
Andrea Bondavalli
Andrea Ceccarelli
Frank Ortmeier (Eds.)

 123

LN
CS

 8
69

6

SAFECOMP 2014 Workshops: ASCoMS,
DECSoS, DEVVARTS, ISSE, ReSA4CI, SASSUR
Florence, Italy, September 8–9, 2014, Proceedings

Computer Safety,
Reliability, and Security

Lecture Notes in Computer Science 8696
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Andrea Bondavalli Andrea Ceccarelli
Frank Ortmeier (Eds.)

Computer Safety,
Reliability, and Security

SAFECOMP 2014 Workshops:

ASCoMS, DECSoS, DEVVARTS, ISSE, ReSA4CI, SASSUR

Florence, Italy, September 8-9, 2014

Proceedings

13

Volume Editors

Andrea Bondavalli
University of Florence
Department of Mathematics and Informatics
Florence, Italy
E-mail: bondavalli@unifi.it

Andrea Ceccarelli
University of Florence
Department of Mathematics and Informatics
Florence, Italy
E-mail: andrea.ceccarelli@unifi.it

Frank Ortmeier
Otto-von-Guericke-University Magdeburg
Computer Systems in Engineering
Magdeburg, Germany
E-mail: frank.ortmeier@ovgu.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-10556-7 e-ISBN 978-3-319-10557-4
DOI 10.1007/978-3-319-10557-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: Applied for

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

To accompany the 33rd edition of SAFECOMP, and the overarching FLO-
RENCE 2014, the one-week scientific event on the development of safe, secure,
dependable, and performing systems, we selected workshops covering different
partially overlapping application areas and different phases of the lifecyle of such
safety-critical systems. We decided to give various domain experts a common
meeting place at SAFECOMP in the format of domain-specific workshops. The
joining aspects are always safety and security. Bringing these experts together
at one place and collecting their articles in one volume fosters collaboration and
exchange of ideas.

For SAFECOMP 2014, we accepted 6 domain-specific, high-quality work-
shops, each with well-known chairs and an International Program Committee:

– 3rd Workshop on Architecting Safety in Collaborative Mobile Systems (AS-
CoMS 2014) (Chairs Renato Librino and Martin Törngren)

– ERCIM/EWICS/ARTEMIS Workshop on Dependable Embedded and Cy-
berphysical Systems and Systems-of-Systems (DECSoS 2014) (Chairs Erwin
Schoitsch and Amund Skavhaug)

– Workshop on DEvelopment, VeriFIcation and VAlidation of cRiTical Sys-
tems (DEVVARTS 2014) (Chairs Francesco Brancati, Nuno Laranjeiro, and
Ábel Hegedüs)

– 1st International Workshop on the Integration of Safety and Security Engi-
neering (ISSE 2014) (Chairs Laurent Rioux and John Favaro)

– Workshop on Reliability and Security Aspects for Critical Infrastructure
Protection (ReSA4CI 2014) (Chairs: Silvia Bonomi and Ilaria Matteucci)

– Workshop on Next Generation of System Assurance Approaches for Safety-
Critical Systems (SASSUR 2014) (Chairs: Alejandra Ruiz, Tim Kelly, and
Jose Luis de la Vara)

Altogether 92 researchers from 21 countries reviewed the following 42 articles.
Summarizing, we have to say that the correspondence and organization of these 6
workshops for SAFECOMP took a lot of time. But when looking at the program
now, we are very proud of it and wish to thank all workshop chairs, their Program
Committee members and all the people involved in the organization. You did a
fantastic job.

We hope readers and attendees share our opinion that this will be a great
extension to SAFECOMP 2014.

July 2014 Andrea Bondavalli
Andrea Ceccarelli
Frank Ortmeier

Organization

EWICS TC7 Chair

Francesca Saglietti University of Erlangen-Nuremberg, Germany

General Chair

Andrea Bondavalli University of Florence, Italy

Program Co-chairs

Andrea Bondavalli University of Florence, Italy
Felicita Di Giandomenico ISTI-CNR, Italy

Workshop and Tutorial Chair

Frank Ortmeier Otto -v.-Guericke-University, Germany

Industry-liaison Chair

Michael Paulitsch AIRBUS Group, Germany

Finance Chair

Ettore Ricciardi ISTI-CNR, Italy

Publication Chair

Andrea Ceccarelli University of Florence, Italy

Publicity Chair

Francesco Flammini Ansaldo STS, Italy

VIII Organization

Local Organizing Chair

Paolo Lollini University of Florence, Italy

ASCoMS Program Committee

Luis Almeida FEUP, Portugal
Abele Andreas Bosch, Germany
Fredrik Asplund KTH, Sweden
António Casimiro FCUL, Portugal
Karl Goeschka TUWIEN, Austria
Teruo Higashino Osaka University, Japan
Per Johannessen Volvo AB, Sweden
Rolf Johansson SP, Sweden
Jörg Kaiser OVGU, Germany
Vana Kalogeraki Athens University of Economics and Business,

Greece
Marc-Olivier Killijian Laas, France
Renato Librino 4S s.r.l, Italy
Henrik Lönn Volvo AB, Sweden
Mattias Nyberg Scania and KTH, Sweden
Elad Michael Schiller Chalmers University of Technology, Sweden
Erwin Schoitsch AIT, Austria
Martin Törngren KTH, Sweden

DECSoS Program Committee

Bettina Buth HAW Hamburg, Germany
Francesco Flammini Ansaldo STS Italy, University “Federico II”

of Naples, Italy
Denis Hatebur Universität Duisburg-Essen, Germany
Floor Koornneef TU Delft, The Netherlands
Michael Lipaczweski Otto-von-Guericke-Universitaet, Germany
Dejan Nickovic AIT Austrian Institute of Technology, Austria
Frank Ortmeier Otto-von-Guericke-Universitaet, Germany
Thomas Pfeiffenberger Salzburg Research Forschungsgesellschaft

m.b.H, Austria
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Christoph Schmitz Zühlke Engineering AG, Switzerland
Erwin Schoitsch AIT Austrian Institute of Technology, Austria
Rolf Schumacher Ingenievr-Büro, Germany
Amund Skavhaug NTNU, Norway
Mark-Alexander Sujan University of Warwick, UK
Meine van der Meulen DNV, Norway

Organization IX

DEVVARTS Program Committee

Andrea Ceccarelli Università di Firenze, Italy
Alessandro Cimatti Bruno Kessler Foundation, Italy
Barbara Gallina Mälardalen University, Sweden
Michaela Huhn Technische Universität Clausthal, Germany
Hardi Hungar German Aerospace Center - Braunschweig,

Germany
Melinda Kocsis-Magyar PROLAN zrt, Hungary
Rui Lopes Airbus Defence and Space, UK
Henrique Madeira University of Coimbra, Portugal
Istvan Majzik Budapest University of Technology and

Economics, Hungary
Roberto Natella University of Naples Federico II, Italy
Francesco Rossi ResilTech s.r.l., Italy
Stefano Russo University of Naples Federico II, Italy
Marco Vieira University of Coimbra, Portugal

ISSE Program Committee

Pasi Ahonen VTT, Finland
Julien Brunel Onera, France
Adele-Louise Carter KITEWAY, UK
Barbara Czerny Chrysler Group LLC, USA
Gjalt de Jong Melexis, Belgium
Rami Debouk General Motors, USA
Huascar Espinoza Tecnalia, Spain
Anthony Faucogney ALL4TEC, France
Donald Firesmith SEI, USA
Jarkko Holappa NIXU, Finland
Flemming Nielson DTU, Denmark
Stephane Paul Thales, France
Michael Paulitsch Airbus Group, Germany
Giovanni Sartori Yogitech, Italy
Erwin Schoitsch AIT, Austria
Michal Sojka Czech Technical University, Czech Republic
Lorenzo Strigini City University, UK
Robert Stroud Adelard, UK
Timo Wiander Stuk, Finland

ReSA4CI Program Committee

Valentina Bonfiglio University of Florence, Italy
Silvia Bonomi University of Rome La Sapienza, Italy

X Organization

Felicita Di Giandomenico ISTI-CNR, Italy
Maria Gradinariu

Potop-Butucaru UPMC Paris 6, France
Karama Kanoun LAAS, France
Ilaria Matteucci IIT-CNR, Italy
Alessia Milani University of Bordeaux, France
Simin Nadjm-Tehrani Linkoeping University, Sweden
Federica Paci University of Trento, Italy
Marta Patino Martinez Technical University of Madrid, Spain
Marinella Petrocchi IIT-CNR, Italy
Sara Tucci Piergiovanni CEA, France

SASSUR Program Committee

Michael Armbruster Siemens, Germany
Ronald Blanrue EADS/Eurocopter, France
Markus Borg Lund University, Sweden
Marc Born ikv++, Germany
Daniela Cancila CEA, France
Ibrahim Habli University of York, UK
Tudor Ionescu TTTech, Austria
Sunil Nair Simula Research Laboratory, Norway
Paolo Panaroni Intecs, Italy
Ansgar Radermacher CEA, France
Laurent Rioux Thales Research and Technology, France
Mehrdad Sabetzadeh University of Luxemburg, Luxemburg
Kenji Taguchi AIST, Japan
Martin Wassmuth EADS, Germany
Gereon Weiß Fraunhofer, Germany
Ji Wu Beihang University, China

Sponsors

Scientific Sponsors

EWICS TC7

Università degli Studi di
Firenze

Consiglio Nazionale delle Ricerche
(CNR) - Istituto di Scienza e Tecnologie
dell’Informazione (ISTI) “A. Faedo”

Industrial Sponsors

Technical Co-sponsors

Associazione Italiana Esperti in
Infrastrutture Critiche (AIIC)

Austrian Institute of Technology

European Network of Clubs for
Reliability and Safety of Software

European Research Consortium for Infor-
matics and Mathematics (ERCIM)

Gesellschaft für Informatik e. V

International Federation for Information
Processing

Oesterreichische Computer Gesellschaft-
Austrian Computer Society

Table of Contents

Architecting Safety in Collaborative Mobile Systems
(ASCoMS’14)

3rd Workshop on Architecting Safety in Collaborative Mobile Systems
(ASCoMS) . 1

Renato Librino and Martin Törngren

Intelligent Transport Systems - The Role of a Safety Loop for Holistic
Safety Management . 3

Kenneth Östberg, Martin Törngren, Fredrik Asplund, and
Magnus Bengtsson

Safety Verification of Multiple Autonomous Systems by Formal
Approach . 11

Kozo Okano and Toshifusa Sekizawa

Checking Verification Compliance of Technical Safety Requirements
on the AUTOSAR Platform Using Annotated Semi-formal Executable
Models . 19

Martin Skoglund, Hans Svensson, Henrik Eriksson, Thomas Arts,
Rolf Johansson, and Alex Gerdes

Evaluation of Safety Rules in a Safety Kernel-Based Architecture 27
Eric Vial and António Casimiro

Driving with Confidence: Local Dynamic Maps That Provide LoS for
the Gulliver Test-Bed . 36

Christian Berger, Oscar Morales, Thomas Petig, and
Elad Michael Schiller

Sensor- and Environment Dependent Performance Adaptation for
Maintaining Safety Requirements . 46

Tino Brade, Georg Jäger, Sebastian Zug, and Jörg Kaiser

Collaborative Development of Safety-Critical Automotive Systems:
Exchange, Views and Metrics . 55

Johan Ekberg, Urban Ingelsson, Henrik Lönn, Magnus Skoog, and
Jan Söderberg

Towards Energy Efficient, High-Speed Communication in WSNs 63
Attila Nagy and Olaf Landsiedel

Comparing Adaptive TDMA against a Clock Synchronization
Approach . 71

Luis Almeida, Frederico Santos, and Luis Oliveira

XIV Table of Contents

ERCIM/EWICS/ARTEMIS Workshop on
Dependable Embedded and Cyberphysical
Systems and Systems-of-Systems (DECSoS’14)

Introduction: ERCIM/EWICS/ARTEMIS Workshop on Dependable
Embedded and Cyberphysical Systems and Systems-of-Systems
(DECSoS’14) at SAFECOMP 2014 - A European Approach to Critical
Systems Engineering . 80

Erwin Schoitsch and Amund Skavhaug

True Error or False Alarm? Refining Astrée’s Abstract Interpretation
Results by Embedded Tester’s Automatic Model-Based Testing 84

Sayali Salvi, Daniel Kästner, Tom Bienmüller, and
Christian Ferdinand

Proving Compliance of Implementation Models to Safety
Specifications . 97

Markus Oertel, Omar Kacimi, and Eckard Böde

MTBF Inconsistency Analysis on Inferred Product Breakdown
Structures . 108

Christian Ellen, Martin Böschen, and Thomas Peikenkamp

Critical Systems Verification in MetaMORP(h)OSY 119
Rocco Aversa, Beniamino Di Martino, and Francesco Moscato

Report on the Railway Use-Case of the Crystal Project: Objectives and
Progress . 130

Alexandre Ginisty, Frédérique Vallée, Elie Soubiran, and
Vidal-delmas Tchapet-Nya

Contract-Based Analysis for Verification of Communication-Based
Train Control (CBTC) System . 137

Marco Carloni, Orlando Ferrante, Alberto Ferrari,
Gianpaolo Massaroli, Antonio Orazzo, Ida Petrone, and
Luigi Velardi

An Interoperable Testing Environment for ERTMS/ETCS Control
Systems . 147

Gregorio Barberio, Beniamino Di Martino, Nicola Mazzocca,
Luigi Velardi, Aniello Amato, Renato De Guglielmo, Ugo Gentile,
Stefano Marrone, Roberto Nardone, Adriano Peron, and
Valeria Vittorini

Modelling Resilient Systems-of-Systems in Event-B 157
Linas Laibinis, Inna Pereverzeva, and Elena Troubitsyna

Table of Contents XV

Towards Assured Dynamic Configuration of Safety-Critical Embedded
Systems . 167

Nermin Kajtazovic, Christopher Preschern, Andrea Höller, and
Christian Kreiner

Towards Trust Assurance and Certification in Cyber-Physical
Systems . 180

Daniel Schneider, Eric Armengaud, and Erwin Schoitsch

DEvelopment, Verification and VAlidation
of cRiTical Systems (DEVVARTS’14)

Introduction to the Safecomp 2014 Workshop: DEvelopment,
Verification and VAlidation of cRiTical Systems (DEVVARTS’14) 192

Francesco Brancati, Nuno Laranjeiro, and Ábel Hegedüs

Verification of Fault-Tolerant System Architectures Using Model
Checking . 195

Jussi Lahtinen

Verification of a Real-Time Safety-Critical Protocol Using a Modelling
Language with Formal Data and Behaviour Semantics 207

Tamás Tóth, András Vörös, and István Majzik

Visualization of Model-Implemented Fault Injection Experiments 219
Daniel Skarin, Jonny Vinter, and Rickard Svenningsson

Cost-Effective Testing for Critical Off-the-Shelf Services 231
Fabio Duchi, Nuno Antunes, Andrea Ceccarelli, Giuseppe Vella,
Francesco Rossi, and Andrea Bondavalli

On Security Countermeasures Ranking through Threat Analysis 243
Nicola Nostro, Ilaria Matteucci, Andrea Ceccarelli,
Felicita Di Giandomenico, Fabio Martinelli, and
Andrea Bondavalli

Enabling Cross-Domain Reuse of Tool Qualification Certification
Artefacts . 255

Barbara Gallina, Shaghayegh Kashiyarandi,
Karlheinz Zugsbratl, and Arjan Geven

Integration of Safety and Security Engineering
(ISSE’14)

1st International Workshop on the Integration of Safety and Security
Engineering (ISSE’14) . 267

Laurent Rioux and John Favaro

XVI Table of Contents

From Safety Models to Security Models: Preliminary Lessons Learnt 269
Pierre Bieber and Julien Brunel

FMVEA for Safety and Security Analysis of Intelligent and Cooperative
Vehicles . 282

Christoph Schmittner, Zhendong Ma, and Paul Smith

Uniform Approach of Risk Communication in Distributed IT
Environments Combining Safety and Security Aspects 289

Jana Fruth and Edgar Nett

Reliability and Security Aspects for Critical
Infrastructure Protection (ReSA4CI’14)

