
Chapter 13
Contact Mechanics, Friction and Adhesion
with Application to Quasicrystals

Bo Persson, Giuseppe Carbone, Vladimir N. Samoilov, Ion M. Sivebaek,
Ugo Tartaglino, Aleksandr I. Volokitin and Chunyan Yang

Abstract We discuss the origin of friction and adhesion between hard solids such
as quasicrystals. We emphasize the fundamental role of surface roughness in many
contact mechanics problems, in particular for friction and adhesion between solid
bodies. The most important property of rough surfaces is the surface roughness
power spectrum C(q). We present surface roughness power spectra of many surfaces
of practical importance, obtained from the surface height profile measured using
optical methods and the Atomic Force Microscope. We show how the power spectrum
determines the contact area between two solids. We also present applications to
contact mechanics and adhesion for rough surfaces, where the power spectrum enters
as an important input.

13.1 Introduction

The first sample of a quasicrystal was produced in 1982 [1]. Intensive studies of this
class of metallic materials have been conducted since that time. Quasicrystals display
a unique combination of physical properties, namely low heat conductivity, relatively
high hardness, and (under atmospheric condition) low friction coefficient and low
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Fig. 13.1 A stainless steel pan coated by a quasicrystal material. The coating was made using
electron beam vapor deposition in vacuum

surface energy. These properties make them promising candidates as coatings for,
e.g., cookware (see Fig. 13.1), surgical tools and electrical shavers, automotive parts,
and for air-space applications.

In this article we present results related to sliding friction, contact mechanics
and adhesion. Most of the theory results are very general, and can be applied not
only to quasicrystals but also to other materials. In Sect. 13.2 we study how sliding
friction depends on the elastic modulus of the solids. In Sect. 13.3 we discuss sliding
friction and adhesion for quasicrystals. Section 13.4 presents a general discussion
about surface roughness, and in Sects. 13.5 and 13.6 we consider contact mechanics
and adhesion. Section 13.7 contains the summary and an outlook.
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a

Fig. 13.2 A particle pulled by a spring (with the velocity v0) in a periodical potential. If the spring
k is weak enough or the barrier U0 high enough (ka2 � U0), the particle will perform stick-slip
motion. On the other hand, if ka2 � U0 no stick-slip occurs, and the friction force is very small (it
will vanish as v0 → 0)
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13.2 Sliding Friction—Role of Elasticity

Sliding friction for clean solid surfaces, or surfaces separated by a ∼ 1 nm (or less)
thick contamination film (boundary lubrication), usually originates from elastic insta-
bilities occurring at the interface [2]. Elastic instabilities occur if the elastic modulus
of the solids is low enough or if the lateral corrugation of the interaction potential
at the interface is high enough. This is best illustrated by a one dimensional model,
see Fig. 13.2. Here a particle is connected to a spring, and the free end of the spring
is pulled with some (small) velocity v0. If the spring constant is small enough or
the potential well U0 high enough, the particle will perform stick-slip (non-uniform)
motion, where during slip the particle moves with a velocity v(t) which is much
higher than (and unrelated to) the driving velocity v0. This will result in a large fric-
tion force (spring force averaged over time). On the other hand, if the spring is very
stiff or the barrier very small, no stick-slip occurs and the velocity of the particle will
be of the order of v0, and proportional to v0. In this case the friction force vanishes,
at least when v0 → 0. In reality, the particle may represent some small group of
atoms (block atoms and/or contamination atoms) at the interface, and the spring may
represent some effective elastic properties which determine the force necessary to
displace the group of atoms relative to the center of mass of the solid walls.

It is important to note that the elastic stiffness of solids depends on the length
scale over which they are studied. Thus a solid elastic bar of length L will elongate
by a distance proportional to L when exposed to some (fixed) forces F and −F at
its two ends. However, since hard solids also tend to have small contact areas (with
small average diameter L) when squeezed together, this reduces the chances that
elastic instabilities will occur at the interface during sliding. Thus, it is clear that
hard materials, such as quasicrystals, may exhibit very low friction, in particular
since the surfaces will always be incommensurate, thus lowering the barrier U0.

As illustrations of the discussion above, let us present Molecular Dynamics sim-
ulations for an elastic block sliding on a rigid substrate when the wall atoms are
(nearly) incommensurate with the substrate atoms. In Fig. 13.3 we show the center-
of-mass coordinate of the bottom layer of block atoms as a function of time. Both the
sliding layer and the substrate have square lattice structure, but with different lattice
spacing to have (nearly) incommensurability (ratio 1.625 close to the golden mean).
The upper surface of the block is moving with the constant speed v = 0.1 m/s. When
the elastic stiffness of the block is small, stick-slip occurs (red curve), and the friction
coefficient is nonzero. For a stiffer block (green curve), the stick and slip behaviour
disappears and the friction coefficient gets negligibly small (below the noise level of
the simulations).

Recently, a detailed study was performed of the friction between a Si tip and
thin hard coatings [3]. As expected, it was observed that the friction coefficient
decreases with increasing elastic modulus of the coating. An extreme case is the
friction of diamond against diamond where the friction (when the diamond surfaces
are passivated by hydrogen) is extremely small (of the order of 0.01).
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13.3 Application to Quasicrystals

Quasicrystals differ radically from traditional crystalline materials because they have
rotational symmetry which is incompatible with periodicity (translational symmetry).
Due to the lack of translational symmetry, the plastic deformation properties of
quasicrystals fundamentally differ from those of crystals. The plastic yield stress of
most metal crystals is relatively low due to small barriers for motion of dislocations.
This is not the case in quasicrystals because of the absence of long-range translational
symmetry. Consequently, the plastic yield stress is much higher for quasicrystals than
for most metallic crystals. Thus, in spite of the fact that quasicrystals only contain
metal atoms, they form relatively hard and brittle-like materials. We believe that this
is the main reason for the low sliding friction [4, 5] and wear usually observed for
quasicrystal materials.

In one set of experiments [6], the adhesion and sliding friction were stud-
ied as a sharp tip coated with W2C was in contact with a single grain tenfold
decagonal Al72.4Ni10.4Co17.2 quasicrystals. The coated tip had the radius of cur-
vature ∼ 100 nm. For the clean surfaces in ultrahigh vacuum the work of adhesion
was found to be ≈ 0.1 eV/Å2, but this value is probably an overestimate of the change
in the surface energy �γ = γ1 + γ2 − γ12 since some plastic deformation of the tip-
sample contact takes place during rupture of the contact. If the quasicrystal surface
is exposed to clean O2 gas, a very thin oxide layer (one or at most two monolayers) is
formed on the surface, and the work of adhesion drops to about ≈ 0.03 eV/Å2. When
the surface is air-oxidized the work of adhesion is only ≈ 3 meV/Å2. Similarly, the
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Fig. 13.3 Simulation results for an elastic block sliding on a rigid substrate. The atoms of the bottom
surface of the block and of the top surface of the substrate form square lattices which are (nearly)
incommensurate. The upper surface of the block is moving with the constant speed v = 0.1 m/s.
Straight line (green): Young modulus E = 10 GPa, pressure 1 GPa. Stick and slip (red): Young
modulus E = 1 GPa, pressure 0.1 GPa. For the softer elastic solid stick-slip occurs at the interface
while steady motion occurs for the stiffer block
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friction coefficient drops from ≈ 0.4 for the clean surface to ≈ 0.2 for the surface
exposed to O2 and to ≈ 0.1 for the air-oxidized surface.

It has been reported that the oxide formed in air on the quasicrystal surface has a
thickness of the order of 26 Å in dry air and 62 Å in humid air. This is much thicker
than the in situ grown oxide (≈ 6 Å). Thus, the higher friction and work of adhesion
on the very thin oxide formed in vacuum could be explained by the more fragile nature
of the film that can be partly destroyed by the tip resulting in (weak) cold-welded
regions [6]. In addition, the air exposed surface is likely to have a nanometer thick
contamination layer consisting of organic molecules, water and other contamination
molecules. This layer will also reduce the sliding friction although it may be at least
partly removed after repeated sliding over the same surface area.

In another experiment two macroscopic Al70Pd21Mn9 quasicrystals were brought
into contact [7]. The crystal surfaces were polished to a mirror finish with 0.25µm
diamond pasta. The surface roughness amplitude was not measured but should be of
the order of several 10 nm. In this case, even after lateral sliding, no adhesive force
could be detected during pull-off. This may seem as a paradox taking into account
the relatively large pull-off force measured in [6] when a tip was removed from a
quasicrystal. However, the result is easy to understand based on the theoretical results
presented in Sect. 13.6. Thus, when two macroscopic solid blocks of hard materials
with randomly rough surfaces are brought into contact, the actual contact will only
occur in very small, randomly distributed, asperity contact areas. For hard materi-
als with low ductility, such as quasicrystals, a root-mean-square roughness of a few
10 nm (as in the present case) is enough to completely remove the (macroscopic)
adhesion between the solids for the following reason. Since the asperities have dif-
ferent sizes they will have different amount of elastic deformation, and will act like
elastic springs of different sizes. Thus during pull-off the different asperity contact
areas will break at different times giving rise to a negligible adhesion even though
breaking a single asperity contact region requires a non-negligible force as observed
in the tip-substrate experiments reported on in [6]. We point out that a similar effect
is observed in silicon wafer bonding (see Sect. 13.4).

