
True Error or False Alarm?
Refining Astrée’s Abstract Interpretation Results

by Embedded Tester’s Automatic Model-Based Testing

Sayali Salvi1, Daniel Kästner1, Tom Bienmüller2, and Christian Ferdinand1

1 AbsInt GmbH, Science Park 1, 66123 Saarbrücken, Germany
2 BTC Embedded Systems AG, Gerhard-Stalling-Str. 19, D-26135 Oldenburg, Germany

Abstract. A failure of safety-critical software may cause high costs or even en-
danger human beings. Contemporary safety standards require to identify potential
functional and non-functional hazards and to demonstrate that the software does
not violate the relevant safety goals. Typically for ensuring functional program
properties model-based testing is used while non-functional properties like oc-
currence of runtime errors are addressed by abstract interpretation-based static
analysis. Hence the verification process is split into two distinct parts – currently
without any synergy between them being exploited. In this article we present an
approach to couple model-based testing with static analysis based on a tool cou-
pling between Astrée and BTC EmbeddedTester R©. Astrée reports all potential
runtime errors in C programs. This makes it possible to prove the absence of
runtime errors, but typically users have to deal with false alarms, i.e. spurious no-
tifications about potential runtime errors. Investigating alarms to find out whether
they are true errors which have to be fixed, or whether they are false alarms can
cause significant effort. The key idea of this work is to apply model-based testing
to automatically find test cases for alarms reported by the static analyzer. When a
test case reproducing the error has been found, it has been proven that it is a true
error; when no error has been found with full test coverage, it has been proven
to be a false alarm. This can significantly reduce the alarm analysis effort and
reduces the level of expertise needed to perform the code-level software verifica-
tion. We describe the underlying concept and report on experimental results and
future work.

1 Introduction

Safety-related software has to satisfy stringent quality requirements. The complexity of
software-implemented functionality grows at a fast pace. Development teams have to
meet tight budget constraints and face increasing pressure to reduce time-to-market. To
meet these conflicting goals the development process has to be sound and efficient.

A leap in development efficiency can be reached by a holistic model-centric approach
to software development, testing and verification. In model-based development the soft-
ware is graphically developed at a high abstraction level, typically by hierarchical finite
state machines and data flow diagrams which represent specification and model at the
same time. From this high-level model the implementation is automatically generated
by configurable code generators, often in the form of C code. Model-based testing aims

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 84–96, 2014.
c© Springer International Publishing Switzerland 2014

True Error or False Alarm? 85

at automating testing activities and integrating the development of both design artifacts
and test artifacts in a unified framework. This makes it possible to automatically create
test architectures, and generate and execute the test cases.

All contemporary safety standards require to identify functional and non-functional
hazards and to demonstrate that the software does not violate the relevant safety goals.
Depending on the criticality level of the software the absence of safety hazards has
to be demonstrated by formal methods or testing with sufficient coverage. This holds
not only for DO-178B/DO-178C, but also for related norms like ISO 26262, and IEC-
61508. Functional properties can be efficiently addressed by automatic model-based
testing. The critical non-functional safety-relevant software characteristics are essen-
tially implementation-level properties, e.g., whether real-time requirements can be met,
whether stack overflows can occur, and whether there can be runtime errors like invalid
pointer accesses, or divisions by zero. Because of the high abstraction level of model-
based development these properties are largely hidden from the developers. Moreover
they are very hard to check experimentally, i.e., by testing and measurements. Identify-
ing safe end-of-test criteria for program properties like timing, stack size, and runtime
errors is an unsolved problem. In consequence the required test effort is high, the tests
require access to the physical hardware and the results are not complete.

Formal verification methods provide an alternative, in particular for safety-critical
applications. One such method is abstract interpretation, which allows properties to be
proven for all program runs with all inputs [8]. Nowadays, abstract interpretation-based
static analyzers that can detect stack overflows [14] and violations of timing constraints
[16], and that can prove the absence of runtime errors, are widely used in industry [15]
(cf. Sec. 2). The advantage of abstract interpretation is that it enables full control and
data coverage, but can be easily automatized and can reduce the testing effort.

