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Abstract. Assuring systems quality is an inherent part of developing
safety-critical embedded systems. Currently, continuous increase of sys-
tems complexity, in particular that of software, makes this development
challenging. In response, more and more software faults are remaining
unidentified at design-time so that changes and maintenance need to be
performed at an increased rate. Unfortunately, today’s safety-critical sys-
tems are not designed to be upgraded or maintained in a seamless way, so
that the overhead of performing changes may be considerable, especially
when such changes require to re-verify and re-validate the whole system.

In this paper, we present an approach to perform software changes in
the operation and maintenance phase of the systems lifecycle. Changes
are performed dynamically, by replacing parts of software (i.e., software
components) with their functionally equal out-of-the-box instances. In
order to prevent the impact of changes on systems integrity, we provide
a support to model and to analyze the system. The main outcome here
is that specific kind of changes can be maintained without adding any
development costs.

Keywords: safety-critical embedded systems, component-based systems,
dynamic configuration.

1 Introduction

Maintaining a correct function even in presence of faults is an important charac-
teristic of safety-critical embedded systems. In order to reduce the risk of failures,
and thus to avoid the potential environmental damages or harm on humans, their
hardware/software development has to be rigorous and quality assured.

Currently, rapid and continuous increase of systems complexity, in particular
that of software, makes the development of these systems challenging [4] [12]. In
response, more and more software faults are remaining unidentified at design-
time so that changes and maintenance need to be performed at an increased rate.
Concrete examples of such change and maintenance demands are quite often
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recalls of vehicles, medical devices, and other products. Some of these recalls are
related to faults located in the software functions, such as the control algorithms,
libraries, flaws in modification or adaptation, and other. According to recent
studies related to defect analysis in recalls, those faults are getting more frequent,
as more and more functions are being implemented in software [2]. Eliminating
those faults in most current safety-critical systems is quite difficult, in particular
because it has to be evidenced that the changed system still maintains certain
level of quality – a so called safety integrity in the notation of safety standards.
To provide such an evidence, many steps in the development lifecycle have to
be repeated. In addition, depending on the impact of changes and regulations of
the considered safety standard, new certification might be required.

In this paper, we present an approach to perform software changes in the
operation and maintenance phase of the systems lifecycle. Changes are per-
formed dynamically, by replacing parts of software (software components [5])
with their functionally equal out-of-the-box instances. Before any change can
be performed, a new system configuration is analyzed against the violation of
the safety integrity. Thus, only the configurations that pass this analysis step
can be installed into the system dynamically. To enable such assured dynamic
configurations, we have provided the following basis in our previous work: (a) a
runtime mechanism that allows to load the out-of-the-box software components
into a real-time operating system dynamically – the dynamic linker [10], and
(b) a design-time mechanism to ensure the consistency of new system config-
urations [11]. This consistency mechanism performs the analysis of a changed
system based on modelled properties which describe certain system attributes,
such as memory and timing budgets for example1. In order to determine whether
changes caused by replacing software components have an impact on the safety
integrity, there is a need to identify which attributes may be relevant here. For
this purpose, we analyze in this paper how the change management is regu-
lated in some safety standards, and under which conditions the replacements of
components are allowed.

The main outcome here is that for specific kind of changes, in which software
components can be replaced, the system does not need to be turned back into the
development phase. Furthermore, if the re-certification of the system is required,
the original certification data can be reused, since they are not impacted by those
changes. In response, replacements of software components can be maintained
without any development costs.

The remainder of this paper is organized as follows: Section 2 provides a
brief overview of relevant related work. Section 3 describes how changes are
handled in safety standards, and which system attributes have to be considered
when analyzing changes. In Section 4 the proposed approach is described, and
a short discussion is given in Section 5. Finally, concluding remarks are given in
Section 6.

1 We use the notation system attributes to identify various functional and non-
functional system aspects, such as performance requirements, constraints, etc.
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2 Related Work

Now we turn to a brief overview of related studies. We summarize here some
relevant articles that handle the analysis of changes in safety-critical embedded
systems.