For clean surfaces of more ductile metals such as Cu, Au or Al, strong adhesion
is usually observed. This is the case even for oxide coated surfaces if sliding occurs
before pull-off, as the sliding will break up the oxide coating and result in the for-
mation of cold welded contact areas. During pull-off, because of the high ductility
of Cu, Au or Al (and most other metals), “long” metallic bridges may be formed
between the solids so that instead of having junctions popping one after another dur-
ing pull-off, a large number of adhesive junctions may simultaneously impede the
surface separation during pull-off (see Fig. 13.4), leading to a large pull-off force.

In [8] sliding friction measurement was performed both for clean surfaces (in ultra
high vacuum) and for O2 exposed surfaces and for surfaces oxidized in the air. For
clean surfaces the friction coefficient was of order ≈ 0.6 which dropped to ≈ 0.4
when exposed to O2. The friction coefficient of air exposed surfaces was only ≈ 0.1.
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Fig. 13.4 When two ductile metals, e.g., Au or Al, are separated after being in contact, metallic
bridges will occur in many asperity contact areas giving rise to a nonzero pull-off force. For (plas-
tically) harder and more brittle metal because of elastic deformation of the asperities, the asperity
contact regions will break one after another during pull-off and no adhesion (or pull-off force) will
be observed

13.4 Surface Roughness

Surface roughness has a huge influence on many important physical phenomena
such as contact mechanics, sealing, adhesion and friction. Thus, for example, exper-
iments have shown that already a substrate roughness with a root-mean-square (rms)
roughness of order ∼ 1µm can completely remove the adhesion between a rubber
ball and a substrate, while nanoscale roughness will remove the adhesion between
most hard solids, e.g., metals and minerals; this is the reason why adhesion is usually
not observed in most macroscopic phenomena. Similarly, rubber friction on most
surfaces of practical interest, e.g., road surfaces, is mainly due to the pulsating forces
which act on the rubber surface as it slides over the substrate asperities.

Let us illustrate the importance of surface roughness with three modern applica-
tions. At present there is a strong effort to produce small mechanical devises, e.g.,
micromotors. The largest problem in the development of such devices is the adhe-
sion and, during sliding, the friction and wear between the contacting surfaces [9].
As an example, in Fig. 13.5 we show the simplest possible micro device, namely a
micrometer cantilever beam. (Suspended micromachined structures such as plates
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(a) (b)

Fig. 13.5 a Micrometer sized cantilever beam. b If the beam is too long or too thin the minimum
free energy state corresponds to the beam partly bound to the substrate. Surface roughness lowers
the binding energy (per unit area) and hence stabilizes the non-bonded state in (a)

and beams are commonly used in manufacturing of pressure and accelerator sen-
sors.) If the beam is too long or too thin the free beam state in (a) will be unstable,
and the bound state in (b) will correspond to the minimum free energy state [10].
Roughly speaking, the state (b) is stable if the binding energy to the substrate is
higher than the elastic energy stored in the bent beam. The binding energy to the
substrate can be strongly reduced by introducing (or increasing) the surface rough-
ness on the substrate (see Sect. 13.6.1). In addition, if the surfaces are covered by
appropriate monolayer films the surfaces can be made hydrophobic thus eliminating
the possibility of formation of (water) capillary bridges.

A second application is the formation of hydrophobic coatings on surfaces by
creating the appropriate type of surface roughness [11]. This involves copying Nature
where many plant surfaces are found to be highly hydrophobic (Fig. 13.6) as a result of
the formation of special types of surface roughness (Fig. 13.7). The surface roughness
allows air to be trapped between the liquid and the substrate, while the liquid is
suspended on the tips of the asperities. Since the area of real liquid-substrate contact
is highly reduced, the contact angle of the drop is determined almost solely by the
surface tension of the liquid, leading to a very large contact angle. New commercial
products based on this “Lotus effect”, such as self-cleaning paints and glass windows,
have been produced.

Finally, we discuss the effect of surface roughness on direct wafer bonding [12].
Wafer bonding at room temperature is due to relatively weak interatomic attraction
forces, e.g., the van der Waals interaction or hydrogen bonding, giving (for perfectly

Fig. 13.6 A water droplet on
a superhydrophobic surface:
The droplet touches the leaf
only in a few points and
forms a ball. It completely
rolls off at the slightest
declination. From [11]
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flat surfaces) an interfacial binding energy of order 6 meV/Å2. The wafer surface
roughness is the most critical parameter determining the strength of the wafer bond-
ing. In particular, when the surface roughness exceeds a critical value, the wafers
will not bind at all, in agreement with the theory presented in Sect. 13.6.1. Primary
grade polished silicon wafer surfaces have rms roughness of order ∼ 0.1 nm when
measured over a 10 × 10µm surface area, and such surfaces bind spontaneously.
However, when the surface roughness amplitude is of order 1 nm the surfaces either
bind (slowly) when squeezed together at high enough pressure, or they do not bind
at all depending on the detailed nature of the surface roughness power spectra.

Surfaces with “ideal” roughness, e.g., prepared by fracture or by some growth
process, have been studied intensively for many years [13–17]. However, much less
information has been presented for more common surfaces of engineering interest. In
what follows we discuss the nature of the power spectra of some surfaces of practical
importance. As illustrations we discuss contact mechanics and adhesion.

13.4.1 Surface Roughness Power Spectra: Definition and General
Properties

The influence of roughness on the adhesion and frictional properties described above
is mainly determined by the surface roughness power spectra C(q) defined by [18]

C(q) = 1

(2π)2

∫
d2x 〈h(x)h(0)〉e−iq·x. (13.1)

Here h(x) is the substrate height measured from the average plane defined so that
〈h〉 = 0. The 〈. . .〉 stands for ensemble averaging, or averaging over the surface
area (see below). We have assumed that the statistical properties of the substrate
are translational invariant and isotropic so that C(q) only depend on the magnitude
q = |q| of the wave vector q. Note that from (13.1) follows

Fig. 13.7 A leaf surface with
roughness on several length
scales optimized (via natural
selection) for hydrophobicity
and self-cleaning. Through
the combination of micro-
(cells) and nanostructure
(wax crystals) the water
contact angle θ0 is
maximized. From [11]
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〈h(x)h(0)〉 =
∫

d2q C(q)eiq·x,

so that the root-mean-square roughness amplitude σ = 〈h2〉1/2 is determined by

〈h2〉 =
∫

d2q C(q) = 2π

∞∫

0

dq qC(q). (13.2)

In reality, there will always be an upper, q1, and a lower, q0, limit to the q-integral in
(13.2). Thus, the largest possible wave vector will be of order 2π/a, where a is some
lattice constant, and the smallest possible wave vector is of order 2π/L where L is the
linear size of the surface. In general, one may define a root-mean-square roughness
amplitude which depends on the range of roughness included in the integration
in (13.2):

〈h2〉(q0, q1) = 2π

q1∫

q0

dq qC(q). (13.3)

For a randomly rough surface, when h(x) are Gaussian random variables, the
statistical properties of the surface are completely defined by the power spectra
C(q). In this case the height probability distribution

Ph = 〈δ[h − h(x)]〉

will be a Gaussian

Ph = 1

(2π)1/2σ
e−h2/2σ2

.