In consequence, from a workflow perspective the verification process is split into
two parts: model-based testing is used for showing functional program properties, and
static analysis to prove the absence of non-functional program errors. In the course of
the MBAT project1 a concept for integrating model-based testing and static analysis
has been developed which enables both aspects to be addressed seamlessly [13]. This
concept has been realized by a tool coupling between BTC EmbeddedTester R© [7], and
the static analysis tools aiT WCET Analyzer [1], StackAnalyzer [2], and Astrée [3]
from AbsInt. Model-level information like execution model or environment specifica-
tions are automatically taken into account, reducing setup for test and analysis efforts
and improving analysis precision. Tests and analyses can be launched seamlessly and
produce unified result reports. While significantly improving the efficiency of the V&V
process the tool coupling as described in [13] is mostly limited to workflow aspects and
does not yet exploit the full potential of a combination of the two verification technolo-
gies, static analysis and model-based testing.

In this article we describe a deep technical integration between static runtime er-
ror analysis and model-based testing, implemented as a tool coupling between Astrée
and BTC EmbeddedTester R©. Astrée is a sound static analyzer which can find all po-
tential runtime errors in C programs. It works with an abstract semantics of the pro-
gram which makes it possible to compute results even for big applications – the largest

1 http://www.mbat-artemis.eu/

http://www.mbat-artemis.eu/

86 S. Salvi et al.

application investigated so far contains more than two million LOC. The downside of
the abstraction mechanism is that there can be false alarms, i.e. spurious notifications
about potential runtime errors, which are not actual bugs. Therefore, all alarms have to
be investigated by the developers to determine whether they correspond to true errors
which have to be fixed, or whether they are false alarms. This can cause significant
effort. The key idea of this work is to apply model-based testing to automatically find
test cases for alarms reported by Astrée. When BTC EmbeddedTester R© finds a test case
reproducing the error, it has not only been proven that it is a true error, but users can
directly investigate the situation in a debugger. When no test case reproducing the error
could be found, the interpretation depends on the test model generation: when full test
coverage can be achieved, the absence of the error has been proven. Situations where
no full test coverage was possible, or where the error could not be reproduced in the
given amount of time, have to be manually investigated – but even here the test cover-
age obtained is a valuable feedback for the user. With this coupling the effort for alarm
analysis can be significantly reduced. Preliminary experimental results demonstrate the
viability of our approach.

The article is structured as follows: we introduce the key concepts of static runtime
error analysis in Sec. 2. Sec. 3 gives an overview of model-based testing with a focus on
the concept of C observers which provide the basis for our methodological integration.
The concept to automatically generate test cases for Astrée alarms is explained in Sec. 4.
Experimental results are presented in Sec. 5 and Sec. 6 concludes.

2 Static Runtime Error Analysis

Over the last few years static analyzers based on abstract interpretation have evolved
to be the state of the art for verifying non-functional software properties. A static ana-
lyzer is a software tool which computes information about the software under analysis
without executing it. Abstract interpretation is a semantics-based method for program
analysis which belongs to the formal verification methods. Its results are sound, i.e.,
they are valid for all program runs with all inputs and achieve full data and control
coverage. The soundness of the analysis can be formally proven. Examples of abstract
interpretation based static analyzers are tools to compute safe upper bounds on the
worst-case execution time and the maximal stack usage of tasks [11] and to prove the
absence of runtime errors [15]. Runtime errors like arithmetic overflows, array bound
violations, divisions by zero, and invalid pointer accesses are critical programming er-
rors. They can destroy the data integrity of a program, causing the program to behave
erroneously, or to crash altogether. A well-known example for the possible effects of
runtime errors is the explosion of the Ariane 5 rocket in 1996. The analyzer Astrée [3]
is an abstract interpretation based static runtime error analyzer which finds all potential
runtime errors in C programs, thereby enabling users to prove the absence of runtime
errors [6]. Astrée analyzes structured C programs with the sole restrictions that no dy-
namic memory allocation and no recursion should be used, which is typically the case
for safety-critical applications. The class of errors reported includes out-of-bound array
accesses, erroneous pointer manipulations and dereferencing, integer and floating-point
division by zero, integer and floating point overflows and invalid operations. Astrée

