
An Interoperable Testing Environment

for ERTMS/ETCS Control Systems

Gregorio Barberio1, Beniamino Di Martino2, Nicola Mazzocca3, Luigi Velardi4,
Aniello Amato1, Renato De Guglielmo4, Ugo Gentile3, Stefano Marrone5,

Roberto Nardone3, Adriano Peron3, and Valeria Vittorini3

1 MATE Consulting s.r.l., Salerno, Italy
{g.barberio,a.amato}@tabit.it

2 Seconda Università di Napoli, DIII, Aversa, Italy
beniamino.dimartino@unina2.it

3 Università di Napoli “Federico II”, DIETI, Napoli, Italy
{nicola.mazzocca,ugo.gentile,roberto.nardone,

adrperon,valeria.vittorini}@unina.it
4 AnsaldoSTS, Napoli, Italy

{Luigi.Velardi,Renato.DeGuglielmo}@ansaldo-sts.com
5 Seconda Università di Napoli, DMF, Caserta, Italy

stefano.marrone@unina2.it

Abstract. Verification of functional requirements of critical control
systems requires a hard testing activity regulated by international stan-
dards. As testing often forms more than fifty percent of the total develop-
ment cost, to support the verification processes by automated solutions
is a key factor for achieving lower effort and costs and reducing time to
market. The ultimate goal of the ongoing work here described is the de-
velopment of an interoperable testing environment supporting the system
level testing of railway ERTMS/ETCS control systems. The testing en-
vironment will provide a standardized interface to enable the integration
testing between sub-systems developed by different companies/suppliers.
We present the first outcomes obtained within the ARTEMIS project
CRYSTAL which tackles the challenge to establish and push forward an
Interoperability Specification (IOS) as an open European standard for
the development of safety-critical embedded systems.

Keywords: Functional Testing, Railway Control System, Model-Based
System Testing, Model Driven Engineering, Test Case Generation.

1 The RBC Use Case within the Crystal Project

The ARTEMIS Joint Undertaking project CRYSTAL (CRitical sYSTem engi-
neering AcceLeration) [2] takes up the challenge to establish and push forward
an Interoperability Specification (IOS) and a Reference Technology Platform
(RTP) as a European standard for safety-critical systems. CRYSTAL is strongly
industry-oriented and will provide ready-to-use integrated tool chains having a
mature technology-readiness-level. To achieve technical innovations (“technology

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 147–156, 2014.
c© Springer International Publishing Switzerland 2014



148 G. Barberio et al.

bricks”), CRYSTAL adopts a user-driven approach based on applying engineer-
ing methods to industrially relevant Use Cases from the automotive, aerospace,
rail and health-care sectors [15] and increases the maturity of existing concepts
developed in previous European and national projects like CESAR [1], iFEST [3],
MBAT [4]. The work described in this paper was born in the rail domain, and
specifically from the needs expressed by Ansaldo STS (ASTS), an international
transportation leader in the field of signalling and integrated transport systems
for passenger traffic (Railway/Mass Transit) and freight operation. The indus-
try needs expressed by the ASTS’s Use Case are oriented to improve the quality
and the efficiency of existing Verification & Validation (V&V) processes. In fact,
testing activities are time-consuming tasks whose efficiency is a primary issue in
a global competitive market and whose quality can not be decreased due to the
adherence to international standards.

The ASTS’s Use Case is centred on the Radio Block Centre (RBC) system, a
computer-based system whose aim is to control the movements of the set of trains
on a track area under its supervision, in order to guarantee a safe inter-train
distance according to the ERTMS/ETCS specifications. ERTMS/ETCS (Euro-
pean Rail Traffic Management System/European Train Control System) [16] is a
standard for the interoperability of the European railway signalling systems en-
suring both technological compatibility among trans-European railway networks
and integration of the new signalling system with the existing national train in-
terlocking systems. Each ERTMS/ETCS controlled track is usually divided into
several sub-tracks, each of them is supervised by a single RBC in charge of con-
currently and continuously controlling a number of connections with trains. The
main objective of the train control system is to timely transmit to each train its
up-to-date Movement Authority (MA) and the related speed profile. The MA
contains information about the distance the train may safely cover, depending
on the status of the forward track. RBC is also in charge of managing emergency
situations if the communication with one or more trains is compromised.

