
Chapter 12
On the Fractal Dimension of Rough Surfaces

Bo Persson

Abstract Most natural surfaces and surfaces of engineering interest, e.g., polished
or sand blasted surfaces, are self affine fractal over a wide range of length scales,
with the fractal dimension Df = 2.15 ± 0.15. We give several examples which
illustrate this and a simple argument, based on surface fragility, for why the fractal
dimension usually is <2.3. A kinetic model of sand blasting is presented, which
gives surface topographies and surface roughness power spectra in good agreement
with experiments.

12.1 Introduction

All natural surfaces and surfaces of engineering interest have surface roughness on
many different length scales, sometimes extending fromatomic dimensions to the lin-
ear size of the object under study. Surface roughness is of crucial importance in many
engineering applications, e.g., in tribology [1–4]. For example, the surface roughness
on a road surface influences the tire-road friction or grip [1]. It is therefore of great
interest to understand the nature of roughness of surfaces of engineering interest.
Several studies of the fractal properties of surface roughness have been presented,
but mainly for surfaces produced by growth (atomic deposition) processes [5]. Many
studies of surfaces produced by atomistic erosion processes, e.g., sputtering, have
also been presented, see, e.g., [6–8]. In this article I will present several examples
of power spectra of different surfaces with self-affine fractal-like surface roughness.
All surfaces have fractal dimensions Df = 2.15 ± 0.15 and I will give a simple
argument, based on surface fragility, for why the fractal dimension usually is <2.3.
I also present a kinetic model of sand blasting which gives surface topographies and
surface roughness power spectra in good agreement with experiments.
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12.2 Power Spectrum: Definition

We consider randomly rough surfaces where the statistical properties are transition-
ally invariant and isotropic. In this case the 2D power spectrum [3, 9]

C(q) = 1

(2π)2

∫
d2x 〈h(x)h(0)〉e−iq·x

will only depend on the magnitude q of the wavevector q. Here h(x) is the height
coordinate at the point x = (x, y) and 〈..〉 stands for ensemble averaging. From C(q)
many quantities of interest can be directly calculated. For example, the root-mean-
square (rms) roughness amplitude hrms can be written as

h2
rms = 2π

q1∫

q0

dq qC(q) (12.1)

where q0 and q1 are the small and large wavevector cut-off. The rms-slope κ is
determined by

κ2 = 2π

q1∫

q0

dq q3C(q). (12.2)

For a self affine fractal surface

C(q) = C0

(
q

q0

)−2(1+H)

(12.3)

Substituting this in (12.1) gives

h2
rms = πC0

H
q2
0

[
1 −

(
q1
q0

)−2H
]

(12.4)

and from (12.2) we get

κ2 = πC0

1 − H
q4
0

[(
q1
q0

)2(1−H)

− 1

]
(12.5)

Usually q0/q1 � 1 and since 0 < H < 1, unless H is very close to 0 or 1, we get

κ = q0hrms

(
H

1 − H

)1/2 (
q1
q0

)1−H

(12.6)
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Many surfaces of engineering interest, e.g., a polished steel surface, have rms-
roughness of order ∼1µm when probed over a surface region of linear size L =
π/q0 ∼100µm. This gives q0hrms ≈ 0.1 and if the surface is self affine fractal the
wholewaydown to the nanometer region (length scalea) thenq1 = π/a ≈ 1010 m−1

and (12.6) gives κ ≈ 0.1× 105(1−H). I use this equation to argue that most surfaces
of interest, if self affine fractal from the macroscopic length scale (say L ∼100µm)
to the nanometer region, cannot have a fractal dimension larger than Df ≈ 2.3 or
so, as otherwise the average surface slope becomes huge which is unlikely to be the
case as the surface would be very “fragile” and easily damaged (smoothed) by the
mechanical interaction with external objects. That is, if we assume that the rms slope
has to be below, say [3], we get that H > 0.7 or Df = 3 − H < 2.3. As we now
show, this inequality is nearly always satisfied for real surfaces.