The height distribution of many natural surfaces, e.g., surfaces prepared by fracture,
or surfaces prepared by blasting with small particles (e.g., sand blasting or ion sput-
tering) are usually nearly Gaussian. On the other hand, rough surfaces, e.g., a surface
prepared by fracture, which have been (slightly) polished have a non-symmetric
height distribution (i.e., no symmetry as h → −h) since the asperity tops have been
more polished than the bottom of the valleys, and such surfaces (which are of great
practical importance—see below) have non-Gaussian height distribution. For such

=

+

h hT

hBhB

Fig. 13.8 The surface profile h(x) is decomposed into a top hT (x) and a bottom hB(x) profile
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F

left right

cracked
block

Fig. 13.9 Rough surfaces prepared by crack propagation have surface roughness with statistical
properties which must be invariant under the replacement of h → −h. This follows from the fact
that what is a valley on one of the crack surfaces (say the left) is an asperity with respect to the other
crack surface (right). Thus the top and bottom power spectra must obey CT (q) = CB(q)

surfaces it is interesting to study the top, CT , and the bottom, CB , power spectra’s
defined by

CT (q) = 1

(2π)2

∫
d2x 〈hT (x)hT (0)〉e−iq·x, (13.4a)

CB(q) = 1

(2π)2

∫
d2x 〈hB(x)hB(0)〉e−iq·x, (13.4b)

where hT (x) = h(x) for h > 0 and zero otherwise, while hB(x) = h(x) for h < 0
and zero otherwise, see Fig. 13.8. It is easy to show that C ≈ CT +CB . It is also clear
by symmetry that for a surface prepared by fracture, CT (q) = CB(q), since what is
top on one of the cracked block surfaces is the bottom on the other (opposite) crack
surface, and vice versa, see Fig. 13.9. However, if the cracked surface is (slightly)
polished then, since the polishing will be stronger at the top of the asperities than at
the bottom of the valleys [the contact pressure with the polishing object (e.g., sand
paper) is highest at the asperity top], CB > CT . If nT and nB are the fraction of the
nominal surface area (i.e., the surface area projected on the xy-plane) where h > 0
and h < 0, respectively, with nT + nB = 1, then we also define C∗

T (q) = CT /nT

and C∗
B = CB/nB . In general, nT ≈ nB ≈ 0.5 and for surfaces prepared by fracture

nT = nB = 0.5. Roughly speaking, C∗
T would be the power spectra which would

result if the surface profile in the large valleys (for h < 0) is replaced by a surface
profile with similar short-wavelength roughness as occurs on the large asperities (for
h > 0). A similar statement holds for C∗

B .
Many surfaces tend to be nearly self-affine fractal. A self-affine fractal surface

has the property that if part of the surface is magnified, with a magnification which
in general is appropriately different in the perpendicular direction to the surface
as compared to the lateral directions, then the surface “looks the same”, i.e., the
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q0 q1Lq

Fig. 13.10 Surface roughness power spectra of a surface which is self affine fractal for q1 > q > q0.
The long-distance roll-off wave vector q0 and the short distance cut-off wave vector q1 depend on
the system under consideration. The slope of the logC − logq relation for q > q0 determines the
fractal exponent of the surface. The lateral size L of the surface (or of the studied surface region)
determines the smallest possible wave vector qL = 2π/L

statistical properties of the surface are invariant under the scale transformation. For
a self-affine surface the power spectrum has the power-law behavior

C(q) ∼ q−2(H+1),

where the Hurst exponent H is related to the fractal dimension Df of the surface
via H = 3 − Df . Of course, for real surfaces this relation only holds in some finite
wave vector region q0 < q < q1, and in a typical case C(q) has the form shown
in Fig. 13.10. Note that in many cases there is a roll-off wavelength q0 below which
C(q) is approximately constant. We will discuss this point further below.

Finally, note that while the root-mean-square roughness usually is dominated by
the longest wavelength surface roughness components, higher order moments of
the power spectra such as the average slope or the average surface curvature are
dominated by the shortest wavelength components. For example, assuming a self
affine fractal surface, (13.3) gives

〈h2〉(q0, q1) ∼
q1∫

q0

dq q−2H−1 ∼ q−2H
0 − q−2H

1 ≈ q−2H
0

if q1/q0 � 1. However, the average slope and the average curvature have additional
factors of q2 and q4, respectively, in the integrand of the q-integral, and these quanti-
ties are therefore dominated by the large q (i.e., short wavelength) surface roughness
components.
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Fig. 13.11 The surface
roughness power spectra for
two freshly cleaved basalt
surfaces and a fresh granite
surface

2

-12

-16

-20

2 3 4 5
log q (1/m)

lo
g 

C
 (

m
   

)
4 basalt 1

granite

basalt 2

13.4.2 Surface Roughness Power Spectra: Experimental Results

In this section we present power spectra for different surfaces of practical importance.
The power spectra have been calculated using (13.1), (13.4a) and (13.4b), where the
height profile h(x) has been measured using either an optical method or the Atomic
Force Microscope.

13.4.2.1 Surfaces Produced by Crack Propagation

Figure 13.11 shows the power spectra C(q) for three freshly cleaved stone surfaces,
namely a granite and two basalt stone surfaces. Here, and in what follows, we show
the power spectra on a log-log scale. Note that the granite and basalt surfaces, in
spite of the rather different mineral microstructure (see below), give identical power
spectra within the accuracy of the measurement. It has been stated (see, e.g., [19])
that surfaces produced by crack propagation have self affine fractal structure with the
universal fractal dimension Df ≈ 2.2. However, our measured logC − logq relations
are not perfectly straight lines, i.e., the surfaces in the studied length-scale range
cannot be accurately described as self affine fractal, and the average slope of the
curves in Fig. 13.11 correspond to the fractal dimension Df ≈ 2 rather than 2.2.

Note the similarity of the power spectra for the basalt and granite surfaces in
Fig. 13.11. Granite and basalt both result from magma and have a similar composi-
tion, consisting mainly of minerals from the silicate group. However, granite results
from magma which is trapped deep in the crust, and it takes very long time to cool
down enough to crystallize into solid rock. As a result granite is coarse-textured
rock in which individual mineral grains are easily visible. Basalt, on the other hand,
results from fast cooling of magma from, e.g., volcanic eruptions, and is therefore
fine grained, and it is nearly impossible to see the individual minerals without magni-
fication. In spite of these differences, the surface roughness power spectra of freshly
cleaved surfaces are nearly identical. This may indicate some kind of universal power
spectrum for surfaces resulting from cleaving of mineral stones of different types.
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Fig. 13.12 The height
distribution Ph for two
freshly cleaved (cobble stone)
basalt surfaces and a fresh
granite surface. Note the
random non-Gaussian nature
of the height profiles
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Note that there is no roll-off region for surfaces produced by fracture (crack prop-
agation), and the surfaces remains fractal-like up to the longest length scale studied,
determined by the lateral size L of the surfaces (or of the regions experimentally
studied), i.e., with reference to Fig. 13.10, q0 = qL . One consequence of this is that
the rms-roughness amplitude is determined mainly by the λ ∼ L wavelength fluctu-
ations of the surface height, and will therefore depend on the size L of the surface,
and the height distribution Ph obtained for any given realization of the rough sur-
face will not be Gaussian, but will exhibit random fluctuations as compared to other
realizations (see Fig. 13.12, which illustrates this point for the three stone surfaces
discussed above). However, the ensemble averaged height distribution (not shown)
should be Gaussian or nearly Gaussian. Thus, when there is no roll-off region in the
measured power spectra, averaging over the surface area is not identical to ensemble
averaging. However, when there is a roll-off wave vector q0 = 2π/λ0, and if the
surface is studied over a region with the lateral size L � λ0, ensemble averaging
and averaging over the surface area L × L will give identical results for Ph , and the
rms-roughness amplitude will be independent of L for L � λ0.

Fig. 13.13 The surface
roughness power spectra
C(q) for two freshly cleaved
cobble stone (basalt) surfaces,
and for a used surface
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Fig. 13.14 The top C∗
T and

the bottom C∗
B surface

roughness power spectra
C(q) for a used cobble stone
(basalt) surface
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13.4.2.2 Polished Crack Surfaces

In the past, cobble stones, made from granite or basalt, were frequently used for road
surface pavements. However, these surfaces do not exhibit good frictional properties
against rubber. In particular, with increasing time the cobble stone surfaces become
polished by the road–tire interaction, which results in a reduced rubber-road friction,
even during dry driving conditions. Figure 13.13 illustrates this polishing effect. It
shows the power spectrum of a strongly used (basalt) cobble stone, and of two freshly
cleaved surfaces (from Fig. 13.11), from the same cobble stone. At long wavelength
the power spectrum of the strongly used surface is nearly one decade smaller than that
of the freshly prepared surfaces. The effect of the polishing is even better illustrated by
calculating the top and bottom power spectra, C∗

T and C∗
B , as shown in Fig. 13.14. The

top power spectrum is a factor ∼ 30 times smaller than the bottom power spectrum for
all wave vectors studied. This arises from the higher polishing of the road asperities
than of the valleys (the tire–road contact pressure is highest at the road asperities,
resulting in the strongest polishing of the asperity tops during breaking on the road).
It is important to take this polishing effect into consideration when designing road
pavements.

