
Chapter 7
Stochastic Modeling and Rate Theory of Atomic
Friction

Mykhaylo Evstigneev, Juan J. Mazo and Peter Reimann

Abstract Atomic friction involves objects whose dynamics is strongly influenced
by thermal fluctuations. In stochasticmodeling, one focuses on a few relevant degrees
of freedom, whereas the atomistic ones are taken into account by introducing dissi-
pation and noise. We review applications of this approach to atomic friction, namely,
the basic Prandtl-Thomlinson model, some of its multidimensional generalizations,
and the rate approximation, which allows one to obtain analytical results not easily
accessible by other methods.

7.1 Introduction

Macroscopic friction between solids is well known to be both of paramount practical
importance and of notorious difficulty regarding its theoretical understanding [1–4].
While macroscopic friction involves interactions between numerous asperities of
the two contacting surfaces, employing an atomic force microscope (AFM) offers
a unique opportunity to probe the frictional forces between a single asperity—the
tip of an AFM cantilever—and an atomically flat surface. Therefore the research
direction of friction force microscopy (FFM) [5] had been initiated only a year after
the invention of the AFM in 1986 [6] and is being intensively pursued since then
(see the reviews [7–13] and references therein).
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Fig. 7.1 Schematic
illustration of an FFM
experiment. Note that this
picture is severely out of
scale: in a real experiment,
the tip radius is of the order of
10nm, and the contact region
consists of several hundreds
of atoms

In a typical FFM experiment [5], the tip of anAFMcantilever is brought in contact
with an atomically clean surface by means of a normal load FN , while the cantilever
base is set in motion at a constant velocity v (see Fig. 7.1). The interaction between
the tip and the surface leads to a torsional deformation of the cantilever. One can
determine the magnitude of this deformation by optical means and thus deduce the
resulting elastic force f (t), which, by Newton’s third law, equals the instantaneous
force of friction. The central quantity of interest is the time-averaged friction force

f̄ := lim
t→∞

1

t

t∫

0

dt ′ f (t ′). (7.1)

While it has been known from the time of Coulomb that the force of friction between
two macroscopic bodies in contact is independent of their relative velocity, friction
force on the nanoscale exhibits a non-trivial velocity dependence, which will be
discussed in this contribution.

Experimental results reveal that the effects of thermal noise play an important
role in nanoscale friction. Understanding such a phenomenon is the most important
challenge of the stochasticmodeling of atomic friction. The specific indications of the
importance of thermal effects are thermal fluctuations of the instantaneous friction
force f (t) and, in particular, randomness of interstitial jumps of the cantilever in the
so-called stick-slip regime of motion, the temperature dependence of atomic friction,
and the approximately logarithmic dependence of the friction force, which can be
explained using a model based on the assumption that the tip transitions (slips) from
one lattice site to the next are due to thermally activated rate processes [10, 14–18].
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Though simpler than macroscopic friction, the adequate interpretation and
modeling of nanofriction experiments still represents a formidable challenge. In par-
ticular, directmolecular dynamics (MD) simulations, initiated in themid-nineties [19,
20], have only recently started to approach experimentally realistic pulling velocities.
Without resorting to special techniques, the velocities accessible inMD studies are in
the 1–103m/s range [21], orders of magnitude too fast in comparison with the exper-
imentally relevant values. Smaller velocities can be probed with the help of methods
that accelerate the algorithm performance, such as parallel replica dynamics [22, 23]
(velocity of a few mm/s), or its combination with hyperdynamics [24, 25] that has
further reduced the pulling velocities to the experimental microns per second. At the
same time, the number of atoms that can be simultaneously accounted for in MD is
still several orders of magnitude smaller than in the experiment. Last but not least,
MD simulations may take up to several weeks of computational time. The reason for
these limitations is the enormous time scale separation between atomic vibrations
proceeding on the subpicosecond time scale, and sliding motion of the tip, which
covers only a few lattice constants in a millisecond.

Hence, non-trivial theoretical modeling steps are indispensable, in particular the
concepts of non-linear stochastic processes [26–31]; the above-mentioned time-scale
separation justifies and greatly facilitates the calculations within such models. In
stochastic modeling, one focuses on just a few relevant degrees of freedom, which, in
the case of nanofriction, describe the tip geometric configuration. The huge number
of the remaining atomistic degrees of freedom are accounted for by introducing
the effects of randomness and dissipation in the tip equations of motion. In this
contribution, we review two different types of stochastic approaches to nanofriction
modeling, both stemming from the early works due to Prandtl [32] and Tomlinson
[33]: one is based on the Langevin equation, and the other on the theory of thermally
activated rate processes.

7.2 Langevin Modeling

7.2.1 Langevin Equation

The system from Fig. 7.1, though small, still involves a huge number of atomic
degrees of freedom. In a one-dimensional model, the experimentally observable
lateral force f (t) can be deduced from the torsional deformation of the cantilever and
is directly related to the displacement x(t) − vt of the AFM tip from its equilibrium
position vt at a moment of time t , cf. (7.5) below. To obtain the evolution equation
for this relevant collective degree of freedom x(t), one writes down the equation of
motion for all coordinates of the system, and then projects the system’s microstate
onto the subspace characterized by a given value of x(t) [26]. As a result of this
procedure, an equation of motion for x(t) is obtained, in which the effect of atomic
degrees of freedom is accounted for by introduction of the following objects: (i) a
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free-energy type potential U (x, t) of mean force, (ii) memory-dependent dissipative
force, and (iii) a random force (noise) of finite correlation time. In view of the fact
that the characteristic frequency associated with the collective variable x(t) is of the
order of 105 Hz, i.e. many orders of magnitude lower than the Debye frequencies
describing the time-scale of atomic motion, both the memory effects in dissipative
force and the finite noise correlation time can be neglected.

