

A second class of solution to deal with memory access conflict problem is to simply
store data elements in different memory banks without considering conflicting
accesses and then use additional buffers in the interconnection network to manage
conflicts at runtime [24] see Fig. 9.5.

In [25] the authors propose to add in the interconnection network a dedicated
Double-Buffer based Contention-free (DBCF) to design a HSPA+ decoder. This
architecture is configured, thanks to the statistical property of the memory conflict
based on simulation results analysis. As soon as DBCFs detect conflicts, the
conflicting accesses are routed into a dedicated circular buffer (see Fig. 9.6).

Another example of conflict-solving oriented architecture can be found in [26]. In
this approach, the interconnection network is based on a Network-on-Chip that can
be configured on-the-fly to emulate any “classical” interconnection network such

184 C. Chavet et al.

Bank1

Bank2

Bank3

Interconnection N
etw

ork

PEn
Bankn

Controller

R/W

PE3

PE2

PE1

Circular
buffer

M
U

X

Circular
buffer

M
U

X
Circular

buffer

M
U

X

Circular
buffer

M
U

X

DBCF

DBCF

DBCF

DBCF

Fig. 9.6 Architecture based on DBCF

like Butterfly, Benes, De Bruijn, cross-bar . . . Then, if a memory conflict access
is detected by the routers, then only one access will be performed to the memory
banks, and the other conflicting ones will be re-routed into the network. Then, these
conflicting “packets” could re-try to access the memory banks later on (see Fig. 9.7).

Runtime approaches generally increase the cost and latency of the system due to
presence of interconnection network and buffer management mechanism to manage
conflicts. The total latency of the system is also increased since each conflicting
data access must travel buffers before being stored in the memory banks. Hence,
such approaches are also often referred as time relaxation since additional cycles
can be used to solve memory access conflicts.

9.3.3 Conflict Solving Through Dedicated Memory
Mapping Approaches

A third class of solution to deal with memory access conflict problem is to store data
elements (mapping process) in different memory banks so that all the Processing
Elements (PEs) can access the data without any conflict. Dedicated mapping
algorithms are used to perform some pre-processing steps to determine the memory
locations for each data element used.

These algorithms can be categorized as (1) unconstrained, i.e., the targeted
interconnection network supports any permutations (e.g., Benes networks, cross-
bar . . .), (2) hard-constrained, i.e., the designer wants to use a cheaper (from
architecture point of view, e.g., a barrel-shifter) interconnection network, but at

9 Hardware Design of Parallel Interleaver Architectures: A Survey 185

Bank1

Bank2

Bank3

PEn
Bankn

Controller

R/W

PE3

PE2

PE1
router

router

router

router

router

router

router

router

router

router

router

router

Fig. 9.7 NoC-based architecture

the expense of a strong limitation of the set of possible permutations, and (3) soft-
constrained, i.e., the architecture can be modified during the memory mapping step
in order to reduce its final complexity.

9.3.3.1 Unconstrained Memory Mapping Approaches

Several unconstrained mapping approaches are proposed in state of the art to find a
memory mapping that will be natively conflict free; i.e., each processing elements
can access all its data without any conflict at each time instance [13–15, 27] . . .

Simulated annealing approaches like [13] (in-place memory mapping only) or
[14, 15] (in-place memory mapping and multi-read/multi-write memory mapping)
are able to find a conflict-free memory mapping for both Turbo-codes and LDPC.
In order to apply the proposed approach on LDPC, the authors of [13] proposed
to modify memory access schedule by using a static single assignment (SSA) form
which results in oversized memory architecture to store data since each data access
is stored in a dedicated memory address. However, in [14, 15] the authors removed
this limitation by using several memory locations for each data and by sharing this
memory location among multiple data.