13.4.2.3 Surfaces with Long-Distance Roll-off

As pointed out above, surfaces prepared by fracture have no natural long-distance
cut-off and the rms roughness amplitude increases continuously (without limit) as
the probed surface area increases. This is similar to Brownian motion where the
mean square displacement increases without limit (as ∼ t1/2) as the time t increases.
However, most surfaces of engineering interest have a long distance cut-off or roll-off
wavelength λ0 corresponding to a wave vector q0 = 2π/λ0, as shown in Fig. 13.10.
For example, if a flat surface is sand blasted for some time the resulting rough
surface will have a long distance roll-off length, which increases with the time of
sand blasting. Similarly, if atoms or particles are deposited on an initially flat surface
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Fig. 13.15 The surface
roughness power spectra for a
fresh granite surface and a
fresh particle-made corundum
surface
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Fig. 13.16 The height
distribution Ph as a function
of the height h for a
particle-made corundum
surface
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the resulting rough surface will have a roll-off wavelength which increases with the
deposition time, as has been studied in detail in recent growth models. Another way
to produce a surface with a long-distance roll-off wavelength is to prepare the solid
from small particles. A nominally flat surface of such a solid has still roughness on
length scales shorter than the diameter of the particles, which therefore may act as
a long distance roll-off wavelength. We illustrate this here with a solid produced by
squeezing together corundum particles at high temperature and pressure (Fig. 13.15),
and for a sand paper surface (Fig. 13.17). For both surfaces the height distribution
Ph is smooth and nearly Gaussian (see Figs. 13.16 and 13.18), since averaging over
a surface area with lateral size L � λ0 is equivalent to ensemble averaging.

The sand paper surface in Fig. 13.17 was studied using the AFM at two different
resolutions over square areas 20×20 and 100×100µm as indicated by the two differ-
ent lines in Fig. 13.17. The height distribution Ph (and hence also the rms-roughness
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Fig. 13.17 The surface
roughness power spectra
C(q) for a sand paper surface.
The two curves are based on
the height profiles measured
with an AFM at two different
spatial resolutions over
20 × 20 and 100 × 100 µm
square areas
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Fig. 13.18 The surface
roughness height probability
distribution Ph for a sand
paper surface. The two curves
are based on the height
profiles measured with an
AFM at two different spatial
resolution over 20 × 20 and
100 × 100 µm square areas
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amplitude) calculated from these two different measurements over different surface
areas, see Fig. 13.18, are nearly identical, as indeed expected when L is larger than
the roll-off length λ0.

13.5 Contact Mechanics

Practically all macroscopic bodies have surfaces with roughness on many different
length scales. When two bodies with nominally flat surfaces are brought in contact,
real (atomic) contact will only occur in small randomly distributed areas, and the
area of real contact is usually an extremely small fraction of the nominal contact
area. We can visualize the contact regions as small areas where asperities from one
solid are squeezed against asperities of the other solid; depending on the conditions
the asperities may deform elastically or plastically.

How large is the area of real contact between a solid block and the substrate? This
fundamental question has extremely important practical implications. For example,
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R

z
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(a) HERZ

(b) GW

(c) Randomly rough

Fig. 13.19 Three models of “rough” surfaces. In case a all the “asperities” are equally high and
have identical radius of curvature. In this case, according to the Hertz contact theory, the area of real
contact �A between a solid with a flat surface and the shown surface depends non-linearly on the
squeezing force (or load) FN according to �A ∼ F2/3

N . If the asperities have a random distribution
of heights as in (b) then, for small FN, �A is nearly proportional to the squeezing force. If the
surface roughness is random with “asperities” of different heights and radius of curvature as in (c),
the area of real contact for small FN is exactly proportional to the squeezing force

it determines the contact resistivity and the heat transfer between the solids. It is
also of direct importance for wear and sliding friction [20], e.g., the rubber friction
between a tire and a road surface, and it has a major influence on the adhesive force
between two solid blocks in direct contact.

Contact mechanics has a long history. The first study was presented by Hertz
[21]. He gave the solution for the frictionless normal contact of two elastic bodies
of quadratic profile. He found that the area of real contact �A varies nonlinearly
with the load or squeezing force: �A ∝ F2/3

N . In 1957 Archard [22] applied the
Hertz solution to the contact between rough surfaces and showed that for a simple
fractal-like model, where small spherical bumps (or asperities) where distributed
on top of larger spherical bumps and so on, the area of real contact varies nearly
linearly with FN . A similar conclusion was reached by Greenwood [23], Greenwood
and Williamson [24], Johnson [25] who again assumed asperities with spherical
summit (of identical radius) with a Gaussian distribution of heights, as sketched in
Fig. 13.19b. A more general contact mechanics theory has been developed by Bush et
al. [26, 27]. They approximated the summit by paraboloids and applied the classical
Hertzian solution for their deformation. The height distribution was described by
a random process, and they found that at low squeezing force FN the area of real
contact increases linearly with FN.

Figure 13.20 shows the contact between two solids at increasing magnification
ζ. At low magnification (ζ = 1) it looks as if complete contact occurs between
the solids at many macro asperity contact regions, but when the magnification is
increased smaller length scale roughness is detected, and it is observed that only
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ζ=1

ζ=10
ζ=100

Fig. 13.20 A rubber block (dotted area) in adhesive contact with a hard rough substrate (dashed
area). The substrate has roughness on many different length scales and the rubber makes partial
contact with the substrate on all length scales. When a contact area is studied at low magnification
(ζ = 1) it appears as if complete contact occurs in the macro asperity contact regions, but when the
magnification is increased it is observed that in reality only partial contact occurs

partial contact occurs at the asperities. In fact, if there would be no short distance
cut-off the true contact area would vanish. In reality, however, a short distance cut-off
will always exist since the shortest possible length is an atomic distance. In many
cases the local pressure at asperity contact regions at high magnification will become
so high that the material yields plastically before reaching the atomic dimension. In
these cases the size of the real contact area will be determined mainly by the yield
stress of the solid.

From contact mechanics (see, e.g., [25]) it is known that in the frictionless contact
of elastic solids with rough surfaces, the contact stresses depend only upon the shape
of the gap between them before loading. Thus, without loss of generality, the actual
system may then be replaced by a flat elastic surface [elastic modulus E and Poisson
ratio ν, related to the original quantities via (1−ν2)/E = (1−ν2

1 )/E1+(1−ν2
2 )/E2]

in contact with a rigid body having a surface roughness profile which results in the
same undeformed gap between the surfaces.

One of us (Persson) has recently developed a theory of contact mechanics [28, 29],
valid for randomly rough (e.g., self affine fractal) surfaces. In the context of rubber
friction, which motivated this theory, mainly elastic deformation occurs. However,
the theory can also be applied when both elastic and plastic deformations occur in
the contact areas. This case is, of course, relevant to almost all materials other than
rubber.

The basic idea behind the new contact theory is that it is very important not to
a priori exclude any roughness length scale from the analysis. Thus, if A(λ) is the
(apparent) area of contact on the length scale λ [30] (see Fig. 13.21), then we study
the function P(ζ) = A(λ)/A(L) which is the relative fraction of the surface area
where contact occurs on the length scale λ = L/ζ (where ζ ≥ 1), with P(1) = 1.
Here A(L) = A0 denotes the macroscopic contact area [L is the diameter of the
macroscopic contact area so that A0 ≈ L2].
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Consider the system at the length scale λ = L/ζ, where L is the diameter of the
nominal contact area. We define qL = 2π/L and write q = qLζ. Let P(σ, ζ) denote
the stress distribution in the contact areas under the magnification ζ. The function
P(σ, ζ) satisfies the differential equation (see [28, 29]):

∂P

∂ζ
= f (ζ)

∂2 P

∂σ2 , (13.5)

where f (ζ) = G ′(ζ)σ2
0 with

G(ζ) = π

4

(
E∗

σ0

)2
ζqL∫

qL

dq q3C(q), (13.6)

where E∗ = E/(1 − ν2).
Equation (13.5) is a diffusion type of equation, where time is replaced by the

magnification ζ, and the spatial coordinate with the stress σ (and where the “diffusion
constant” depends on ζ). Hence, when we study P(σ, ζ) on shorter and shorter length
scales (corresponding to increasing ζ), the P(σ, ζ) function will become broader and
broader in σ-space. We can take into account that detachment actually will occur
when the local stress reaches σ = 0 (we assume no adhesion) via the boundary
condition [31]:

P(0, ζ) = 0. (13.7)

In order to solve the (13.5) we also need an “initial” condition. This is determined by
the pressure distribution at the lowest magnification ζ = 1. If we assume a constant
pressure σ0 in the nominal contact area, then P(σ, 1) = δ(σ − σ0).

We assume that only elastic deformation occurs (i.e., the yield stress σY → ∞).
In this case

Fig. 13.21 An elastic ball
squeezed against a hard,
rough, substrate. Left: the
system at two different
magnifications. Right: the
area of contact A(λ) on the
length scale λ is defined as
the area of real contact when
the surface roughness on
shorter length scales than λ
has been removed



268 B. Persson et al.

P(ζ) =
∞∫

0

dσP(σ, ζ).

