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Abstract. Modern safety-critical systems are increasingly reliant on
software. Software safety is an important aspect in developing safety-
critical systems, and it must be considered in the context of the system
level into which the software will be embedded. STPA (System-Theoretic
Process Analysis) is a modern safety analysis approach which aims to
identify the potential hazardous causes in complex safety-critical sys-
tems at the system level. To assure that these hazardous causes of an
unsafe software’s behaviour cannot happen, safety verification involves
demonstrating whether the software fulfills those safety requirements and
will not result in a hazardous state. We propose a method for verifying
of software safety requirements which are derived at the system level to
provide evidence that the hazardous causes cannot occur (or reduce the
associated risk to a low acceptable level). We applied the method to a
cruise control prototype to show the feasibility of the proposed method.

Keywords: STPA approach, software safety analysis, temporal logic,
safety verification, formal verification methods.

1 Introduction

A safety-critical system is a system that can cause undesired loss or harm to
human life, property, or the environment, whereas safety-critical software is soft-
ware that can contribute to such loss or harm [1]. A software cannot directly
cause loss or harm, but it may control some equipment that may cause acci-
dents [2]. Therefore, many examples of safety systems which have failed due
to software related faults: the loss of Ariane 5 [4], Therac-25 [3], and more re-
cently Boeing 777-200 [8] and the Toyota Prius. Many software related accidents
and major losses are the result of incompleteness or other flaws in the software
requirements, not coding errors [1]. Safety is a system problem; therefore, to
understand the safety aspects of software, it is necessary first to understand the
general field of system safety.

STPA (System-Theoretic Process Analysis) [5] is an approach developed by
Leveson to identify safety requirements and constraints at the system level. In
STPA, the system is seen as a set of control loops (comprising interacting compo-
nents involving software) which interact with each other. STPA uses the existing
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knowledge about a system to guide the safety analysis process; therefore, it is
not necessary to have knowledge about the details of implementation.

1.1 Problem Statement

Typically, software verification focuses on proving the functional correctness of
software and demonstrating that the software fully satisfies all functional require-
ments [16]. However, they cannot make it safe and the correctness of software
cannot ensure the software is safe, or reduce the risk. Therefore, the software
must be analyzed regarding the safety aspect and verified against its safety re-
quirements at the system level [7]. As STPA is a new technique, which has
proven to be effective on establishing the safety requirements and constraints
at the system level (e.g. Space Shuttle Operations [18], Japanese Exploration
Agency (JAXA) [19]); it has not been used for identifying software safety re-
quirements in the system context and verifying the software against them.

1.2 Research Objectives

The overall objective of this research is to fill this gap and investigate the pos-
sibility of verifying safety-critical software against safety requirements and con-
straints which are derived at the system level by using STPA. To control the
associated risk of the safety-critical software, we first need to identify the po-
tential hazards and then demonstrate that a potential hazardous cause cannot
occur, i.e., the software cannot contribute to an unsafe state. The main purpose
of applying STPA to software in the context of a system in our method is to un-
derstand the software hazardous causes early to develop corresponding software
safety requirements which should be taken into consideration. The second pur-
pose is to reduce the amount time and effort of safety analysis and verification
at the code level.

1.3 Contribution

For that, we propose a method which provides a link between the safety analysis
at the system level and safety verification at the code level. This method enables
the safety analyst to extract the software safety requirements at the system level
and verify them at the code level.

2 Background

We give background information on the three main topics which we use in the
proposed method: STPA, safety verification, and formal specification and verifi-
cation:
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2.1 STPA

STPA [5] is a top-down system engineering approach to system safety; therefore,
it can be applied early in the system development process or before a design has
been created to generate high-level safety requirements and constraints. In con-
trast to traditional safety analysis techniques, which are based on reliability
theory, STPA is more powerful in terms of identifying more causal factors and
hazardous scenarios, particularly those related to software, system design and
human behaviour [6]. STPA identifies systematic failures such as software de-
sign errors, hardware design errors, requirements specification errors and other
operational procedures.