In this context, this paper presents an interoperable testing environment sup-
porting the system level testing of railway ERTMS/ETCS control systems being
developed within CRYSTAL. The paper is organized as follows: Section 2 pro-
vides a bird-eye view of the testing environment and related technological bricks
involved in the ASTS Use Case. The subsequent Sections contain more informa-
tion about the state of development of each Brick: Section 3 addresses modelling
and test case generation carried out in the Rail Model Brick; Section 4 and Sec-
tion 5 describe the architecture of the IOP Test Writer and Log Analyzer Bricks,
respectively. Finally Section 6 describes how the Bricks are integrated into the
CRYSTAL RTP/IOS.

2 An Environment for ERTMS/ETCS Interoperable
Testing

The user needs expressed by ASTS within the CRYSTAL project are oriented
to the automation of the system level testing activities, and to the realisation of



An Interoperable Testing Environment for ERTMS/ETCS Control Systems 149

a tool chain providing full support to interoperable testing. In this Section the
complete workflow of the automated testing process is described as well as the
components of the tool chain and their relationships.

The proposed workflow complies with the ASTS Use Case requirements and
will improve the current testing process, starting from the definition of the sys-
tem specification to the generation of test reports. In detail, it enables semi-
automatic generation of test cases from a set of test specifications, relying on
a Model-Driven methodology. The generated test cases are then automatically
transformed into executable test scripts, which can be executed on the real sys-
tem or on simulation environments. Test logs are then analysed and test reports
are automatically generated.

In Fig. 1 (a) the complete workflow is represented by an activity diagram, the
tool chain and the involved technological bricks are described in Fig. 1 (b). The
same figure also reports the links between each activity of the workflow and its
supporting brick.

Fig. 1. CRYSTAL enhancements: the testing workflow (a) and the bricks implementing
the tool chain (b)

With respect to the current process implemented in ASTS, this workflow
introduces three main advantages:

– automatic generation of test cases from test specification: in the current pro-
cess, adopted by ASTS, test cases are manually generated by domain experts



150 G. Barberio et al.

which are able to control the high complexity of these systems. This activ-
ity is heavy and error prone, in addition the training of new testers is very
expensive as they must have a great experience, that could be acquired only
working on several different projects.

– generation of test script in IOP notation: due to the heterogeneity of sim-
ulation environments, system level testing requires an interoperable testing
environment where different simulators can exchange information. The gen-
eration of test scripts in IOP notation, under development by UNISIG, allows
for the execution of interoperable tests in a multi-suppliers environment.

– tool supported analysis of test logs : the decision about the outcomes of test
cases is currently performed by inspecting big log files; the adoption of a tool
which is able to parse generated logs reduces the efforts of navigating them
and generating reports.

The first activity of the testing workflow is the realization of a system spec-
ification, performed manually by V&V engineers by using a proper modeling
language and a graphical modeling environment. The specification of the system
is given by a high-level description of the system behaviour and by the set of
functional requirements the system shall satisfy. By the same environment, the
test specifications are defined in order to describe the essential features that a
test case must accomplish (e.g., the sequence of transitions that the test case
shall stress). Test cases are generated from the system and test specifications in
semi-automatic way.

According to the proposed workflow, test cases can be analyzed (at the state
this is not automated) and, if they are rejected by engineers, some updates on the
source specifications can be performed. Test cases are then transformed into exe-
cutable test scripts, through a transformation in the IOP notation. This language
supports the creation of interoperable and multi-supplier testing environments.

Test scripts are executed and proper test logs are generated. The execution of
test cases has not been considered in the CRYSTAL project, since each railway
operator is interested in using proprietary testing environment. However test logs
can be parsed in order to detect possible inconsistencies between planned test
case and test execution. These inconsistencies can be due to wrong specification
(and it is necessary the feedback to the source model), otherwise they trace bugs
in the developed system. Finally test reports can be generated.

Fig. 1 (b) shows the tool chain that will support the execution of the proposed
workflow. Three technological bricks will be developed in the CRYSTAL project,
they are: Rail Model, IOP Test Writer and Log Analyzer. The first one provides
the modeling environment to describe the system and the test specifications, it
is also able to generate test cases implementing the appropriate transformations
to and from the specific model checker, as explained in the next Section. The
second brick supports the generation of test scripts written in IOP Language
(according to the concept of an interoperable testing environment). The last one
is able to parse the test logs and to generate test reports from them. Some details
about these technological bricks are given in the following Sections, as well as
some technological hints.