Introduction to the Safecomp 2014 Workshop: Reliability and Security
Aspects for Critical Infrastructure Protection (ReSA4CI 2014) 301

Silvia Bonomi and Ilaria Matteucci

Modeling and Evaluation of Maintenance Procedures for Gas
Distribution Networks with Time-Dependent Parameters 304

Laura Carnevali, Marco Paolieri, Fabio Tarani, Enrico Vicario, and
Kumiko Tadano

Quantification of the Impact of Cyber Attack in Critical
Infrastructures . 316

Oleksandr Netkachov, Peter Popov, and Kizito Salako

Probabilistic Inference in the Physical Simulation of Interdependent
Critical Infrastructure Systems . 328

Paolo Franchin and Luigi Laura

Energy-Based Detection of Multi-layer Flooding Attacks on Wireless
Sensor Network . 339

Cesario Di Sarno and Alessia Garofalo

Towards a Non-intrusive Recognition of Anomalous System Behavior
in Data Centers . 350

Roberto Baldoni, Adriano Cerocchi, Claudio Ciccotelli,
Alessandro Donno, Federico Lombardi, and Luca Montanari

Toward Resilience Assessment in Business Process Architectures 360
Richard M. Zahoransky, Thomas Koslowski, and Rafael Accorsi

Next Generation of System Assurance Approaches
for Safety-Critical Systems (SASSUR’14)

Introduction to SASSUR 2014 . 371
Alejandra Ruiz, Tim Kelly, and Jose Luis de la Vara

Table of Contents XVII

Assuring Avionics – Updating the Approach for the 21st Century 375
Tom Ferrell and Uma Ferrell

Rethinking of Strategy for Safety Argument Development 384
Linling Sun, Nuno Silva, and Tim Kelly

Towards a Cross-Domain Software Safety Assurance Process for
Embedded Systems . 396

Marc Zeller, Kai Höfig, and Martin Rothfelder

A Software Safety Verification Method Based on System-Theoretic
Process Analysis . 401

Asim Abdulkhaleq and Stefan Wagner

Quantifying Uncertainty in Safety Cases Using Evidential Reasoning . . . 413
Sunil Nair, Neil Walkinshaw, and Tim Kelly

Metamodel Comparison and Model Comparison for Safety Assurance . . . 419
Yaping Luo, Luc Engelen, and Mark van den Brand

Does Visualization Speed Up the Safety Analysis Process? 431
Ragaad AlTarawneh, Max Steiner, Davide Taibi,
Shah Rukh Humayoun, and Peter Liggesmeyer

Agile Change Impact Analysis of Safety Critical Software 444
Tor St̊alhane, Geir Kjetil Hanssen, Thor Myklebust, and
Børge Haugset

Author Index . 455

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 1–2, 2014.
© Springer International Publishing Switzerland 2014

3rd Workshop on Architecting Safety in Collaborative
Mobile Systems (ASCoMS)

Renato Librino1 and Martin Törngren2

1 4S s.r.l, Italy
2 Kungliga Tekniska Hoegskolan, Sweden

This volume contains the papers presented at ASCoMS 2014: the 3rd Workshop on
Architecting Safety in Collaborative Mobile Systems held on September 8, 2014 in
Firenze as part of SAFECOMP Conference 2014. As for the two previous years the
workshop was held at SAFECOMP.

ASCoMS 2014 focuses on fundamental challenges in ensuring that safety
requirements are satisfied despite the increased system complexity and the
uncertainties introduced by operation in open and not well defined environments,
motivated by new systems of systems that will be established in the era of Cyber-
Physical Systems.

New and improved sensor and communication technologies create opportunities
for designing embedded and mobile systems that are able to interact with their
environment, and exhibit “smart” and autonomous behavior. Furthermore,
collaboration between mobile entities can also be envisaged for improving their
functionality as well as performance. Example applications include unmanned aerial
vehicles (UAVs) and smart cars, where for instance, UAVs can be used for
environmental surveillance and control, and smart vehicles coordinating their
behaviors can be used to increase traffic throughput and improve mobility without the
need of using more space for the respective traffic infrastructures.

A fundamental challenge is then to ensure that safety requirements are satisfied
despite the increased system complexity and the uncertainties introduced by the
operation in open and not well defined environments. In general, the problem might
be equated in terms of achieving system safety for potentially mass consumer
products. From an application perspective, the workshop focuses on distributed and
cooperative safety-critical systems. So far, the existing solutions are still insufficient
or inadequate and therefore these systems are not allowed to operate in the public air
space or on public roads because the risk of causing severe damage or even threaten
human lives cannot be excluded with sufficient certainty. This justifies the importance
of research in this area, and explains the interest on the subject by the academia and
the industry.

The papers for ASCoMS 2014 consider different aspects of future mobile systems
and their safety concerns, including communication and performance adaptation
aspects, safety constraints and verification, to collaborative development and ITS
design perspectives.

2 R. Librino and M. Törngren

Two papers consider the challenge of adapting the system to different performance
levels as needed to ensure safety according to the existing operational conditions, e.g.,
system and environment state.

Related to this, another paper treats safety rules for run-time monitoring based on
safety rules. Two further papers treat safety aspects in relation to design time
verification through formal methods and testing, respectively. A paper on information
modeling for holistic safety management unifies the design- and run-time
perspectives by treating what information is required for design, verification and run-
time decision making. Communication protocols and aspects of relevance for
collaborative systems are investigated in two papers. Finally, one paper is devoted to
support for collaborative development with specific consideration of the development
of safety critical automotive systems.

The workshop program comprises four regular papers and five invited papers,
providing a basis for comprehensive discussions at ASCoMS 2014. We believe the
workshop program provides a good basis for future research initiatives. The
organization of this workshop was partially supported by the EC, through project
FP7-STREP-288195, KARYON (Kernel-based ARchitecture for safetY-critical
cONtrol) and the FUSE project (Functional Safety and Evolvable architectures for
autonomy, a Swedish national project support by Vinnova).

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 3–10, 2014.
© Springer International Publishing Switzerland 2014

Intelligent Transport Systems -
The Role of a Safety Loop for
Holistic Safety Management

Kenneth Östberg1, Martin Törngren2, Fredrik Asplund2, and Magnus Bengtsson3

1 Electronics / Software, SP Technical Research Institute of Sweden, Borås, Sweden
kenneth.ostberg@sp.se

2 KTH, Stockholm, Sweden
{martint,fasplund}@kth.se

3 Chalmers University of Technology, SE-41296, Göteborg, Sweden
magnus.bengtsson@chalmers.se

Abstract. An ITS represents a Cyber-Physical System (CPS), which will in-
volve information exchange at operational level as well as potential explicit col-
laboration between separate entities (systems of systems). Specific emphasis is
required to manage the complexity and safety of such future CPS. In this paper
we focus on model-based approaches for these purposes for analyzing and man-
aging safety throughout the lifecycle of ITS. We argue that: (1) run-time risk
assessment will be necessary for efficient ITS; (2) an information centric ap-
proach will be instrumental for future ITS to support all aspects of safety man-
agement – a “safety loop”; (3) a formal basis is required to deal with the large
amounts of information present in an ITS. We elaborate these arguments and
discuss what is required to support their realization.

Keywords: ITS, traffic management, safety management, information model,
ontology.

1 Introduction

The promises and anticipation of the positive effects of the Intelligent Transport Sys-
tem (ITS) are huge. The hope is that ITS will help road users utilize the infrastructure
in a more efficient way, thereby enabling better comfort, efficiency and safety. Sec-
ondary effects also promise to be significant, e.g. if ITS succeeds with increasing road
safety the reduced number of severely injured or killed persons in traffic could de-
crease rehabilitation and hospital cost enormously (see e.g. [15, 16, 17]).

However, with the upcoming capabilities of autonomous driving, ITS will probably
become among the most complex cyber-physical system human has ever invented. It
will involve many entities, have control loops at different levels with properties like
self-organization and self-adaptation, and include huge amounts of information, pro-
viding a number of implications for the way that systems are engineered. Specific
emphasis will be required to manage the complexity and safety correctly.

4 K. Östberg et al.

In this paper we focus on model-based approaches for these purposes based on the
following prerequisites:

• Run-time risk assessment will be necessary for efficient ITS, where both local and
global information will provide the basis for run-time decision making.

• An information centric approach will be instrumental for future ITS to support all
aspects of safety management, from design, over run-time risk assessment and di-
agnostics, through to system improvements.

• A formal basis is required to deal with the large amounts of information present in
an ITS.

In particular we propose the use of an information model for ITS to support both
the system design process and the safety process.

In the remainder of Section 1, we provide perspectives to areas related to ITS ef-
forts. Section 2 presents fundamental concepts for, and characteristics of ITS. Section
3 concludes the paper and provides ideas for future work.

1.1 Related Work for ITS

The development of ITS has seen significant effort since the 1990s, [1, 2], [5]. Enabl-
ing technologies that provide sensing, location, communication and processing in
real-time have made it possible to develop new schemes for information sharing and
collaboration and slowly transformed both infrastructure and vehicles. Technical as-
pects in addressing ITS thus include data gathering and analysis at transportation
system level (see e.g. the Mobile Millennium project [19]), control for individual and
collaborating vehicles (see e.g. the Sartre project [20]) and research addressing safety
and architectures for autonomous automotive systems (see e.g. [21, 22]). ITS
represents a truly multidisciplinary field that spans multiple abstractions and domains,
from entire regions and cities down to smart devices, and encompasses e.g. road and
communication infrastructure and vehicle development. ITS will be made up of Cy-
ber-Physical Systems (CPS), which will form socio-technical systems where a num-
ber of technological, economical and societal aspects will be of key importance for
successful deployment [18].

Apart from the technical aspects, ITS will benefit from multiple perspectives that
have proven to be important when developing similar systems. These include differ-
ent views on traffic management systems, legislation and standards. In the following
we provide some snapshots on these perspectives, highlighting a few aspects of state
of the art.

In Europe an ITS standardization initiative has already begun by European Tele-
communications Standardizations Institute (ETSI), [3, 4, 5]. Furthermore, projects
that focus on actually ensuring particular benefits of ITS, such as intersection safety
[6] and certification of autonomous cars [7], has already been a reality for quite some
time.

Safety standardization has not yet been proven with regards to highly automated
ITS, but new safety standards of importance to CPS development in the transportation
sector are currently being released at a fast pace [8, 9, 10].

 Intelligent Transport Systems 5

Air Traffic Management encompasses the multiple concerns required for safe
coordination of air traffic, taking into account the multitude of stakeholders involved
and the system life-cycle process. Increasing air traffic loads have been driving re-
newed efforts in Air Traffic Management, in particular to ensure safety [11, 12].
These efforts include the creation of the SESAR joint undertaking. The high-level
goals of SESAR include a 40% reduction in accident risk per flight hour [13]. One
should note that a Safety management system is now required by International Civil
Aviation Organization (ICAO) and FAA international safety standards [12].

2 ITS Characteristics and Fundamental Concepts

In the following we discuss these topics:

• Life cycle perspective and safety aspects of ITS
• ITS station
• Traffic simulation and the safety loop

2.1 Lifecycle Perspective and Safety Aspects

If a larger CPS system is designed using traditional methods, the development process
can help establish clear boundaries for system development activities and system
properties. For instance ISO 26262, the functional safety standard for road vehicles,
points at two primary possibilities for addressing safety. Firstly, redundancy can be
introduced in the design phase. Secondly, in the verification phase more rigorous
verification techniques can be used. Through these two means a vehicle can be re-
leased with no unacceptable risks left in the vehicle’s electrical and/or electronic
(E/E) system. The idea behind ISO26262 is thus to establish that safety is sufficiently
ensured at a particular point in time (considering all efforts done prior to this time and
all efforts planned after it), i.e. the vehicle release time. One may also note that there
is also an entity that takes responsibility for ensuring this safety, i.e. the automotive
manufacturer.

An important property of ITS is that its development process will have no well-
defined start or points of update. Instead ITS will be a slowly emerging system that
will be expanded, updated and adjusted continuously. The ITS safety process, indeed
the safety process of every CPS deployed into ITS, will therefore benefit from being a
continuous life-cycle process and not a onetime design activity during development.
For automotive manufacturers to do otherwise would imply a conservative approach,
since they can then only trust the information available at design time. At most such
information could rely on ITS information with a very small scope and associated
contracts between legal entities, such as requests for all vehicles in a particular area to
stop that all automotive manufacturers respect. Fine-grained analyses will have to rely
either on vehicle-specific, or at most fleet-specific, information, since the design
choices and legal obligations by other CPS developers might change. The resulting
conservative approach will most probably preclude many of the benefits that

6 K. Östberg et al.

motivates the launch of ITS to begin with. Alternatively automotive manufacturers
will have to sign far-reaching legal agreements with other automotive manufacturers
to ensure the correctness of certain information at all times, with subsequent legal
battles when this fails.

The implications of this is therefore that part of the systems safety properties needs
to be designed to be monitored and handled during run time. If (when) accidents oc-
cur they can then be analyzed, off-line, so that the events that led to the accidents can
be understood and similar scenarios prevented in the future. This continuous process
of interplay between design-time safety assessments, run-time safety assessments and
off-line post analysis is what we term a safety loop.

2.2 ITS Station

Entities participating in ITS and sharing information will have to comply with a num-
ber of standards concerning communication interfaces and how to interact. In Europe
ETSI has defined a reference architecture for an ITS-Station [3]. One of the purposes
with this standard is to define a common data model of information that can be shared
among the ITS-Stations. All stations have local sensors that collect information about
their vicinity which gives them a local perspective. This information is then shared
among the participants to achieve global awareness.

In current standards there are two fundamental message types, Cooperative
Awareness Messages (CAM) and Decentralized environmental Notification Messages
(DNM). Specifically, there are dedicated messages from these two types to support a
“Driving Assistance” application named “Road Hazard Warning”. Current standards
are thus an initial effort to address safety, but the shared information holds a greater
potential in achieving safety. The information in the system taken together, not only
dedicated hazard messages, can be used to identify hazards, perform risk assessment
and risk management.

ITS exists today in form of Advanced Traffic Management Systems. These are
centralized system and mainly monitoring and controlling traffic at macroscopic and
mesoscopic views, e.g. whole cities or large city blocks, at traffic operations centers
(TOCs). These systems operate more at a strategic and tactic level than an opera-
tional level. Operational level and microscopic view is defined as where traffic can
be monitored and controlled at vehicle level. With the introduction of ITS-stations
and their in-station sensors which acquire detailed-level of operational data, it will
become possible to decentralize traffic management and perform traffic management
at microscopic view.

Level-of-service is a traffic management term that is used to describe different
properties of a traffic system, e.g. traffic flow and traffic density. Increasing traffic
density and traffic flow means that vehicles have lesser spacing between them and
travel at higher speed. This traffic behavior has potential for severe accidents. To
match these efficiency properties there needs to be a way to identify hazards and
have risk management strategies at operational level. This is where the previously
discussed, shared information can make a difference. Detailed, consistent, trusted

 Intelligent Transport Systems 7

information about the capabilities of the involved systems can enable risk manage-
ment in different operational situations.

One way to achieve the required trust and management can be to extend the ITS
reference architecture with a safety manager responsible for run time safety handling
to work in cooperation with the traffic management system.

2.3 Traffic Simulation and the Safety Loop

Traffic simulators are important tools in traffic system planning and developing traffic
control strategies. The simulators range from macroscopic to microscopic views. Mi-
croscopic view and operational situations demands a detailed representation of the
system and the situation in order reflect real scenarios and being valuable for analysis.
This detailed representation will include detailed models of the road network, the road
surface, dynamic models of the entities, wheatear models and models of communica-
tion networks. All these information sources are necessary to have at an approximated
level to calculate risks.

Fig. 1. Safety zone and risk contours

With all this detailed information an important aspect is that it must be possible to
tune the system parameters in a structured way to find conditions where the risks are
at acceptable levels while achieving high efficiency.