True Error or False Alarm? 87

also detects read accesses to uninitialized variables, detects shared variables accessed
by asynchronous threads and performs a sound value analysis for them, and enables
users to prove user-defined static assertions. The static assertions can be applied to ar-
bitrary C expressions so that functional program properties can be addressed. When
Astrée does not report an assertion failure alarm, the correctness of the asserted expres-
sion has been formally proven. The core of Astrée is a sophisticated analysis engine
which allows to fine-tune the analysis precision to the software under analysis. This
makes very low false alarm rates possible: safety-critical avionics software of several
100,000 lines of C code could be analyzed successfully with Astrée without any false
alarm [4,15].

Since Astrée is based on an abstract semantics of the program there can be false
alarms, i.e. spurious notifications about potential runtime errors which are caused by
the overapproximation inherent to the analysis. False alarms can also be caused by
preconditions that have not been made known to Astrée. Therefore, all alarms have to
be investigated by the developers to determine whether they correspond to true errors
which have to be fixed, or whether they are false alarms. This can cause significant
effort.

2.1 Runtime Errors and Alarms

Runtime errors can occur in situations where the behavior of the C program is unde-
fined, or unspecified according to the C semantics [12]. A notification about a potential
runtime error is termed as Alarm. Astrée distinguishes two main types of alarms:

Type A: alarm about a runtime error which has unpredictable results. The analyzer
reports the alarm and continues the analysis for scenarios where the error does not
occur. For contexts where the error definitely occurs, the analyzer reports a definite
runtime error and stops the analysis as there is no feasible continuation. Examples
are out-of-bound array accesses, or write accesses via dangling pointers.

Type C: alarm about a runtime error which has a predictable outcome. The analyzer
continues the analysis by overapproximating all possible results, including the ef-
fect of the error. Examples are integer overflows, invalid shifts, invalid cast opera-
tions.

The alarm messages displayed in the Astrée GUI possess a well-defined format. It pro-
vides details such as execution context of the alarm scenario, alarm location, type of
alarm and the actual alarm text message. In addition to this, users can also request for
program invariants, i.e., access the value ranges of variables the analyzer has computed
for each specific context. The alarm messages have the following syntax:
(context at filename:line1.column1-line2.column2)+ ALARM(class): alarm message

The context information provides a forward sequence of unfinished function calls
to reach the alarm location, loops encountered in these functions before reaching the
alarm location and disambiguated conditional statements encountered before reaching
the alarm location. The syntax is the following:

call#f@line
function f is called at line line.

88 S. Salvi et al.

loop@line=n/m or loop@line>=m+1
n is the rank of loop iteration and m is the unroll level. The first n iterations of the
loop at line line are unrolled by the analyzer.

if@line=true or if@line=false
if condition at line line is evaluated to true or false resp.

The location information provides start coordinates line1.column1 and end coor-
dinates line2.column2 of the code fragment in the file filename for which the alarm
message is issued. The class is one of the alarm types, i.e., A or C. An example of an
alarm message is shown here:

[call#analysis_wrapper@4 at astree.cfg:4.5-21
loop@17=1/3 at astree.cfg:17.2-25.3
call#fuelratecontroller@23 at astree.cfg:23.4-22
call#IntakeAirflowEstimation@9921 at frc.c:9921.3-26
call#Tab2DS17I2T4169_a@10221 at frc.c:10221.4-21
loop@9554>=2 at frc.c:9554.3-9558.24
ALARM (C): implicit signed int->unsigned char conversion range
[-1, 254] not included in [0, 255] at frc.c:9555.6-16]

The alarm is reported for a potential overflow which occurs in the second or later
iteration of the loop from line 9554 to line 9558 in file frc.c. The lines above describe
the precise call stack traversed to reach the loop in the potential error scenario.