To date, much research has been done on analyzing planned changes in soft-
ware architectures for safety-critical systems [1] [15] [13] . In the work by Adler
et al. [1], an adaptive architecture for safety-critical automotive systems is pro-
posed. The main goal here is to increase the systems availability by allowing
software components to implement diverse behaviours, so that in the event of
failures or degradation of quality, the automotive system can continue operating
by switching between correct implementations. Since different implementations
of components may have different quality, the authors provide a design-time
analysis to prevent mixing not allowed combinations of component implementa-
tions. For this purpose, they define a quality system, with a set of fixed quality
types. A more advanced framework for dynamic adaptation of avionics systems
was developed by Montano [15]. The goal is to adapt the system to new, correct
configurations, in case of failures. To perform this, a common quality system de-
fines the contracts between functions and available static resources (e.g. memory
consumption, CPU utilization, etc.) and in this way it restricts the possible set of
correct configurations. An important aspect of this work is that it demonstrates
the CP approach to solving the composition problem. However, the quality type
system only considers static resources, and does not consider contracts between
functions. Ultimately, the approach is strongly focused on dynamic adaptation
with human-assisted decision making. Similar reconfiguration strategy is used in
[13], but the consistency of the reconfiguration here is ensured by the runtime
mechanisms (partitioning).

There are also some works which focus on upgrading safety-critical systems
[20] [16] [19]. One of the most notable is work done in the scope of the project
PINCETTE, which has as a goal to perform live upgrades of software systems
that control the safety-critical processes [20]. Although the topic is beyond the
scope of available validation methods in the practice, the aim is to evaluate
the feasibility of formal methods to such use cases. In contrast to our data
flow-oriented analysis, the focus here is on validating the interaction between
upgraded behaviours. Another work [16], done in the scope of the RECOMP
project, addresses also live upgrades as one of the goals to reduce the costs
for certifying systems. However, only dynamic linker has been realized here,
without considering the analysis of changes. Finally, the work in [19] shows how
to validate changes of upgraded safety-critical system. Here, model checker is
used to verify changed behaviour.

In summary, various analysis methods have been developed to validate changes.
However, none of the approaches discussed here consider regulations of stan-
dards, to identify whether changes they support are allowed and, if so, to which
extent.
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3 Addressing Changes in Engineering of Safety-Critical
Embedded Systems

Identifying system requirements affected by changes is a crucial step in the
change management process. To determine which requirements and which re-
lated system attributes influence the systems safety integrity, we analyze in the
following how changes are regulated in safety standards. Based on this analysis,
we build a list of system attributes that we further use to construct our software
architecture, and to build properties for our software components.

3.1 Change Management in Safety Standards

In general, standards for functional safety provide the guidelines on how to
align the system development with the safety lifecycle in each phase. One aspect
of these guidelines are activities related to maintenance and operation phase
of the systems lifecycle. Changes in the operation phase are usually handled
in the context of the supporting processes defined in standards, such as the
maintenance, the configuration management, and the change management [18].
In the following, we describe the change management defined in the IEC 61508,
which is a generic safety standard applied in the industry. We align our approach
to this standard, because many guidelines it provides can also be found in other
standards applied in specific industrial sectors, since they represent derivatives
of the IEC 61508 (e.g., the ISO26262 standard provides similar guidelines for
maintaining changes in automotive systems).

The lifecycle of the IEC 61508 standard comprises the engineering activi-
ties for software and systems scope. Changes in the operation and maintenance
phase of systems are described in parts 1, 2 and 3 of the standard, in the con-
text of the supporting processes: maintenance, configuration management, and
change management. Each of these processes has defined steps, the inputs and
the work products it shall produce. To ensure the safety integrity after imple-
menting changes, the standard prescribes requirements that have to be fulfilled
and a list of possible techniques and measures to apply within these processes.
The requirements are mainly related to activities that need to be performed if
safety integrity is affected by changes. In Table 1, we have filtered out the most
relevant requirements. Basically, if safety integrity is affected by changes the
standard recommends to (i) perform the hazard and risk analysis in order to
identify additional faults that might be introduced by such changes and (ii) to
return to the appropriate phase in the software lifecycle to implement changes.
On the system level (part IEC61508-2), it is recommended to use the same de-
velopment equipment and expertise (e.g., tools, previous system configuration,
project artifacts, etc.), in order to just focus on changed parts only. In addi-
tion to requirements, developers have the option to choice which techniques and
measures to perform, based on the level of safety integrity they want to achieve
after implementing changes (bottom part of the table). Among them, the most
influential measure here from the aspect of costs is a need for the verification and
validation. For the highest levels of safety integrity, the standard recommends to