12.3 Power Spectra: Some Examples

I have calculated the 2D surface roughness power spectra of several hundred surfaces
of engineering interest. Here I give just a few examples to illustrate the general
picture which has emerged. Figure12.1 shows the 2D power spectrum of a sand
blasted PMMA surface obtained from 1D-stylus height profiles. The surface is self-
affine fractal for large wavevectors and the slope of the dashed line corresponds to
the Hurst exponent H = 1 or fractal dimension Df = 2. For q < qr ≈ 104 m−1

(corresponding to the roll-off wavelength λr = π/qr ≈100µm) the power spectrum
exhibits a roll-off which, however, moves to smaller wavevectors as the sand blasting
time period increases (not shown).
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Fig. 12.1 The 2D power spectrum of a sand blasted PMMA surface based 1D-stylus height profiles
[10] (log10 − log10 scale). The slope of the dashed line corresponds to the Hurst exponent H = 1
or fractal dimension Df = 2
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Fig. 12.2 The 2D power spectra of grinded steel surface [11]. The slope of the dashed line corre-
spond to the Hurst exponent H = 0.72 or fractal dimension Df = 2.28

Figure12.2 shows the angular averaged power spectrum of a grinded steel surface.
The surface topography was studied on different length scales using STM, AFM and
1D stylus. Note that the (calculated) power spectra using the different methods join
smoothly in the wavevector regions where they overlap. The slope of the dashed line
corresponds to the Hurst exponent H = 0.72 or fractal dimension Df = 2.28

Figure12.3 shows the power spectra of twoasphalt road surfaces.Both surfaces are
self-affine fractal for large wavevectors and exhibit a roll-off for small wavevectors
which is related to the largest stone particles (diameter d) in the asphalt via qr ≈ π/d.
The fractal dimension of both surfaces are Df ≈ 2.20.
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Fig. 12.3 The2Dpower spectra of asphalt road surface [12]. The slopeof thedashed line correspond
to the Hurst exponent H = 0.80 or fractal dimension Df = 2.20
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Fig. 12.4 The 2D power spectrum of human wrist skin obtained from AFM measurements [13].
The rms roughness is hrms ≈ 0.25 µm within the studied wavevector region. The slope of the
dashed line corresponds to the Hurst exponent H = 0.89 or fractal dimension Df = 2.11

Not only surfaces prepared by engineering methods (e.g., sand blasting or polish-
ing) exhibit self-affine fractal properties with fractal dimensions Df = 2.15 ± 0.15
but so domost natural surfaces. Thus, for example, surfaces prepared by crack propa-
gation are usually self affine fractal with Df ≈ 2.2. Here I give three more examples
to illustrate this. Figure12.4 shows the 2D power spectrum of human wrist skin
obtained from AFM measurements. The rms roughness is hrms ≈ 0.25µm in the
studied wavevector region. The slope of the dashed line corresponds to the Hurst
exponent H = 0.89 or fractal dimension Df = 2.11. Figure12.5 shows 2D power
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Fig. 12.5 The 2D power spectra of dry and wet cellulose fibers [15]. The surface topography was
measured using AFM. The slope of the dashed lines correspond to the Hurst exponent H = 0.7 or
fractal dimension Df = 2.3
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Fig. 12.6 The 2D power spectrum of pulled adhesive tape based on optical andAFMmeasurements
[16]. The slope of the dashed line corresponds to the Hurst exponent H = 0.7 or fractal dimension
Df = 2.3

spectra of dry and wet cellulose fibers measured using AFM. The slope of the dashed
lines correspond to the Hurst exponent H = 0.7 or fractal dimension Df = 2.3.
Finally, Fig. 12.6 shows the 2D power spectrum of pulled adhesive tape based on
optical and AFM measurements. The slope of the dashed line corresponds to the
Hurst exponent H = 0.7 or fractal dimension Df = 2.3.

I have shown above that many engineering and natural surfaces exhibit self-affine
fractal properties in a large wavevector range with fractal dimension Df = 2.15 ±
0.15. A fractal dimension larger than Df = 2.3 is unlikely as it would typically result
in surfaces with very large rms-slope, and such surfaces would be “fragile” and easily
smoothed by the (mechanical) interaction with the external environment. However,
this argument does not hold if the surface is self-affine fractal in a small enough
wavevector region or if the prefactorC0 in the expressionC(q) = C0(q/q0)−2(1+H)

is very small. In fact, self affine fractal surfaces with the fractal dimension Df =
3 result when a liquid is cooled below its glass transition temperature where the
capillary waves on the liquid surface gets frozen-in. For capillary waves (see, e.g.,
[2]):