In [27] authors take leverages of Bipartite Edge Coloring techniques to solve
the mapping problem for both turbo and LDPC codes in polynomial time. Hence,

186 C. Chavet et al.

they first transform data access matrices for Turbo Codes and mapping matrices
for LDPC into bipartite graphs. Afterwards, bipartite edge coloring algorithm is
applied on these graphs to solve mapping problem. Since edge coloring algorithm
is always able to color the edges of bipartite graph with minimum colors, therefore
it is always possible to solve memory mapping problems for both turbo and LDPC
codes in polynomial time.

However, these approaches store data “randomly” in memory banks. Parallel
interleaver architectures could thus be significantly optimized in terms of intercon-
nection network and memory controller costs. Indeed no regularity can be easily
extracted from the control words generated by the memory controller, and as a
consequence, no optimization can be efficiently performed. Even if the designer
would prefer to use an optimized network (e.g., Butterfly, Barrel-shifter . . .), if no
dedicated memory mapping approach is proposed then the resulting interconnection
network must be a full crossbar or a Benes network. Hopefully, some approaches
are able to find conflict free memory mapping that is fully compatible with a user-
defined interconnection network.

9.3.3.2 Hard-Constrained Memory Mapping Approaches

In [14, 15], an approach called Static Address Generation Easing—SAGE—is
presented that considers a target interconnection network to find memory mapping.
In this approach, two empty matrices called SAGE Mapping Matrices are used to
store banks information during algorithm execution. To find architecture-oriented
memory mapping, two constraints are defined to be respected during algorithm
execution. First, each column of the mapping matrices (see Sect. 9.2) should
contain different memory banks and second, if the interleaving law allows, each
column should respect the rules of the steering network component. This approach
guaranties if the target interconnection network is compatible with the interleaving
law, then the final memory mapping will respect it.

In [28], an approach based on transportation problem modeling which finds
conflict-free memory mapping for every type of turbo codes and which optimizes
the resulting interleaving architecture has been proposed. The mapping problem for
turbo codes is transformed as transportation problem by considering all the data
nodes as producers and all the time nodes as consumers. The main interest of this
approach is that the designer is able to obtain conflict-free memory mapping in
polynomial time and this mapping respects the targeted interconnection network, if
it is compatible with the interleaving law.

The main weakness of this kind of approaches is that they are limited to one
targeted interconnection network defined at design time. Moreover, they cannot be
applied to any data permutation approaches since they are limited to Turbo-codes
based systems.

9 Hardware Design of Parallel Interleaver Architectures: A Survey 187

Fig. 9.8 Architecture
generated by memory
relaxation approach

Bank1

Bank2

Bank3

Interconnection N
etw

ork

PEn
Bankn

Controller

R/W

PE3

PE2

PE1

Network Control Logic

A
ddress G

eneration Logic

Register
&

Steering Logic

9.3.3.3 Soft-Constrained Memory Mapping Approaches

The last class of approaches tries to take advantage of both runtime approach
mechanisms and design time approach efficiency. In previous mapping approaches,
the generated memory mappings induce sets of control words in order to control
the memories and the network of the decoder architecture. If no regularity can
be extracted from these control words no optimization can be performed. On the
contrary, if such regularity can be extracted, the addressing sequence, and the
associated controller cost can be greatly reduced.

Such regularity can be obtained by applying the approach described in [12]: in
this solution, additional registers are used to store conflicting data but also some
non-conflicting data if and only if this enables to simplify the memory controller
architecture (see Fig. 9.8). This approach, referred as Memory relaxation (i.e.,
additional memory elements—registers or FIFOs—can be allocated to remove
conflicts or to enable strong optimization of the controllers) is also able to
generate a conflict-free memory mapping with respect to a target interconnection
network (Barrel-Shifter, Butterfly . . .). However the final architecture suffers from
hardware overhead due to additional registers and their dedicated additional steering
logic. This overhead depends on the compatibility between interleaving law and
permutation characteristics on the targeted interconnection network. For higher
incompatibilities, the approach results in higher hardware overhead and latency.

Since interconnection network also impacts the cost of the architecture [28], then
a smart memory mapping approach could also focuses on optimizing this network
in order to adapt its structure to the interleaving law.