When adhesion is taken into account, tensile stresses can occur at the interface
between the two solids, and the boundary condition (13.7) is no longer valid
[32, 33], see Sect. 13.6.1. It is straightforward to solve (13.5) with the boundary
conditions P(0, ζ) = 0 and P(∞, ζ) = 0 to get

P(ζ) = 2

π

∞∫

0

dx
sinx

x
e−x2G(ζ) = erf

(
1

2
√

G

)
. (13.8)

Note that for small load σ0, G � 1 and in this case (13.8) reduces to P(ζ) ≈ P1(ζ)

where

P1(ζ) = [πG(ζ)]−1/2 . (13.9)

Since G ∼ 1/σ2
0 it follows that the area of real contact is proportional to the load

for small load. Using (13.8) and (13.9) we can write in a general case

P(ζ) = erf

(√
π

2
P1(ζ)

)
. (13.10)

The physical meaning of (13.5) is as follows: When the system is studied at the
lowest magnification ζ = 1 no surface roughness can be observed and the block
makes (apparent) contact with the substrate everywhere in the nominal contact area.
In this case, if we neglect friction at the interface, the stress at the interface will
everywhere equal the applied stress σ0, see Fig. 13.22a, so that P(σ, 1) = δ(σ−σ0).
When we increase the magnification we observe surface roughness with wavelength
down to λ = L/ζ. In this case one may observe some non-contact regions as shown in
Fig. 13.22b. Since the stress must go continuously to zero at the edges of the boundary
between the contact and non-contact regions, it follows that the stress distribution
P(σ, ζ) will have a tail extending the whole way down to the zero stress as indicated
in Fig. 13.22b (right). There will also be a tail toward larger stresses σ > σ0 because
the average stress must be equal to σ0. Thus with increasing magnification, the stress
distribution will broaden without limit as indicated in Fig. 13.22 (right).

The theory presented above predicts that the area of contact increases linearly
with the load for small load. In the standard theory of Greenwood and Williamson
[24] this result holds only approximately and a comparison of the prediction of
their theory with the present theory is therefore difficult. Bush et al. [26, 27] have
developed a more general and accurate contact theory. They assumed that the rough
surface consists of a mean plane with hills and valleys randomly distributed on it.
The summits of these hills are approximated by paraboloids, the distribution of
heights and principal curvatures of which is obtained from the random process theory.
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ζ=1

ζ=10

ζ=100

σ 0

(a)

(b)

(c)

σ 0

P(σ,1)

P(σ,100)

σ

P(σ,10)

Fig. 13.22 The stress distribution P(σ, ζ) in the contact region between a (rigid) block and an
elastic substrate at increasing magnification ζ. a At the lowest (engineering) magnification ζ = 1
the substrate surface looks smooth and the block makes (apparent) contact with the substrate in
the whole nominal contact area. b, c As the magnification increases, we observe that the area of
(apparent) contact decreases, while the stress distribution becomes wider and wider

This is to be compared with the GW assumption that the caps of the asperities are
spherical each having the same mean radius of curvature. As a result of the more
random nature of the surface, Bush et al. found that at small load the area of contact
depends linearly on the load accordingly to

A

A0
= κ

FN

E∗

(∫
d2q q2C(q)

)−1/2

, (13.11)

where κ = (2π)1/2. This result is very similar to the prediction of the present theory
where, for small load, from (13.6) and (13.9), A/A0 is again given by (13.11) but now
with κ = (8/π)1/2. Thus our contact area is a factor of 2/π smaller than predicted
by the theory of Bush et al. Both the theory of Greenwood and Williamson and of
Bush et al., assume that the asperity contact regions are independent. However, as
discussed in [31], for real surfaces (which always have surface roughness on many
different length scales) this will never be the case even at a very low nominal contact
pressure. We have argued [31] that this may be the origin of the 2/π-difference
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Fig. 13.23 The factor κ as a
function of Hurst exponent H
for self affine fractal surfaces.
The two horizontal lines gives
the predictions of the theories
of Bush et al. (solid line) and
Persson (dashed line). From
[34]
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between our theory (which assumes roughness on many different length scales) and
the result of Bush et al.

The predictions of the theories of Bush et al. [26, 27] and Persson [28, 29] have
been compared to numerical calculations (see [31, 34, 35]). Borri-Brunetto et al. [36]
have studied the contact between self affine fractal surfaces using an essentially exact
numerical method. They found that the contact area is proportional to the squeezing
force for small squeezing forces. Furthermore, it was found that the slope α(ζ) of the
line A = α(ζ)F decreased with increasing magnification ζ. This is also predicted
by the analytical theory (13.11). In fact, it was found a good agreement between the
theory and the computer simulations for the change in the slope with magnification
and its dependence on the fractal dimension Df .

Hyun et al. have performed a finite-element analysis of contact between elastic
self-affine surfaces. The simulations are done for a rough elastic surface contacting a
perfectly rigid flat surface. The elastic solid is discretized into blocks and the surface
nodes form a square grid. The contact algorithm identifies all nodes on the top surface
that attempt to penetrate the flat bottom surface. The total contact area A was obtained
by multiplying the number of penetrating nodes by the area of each square associated
with each node. As long as the squeezing force is so small that the contact area is below
10 % of the nominal contact area, i.e., A/A0 < 0.1, the area of real contact is found
to be proportional to the squeezing force in accordance with (13.11). In Fig. 13.23
we present the results for the factor κ in (13.11) as a function of Hurst exponent H
for self affine fractal surfaces. The two horizontal lines gives the predictions of the
theories of Bush et al. (solid line) and Persson (dashed line). The agreement with the
analytical predictions is quite good considering the ambiguities in discretization of
the surface. The algorithm only considers nodal heights and assumes that contact of
a node implies contact over the entire corresponding square. This procedure would
be accurate if the spacing between nodes where much smaller than the typical size
of asperity contacts. However, the majority of the contact area consists of clusters
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Fig. 13.24 The contact area
between an elastic solid block
and a randomly rough hard
substrate at high (atomic)
magnification (left), and at a
lower magnification (right)

containing only one or a few nodes. Since the number of large clusters grows as
H → 1, this may explain why the numerical results approach Persson’s prediction
in this limit.

Hyun et al. also studied the distribution of connected contact regions and the
contact morphology. In addition, the interfacial stress distribution was studied and it
was found that the stress distribution remained non-zero as the stress σ → 0. This
violates the boundary condition (13.7) that P(σ, ζ) = 0 for σ = 0. However, it has
been shown analytically [31] that for “smooth” surface roughness this latter condition
must be satisfied, and we believe that the violation of this boundary condition in the
numerical simulations reflects the way the solid was discretized and the way the
contact area is defined in the numerical procedure.

Yang et al. [35] have studied contact mechanics using Molecular Dynamics. They
also found that the contact area varies linearly with the load for small load, and that the
contact area at low magnification is larger than at high magnification (see Fig. 13.24),
as predicted by the theory (13.11). The detailed comparison of the simulation results
with the theory will be presented elsewhere [35].

Elastic contact theory and numerical simulations show that in the region where
the contact area is proportional to the squeezing force, the stress distribution at the
interface is independent of the squeezing force. In addition, for an infinite system the
distribution of sizes of the contact regions does not depend on the squeezing force
(for small squeezing forces). Thus, when the squeezing force increases, new contact
regions are formed in such a way that the distribution of contact regions and the
pressure distribution remains unchanged. This is the physical origin of Coulombs
friction law which states that the friction force is proportional to the normal (or
squeezing) force [20], and which usually holds accurately as long as the block-
substrate adhesional interaction can be neglected [2].

13.6 Adhesion

In this section we discuss adhesion between rough surfaces. We point out that even
when the force to separate two solids vanishes, there may still be a finite contact area
(at zero load) between two solids as a result of the adhesional interaction between
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the solids. We also study the adhesion between a thin elastic film and a randomly
rough, rigid substrate.

13.6.1 Adhesion Between Rough Surfaces

A theory of adhesion between an elastic solid and a hard randomly rough substrate
must take into account that partial contact may occur between the solids on all length
scales. For the case where the substrate surface is self affine fractal theory shows
that when the fractal dimension is close to 2, complete contact typically occurs in
the macro asperity contact areas (the contact regions observed when the system is
studied at a magnification corresponding to the roll-off wavelength λ0 = 2π/q0 of the
surface power spectra, see Fig. 13.10), while when the fractal dimension is larger than
2.5, the area of (apparent) contact decreases continuously when the magnification
is increased. An important result is that even when the surface roughness is so high
that no adhesion can be detected in a pull-off experiment, the area of real contact
(when adhesion is included) may still be several times larger than when the adhesion
is neglected. Since it is the area of real contact which determines the sliding friction
force, the adhesion interaction may strongly affect the friction force even when no
adhesion can be detected in a pull-off experiment.