STPA is implemented in four steps [6]: (1) establish the fundamentals of anal-
ysis; (2) identify potentially hazardous control actions; (3) use the identified po-
tentially hazardous control actions to create safety requirements and constraints;
and (4) determine how each potentially hazardous control action could occur. In
step 1, the safety analyst must identify the accidents or losses which will be con-
sidered, hazards associated with these accidents, and specify safety requirements
(constraints). After establishing the fundamentals, the safety analyst must draw
a preliminary (high-level) functional control structure of the system. In step 2,
the analyst has to use the control structure as a guide for investigating the anal-
ysis to identify the potentially unsafe control actions. Then he or she translates
them to corresponding safety constraints. In step 3, the analyst has to identify
the process model variables for each controller (automated controller or human)
in the control loop and analyze each path to determine how each potentially haz-
ardous control actions could occur. At the end of the process, a recommendation
for the system design should be developed for additional mitigations.

2.2 Software Safety Verification

The first step of safety verification is to verify that the software requirements are
consistent with or satisfy safety constraints. Safety verification exists to provide
evidence that associated risk has been reduced or eliminated [1]. Safety verifi-
cation is not the same as functional verification. Functional verification assures
that the software fully satisfies its specifications, while safety verification uses
the results of the safety analysis process to assure that the software meets the
safety requirements [20]. The safety verification can be done in two ways [1]: (1)
static analysis which looks over the code and design documents of the system
(e.g. fault tree, formal verification); and (2) dynamic analysis requires the execu-
tion of the software to check all of the systems safety features. Static analysis is
the same as a structured code review. Systems can be proven to match require-
ments, but it will not catch any safety states that the requirements miss [1]. The
dynamic analysis has the ability to catch unanticipated safety problems, but it
cannot prove that a system is safe (e.g. software testing).

SFTA (Software Fault Tree Analysis) [1] is a static analysis technique which
is primarily used to discover all potential faults such as faulty inputs or software
bugs that could occur in software. SFTA has also been used for verifying software
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code. Leveson stated in [1] that SFTA is applicable only to small-sized software.
Because the complete generating of a tree is not possible for large software.

2.3 Formal Specification and Verification Techniques

Formal verification is a very active area of research, and many promising tech-
niques and methodologies have been invented for verifying computing systems.
Theorem proving and model checking are common methods used today. For-
mal verification entails a mathematical proof showing that a system satisfies its
desired property or specification. To do this, the property of interest must be
modeled in a mathematical structure (e.g. temporal logic). Temporal Logic has
been proposed by Pnueli [9] as an appropriate formalism in the specification and
verification of concurrent programs. Many different versions of temporal logic
have been used in the verification process such as Linear-Time Temporal Logic
(LTL), and Computation Tree Logic (CTL) [23] which have been broadly used
to express safety properties in a formal notation. An LTL formula consists of
atomic propositions, Boolean operators (¬, ∨,∧,↔,→, true, false) and tempo-
ral operators (© next, � always, ♦ eventually, U until, R release). CTL is an
extension of classical logic that allows reasoning about an infinite tree of state
transitions. Model checking is a very popular formal verification technique and
has been used widely in the verification of software. It first involves building a
finite state machine as a formal model of a system, and then verifying whether
the property, written in some temporal logic, holds or not through an exhaus-
tive search of the system state space. Model checkers can be used also for testing
purposes to generate test cases [10].

3 Software Safety Verification Method Based on STPA

The safety analysis of safety-critical software provides the safety requirements
which need to be tested. Safety verification shall be performed to verify a correct
incorporation of software safety requirements [24]. Verification must show that
hazards have been eliminated or controlled to an acceptable level of risk. Figure
1 shows the proposed method of software safety verification based on STPA
at the system level. The method includes three main steps: (1) safety analysis
of software at the system level; (2) formalization of safety requirements and
constraints; and (3) verification and testing at the code level.