188 C. Chavet et al.

Fig. 9.9 Architecture
generated by network
relaxation approach

Bank1

Bank2

Bank3

C
ustom

ized
Interconnection N

etw
ork

PEn
Bankn

Controller

R/W

PE3

PE2

PE1

Network Control Logic

A
ddress G

eneration Logic

Ur Rehman et al. [29] presents a mapping approach that considers the cus-
tomization of the interconnection network and reduces the cost of the controller
architecture. This approach, referred as Network relaxation, modifies the original
network by adding additional multiplexers/switches (see Fig. 9.9). The mapping
step aims to fully explore the memory mapping solution space by checking all the
permutations of the selected network. If no memory mapping solution exists for
this network, then the set of permutations will be extended by adding a steering
component which results into a customized network architecture with enriched set
of permutations.

This approach proved to be the most efficient (compared to state of the art) in
terms of hardware cost and latency. However, this approach, like the other ones
from the literature, generates a static architecture that cannot be modified on-
the-fly depending on system requirements (QoS, application switching, changing
application parameters . . .).

9.3.4 Hybrid Approach: On-chip Memory Mapping Approach

In parallel decoder architectures, design time approaches require storing into ROM
the control words to drive the network and to address data memories for particular
block length or/and interleaving law. So, in order to design flexible decoder
architectures that support multiple block lengths and multiple interleaving laws,
several ROMs are needed (see Fig. 9.10) which results in an important hardware
overhead.

In order to be flexible at a reasonable hardware cost (i.e., reduced memory
footprint), a solution where the mapping algorithm is run on chip has been proposed.

9 Hardware Design of Parallel Interleaver Architectures: A Survey 189

Bank1

Bank2

Bank3

Interconnection N
etw

ork
PEn

Bankn

Controller

R/W

PE3

PE2

PE1

Network Control Logic

A
ddress G

eneration Logic

Fig. 9.10 Parallel decoder architecture supporting multiple block lengths

The approach starts by computing new mapping information on the fly as soon as
a new block length needs to be decoded and updates these new generated control
information in the memory.

Since this approach requires a fast on-chip mapping algorithm, then a novel poly-
nomial time algorithm [29] derived from [30] is used for on-chip implementation.
Low computational cost of this algorithm enables memory mapping approaches to
implement this algorithm on chip using embedded processor, an ASIP or a dedicated
hardware accelerator and to generate network and addressing control bits on-chip.
This approach supports multiple standards and block lengths on single chip with
reduced memory footprint.

The hardware architecture for embedded memory mapping is shown in Fig. 9.11.
Control unit includes a dedicated processing element (General Purpose Processor
GPP, Application Specific Instruction set Processor ASIP or Application Specific
Integrated Circuit ASIC) to execute the mapping algorithm. The multiple networks
and addressing ROMs are replaced by two RAMs, i.e., Network RAM and Address-
ing RAM. Control Unit executes the mapping algorithm and updates RAMs if
required as soon as the decoder requires decoding a new block length or a new
application (e.g., LTE, HSPA+, Wifi).

The execution flow is shown in Fig. 9.12. In the first step, the data access order
is generated based on the particular interleaving law along with other required
input parameters like block length, parallelism, and scheduling. This first step
can be avoided if the designer wants to feed the system with pre-computed data
consumption orders. This data access order is simply a scheduling of data accesses.

190 C. Chavet et al.

Fig. 9.11 Parallel decoder
architecture to embed
memory mapping algorithms
on chip

Bank1

Bank2

Bank3

Interconnection N
etw

ork

PEn
Bankn

Control Unit

R/W

PE3

PE2

PE1

Network RAM

A
ddressing R

A
M

Agile Auto-Adaptative Memory
Mapping Generator

Fig. 9.12 Execution flow

Generation of data access order

Execution of memory mapping approach

Generation of Routing information

Input
Parameters

Permutation
law

Data access
order

Conflict-free
memory mapping

Command
words

However, the conflict-free memory mapping still need to be generated which is the
goal of the second step of the design flow. Finally, the last step generates the routing
and control information for the interconnection network and the memory banks.