Assured Dynamic Configuration of Safety-Critical Embedded Systems 171

Table 1. IEC 61508 requirements, measures and techniques related to change man-
agement (an excerpt)

Requirements on software change management, IEC 61508-3
7.8.2.3 An analysis shall be carried out on the impact of the proposed software modification on

the functional safety of the E/E/PE safety-related system: a) to determine whether or
not a hazard and risk analysis is required; b) to determine which software safety lifecycle
phases will need to be repeated.

7.8.2.5 All modifications which have an impact on the functional safety of the E/E/PE safety-
related system shall initiate a return to an appropriate phase of the software safety lifecycle.
All subsequent phases shall then be carried out in accordance with the procedures spec-
ified for the specific phases in accordance with the requirements in this standard. Safety
planning (see Clause 6) shall detail all subsequent activities.

Requirements on system change management, IEC 61508-2
7.8.2.3 Modifications shall be performed with at least the same level of expertise, automated tools

(see 7.4.4.2 of IEC 61508-3), and planning and management as the initial development of
the E/E/PE safety-related systems.

7.8.2.4 After modification, the E/E/PE safety-related systems shall be reverified and revalidated.
Recommended techniques and measures, IEC 61508-3 A.8

2 Reverify changed software module
3 Reverify affected software modules
4a/4b Revalidate complete system or Regression validation

perform the re-verification and re-validation of the complete system (measures
2, 3, 4a in the Table 1). Alternatively, regression validation would also suffice
(measure 4b). Nevertheless, changed artifacts (from the work products of the
hazard and risk analysis down to the test reports) have to be newly certified.

In summary, the change impact on safety integrity implies to update many
work products throughout the systems lifecycle, to repeat particular steps of
that lifecycle and to re-verify and re-validate the system. However, according
to requirements 7.8.2.3 and 7.8.2.5, those activities have to be performed only
if there is an impact on the functional safety (i.e., the systems safety integrity
is changed). Our goal in this context is to allow changes to an extent to which
they have no impact on the systems safety integrity. For this purpose, we need
to evaluate the requirement 7.8.2.3-a, for every change request. If there is no
need for the hazard and risk analysis, changes are allowed, otherwise not. To
realize this, we first need to identify the system attributes that have an impact
on systems safety integrity. Based on these attributes, we can set constraints
on the architectural level (e.g., software components, layers, operating system
configuration, etc.) that would allow us to evaluate the requirement 7.8.2.3-a. In
the following, we introduce these attributes.

3.2 Impact of Changes on System Requirements

Safety standards set requirements to achieve the functional safety, while leaving
the space for the developers on details on how they should implement those re-
quirements. The same holds for the change management, i.e., the IEC 61508 does
not specify which system attributes have to be considered when analysing the im-
pact of changes. More concrete guidelines about this can be found in the avionics
domain, concretely in the concept Reusable Software Component (RSC) from
the Federal Aviation Administration (FAA) that was developed for the standard
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DO-178B, to enable reuse of software components and their late integration into
a certified safety-critical system [7]. Similar to change management, the aim is
to maintain the functional safety after integrating components. Although RSC
provides concrete information about reusing pre-fabricated components, no fo-
cus has been given on how to design such components for reuse – for example,
how to describe the context in which components have to operate (embedded
system, environment, etc.) and which system attributes contribute to that con-
text. Similar to RSC, the concept Safety Element out of Context (SEooC) as
part of the automotive standard ISO26262 defines reuse for the sub-systems, but
on the abstraction level of requirements.

To our knowledge, the only available official publication that handles change
management in detail and is related to safety standards are the FAA guidelines
on analyzing the impact of changes in software [6] [17]. Here, a collection of
the concrete system attributes that might be affected by changes is presented.
This collection is made to help developers in the post-certification process of
the DO-178B standard to ensure the safety integrity of the changed system by
determining the impact of changes on the system, and by estimating the overhead
to re-verify, re-validate and re-certify the system. Although avionics domain is
addressed here, most of those attributes are common to embedded systems in
general. In Table 2, we summarize the common system attributes.