C(q) = 1

(2π)2
kB T

ρg + γq2 (12.7)

where ρ is the mass density, g the gravitation constant and γ the liquid surface
tension. For q � q0 = (ρg/γ)1/2 we have C(q) ∼ q−2 and comparing this with the
expression for a self affine fractal surfaceC(q) ∼ q−2(1+H) gives H = 0 and Df = 3.
In a typical case the cut-off q0 ≈ 103 m−1 is rather small, but the rms roughness and
the rms slope are still rather small due to the smallness ofC0 = kBT/ρg, which results
from the small magnitude of thermal energy kBT . Using AFM, frozen capillary
waves have recently been observed on polymer surfaces (polyaryletherketone, with
the glass transition temperature Tg ≈ 423 K and γ ≈ 0.03 J/m) [18], see also [17].
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Themeasured power spectrumwas found to be in beautiful agreementwith the theory
prediction of (12.7). For this case, including all the roughness with q > q0, one can
calculate the rms roughness to be hrms ≈ (kBT/2πγ)1/2[ln(q1/q0)]1/2 ≈ 1 nm and
the rms slope κ ≈ (kBT/4πγ)1/2q1 ≈ 1.

12.4 Simulation of Rough Surfaces: A Simple Erosion Process

I have argued above that if a surface is self affine fractal over a largewavevector region
(as it is often the case) it usually has a fractal dimension <2.3, since otherwise the
rms-slope would be so large (�1) as to make the surface fragile, and very sensitive
to the impact of external objects which would tend to smooth the surface. Here I
will consider a simple model of sand blasting, showing that if one assumes that
material removal is more likely at the top of asperities rather than in the valleys
(see Fig. 12.7), a surface with relatively low fractal dimension is naturally obtained.
The model studied here has some similarities with growth models involving random
deposition with surface relaxation. However, instead of adding atoms or particles
I consider removal of material. In addition, while in growth models the surface
relaxation is usually interpreted as a diffusive (thermal) motion of atoms, in the
present case thermal effects are not directly involved (but may be indirectly involved
in determining if the material removal involves plastic flow or brittle fracture).

We now present a model for sand blasting, where a beam of hard particles is sent
on the surface orthogonal to the originally flat substrate surface, and with a laterally
uniform probability distribution. The substrate is considered as a cubic lattice of

v

sand blasting
particle

brittle substrate

sand paper
v

(a)

(b)

Fig. 12.7 Sand blasting (a) and lapping with sand paper (b) will roughen an initially flat surface
but in such a way that high and sharp asperities never form i.e., the removal of material is easier at
the top of asperities than at the valley. This will result in a rough surface with low fractal dimension
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Fig. 12.8 Incoming particles (arrows) and the blocks removed by the impact (black squares sur-
rounded by colored rims) for a 1D version of the simulation model used. For the 2D model I use,
if a particle impact at site (i, j) (at position (x, y) = (i, j)a, where a is the lattice constant) then
one of the blocks (i, j), (i + 1, j), (i − 1, j), (i, j + 1) or (i, j − 1) is removed. Of these blocks I
assume that either the block which has the smallest number of nearest neighbors is removed (with
probability 0.5), since this block is most weakly bound to the substrate, or the highest block is
removed (with probability 0.5). In both cases, if several such blocks exist I choose randomly the
one to be removed unless the block (i, j) is part of the set of blocks, in which case this block is
removed

blocks (or particles) and every particle from the incoming beam removes a randomly
chosen surface block on the solid substrate. As shown in Fig. 12.8, if an incoming
particle impacts at site (i, j) (at position (x, y) = (i, j)a, where a is the lattice
constant) then one of the blocks (i, j), (i + 1, j), (i − 1, j), (i, j + 1) or (i, j − 1)
is removed. Of these blocks I assume that either (a) the block which has the smallest
number of nearest neighbors is removed (with probability 0.5), since this block is
most weakly bound to the substrate, or (b) the highest located block is removed
(with probability 0.5). In both cases, if several such blocks exist I choose randomly
the one to remove unless the block (i, j) is part of the set of blocks, in which case
this block is removed. The substrate surface consists of 2048 × 2048 blocks and I
assume periodic boundary conditions. We note that the processes (a) and (b) above
are similar to the Wolf-Villain [19] and Family [20] grows models, respectively.