The potential of mean force U (x, t) consists of two contributions, the first one
accounting for the elastic deformations of AFM and substrate, and the second for the
tip-substrate interaction. Since the elastic deformations are typically small [34], we
may neglect anharmonic effects in the elastic energy. Furthermore, we can assume
that interaction only depends on the relative tip-substrate position x . We thus arrive
at the approximation

U (x, t) = κL(x − vt)2

2
+ U (x). (7.2)

The argument in the first term indicates that the cantilevermoves at a constant velocity
v > 0 to the right (cf. Fig. 7.1). Furthermore, focusing on an ideally flat atomic
surface with lattice constant a in x-direction, we conclude that U (x) is invariant
under a displacement by one period,

U (x + a) = U (x). (7.3)

The lateral spring constantκL describes the combined effect of the elastic deformation
of the cantilever, the tip and the elastically deformed surface in the contact region
[34–39]:

1

κL
= 1

κcantilever
+ 1

κtip
+ 1

κsurface
. (7.4)

The experimentally observable lateral force f (t) can be identified, according to
Newton’s third law, with the negative of the force caused by the elastic deformations,
i.e.

f (t) = −κL (x(t) − vt). (7.5)

Next, let us consider the elastic deformations of the cantilever, and, in particular,
those of the tip apex (see Fig. 7.1). If these deformations, or equivalently, the state
variable x(t), are changing adiabatically slowly, then the system is at every instance
of time in a thermal equilibrium state, i.e., we are dealing with a reversible process.
If these changes are taking place at a finite speed, but still slowly enough that the
thermal bath of the cantilever’s atoms always remains close to the instantaneous
accompanying thermal equilibrium, the remaining “small amount of disequilibrium”
renders the process “slightly irreversible” and hence gives rise to a linear-response
type dissipative force which, in the frame of reference of the cantilever, will be
proportional to the velocity of the tip relative to the cantilever base. In the laboratory
frame, this dissipative force assumes the form
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Fc(t) = −ηc(ẋ(t) − v) (7.6)

with an effective coupling strengthηc > 0 between the collective coordinate x and the
close to equilibrium “cantilever and tip bath” (subscript “c”). In particular, because
of the smallness of the tip deformations [34], the implicitly assumed independence of
ηc on the state x(t) of the system is well justified. In a similar manner, the influence
of the microscopic degrees of freedom of the substrate will result in a dissipative
force Fs(t), which is proportional to the tip velocity with respect to the substrate
with the proportionality coefficient ηs :

Fs(t) = −ηs ẋ(t). (7.7)

Finally, we come to the randomly fluctuating forces acting on the slow state
variable x(t). They have the same origin as the dissipative forces, namely, the large
number of fast degrees of freedomof the cantilever, tip and substrate baths.Due to this
common origin and the fact that the baths always remain close to thermal equilibrium,
one can show that those randomly fluctuating forces are completely fixed (in the
statistical sense) by the functional form of the dissipative forces via the fluctuation-
dissipation theorem [31, 40, 41]. Namely, the thermal “cantilever-and-tip-noise”
acts on x(t) in the usual form [26–30] of a fluctuating force

√
2ηckB T ξc(t) with

temperature T , Boltzmann constant kB , and unbiased δ-correlated Gaussian noise
ξc(t) of unit strength. Similarly, the substrate gives rise to thermal fluctuations of the
form

√
2ηskB T ξs(t)with an unbiased δ-correlated Gaussian noise ξs(t) independent

of ξc(t):

〈ξc(t) ξc(t
′)〉 = 〈ξs(t) ξs(t

′)〉 = δ(t ′ − t), 〈ξc(t) ξs(t
′)〉 = 0. (7.8)

Essentially, the uniqueness of these thermal noises follows from the fact that any devi-
ation from the above specified statistical properties could be exploited to construct a
perpetuum mobile of the second kind [41]. Their independence is an approximation
which is well justified by the fact that the contact between the two baths consists of
comparatively few atoms.

Collecting all acting forces, we arrive at the following equation of motion [42,
43]:

m ẍ(t) + ηẋ(t) = −U ′(x(t)) − κL(x(t) − vt) + ηcv + √
2ηkB T ξ(t). (7.9)

where m is the relevant effective mass associated with inertia effects of cantilever,
tip, and substrate, and

η := ηs + ηc (7.10)

is the total damping coefficient. The zero-noise limiting case of this equation
of motion is essentially equivalent to the early model of friction due to Prandtl
[32] and Tomlinson [33], whereas the thermal noise term was introduced [15,
16] about 70 years after Prandtl and Tomlinson’s publications. Such an equation
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(or its noise-free version) has been considered in a number of papers, the important
difference being that eitherηc or (much less often)ηs was assumed to vanish,whereas,
in general, there is no reason to expect that any of these coefficients is zero. One can,
however, straightforwardly relate the results obtained for arbitrary ηs , ηc to those
where either of them is set to zero. For instance, one can introduce a time translation
t̃ = t + ηc/κL in (7.9), which eliminates the ηcv term from the equation and allows
one to express f̄ (ηs, ηc) = f̄ (ηs + ηc, 0) − ηcv.