An Interoperable Testing Environment for ERTMS/ETCS Control Systems 151

3 Rail Model: Model-Based Test Sequences Generation

The inputs of the Rail Model brick are a formal state based specification of the
system behaviour and of its requirements. From them, chains of model trans-
formations allows to obtain Test Cases by applying model checking techniques.
This approach is based on the previous experiences on extending UML with the
V&V UML Profile [10,14]. The approach under development envisages a) the
definition of a proper formal state-based language (DSTM4Rail) to be used for
modeling the behaviour of the system under test and to formalize the require-
ments from which the test specifications are obtained; b) the implementation of
the transformation chains in order to obtain the test cases; c) and the definition
of a proper set of test specification patterns which will provide general reusable
models for recurrent classes of requirements.

The CENELEC standards [6,7] explicitly recommend the usage of state-based
formalisms, as the dynamic of critical control systems, based on a sequential
computation, can be abstracted as a state-transition system. Despite the great
number of works addressing the usage of state machine and their extensions,
within CRYSTAL the railway industry expressed the need for a concise formal
modeling notation, able to easily capture some characteristic features of the
specific domain, to be used in model-driven test automation environments. In
particular, at the state, ASTS keeps out the possibility of using several UML
diagrams and prefers an ad-hoc formal language, developed from scratch, with
the objective to be as simple as possible and as rich as needed for modeling the
behaviour and the requirements of a railway control system for system testing
purposes.

DSTM4Rail extends Hierarchical State Machines [5]. Its peculiarity mainly
resides in the semantics of fork-and-join which allows dynamic (bounded) in-
stantiation of machines (processes) and parallel execution of machines inside a
box. Each state machine may be parametric over a finite set of dynamically evalu-
ated parameters; in addition the same machine may be dynamically instantiated
many times without explicitly replicating its entire structure.

DSTM4Rail also allows to model the requirements and add proper information
to the behavioural models for implementing requirement traceability. ATL (Atlas
Transformation Language) [13] is used to translate the DSTM4Rail model of the
system to a NuSMV [8] or Promela [12] specification and the DSTM4Rail model
of the requirement to verify into a CTL/LTL specification or into a Promela
property (e.g., a never claim) which are added to the NuSMV or Promela model,
respectively. Indeed, it is well known that test case generation may be obtained
by using the ability of a model checker to construct counterexamples to violated
properties: a counterexample defines the sequence of steps which are interpreted
as a test case [11].

Fig. 2 shows a DSTM4Rail specification model of a particular functionality
of RBC (i.e., Management of the train movement in the box) and its realization
in the prototype modeling environment.

During the movement of the train, RBC periodically sends the Movement
Authority (MA) to the train (Section 1). Concurrently, RBC has to monitor the



152 G. Barberio et al.

Fig. 2. A DSTM4Rail model and a tool screenshoot

commands that come from the Centralized Traffic Control (CTC) where a human
operator may raise an alarm which requires the train to brake: in this case an
Unconditional Emergency Stop (UES) message is sent to the train. On the other
hand, when the train successfully ends its trip, it performs the End of Mission
(EoM) procedure. This scenario needs for representing concurrently executing
machines, one of whom may force the termination of the others. DSTM4Rail
models this situation by a preemptive join, as shown in Fig. 2 where the processes
CENTRAL CONTROL and PERIODIC MA are executed concurrently but,
when the first machine reaches the UES exiting node, the join on the left forces
with preemption the process PERIODIC MA to terminate. In this case the
machine EMERGENCY MANAGEMENT is instantiated. On the contrary, if
the process PERIODIC MA terminates in the EoM exiting node, the join on the
right forces with preemption the CENTRAL CONTROL to terminate, and the
END OF MISSION machine is instantiated.

State of the development : up to date a first and stable version of the DSTM4Rail
formalism has been implemented, within the Eclipse Modelling Framework
(EMF), by an Ecore metamodel. To represent DSTM4Rail in a user-friendly
way, a graphical editor has been realized through functionalities provided by the
Eclipse Graphical Modeling Framework (GMF). A screen shot of the graphical
environment is shown in Fig. 2.

The implementation of the transformations is an ongoing activity. At the
state, a set of test specification patterns has been also defined, based on the
notion of Dwyers’s property specification patterns [9].