Astrée uses various abstract domains to compute program invariants providing de-
tailed information about the values of variables and the relations between them in every
possible execution context [6]. All computed invariants can be inspected by the users;
depending on the option setting they can be observed either at each statement or in the
beginning of each function, and they can be context-insensitive or context-sensitive. In
the latter case the computed abstract values are shown separately for each execution
context.

Note that Astrée computes an abstract semantics and provides local abstract invari-
ants attached to program points. Thus, in case of a potential runtime error users can
access the alarm message along with its context and the invariants. But it does not pro-
vide a concrete execution trace for the alarm, since each abstract trace represents a set
of concrete execution traces.

3 Model-Based Testing

In this section we give an overview of model-based testing with the example of BTC
EmbeddedTester R© (ET). ET provides an automated test and verification environment
for Simulink/TargetLink and also for handwritten C code. It is capable of perform-
ing various tasks such as automatic test case generation and execution, back-to-back
testing, automatic test analysis, automatic test and coverage reporting, debugging, and
import/export of test cases.

3.1 Test Case Generation

ET can generate input stimuli vectors and test vectors. Input stimuli vectors represent
a set of input values per execution step for a number of execution steps. They can be

True Error or False Alarm? 89

either imported or generated using vector generation engines. ET uses two engines:
the Automatic Test vector Generation engine (ATG) and the Code Verification analysis
engine (CV). ATG is a random engine based on well-tuned heuristics which is fast,
but not complete. If a test goal cannot be reached, it is unclear whether the goal is
unreachable or the engine just could not reach it. In contrast, the CV engine is complete.
It tries to generate vectors by claiming that a certain test goal is unreachable [5]. A
counterexample, if there is one, is provided as a vector, otherwise the goal is proven
unreachable because it uses an exhaustive technique based on symbolic model checking
that checks the full search space. The input stimuli vectors can then be used to generate
test vectors. Test vectors represent a set of input and output values per step. The output
values in a test vector are the expected values. So, when test vectors are generated using
simulation with input stimuli vectors, the output values in them need to be reviewed. ET
also supports back-to-back testing in which case the output values are not required to
be reviewed. Test vectors with expected values can also be imported in ET. ET supports
various kinds of simulations like MIL (model-in-the-loop), SIL (software-in-the-loop)
and PIL (processor-in-the-loop).

3.2 Observer

ET provides the possibility to define evaluation functions (C code) which can be used
to decide if the behaviour of the system under test is correct or invalid. These eval-
uation functions are called observers. Observers are integrated automatically into the
test execution/simulation environment of a system under test by ET. ET generates tests
that cover observers and performs automatic test execution of the system under test in
co-execution/simulation with observers. Observers are used in ET, e.g., for requirement
verification, standard analysis, or additional test (e.g., equivalence class test cases) gen-
eration.

A C-observer (more precisely a commitment observer) is a small C function that
evaluates some property of the system under test. It returns a boolean value indicating
whether the observed property is valid or invalid. C-observer code can check conditions
on interface objects of the system under test, i.e., inputs, outputs, calibration variables
and display variables. An example of an observer is shown here:

/* Observer Evaluation Function */
unsigned char eval_OBS_2_RV_fuel_rate() {

unsigned char evalResult = 1;
if (!(fuel_rate >= 0 && fuel_rate <= 32358))
evalResult = 0;

return evalResult;
}

3.3 Property Location Language – PLL

ET uses the Property Location Language (PLL) for uniquely identifying code properties
(i.e., test cases). For example, to generate input stimuli vectors for a code property the
corresponding PLL expression of the code property has to be provided.