It is instructive to rewrite (7.9) in the co-moving reference frame defined by

z(t) = x(t) − vt, ż(t) = ẋ(t) − v, (7.11)

in which the equation of motion assumes the form

m z̈(t) + ηż(t) = −U ′(z(t) + vt) − κL z(t) − ηsv + √
2ηkB T ξ(t) (7.12)

and the instantaneous friction force from (7.5) becomes

f (t) = −κL z(t). (7.13)

Then, the term ηsv can be eliminated by a change of variables z̃ = z − ηsv/κL ,
t̃ = t +ηs/κL , so that f̄ (ηs, ηc) = f̄ (0, ηs +ηc)+ηsv. One of the consequences of
(7.12) is that at high velocities the third term in the right-hand side, which describes
the viscous drag of the substrate, exceeds all the other acting forces, and the force of
friction (7.13) behaves as

f̄ → ηsv for v → ∞, (7.14)

allowing us, at least in principle, to experimentally determine the coefficient ηs

associated with the substrate from the slope of the force-velocity plot at high v.

7.2.2 Parameter Values

In the simplest version, the potential U (x) is taken to be sinusoidal,

U (x) = −�U

2
cos

2πx

a
(7.15)

with a lattice constant a ∼= 0.2 . . . 0.5 nm and a corrugation depth �U , which
varies from values close to zero to ca. 0.1 nN·nm, depending on the conditions of the
experiment onewishes tomodel [44]. Note that, although a single-harmonic potential
(7.15) is the one that is usedmost often inmodeling, other possibilities have also been
considered in the literature, e.g. a potential with sharp minima and flat maxima [45],
quasiperiodic potentials [46, 47], potentials with localized Gaussian perturbations
[48], fractal potentials [49], etc.
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The value of the effective stiffness, κL , can be experimentally established from
the slope of the force-distance curve in the regime where the cantilever is “stuck” to
some lattice site of the substrate while its base moves at a constant velocity; then,
the force evolves according to f (t) ∼= κL t , up to an additive constant and small
fluctuations [see (7.17), (7.18) below for a more precise estimate]. This procedure
yields, for various experimental conditions, the value of κL between 0.1 N/m and 10
N/m [14, 17, 50].

With respect to the mass parameter, m, in the Langevin equation (7.9), its naive
identification with the total mass of the cantilever is unjustified, which already
becomes obvious from the fact that the effective stiffness κL is at least one order
of magnitude smaller than the “bare” torsional stiffness of the cantilever. This fact
suggests that only a very small portion of the tip at the apex experiences a significant
deformation, while most of the cantilever is relatively rigid during its motion. The
mass parameter usually employed in the simulations is of the order ofm ∼= 10−12 kg:
this estimate follows from the fundamental torsional resonance frequency of the can-
tilever in contact with the sample, (2π)−1√κL/m, which has a typical value of ca.
400 kHz [51]. It has also been proposed [42, 43] that in many experiments, the rel-
evant mass parameter is so small that an overdamped limit (m → 0) is an adequate
approximation.

Finally, the damping coefficient η is difficult to measure directly, because the
damping force −ηv is typically very small. Various estimates [15, 42, 43, 52, 53],
however, agree within an order of magnitude and yield η ∼= 10−6 . . . 10−5 kg/s.
Note that this value is close to the critical damping of the cantilever, 2

√
κLm; thus,

depending on the experimental conditions, the motion of the cantilever may be either
slightly underdamped or overdamped.

7.2.3 Regimes of Motion

Depending on the relative importance of cantilever mass, damping, spring constant,
pulling velocity, potential corrugation amplitude, and temperature, different dynam-
ical regimes can be achieved: continuous sliding [44], thermolubricity [54], regular
stick-slip motion [15, 16], stick-multislip [52, 55–57], chaotic motion [58, 59], etc.
Here, wewill briefly describe the regimes of continuous sliding and stick-(multi)slip,
as they have attracted most of the experimental interest so far.

Whether the cantilever will slide or perform stick-slip motion depends on the ratio
of the maximal potential curvature, maxx |U ′′

0 (x)|, to the stiffness κL , also known
as the Prandtl-Tomlinson parameter [44, 56]. For a sinusoidal potential (7.15), it is
given by

γPT = 2π2�U

a2κL
. (7.16)

For γPT < 1, the potential (7.2) has a singleminimum located roughly at vt , implying
smooth sliding of the tip. In this regime, the force fluctuates around the value ηsv, see
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Fig. 7.2 Evolution of the friction force obtained from numerical simulation of the Langevin
equation (7.9) with the following parameters: a = 0.3 nm, κL = 1 N/m, m = 10−12 kg,
ηs = ηc = 10−6 kg/s, v = 0.1µm/s, T = 300 K. The curves are obtained for different val-
ues of the potential corrugation depth, �U = 2, 50, 100, and 150 pN·nm (from bottom to top) and
feature smooth sliding (gray), stick-single slip motion (red), a mixture of single and double slip
events (green), and stick-double slip motion (blue)

Fig. 7.2, gray curve. On the other hand, if 1 < γPT < 4.604 . . ., the potential (7.2)
becomes bistable. Further increase of γPT to a value between ca. 4.604 and 7.788 . . .

results in a potential (7.2) having three minima; for 7.788 < γPT < 10.95 . . ., the
potential has four minima, etc. [56].