One way to handle this is to apply virtual risk contours around potential sources of
harm (see Fig. 1). In other words, to apply a virtual dynamic zone around objects
within an operational situation which are likely to be part of a scenario resulting in an
accident. All the entities will then have a corresponding virtual comfort zone, or a
safety shield, protecting its neighborhood. No other entities or their risk contour at
certain level are allowed within this area. From the ego perspective, using information
from own sensors together with shared information, local hazards are identified. The
risk classification can be handled by having a virtual risk potential field around the
hazards and the risk contours showing curves with equal risks. The velocity, or rela-
tive velocity, of other objects will certainly affect their perceived risk. Risk contours
can thus give an indication of how dense traffic can be packed while still maintaining
safety.

For safety management the risk contours describe the available time and space to
perform collision mitigation strategies. In [23, 24] such strategies are discussed and

8 K. Östberg et al.

two parameters are defined as quantifiers for collision risk; braking threat number
(BTN) and steering threat number (STN). These parameters are dependent on physi-
cal capabilities such as tire-to-road friction but also distance between the safety zone
and a risk contour.

Risk contours may also be a useful concept for planning safe trajectories for fully
autonomous vehicles and not just collision mitigation strategies. In future where there
will be different levels of automation, risk contours may be one way to assert that the
transitioning process from self-driving mode to automated model is safe because it
has a notion of safe distance in form of timing.

Risk contours may therefore be a unifying concept to give meaningful metrics to
safety and a possibility to connect different level-of-service parameters to each other
in order to tune system parameters in a structured way to find a good balance in the
system.

Risk contours can be designed to be monitored and handled during run time, but
still analyzed, off-line using traffic simulators with input from actual diagnostic feed-
back information from real life situations. They therefore also agree with the pre-
viously mentioned safety loop concept.

To calculate the risk contours with high degree of confidence the models used in a
simulation needs to be described in a formal way and would benefit from being stan-
dardized [14]. Formalized information models and use cases are also real enablers for
model driven or model based software development processes.

3 Conclusion and Future Work

In his paper we argued that the upcoming capability to receive operational data from
ITS stations opens up for possibilities to coordinate and cooperate in both traffic man-
agement and safety management at a microscopic decentralized level in real time. To
support such initiatives there needs to be a formalized description of shared concepts,
an ontology and a formal information model, to support all aspects of safety manage-
ment, from simulation and design, over run-time risk assessment and diagnostics,
through to system improvements. The safety process will be a continuous iterative
process between these phases, what we term a safety loop.

Future research work is to realize an ontology, and a formal information model, for
traffic management and safety management within ITS. In order to understand parts
needed to support our safety loop the ontology has to be investigated in the light of a
simulation environment, model driven software development and tested at run time in
an ITS station. To close the loop, diagnostic information collected at run time should
be feed back into the simulation environment.

Acknowledgement. This work has been supported by the EU under the FP7-ICT
programme, through project 288195 "Kernel-based ARchitecture for safetY-critical
cONtrol" (KARYON).

 Intelligent Transport Systems 9

References

1. Sussman, J.M.: Perspectives on Intelligent Transportation Systems. Springer, New York
(2005)

2. Vision for ITS. Proc. of the National Workshop on Intelligent Vehicle/Highway systems
sponsored by Mobility 2000, Dallas, TX (1990),
http://ntl.bts.gov/lib/jpodocs/repts_te/9063.pdf
(accessed June 2014)

3. ETSI, EN. 302 665 (V1. 1.1), Intelligent Transport Systems (ITS) (2010).
4. ETSI TR 102 863 Intelligent Transport Systems (ITS); Local Dynamic Map (LDM)
5. ETSI on Intelligent Transport Systems, http://www.etsi.org/technologies-

clusters/technologies/intelligent-transport (accessed June 2014)
6. Fuerstenberg, K.C.: A New European Approach for Intersection Safety – The EC-Project

INTERSAFE. In: Proceedings of the 8th International, IEEE Conference on Intelligent
Transportation Systems, Vienna, Austria, September 13-16 (2005)

7. van Dijke, J., van Schijndel, M., Nashashibi, F., de la Fortelle, A.: Certification of Auto-
mated Transport Systems. Procedia - Social and Behavioral Sciences 48, 3461–3470 (2012),
http://dx.doi.org/10.1016/j.sbspro.2012.06.1310, ISSN 1877-0428

8. ISO 26262:2011, road vehicles - functional safety (2011)
9. DO-178C, software considerations in airborne systems and equipment certification (2011)

10. BS/EN 50128:2011, railway applications - communications, signalling and processing sys-
tems - software for railway control and protection systems (2011)

11. Kirwan, B., Perrin, E.: Imagining Safety in European Air Traffic Management. Short paper
prepared for 3rd Int. Conf. on Occupational Risk Prevention (ORP 2004), Santiago, Spain,
June 2-4 (2004)

12. FAA presentation on Safety Management System for Air Traffic Control Safety by Joseph
Teixeira at NSF, https://www.faa.gov/about/office_org/
headquarters_offices/ato/service_units/safety/media/
NSF-Presentation-final-for-web.pdf (accessed June 2014)

13. SESAR joint undertaking,
http://www.sesarju.eu/discover-sesar/objectives
(accessed June 2014)

14. Dupuis, M., Strobl, M., Grezlikowski, H.: OpenDRIVE 2010 and Beyond–Status and Fu-
ture of the de facto Standard for the Description of Road Networks. In: Proceedings of the
Driving Simulation Conference DSC Europe 2010 (2010)

15. U.S. Department of Transportation. Policy on Automated Vehicle Development,
http://www.nhtsa.gov/staticfiles/rulemaking/pdf/Automated_Ve
hicles_Policy.pdf (accessed June 2014)

16. ETSI – Intelligent Cooperative Transportation Systems,
http://www.etsi.org/technologies-clusters/technologies/
intelligent-transport/cooperative-its (accessed June 2014)

17. Human error accounts for 90% of road accidents, FleetAlert, International News (April
2011), http://www.alertdriving.com/home/fleet-alert-magazine/
international/human-error-accounts-90-road-accidents
(accessed June 2014)

18. CyPherS – Deliverable D2.2,
http://www.cyphers.eu/sites/default/files/D2.2.pdf
(accessed June 2014)

19. Mobile Millenium Project, http://traffic.berkeley.edu/ (accessed June 2014)

10 K. Östberg et al.

20. SARTRE - Safe Road Trains for the Environment,
http://www.sartre-project.eu/en/Sidor/default.aspx
(accessed June 2014)

21. Karyon - Kernel-Based ARchitecture for safetY-critical Control,
http://www.karyon-project.eu/ (accessed June 2014)

22. FUSE – Functional safety and evolving architectures for Autonomy,
http://www.fuse-project.se/ (accessed June 2014)

23. Ali, M., Gelso, E.R., Sjoberg, J.: Automotive Threat Assessment Design for Combined
Braking and Steering Maneuvers. IEEE Transactions on Vehicular Technology 62(4),
1519–1526 (2013)

24. Sjöberg, J., et al.: Driver Models To Increase The Potential Of Automotive Active Safety
Functions. In: Proceedings of 18th European Signal Processing Conference 2010, Aalborg,
Denmark, August 23-27 (2010)

Safety Verification of Multiple Autonomous Systems
by Formal Approach

Kozo Okano1 and Toshifusa Sekizawa2

1 Osaka University, Japan
okano@ist.osaka-u.ac.jp

2 Nihon University, Japan
sekizawa@cs.ce.nihon-u.ac.jp

Abstract. We have studied verification of a line tracing robot using model check-
ing. In this paper, we extend the model to multiple autonomous systems, and de-
scribe the advantages of applying model checking and difficulties. The targeted
line tracing robot usually has only one or two sensors to detect a line painted on
white background, and it traces the line according to the read value of the sen-
sors. It is easy to trace if the line is simple straight line. However, lines sometimes
become complicated by existence of random sequential corners. Those robots are
often used in robot competitions for university students in Japan. Driving time,
accuracy and robustness are evaluated in such competitions. The robot is usually
designed as a stand-alone. Here, we extend such line tracing robots to multiple
autonomous robots by adding communication functions and proximity sensors.
We consider multiple lines to be crossed where robots might hit each other. Al-
though the introduced model is simple, it has enough power to provide a structure
where we can discuss safety and robustness using model checking. Our proposed
method can also treat time constraints of robot controls.

1 Introduction

Recently, embedded systems have become important in our society. Embedded systems
exist everywhere in our daily life including public facilities. Therefore, to ensure safety
properties of the embedded systems becomes much important. We have studied verifi-
cation of a line tracing robot using model checking.

In order to model such systems (real-time systems), several models have been pro-
posed. Timed automaton is proposed by Alur and Dill[1]. The most interesting point of
timed automaton is that it uses clock variables where the range of a clock variable is
real numbers. Locations and transitions of timed automaton have constraints on clocks
in limited syntax forms. Timed automaton, therefore, can naturally represent behav-
ior of real-time systems. The famous verifier for timed automaton is UPPAAL[2]. The
timed automaton used in UPPAAL is a strong extension of the original timed automa-
ton. It can deal with bounded integer variables and guard expressions on its transitions
can express constraints on such variables. Several success applications of verification
have reported, including verification of audio-video protocols[3], a gear controller[4],
timeliness properties of multimedia systems [5], and so on.

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 11–18, 2014.
c© Springer International Publishing Switzerland 2014

12 K. Okano and T. Sekizawa

The line tracing robot usually has only one or two sensors to detect a line painted on
white background, and it traces the line according to the read value of the sensors. It is
easy to trace if the line is simple straight line. The line sometimes becomes complicated
by existence of random sequential corners. However, the line is topologically the same
as a simple straight line. The robots are often used in robot competitions in Japan.
Driving time, accuracy and robustness are usually evaluated in such competitions. The
robot is usually designed as a stand-alone. Thus it does not communicate with each
other. Also it does not have sensors to detect others. Only one robot runs in the same
time, thus functions for communication are not needed in competitions.

There is room to extend the line tracing robot to multiple autonomous systems. We
can do it by adding a simple communication function and a proximity sensor to each
of robots. With these robots, we can extend the lines to be crossed. Such extensions
provide a moderate abstract model for real autonomous automobile systems. It is very
simple if we compare it to the real world, but it has enough power to provide a structure
where we can discuss safety and robustness from the view point of formal techniques,
such as model checking. We describe applicability of model checking based on our
past experience[8] on model checking for a stand-alone robot using UPPAAL, a model
checker for network of timed automata.

In this paper, we extend the stand-alone model to multiple autonomous systems, and
describe advantages of applying model checking. Difficulties of such approach are also
described.

The rest of the paper is organized as follows. Sec. 2 provides preliminaries. Sec.
3 will describe both of the stand-alone and multiple models. Sec. 4 discusses model
checking possibilities. Finally, Sec. 5 concludes the paper.

2 Preliminaries

We provide several definitions and notions used in this paper.

2.1 Line Tracing Robot

A line tracing robot is a vehicle robot tracing a course. The course is assumed to be
painted in black color on white background with the same width. Figure 1 shows a
typical line tracing robot and a course layout for the robots.

Fig. 1. A Line Tracing Robot and an Oval Course

Safety Verification of Multiple Autonomous Systems by Formal Approach 13

LEGO R© Mindstorms NXT is a kit for assembling robots with various actuators and
sensors. The actuators include stepping motors which users can accurately control ro-
tation angles. The sensors include color sensors, touch sensors, ultrasonic sensors and
so on. Various programming languages are provided for control of the NXT kit, includ-
ing NXC (Not eXactly C) and LeJOS[7]. LeJOS is a development environment for Java.
NXC and LeJOS have classes for the above-mentioned sensors and actuators. Users can
program its behavior. This research uses LeJOS for developing the line tracing robot.

2.2 Model Checking

In general, the behavior of a line tracing robot can be modeled in a state machine, where
signals from sensors and commands to actuators are abstracted into actions of the state
machine.

For a given state machine M and a temporal logic expression e, we can perform
model checking. A model checker searches all possibilities of behaviors produced byM
and checks whether the behaviors satisfy the expression e. If the behaviors satisfy e then
the model checker outputs “yes” otherwise “no.” For the latter case, it also produces a
counter-example which is a concrete trace that violates e.

For real-time systems, it is desired to support time properties in a state machine. A
timed automaton is an extension of the conventional automaton with clock variables and
constraints for expressing real-time dynamics. They are widely used in the modeling
and analyses of real-time systems.

UPPAAL[2] is a famous model checker for extended timed automata by Wang-Yi et
al. It also supports model checking for the conventional timed automata. In addition, it
supports local and global integers and primitive operations on integers, such as addition,
subtract and multiplication with constants. The model of the system can be created from
multiple timed automata which are synchronized together via CCS-like synchronization
mechanisms.

3 Multiple Autonomous Systems Model

We give our model of multiple autonomous systems. First, we describe a model for a
stand-alone tracing robot. Next, we extend the model to multiple autonomous systems.

3.1 Stand-Alone Tracing Robot

A model for a line tracing robot consists of the following three sub-models:

– Controller Behavior Model (CM),
– State Transition of Environment Model (EM), and
– Disturbance Model (DM).

CM can be modeled in a network of timed automata to represent behavior of robot’s
controller program. A controller program usually changes values of some of state vari-
ables based on values of some state variables. For example, the state variables of a line
tracing robot will be the location of the robot, the locations of the right and left sensors,

14 K. Okano and T. Sekizawa

the output values of the right and left sensors, direction of the robot, the rotation speed
of left and right wheels, and so on. The output values of the right and left sensors are
used as inputs of the controller. The rotation speed of left and right wheels are used as
outputs of the controller.

EM can be normally represented in differential equations on state variables. In a hy-
brid system, such equations are used, while in a finite state model, differential-difference
equations are used as approximation.

DM can be modeled as uncertain error for each of observation variables.
For a line tracing robot, the principle state variables are summarized in Table 1.

Table 1. State Variables of a Line Tracing Robot

variable description
x: x-coordinate of the center of a line tracing robot
y: y-coordinate of the center of a line tracing robot
θ: direction of a line tracing robot
slx: x-coordinate of the left sensor of a line tracing robot
sly: y-coordinate of the left sensor of a line tracing robot
srx: x-coordinate of the right sensor of a line tracing robot
sry: y-coordinate of the right sensor of a line tracing robot
wl: revolution speed of the left wheel of a line tracing robot
wr: revolution speed of the right wheel of a line tracing robot
sl: the sensed value of the left color sensor
sr: the sensed value of the right color sensor

We need some other constants to model, especially constants on the size of the line
tracing robot.

Assume that a line tracing robot turns with the speed of left and right wheels at hs

and ls. Then equations of motion can be given as follows.

dθ

dt
=

hs − ls
w

(1)

dx

dt
= −rc · sin θ ·

dθ

dt
(2)

dy

dt
= rc · cos θ ·

dθ

dt
(3)

rc =
w

2
· hs + ls
hs − ls

, (4)

where w is the width of the robot.

3.2 Multiple Tracing Robots

The model for multiple tracing robots divides each robot’s CM into two levels of con-
trollers, namely upper controller model (UCM) and lower controller model (LCM). The
upper controller model deals with proximity sensors and wireless communication de-
vices, while the lower controller model deals with color sensors and motors. Figure 2
shows the overview of the whole model. In Figure 2, Communication Medium Model is
also used, which supports modeling for communication among proximity sensors and
wireless communication devices.

Safety Verification of Multiple Autonomous Systems by Formal Approach 15

Lower Controller

Upper Controller

motor

Wireless communication deviceProximity sensor

Light camera

Lower Controller

Upper Controller

motor

Wireless communication deviceProximity sensor

Light camera

Environment Model

Disturbance Model

Lower Controller

Upper Controller

motors

Wireless communication deviceProximity sensor

Light camera

Communication Medium Model

Lower Controller

Upper Controller

motor

Wireless communication deviceProximity sensor

Color sensor

Fig. 2. Model Overview of Multiple Tracing Robots

We can easily implement a proximity sensor for the robot with a combination of
ultrasonic sensors and touch sensors provided by the latest LEGO Mindstorms. A com-
munication device for the robot can be also implemented with a bluetooth device built
in the main block of LEGO Mindstorms.

4 Formal Verification

We describe two results of model checking on our models. The first is the stand-alone
system model and the other is the multiple autonomous systems model.