90 S. Salvi et al.

In general, a PLL expression has three parts, identifying code properties relevant
for testing: 1) one or several property classes like Statement (STM), Relation Operator
(RO), Decision (D), Division by 0 (DZ) etc. ; 2) a unique ID of a specific entity of this
property class in the code; 3) a specific property value of this entity. One example is
D:3:1, where “D” denotes the decisions in the code, “3” is the unique ID of a decision
in the code (IDs are automatically generated by ET) and “1” represents the case that
the decision evaluates to true. In case of observers, the PLL expression has two addi-
tional parts in the beginning i.e., in total five parts: it starts with “O:[OBSID]:...”, where
[OBSID] is a unique identifier of an observer. e.g., O:OBS_1:D:3:1.

3.4 Integration of C-Observer in ET

Step1. An observer is defined by a user or it is generated automatically from some
source, e.g., requirement specification.

Step2. Stimuli vectors are generated for the observer. Using the right PLL formulation
to indicate the desired observer test properties is important.

Step3. The generated stimuli vectors are used to generate the corresponding test vec-
tors.

Step4. The ET debugging feature can be used to perform step-by-step debugging and
analysis of the behaviour of the generated vector. Alternatively, in some use cases
like requirement verification, the test vectors are automatically executed. During
test execution, the observer is run in parallel with the system under test and the
return value of the observer is used to check whether the system execution is valid.
The execution is valid when the return value is 1 and invalid when it is 0.

4 Combining the Two Worlds

Our goal is to combine the static analyzer Astrée with BTC EmbeddedTester R© in order
to validate whether an alarm is a true error or a false alarm. The key idea is to automat-
ically transform an alarm reported by Astrée (described in Sec. 2.1) into a C-observer
that can be integrated in ET (described in Sec. 3.2). This transformation includes insert-
ing some code fragments into the source code under test and generating the observer
code that exploits the information provided by the inserted code. The code modifica-
tions are free of side effects and do not interfere with normal program execution. The
integration includes creating an ET profile for the modified version of system under test
and importing the observer into the profile. ET supports generating test vectors from the
observers. This approach can be applied to any category of errors detected by Astrée.
In the following we demonstrate our approach with four exemplary alarm categories.

As already stated in Sec. 2.1, alarm messages contain the precise location of the
code fragment that is responsible for the alarm. The code insertion phase uses the alarm
message and its location information to store the error condition into variables at the
appropriate location. These variables include one flag variable which indicates if the
alarm condition is reachable. Note that the flag variable needs to be global so that it
becomes a part of an interface of the system under test: only then it becomes observable
by ET. The code insertion is explained in detail for each of the four selected alarm
categories in the following subsections. The observer code just consists of checking the

True Error or False Alarm? 91

flag value. If the flag value is true, an error condition has been reached. The observers
are designed to return 0 when the flag value is true. Our generic observer code is shown
in Fig.1.

unsigned char eval_OBS_1() {
unsigned char evalResult = 1;
if (__ET_flag_1 != 0)
evalResult = 0;

return evalResult;
}

Fig. 1. Generic Observer Code

4.1 Division by Zero

The alarm message for divisions by zero is <type> division by zero
[interval], where “type” can be either integer or float. A simple example of an
integer division by zero alarm is shown below.

The location details fuelratecontroller.c:9596.27-9597.66 in the alarm
message provide the code fragment for which the alarm is issued: it extends from col-
umn 27 in line 9596 to column 66 in line 9597. The corresponding code fragment, a
division expression, is highlighted after clicking on the alarm message in the GUI:

We parse the division expression to retrieve its denominator and then generate code
which stores the condition under which the denominator becomes zero into a flag vari-
able. We assume that execution of the denominator expression has no side effects. The
generated assignment is put at the program point just before the division expression
(cf. line 9595 in the above image). The flag variable __ET_flag_1 is then used in an
observer as shown in Fig.1.

4.2 Overflow in Arithmetic

The alarm message for arithmetic overflows of numerical types reads <type>
arithmetic range [interval] not included in [interval].