Low computational cost of the mapping algorithm enables to implement this
algorithm on chip using embedded processor, an ASIP or a dedicated hardware
accelerator and to generate network and addressing control bits online. This
approach will enable designers to support multiple standards and block lengths on
single chip with reduced memory footprints.

9 Hardware Design of Parallel Interleaver Architectures: A Survey 191

The significant reduction in execution time and area obtained using this approach
encourages embedding memory mapping and routing algorithm in future telecom-
munication devices.

Conclusion
In this chapter, we have presented a survey of existing solutions to deal with
memory conflict accesses in parallel hardware decoder architectures of Turbo-
codes and LDPC. The first type of approaches is based on definition “natively
conflict-free” interleaving laws. A second family of approaches proposes to
use dedicated hardware mechanisms to deal with conflicts at runtime, but with
the expense of additional hardware components and latency. The third family
of solutions proposes to find conflict-free memory mappings at design time,
but at the expense of important memory footprint and hardware overhead
when designing flexible decoders. Finally, a new class of approach that runs
mapping algorithm on chip has been presented. In this context, a polynomial
time memory mapping approach and a dedicated routing algorithm are
embedded in the decoder architecture.

References

1. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423,
623–656

2. AHA. Reed-Solomon error correction codes (ECC). ANRS01-0404
3. Golay MJ (1961) Complementary series. IRE Trans Inf Theory IT-7:82–87
4. Hamming RW (1950) Error detecting and error correcting codes. Bell Syst Tech J

XXVI(2):147–160
5. DVB (2008) Frame structure channel coding and modulation for the second generation digital

terrestrial television broadcasting system (DVB-T2). DVB Document A122
6. WIFI (2008) Wireless LAN medium access control (MAC) and physical layer (PHY)

specifications: enhancements for higher throughput. IEEE P802.11n/D5.02, Part 11
7. WiMAX (2006) Air interface for fixed and mobile broadband wireless access systems –

amendment 2: physical and medium access control layers for combined fixed and mobile
operation in licensed bands, and corrigendum. IEEE P802.16e, Part 16

8. Berrou C, Glavieux A, Thitimajshima P (1993) Near Shannon limit error-correcting coding
and decoding: turbo-codes. In: Proceedings of the IEEE international conference on commu-
nications (ICC 93), Geneva, pp 1064–1070

9. HSPA (2004) Technical specification group radio access network; multiplexing and channel
coding (FDD). 3GPP, 25.212 V5.9.0

10. LTE (2008) Technical specification group radio access network; evolved universal terrestrial
radio access; multiplexing and channel coding (release 8). 3GPP Std. TS 36.212

11. DVB-SH (2008) Digital video broadcasting (DVB); framing structure, channel coding and
modulation for satellite services to handheld devices (SH) below 3 GHz. ETSI EN 302–583
V1.1.1

12. Briki A, Chavet C, Coussy P (2013) A conflict-free memory mapping approach to design
parallel hardware interleaver architectures with optimized network and controller. In: IEEE
workshop on signal processing systems, Tapei

192 C. Chavet et al.

13. Tarable A, Benedetto S, Montorsi G (2004) Mapping interleaving laws to parallel turbo and
LDPC decoder architectures. IEEE Trans Inf Theory 50(9):2002–2009

14. Chavet C, Coussy P (2010) A memory mapping approach for parallel interleaver design with
multiples read and write accesses. In: IEEE international symposium on circuits and systems,
Paris, pp 3168–3171

15. Chavet C, Coussy P (2010) Static Address Generation Easing: a design methodology for
parallel interleaver architecture. In: IEEE international conference on acoustics, speech and
signal processing (ICASSP), pp 1594–1597

16. Giulietti A, van der Perre L, Strum M (2002) Parallel turbo coding interleavers: avoiding
collisions in accesses to storage elements. Electron Lett 38(5):232–234

17. Takeshita OY (2006) On maximum contention-free interleavers and permutation polynomials
over integer rings. IEEE Trans Inf Theory 52(3):1249–1253