Themultistability of the potential (7.2) implies the possibility of stick-slipmotion,
whose physical picture is as follows. In a stick phase, the tip apex is confined to
the nth lattice site, while the cantilever base moves at a velocity v, leading to an
approximately linear (up to thermal and instrumental noise) increase of the elastic
force and a reduction of the energy barrier separating the tip from the next lattice
site. At some point, thermal noise drives the tip over that energy barrier into the
next, (n + 1)st lattice site in a single slip event (see Fig. 7.2, red curve), whereas
the kinetic energy of the tip is dissipated into the atomistic degrees of freedom and
the force drops by a fixed amount. Then, a new stick phase begins. If inertia of the
tip is large, then the tip may not be able to dissipate all of its kinetic energy in a
single slip event and, as a result, the tip will perform a jump over two or even more
lattice constants [38]. In general, the multiplicity of slips for a given value of γPT is
smaller than the number of minima of the total potential (7.2). The force evolution
in the stick-multislip regime is exemplified in Fig. 7.2, showing a mixture of single
and double slips (green curve) and pure double slips (blue curve).

In the stick phases, the force increases according to

fn(t) = κ(vt − na), (7.17)
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with the rate of force increase characterized by a renormalized stiffness κ given by
[44, 60]

1

κ
= 1

κL
+ 1

U ′′(b)
. (7.18)

The parameter b can be taken as the position of the minimum of the corrugation
potential (7.15), e.g., b = 0 [44]. A better accuracy is achieved if one identifies
it with the position of the minimum of the total potential (7.2) corresponding to
the mean force value f̄ from (7.1), i.e. finds b from the relation U ′(b) = f̄ [50].
Calculations show that the renormalized stiffness κ weakly depends on velocity v

and may be smaller than the “bare” counterpart κL by at most 10% [50].
In the stick-slip regime, the friction force decreases with temperature due to a

reduction of the cantilever force at the onset of the slip event. However, in general, the
situation canbemore complex and in somecases a temperature-induced enhancement
of nanoscale friction was predicted [46, 48, 61] due to the effect of temperature on
the slip length. Friction reduction is more significant at low velocities and moderate
damping values. A change in the slip length is relevant for small enough spring
constants (large γPT ), where the total potential profile shows multiple accessible
metastable states [57].

Multiple slip events have been observed experimentally [5, 52, 56]; it has also
been suggested that the statistics of multislip events can be used to estimate the
damping coefficient η in the Langevin equation [52]. On the other hand, the majority
of experimental studies that we are aware of focus on the stick-single slip regime of
motion; moreover, some publications [44, 62] state explicitly that only single-slip,
but no multiple slip events were detected in the measurements. This suggests that,
in those studies, the tip dynamics is overdamped or the effective potential (7.2) is
bistable.

7.2.4 Some Generalizations of the Standard PT Model

7.2.4.1 Disordered Potential

One of the biggest advantages of the PT model is its flexibility. With suitable mod-
ifications, it can be applied to study many variants of the nanofriction set-up. For
instance, the standard PT model is characterized by a sinusoidal tip-substrate inter-
action potential (7.15) and corresponds to a perfectly periodic substrate lattice. How-
ever, other cases are worth to be analyzed, such as quasiperiodic lattices [46, 47] and
lattices including defects [48, 61]. The presence of disorder or defects changes the
local potential profile by modifying the potential barriers to overcome by the tip in
every stick-slip cycle, and, on the other hand, it can also change the length of differ-
ent slip events. Depending on parameter values, both effects cooperate or compete
to change the friction force. This is especially noticeable at low temperatures, while
thermal fluctuations at high enough temperatures (close to room temperature) can
screen other effects.
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7.2.4.2 Additional Slow Degrees of Freedom

As discussed in Sect. 7.2.2, the cantilever in contact with the substrate is extremely
soft in the apex region. Correspondingly, it is a natural extension of the PT model
to consider the apex and the tip as two separate objects connected by a spring. This
consideration leads to the so-called two-mass-two-spring models, which have been
introduced and analyzed recently [63–67]. A multitude of friction regimes have been
discovered within such a two-dimensional extension of the PT model, see [64] for a
comprehensive review.

The assumption implicit in the Langevin equation (7.9) is that, during a nanofric-
tion experiment, the tip moves along a one-dimensional manifold, whereas the sub-
strate is, obviously, a two-dimensional object. Therefore, friction effects have been
studied in two-dimensional geometries, with the main issue being friction force as a
function of the tip-motion angle [52, 57, 68–71]. The comparison of experimental
and theoretical models at finite temperatures is an active current research topic.

7.2.4.3 AC Actuation Effects

Ultrasonic vibrations have been proposed as a valid method for reducing friction at
the nanoscale [72–77]. The PT model can be useful to study the dynamics of the
system in the presence of in-plane and out-of-plane actuation fields. In the context
of the model, in the first case the support position is affected by a shaking term.
For out-of-plane actuation, the tip-substrate potential amplitude is modulated by an
oscillating term [76], or the tip-sample distance is taken explicitly into account with
a corresponding modification of the tip potential [72]. As in the regular case, thermal
fluctuations are incorporated in the model as an additive Gaussian noise.

The most important finding is the existence of a wide medium-frequency range
(∼kHz), where friction force is significantly reduced and even almost suppressed
for intense enough actuation. The lower bound of this friction-reduced zone is deter-
mined by the inverse time to cover one lattice constant, v/a, and the upper bound by
the effective damping.