4.1 Stand-Alone Tracing Robot

In this experiment, we use a simple controller program, where the rotation speed of
wheels has only two values, hs and ls. Moreover we assume that sensors only tell white
and black colors on the track. In other words, the values of sl and sr are determined
by only the position of the line tracing robot. On the other hand, we model the delay of
sensors and actuators. Concretely, we have parameters ds, da, and dt for delay between
the time when program senses color and the time when the sensors obtain the values
of colors, delay between the time when program issues a command and the time when
the motor reacts, and sleeping time for next sense-act loop, respectively. This modeling
represents real behaviors of a line tracing robot.

Figure 3 shows the control behavior model of the program.
As EM, we use sampling abstraction, which updates the values of environment state

variables at fixed intervals[8].
We verified the following queries on an ideal model consisting of CM and EM (with-

out DM):

16 K. Okano and T. Sekizawa

sleepState

t <= sleep

goStraight
t <= cd

unwanted
t <= cd

turnRight
t <= cd

turnLeft
t <= cd

start

t <= sd

t == sleep

t := 0,
lsensorL = lsensor,
lsensorR = rsensor

t == cd

lws=HS,
rws=HS,
t:=0

t==cd

lws=HS,
rws=HS,
t :=0

t == cd

lws=HS,
rws=LS,
t:=0

t == cd

lws=LS,
rws=HS,
t:=0

lsensorL==white &&
lsensorR==white &&
t == sd

t := 0

lsensorL==black &&
lsensorR==black &&
t == sd

t := 0

lsensorL==white &&
lsensorR==black &&
t == sd
t := 0

lsensorL==black &&
lsensorR==white &&
t == sd

t := 0

Fig. 3. Timed Automaton in CM

1. E�(900 < x).
2. E�(C.turnRight).
3. E�(C.turnLeft).
4. E�(C.unwanted).
5. A�¬(C.unwanted).

6. E�(C.goStraight).
7. A�((x > 280) ⇒ (−100 < y < 100)).
8. A�((x > 280) ⇒ (θ < 10 ∨ 350 < θ)).
9. E�((x > 280) ⇒ C.turnRight).

10. E�((x > 280) ⇒ C.turnLeft).

The first query (1) means that the line tracing robot will reach the area x > 900.
Queries (2) and (3) mean that the controller eventually reaches state C.turnRight and
C.turnLeft. Queries (4) and (5) mean that the controller eventually reaches state
C.unwanted and that the controller never reaches state C.unwanted, respectively,
where both of sensors detect black color. Please note that query (4) and (5) contradict
each other, i.e., query (5) is negation of query (4). Query (6) means that the controller
eventually reaches state C.goStraight. Queries (7) and (8) mean that the line tracing
roughly keeps the track and appropriate direction, respectively, after 280 unit length
point. The last two queries mean that the line tracer eventually turns left or right even if
the tracer is in stable state.

Every of the verifications (except the query (4)) has succeeded[8].

4.2 Multiple Tracing Robots

In order to communicate between the upper level control and the lower level control,
we introduce a state variable command. If the value of command is stop then LCM sets
the values of speed of motors to 0. The revised version of LCM is shown in the left of
Figure 4.

UCM has to control the value of command according to the values of proximity
sensors. In order to select one robot to enter an intersection among robots at the in-
tersection, robots have to negotiate the selection with them when each of them senses
its neighbors by its proximity sensors. We can choose an algorithm for such a problem
from many distributed algorithm. If we assume that every intersection has its associated

Safety Verification of Multiple Autonomous Systems by Formal Approach 17

t <= cd

sleepState

t <= sleep

goStraight
t <= cd

unwanted
t <= cd

turnRight
t <= cd

turnLeft
t <= cd

start

t <= sd

t==cd

lws=0,
rws=0,
t:=0

command==stop &&
t==sd
t := 0

t == sleep

t := 0,
lsensorL = lsensor,
lsensorR = rsensor

t == cd

lws=HS,
rws=HS,
t:=0

t==cd

lws=HS,
rws=HS,
t :=0

t == cd

lws=HS,
rws=LS,
t:=0

t == cd

lws=LS,
rws=HS,
t:=0

command==go &&
lsensorL==white &&
lsensorR==white &&
t == sd

t := 0

command==go &&
lsensorL==black &&
lsensorR==black &&
t == sd
t := 0

command==go &&
lsensorL==white &&
lsensorR==black &&
t == sdt := 0

command==go &&
lsensorL==black &&
lsensorR==white &&
t == sd
t := 0

ack

x <= delay

wait

req
x<=k

A

cs
x <= crossing

x == delay && id != 0

x == delay && id == 0

x = 0

id== 0 &&
intersection == true

x = 0,
command = stop

x<=kx = 0,
id = pid id== 0

x = 0

x>k && id==pid

x=0,
command=go

x == crossing
id = 0

Fig. 4. Timed Automata for LCM and UCM

whiteboard and any robot at the intersection can access the whiteboard, then we can
use Fischer’s protocol. It is well-known that Fischer’s protocol can be model checked
in UPPAAL. We modify the model served as a demo example in UPPAAL distribution
by adding some transitions with extra actions and guards.

The right of Figure 4 shows the modified Fischer’s protocol model with wireless
communication delay and intersection crossing time, as UCM. The variable id shows
the whiteboard. If the value of id is 0, it means that no robots is in the intersection. A
robot which wants to enter the intersection overwrites the value of id to its own id. After
some units of time, if the value is the same as its own id, the robot enter the intersection.
The modified version has two more locations than the original model Fischer’s model.
However, we think that the modified model is still too abstract. If we want more detailed
behaviors, we need more clocks, transitions, events, and other automata.

We can successfully perform model checking that at most one robot exists in the
intersection with the model in Figure 4. In general, if the size of models becomes larger,
the model checking costs (CPU time) become larger.

At first we wrongly modeled UCM as an automaton without a transition from lo-
cation ack to A. Also the guard of the transition from ack to req is not “x== delay
&& id ==0,” but “x==delay.” Such a small defect leads the result of model checking
to fail. Therefore, model checking on a high-level specification is very useful to avoid
unwanted design.

To model check some important properties based on our model is one of future work.
If we cannot assume that every intersection has its whiteboard, then making mutual
agreements among the robots become harder. Some algorithms for it might be hard to
be modeled.

Once we have modeled all of sub-models in timed automata, we can simulate several
concrete behaviors using simulator function in UPPAAL. However its visualization is
based on message sequence charts. For our model, it is desired to visualize more concrete
views such as location and moving speed of every robot in a 2D map. LTSA tool[9] has
such a function. In LTSA tool, users can configure animation objects and their behaviors
for abstract specification of concurrent systems by editing configure files in XML format.
We want to extend the simulation viewer of UPPAAL with a similar as LTSA tool.

18 K. Okano and T. Sekizawa

5 Conclusion and Future Work

We described a model for multiple autonomous systems, and advantages of applying
model checking. Difficulties of such approach are also described. The model is very
simple, but it has enough power to provide a structure where we can discuss safety and
robustness from the view point of formal techniques, such as model checking.

As future work, we want to develop our simulator and model checking techniques
for the model for multiple autonomous systems. Evaluation of the possibilities of model
checking for our model is also important future work. It is well-known that the size of
state space becomes larger, model checking becomes harder. In order to overcome the
problem, we want to consider several abstraction techniques.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Journal of Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg
(2004)

3. Bengtsson, J., Griffioen, W.O.D., Kristoffersen, K.J., Larsen, K.G., Larsson, F., Pettersson,
P., Yi, W.: Verification of an Audio Protocol with bus collision using UPPAAL. In: Alur,
R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 244–256. Springer, Heidelberg
(1996)

4. Lindahl, M., Pettersson, P., Yi, W.: Formal Design and Analysis of a Gear Controller. In:
Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 281–297. Springer, Heidelberg (1998)

5. Bordbar, B., Okano, K.: Verification of Timeliness QoS Properties in Multimedia Systems.
In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885, pp. 523–540. Springer,
Heidelberg (2003)

6. Fitzgerald, J., Larsen, P.G., Pierce, K., Verhoef, M., Wolff, S.: Collaborative Modelling and
Co-simulation in the Development of Dependable Embedded Systems. In: Méry, D., Merz, S.
(eds.) IFM 2010. LNCS, vol. 6396, pp. 12–26. Springer, Heidelberg (2010)

7. LeJOS, Java for LEGO Mindstorms, http://lejos.sourceforge.net
8. Okano, K., Sekizawa, T., Shimba, H., Kawai, H., Hanada, K., Sasaki, Y., Kusumoto, S.: Ver-

ification of Safety Properties of a Program for Line Tracing Robot using a Timed Automaton
Model. International Journal of Informatics Society 5(3), 147–155 (2013)

9. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs, 2nd edn. John Wiley
and Sons (April 2006)

http://lejos.sourceforge.net

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 19–26, 2014.
© Springer International Publishing Switzerland 2014

Checking Verification Compliance of Technical Safety
Requirements on the AUTOSAR Platform Using

Annotated Semi-formal Executable Models

Martin Skoglund1, Hans Svensson2, Henrik Eriksson1, Thomas Arts2,
Rolf Johansson1, and Alex Gerdes2

1 SP - Technical Research Institute of Sweden, Dep. of Electronics, SE-501 15 Borås, Sweden
{martin.skoglund,henrik.eriksson,rolf.johansson}@sp.se

2 Quviq AB, SE-412 88 Gothenburg, Sweden
{hans.svensson,thomas.arts,alex.gerdes}@quviq.com

Abstract. Implementing AUTOSAR-based embedded systems that adhere to
ISO 26262 is not trivial. High-level safety goals have to be refined to functional
safety requirements and technical HW and SW safety requirements. SW safety
requirements allocated to the application as well as the underlying AUTOSAR
platform. Finding relevant safety requirements on the AUTOSAR basic soft-
ware are a challenge. AUTOSAR specifications provide incomplete lists of re-
quirements which might be relevant. In this paper we address this challenge by
providing tool support to automatically extract relevant functional requirements
for given safety scenarios. A conservative estimation gives that the safety-
relevant part of the overall requirements can be as small as 30%, which reduce
the necessary rigid testing effort. An electronic parking brake example is pre-
sented as a demonstration of concept.

Keywords: Technical Safety Concept, Technical Safety Requirements, Safety
Verification, Safety arguing, Automotive, ISO 26262, AUTOSAR.

1 Introduction – The Automotive Safety Problem

The ISO 26262 standard has been developed to address the exponential growth in
complexity of the software integrated into automotive systems, and the inherent po-
tential for catastrophic failure. The standard aims to address these failures, by defin-
ing a safety lifecycle-process to ensure that safety is taken into account in the design
of electronic systems in automotive applications.

The functional safety requirements are refined to technical safety requirements and
HW and SW safety requirements respectively, on the application level, as well as on
all underlying software levels, e.g., the AUTOSAR basic software platform. To verify
the top-level safety requirements, safety goals, we therefore need to verify that the
AUTOSAR platform implementation in its context can meet the strict requirements of
ISO 26262. This is in practice a challenge. There is evidence that production ready

20 M. Skoglund et al.

AUTOSAR software may still contain deviations against the standard [6]. Thus, a
safety argument based upon the argument that the basic software has been QA tested
is in practice insufficient. The least we would like to know is that all requirements
important for safety analysis are tested well enough for the claimed safety integrity
level. Requirements that are not important for the safety argument can then be ig-
nored. This in accordance with the ISO 26262 reference life cycle, that assumes that it
is possible to identify where the safety requirements are allocated. However, this is in
general only considered feasible for application software, for platform software it is
usual to consider all functional requirements as safety related. Such a strategy might
be very costly, and therefore it would be beneficial to reduce the scope for safety
argumentation to only the requirements that are safety relevant in the actual context.

In this paper, we address the challenge to identify safety-relevant requirements in
the AUTOSAR basic software. As an example, we gather all technical requirements
from a set of functional safety requirements that demand that a car CAN network is
accessible (i.e. wake up from sleep mode).

2 Background

The overall objective of the AUTOSAR standard [4] is to define a platform upon
which future vehicle applications will be developed. In this paper focus is placed on
the safety critical software features of AUTOSAR Basic Software (BSW) that is
closely linked to the functional safety standard ISO 26262.

Safety requirements allocated on the BSW have propagated down from the appli-
cation software it serves in an assumed context. Typically, one can only assume the
level of intended integrity for the BSW module because it is developed before and
separate from an application. This kind of development is covered by the guideline
for Safety Element out of Context (SEooC) in the ISO 26262 [2]. The SEooC can
typically be an AUTOSAR BSW module. The process directs the developer to make
assumptions on the scope of the SEooC, which entails listing circumstances of use,
that can be foreseen e.g. the software will be integrated in a specific layered architec-
ture or that the module should detect errors or to delegate the error detection. The next
step is to make assumptions on the safety requirements of the SEooC. When all as-
sumptions on the SEooC have been documented, the development of the software
SEooC can be started according to the requirements of ISO 26262-6 [1] for the se-
lected ASIL level. During the integration of the SEooC in a new particular context,
the validity of all assumptions is checked and if the not all assumptions are valid, an
impact analysis should be carried out. This may lead to a redesign of the SEooC soft-
ware or adjustments to its environment.

In order, for concepts like SEooC to be applicable and practical it is required that
the AUTOSAR platform can meet the rigorous verification requirements of ISO
26262 with confidence. The ambition is to build that confidence and to identify a
method to aid the confirmation of compliance with the stringent requirements on the
verification of safety requirements stated in Table 2 Methods for the verification of
safety requirements in clause 6.4.3.3 of ISO 26262-8 [2].

 Checking Verification Compliance of Technical Safety Requirements 21

The big advantage is to be able to point directly to a common ground like the
AUTOSAR standard requirements on a module when allocating and verifying safety
integrity. The proposed method in this paper aims to bridging the gap between appli-
cation and platform seen in Figure 1.

Br
id

ge
Th

e
ga

p

Fig. 1. Right side of the V-model development process focused on safety

3 Our Approach

3.1 Identify Safety Critical Features Allocated to Platform

In general, it is hard to know which functional requirements are important for the
fulfilment of a safety requirement. The basic assumption is that all functional re-
quirements are correctly implemented and that this is verified in some way. The
safety analysis should not need to repeat this work, but just assuming correct imple-
mentation of all-important requirements seems precarious.

The minimum we want to establish is what requirements we should have well
tested. To attain a relevant set of safety requirements we will go through the safety
lifecycle process described in ISO 26262. First, identify the item and its top-level
system functionality then make a comprehensive set of hazardous events identified
for the item and assign an ASIL to each event. Each hazardous event is assigned a
safety goal, with the purpose of reducing of the risk to an acceptable level, inheriting
the ASIL of the hazardous event. Safety goals are refined into lower-level functional
safety requirements that have been assigned to system architectural elements. Func-
tional safety requirements can be refined or decomposed further to technical safety
requirements allocated to hardware and software components, here of special interest
is the technical safety requirements allocated direct on the software platform. This
process is also applicable for a SEooC but then all the entities that govern safety are
assumed. If we have technical safety requirements allocated on the platform they
generally state that some platform mechanism has to behave a certain way with ASIL
integrity. Even if the mechanism falls under one of the predefined technical safety
concepts of AUTOSAR [4], the problem of tracing what functional requirements are
relevant for this particular mechanism still remain, but we now know what mechan-
ism and behavior that is safety related.

22 M. Skoglund et al.

3.2 Identify Relevant Test Scenarios

We use the scenarios to identify relevant requirements. Basically, for each performed
API call, one should know what requirements apply to that call. This is problematic,
since the requirements depend not only on the API call, but also on the present system
state. Therefore, we use a model implementing the specifications that we use for test-
ing AUTOSAR components. These models are written in the programming language
Erlang [9] and used by QuickCheck [7] to generate test cases. The models are tem-
plates for the implementations. Each model has a state to determine which consecu-
tive calls can be generated and what their effect on the state should be. The state
contains all information needed to determine whether a certain requirement is appli-
cable to a specific call. We therefore can annotate the model with those requirements
that are relevant at a certain moment of time. The requirements are manually added to
the model by carefully reading the specification. We assume that this annotation has
carefully been validated.