18. Berrou C, Saouter Y, Douillard C, Kerouédan S, Jézéquel M (2004) Designing good permu-
tations for turbo codes: towards a single model. In: Proceedings of the IEEE international
conference on communications (ICC 2004), pp 341–345

19. Woodard JP, Hanzo L (2000) Comparative study of turbo decoding techniques: an overview.
IEEE Trans Veh Technol 49:2208–2233

20. Blankenship BC (2005) High-throughput turbo de-coding techniques for 4G. In: International
conference on 3G wireless and beyond, pp 137–142

21. Gnaedig D, Boutillon E, Jezequel M, Gaudet VC, Gulak PG (2003) On multiple slice turbo
codes. In: Proceedings of 3rd international symposium on turbo codes, pp 343–346

22. Mansour M, Shanbhag N (2003) High-throughput LDPC decoders. IEEE Trans VLSI Syst
11(6):976–996

23. Zhang T, Parhi KK (2001) Joint code and decoder design for implementation-oriented (3;k)-
regular LDPC codes. Asilomar Conf Signals Syst Comput 2:1232–1236

24. Thul MJ, Gilbert F (2002) Optimized concurrent interleaving architecture for high-throughput
turbo-decoding. In: Ninth international conference on electronics, circuits and systems, vol 3,
pp 1099–1102

25. Wang G, Sun Y, Cavallaro JR, Guo Y (2011) High-throughput contention-free concurrent
interleaver architecture for multi-standard turbo decoder. In: IEEE international conference
on application-specific system, architectures and processors (ASAP) pp 113–121

26. Moussa H, Muller O (2007) Butterfly and Benes-based on-chip communication networks for
multiprocessor turbo decoding. In: Design, automation and test in Europe, pp 654–659

27. Sani AH, Coussy P, Chavet C, Martin E (2011) An approach based on edge coloring of tripartite
graph for designing parallel LDPC interleaver architecture. In: IEEE international symposium
on circuits and systems

28. Sani AH, Coussy P, Chavet C, Martin E (2011) A methodology based on transportation
problem modeling for designing parallel interleaver architectures. In: Proceedings of the 36th
IEEE International Conference on Acoustics, Speech and Signal Processing, Prague, May 22-
27, 2011

29. Ur Rehman S, Sani A, Chavet C, Coussy P (2014) Embedding polynomial time memory
mapping and routing algorithms on-chip to design configurable decoder architecture. In: Ninth
IEEE international conference on acoustics, speech and signal processing

30. Sani AH, Chavet C (2013) A first step toward on-chip memory mapping for parallel turbo
and LDPC decoders: a polynomial time mapping algorithm. IEEE Trans Signal Process
61(16):4120–4140

	Foreword
	Contents
	1 User Needs
	References

	2 Challenges and Limitations for Very High Throughput Decoder Architectures for Soft-Decoding
	2.1 Motivation
	2.2 Architectures for Soft Decision Reed–Solomon Decoders
	2.2.1 Introduction
	2.2.2 Information Set Decoding
	2.2.2.1 Original OSD
	2.2.2.2 Reduced Complexity Algorithm for Hardware
	2.2.2.3 HDD Aided Decoding
	2.2.2.4 Implemented OSD Version

	2.2.3 Hardware Architecture
	2.2.3.1 Architecture Overview
	2.2.3.2 Sorting Unit
	2.2.3.3 Syndrome Calculation Unit
	2.2.3.4 Column Generator Unit
	2.2.3.5 Gaussian Elimination Unit
	2.2.3.6 Correction Unit
	2.2.3.7 Hard Decision Decoder
	2.2.3.8 Fixed Point Quantization Issues
	2.2.3.9 Pipelining and Latency Issues

	2.2.4 Implementation Results

	2.3 Architectures for Turbo Code Decoders
	2.4 High Throughput Architectures for Low Density Parity Check Decoders
	2.4.1 LDPC Decoding
	2.4.2 LDPC Decoder Design Space
	2.4.3 Exploring a New Dimension in the High Throughput LDPC Decoder Design Space
	2.4.3.1 Core Duplication
	2.4.3.2 Unrolling Iterations