Figure12.9 shows the topography of a surface produced by the eroding process
described above (see also Fig. 12.8), after removing 76290 layers of blocks. The
surface topography is practically undistinguished from that of sand blasted surfaces
(not shown). Figure12.10 shows the surface roughness power spectrum as a function
of the wavevector (on a log10− log10 scale). The surface is self affine fractal with the
Hurst exponent H = 1 (or fractal dimension Df = 2), which has also been observed
for sand blasted surfaces (see Fig. 12.1). Even the magnitude of C(q) predicted by
the theory is nearly the same as observed (see Fig. 12.1). For more results from
simulations of surfaces roughened by erosion, see the Appendix.
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Fig. 12.9 Topography picture of a surface produced by the eroding process described in Fig. 12.8
after removing 76,290 layers of blocks. The surface plane consists of 2,048 × 2,048 blocks. The
surface is self affine fractal with the Hurst exponent H = 1 (or fractal dimension Df = 2) (see
Fig. 12.10). The width of the removed particles (or blocks) is a = 0.1 µm. The surface has the rms
roughness hrms = 2.1 µm and the rms slope κ = 1.04
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Fig. 12.10 The surface roughness power spectrum as a function of the wavevector (log10 − log10
scale) after removing 76,290 layers of blocks (surface topography in Fig. 12.9). The surface plane
consists of 2,048× 2,048 blocks. The surface is self-affine fractal with the Hurst exponent H = 1
(or fractal dimension Df = 2). We have assumed the linear size of the removed blocks to be
a = 0.1 µm

12.5 Discussion and Summary

Surface roughness on engineering surfaces is important for a large number of prop-
erties such as the heat and electric contact resistance [21, 22], for mixed lubrication
[23], wear and adhesion [24]. Thus, for example, one standard way to reduce adhe-
sion is to roughen surfaces. In wafer bonding one instead wants the surfaces to be as
smooth as possible and already surface roughness of order a few nanometer (when
measured over a length scale of ∼100 µm) may eliminate adhesion.

Surfaces produced by brittle crack propagation tend to be self-affine fractal with
the fractal dimension Df ≈ 2.2, but no generally accepted theory exists which can
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Fig. 12.11 Brittle fracture usually produces self-affine fractal surfaces with the fractal dimension
Df ≈ 2.2. If (hypothetically) the fractal dimension would be much higher the surface slope would
be very high too, which would result in sharp asperities broken-off forming fragments localized at
the fracture interface

explain why [25, 26]. Fractured surfaces are usually very rough on macroscopic
length scales. If such surfaces would have the fractal dimension Df > 2.3 they
would have huge rms-slope, i.e., very sharp asperities would appear at short enough
length scales. It is intuitively clear that sharp asperities cannot form as they would
not survive the cracking process, but would result in fragments of cracked material
at the interface (see Fig. 12.11).

The argument presented in this paper for why the fractal dimension is close to 2 for
most engineering surfaces assumes that the surfaces are produced by the mechanical
interaction between solids and that the surfaces are fractal-like in a wide range of
length scales. Many examples of surfaces with fractal dimension Df ≈ 2.5 or larger
exist. For example, the surfaces resulting from electroreduction of Pd oxide layers
have the fractal dimension Df ≈ 2.57 (see [27]). In this case no mechanical interac-
tionwith external objects (which could smooth the surface) has occurred. In addition,
because of the relative thin oxide layer of the untreated surface, the self-affine fractal
properties will only extend over a relative small range of length scales. Similarly,
electrodeposition may result in surfaces with fractal dimension much larger than
2. Erosion by ion bombardment or exposure of a surface to plasma is another way
of producing rough surfaces with self-affine fractal properties. In [8] it was shown
that exposing a gold surface to oxygen or argon plasma produced self affine fractal
surfaces with the fractal dimension Df = 2.1 ± 0.1. Ion bombardment (sputtering)
of an iron surface produced a surface which was self-affine fractal over two decades
in length scales (from 3 to 300nm) with the fractal dimension Df = 2.47 ± 0.02
(see [7]). It is not obvious why the the gold and iron surfaces exhibit different fractal
properties, but it may be related to the much higher mobility of Au atoms on gold as
compared to Fe atoms on iron, which would tend to smooth the gold surface more
than the iron surface [28].