When generating a test case, we traverse the model. Depending on the function ar-
guments and the state the software is in at that time, the model code is traversed dif-
ferently. On the code path, we have annotated requirements and as soon as we pass
one of these, that is recorded. The model can also replay generated test cases; we use
that to run the actual test case against the software. We can during this replay also
save the requirements encountered during that test run. Thus, a test case always corre-
sponds to a set of requirements that we encountered in the code when running that test
case. A scenario is just a large test case and by executing the scenario, we automati-
cally derive all requirements that we encountered during the run of this scenario. Note
that we do not need any code for executing a scenario in the model, since we have the
possibility with these models to not execute, but just simulate a test run.

4 Application of the Method on Parking Brake

To demonstrate the method we will use a small part of a larger safety life cycle work
done on an electronic parking brake (EPB) item [10]. No assertion to comprehensive-
ness is being made on the item presented here. We have conducted the process pre-
scribed in ISO 26262 with a minimal but illustrative example. The goal is to have a
set of technical safety requirements allocated to the platform that states that some
platform mechanism has to behave in a certain way, with ASIL integrity. Then use a
call trace in the requirement annotated executable model of the relevant modules to
yield a complete list of the affected AUTOSAR requirements for the technical safety
requirement of interest.

4.1 Identify Safety Critical Features Allocated on Platform

Electronic parking brakes are used on passenger vehicles to hold the vehicle statio-
nary on grades and flat roads. This was traditionally accomplished using a manual
parking brake. With an EPB, the driver engages the holding mechanism with a button
and the brake pads are then electrically applied onto the rear brake discs. Releasing

 Checking Ver

the brakes are done the sim
vehicle is parked on a railw
that there is a driver presen
driver not present” (uninte
pedal in order to discern th
cated to a different node an

Fig. 2. EPB Syst

If the EPB under some c
is being sent and therefore
release omission”. This is u
1. This safety goal will be c

Table 1

Hazard
id

Failure
mode Situation H

Haz1 Release
Omission

Parked
railway

crossing
Driver

pressing
the gas
pedal

In
r

o

Proposed functional safe

meet the level of detail requ
set of functional safety requ
tional safety requirement s
consideration has to be tak
states, emergency operatio
ance). A warning and degra

rification Compliance of Technical Safety Requirements

milar way. However if considering the situation when
way crossing with EPB engaged, the EBP needs to kn

nt, to not risk violating the safety goal for “Parked slo
ended release). This is implemented by pressing the
hat release is valid. The <gas pedal pressed> sensor is a
d the signal is sent via a CAN bus to the EPB.

tem view with network management (NM) included

ircumstance is unaware that the <gas pedal pressed> sig
unable to mitigate with a safe state, we have an “Inten

unlikely to happen but have severe consequences, see Ta
considered for the rest of the paper.

1. Hazard analysis for parked on train track

Hazard E S C ASIL Safety
goal id

Safe
go

ntended
release

omission

E0 S3 C3 A SG1 Sh
relea
on tr

tra

Incredible
rare

Life-
threatening

or fatal
injuries

Difficult to
control or

uncontrolla-
ble

ety requirements on EPB item are listed in Table 2, wh
uired by the example, but they will not reflect the comp
uirements. It adheres to the principle that at least one fu
shall be specified for each safety goal. In a complete
ken to operating modes, fault tolerant time interval, s

on interval, and functional redundancies (e.g. fault to
adation concept should also be specified.

23

the
now
ope,
gas

allo-

gnal
nded
able

ety
oal

all
ase
rain
ck

hich
lete

unc-
set,
safe

oler-

24 M. Skoglund et al.

Table 2. Functional safety requirement

 Tag
Functional Safety

Requirement Safety Goal Allocated ASIL

FSR1
<Gas pedal pressed>

signal max age 1
second +-200ms

SG1 <Gas pedal pressed>
signal channel

ASIL A

Table 3. A sample of technical safety requirements refined for FSR1

 Tag
Technical Safety Re-

quirement
Functional Safety

Requirement Allocated ASIL

TSR2
Detect loss of signal FSR1 <Gas pedal pressed>

signal channel
ASIL A

TSR3
Detect delay of signal FSR1 <Gas pedal pressed>

signal channel
ASIL A

TSR6
Detect blocking access

to a communication
h l

FSR1 <Gas pedal pressed>
signal channel

ASIL A

The EPB item has full AUTOSAR network management implemented. The

CanNm module has the following states; here we focus on the external states (observ-
able): Network Mode, Prepare Bus-Sleep Mode, and Bus-Sleep Mode.

If the receiving node (EPB) is in Bus-Sleep Mode it has no possibility to fulfill the
technical safety requirements placed on Detect loss of signal, Detect delay of signal,
and Detect blocking access to a communication channel. Protective features placed on
these are put out of play when in Bus-Sleep Mode because it has no possibility to
detect the absence of a signal on a sleeping net. The transition from Bus-Sleep
Mode to Network Mode is safety related since the node has to have the ability to
leave sleep mode, and the transition from Prepare Bus-Sleep Mode to Bus-
Sleep Mode is important because the node should not go to sleep without just
cause. The initialization is obviously also important; the node should not get stuck in
the startup phase. Tracing these transitions in the AUTOSAR specification is quite
simple, but deriving the related functional requirements that support these features is
more challenging.

4.2 Identify Relevant Test Scenario of Network Management

The first step in our approach is to reduce the safety goals to scenarios that need to
work in order to fulfil the safety requirements. For instance, in our parking brake
example, we want to be able to get the network to full communication, bring it to
sleep, and get it to full communication again as explained in Section 4.1. Such a sce-
nario is not the same as a test case, in order to make a test case, one need to call a
number of API functions in BSW modules CanNm, CanIf, and CanSM. At the mo-
ment we manually create this test case from such scenario. For the above example,
this test case consists of 546 calls to 10 different API functions. From these API func-
tions, 4 functions are specified in CanNm, 2 are specified in CanIf and 3 are specified
in CanSM. Thus even such a simple scenario points to three different specifications
and a large number of functions that should be correctly implemented.

 Checking Verification Compliance of Technical Safety Requirements 25

Fig. 3. Schematic test scenario description

4.3 Result of Call Trace

For each transition made in Figure 3, the relevant AUTOSAR requirements can be
listed. Here we are only interested in transitions 1, 2, 3 and 4. The relevant require-
ments are grouped by module and presented in Figure 4.

Fig. 4. Result summary of call trace for requirements

The total number of 203 requirements was annotated in the three modules and out
of those 76 was involved in the call trace. Approximately one third of the annotated
requirements on module level where in some way involved in the call trace, and thus
are safety related. This is a promising technique to fulfil item 1c in clause 6.4.3.3 of
ISO 26262-8 [2].

Top level of call trace sequence:
1) Initialize and start communication
2) Bus-Sleep Mode to Network Mode
3) Stop Communication Actively Network Mode

to Bus-Sleep Mode
4) Start Communication Again Prepare Bus-Sleep Mode

to Network Mode
5) Network Mode to Prepare Bus-Sleep Mode
6) Prepare Bus-Sleep to Network Mode

Bus-Sleep
mode

Network
Mode

Prepare
Bus-Sleep

Mode

Init
1

2 & 4

6

3

3 & 5

0

20

40

60

80

100

CanNMCanSM CanIf

Total number
of annotated
functional
requirements

Number of
identified
safety critical
requirments

26 M. Skoglund et al.

5 Conclusions

We have gone through the complete chain in the safety lifecycle, from Safety Goals to
AUTOSAR BSW requirements. Unlike application software, where the link to safety
is more direct, safety requirements allocated on the platform software are challenging
to identify. However, if successful it significantly reduces the cost for achieving com-
plete evidence in a safety argumentation.

By using a semi-formal approach, we could derive relevant requirements for our
safety goals. The results are promising, approximately one third of the annotated re-
quirements were involved in the call trace of the critical scenario. This has a signifi-
cant impact on the development/verification effort.

The method is automated up to a high degree, which makes it efficient to apply.
Manual steps in the method are the selection of the safety related scenario(s), the vali-
dation of the model requirement annotations, and the validation whether the resulting
requirements are covered in a verification method with the right ASIL integrity.

Altogether, the presented method was shown to be a viable way to derive a limited
amount of safety requirements on platform components.

Acknowledgements. We acknowledge the Swedish research foundation Vinnova for
its support of the AcSäPt project (ref. 2012-00943) and the European Commission for
its support of the nSafeCer project, ARTEMIS (ref. 295373).

References

1. ISO, 26262-6:2011, Road vehicles — Functional safety — Part 6, Product development at
the software level

2. ISO, 26262-8:2011, Road vehicles — Functional safety — Part 8, Road vehicles — Func-
tional safety - Supporting processes

3. ISO, 26262-10:2011, Road vehicles — Functional safety — Part 10, Road vehicles —
Functional safety - Guideline on ISO 26262

4. AUTOSAR, Technical Safety Concept Status Report, vol. Document Version 1.2.0, no.
Part of Release 4.1 Rev 1 (October 2013)

5. AUTOSAR, AUTOSAR Technical Overview,
http://www.autosar.org/index.php?p=1&up=2&uup=0
(retrieved March 5, 2014)

6. Arts, T., Johansson, R., Svensson, D., Kallerdahl, A.: Model Based Testing of AUTOSAR
components. In: Proceedings of the 3rd AUTOSAR Open Conference, Frankfurt,
Germany, May 11 (2011)

7. Arts, T., Hughes, J., Johansson, J., Wiger, U.: Testing telecoms software with Quviq
QuickCheck. In: ACM SIGPLAN Workshop on Erlang (2006)

8. Svenningsson, R., Johansson, R., Arts, T., Norell, U.: Formal Methods Based Acceptance
Testing for AUTOSAR Exchangeability. SAE Int. J. Passeng. Cars - Electron. Electr.
Syst. 5(1), 209–213 (2012)

9. Armstrong, J.L., Williams, M., Virding, R., Wilkström, C.: ERLANG for Concurrent Pro-
gramming. Prentice-Hall, Inc. (1993)

10. Skoglund, M.: AP1, Quality criteria for supporting the ISO 26262, AcSäPt project (ref.
2012-00943)

Evaluation of Safety Rules in a Safety

Kernel-Based Architecture

Eric Vial and António Casimiro

Universidade de Lisboa, Faculdade de Ciências, Portugal
evial@lasige.di.fc.ul.pt, casim@di.fc.ul.pt

Abstract. Kernel-based architectures have been proposed as a possible
solution to build safe cooperative systems with improved performance.
These systems adjust their operation mode at run-time, depending on
the actual quality of sensor data used in control loops and on the execu-
tion timeliness of relevant control functions. Sets of safety rules, defined
at design-time, express the conditions concerning data quality and time-
liness that need to be satisfied for the system to operate safely in each
operation mode.
In this paper we propose a solution for practically expressing these

safety rules at design-time, and for evaluating them at run-time. This
evaluation is done using periodically collected information about safety-
related variables. For expressing the rules we adopt the XML language.
The run-time solution is based on a safety rules evaluation engine, which
was designed for efficiency and scalability. We describe the architecture
of the engine, the solution for structuring data in memory and the rule
evaluation algorithm. A simple sensor-based control system is considered
to exemplify how the safety rules are expressed.

1 Introduction

Safety is typically a fundamental concern when designing and developing vehicu-
lar autonomous systems like autonomous cars, airplanes or boats. System safety
is usually proved at design-time, for which assumptions on system properties
have to be made (e.g., fault and timeliness assumptions). These assumptions
are required to hold with very high probability when developing safety-critical
systems. A difficult problem when moving towards more complex systems per-
forming more complex functions is that failure modes also become more complex
and the system behavior tends to be less predictable. This is amplified when
considering cooperative systems, which need to interact over wireless commu-
nication networks. In such systems, making assumptions on bounded message
delays becomes a hard exercise: either these assumptions are pessimistic, lead-
ing to inefficient solutions, or additional resources must be used to improve the
characteristics of communication subsystem, increasing the cost of the solution.

To address this problem, the solutions proposed in literature typically suggest
to separate the system in different parts. The properties assumed for each part
will be different, resulting in systems with a hybrid architecture. Notable exam-
ples include the Simplex model [4] and the Timely Computing Base model [5].

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 27–35, 2014.
c© Springer International Publishing Switzerland 2014

28 E. Vial and A. Casimiro

In both cases, part of the functions will be executed in a more predictable way
(under a stronger failure or timeliness model), while other functions, the complex
ones, will execute in a less predictable part of the system. The system separation
in two parts makes it easier to enforce the properties assumed for the “better”
part, while safety is ensured by making the system adjustable at run-time: the
complex functions will only be used for control when a certain set of assumptions
is satisfied. For that, the system must encompass a safety manager that observes
relevant variables, verifies if predefined safety rules (assumptions) are met, and
adjusts the system configuration and operation whenever necessary.

This idea was explored in the KARYON project, which defined a generic
architectural pattern for the development of sensor-based autonomous and co-
operative systems [2]. The KARYON architecture is based on a safety kernel
that performs the mentioned observation of safety-related variables and deter-
mines the adequate operation mode. The safety kernel is also responsible to drive
the necessary adjustments or reconfiguration actions, according to the operation
mode that was determined as the safe one. There is a set of safety rules that has
been defined at design-time for each mode of operation to perform the desired
functions safely. They are used at run-time by the safety kernel, which periodi-
cally evaluates if they are being satisfied, given the collected safety information.
KARYON also proposes solutions to abstract specific sensor faults, defining an
abstract sensor model that allows sensor data to be characterized by a validity
attribute [1]. Therefore, safety rules are expressed in terms of validity require-
ments, as well as in terms of timeliness requirements. We note that safety rules,
once defined in design-time, and once being considered for safety analysis, will
not change in run-time.

This paper focusses on the design and the implementation of an engine that
performs the run-time verification of safety requirements expressed in safety
rules. This engine is one of the main components the safety kernel and hence
has to perform the verification efficiently. In addition, we also devised a solution
that deals with scalability issues and may thus be useful for more realistic ap-
plications, involving a large number of safety rules. The paper explain how the
safety rules can be expressed using the XML notation, how they are parsed and
stored in memory and what is the algorithm performed by the safety manager
engine to evaluate safety based on collected safety information.

The paper is structured as follows. In Section 2 we provide a brief overview of
the safety kernel components. The design and the implementation of the relevant
components for evaluating safety at run-time are presented in Section 3. An
example case is considered in section4, to illustrate how safety rules are defined.
Finally, Section 5 concludes the paper.

2 Definitions and Concepts

We consider a system in which several (possibly cooperative) functions can be ex-
ecuted. Nominal system components required for the execution of these functions
include: sensors, actuators, computation and communication components. Each

Evaluation of Safety Rules in a Safety Kernel-Based Architecture 29

of these components can be used to support multiple functions. Each function
can be provided with several levels of service (LoS), depending on the compo-
nents that are being used and/or the performance level of each component. Some
components can exhibit uncertain timeliness, but some of them (used to execute
the functions with a minimum guaranteed LoS) must always be timely.

Fig. 1. Safety kernel components

Besides the nominal sys-
tem components, the system
includes a safety kernel that
is responsible for adjusting
the performance level of spe-
cific components or reconfig-
uring the system, such that
each function will be exe-
cuted with a desired level
of service (LoS). The safety
kernel is necessarily in the
predictable part of the sys-
tem. For its operation, the
safety kernel collects timeli-
ness and sensor data validity
information. It then uses this
information to verify if safety
rules are satisfied, determin-
ing the adequate LoS for each function. Depending on the combination of LoS
for the different functions, a specific system configuration and/or component
performance level is enforced.

Figure 1 gives an overview of the safety kernel components. At startup the
XML Parser reads the local configuration, builds a Safety Rules repository and
initializes Run-time Safety Information (RSI) structures. Therefore, the config-
uration file includes both safety rules and unit definitions. A unit corresponds
to a safety kernel input (collected data), output (adjustment data – typically
a component performance level) or locally calculated values (for instance, the
acceptable LoS for some function). A safety rule is a boolean expression involv-
ing combinations of static values (bounds) and unit identifiers. A safety rule is
meaningful for a specific LoS of some function. For instance, function F2 can
only be safely executed in LoS 1 when data validity V0 is greater than 50 and
V1 greater than 70. This is expressed as:

F2(LoS1) → V0 > 50 ∧ V1 > 70

The Input Data Manager receives data inputs from the external (nominal sys-
tem) components and updates the RSI. The Timing Failure Detector (TFD) is
responsible for checking if certain data inputs have been received from external
components within predefined temporal bounds. This TFD executes periodically,
during each execution round of the safety kernel. When the TFD detects a tim-
ing failure (some data, which might be just an heartbeat, has not been timely

30 E. Vial and A. Casimiro

produced at the safety kernel interface), it stores this information in the RSI unit
corresponding to the untimely data. The Data Component Multiplexer selects,
from two or more data inputs (collected from nominal components), one that is
forwarded to its output. This is useful, for instance, when the nominal has two
components providing the same data (e.g., a front distance value), one providing
data with high validity, but taking an uncertain amount of time to produce this
data, and the other providing data with lower validity, but always in a timely
way. The Data Component Multiplexer selects, among the two values, the better
one, if timely produced, and the lower validity one, otherwise. Finally, the Safety
Manager is the central component as it evaluates at run-time if Safety Rules are
satisfied given the RSI data.