7.2.5 Friction Force-velocity Relations

7.2.5.1 Stratonovich Formula

In the asymptotic case of very low effective stiffness κL , the magnitude of force
fluctuations, which is of the order of κLa, is also small, so that one can approxi-
mately replace the instantaneous elastic force (7.5) in (7.9) with its average value,
f̄ . Furthermore, if one considers the overdamped (m → 0) limit [42, 43], then the
Langevin equation (7.9) assumes the form
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ηẋ(t) = −U ′(x) + f̄ + ηcv + √
2ηkB T ξ(t) (7.19)

that describes the diffusion of a Brownian particle in a tilted periodic potential
Utilted(x) = U (x) − ( f̄ + ηcv) x . The problem of finding the average velocity of
such a particle, 〈ẋ〉 ≡ v, has been solved by Stratonovich, who derived the analytic
formula [78]

v = akB T (1 − e−a( f̄ +ηcv)/kB T )

η
∫ a
0 dx1

∫ x1+a
x1

dx2 e[U (x1)−U (x2)+(x1−x2)( f̄ +ηcv)]/kB T
. (7.20)

The argument of the function in the right-hand side is not the average force f̄ , but
rather the combination f̄ + ηcv. In order to plot the f̄ -v relation, one can, first, for
each given value of the combined force f̄ +ηcv calculate the corresponding velocity
v using the Stratonovich formula (7.20), and then deduce the average friction force
f̄ corresponding to this velocity value by subtracting the value of ηcv from the
combined force. Apart from the result (7.20), we are not aware of any exact force-
velocity relation applicable to the general case of arbitrary inertia m or effective
stiffness κL .

7.2.5.2 General Case

In a number of works, the Langevin equation (7.9) was simulated numerically using a
random number generator. In the stick-slip regime, the ensuing relation between the
friction force (7.1) and pulling velocity was found to be logarithmic at fast pulling,
where the cantilever performs only forward slips, namely,

f̄ ∝ | ln(v/v0)|α, (7.21)

where v0 is some reference velocity. Fitting the simulation results with an expression
of the type (7.15) yielded the exponents α close to unity [68]. From a theoretical
perspective, the exponent α is related to the functional form for a potential barrier
decrease as the cantilever base moves. The α = 1 value [14] is achieved for a
barrier decreasing linearly with the force (Bell-type expression [79]), whereas the
exponent α = 2/3 results from a linear-cubic approximation of the potential at small
barriers [15, 16]. It has been recently pointed out [80] that the regimes corresponding
to these two values of α can be distinguished only if one can probe a wide range
of velocities covering many decades, whereas the typical experimentally accessible
velocity range (usually not more than three decades) is too narrow to determine α

unambiguously.
In the slow-pulling regime, the back-slips of the cantilever play a significant role,

and the linear-response arguments predict that

f̄ ∝ v, (7.22)
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with the proportionality constant being different from the substrate damping
coefficient ηs (unless the potential corrugation is zero). Recently, it has been sug-
gested [80] that the two regimes, logarithmic (7.21) and linear (7.22), can be unified
by a phenomenological ansatz of the type

f̄ = f0(T ) sinh−1[v/v0(T )] (7.23)

with f0(T ) ∝ T 2/3 and v0(T ) ∝ T . The accuracy of this ansatz has been demon-
strated for a velocity range covering about seven decades [80].

The logarithmic (or sinh−1) force-velocity relation can be obtained within a gen-
eral framework of the rate theory, which is the subject of the next section.

7.3 Rate Theory

7.3.1 Rate Equation

The Langevin equation (7.9) can be obtained, at least formally, by projecting the
microscopic state of the system onto a subspace characterized by given values of
the slow collective degrees of freedom. If the total state space consists of many
“regions of attraction”, such that the system spends most of the time within any such
region and only rarely performs transitions between them, then an even more coarse-
grained description is possible, namely, the one that uses the language of occupation
probabilities of such regions and transition rates between them [29]. This is the case
for the cantilever stick-slip motion: the average time spent by the cantilever within
a given lattice site, a/v, is of the order of 0.1 ms, whereas the timescale of the tip
coordinate fluctuations, x(t), can be estimated as the inverse resonance frequency,√

m/κL , or, in the overdamped case, as the tip relaxation time, η/κ , and is at least
two orders of magnitude faster for both estimates.

In view of Fig. 7.2, the elastic force (7.5) in the nth stick phase of the stick-slip
motion can be naturally separated into two contributions, regular and random:

f (t) = fn(t) + δ f (t), (7.24)

where the regular part, fn(t), is the force (7.17) corresponding to a minimum of
the combined potential (7.2), and the random part δ f (t) results from the tip fluc-
tuations about that minimum. The rate of interstitial slips, i.e. the slip probability
per unit time, depends on the regular part of the force, fn(t), whereas the fluctu-
ating part, δ f (t), becomes irrelevant in this coarse-grained picture. We will denote
the forward rate out of the nth lattice site as ω+( fn). If the elastic force is not too
high, the cantilever can also perform a back-transition into the previous lattice site
with the backward rate ω−( fn). For symmetric substrates, the two rates, ω+( fn) and
ω−( fn), are related: the rate to jump forward “along the force” equals the rate to jump
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backward “against the force”, i.e. ω+( fn) = ω−(− fn). Furthermore, both rates are
given by the Kramers-Arrhenius law [29]

ω+( fn) = ω−(− fn) = ω0 e−�U ( fn)/kB T , (7.25)

where �U ( fn) is the force-dependent height of the energy barrier separating the
current minimum from the next one, and the prefactor ω0 depends usually quite
weakly on force and temperature.