	2.4.4 Comparison of Unrolled LDPC Decoders to State-of-the-Art Architectures
	2.4.5 Future Work

	References

	3 Implementation of Polar Decoders
	3.1 Introduction to Polar Codes
	3.1.1 Code Construction
	3.1.2 Successive-Cancellation Decoding
	3.1.3 Belief-Propagation Decoding

	3.2 The Successive-Cancellation Decoder Implementation
	3.2.1 Processing Elements
	3.2.2 Partial-Sum Update Logic
	3.2.3 Memory
	3.2.4 Implementation Results

	3.3 The Belief-Propagation Decoder Implementation
	3.4 Simplified Successive-Cancellation Decoding
	3.4.1 Two-Phase Successive-Cancellation Decoding

	3.5 Fast-SSC Decoding
	3.5.1 Node Mergers
	3.5.2 Overall Decoder Architecture
	3.5.3 Processing Unit Architecture
	3.5.4 Implementation Results

	3.6 Implementation Comparison
	References

	4 Parallel Architectures for Turbo Product Codes Decoding
	4.1 Introduction
	4.2 TPC Coding and Decoding Principles
	4.2.1 Product Codes
	4.2.2 Iterative Decoding of Product Codes

	4.3 Straightforward Hardware Implementation of a TPC Decoder
	4.3.1 Global TPC Decoder Architecture
	4.3.2 Sequential SISO Decoder Architecture

	4.4 From Parallelism Levels to Parallel Architectures
	4.4.1 Frame Parallelism
	4.4.2 Iteration Parallelism
	4.4.3 Sub-block Parallelism
	4.4.3.1 Barrel Shifter
	4.4.3.2 Omega Network

	4.4.4 Symbol Parallelism
	4.4.4.1 Memory Merging
	4.4.4.2 Fully Parallel SISO Decoder

	4.4.5 Intra-symbol Parallelism
	4.4.6 Comparison of Parallelism Levels

	4.5 TPC Decoder Architecture Based on Symbol Parallelism
	4.5.1 Proposed IM-Free Architecture Using Fully Parallel SISO Decoder
	4.5.2 Toward a Maximal Parallelism Rate

	4.6 Architecture of a Fully Parallel Combinational SISO Decoder
	4.6.1 Algorithmic Parameter Reduction
	4.6.2 Fully Parallel SISO Decoder Architecture
	4.6.2.1 Reception Stage
	4.6.2.2 Test Pattern Processing Stage
	4.6.2.3 Soft-Output Computation Stage

	4.7 Comparison with Existing TPC Decoders
	4.7.1 Logic Synthesis Results of a BCH(32,26) SISO Decoder
	4.7.2 Comparison with Existing TPC Decoder Architectures

	References

	5 VLSI Implementations of Sphere Detectors
	5.1 Soft Detection
	5.1.1 Tree Search Algorithms

	5.2 Breadth-First Detection
	5.2.1 K-Best Detection
	5.2.2 Selective Spanning with Fast Enumeration
	5.2.2.1 Implementation Choices
	5.2.2.2 VLSI Implementation

	5.3 Depth-First and Metric-First Detection Algorithm Implementations
	5.3.1 Algorithm Descriptions
	5.3.1.1 Depth-First Algorithm
	5.3.1.2 Metric-First Algorithm

	5.3.2 Implementation Trade-Offs
	5.3.3 Architectural Choices
	5.3.3.1 SEE-LSD
	5.3.3.2 IR-LSD

	5.3.4 VLSI Implementation Results
	5.3.4.1 Detection Rates

	5.4 Trellis-Search Based MIMO Detection
	5.4.1 Trellis-Search Algorithm
	5.4.2 Trellis Model for Iterative MIMO Detection
	5.4.2.1 Path Reduction
	5.4.2.2 Path Extension
	5.4.2.3 LLR Computation