3 Design and Implementation

In this section, we start by describing how the Run-time Safety Information and
the Safety Rules are represented in memory. Then we explain the solution for
parsing and storing safety rules and, finally, we address the safety manager.

3.1 Data Structures

Data structures must be simple to provide code robustness, but they are designed
as well with the aim of reducing the computation time during the rule evaluation
phase. The Run-time Safety Information (RSI) repository is initialized during
system bootstrap and is updated at run-time with collected safety-related in-
formation. The RSI size depends on the number of units (inputs, outputs and
internal variables) declared in the configuration file. As this size is not changed
at run-time, we use a single dimension array to store the units. Each unit struc-
ture contains several fields, including a pointer to related safety rules, which set
requirements on this unit, a timeliness status, which may be relevant for units
with timeliness constraints, a data validity value, a level value that may be used
to store performance levels or levels of service (this is clarified ahead in the text),
and some other attributes.

The safety rules are also built at bootstrap from the configuration file. We
note that one possible design approach would be to simply hard code the safety
rules within the safety kernel, thus avoiding the need for specifying them in
a configuration file, and consequently processing them at bootstrap. However,
we decided to follow an approach that provides some additional flexibility and
leads to a generic safety kernel implementation. Safety rules can be updated
without the need for recompiling the code and loading it on the board, which
is particularly advantageous during the development process. And the safety
kernel core is totally independent of the specific application, which can facilitate
verification and validation activities.

Given that safety rules need to be checked in every execution cycle, within a
limited amount of time, a fundamental requirement is to devise a solution for
storing them in memory, such that safety management is efficient and scalable.

Evaluation of Safety Rules in a Safety Kernel-Based Architecture 31

Fig. 2. Basic safety rule definition

This is particularly necessary if considering that in real systems the number of
safety rules will tend to be very high. The concrete number will depend on the
amount of functionalities that may be performed by an autonomous vehicle, on
the number of system variables that may have to be checked in run-time, and on
the number of levels of service considered for each functionality. We addressed
this requirement by adopting a tree-based data organization, where the root
node for each safety rule contains the associated level of service (LoS) and a
pointer to the top child node of the tree. This tree is created during the XML
Parsing. This kind of structure allows for efficient rule parsing at run-time, using
the algorithm described in Section 3.3.

The tree corresponding to the basic rule example from Section 2 is shown in
Figure 2 (left). Three different types of nodes can be used in the tree: test nodes,
unit id nodes and value nodes. Test nodes store boolean operations, like AND,
OR, EQUAL, DIFF or SUP, among others. Each unit id node contains the in-
dex of a unit in the RSI array. According to the way a unit id is defined in the
configuration, it contains either a data validity value or a level of service/per-
formance level value. In the example, the two units (ids 0 and 1) will contain
data validity values. Different rule trees can refer to a single unit when there
are multiple constrains (safety rules) related to a certain safety-related variable.
When this happens, the several rule trees are level-sorted (from the higher to
the lower level, as defined in the root node) in a linked list to which the unit will
point. Finally, value nodes contain constants (bounds) against which the unit
values will be checked.

3.2 XML Parsing

A lot of XML Parsers are described in the literature and many of them are
available for free. These parsers usually offer a large range of functionalities and

32 E. Vial and A. Casimiro

may be not portable to RTEMS environments. As a consequence, we chose to
develop our light XML Parser with only some basic features. Its architecture is
similar to the open markup parser available in Glib library [3].

The XML Parser is a simple context-based parser. In each context there are
two callback functions that are used for opening and closing markup tags. During
the parsing, these functions are called to initialize the RSI array and the safety
rule trees. Context switching is performed inside the callback function according
to the parsed XML tag.

Figure 2 (right) shows an XML configuration file implementing the basic safety
rule example given in Section 2. A configuration file admits four context levels.
The configuration context is the default one, while the system context is used
to initialize global system parameters. For instance, in this example the safety
kernel period is set to 200 ms. The purpose of the unit context is to define a
new unit. Finally, the rule context is used to build a safety rule tree associated
to a given unit. Note that besides the output unit with id 2 (which allows to set
the performance level of some application component), two additional units are
created (ids 0 and 1) to store data validity values. The output unit will hold the
value 1 when the (only) rule evaluates to true, and 0 otherwise. A node stack
allows to internally store the nodes and assemble the tree.

3.3 Safety Rules Evaluation

At run-time the Safety Manager will periodically scan the RSI array. For each
unit with at least one defined rule (some units, like units 0 and 1 from the
example, do not have any associated rule), the Safety Manager evaluates them
starting with the rule with the highest level. The rationale is to first evaluate
if the conditions to perform some function at the highest level of service are
satisfied. When they are not, then other safety rules will be checked. Therefore,
the evaluation stops when a rule is satisfied or when the end of the rule list is
reached. In the latter case, this means that the function has to be executed at the
lowest LoS (level 0). At the end of the process, the Safety Manager updates the
level field of internal units (those holding the acceptable LoS for some function)
and of output units (holding the performance level level of specific components).
The rule evaluation functions are the following:

1: function level(rule list)
2: for all rule ∈ rule list do
3: node list ← rule.root
4: if and(node list) then
5: return rule.level
6: end if
7: end for
8: return 0
9: end function
10:
11: function and(node list)
12: for all node ∈ node list do

13: if ¬eval(node) then
14: return false
15: end if
16: end for
17: return true
18: end function
19:
20: function eval(node)
21: switch node.type do
22: case test
23: return test(node)
24: end case

Evaluation of Safety Rules in a Safety Kernel-Based Architecture 33

25: case unit

26: return unit(node)
27: end case
28: case value
29: return true
30: end case
31: end switch
32: end function
33:
34: function test(node)
35: node list ← node.test.childs
36: switch node.test.type do
37: case sup
38: if ¬and(node list) then

39: return false

40: end if
41: return compare(node) > 0
42: end case
43: ...
44: end switch
45: end function
46:
47: function unit(node)
48: id ← node.unit.id
49: unit ← unit array[id]
50: return unit.status
51: end function

The level function (line 1) evaluates the unit rule list. The and function is
first called, as the top-level node is always an AND in any rule tree. This first
node gathers all conditions required for the rule to be satisfied. The eval function
(line 20) evaluates a node according to its type. In the test function (line 34)
we only show the SUP operator (line 37). First we check the timeliness status of
both operands by recursively calling the and function. If the evaluation returns
true, we compare the values of both operands (line 41). The unit function (line
47) is called to evaluate a unit and returns its timeliness status.

4 Example Application

We consider an example application in which two cooperative functions, CFA

and CFB , are implemented. These functions use two sensors, S1 and S2, and
five functional components, from C1 to C5. Both sensors provide a data va-
lidity value associated to the sensor data they produce, which is sent to the
safety kernel (V1 and V2). C4 is a multi-component with two implementations,
C4’ and C4”, corresponding, respectively, to performance levels PL1 and PL0.

Fig. 3. Example functions

According to the execution timeliness of C4’,
called ETC4−PL1, the Data Component Mul-
tiplexer will forward the selected value from
C4 to C5. Finally, C1 is a component be-
low the hybridization line able to execute with
three different performance levels (from PL2
to PL0). We also consider that the safety
rules for both functions are the following (the
bounds have to be defined at design-time, and
it must be proven that the functions will be
safely performed in each LoS when the safety
rules are met):

34 E. Vial and A. Casimiro

CFA LoS(LoS3) → V 1 > 80 ∧ ETC4−PL1 < DC4

CFA LoS(LoS2) → V 1 > 60 ∧ ETC4−PL1 < DC4

CFA LoS(LoS1) → V 1 > 60

CFA LoS(LoS0), otherwise

CFB LoS(LoS3) → V 1 > 80 ∧ V 2 > 70

CFB LoS(LoS2) → V 1 > 80

CFB LoS(LoS1) → V 1 > 60

CFB LoS(LoS0), otherwise

The next table shows the performance levels of C1 and C4 in dependence of
the LoS of both functions. All invalid combinations have been removed. On the
right side of the table, we provide a possible set of expressions that can be used
to calculate these performance levels.

CFA CFB C1 C4

LoS3 LoS3 PL2 PL1

LoS1 LoS3 PL2 PL0

LoS3 LoS2 PL1 PL1

LoS2 LoS1 PL1 PL1

LoS1 LoS1 PL1 PL0

LoS0 LoS0 PL0 PL0

C1 PL(PL2) → CFB LoS = 3

C1 PL(PL1) → CFB LoS > 0

C1 PL(PL0), otherwise

Given all the above expressions, required to determine the feasible LoS for each
function and the corresponding component performance levels, it is possible to
create an XML configuration file. An identifier must be first assigned to each
unit (e.g., ID0 for S1, ID1 for S2, ...), and this allows the proper references to
be made in the configuration file. Note that there are no IDs for C2 ad C3 as
they are not involved in any expressions. A subset of the resulting configuration
file is presented below.

1 <?xml ve r s i on=” 1 . 0 ”?>
2 <c on f i g>
3 < !−− C1 component −−>
4 <un i t id=”2”>
5 <mode>update</mode>
6 <r u l e l e v e l=”2”>
7 <t e s t type=” equal”>
8 < l e v e l id=”7”/>
9 <va lue>3</ va lue>

10 </ t e s t>
11 </ r u l e>
12 <r u l e l e v e l=”1”>
13 <t e s t type=”sup”>
14 < l e v e l id=”7”/>
15 <va lue>0</ va lue>
16 </ t e s t>
17 </ r u l e>
18 </ un i t>
19 . . .
20 < !−− Function A −−>
21 <un i t id=”6”>
22 <r u l e l e v e l=”3”>
23 <t e s t type=”sup”>
24 <v a l i d i t y id=”0”/>
25 <va lue>80</ va lue>
26 </ t e s t>
27 <t e s t type=” equal”>

28 < l e v e l id=”5”/>
29 <va lue>1</ va lue>
30 </ t e s t>
31 </ r u l e>
32 <r u l e l e v e l=”2”>
33 <t e s t type=”sup”>
34 <v a l i d i t y id=”0”/>
35 <va lue>60</ va lue>
36 </ t e s t>
37 <t e s t type=” equal”>
38 < l e v e l id=”5”/>
39 <va lue>1</ va lue>
40 </ t e s t>
41 </ r u l e>
42 <r u l e l e v e l=”1”>
43 <t e s t type=”sup”>
44 <v a l i d i t y id=”0”/>
45 <va lue>60</ va lue>
46 </ t e s t>
47 </ r u l e>
48 </ un i t>
49 < !−− Function B −−>
50 <un i t id=”7”>
51 . . .
52 </ un i t>
53 </ c on f i g>

Evaluation of Safety Rules in a Safety Kernel-Based Architecture 35

5 Conclusion

This paper describes the solutions developed in the KARYON project for spec-
ifying safety rules in configuration files, for storing safety rules and safety data
in memory, and for evaluating safety at run-time. They were designed with the
objective of being simple but effective, addressing performance and scalability re-
quirements. This simplicity facilitates the calculation of upper bounds for safety
rule evaluation time. These solutions have been implemented and are being used
in the KARYON vehicular demonstration prototypes.

Acknowledgements. This work was partially supported by the EU’s FP7
through project KARYON, under grant agreement No. 288195, and by the FCT,
through the Multiannual program.

References

1. Brade, T., Zug, S., Kaiser, J.: Validity-based failure algebra for distributed sensor
systems. In: SRDS, pp. 143–152 (2013)

2. Casimiro, A., Kaiser, J., Schiller, E.M., Costa, P., Parizi, J., Johansson, R., Librino,
R.: The karyon project: Predictable and safe coordination in cooperative vehicular
systems. In: 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems and
Networks Workshop (DSN-W), pp. 1–12. IEEE (2013)

3. GLib Project: Rsimple xml subset parser, version 2.37 (2014)
4. Sha, L.: Using simplicity to control complexity. IEEE Software 18(4), 20–28 (2001)
5. Verissimo, P., Casimiro, A.: The timely computing base model and architecture.
IEEE Transactions on Computers 51(8), 916–930 (2002)

Driving with Confidence: Local Dynamic Maps
That Provide LoS for the Gulliver Test-Bed�

Christian Berger, Oscar Morales, Thomas Petig, and Elad Michael Schiller

Computer Science and Engineering,
Chalmers University of Technology, Sweden

{christian.berger,mooscar,petig,elad}@chalmers.se

Abstract. The design of automated driving systems aims at reducing
the human error and increasing the fuel efficiency by letting the vehi-
cles map their surroundings and drive autonomously. One of the system
challenges on the road is that at any time the environment can stop
meeting the system’s operational conditions (and then resume meeting
the requirements at some later point in time). Thus, as vehicles map
their surroundings, they should also provide information that can help
the vehicles to know whether the operational conditions are met with
respect to the confidence that they have about the mapped information.

We design and implement key services of Local Dynamic Maps (LDMs)
that are based on on-board and remote sensory information. The LDM
provides the position of all nearby noticeable objects along with the
LDM’s confidence about these positions. The design also includes an
extension that allows the vehicular system to agree on the lowest common
ability to meet the operational conditions.

We evaluate the performance of a key component in our pilot imple-
mentation together with a set of test cases that validate the proposed
design. Our current findings show that the presented ideas can accelerate
the deployment of automated driving systems.

1 Introduction

Self-driving cars will be the next big step in vehicular technology as several
important automotive original equipment manufacturers (OEMs) have recently
announced [9]. However, their specific challenge besides deploying a robust and
reliable technology throughout a vehicle’s lifetime [5] is to bring down the tech-
nology’s costs. Therefore, expensive sensors that perceive a vehicle’s surround-
ings need to be substituted by cheaper counterparts. Cheap sensors normally
have a reduced accuracy. This is addressed by sensor fusion with information
provided by other vehicles and the infrastructure.

� The work of this author was partially supported by the EC, through project FP7-
STREP-288195, KARYON (Kernel-based ARchitecture for safetY-critical cONtrol).

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 36–45, 2014.
c© Springer International Publishing Switzerland 2014

Driving with Confidence 37

Research in this area however is time-consuming, error-prone, expensive, and
tedious, when several cars need to be coordinated within a real-scale experi-
ment on a real proving ground. As an intermediate for instance, preliminary
experiments can be planned and conducted with miniaturized counterparts. We
maintain such a fleet of scaled autonomous and cooperative vehicles using the
Gulliver Testbed [15]. Different use cases with our test-bed have successfully
shown [2, 3] that it is possible to bridge between purely virtual experiments as
carried out in simulations and physical experiments on real-scale proving grounds
[4].

Our system design has two distinct parts that each has different timing prop-
erties, following the architectural hybridization concept [8]. Given the uncer-
tainties affecting the system operation and the confidence in the data used in
control processes, we use the architectural concept of safety kernel. This con-
cept is responsible for managing the task, in a way, that ultimately ensures the
required safety goals. The vehicle limited ability to communicate prevents cen-
tralized solutions and open the door to cooperative ones. We consider sensory
data that has validity attributes attached that defines that accuracy and confer-
ence in the data. The (decartelized) safety kernel uses these attributes to decide
on a system service level that in turn will set the system performance level after
cooperatively evaluating the service level. This version of the paper refers to the
work that was done in KARYON with respect to local dynamic maps. We note
that cooperation to construction of localization maps was earlier discussed in
other projects, such as Hidenets.1

Mainboard GNU/Linux

motor controller

IMU

RCM

Fig. 1. Gulliver vehicle (hardware) architecture

We have designed and
implemented the Gulliver test-
bed [4, 15] with an empha-
sis on demonstrating safety
aspects of cooperative sys-
tems, and system archi-
tecture to the concrete im-
plementation of fundamental
components. The software ar-
chitecture within each vehicle
follows the proposed architec-
tural pattern and, in partic-
ular, uses a safety kernel for
safety management. For that,
the hardware and software so-
lution presented in this paper are based on an earlier design in which we have
implemented and integrated the safety kernel in Gulliver vehicles [8]. Thus, the
test-bed is adequate to demonstrate the architectural concept, and to show that
it is possible to manage the performance level depending on the operational
conditions while ensuring that the functions always perform safely.