Table 2. Considered system attributes to analyze impact of changes, according to
Federal Administration Aviation (FAA) [6]

System attribute Description
traceability requirements, design, tests, procedures
memory margin memory allocation requirements (volatile, non-volatile mem-

ory)
timing margin timing requirements (task scheduling, interface timing, ...)
data flow coupling between software components (data syntax, seman-

tics)
control flow coupling between software components (events, calls, ...)
input/output interfaces with the external world (bus, hardware, memory,

...)
development environment and pro-
cess

compilers, linkers, loaders, tools

operational characteristics runtime mechanisms (changes on limits, i.e. contracts, excep-
tion handling, ...)

partitioning change on protective safety mechanisms

We use some of the FAA attributes as the first class entities to maintain the
consistency of the system, and to estimate the impact of changes. We discuss
the selection of attributes in the following section more in detail.

4 Ensuring Consistency of System Configurations

In this section, we introduce our approach to ensuring the consistency of system
configurations. To this end, we show how we define a system using attributes
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Fig. 1. Proposed workflow for ensuring systems consistency: system modelling using
contracts to describe attributes (top), consistency analysis (middle) and dynamic de-
ployment of software components (bottom)

described in the previous section, and how we analyze the impact of changes.
All information about systems consistency is contained in those attributes.

The proposed approach in the workflow form is depicted in Figure 1. On the
top, a model of the system is defined. This model consists of the two elements:
software components which implement certain application-level functions, and
the platform, which is a model of an embedded system. Both software compo-
nents and the platform implement certain contracts, in order to express relations
to other dependent components or platform. These contracts are the fundamen-
tal elements of the system model that allow us to maintain the consistency of the
system. They contain the information about system attributes discussed in the
previous section, and provide means to build relationships to other contracts.
Based on those relationships, impact of changes in one particular contract can be
tracked throughout the complete system. We introduce contracts later in Section
4.2. In the next step of the workflow, the system in terms of contracts is trans-
lated into a so called constraint network, i.e., a set of inter-connected variables
and constraints. This constraint network represent contracts and their relation-
ships in another problem domain, which allows us to automatically analyze the
consistency of the system by evaluating constraints.
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In the last step of the workflow, components can be dynamically loaded into
the platform, depending on results of the analysis. If all constraints in the anal-
ysis step are satisfied, the system modelled in the first step is consistent, i.e., we
say the system configuration is assured. Thus, any change in the modelling step
can be captured and analyzed in the constraint network.

In the following, we describe parts of this workflow more in detail.

4.1 Software Architecture

To perform changes in the system by replacing some parts of it, there is a need
for an adequate architectural support, i.e. a design for upgrades [9]. Another im-
portant aspect here is that a degree of flexibility shall be balanced to an extent
to which an the impact of changes on system attributes listed in Table 2 can be
managed. For example, if changes in behaviour of certain software functions can-
not be analyzed (e.g., in the constraint network from Figure 1), replacing those
functions with different behaviours shall not be approved. Therefore, certain
limitations are necessary to set on the design.

For our system, we use a Component-based Software Engineering (CBSE) [5],
which is currently a key paradigm applied for building safety-critical systems.
Automotive AUTOSAR, standards such as IEC61131/499 and IEC61850, are
some of the reference component-based architectures. In those architectures, soft-
ware components implement parts of systems functions, such as the controllers,
software sensor and actuators. Due to well-defined interfaces, component may
implement functions on different granularity levels, e.g., like Matlab Simulink
function blocks and sub-systems, thus allowing for compositional (hierarchical)
design. Moreover, well-defined interfaces allow their reuse, customization for the
use in different contexts, and so forth.

Our software architecture is depicted in Figure 1 (bottom part). Here, software
components implement certain software functions composed into an application,
whereas their lifecycle, their coordination and resources from the operating sys-
tem are managed by the underlying middleware, i.e., a component container.
Changes related to software may impact any of these layers, and therefore any
of the introduced system attributes. In order to be able to analyze such an
impact, we set limitation on the design so that replacements of software com-
ponents are allowed only. That means, some of the system attributes are fixed
at design-time so that changes have no influence on those attributes. For ex-
ample, connections between software components have to be static, since they
may affect the functional requirements if changed (e.g., adding/removing soft-
ware components, or changing connectors may affect systems behaviour), and
this can only be analyzed manually.