Neglecting the possibility of multiple slips, the probability pn(t) for the tip to
find itself in the nth lattice site at the moment of time t obeys the rate (or master)
equation [81, 82]:

ṗn(t) = − [
ω+( fn(t)) + ω−( fn(t))

]
pn(t)+ω+( fn−1(t))pn−1(t)+ω−( fn+1(t))pn+1(t).

(7.26)
Here, the first term in the right-hand side describes the transitions out of the nth
lattice site into the next (n + 1)st and the previous (n − 1)st ones, and the remaining
two terms correspond to transitions into the nth lattice site from the (n − 1)st and
the (n + 1)st ones.

We are interested in the long-time limiting solution of the rate equation (7.26),
which is established after the decay of transient processes. In this limit, the probability
to find the tip in the nth lattice site at the moment of time t is the same as the
probability to find it in the previous lattice site at the earlier time, shifted by an
interval a/v necessary for the cantilever base to cover one lattice constant a at the
velocity v:

pn(t) = pn−1(t − a/v). (7.27)

We define the force probability distribution, p( f ), as the probability to find the tip
in the nth lattice site at that moment of time t when the corresponding elastic force
fn(t) has the given value f , i.e. fn(t) = f . According to (7.17), this time is given
by t = f/(κv) + na/v, so that

p( f ) = pn ( f/(κv) + na/v) , pn(t) = p( f − nκa). (7.28)

In view of the relation (7.27), the so defined p( f ) is independent of the index n. It
can be shown [82] that the time-averaged value of any function of force, g( f ), can
be expressed as

〈g( f )〉 = 1

κa

∞∫

−∞
d f g( f ) p( f ), (7.29)

i.e. the function p( f )/(κa) has the physical meaning of force probability density.
The normalization condition expresses the fact that the tip finds itself in some

lattice site with probability one for all times:
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∞∑
n=−∞

pn(t) =
∞∑

n=−∞
p( f + nκa) = 1. (7.30)

In the second part, we used the second relation (7.28) and replaced n → −n.
Using the definition (7.28) and making the change of variables (7.17) in the

rate equation (7.26), we find that the force probability distribution satisfies the rate
equation in the force domain [82]:

κvp′( f ) = − [
ω+( f ) + ω−( f )

]
p( f ) + ω+( f + κa)p( f + κa) + ω−( f − κa)p( f − κa).

(7.31)

7.3.2 Validity Conditions

The rate approximation is valid if the system possesses two very different time scales:
the fast one describing the relaxation of the tip within a given potential well and the
much slower one describing the thermally activated interwell transitions of the tip.
This is realized if the typical height of the barrier separating two adjacent potential
minima is at least a few times larger than the thermal energy [29]:

�U ( f ) � kB T . (7.32)

This condition implies that the Prandtl-Tomlinson parameter (7.16) must satisfy
γPT � 1. Furthermore, pulling must proceed sufficiently slowly to allow the slips to
occur before the condition (7.32) is violated, which happens at some force fmax for
which �U ( fmax ) equals a few kB T . According to an estimate from [83], the pulling
velocity must therefore satisfy the condition

v � −kB T ω( fmax )

κ�U ′( fmax )
. (7.33)

Pulling velocities v bigger than in (7.33) lead to the onset of the opposite regime of
steady sliding [42, 43] characterized by friction forces increasing as ηsv.

7.3.3 Parameterization

The parameter values used in the rate approach (7.26) can be derived from the
Langevin equation (7.9) in the limit of deep corrugation�U or low κL . In particular,
the effective stiffnesses in the two approaches, κ and κL , are slightly different, see
(7.18). The barrier height in the rate expression (7.25) can be approximated as

�U ( f ) ∼= �U0 (1 − f/ fc)
β , (7.34)
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where �U0 is the barrier height at zero force, which is related to the corrugation
depth �U of the potential (7.15), fc is the critical force value at which the barrier
vanishes, and the exponent β describing the barrier reduction with force depends
on the functional form of the potential U (x) from (7.2). Considering the sinusoidal
potential (7.15), it is often assumed that the exponent β = 3/2, which results from
the linear-cubic interpolation of the potential U (x) at forces f slightly below fc [15,
16]. Note that, in practice, other β-values of the order of unity have also been either
assumed to fit experimental or simulation results or deduced from such a fitting [14,
50, 68, 84].

For a sinusoidal potential (7.15), the critical force is given by [15–17]

fc = π�U/a (7.35)

and usually does not exceed several nanonewtons. The height �U0 of the force-
dependent potential barrier (7.34) at zero force was initially taken to be equal the
corrugation depth �U of the coordinate-dependent potential energy (7.15) [15–17].
Such an approximation is valid, strictly speaking, in the limit of vanishingly small
lateral stiffness κL , which is inherent in the Stratonovich formula (7.20). For a finite
spring constant κL , an improved approximation is due to [85], namely

�U0 = �U + κLa2/8, (7.36)

still leaving�U0 and�U of comparable order of magnitude. We note that, while the
expression (7.34) is a useful simple ansatz for the barrier height, other approximations
also have been introduced, that lead to an almost perfect agreement of the results for
the friction force obtained within the rate and Langevin approaches, see [60, 86] for
details.