The influence of surface roughness on the adhesion between rubber (or any other
elastic solid) and a hard substrates has been studied in a classic paper by Fuller
and Tabor [37] (see also [38–44]). They found that already a relative small surface
roughness can completely remove the adhesion. In order to understand the experi-
mental data they developed a very simple model based on the assumption of surface
roughness on a single length scale. In this model the rough surface is modeled by
asperities all of the same radius of curvature and with heights following a Gaussian
distribution. The overall contact force was obtained by applying the contact theory
of Johnson et al. [45] to each individual asperity. The theory predicts that the pull-off
force, expressed as a fraction of the maximum value, depends upon a single para-
meter, which may be regarded as representing the statistically averaged competition
between the compressive forces exerted by the higher asperities trying to prize the
surfaces apart and the adhesive forces between the lower asperities trying to hold
the surfaces together. This picture of adhesion developed by Tabor and Fuller would
be correct if the surfaces had roughness on a single length scale as assumed in their
study. However, when roughness occurs on many different length scales, a qualita-
tively new picture emerges [32, 33], where, e.g., the adhesion force may even vanish
(or at least be strongly reduced), if the rough surface can be described as a self affine
fractal with fractal dimension Df > 2.5. Even for surfaces with roughness on a single
length scale, the formalism used by Fuller and Tabor is only valid at “high” surface
roughness, where the area of real contact (and the adhesion force) is very small. The
theory presented below is particularly accurate for “small” surface roughness, where
the area of real contact equals the nominal contact area.
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13.6.1.1 Qualitative Discussion

Let us estimate the energy necessary in order to deform a rubber block so that the
rubber fills up a substrate cavity of height h and width λ. The elastic energy stored
in the deformation field in the rubber is given by

Uel ≈ 1

2

∫
d3x σε,

where the stress σ ≈ Eε, where E is the elastic modulus. The deformation field is
mainly localized to a volume ∼ λ3 (see Fig. 13.25) where the strain ε ≈ h/λ. Thus
we get Uel ≈ λ3 E(h/λ)2 = Eλh2.

Let us now consider the role of the rubber–substrate adhesion interaction. As
shown above, when the rubber deforms and fills out a surface cavity of the substrate,
an elastic energy Uel ≈ Eλh2 will be stored in the rubber. Now, if this elastic
energy is smaller than the gain in adhesion energy Uad ≈ �γλ2, where �γ =
γ1+γ2−γ12 is the change of surface free energy (per unit area) upon contact due to the
rubber-substrate interaction (which usually is mainly of the van der Waals type), then
(even in the absence of an external load FN) the rubber will deform spontaneously
to fill out the substrate cavities. The condition Uel = Uad gives h/λ ≈ (�γ/Eλ)1/2.
For example, for very rough surfaces with h/λ ≈ 1, and with parameters typical
for rubber E = 1 MPa and �γ = 3 meV/Å2, the adhesion interaction will be able
to deform the rubber and completely fill out the cavities if λ < 0.1µm. For very
smooth surfaces h/λ ∼ 0.01 or smaller, so that the rubber will be able to follow the
surface roughness profile up to the length scale λ ∼ 1 mm or longer.

The argument given above shows that for elastic solids with surface roughness on
a single length scale λ, the competition between adhesion and elastic deformation is
characterized by the parameter θ = Eh2/λδ ≈ Uel/Uad, where h is the amplitude
of the surface roughness and δ = 4(1 − ν2)�γ/E the so called adhesion length,
ν being the Poisson ratio of the rubber. The parameter θ is the ratio between the
elastic energy and the surface energy stored at the interface, assuming that complete
contact occurs. When θ � 1 only partial contact occurs, where the elastic solids
make contact only close to the top of the highest asperities, while complete contact
occurs when θ � 1.

λ

h

rubber

Fig. 13.25 A rubber surface is “pulled” into a cavity in a hard solid by the rubber-substrate adhe-
sional interaction. The elastic energy stored in the deformation field is of order Eλh2
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13.6.1.2 Pull-off Force

Consider a rubber ball (radius R0) in adhesive contact with a perfectly smooth and
hard substrate. The elastic deformation of the rubber can be determined by mini-
mizing the total energy which is the sum of the (positive) elastic energy stored in
the deformation field in the rubber ball, and the (negative) binding energy between
the ball and the substrate at the contact interface. The energy minimization gives the
pull-off force [45, 46]

Fc = (3π/2)R0�γ. (13.12)

Consider now the same problems as above, but assume that the substrate surface
has roughness described by the function z = h(x). We assume that the surface
roughness power spectra has a roll-off wavelength λ0 = 2π/q0 (see Fig. 13.10)
which is smaller than the diameter of the nominal contact area between the two
solids. In this case we can still use the result (13.12), but with �γ replaced by γeff .
The effective interfacial energy γeff is the change in the interfacial free energy when
the elastic solid is brought in contact with the rough substrate. γeff(ζ) depends on the
magnification ζ, and the interfacial energy which enters in the rubber ball pull-off
experiment is the macroscopic interfacial energy, i.e., γeff(ζ) for ζ = 1. If A0 is the
nominal contact area and A1 the true atomic contact area, then

A0γeff(1) = A1�γ − Uel, (13.13)

where Uel is the elastic energy stored at the interface as a result of the elastic defor-
mations necessary in order to bring the solids in atomic contact in the area A1.

13.6.1.3 Stress Probability Distribution

The theory in [32, 33] is based on the contact mechanics formalism described in
Sect. 13.4.1. Thus, we focus on the stress probability distribution function P(σ, ζ)

which satisfies (13.5):
∂P

∂ζ
= f (ζ)

∂2 P

∂σ2 .

We assume that detachment occurs when the local stress on the length scale L/ζ
reaches −σa(ζ). Thus, the following boundary condition is valid in the present case

P(−σa(ζ), ζ) = 0.

This boundary condition replaces the condition P(0, ζ) = 0 valid in the absence of
adhesion (see Sect. 13.4.1).

Let us consider the system on the characteristic length scaleλ = L/ζ. The quantity
σa(ζ) is the stress necessary to induce a detached area of width λ. This stress can be
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Fig. 13.26 a The
macroscopic interfacial
energy as a function of the
dimensionless surface
roughness amplitude q0h0. b
The normalized area of real
contact, P(ζ1) = A(ζ1)/A0,
as a function of q0h0. The
curves correspond to different
adhesion energies: q0δ = 0.1,
0.2, 0.4 and 0.8 as indicated.
For H = 0.8 and
q1/q0 = ζ1 = 100
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obtained from the theory of cracks, where for a penny-shaped crack of diameter λ

σa =
[
πγeff(ζ)E

(1 − ν2)λ

]1/2

=
[
γeff(ζ)Eq

2(1 − ν2)

]1/2

, (13.14)

where q = 2π/λ = ζqL . In [32, 33] we have derived two equations for γeff(ζ) and
P(ζ) which determine how these quantities depend on the magnification ζ; those
equations are the basis for the numerical results presented below.

13.6.1.4 Numerical Results

Figure 13.26 shows (a) the effective interfacial energy γeff(ζ) (ζ = 1) and (b) the
normalized area of real contact, P(ζ1) = A(ζ1)/A0, as a function of q0h0, h0 being
the surface r.m.s. roughness and q0 the roll-off wave vector. Results are shown for
different adhesion lengths δ = 4(1−ν2)�γ/E : q0δ = 0.1, 0.2, 0.4 and 0.8. We will
refer to γeff(1) at the magnification ζ = 1 as the macroscopic interfacial free energy
which can be deduced from, e.g., the pull off force for a ball according to (13.12).
Note that for q0δ = 0.4 and 0.8 the macroscopic interfacial energy first increases
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Fig. 13.27 Insect attachment
systems consist of fibers or
hair which terminates with
leaf-like plates which can
easily deform (without
storing a lot of elastic energy)
to bind strongly even to very
rough substrates

with increasing amplitude h0 of the surface roughness, and then decreases. The
increase in γeff arises from the increase in the surface area. As shown in Fig. 13.26b,
for small h0 the two solids are in complete contact, and, as expected, the complete
contact remains to higher h0 as δ ∼ �γ/E increases. Note also that the contact area
is nonzero even when γeff(1) is virtually zero: the fact that γeff(1) (nearly) vanish
does not imply that the contact area vanish (even in the absence of an external load),
but imply that the (positive) elastic energy stored at the interface just balance the
(negative) adhesion energy from the area of real contact. The stored elastic energy
at the interface is given back when removing the block, and when γeff(1) ≈ 0 it is
just large enough to break the block-substrate bonding.

13.6.1.5 Plate Adhesion

In this section we discuss the adhesion of a thin elastic plate to a randomly rough hard
substrate. This topic is important for many applications such as thin films used as
protective coatings [47], for the manufacturing of multilayered wafer structures [48],
or in bio-films for orthopedic implants [49]. The problem under consideration is also
of great importance for understanding the adhesion of flies, bugs, and lizards to
a rough substrate (see Fig. 13.27), [50, 51] or the adhesive behavior of recently
biologically-inspired adhesive films [52].