1 www.hidenets.aau.dk

www.hidenets.aau.dk

38 C. Berger et al.

2 System Overview

We present the key implementation issues of the Gulliver test-bed, which we
have further developed based on an earlier design [4, 15].

Hardware Architecture. The hardware architecture is sketched in Figure 1.
The central component is the mainboard. Further components are the inertial
measurement unit (IMU), the ranging device (RCM), a GNU/Linux system and
the motor controller.

The IMU provides heading information that is derived from a gyroscope.
The RCM provides position information and allows communication between the
mainboards of different vehicles. The GNU/Linux system supervises the oper-
ation of the vehicle and provides a platform for cooperative algorithms. The
vehicles can communicate with each other and the test-bed control client via
Wifi links. The motor and the steering servos are controlled by the motor con-
troller. Additionally, it provides odometry information.

Further vehicles from the Gulliver Testbed [2, 3] comprise components that
also enable experiments for self-driving vehicular technology. These vehicles par-
ticipate in the annual international competition CaroloCup2 for miniature self-
driving cars.

Localization. The localization system is based on two different sensors, a
ranging device and an inertial measurement unit. The ranging device is P410
RCM produced by timedomain. It uses an ultra-wide band transceiver and mea-
sures the time of flight between two modules. Therefore, three stationary anchors
are used as reference points. They have a known position and define the refer-
ence frame. The ranging devices are sharing a common wireless and, hence, we
have the schedule of the transmissions. Our self-stabilizing approach is presented
in [16] and [17]. It features a TDMA timeslot assignment algorithm that does
not utilize an external reference.

The position is estimated from the ranging outcome, the odometry, and gyro-
scope data by a Kalman filter [18]. We have studied the influence of reflections
and interferences on our localization system. We have experimented both out-
door and indoor settings, see figures 2 and 3, respectively. We have used these
results when designing the safe distance that vehicles should keep from each
other when driving in the test-bed.

Path Planning and Following. The Gulliver demonstrator uses a set of
predefined paths during a demonstration. The paths are defined by the operator
especially for the application that is to be demonstrated.

A waypoint is defined as (x, y, v), where x, y ∈ Z is the position of the waypoint
on the plane and v ∈ Z is the proposed maximum speed used to reach this
waypoint. The vehicles follow predefined paths; each is a finite ordered sequence
of waypoints, where the last waypoint follows the first.

For some test cases, e.g., it is useful to define multiple waypoints. Thus, we
support several paths and we allow the vehicle to switch between them.
2 www.carolocup.de

www.carolocup.de

Driving with Confidence 39

0 0.5 1 1.5 2 2.5 3 3.5 4

·104

0

100

200

distance in mm

m
m

standard deviation
offset

Fig. 2. Outdoor accuracy of the RCM. The offset (difference of measured mean and
actual distance) and the standard deviation of 10k measurements each.

External Vision Based Localization. An external localization system can
help to supervise the operation of the demonstrator. A vision based system can
give, after calibration, absolute coordinates of the vehicles with respect to a given
reference frame. Our system uses inexpensive standard USB cameras as external
references. Each vehicle is equipped with a unique tag that can be recognized
by image processing software.

We are using OpenCV, a software toolkit that was originally introduced in [7]
as CVLib. It provides a programming interface for acquiring frames from the
camera, as well as composable algorithms for image processing. The vehicles are
equipped with unique AprilTags [14]. These tags allow the vision-based localiza-
tion system to compute the vehicle id, position and orientation. The computation
is done for every frame separately. The position of the camera is automatically
determined by a group of four reference tags on the floor with known positions.
These can be used to compute a perspective transformation matrix P . Using
this matrix, a vehicle’s position can be computed directly from the coordinates
in the captured frame. The resulting vehicle positions are sent in User Datagram
Protocol (UDP) to the test-bed control client and integrated with LDM, as well
as with the Gulliver software.

0 0.5 1 1.5 2 2.5 3

·104

0

2,000

4,000

6,000

distance in mm

m
m

standard deviation
offset

standard dev. w/ outlier detection

Fig. 3. Indoor accuracy of the RCM. The offset (difference of measured mean and
actual distance) and the standard deviation of 10k measurements each.The standard
deviation increases due to reflections.

40 C. Berger et al.

3 Local Dynamic Map

We present our design for a Local Dynamic Map (LDM) that is inspired by ETSI
TR 102 863 and focus mainly on highly dynamic information (type 4). We follow
KARYON’s view on confidence, with respect to position, heading, speed, etc.,
and provide data validity information that includes time, offset and outlier [6].
Our pilot focuses merely on the position data from on-board sensors, as well as
sensory information that can be collected from nearby vehicles.

Since remote sensory information is prone to communication interferences and
delays, we use a hybrid architecture, in which the architecture is divided into one
real-time part and another in which complex computations are allowed, such as
vehicle-to-vehicle communication. Thus, the system can always rely on a base-
line service that is provided by on-board sensors. When the opportunity occurs
and the operational conditions improve, the system upgrades its performance by
using remote sensory information for gaining more confidence. Note that one of
the key advantages of this hybrid approach is that the system design does not
require the access to communication systems that never fail (or with very high
probability). In case that those communication failures bring the confidence level
below the operational requirements, the system can always rely on the base-
line service until better confidence is gained and the system can upgrade its
service. Our design assumes the existence of a safety kernel that sets the system
performance level according to the recent events [8].

On-board Local Dynamic Map. The on-board part uses merely on-board
sensors that can be implemented in a real-time manner. On-board maps, for
instance, are built and updated while the vehicle is driving through an unknown
or previously mapped environment to realize a self-localization and mapping
algorithm. Sensors that can be used for this purpose include: rotary encoders like
wheel encoders, incremental encoders, hall-effect sensors, mice-based odometers;
distance sensors like ultra-sonic sensors, infrared sensors, or depth sensors like
laser or radar sensors; even vision sensors can be used to analyze the optical
flow for instance. In combination with an IMU device, the input data from such
sensors is fused and integrated over time to create and update local onboard
maps. However, without regular updates from an external reference system, such
onboard-only systems are affected by increasing data error because the used
models, for such onboard maps, drift over time as inaccuracies in the measured
data can occur for instance.

Cooperative Local Dynamic Map. This network-oriented part collects the
position information from nearby vehicles, such as position, speed, and heading
together with the data age. The Cooperative LDM provides timing information
(TFD data) for the timing failure detector (TFD) and validity. The TFD data
allows the TFD to detect the liveliness of the Cooperative LDM. Note that this
does not contain information about the data age that is collected from other
vehicles. The validity contains information on how certain the Cooperative LDM
is about the position information stored, whereas certainty is meant over the
coordinates and time.

Driving with Confidence 41

safety kernel

Ext In
Ext Out

input output

TFD data validity

TFD data TFD data

hybridization line

sematics line

cooperative LoS evaluator

local LoScoop LoS
output

input

driving managment

validity validity

Ext In Ext Out

perf. levelperf. level

perf. level

position estimator
(network based)

TFD data

TFD data validity

validity

position

position estimaton
(network free)

validity

validity

position

local abstract sensors

remote abstract sensors

sensor data

sensor data

local dynamic map

validity

validity

validity

validity

Ext In

Ext In positionraw data

raw data

TFD data

TFD data

position

Fig. 4. Gulliver software architecture of a single vehicle

4 Cooperative Vehicular Algorithms

We selected test cases for which we can define two applications; a fully coop-
erative one that we associate with the highest service level, and autonomous
one that we associate with the lowest service level. We explain how the vehicles’
driver manager can act upon the operation service level, which the Cooperative
Service Level Evaluator can provide. We present a pilot implementation for this
feasibility study.

Test Cases. We considered three test-cases for performing the experiments.3
For the completeness sake, this paper includes a brief description of these test
cases. More details can be found in [1].

Adaptive cruise control and vehicular platooning. Vehicles maintain a safety
distance from the vehicle ahead. We set to 3 sec the headway for the Vehicu-
lar Adaptive Cruise Control (lowest service level) and 1 second for platooning
(Highest service level).

Intersection crossing. The highest service level application coordinates the
intersection crossing so that the waiting time is minimized while the lowest

3 See demonstration videos at www.chalmers.se/hosted/gulliver-en/documents

www.chalmers.se/hosted/gulliver-en/documents

42 C. Berger et al.

service level application maintains a conservative approach, in which vehicles
stop before crossing and let the vehicle coming from the right to cross first.

Coordinated lane change. The highest service level application coordinates
a lane change maneuver with minimum inter-vehicle distance while the lowest
service level application considers a conservative approach in which the maneuver
starts until a sufficiently large space is created.

The Driver Manager. The (decentralized) driver manager, as well as the
cooperative evaluator of level service, does not rely on a distinctive vehicle or
leader election. The design is based on (not necessarily aligned) rounds of 190
ms, which are locally divided into four phases:

Observe (80 ms). Each vehicle updates its local information (localization,
speed, lane, etc.) from the mainboard and broadcasts it along with all the ve-
hicle’s localizations that it has received since the last round. The broadcast is
transmitted twice with 40 ms between retransmissions.

Compute (10 ms). Each vehicle computes the trajectory for all the level of
services that the vehicle supports in each test case using the acquired information
since the last round. The time costs of all the advanced driver assistance systems
is O(n) with preprocessing time of O(n log(n)), where n is the number of vehicles.
During our three vehicle experiments, we observed a sub-millisecond trajectory
computation cost but for redundancy reasons we assume 10 ms.

Agreement (80 ms). Each vehicle executes the cooperative service level evalu-
ator to agree on the cooperative service level that all the vehicles will run in the
next round. Essentially, each vehicle broadcasts its maximum local level of ser-
vice as well as the maximum level of service from the vehicle that it has received
since the last round. The broadcast is transmitted twice with 40 ms between
retransmissions. Thus, the phase can be completed within 80 ms. Note that the
vehicles operate in distinct level of service for no longer than two consecutive
rounds.

Move (20 ms). Each vehicle determines the trajectory to operate according
to the cooperative service level obtained for the current round. The trajectory
is then sent to the mainboard. It takes around 10 ms to send the trajectory
through the serial port to the mainboard and receive the acknowledge, but for
redundancy reasons we assume 20 ms.

Cooperative Service Level Evaluator. This fault-tolerant distributed
vehicular system must ensure its safe operation. Each vehicle implements a co-
operative service level evaluator that on every round decides what would be the
lowest common ability to meet the operational conditions for the next round.
Therefore, the decision and its dissemination must be done in bounded time.
Due to communication failures, the cooperative service level evaluator must be
able to cope with participants or communication failures.

We consider n vehicles; each has a unique id. The vehicles create an ad-hoc
network, i.e., no access points or base stations [10–13]. For the communication

Driving with Confidence 43

protocol, we consider UDP in order to avoid the retransmission overheads, and
thus messages can be lost due to noise or interference.

Fig. 5. Reliability of the consensus
algorithm (Proportion of rounds in
high service level) and packet drop
rate

The cooperative service level evaluator
aims at allowing the vehicles to operate
at the highest service level. It can do so
when allow vehicles can support the high-
est service level, and the communication
network delivers messages in a timely man-
ner. Since wireless communications can ex-
perience periods of arbitrary packet drops,
the cooperative service level evaluator has
to lower the service level when the vehicles
fail to exchange their service level reports
in a timely manner. Our feasibility tests fo-
cused on the scalability of this component
in ns3 and aimed at validating its behav-
ior with respect to scenarios that involve
several vehicles. For the simulation, we con-
sider a wireless ad-hoc network with a stan-
dard channel IEEE 802.11b. We used the
log distance propagation loss model with
exponent 3 and reference loss of 60.0. We
assume that the vehicles are deployed uni-
formly at random in a rectangle with di-
mension 30× 150 meters. Vehicles move at
a constant speed chosen randomly and uni-
formly between 0 and 20m

s . We perform
experiments with a variant number of ve-
hicles between 2 and 30, and the number
of transmissions between 2 and 4. We run
each experiment for 1, 200 sec.

We estimate the reliability aspects of
our implementation by considering the time
that the system operates on the highest ser-
vice level. We compare that time and the
packet drop rate. The plot on the left of Figure 5 shows that, as the number
of vehicles increases, the time that the system operates on the highest service
level decreases. This is due to the increment on the packet drop rate since the
medium is shared with more vehicles, as depicted on the right of Figure 5. We
also validated our results via experiments that used (physical) scaled-vehicles in
which the number of vehicles was between two and five. We observed that 90% of
the time that the system operated on the highest service level when the number
of vehicles was between two and four. This validates our computer simulations.
However, there was a drop to 60% when we tested five vehicles. We believe that

44 C. Berger et al.

the reason is due to the use of network adapters from different vendors during
the experiments. Further tests are needed for this case.

5 Conclusions

This paper reports on the progress of the development work. The development
outlook includes further implementation of the different data validity mecha-
nisms as well as scalable algorithms for achieving cooperative service level eval-
uation.

References

[1] Casimiro, A., Oscar Morales-Ponce, T.P., Schiller, E.M.: Vehicular coordination
via a safety kernel in the gulliver test-bed. In: The Thirteenth International Work-
shop on Assurance in Distributed Systems and Networks (ADSN 2014). IEEE
(2014)

[2] Berger, C.: From a Competition for Self-Driving Miniature Cars to a Standardized
Experimental Platform: Concept, Models, Architecture, and Evaluation. Journal
of Software Engineering for Robotics 5(1), 63–79 (2014)

[3] Berger, C., Al Mamun, M.A., Hansson, J.: COTS-Architecture with a Real-
Time OS for a Self-Driving Miniature Vehicle. In: Schiller, E.M., Lönn, H.
(eds.) Proceedings of the 2nd Workshop on Architecting Safety in Collabora-
tive Mobile Systems (ASCoMS), Toulouse, France, pp. 1–12 (September 2013),
http://hal.archives-ouvertes.fr/docs/00/84/81/01/PDF/00010133.pdf

[4] Berger, C., et al.: Bridging physical and digital traffic system simulations with
the gulliver test-bed. In: Berbineau, M., Jonsson, M., Bonnin, J.-M., Cherkaoui,
S., Aguado, M., Rico-Garcia, C., Ghannoum, H., Mehmood, R., Vinel, A. (eds.)
Nets4Trains/Nets4Cars 2013. LNCS, vol. 7865, pp. 169–184. Springer, Heidelberg
(2013)

[5] Berger, C., Rumpe, B.: Autonomous Driving - 5 Years after the Urban Challenge:
The Anticipatory Vehicle as a Cyber-Physical System. In: Goltz, U., Magnor, M.,
Appelrath, H.J., Matthies, H.K., Balke, W.T., Wolf, L. (eds.) Proceedings of the
INFORMATIK 2012, pp. 789–798. Braunschweig, Germany (2012)

[6] Brade, T., Zug, S., Kaiser, J.: Validity-based failure algebra for distributed sensor
systems. In: SRDS, pp. 143–152. IEEE (2013)

[7] Bradski, G.R., Pisarevsky, V.: Intel’s computer vision library: Applications in
calibration, stereo, segmentation, tracking, gesture, face and object recognition.
In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, vol. 2,
p. 2796 (2000)

[8] Casimiro, A., Rufino, J., Pinto, R.C., Vial, E., Schiller, E.M., Morales-Ponce, O.,
Petig, T.: A kernel-based architecture for safe cooperative vehicular functions. In:
9th IEEE International Symposium on Industrial Embedded Systems, SIES 2014
(2014)

[9] Hirsch, J.: Self-driving cars inch closer to mainstream availability (October 2013),
http://www.latimes.com/business/autos/la-fi-adv-hy-self-driving-cars-
20131013,0,5094627.story