92 S. Salvi et al.

The two intervals in the message show the actual value range computed for the ex-
pression and the acceptable value range, respectively. Here is an example of an alarm
message on an overflow of an unsigned int.

The message gives the location fuelratecontroller.c:1600.28-1601.53
of the code fragment i.e., the arithmetic expression for which the alarm is issued. The
fragment is highlighted at lines 1600 and 1601 in the image below.

The arithmetic expression is parsed in order to retrieve its operator and the correspond-
ing operands. In this example, it is ’+’ operator. Now we have to check if the operands
can evaluate to such values that when are added to each other they cause an overflow.
The corresponding code is shown in lines 1595-1598 in the above image. Note that the
operands, which may be complex expressions, are stored into variables of type “type”
and it is ensured that the inserted code does not raise the overflow alarm itself. The
code generated for this category of alarm can vary based on the arithmetic operator
(i.e., whether it is + or - etc.), whether it is signed or unsigned arithmetic and whether
the overflow is w.r.t. minimum and/or maximum bound.

4.3 Overflow in Conversion

The third category of alarms is associated with overflows in conversions, i.e., type casts.
The alarm message reads<type1>-><type2> conversion range [inter-
val] not included in [interval]. An expression responsible for this alarm
evaluates to a value of type “type1”. An overflow may occur when a type of an expres-
sion value is converted implicitly or explicitly to type “type2”. This alarm message
shows the range of potential values of the expression before and after conversion in the
first and second interval, respectively. We determine the region of the first interval that
does not overlap with the second interval. The required instrumentation then consists
of storing the expression value into a variable of type “type1” and checking whether
a value of this variable is in the non-overlapping region of the first interval. The check
is put at a location just before the expression that is responsible for an alarm.

4.4 Invalid Dereference

The fourth category of alarms considered is associated with invalid pointer
dereferences: Invalid dereference: dereferencing <value> byte(s)

True Error or False Alarm? 93

at offset(s) <value> may overflow the variable <name> of byte-
size <value>. This alarm is raised when dereferencing a pointer expression that
points to an invalid location, e.g., because it has not been properly initialized. The mes-
sage indicates the offset, expressed in bytes, and the byte size of the dereferenced vari-
able “name”. An example of alarm message is shown below:

and the corresponding code fragment array[n] is highlighted at line 1480 in the
image below:

In the specific case of the pointer dereference in the example message above, array+n
accesses offsets from 34 to 34 + 610 bytes, which exceeds the valid offset range of
[0,612− 2] bytes. To capture the error condition here we have to check whether deref-
erencing array+n would leave the feasible range as shown at lines 1471-1473 and
1478-1479 in the image above. The comparison (array == (const UInt16*)
global_array) is used to identify the correct alarm context. In general the function
f2 containing the code with the alarm is invoked from different call sites with different
parameters. The specific alarm under analysis is for one specific context where f2 is
called with global_array as a parameter. Generating the instrumentation code for
pointer dereferences currently is ongoing work. We plan to use program slicing to ex-
plicitly construct the possibly invalid pointer value and check it for feasibility. Astrée
already provides a program slicer which can be reused for this purpose.

5 Experiments and Practical Experience

We performed experiments to investigate the applicability of our approach with a cou-
ple of control applications: namely, a fuel rate controller from the automotive domain
and a simple flight control system from the avionics domain. The fuel rate controller
is a fixed-point implementation generated by dSPACE TargetLink [9] from a MAT-
LAB/Simulink model and consists of 2837 lines of code. Also the avionics example is
a model-based design; here Esterel SCADE [10] has been used as a code generator. The
implementation consists of 2205 lines of floating-point C code.

Executing an Astrée analysis on each of the two applications provides us with a list
of alarms. The obtained alarms did not include division by zero alarms. Thus, for our

94 S. Salvi et al.

purpose we modified the fuel rate controller code to induce an integer division by zero
alarm and the flight controller code to induce a float division by zero alarm.