	5.4.3 VLSI Architecture
	5.4.4 VLSI Implementation Results

	References

	6 Stochastic Decoders for LDPC Codes
	6.1 Introduction
	6.2 Overview of LDPC Codes
	6.2.1 Structure
	6.2.2 Decoding

	6.3 Stochastic Computing
	6.3.1 The Stochastic Stream Representation
	6.3.2 Computation Circuits

	6.4 Fully Stochastic Decoders
	6.4.1 A Simple Stochastic Decoder
	6.4.2 Stochastic Decoders Using Successive Relaxation
	6.4.2.1 The Role of Successive Relaxation
	6.4.2.2 Circuit Implementations of the VN Function
	6.4.2.3 Tweaking the Probability Domain Representation
	6.4.2.4 Benchmark Using the IEEE 802.3an Standard

	6.4.3 The ``Delayed'' Stochastic Decoder
	6.4.3.1 Simple DS Decoder
	6.4.3.2 Some Heuristics for Improved Convergence
	6.4.3.3 Benchmark Using the IEEE 802.3an Standard

	6.5 Mixing Stochastic and Conventional Computations
	6.5.1 The RHS Algorithm
	6.5.2 Domain Conversion: LLR to Stochastic
	6.5.3 Domain Conversion: Stochastic to LLR
	6.5.4 Benchmark Using the IEEE 802.3an Standard

	6.6 Stochastic Decoders for Non-Binary LDPC Codes
	6.6.1 Message-Passing Decoding
	6.6.2 Stochastic Decoding Algorithms
	6.6.3 Results

	References

	7 MP-SoC/NoC Architectures for Error Correction
	7.1 Introduction
	7.2 Flexibility in the Communication Structure
	7.2.1 Indirect Networks
	7.2.2 Direct Networks

	7.3 Review of Flexible Decoding Architectures
	7.3.1 Multi-Standard Architectures
	7.3.2 Fully Flexible Architectures

	7.4 Improving the Efficiency of NoC-Based Decoders
	7.4.1 Energy Reduction Techniques
	7.4.2 Latency Reduction Techniques

	7.5 Dynamic Reconfiguration
	7.5.1 The Reconfiguration Task
	7.5.2 Reconfiguration of ASIP Based Decoders
	7.5.3 Reconfiguration of NoC Based Decoders

	References

	8 ASIP Design for Multi-Standard Channel Decoders
	8.1 Flexibility Requirement in Channel Decoder Design
	8.2 ASIP Design Approach
	8.3 ASIP-Based Decoders for Turbo Codes
	8.3.1 Hardware-Efficient Decoding Algorithm
	8.3.2 State-of-the-Art on Turbo Codes Decoders
	8.3.3 TurbASIP: Highly Flexible ASIP
	8.3.3.1 Overview of TurbASIP Architecture
	8.3.3.2 Pipeline Architecture and Instruction-Set
	8.3.3.3 Results and Architecture Efficiency Definition

	8.3.4 TDecASIP: Parameterized Area-Efficient ASIP
	8.3.4.1 Overview of TDecASIP Architecture
	8.3.4.2 Results and Discussions

	8.4 Flexibility Increase to Support Multiple Channel Code Classes
	8.5 Summary
	References

	9 Hardware Design of Parallel Interleaver Architectures: A Survey
	9.1 Motivation
	9.2 Problem Formulation
	9.3 An Overview of Memory Access Conflict Solving Approaches
	9.3.1 Conflict Solving During the Definitionof the Interleaving Law
	9.3.2 Conflict Solving Through Dedicated Runtime Approaches
	9.3.3 Conflict Solving Through Dedicated MemoryMapping Approaches
	9.3.3.1 Unconstrained Memory Mapping Approaches
	9.3.3.2 Hard-Constrained Memory Mapping Approaches
	9.3.3.3 Soft-Constrained Memory Mapping Approaches

	9.3.4 Hybrid Approach: On-chip Memory Mapping Approach

	Conclusion
	References