To summarize, I have shown thatmost natural surfaces and surfaces of engineering
interest, e.g., polished or sand blasted surfaces, are self affine fractal in a wide range
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of length scales, with typical fractal dimension Df = 2.15 ± 0.15. I have argued
that the fractal dimension of most surfaces <2.3, since surfaces with larger fractal
dimension have huge rms-slopes and would be very fragile and easily smoothed
by the interaction with external objects. I have also presented a simple model of
sand blasting and showed that the erosion process I used results in self-affine fractal
surfaces with the fractal dimension Df = 2, in good agreement with experiments.

It is clear that a good understanding of the nature of the surface roughness of
surfaces of engineering and biological interest, is of crucial importance for a large
number of important applications.

Acknowledgments I thank J. Krim for useful comments on the text.

Appendix

Here I present some more results related to simulation of rough surfaces by erosion
processes. Consider first the most simple picture of sand blasting where a beam of
hard particles is sent on the surface orthogonal to the originally flat substrate surface,
and with a laterally uniform probability distribution. The substrate is considered as
a cubic lattice of blocks (or particles) and every particle from the incoming beam
removes a randomly chosen surface block on the solid substrate. This process, which
is similar to the random deposition model [5], will result in an extremely rough
substrate surface with the Hurst exponent H = −1 and fractal dimension Df = 4.
This follows at once from the fact that the power spectrum of the generated surface is
independent of the wavevector i.e., C(q) = C0 (a constant) and using the definition
C(q) ∼ q−2(1+H) we get H = −1. The fact that C(q) is constant in this case
follows from the fact that the height h(x) is uncorrelated with h(0) for x �= 0. That
is, 〈h(x)h(0)〉 = 〈h(x)〉〈h(0)〉 = 0 for x �= 0. Thus we get

C(q) = 1

(2π)2

∫
d2x 〈h(x)h(0)〉e−iq·x ∼ 〈h2(0)〉

Let us now consider the erosion processes (a), (b) and (a + b) discussed in
Sect. 12.4. In Fig. 12.12 we show the power spectrum after removing 76,290, 19,070
and 2,384 layers of blocks assuming process (a+ b). For short time of sand blasting
a large roll-off region prevails which decreases towards zero as the sand blasting
time increases. The same effect is observed in experiments (not shown) and reflects
the fact that the correlation length ξ along the surface caused by the sand blasting
extends only slowly as the sand blasting time t increases (as a power law ξ ∼ t1/z ,
see [5]).

In Fig. 12.13 I compare the surface roughness power spectrum as obtained using
the random removal model with the random removal with relaxation models (a), (b)
and ((a+b) (seeSect. 12.4) after removing19,070 layers of blocks.The corresponding
topography pictures for processes (a), (b) and ((a + b) are shown in Fig. 12.14. Note
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Fig. 12.12 The surface roughness power spectrum as a function of the wavevector (log10 − log10
scale) for the erosion process (a+ b), after removing 2,384 (blue), 19,070 (green) and 76,290 (red)
layers of blocks. The wavevector is in units of 1/a and the power spectrum is in units of a4
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Fig. 12.13 The surface roughness power spectrum as a function of the wavevector (log10 − log10
scale) for all the erosion processes considered, after removing 19,070 layers of blocks. Thewavevec-
tor is in units of 1/a and the power spectrum is in units of a4

that the random removal process gives a constant power spectrumwhich I have never
observed for any real surface. The random removal with relaxation model (a) gives
also unphysical surface topography with high sharp spikes. The ((a+b) model gives
results in agreement with experiments, which shows, as expected, that both removal
of high regions (asperity tops) and low coordinated surface volumes are important
in sand blasting.

Note that random removal results in an interfacewhich is uncorrelated (see above).
The columns shrink independently, as there is no mechanism that can generate cor-
relations along the interface. The other erosion processes [(a), (b) and ((a + b)] all
involve correlated removal of material, allowing the spread of correlation along the
surface.



12 On the Fractal Dimension of Rough Surfaces 247

(a)

(b)

Fig. 12.14 Topography picture of surfaces produced by the eroding processes (a), (b) and (a + b)
after removing 19,070 layers of blocks. The surface plane consist of 2,048×2,048 blocks. The rms
roughness values are in units of a. Random removal without relaxation gives an extremely rough
surface (not shown) with the rms roughness hrms = 1,264a
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