3.1 Safety Analysis of Software at the System Level (Step 1)

This step aims at analyzing the software in the context of the system to identify
the potential hazardous causes of software that could lead or contribute to an
accident. At this step, the safety analyst will apply STPA to the requirements
specification of the whole system. Then he/she will extract the requirements
relevant to the software in the context of the system. The safety control structure
of a system will include the software in the control loop as the main component
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Fig. 1. Overview of software safety verification method

(controller) to depict the interactions between software and other parts of the
system (SW/HW components). Each unsafe control action in this context will
be documented with four types of hazardous control actions [5]: Not Providing
Causes Hazard, Providing Causes Hazard, Wrong Timing/Order, and Stopped
Too Soon/Applied Too Long. At the end of this step, the safety analyst will
translate each hazardous control action of software identified by STPA into the
corresponding safety constraints and requirements in the system context.

3.2 Formalization of Safety Requirements and Constraints (Step 2)

Up to this step, the safety requirements of the software are identified. These
safety requirements must be formalized using temporal logic (e.g. LTL, CTL) to
be able to verify them in the next step.

3.3 Verification and Testing at the Code Level (Step 3)

This step aims to verify the software at the code level against the safety require-
ments which are expressed in the formal specification in step 2. After formalizing
the safety requirements, this step can be done in two different ways: 1) using a
model checker for formal verification [22], or 2) using a model checker to gen-
erate corresponding test cases [17]. A model checker takes as input a model of
the software and the property of interest, which is written in temporal logic and
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then effectively explores the entire state space of the model. The model checker
generates counterexamples which can easily be turned into complete test cases
with the safety requirements (input and expected output).

4 Case Study: Vehicle Cruise Control

To illustrate the application of the method, we applied three steps of the method
to the prototype of a vehicle cruise speed controller. The cruise control (speed
control) system is a system which automatically controls the speed of a motor
vehicle based on a preset value of a steady speed given by the driver. The speed
controller unit is a program for judging the control scheme of the cruise control.
In [11], we have applied STPA to the adaptive cruise control system at the
abstract system level. Here, we focus on the safety analysis of software in the
system context. In accordance with the proposed method, the first step involves
applying STPA to the cruise control system. We use the A-STPA [12] tool to
document the STPA analysis results. In the following, we will describe in detail
the software safety verification based on a safety analysis at the system level.

4.1 Applying STPA to the Cruise Control

The results of applying STPA to the cruise controller at the system level are as
follows:

1. Analysis of Fundamentals: The safety analyst must first establish the
following fundamentals:

– Software Description: The software of the cruise control (controller)
maintains the vehicle speed automatically without pressing the acceler-
ator pedal. It does it by sending the adjust throttle position to move
as necessary to maintain the specified speed under varying conditions.
The throttle is moved by a throttle actuator. The cruise control soft-
ware maintains the speed of the vehicle on the occurrence of one of these
events: (1) driver engages the brake, (2) the engine stops running, (3) the
driver turns the ignition off, and (4) the driver turns the cruise control
off. The controller receives signals from several sensors such as rotation
sensor, brake pedal sensor, gear box sensor, and engine status sensor.

– Software Level Goals: G.1: Control the speed of the vehicle.

– Accident: AC1: The accident to be considered is a sudden accelera-
tion of the vehicle which leads to a crash with another vehicle and the
occupants are injured while the cruise control is in operation.

– The Related Software Level Hazards:
H.1: Unintended acceleration or deceleration of the vehicle when the
cruise control is in active mode.
H.2: The current speed value on the user interface is different from the
actual speed of vehicle.
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– Design Requirements:
DR.1: The target speed must be between 40 km/h <= vt <= 100 km/h.
DR.2: The software shall notify the driver when trouble is detected.
DR.3: It shall keep the acceleration rate within 0.25 and 0.4 m/sec.

– Safety Constraints:
SC1: The controller shall keep the current speed of the vehicle below or
equal to the desired speed.
SC2: The cruise control shall not engage at the speed < 25 mph (40kph).