Here we consider in detail the case of a thin plate in partial contact with a hard
substrate with a self-affine fractal rough surface. Figure 13.28 (thick lines) shows
(a) the macroscopic interfacial energy γe f f (1), i.e. the effective interfacial energy
calculated at the magnification ζ = 1, and (b) the normalized area of real con-
tact P(ζ1) at the maximum magnification ζ = ζ1, as a function of the dimension-
less roughness amplitude q0h0. We show results for three different values of q0δ.
The results are for H = 0.8, i.e. D f = 2.2, and for a dimensionless thickness
of the plate equal to q0d = 0.63. Note that the macroscopic interfacial energy
initially increases with the amplitude h0 of the rough profile up to a maximum
value, and after decreases with h0. This is caused by the increase of the real
contact area produced by the fine structure of the rough profile. Figure 13.26b
shows, indeed, that at small h0 the plate adheres in full contact to the sub-
strate, so that an increase of the surface roughness produces a corresponding
increases of the area of contact and, hence, of the surface energy. However this
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Fig. 13.28 a The normalized
macroscopic interfacial
energy and b the normalized
area of real contact, as a
function of the dimensionless
surface roughness amplitude
q0h0. Thick lines are for the
plate case and thin lines are
for the semi-infinite solid
case. Results are for H = 0.8
and q0d = 0.63, and for two
different values of q0δ

(a)

(b)

is no more true at large h0, because of the reduction of the area of real
contact. Figure 13.26 also shows that, as expected, the roughness-induced incre-
ment of the macroscopic interfacial energy grows by increasing the adhesion length
δ ∼ �γ/E , and that the full contact condition remains to higher amplitude h0 as δ
increases.

In Fig. 13.28 we compare the results obtained for the plate case (thick lines)
with those of the semi-infinite solid (thin lines). As expected, because of the higher
compliance of the plate, both the macroscopic interfacial energy γeff (1) and the
normalized area of real contact P(ζ1) are larger than for the semi-infinite solid case.

To summarize, at small magnification (long length scales) the plate, because of
its higher compliance, is able to adhere in apparent full contact to the long wave-
length corrugation of the underlying surface. That is, at length scales longer than the
plate thickness, the gain in the adhesion energy upon the contact with the substrate
overcomes the repulsive elastic energy produced by the elastic deformations, and the
plate is able to fill out the large cavities of the rigid substrate. This produces a larger
area of contact and an enhanced capability to adhere to a rough surface in compar-
ison to the semi-infinite elastic solid case. However, at large enough magnification
(small length scales) the plate behaves as a semi-infinite solid, and, depending on the
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roughness statistical properties, the area of true atomic contact may be much smaller
than the nominal contact area.

13.6.1.6 Experimental Manifestations

Unfortunately, the surface roughness power spectrum has not been measured for
any surface for which adhesion has been studied in detail. Instead only the rough-
ness amplitude (center line average) and the radius of curvature of the largest sur-
face asperities was determined. Nevertheless, the experimental data of Fuller and
Tabor [37], Briggs and Briscoe [40] and Fuller and Roberts [41] are in good qualita-
tive agreement with our theoretical results. In Fig. 13.29 we show the macroscopic
interfacial energy for “hard” and “soft” rubber in contact with Perspex, as a function
the substrate (Perspex) roughness amplitude as obtained by Briggs and Briscoe [40].
It is not possible to compare these results quantitatively with the theory developed
above since the power spectrum C(q) was not measured for the Perspex substrate.
Even if the surfaces would be self affine fractal as assumed above, not only the sur-
face roughness amplitude will change from one surface to another, but so will the
long distance cut off length λ0 and hence also the ratio ζ1 = q1/q0. In the exper-
iments reported on in [40] the Perspex surfaces where roughened by blasting with
fine particles. The roughness could be varied through the choice of the particles and
the air pressure.

One practical problem is that most rubber materials have a wide distribution of
relaxation times, extending to extremely long times. This effect is well known in
the context of rubber friction (see Sect. 13.6.1), where measurements of the complex
elastic modulus show an extremely wide distribution of relaxation times, resulting
in large sliding friction even at very low sliding velocities, v < 10−8 m/s.

The effect of the stored elastic energy on adhesion has recently been studied
using a polyvinylsiloxane rubber block squeezed against a smooth glass surface for

Fig. 13.29 The macroscopic
interfacial energy (obtained
from the pull-off force) for a
smooth rubber surface (ball)
in contact with Perspex
surface as a function of the
roughness (center line
average) of the Persplex.
Results are shown for a “soft”
rubber (E = 0.063 MPa) and
a “hard” rubber
(E = 0.487 MPa). From [40]
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a fixed time period before measuring the pull-off force [53]. The square-symbols in
Fig. 13.30 show the pull-off force as a function of the squeezing force. For squeezing
forces FN > 850 mN the pull off force decreases. This may be explained by a drastic
increase of the elastic energy stored in the rubber because of the strong deformation
of the rubber (which remains even when the load is removed as a result of the
rubber–glass friction at the interface), see Fig. 13.31 (top). This energy, freed during
the process of unloading, will help to break the adhesive bonds at the interface. This
effect is even stronger when the surface is structured. Thus, the triangles in the figure
shows the pull-off force when the rubber surface is covered by a regular array of
rubber cylindrical asperities. In this case the pull-off force drops to nearly zero for
FN > 700 mN. Visual inspection shows that in this case the cylindrical asperities at
high load bend and make contact with the glass on one side of the cylinder surface,
see Fig. 13.31 (bottom). This again stores a lot of elastic energy at the interface which
is given back during pull-off, reducing the pull-off force to nearly zero.

13.6.1.7 The Role of Plastic Yielding on Adhesion

When the local stress in the asperity contact regions between two solids becomes
high enough, at least one of the solids yields plastically. This will tend to increase the
effective adhesion (or pull-off force) for the following three reasons. First, the area of
real contact between the solids will increase as compared to the case where the defor-
mations are purely elastic. Secondly, the amount of stored elastic energy in the contact
regions (which is given back during pull-off) will be reduced because of the lowered
elastic deformations. Finally, for many materials plastic yielding will strengthen the
junctions [54]. For example, most metals are protected by thin oxide layers, and as
long as these are intact the main interaction between the surfaces in the contact areas
may be of the van der Waals and electrostatic origin. However, when plastic yielding
occurs it may break up the oxide films resulting in direct metal-metal contact and the

Fig. 13.30 The pull-off force
as a function of the squeeze
force or load. For silicon
rubber in contact with a
smooth glass surface. From
[53]
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(a) (b)

Fig. 13.31 Elastic deformation of a rubber block with a smooth surface (top) and a structured
surface (bottom). a shows the initial state before applying a squeezing force, and b the new state
(without load) after applying (and then removing) a very large squeezing force. In state (b) a lot
of elastic energy is stored in the rubber which is “given back” during pull-off resulting in a nearly
vanishing pull-off force

formation of “cold-welded” junctions. When this occurs, because of the high ductil-
ity of many metals, during pull-off “long” metallic bridges may be formed between
the solids so that instead of having junctions popping one after another during pull-
off, a large number of adhesive junctions may simultaneously impede the surface
separation during pull-off, leading to a large pull-off force. However, experiment
have shown [8] that just squeezing before pull-off will in general only result in very
few cold welded junctions, while squeezing and sliding will break up the oxide film,
resulting in the formation of many more cold welded contact regions, and will hence
result in a much larger pull-off force.

1 cm2

van der Waals
interaction

F

F

crack

uniform
separation

(a) (b)

(c)

solid bar

car

Fig. 13.32 Even the weakest force in Nature of relevance in condensed matters physics, namely
the van der Waals force, is relative strong on a macroscopic scale. Thus, for example, if the bond
breaking occur uniformly over the contact area as in (b), already a contact area of order 1 cm2 can
sustain the weight of a car (i.e., a force of order 104 N) [see (a)]. However, on a macroscopic scale the
bond-breaking does not usually occur uniformly over the contact area, but by crack propagation, see
(c), which drastically reduce the pull-off force. In addition, interfacial surface roughness drastically
reduces the pull-off force
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13.6.2 The Adhesion Paradox

The biggest “mystery” related to adhesion is not why it is sometimes observed but
rather why it is usually not observed. Thus, even the weakest force in Nature of
relevance in condensed matter physics, namely the van der Waals force, is relatively
strong on a macroscopic scale. For example, even a contact area of order 1 cm2

can sustain the weight of a car (i.e., a force of order 104 N) [see Fig. 13.32a] also
when only the van der Waals interaction operates at the interface. [Here we have
assumed that the bond breaking occurs uniformly over the contact area as illustrated
in Fig. 13.32b.] However, this is never observed in practice and this fact is referred
to as the adhesion paradox.

There are several reasons why adhesion is usually not observed between macro-
scopic bodies. For example, on a macroscopic scale the bond-breaking usually
does not occur uniformly as in Fig. 13.32b, but occurs by crack propagation, see
Fig. 13.32c. The local stress at the crack tip is much higher than the average stress
acting in the contact area, and this drastically reduces the pull-off force. Another rea-
son, already addressed in Sect. 13.6.1, is the influence of surface roughness. Thus, for
elastically hard surfaces the true (atomic) contact between the solids at the interface
is usually much smaller than the nominal contact area. In addition, the elastic energy
stored in the solids in the vicinity of the contact regions is given back during pull-off
and helps to break the interfacial bonds between the solids (see Sect. 13.6.1).