With our limitations, the impact of changes is related to software components
and their interaction with the platform only. However, such cases are also not
trivial, since changes may still have an impact on systems consistency. For ex-
ample, the consistency may be compromised if the replaced software component
implements interfaces with different semantics, e.g. different value intervals pro-
vided to dependent components, and new intervals were not considered during
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the system verification. Similarly, mixing components with different quality lev-
els may cause the same effects, e.g. deploying components qualified for the lower
level of the safety integrity than the integrity of the platform.

The main impact of changes here is on (i) resource management, in particular
on task and memory management for components, and on (ii) interfaces between
components and their interfaces to the platform. From the perspective of the
software architecture, the configuration of tasks (i.e., number of tasks, their
scheduling policy, etc.) and the organisation of memory (i.e., memory layout,
size of the heap, and allocation to tasks) are static features. However, they have
to be included in the analysis since exchanged components may have different
demands with regard to resources (timing, memory).

Similarly, the connections and interfaces between components are static, but
many details have to be considered in order to ensure that the integration or the
composition is correct (i.e., the syntax and the semantics, such as units, valid
intervals of certain data values, etc.). In addition, some components may imple-
ment many alternative behaviours so that different configurations of interfaces
are possible. Therefore, we consider interfaces in our analysis. Finally, details
with regard to the development process and the operational profile are also parts
of the analysis. In Table 3, we summarize system attributes that we include in
the analysis, and possible types of changes (right column). The systems consis-
tency is therefore analysed based on these changes only. The remaining systems
attributes from Table 2 are fixed at design time, and cannot be influenced, i.e.,
the control flow of components, their interaction semantics and behaviour are
implemented as a static part of the architecture.

Table 3. System attributes considered in the consistency analysis, selected from FAA
attribute collection [6]

System attributes Allowed changes
memory margin components: volatile and non-volatile memory

platform: volatile memory (allocated to tasks), non-volatile mem-
ory

timing margin components: execution time
platform: task execution time

data flow components/platform: syntax (datatype, interface), semantics (in-
tervals, values, specific constraints (units, standard compliance,
configuration and calibration data, ...))

development environment
and process

components/platform: tools (compiler, linker, specific constraints
(build options, ...)), version

execution platform components/platform: architecture (cpu, floating point support,
...), safety integrity level

4.2 System Modelling

To integrate the information about selected attributes from Table 3 into the sys-
tems structure, we use Contract-based Design paradigm (CBD) [3]. According to
CBD, software components and the platform implement certain contracts, which
capture part of that information (i.e., a quality stamps or properties). In addi-
tion to capturing information, contracts provide means to integrate components
and platform.
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Among few types of different contract available, such as state transition-based
contracts like interface automata, probabilistic contracts, etc., we use a form that
is based on data semantics, i.e., data flow contracts [3]. According to this type,
every contract consists of data parameters, and expressions (or properties) on
those data parameters in form of assumption and guarantees. The guarantees
describe a valid behaviour in form of expressions, that can evaluate to true/-
false, depending on the evaluation of expressions in assumptions. For specifying
contracts, various formalisations can be used, for example logic languages such
as propositional logic, first order logic, their extensions, and other.

In Figure 2, we show how the structure of our software components is defined
to match with used contracts, and how different types of system attributes are
modelled using contracts. A trivial example is shown here just to simplify the
demonstration. Similar to the structure of contracts, every software component
and the platform are defined as a set of data parameters, input and output data
variables. In addition to this information, they contain a list of implemented
contracts. Thus, data parameters in contracts relate to data parameters of their
corresponding components/platform.