– Safety Control Structure Diagram: Figure 2 shows the control struc-
ture diagram which depicts the interaction between the software and
other components in the system.

Fig. 2. Safety control structure of cruise control software at the system level

2. Identify Unsafe Control Actions: Based on the control structure dia-
gram (Fig. 2), we can identify the potentially unsafe control actions of the
software at the system level which can lead to critical error. For example, the
control Action: Provide throttle position command (out) can be documented
as follows:

– Not Providing Causes Hazard: Throttle position command provided
but not received by the throttle actuator when the cruise control is engaged
(on) [H1]

– Providing Causes Hazard: The throttle position is commanded while
the cruise control is inactive (off) [H1]. The throttle position com-
manded with incorrect value of the throttle position [H1].



408 A. Abdulkhaleq and S. Wagner

Table 1. Examples of safety requirements which are derived by STPA

#code Hazardous control actions Safety Requirements and Con-
straints

SR1 Throttle position command pro-
vided but not received by
the throttle actuator when the
cruise control is engaged (on).

The throttle actuator must re-
ceive the adjustment throttle
position command when it is
commanded by controller.

SR2 The throttle position command
is commanded while the cruise
control is disengaged (off).

The controller must prevent
rogue commands to the throttle
when cruise control is off.

SR3 The throttle is commanded with
incorrect X throttle position
value.

The controller must be able to
detect incorrect voltages issuing
from the throttle position sensor
(0.9-4.0v).

– Wrong Timing or Order Causes Hazard: Late: the command pro-
vided too late [H1]. Early: The command provided too early [Not
Hazardous]

– Stopped Too Soon or Applied Too Long: N/A

Each hazardous cause will be translated into software-level safety constraints
(see in Table 1.)

3. Identify Causal Factors: Figure 3 shows the process models of the speed
controller and human operator as an example. The main process variables
of the cruise control controller are the cruise control states, throttle control,
and the speed control. These process model variables can be used to analyze
each hazardous control actions which could happen. At the end of this step,
the corresponding safety constraints will be refined.

4.2 Formalising the Safety Requirements

After identifying the safety commitments, we can translate them into formal
specifications to be able to verify them with formal verification methods in the
next step. Based on the classification of safety requirements for formal verifica-
tion which are described in [13] by Friedemann, we mapped the four types of
the hazardous control action classifications to the formal specification.

Mapping Safety Requirements to a Formal Specification: The mapping
process starts with taking the set of the process model variables of the software
(software states variables) which are identified in the last step of STPA to un-
derstand the main states of the software. To translate the safety requirements
into a formal specification, first, we write them as informal textual requirements,
i.e. if we consider the safety constraint SC2:The cruise control shall not engage
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Fig. 3. The process model of the cruise control software at the system level

at the speed < 25 mph (40 kph). Second, we translate the textual descriptions
to formal textual description by using the control flow statements (IF- Then,
Wait- Until, Wait- For, Do- Until), for example:

IF CruiseControl (inactive) and Read speed(actual speed) <25 mph Then
CruiseControl (inactive)
Finally, we translate them into an LTL specification, for example:

� ( CruiseControl (off) ∧ Read Speed(speed data) < 25 mph) → � CruiseC-
ontrol (off)

Examples of formal specifications of software safety requirements which are
derived from the STPA safety analysis at the system level are:

– SR1: � CruiseControl(cruise) → � (change Throttle ∧
set Throttle (position Throttle) )

– SR2: � CruiseControl (off) → � ¬(set Throttle(position Throttle) ∨
change Throttle)

– SR3: � set Throttle(position Throttle) →
� (position Throttle > min value ∧ position Throttle < max value)
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4.3 Verification and Testing of the Safety Requirements