The expression for the rate prefactor ω0 depends on whether the tip dynamics is
underdamped or overdamped [29]. In the practically important overdamped limit, it
is [29]

ω0 =
√

U ′′
min|U ′′

max |
2πη

, (7.37)

where U ′′
min,max denote the curvature at the minimum and maximum of the potential

(7.2) when the force (7.5) has the value f . More generally, the rate parameters can be
derived from any multidimensional version of the Langevin equation (e.g. the two-
mass-two-spring model [66]), and even from the all-atom description used in MD,
where the heat-bath degrees of freedom are not “integrated out”. This is achieved
using the transition state theory, see [23] for details. While the energy parameter
�U0 and the force parameter fc are more or less consistent in different publications,
the parameter ω0 is found to vary in a wide range of values, from tens of kHz [17,
50] to hundreds of MHz [62] and GHz [66].
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7.3.4 Types of the Stick-slip Motion

Following [82], we describe here four regimes of the stick-slip motion that are inher-
ent within the rate approach; see Fig. 7.3 for a numerical illustration obtained by
simulating the stick-slip process using a Monte Carlo technique [82].

Perhaps, the most widely investigated type is realized for relatively high effective
stiffness and relatively fast pulling, so that the back-transitions are negligible, see
Fig. 7.3a. The characteristic feature of such curves is the existence of a force interval,
where the stick probability is close to 1. In this regime, the dependence of the mean
friction force on the pulling velocity is approximately logarithmic (7.21), reflecting
the exponential dependence of the transition rate ω+( f ).

If pulling is slow, Fig. 7.3b, the back-transitions become important andhave indeed
been observed experimentally [87]. For ultraslow pulling, they occur at almost the
same frequency as the forward transitions, resulting in a linear force-velocity relation
(7.22).

The velocity value at which the transition between the linear and logarithmic
regimes occurs can be estimated from the following reasoning [82]. A typical stick

Fig. 7.3 The four basic types of stick-slip motion obtained by a numerical Monte Carlo simulation
of the stick-slip process [82]. The rate parameters are as follows: ω0 = 1 MHz, �U0 = 10 kB T ,
fc = 3 nN, β = 3/2, a = 0.25nm. The effective stiffness κ = 5 N/m for curves (a) and (b), and
κ = 0.5 N/m for (c) and (d). The pulling velocity v = 2 µm/s for curves (a) and (c), and v = 0.01
µm/s for curves (b) and (d)
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phase begins at a force close to f̄ −κa/2. Therefore, the typical frequency of the back
transitions is ω−( f̄ − κa/2) = ω+(κa/2 − f̄ ). Assuming that we are in the linear
response regime where the mean force f̄ ∝ v is small, this can be approximated
as ω+(κa/2). The back-slips will not be observed if the time to cover one lattice
constant is faster than the inverse of the back-slip frequency. Thus, the force-velocity
relation will be approximately logarithmic with back-jumps playing practically no
role for v � aω+(κa/2) and approximately linear for v � aω+(κa/2).

The two regimes exemplified by the stick-slip curves from Fig. 7.3a and b are
realized if the forward rate is very small below some velocity-dependent force value
and high above this force value. Then, once formed, a given stick phase will survive
in a rather wide force interval where the rate is small. Once the force increases
beyond this interval, the rate will become very large, and the tip will slip into the
next lattice site, resulting in the force drop by κa, a strong rate reduction, and a small
probability of the next slip event until the force f reaches again the upper limit of
that interval. Thus, the regimes shown in Fig. 7.3a, b are realized if the rate varies
strongly within the force interval of the order of κa around the mean force value f̄ ,
i.e. ω′+( f̄ )κa � ω+( f̄ ).

In the opposite case, κa � ω+( f̄ )/ω′+( f̄ ), the rate ω±( f ) depends weakly on
the applied force f . Then, right after some slip event, the probability to perform
another slip remains significant, so that the short stick phases will be scattered in a
rather broad force interval in such a manner that there is no particular force value
that would be common to all of them. This situation is illustrated in Fig. 7.3c (fast
pulling, no back-slips) and (d) (slow pulling, back-slips present).

7.3.5 Force-velocity Relations

7.3.5.1 Most Probable and Average Slip Force at High κ

In the regime of fast pulling and large stiffness exemplified by Fig. 7.3a, all stick
phases cross some common force interval. Any force value fL from that interval is
characterized by the occupation probability p( fL) very close to one, and thus can be
regarded as a “starting point” common to all stick phases. Then, a description even
simpler than the rate equation (7.31) is possible [14–17, 50, 83, 88]. Namely, one
can ask about the probability P(t |tL) of staying within the same lattice site up to
the moment of time t , provided that the tip entered this site at the initial time tL ,
i.e. P(tL |tL) = 1. The time evolution of P(t |tL) for t ≥ tL is governed by the rate
equation, initially considered within the context of nanofriction in [14]

∂P(t |tL)

∂t
= −ω+( f (t))P(t |tL). (7.38)

With the help of the transformation of variables (7.17), we find from the rate equation
(7.38) the probability that the transition into the next site occurs at a force value



132 M. Evstigneev et al.

between f and f + d f , provided that the initial lower force value for a given stick
phase was fL ,

− ∂P( f | fL)

∂ f
= 1

κ̃v
ω+( f )P( f | fL) (7.39)

with the initial condition P( fL | fL) = 1. The most probable force f∗, at which the
transition into the next site occurs, is evaluated by setting the second derivative of
P( f | fL) to zero. This results in the relation between the pulling velocity and the
most probable force at the moment of slip:

v = ω2+( f∗)
κω′+( f∗)