Another essential aspect of CBD are the relationships between contracts,
which allow to verify the composition between two contracts, if their assump-
tions and guarantees are defined in a formal way. In our example, the contracts
of components MIS and MIIAS are related with each other using a composition
relation, which is valid only if these contracts are compatible and can interact.
Concretely, this means the relation is valid if the contract of a component which
accepts data, the C1 implemented by component MIIAS, can be satisfied by
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Fig. 2. Structure definition of software components and the platform, and supported
types of contracts shown on an example of the engine controller, adopted from [8]
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the guarantees of the providing component. In the example, this can evaluate to
true only if the assumption (25 ≤ tig ≤ 200) can also evaluate to true2. This can
only be satisfied, if the guarantee of the contract C1 of MIS , (50 ≤ tig ≤ 150),
matches with the assumption (25 ≤ tig ≤ 200), which is the case in the example,
since MIIAS can accept more values of tig (for more details, please refer to [11]).
Therefore, guarantees and assumptions of dependent components are interre-
lated by their expressions. In a similar way, we define contracts for resources
and quality information, as shown in the figure.

Based on relationships between contracts, information about the system at-
tributes on a system level is maintained. Changes in any contract (or exchanges
of contracts) can be captured by evaluating assumptions/guarantees of other
dependent contracts.

4.3 Consistency Analysis

The consistency analysis is based on verifying relations between contracts, in
particular, by evaluating their assumptions and guarantees. As a background
technology, we use Constraint Programming paradigm (CP) [14], which is a
widely applied method to solve decision and optimization problems. The essen-
tial aspect of CP is a problem definition, which is represented as a network of
variables of various types and constraints. Here, constraints represent various
kinds expressions on variables (logical, arithmenic, etc.), and can be related to
other constraints. Solving that problem means evaluating all constraints in the
network. Thus, there is a solution if all constraints in the network are satisfied.

In our approach, we translate the system modelled in form of contracts into
such a constraint network. For this purpose, we have defined a model of a con-
tract, its variables, assumptions and guarantees, and relations between contracts
as network elements, i.e., variables and constraints. The systems consistency is
therefore analyzed by evaluating constraints that are derived from contracts (for
more details, please refer to [11]).

5 Discussion

We showed in this paper that simple replacements of software components are
not trivial. Many details about functional and non-functional aspects of software
components have to be considered to ensure that replacements have no impact
on systems integrity. One of the major challenges here is to determine how much
information should be considered in the analysis, to have a confidence in its
results. With the list of systems attributes we introduced in this work, some
fundamental aspects are covered, but much more details might be required,
depending on the specific domain. This collection of attributes can be extended
according to types of contracts introduced.

2 This data is related to the ignition time of an engine controller tig. The components
modelled here implement contracts in order to satisfy the timing requirement on
allowed difference between injection and ignition time, i.e. (tig − tin).
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The analysis method presented here can also be applied to some existing
component-based systems, but in some cases with certain limitations. In AU-
TOSAR for example, changes would be possible on a level of Runnables, which
are units of the execution inside of AUTOSAR software components, and have a
generalized standard behaviour (read, execute, write) [12]. In contrast, changes
of complete software components could not be supported, because events for
the execution of Runnables are user-defined, and other techniques are required
here to analyze the interaction between those events. Generally, for synchronous
data flow systems, such as IEC61131-based systems, or Matlab Simulink func-
tion blocks, it is more easily to apply the analysis, since software components
used here have a standard behaviour and standard execution semantics.

6 Conclusion

In this paper, we presented an approach to perform changes on safety-critical
embedded systems in the operation and maintenance phase. Changes are lim-
ited to replacements of software components. To prevent the impact of such
type of changes on systems integrity, we have analyzed which related system at-
tributes might be affected when replacing software components. Based on those
attributes, we provided a modelling means to build a system including attributes
on the level of software components and their platform (embedded system), and
we provided a consistency analysis of such a modelled system. The main out-
come of this work is that for replacements of software components the system
does not need to be turned back into the development phase.

The collection of attributes described here provides a foundation for the future
work. One of the major challenges here is to determine how much information
is required to describe software components and their platform, in order to have
a confidence on results of the consistency analysis. This may depend on many
factors, such as used software architecture, domain-specific details, and so forth.

As part of our ongoing work, we will analyse different component-based ar-
chitectures with regard to the use case of replacing software components, and
derive specific system attribute out of them. The aim is to extend the proposed
modelling and analysis support to system attributes, which can be commonly
used in safety domains.
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