An Interoperable Testing Environment for ERTMS/ETCS Control Systems 153

4 IOP Test Writer

The Rail Model brick, described in Section 3, generates the sequence of the steps
specifying the test case. These traces need to be translated into an concrete no-
tation in order to be executed on simulated environments. Since ERTMS/ETCS
based infrastructures are composed by different subsystems that can be supplied
by different technology providers, the testing and simulation environments re-
flect this heterogeneity being a federation of different simulators developed by
different teams. One of the requirements for a an interoperable testing environ-
ment is that each component must speak a common “testing” language. The
IOP Notation is developed by the UNISIG (Union Industry of Signaling). Prop-
erly interpreted by vendor-specific adapters, IOP can support the creation of
integrated testing environments. The aim of the IOP notation is not limited to
simulated environments as it can be used to give commands and interpreting the
states of real systems: the scenario depicted in the Fig. 3 exemplifies its usage
in on-field testing.

Fig. 3. IOP Test Writer

Since all the ERTMS technology providers are interested in increasing the
level of interoperability of their products, ASTS is moving its testing tool set
and environments to the IOP notation. According to this wish, the IOP Test
Writer can extremely accelerate the test implementation phase by automatically
generating the test scripts written in IOP language from the test cases created
by Rail Model.

The IOP Test Writer tool will consists of two modules according to software
engineering best practises: the TestWriter and the Load/Store Manager. Each
module performs some specific tasks and shows a set of interfaces used to interact
with the other module. More specifically:



154 G. Barberio et al.

– the Load/Store manager module provides the interfaces to interact with
the external modules (for example the RailModel) and with the other tech-
nologies within the Crystal IOS. Load/Store manager module loads the test
sequences produced by the Rail Model Brick and stores their results in the
system: such interaction is accomplished by means of IOS/RTP;

– the IOP Writer module provides the transformation of the test cases ex-
pressed in a Ecore language to a test cases expressed in IOP notation by
means of a Model-to-Text (M2T) transformation.

State of the development: up to date, the IOP Test Writer is in its design phase.
The idea is to develop it in Java as an Eclipse plug-in to make the integration
with the Rail Model brick easier.

5 Log Analyzer

The Log Analyzer brick aids the V&V engineer to state if the execution of a
specific test passes/fails. Hence, the Log Analyzer has two different sources: (1)
a test case as generated by the Rail Model brick, (2) the logs created by the
execution of a test case (after its translation into the IOP notation) on the
specific testing environment. According to such inputs, the Log Analyzer may
find if logs and the test case match. Such operation would be pointed out to the
V&V engineer who is able to decide if the test passes, fails (due to an error in
the system model) or fails (due to a misinterpretation of the requirements).

The Log Analyzer has a modular architecture according to software engineer-
ing best practises:

– the Load manager module provides the interfaces to interact with the ex-
ternal modules and with the other technologies within the Crystal IOS. The
Load manager loads the test sequences produced by the Rail Model Brick:
such interaction is accomplished by means of IOS/RTP;

– the Parsing and Analysis module is used to parse the logs of the test execu-
tions. Moreover, each log is analyzed according to the inputs and then the
fail/pass decision is taken for the single log.

– the Report module focuses on building up summary information about the
entire testing campaign and in generating supporting tables for traceability,
coverage, etc.;

– the Export module has the role to export the report of a testing campaign and
the related execution logs. The target report will be conform to widespread
document formats (e.g. pdf files or spreadsheets).

State of the development: up to date, the Log Analyzer is in its design phase.
As it is not called automatically after the first two bricks, the design teams of
this tool is evaluating the possibility to implement it as a stand-alone tool.



An Interoperable Testing Environment for ERTMS/ETCS Control Systems 155

6 Integration in RTP/IOS

As shown in Figure 1, each Technology Brick interacts with an External Tool
Interface module. This External Tool Interface module implements a custom
solution for the integration of RailModel, IOP Test Writer and Log Analyzer
or a flexible solution for a generic integration, based on the technologies avail-
able in Crystal Reference Technology Platform / Interoperability Specifications
(RTP/IOS). The RTP is a generic platform for the integration of model-based
tools. It is composed by a set of interoperable tools, methods and processes
designed to increase the quality of development processes of safety critical em-
bedded systems. This integration platform will host tools coming from different
stakeholders (vendors, industrial & academic partners, etc.) that realise Bricks
within the project. Therefore there is the need for a common non-proprietary
standard to realise this interoperability functionality within the RTP.