In our implementation we have extended Astrée to automatically generate observers
and insert the associated instrumentation code snippets into the source code for each
alarm selected by the user. The implementation is ongoing work: so far we have suc-
cessfully accomplished the automatic handling of division by zero alarms; the support
of overflow alarms currently is restricted to a limited set of C-operators. For the ex-
amples where the implementation is not available yet, we have manually written the
observers and the instrumentation code snippets in the same form as the implementa-
tion shall provide.

The generated observers have been verified with ET. This includes generating the
ET profiles from the instrumented source code, importing the observers into those pro-
files, and generating the stimuli vectors that cover the observer properties. As explained
in Sec. 3.3, a PLL string is used to represent the observer property. In our case, we
are interested in generating a stimuli vector for the trace that demonstrates the actual
alarm condition. This is the case when the flag variable is true, i.e., when the cor-
responding observer returns 0. So, the PLL string that is used during verification is
“O:[OBSID]:V:0”, where “V:0” stands for the return value zero. It is possible that no
vector is generated during stimuli vector generation. This indicates that the specified
code properties are not reachable during any execution. In our case, it means that the
alarm under investigation is a false alarm. Table 1 shows the result of stimuli vector
generation for our observers performed at the highest level of the subsystem hierarchy
of the software under analysis.

In order to ascertain the correctness of the obtained results, we debug the generated
stimuli vectors when the status is covered, whereas we do a manual inspection of the
code when the status is unreachable. ET provides a feature to produce a debugging

Table 1. Stimuli Vector Generation Results: covered - stimuli vector is generated (true error);
unreachable(inf) - stimuli vector is not generated (false alarm)

Alarm
Category

Controller Alarm Message Status

Integer division
by zero

fuel rate ALARM (A): integer division by zero [0, 65535]
at fuelratecontroller.c:9596.27-9597.66

unreachable(inf)

Float division
by zero

flight ALARM (A): float division by zero [0., 10000.]
at ComputePitchRoll_FlightControl.c:512.28-54

covered

Arithmetic
overflow

fuel rate ALARM (C): unsigned long arithmetic range [0,
6516407190] not included in [0, 4294967295] at
fuelratecontroller.c:1600.28-1601.53

unreachable(inf)

Conversion
overflow

fuel rate ALARM (C): implicit signed int->unsigned char
conversion range [-1, 254] not included in [0,
255] at fuelratecontroller.c:9568.6-16

unreachable(inf)

Invalid
dereference

fuel rate ALARM (A): invalid dereference: dereferencing
2 byte(s) at offset(s) 34+2*[0;305] may overflow
the variable PressEst_z_table of byte-size 612 at
fuelratecontroller.c:9449.18-28

covered

True Error or False Alarm? 95

environment directly from the vector. Through debugging it is possible to analyze the
execution trace covered by the vector. In our case, we check if the trace reaches the
alarm condition.

The results show that all alarm categories investigated can be successfully handled
for both input applications.

6 Future Work and Conclusion

In this article, we have presented an approach to automatically classify the alarms pro-
duced by a static analyzer as true errors or false alarms by applying model-based testing
techniques to stimulate appropriate error conditions. We have described the principles
of this interaction between static analysis and model-based testing and have developed
an implementation based on a tool coupling between the static runtime error analyzer
Astrée and the model-based testing tool BTC EmbeddedTester R©. Our approach signifi-
cantly reduces the effort for alarm analysis, i.e., investigating alarms to find out whether
they are true errors which have to be fixed, or whether they are false alarms. As the tool
coupling can run fully automatically it also opens the alarm investigation process to
users with less experience than manual investigation requires. Preliminary experiments
demonstrate the viability of our approach with fixed-point and floating-point applica-
tions from the automotive and aerospace domains. To the best of our knowledge this
is the first successful combination of static analysis and model-based testing to exploit
synergies between these techniques in the V&V process of safety-critical software.