. (7.40)

This equation in various forms has been presented in [14–17, 66], the difference
between these works stemming from different assumptions regarding the functional
dependence of ω+( f ) on f . For the rate ansatz (7.25) with a constant prefactor ω0
and the barrier height (7.34), the ensuing relation between the most probable slip
force and the velocity is

ln
v

v0
= −�U0

kB T

(
1 − f∗

fc

)β

− (β − 1) ln

(
1 − f∗

fc

)
, v0 = ω0 fckB T

βκ�U0
. (7.41)

It can be solved analytically [83]:

f∗
fc

= 1 −
(

β − 1

β

kB T

�U0
W (z)

)1/β

, z = β

β − 1

(
ω0 fc

βκv

)β/(β−1) (
kB T

�U0

)1/(β−1)

(7.42)
where W (z) is Lambert function defined implicitly by

W (z) eW (z) = z. (7.43)

Other approximations that have been introduced previously can be derived from the
result (7.42). In particular, at large arguments z, the Lambert function behaves as
a natural logarithm, thus leading to the asymptotic law (7.21) complemented by a
simple relation between the exponents, α and β:

α = 1/β. (7.44)

With respect to the mean force f̄ , an accurate analytical approximation has been
obtained in [50, 86], namely, a relation between force and velocity of the form

v = aω+( f̄ + κa/2) Q

(
ω′+( f̄ + κa/2)

ω+( f̄ + κa/2)
κa

)
, (7.45)
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where the function Q(x) can be approximated by

Q(x) ∼= 1/
√
1 + (e−γ x)2, (7.46)

with γ = 0.5772156649 . . . being Euler’s constant. The accuracy of this approxi-
mation is better than a few per cent for all values of x . The relation (7.45) is valid
for arbitrary stiffness κ , but fast pulling, so that the back-slips are absent. For large
κ , the argument of the Q-function becomes large, allowing us to replace Q(x) with
eγ /x . Then, the equation for the mean slip force f̄slip = f̄ + κa/2 becomes almost
identical to the one for most probable force, (7.40):

v = eγ ω2+( f̄ + κa/2)

κω′+( f̄ + κa/2)
. (7.47)

The solution is the same as (7.42), but with v replaced by e−γ v and f∗ replaced by
f̄ + κa/2.

7.3.6 Force Probability Distribution

Because of the “advanced” and “retarded” terms on the right-hand side, an analytical
solution of the rate equation in the force domain (7.31) subject to the normalization
condition (7.30) is a highly non-trivial task. Analytical results can be obtained for the
asymptotic cases of small and large stiffness κ , but for arbitrary pulling velocities.
For this, it is convenient to look for the solution of (7.31) in the form that respects
the normalization condition (7.30) from the outset, namely,

p( f ) = P( f ) − P( f − κa), (7.48)

such that the new unknown function P( f ) monotonically increases between two
extreme values P(−∞) and P(∞) related by

P(∞) − P(−∞) = 1. (7.49)

It has been found [82] that, for large κ , the asymptotic result is

P( f ) = 1

κv

f∫

−∞
d f ′ e

− 1
κv

∫ f
f ′ d f ′′[ω+( f ′′+κa)+ω−( f ′′)]

ω+( f ′ + κa), (7.50)

and for small κ , it is

P( f ) = 1

2
erf

(
f − f̄ + κa/2

σ

)
, (7.51)
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Fig. 7.4 Force probability
distribution p( f ) for velocity
v = 1 µm/s and other
parameters as in Fig. 7.3. The
three sets of data were
obtained for different values
of the stiffness, namely κ =
0.1 N/m (a), 1 N/m (b), and
10 N/m (c), corresponding to
small, intermediate, and large
κa. Black solid line: Monte
Carlo simulation of the rate
equation [82]. Red
dash-dotted line: high-κa
approximation (7.48), (7.50).
Green dashed line: low-κa
approximation (7.48), (7.51).
The black and the green
curves practically coincide in
panel a. In panel c, the red
and the black curves are
almost indistinguishable

(a)

(b)

(c)

where the mean force and the force dispersion are given by

v = aω+( f̄ )
sinh x

x
e

x
2 [1−L(x)] (1 − e−4 f̄ x/(κa)

)
, σ = κa

√
1 − L(x)

2x
, (7.52)

with x := κa
2

d lnω+( f̄ )
d f and L(x) := coth x − 1/x (Langevin function). The high

accuracy of these expressions is demonstrated in Fig. 7.4.

7.4 Concluding Remarks

The equations used in stochastic modeling, in particular, Langevin equation and rate
theory, are not exact laws of nature. Rather, they represent a useful approximation
that accounts for the heat-bath effects on a nanoscopic system. In comparison to
direct molecular dynamics, they have a number of advantages. Their simplicity often
makes them amenable to analytical treatment, whose results can be used to interpret
experimental findings. Evenwhen analytical studies of stochasticmodels are difficult,
they still can be easily simulated numerically, with the simulation time being orders
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of magnitude faster than in the all-atom molecular dynamics approach. Stochastic
models can usually be generalized to include additional experimental factors, such
as the multidimensional nature of the problem, additional slow degrees of freedom,
time-dependent external forcing, etc. Such modifications can be motivated by new
experimental results, or introduced with the purpose of designing future experiments
that would allow us to discover new phenomena in the nanofriction research area.
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