It is interesting to note that for very small solid objects, typically of order 100µm
or smaller, the bond breaking may occur uniformly over the contact area (no crack
propagation) so that adhesion between smooth surfaces of small objects, e.g., in
micromechanical applications (MEMS), may be much stronger than for macroscopic
bodies, and this fact must be taken into account when designing MEMS [55, 56].

13.6.3 The Role of Liquids on Adhesion Between Rough Solid
Surfaces

As explained in Sect. 13.6.1, surface roughness reduces the adhesion between clean
surfaces. First, it lowers the area of real contact. Since the adhesion interaction comes
almost entirely from the area where the solids make atomic contact, it is clear that the
surface roughness may drastically reduce the adhesion. Secondly, elastic deformation
energy is stored in the vicinity of the asperity contact regions. During pull-off the
elastic energy is “given back” to the system, usually resulting in a drastic reduction
in the effective adhesion and the pull-off force.

Most surfaces have at least nano-scale roughness, and hard solids in the normal
atmosphere have at least a monolayer of liquid-like “contamination” molecules,
e.g., water and hydrocarbons. Small amount of (wetting) lubricant or contamination
liquids between rough solid walls may drastically enhance the adhesion. Thus, for
surfaces with nanoscale roughness, a monolayer of a wetting liquid may result in the
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Fig. 13.33 The variation of the average pressure during retraction developed as the block moves a
distance of 16 Å away from the substrate. Octane C8H18 was used as lubricant. Pull-off (retraction)
velocity was vz = 1 m/s. a For the flat substrate without lubricant. b For the corrugated substrate
without lubricant. Curves c–f show results for the corrugated substrate with about 1/8, 1/4, 1/2 and
1 monolayer of octane in the contact region, respectively. For clarity, the curve for the flat substrate
(a) is displaced to the right, by 2 Å

formation of a large number of nano-bridges between the solids, which increases the
pull-off force. This effect is well known experimentally. For example, the adhesion
force which can be detected between gauge blocks (steel blocks with very smooth
surfaces) is due to the formation of many very small capillary bridges made of
water or organic contamination. For thicker lubrication or contamination films the
effective adhesion will be more long-ranged but the pull-off force may be smaller.
The thickness of the lubricant or contamination layer for which the pull-off force is
maximal will in general depend on the nature of the surface roughness, but is likely
to be of order the root-mean-square roughness amplitude. In fact, it is an interesting
and important problem to find out at exactly what liquid thickness the pull-off force
is maximal.

Some insects such as flies or crickets inject a thin layer of a wetting liquid in
the contact region between the insect attachment surfaces and the (rough) substrate.
The optimum amount of injected liquid will depend on the nature of the substrate
roughness, and it is likely that the insect can regulate the amount of injected liquid
by a feedback system involving the insect nerve system.

Here we consider the adhesion between two solid elastic walls with nanoscale
roughness, lubricated by octane [43, 44, 57]. We consider two types of substrates
(bottom surface)—flat and nano-corrugated (corrugation amplitude 1 nm and wave-
length of the corrugation in x and y direction, 4 nm)—and varied the lubricant
coverage from ∼ 1/8 to ∼ 4 monolayers of octane. The upper surface (the block)
is assumed to be atomically smooth but with a uniform cylinder curvature with a
radius of curvature R ≈ 100 nm (see Fig. 13.35). The results presented here have
been obtained using standard molecular dynamics calculations [43].
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Fig. 13.34 Snapshot pictures (for three different block positions d = 0, 3 and 6 Å) of the lubricant
layer during retraction. We only show the lubricant molecules in the central part of the contact
area between the block and the substrate surfaces (top view, surfaces parallel to the plane of the
image). Octane C8H18 was used as lubricant. Pull-off (retraction) velocity was vz = 1 m/s. For the
corrugated substrate with about 1/4 monolayer of octane in the contact region. The circles indicate
the position of several asperity tops of the corrugated substrate surface

Figure 13.33 shows the variation of the average pressure during retraction as the
block moves a distance of 16 Å away from the substrate. The pull-off (retraction)
velocity was vz = 1 m/s. We have varied the lubricant coverage from 0 to 1 mono-
layer in the contact region. The pull-off force is maximal when the adsorbate coverage
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Fig. 13.35 Snapshot pictures
(for six different block
positions) during retraction.
The snapshot pictures show
the side view of the central
108 Å × 50 Å section (in the
xy-plane) of the contact area.
Octane C8H18 was used as
lubricant. Pull-off (retraction)
velocity was vz = 1 m/s. For
the corrugated substrate with
about 1/4 monolayer of
octane in the contact region
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o

d = 10 A
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is of the order of one monolayer [curve (f)]. However, the pull-off force is still smaller
than for a flat substrate without lubricant [curve (a)]. As a function of the octane cov-
erage (for the corrugated substrate) the pull-off force first increases as the coverage
increases from zero to ∼ 1 monolayer, and then decreases as the coverage is increased
beyond monolayer coverage (not shown).

At low octane coverage, the octane molecules located in the substrate corrugation
wells during squeezing, are pulled out of the wells during pull-off, forming a net-
work of nano capillary bridges around the substrate nanoasperities, thus increasing
the adhesion between two surfaces, see Figs. 13.34 and 13.35. For greater lubricant
coverages a single capillary bridge is formed.

Let us discuss the nature of the adhesion for the corrugated substrate, with about
1/4 monolayer of octane in the contact region. Figure 13.34 shows snapshot pictures
of the lubricant layer during retraction, as the block moves away from the substrate
for three different block positions d = 0, 3 and 6 Å. Only the central part of the
contact between the block and the substrate is shown, top view, after removing
the block and substrate atoms. In the beginning (d = 0 Å) octane molecules are
located in the substrate corrugation wells, or cavities with direct metal–metal contact
between the block and the top of the substrate nano asperities (see Fig. 13.35). During
retraction (d = 3 Å) the octane molecules are pulled out of the wells forming an
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almost symmetric network of nano-bridges around the asperity tops, increasing the
adhesion between the two surfaces. This configuration corresponds to the maximal
adhesion force, see curve (d) in Fig. 13.33. Thus maximal adhesion is achieved via
the formation of many small capillary nano-bridges, involving just a few molecules
for each bridge (see Fig. 13.35). Further retraction (d = 6 Å) results in the collapse of
the nano-bridges and the formation of a single “large” capillary bridge in the center
of the contact region.

13.7 Summary and Outlook

We have discussed the origin of friction and adhesion between hard solids such as
quasicrystals. However, most of the results presented above are valid for all types
of solids. We have emphasized the fundamental role of surface roughness on many
contact mechanics problems, in particular for friction and adhesion between solids
bodies.

Surface roughness has a huge influence on many common phenomena. It is the
main reason for why macroscopic bodies usually do not adhere to each other with
any measurable strength. For example, if the floor and the sole of the shoes would
be atomically smooth and clean, it would be impossible to walk on the floor! The
(nearly) absence of adhesion in most situations is crucial for the function of many
man-made constructions.

The surface to volume ratio of solid objects increases as the lateral size of the object
decreases. The role of surface roughness becomes therefore more important as the
size of objects decreases. The present drive toward the miniaturization of mechanical
devices, e.g., MEMS, requires a better understanding of the role of surface roughness
on, e.g., contact mechanics and adhesion.

Surface roughness is also of great importance for the function of many biological
systems. Thus, flies, bugs, crickets and lizards have developed very soft layers on
their attachment organs which allow them to attach and move on both very smooth
and rough vertical solid walls, e.g. stone walls or leafs. Another example is non-
wetting coatings on plant surfaces based on surface roughness on many different
length scales (the so called Lotus effect) [11].

The roughness of surfaces can today be studied strait forwardly using standard
equipments based on optical methods and stylus methods, e.g., the atomic force
microscope (AFM). These methods cover the whole length scale from atomic dimen-
sion to macroscopic distances. Thus, the AFM can probe the surface profile from
∼ 1 nm to 100 µm and optical methods from ∼ 1µm to kilometers. For randomly
rough surfaces, the most important quantity which can be deduced from the mea-
sured height profile is the surface roughness power spectra. We have shown in this
paper how the power spectra determines the contact mechanics and adhesion for
solid objects in direct contact. It also govern rubber friction on rough substrates, e.g.,
tires on a road surfaces, and influence other phenomena of technological importance,
e.g., the roughness induced leaking of sealings.
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Thus, studies of surface roughness is important not only for understanding many
natural and biological phenomena, but also for many technological processes. The
present drive toward miniaturization and the design of optimal systems by transfer of
ideas from studies on biological systems to materials science (bionics) [11], is likely
to accelerate the interest and efforts to study and predict the influence of surface
roughness on many phenomena.
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