The CRYSTAL IOS would accomplish this task by adopting the Open Services
for Lifecycle Collaboration (OSLC), a framework that moves to the integration
of data, workflows and processes among product lifecycles. OSLC is divided in
several workgroups each of which addressing specific integration scenariosThe
set of scenarios and specifications are named OSLC Domain. The presence of
different domains introduces the necessity to manage the coherence among them.
This need is satisfied by a set of standard rules and patterns, contained in the
OSLC Core Specification, and all the domain groups must adopt these rules for
the specifications. The union of a OSLC Core Specification and a OSLC Domain
constitutes a OSLC protocol that is used in order to add interoperability to a
specific tool chain, as in CRYSTAL. Some work packages in CRYSTAL are
devoted to the study of existing standards and to the proposition of proper
technological solutions in order to integrate the Technology Bricks with the
RTP/IOS.

Here a brief description of how the tool chain presented in this paper will be
integrated in the RTP/IOS is reported. According to the Fig. 1, the tool chain
uses the RTP by loading/storing the artifacts generated during the process. Each
brick interacts with the RTP/IOS via its Load/Store Manager. More specifically:

– Rail Model loads existing DSTM model of the system/test specification pre-
viously defined and stores DSTM models created with the Modelling Envi-
ronment. The module may store test cases generated by the Test Generator
module;

– IOP Test Writer loads existing test cases from the RTP/IOS. In addition it
stores IOP compliant test cases generated by the IOP Writer;

– Log Analyzer loads existing test cases from the RTP/IOS. Both the logs of
the test executions and the report are stored out of the RTP/IOS.

Acknowledgments. This paper is supported by research project CRYSTAL
(Critical System Engineering Acceleration), funded from the ARTEMIS Joint
Undertaking under grant agreement number 332830 and from ARTEMIS mem-
ber states Austria, Belgium, Czech Republic, France, Germany, Italy, Nether-
lands, Spain, Sweden, United Kingdom.



156 G. Barberio et al.

References

1. CESAR: Cost-Efficient methods and proceses for SAfety Relevant embedded sys-
tems, http://www.cesarproject.eu/

2. CRYSTAL: CRitical sYSTem engineering AcceLeration,
http://www.crystal-artemis.eu/

3. iFEST: industrial Framework for Embedded Systems Tools,
http://www.artemis-ifest.eu/

4. MBAT: Combined Model-based Analysis and Testing of Embedded Systems,
http://www.mbat-artemis.eu/

5. Alur, R., Kannan, S., Yannakakis, M.: Communicating hierarchical state machines.
In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 169–178. Springer, Heidelberg (1999)

6. CENELEC. Cenelec, en 50128: Railway applications - communication, signalling
and processing systems - software for railway control and protection systems (2011)

7. CENELEC. Cenelec, en 50126: Railway applications - demonstration of reliability,
availability, maintainability and safety (rams) - part 1: Generic rams process (2012)

8. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: Nusmv: a new symbolic model
checker. International Journal on Software Tools for Technology Transfer 2 (2000)

9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, ICSE 1999, pp. 411–420. ACM, New York (1999)

10. Flammini, F., Marrone, S., Mazzocca, N., Nardone, R., Vittorini, V.: Model-driven
V&V processes for computer based control systems: A unifying perspective. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 190–
204. Springer, Heidelberg (2012)

11. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from re-
quirements specifications. SIGSOFT Softw. Eng. Notes 24(6), 146–162 (1999)

12. Holzmann, G.: Spin Model Checker, the: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional (2003)

13. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

14. Marrone, S., Flammini, F., Mazzocca, N., Nardone, R., Vittorini, V.: Towards
model-driven v&v assessment of railway control systems. International Journal on
Software Tools for Technology Transfer, 1–15 (2014)

15. Pflügl, H., El-Salloum, C., Kundner, I.: CRYSTAL, CRitical sYSTem engineering
AcceLeration, a Truly European Dimension. ARTEMIS Magazine 14, 12–15 (2013)

16. UIC. ERTMS/ETCS class1 system requirements specification, ref. SUBSET-026,
issue 2.2.2 (2002)

http://www.cesarproject.eu/
http://www.crystal-artemis.eu/
http://www.artemis-ifest.eu/
http://www.mbat-artemis.eu/

	An Interoperable Testing Environment for ERTMS/ETCS Control Systems
	1 The RBC Use Case within the Crystal Project
	2 An Environment for ERTMS/ETCS InteroperableTesting
	3 Rail Model: Model-Based Test Sequences Generation
	4 IOPTestWriter
	5 Log Analyzer
	6 IntegrationinRTP/IOS
	References