To verify the safety requirements of the cruise control software, we used the
Symbolic Model Verifier (SMV) which was developed by McMillan [14] and the
SMV specification of the cruise control which was written by Ammann, Black,
and Majurski [10]. We use SMV to either check the safety requirements or to
generate the test set. First, we run SMV to test whether the model of the system
satisfies the new safety requirements which we derived by STPA. As a result,
the cruise control model did not satisfy SR1, SR2, and SR3, because the SMV
specification model of the system does not include any state for controlling the
throttle or any constraint about the restricted value of the throttle (the rate
of throttle position value 0.09v - 4.0v). Therefore, we update the SVM speci-
fication model of the cruise control prototype and run SMV again. The SMV
specifications of SR1, SR2 and SR3 are :

SPEC AG (CruiseControl= cruise) -> AG (change_Throttle &

set_Throttle.position_Throttle > 0)

SPEC AG (CruiseControl= off ) -> AG !(set_Throttle.position_

Throttle > 0 | change_Throttle)

SPEC AG (set_Throttle.position_Throttle > 0) -> AG (position_

Throttle > min_value & position_Throttle < max_value)

Now, SR1, SR2, and SR3 can be verified by SMV and the system model
satisfies them. Then counterexamples can be generated by SMV to derive a new
test suite.

5 Related Work

There is a large body of existing work on using formal verification for safety
properties, safety verification by using SFTA, and generating test cases by using
a model checker. Here, we discuss some of the most closely related work.

Leveson et al. [7] explain software fault tree analysis as a method for safety
verification at the code level to be used on a more complex language involving
such features as concurrency and exception handling. They consider the applica-
tion of the safety analysis procedures to requirements modeling and specification
languages. Kristen et al. [15] investigates how the results of one safety analysis
technique, fault trees, are interpreted as software safety requirements by us-
ing interval logic to be used in the program design process. They interpreted
fault trees as temporal formulas and how such formulas can be used for deriv-
ing safety requirements for software. Friedemann[13] propose the classification
of safety requirements for the formal verification of software models of industrial
automation systems. He expresses the safety requirements by using computation
tree logic. The main reason of developing this classification is to handle difficul-
ties in formal specification of safety requirements by software engineer. Recently,
Black[17] shows how to generate test cases by using model checking.

The previous work focused on using the formal verification methods to verify
that the software fulfills its specification (functional correctness). However, not
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all software errors can lead to the critical error that may lead to an accident.
Safety properties (e.g. deadlocks, unexpected behavior, etc.) also are a special
interest in formal verification. There have been a lot of work to verify safety
properties at the code level. Verifying safety requirements, which are derived
by using the traditional hazard analysis techniques such as FTA and SFTA, is
an active area in verifying safety-critical systems. However, FTA and SFTA are
difficult to apply to different parts of the safety related system (e.g. interaction
between components). They evaluate only the possibility of occurrence, not the
likelihood and appear to be scalable for software, but they have limitation. For
example, the root node can only describe a known failure and they are labor-
intensive and thus costly for large-size software [21].

Since safety of software cannot be analyzed without taking into account the
system context, we take the advantages of STPA at the system level to construct
a method for verifying safety requirements derived at the system level by using
STPA. The method starts with safety analysis of software in the context of
the system level by using STPA to derive the high-level safety requirements and
constraints. The potential hazards identified during STPA will be translated into
a set of verifiable safety requirements. The safety verification uses these verifiable
safety requirements to prove that the software satisfies these requirements.

6 Conclusions and Future Work

In this paper, a method of software safety verification at the system level based
on STPA is proposed. We investigated the application of the STPA structure
to software, and we found that STPA can be directly used for software. We
mapped the results of the STPA safety analysis to a formal specification to be
able to verify safety requirements at the software code level. The limitation of
the method is that the formal specification is done manually which may lead to
much effort to construct and check the potential combinations of relevant states.
Therefore, we are exploring the automation of this step and integrate it with
our A-STPA tool as future work. Furthermore, we plan in-depth case studies to
improve the method by applying it to real safety-critical software in industry. We
plan also to investigate the effectiveness of using the proposed method during
an ISO 26262 life cycle in the automotive industry.
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