Our future work, in a first step, aims at completing the implementation to handle all
four exemplary alarm categories automatically. In a further step, the mechanism has to
be extended to cover the full set of Astrée alarms. Also further experiments on industry-
relevant applications will be conducted to check how the proposed method scales with
large-scale software projects.

Acknowledgement. The work presented in this paper has been supported by the ITEA2
project TIMMO-2-USE and the EU ARTEMIS Joint Undertaking under grant agree-
ment no. 269335 with the German BMBF (MBAT project).

References

1. AbsInt GmbH. aiT Worst-Case Execution Time Analyzer Website,
http://www.AbsInt.com/ait

2. AbsInt GmbH. StackAnalyzer Website, http://www.AbsInt.com/sa.
3. AbsInt GmbH. Astrée Website, http://www.AbsInt.com/astree.
4. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Static

analysis and verification of aerospace software by abstract interpretation. In: AIAA In-
fotech@Aerospace 2010, number AIAA-2010-3385, pp. 1–38. American Institue of Aero-
nautics and Astronautics (April 2010)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

http://www.AbsInt.com/ait
http://www.AbsInt.com/sa
http://www.AbsInt.com/astree

96 S. Salvi et al.

6. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Ri-
val, X.: A Static Analyzer for Large Safety-Critical Software. In: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation (PLDI
2003), San Diego, California, USA, June 7-14, pp. 196–207. ACM Press (2003)

7. BTC Embedded Systems AG. BTC BTC EmbeddedTester R© Website,
http://www.btc-es.de/index.php?idcatside=2.

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL 1977: Proceedings of the
4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp.
238–252. ACM Press, New York (1977)

9. dSPACE GmbH. TargetLink Website, http://www.dSPACE.com/go/TargetLink
10. Esterel Technologies. SCADE Suite,

http://www.esterel-technologies.com/products/scade-suite
11. Ferdinand, C., Heckmann, R.: Static Memory and Execution Time Analysis of Embedded

Code. SAE 2006 Transactions Journal of Passenger Cars - Electronic and Electrical Sys-
tems 9 (2007)

12. ISO/IEC 9899:1999 (E). Programming languages – C (1999)
13. Kästner, D., Brockmeyer, U., Pister, M., Nenova, S., Bienmüller, T., Dereani, A., Ferdinand,

C.: Combining Model-based Analysis and Testing. In: Embedded Real Time Software and
Systems Congress ERTS2 (2014)

14. Kästner, D., Ferdinand, C.: Proving the Absence of Stack Overflows. In: SAFECOMP 2014:
Proceedings of the 33th International Conference on Computer Safety, Reliability and Secu-
rity (to appear, 2014)

15. Kästner, D., Wilhelm, S., Nenova, S., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,
A., Rival, X.: Astrée: Proving the Absence of Runtime Errors. In: Embedded Real Time
Software and Systems Congress ERTS2 (2010)

16. Souyris, J., Pavec, E.L., Himbert, G., Jégu, V., Borios, G., Heckmann, R.: Computing the
Worst Case Execution Time of an Avionics Program by Abstract Interpretation. In: Pro-
ceedings of the 5th International Workshop on Worst-case Execution Time (WCET 2005),
Mallorca, Spain, pp. 21–24 (2005)

http://www.btc-es.de/index.php?idcatside=2
http://www.dSPACE.com/go/TargetLink
http://www.esterel-technologies.com/products/scade-suite

	True Error or False Alarm? Refining Astr´ee’s Abstract Interpretation Results by Embedded Tester’s Automatic Model-Based Testing
	1 Introduction
	2 Static Runtime Error Analysis
	3 Model-Based Testing
	3.1 Test Case Generation
	3.2 Observer
	3.3 Property Location Language – PLL
	3.4 Integration of C-Observer in ET

	4 Combining the Two Worlds
	4.1 Division by Zero
	4.2 Overflow in Arithmetic
	4.3 Overflow in Conversion
	4.4 Invalid Dereference

	5 Experiments and Practical Experience
	6 Future Work and Conclusion
	References