[10] Leone, P., Papatriantafilou, M., Schiller, E.M.: Relocation analysis of stabilizing
MAC algorithms for large-scale mobile ad hoc networks. In: Dolev, S. (ed.) AL-
GOSENSORS 2009. LNCS, vol. 5804, pp. 203–217. Springer, Heidelberg (2009)

http://hal.archives-ouvertes.fr/docs/00/84/81/01/PDF/00010133.pdf
http://www.latimes.com/business/autos/la-fi-adv-hy-self-driving-cars-20131013,0,5094627.story
http://www.latimes.com/business/autos/la-fi-adv-hy-self-driving-cars-20131013,0,5094627.story

Driving with Confidence 45

[11] Leone, P., Papatriantafilou, M., Schiller, E.M., Zhu, G.: Chameleon-MAC: Adaptive
and self-� algorithms for media access control in mobile ad hoc networks. In: Dolev,
S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 468–488.
Springer, Heidelberg (2010)

[12] Leone, P., Schiller, E.M.: Self-stabilizing TDMA algorithms for dynamic wireless
ad-hoc networks. Int. J. Distributed Sensor Networks, 639761 (2013)

[13] Mustafa, M., Papatriantafilou, M., Schiller, E.M., Tohidi, A., Tsigas, P.: Au-
tonomous TDMA alignment for VANETs. In: 76th IEEE Vehicular Technology
Conf. (VTC-Fall 2012), pp. 1–5. IEEE (2012)

[14] Olson, E.: AprilTag: A robust and flexible visual fiducial system. In: Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pp.
3400–3407. IEEE (May 2011)

[15] Pahlavan, M., Papatriantafilou, M., Schiller, E.M.: Gulliver: a test-bed for devel-
oping, demonstrating and prototyping vehicular systems. In: Proceedings of the
9th ACM International Symposium on Mobility Management and Wireless Access,
pp. 1–8. ACM (2011)

[16] Petig, T., Schiller, E.M., Tsigas, P.: Self-stabilizing tdma algorithms for wireless
ad-hoc networks without external reference. CoRR abs/1308.6475 (2013)

[17] Petig, T., Schiller, E.M., Tsigas, P.: Self-stabilizing TDMA algorithms for wireless
ad-hoc networks without external reference. In: Higashino, T., Katayama, Y., Ma-
suzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255,
pp. 354–356. Springer, Heidelberg (2013)

[18] Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press (2005)

Sensor- and Environment Dependent

Performance Adaptation for Maintaining Safety
Requirements

Tino Brade, Georg Jäger, Sebastian Zug, and Jörg Kaiser

Otto-von-Guericke-University of Magdeburg,
Institute for Distributed Systems (IVS), Germany

{brade,jaeger,zug,kaiser}@ivs.cs.uni-magdeburg.de

Abstract. Driving assistance or automated driving depends to a large
extent on the correct perception of the environment. Because automated
driving functions have to be proven safe under all operational conditions,
worst-case assumptions concerning the sensors and also the environment
have to be assumed. In this paper, we propose a scheme that allows
taking weaker assumptions. This is based on a continuous assessment
of the quality of sensor data, a model of the interaction between the
control process and the environment and the possibility to adapt the
performance. We present an example of a car autonomously driving a
simple course and adapting its speed according to the environment and
the confidence in the perceived sensor data. We derive a set of simple
safety rules used to adjust performance that, in the case given in the
example affects the cruising speed.

1 Introduction

Functional safety is a non-debatable property for automotive systems. The
requirements and procedures for functional safety are fixed in a respective stan-
dard [1]. At the same time, it is one of the most challenging tasks ensuring func-
tional safety for sophisticated driver assistance systems or complex automatic
driving functions. One of the reasons is that assurance means that a function
has to be proven safe before it can be put into operation in a car. Consequently,
it has to be proven safe at design time for all driving situations and failures that
may occur during operation. This results in worst-case assumptions about the
environment, the perception system and the control application. Particularly,
the control application makes implicit assumptions about the quality of sensor
input by tolerating acceptable error margins due to a robust design of the con-
trol algorithm. The correct functionality is usually carefully checked during the
testing phase. Statically assuming worst-case conditions at design time has some
undesirable consequences. Firstly, it leads to high costs of the sensors because
lower cost sensors, although in most cases will comply with the requirements,
cannot ensure this at any time during a mission. Secondly, because perception
and control are tightly intertwined, the test only provides a validation for a

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 46–54, 2014.
c© Springer International Publishing Switzerland 2014

Sensor- and Environment Dependent Performance Adaptation 47

specific set of sensors. If sensors have to be replaced, only the same or very sim-
ilar sensors can be used. Finally, because a system has to show that safety is
guaranteed under all conditions, the requirements will be overly strict.

In this paper we will present a scheme for adapting performance according to
environmental conditions and erroneous sensor information without sacrificing
safety. This scheme is based on a number of system functions that have been
elaborated during the KARYON project [2].

1. The KARYON architecture defines a safety kernel that allows to put the
system in different levels-of-performance according to a set of safety rules.
The safety rules specify the conditions in terms of system health state and
the quality of sensor data.

2. Separating the design of the perception system from the design of the control
application. The main advance over other systems is that on the control
application side, we present a way, how the control application can specify
the quality of sensor data explicitly. On the sensor side, we provide a concept,
how to quantify the confidence in sensor data. Instead of having to validate
a single sensor-control block, we can validate these blocks separately. This
allows dealing with a changing set of sensors easily. Additionally, it is a
prerequisite when assuming remote sensors that are not known at design
time. A more detailed discussion about this point can be found in [3].

3. The scheme to quantify the confidence in sensor data called ”validity” allows
the dynamic assessment of sensor data during run-time. Because the KAYON
safety kernel allows to react if the validity is too low, we are able to handle
this situation dynamically. The example below explains this in more detail.

4. Knowledge about the road is exploited to define the tolerable error margins
in which safety can be ensured. In our example, we simulate a simple course
and build a model of the process that relates speed, validity of sensor data
and the position of the car to define safe conditions for controlling the car

The contribution of this paper is firstly showing how the notion of validity
can be used to express error margins and secondly how the knowledge about
the course of a road, the speed of a car, its position and orientation can be
described by a mathematical model allowing to determine the adequate level of
performance for a given safety level.

The paper is organized as follows: In the next section we briefly introduce the
notion of validity and its relation to a failure model. This is needed to understand
how error margins are expressed by a validity. Chapter 3 provides introduction
and evaluation of the simulation example. Chapter 4 discusses the results and
related work and the summary in chapter 5 concludes the paper.

2 Assessing the Quality of Sensor Data

Sensors deliver a continuous range of values and often exhibit a subtle behaviour
in case of external or internal disturbances. In our work, we use a data centric ap-
proach [4] to identify sensor failures, i.e. we try to infer faulty sensor data from

48 T. Brade et al.

REF

MREF2

×

REF

×
MREF1

×
MCar1

R1

R1

α1

×
MCar2

R2R2
α2

y

0

x

straightcurve curve

Fig. 1. Illustration of the environment

certain failure characteristics rather than applying space or time redundancy
mechanisms. These parameters are derived empirically from testing a sensor ex-
haustively under many typical operational conditions and internal and external
disturbances (e.g. voltage drops, electromagnetic glitches, intensive light for IR
sensors and laser sensors etc.). A discussion of the resulting failure model can be
found in [5]. Basically, we characterize a failure according to its amplitude and
its occurrence probability. From these parameters, we calculate the anticipated
validity of sensor data at design-time. A system performs at its best when no
failures occur. With occurring sensor failures, additional robustness is required
which has implications on the performance. The KARYON system allows to
trade fading functionality against the level of system performance. The more
failures will occur, the lower the performance that can be achieved safely by the
system. For choosing an adequate performance level without violating safety,
actual sensor data needs to be assessed at run-time. The key for achieving this is
a consistent representation of the validity at design-time and at run-time. This
allows proving the system to be safe for a given set of failures. By using the
run-time validity, the system is switched to a performance level that is proven
to cope with the occurred failures.

3 An Automated Driving Scenario

This section considers a lane tracing application, which is a common task when
building an autonomous car. Fig. 1 illustrates an example course for the au-
tomated car. In order to prove the system to be safe, we have to model the
environment, specify system parameters and we make assumption regarding the

Sensor- and Environment Dependent Performance Adaptation 49

operational context. This allows us to statically prove the compliance of our setup
with requirements. Based on this prove, we identify conditions under which the
car follows the line although sensor failures are present. Such conditions are ex-
pressed in terms of safety rules, which are used at run-time to choose the highest
possible performance setting (LoS) of the application without risking safety. By
analysing validity ranges at design-time we can derive safety rules, which are
checked at run-time by the safety kernel. This is the basis to trigger switching
the level of service (LoS).

The following example will explain how to derive these safety rules. For sake of
clarity, we consider a simple course with straight and curved lanes. The course
is modelled by the straight-line equation REF = |y| and the circle equation
REF =

√
(x− a)2 + (y − b2). Clearly, such an environment model leads to an

over-determined set of equations. For deriving safety rules, we have to assign sys-
tem variables to define the basic kinematics of the car, to map the requirements
and to make assumptions on which the system will be proven to be safe.

First, we assign system variables as follows: the steering angle (α) in a range

of −45◦ and 45◦, the highest maximum velocity of the car (v ≤ 15
m

s
), the

wheelbase of the car is set to 3m and the distance to the rear axle (a2) assigned
as 1.5m. Theses system variables describe the kinematics of the car so that the
anticipated position of the car can be calculated. Additionally, we have to define
the sample time (t = 0.5s), which is the update rate of the observation and of
the calculation of the steering command. This means that the perception-action
loop of the car is periodically executed every 0,5 seconds.

Second, the kinematics of the car is required to calculate the impact of a cer-
tain steering angel on its position and orientation in the environment. For resolv-
ing this relation, we make use of the Ackerman condition:R =

√
a22 + l2 · cot2(α).

This condition allows us to calculate the deviation of the car from its ideal track
assuming the current position and orientation of the car.

Third, in order to decide whether the deviation of the car from the ideal track
is in line with requirements, we have to specify what is tolerable. In our scenario,
we define a deviation of plus/minus one meter (therr ≤ ±1m) as acceptable.

Finally, we have to make assumptions in terms of the position and the orien-
tation of the car with respect to the validity. In cases where the position sensor
data has a high validity, the PID controller will keep the car very close to the
ideal track. When sensor failures occur and the observed position is not accurate,
the validity in sensor data drops and, as a result, the car deviates considerably
in terms of position and orientation from the ideal track. The key for mak-
ing such an analysis is the concept of design-time validity that specifies failure
cases. This allows proving the system being safe under a set of assumptions.
Without such assumptions, these check whether the system acts safe, could not
be made at design time. This is because the equations representing the environ-
ment stays over-determined without assumptions regarding the quality of sensor
inputs. Consequently, the combination of system variables, sensor inputs, and
the controller output together with the environment model would be checked at

50 T. Brade et al.

Fig. 2. Schematic overview of the concept

run-time. Obviously, run-time checking does not provide guarantees and so the
response of the system is unknown when sensor failures occur.

3.1 Deriving Safety Rules at Design-Time

The objective of safety rules is to calculate the performance that can be reached
without violating requirements. Fig. 3 depicts the problem of adjusting the steer-
ing angle based on an erroneous observation. C1 shows the observed position of
the car based on which a steering command is computed. By applying the steer-
ing command, the car drives to C2. In case of sensor failures, the computed
steering angle violates the requirement. The actual position now would be C3

and the car moves to C4 then. This shows the effect of erroneous observations.
To maintain a safe behaviour we use the notion of sensor data validity to adapt
the performance, which in this simple example means to adjust the velocity.

Safety rules define conditions under which the system operates safe. In our
case, we observe the position of the car and compute a respective steering com-
mand in order to keep the car on track. As illustrated in Fig. 2, we derive
safety rules by simulating the perception-action loop under a simple environ-
ment model. This setup allows us to check the compliance of the controller with
requirements. It requires knowing the environment model, defining the system
parameters and considering sensor failures that need to be handled at run-time.
As shown in Fig. 2, the controller receives observations of a (simulated) sensor,
which allows us to record the reaction of the controller on sensor failures that

Sensor- and Environment Dependent Performance Adaptation 51

C1

C2

e

C3

C4

d

d

ideal track

Fig. 3. The effect of sensor failures (e) without adapting the velocity (d)

have been injected. Consequently, we can check the controller response for ev-
ery anticipated failure case. Based on this analysis we can define safety rules.
Safety rules relate the validity of perception data to the level of service for the
controller, which specifies system parameters, in our case the velocity of the car.
The LoS may be translated to specific configurations or even different versions
of the controller.

The following safety rules respect the validity of sensor data to calculate
the highest velocity without violating requirements. Therefore, we compute the
intersection point I(xi, yi) between the requirement and the erroneous position,
which is in fact unknown but estimated by the validity C(xc, yc). By exploiting

the time-space-relation v =
s

t
, we determine the distance of the actual position

of the car to the intersection point I and so we receive the velocity for adapting
the performance.

Safety rule for driving on the straight track. In cases where the steering

angle is zero (α = 0◦), the highest maximal velocity is then given by v = |−→CI|
t .

Otherwise, the car drives a circular path that is given by the Ackermann-
condition (R =

√
a22 + l2 · cot2(α)) and correlates to the second safety rule.

Safety rule for driving on the curved track. When driving a curve, we
calculate the angle (γ) between the actual position of the car and the intersection

point with the requirement: cos(γ) =

−−→
MI ×−−→

MC

|−−→MI| · |−−→MC|
where M is the center of the

steering cycle as shown in Fig. 1. The velocity that should not be exceeded, is

therefore given by: v =
π · R · γ

180◦

t
.

3.2 Checking Safety Rules at Run-Time

At run-time, detection mechanisms are used to assess the sensor data of the
positioning sensor. The better an observation, the higher the validity of sensor

52 T. Brade et al.

Fig. 4. Proven velocities of different performance levels to cope with positioning failures

data. As shown in Fig. 2, the safety kernel switches the controller into a level
of service (LoS) dependent on the validity of actual sensor data. The safety
rules thus specify the required validity for performing a certain level of service
and serve as a decision basis to switch configurations of the controller. Whether
the system operates safe by using this LoS setup was proven at design-time
while deriving the safety-rules. This results in an approach that reduces the LoS
in order to operate safe in case of sensor failures. Otherwise, the safety kernel
switches to a higher LoS without jeopardizing safety.

4 Discussion

The proposed scheme is implemented in Simulink where V-Rep is used as for
simulating the environment. We obtain reproducible results and are able to anal-
yse the effect of observation failures on the performance of the system. By using
a fault injection framework, we compare test cases with and without failures. In
accordance to the injected failure amplitude, the car degraded its performance in
order to comply with requirements. It should be noted that the system stops if
the car is not able to keep within the lane due to injected failures or limitations
of the steering angle.

In Fig 4, we plotted the resulting velocity of different LoS as a result of the
derived safety rules. The blue curve (LoS 3) shows the highest performance level
that can be reached when no failure occurs. Therefore, the velocities of the blue
curve corresponds to the performance of an ideal system. The red curve labeled
LoS 2 gives the velocity that can be set in cases where the positioning sen-
sor suffers from noise. The violet curve (LoS 1) states the system performance
when outliers and noise failures are considered. When making only worst case

Sensor- and Environment Dependent Performance Adaptation 53

assumptions, the system performance would be statically set to the violet curve
(LoS 1). In contrast our approach degrades the performance level only if
necessary.

Comparing our approach to related work, we found approaches either dealing
with sensor failures at design-time or at run-time only. Uncertainty margins [6]
describe the characteristics of a sensor but they fail to distinguish failure types.
The separation of failure types is provided by FMEA [7] that is limited to design-
time analysis. On the other hand, confidence intervals [8], confidence classes [9]
and also validates [10] provide a run-time representation but do no support
design-time analysis. None of them can be used both at design-time as well as at
run-time. Without such a consistent representation, the service levels of a sys-
tem cannot statically proven safe at design-time and switched at run-time. On
the side of an application, we found approaches [11], [12] for adapting the con-
figuration in accordance to failures but such approaches ignore the operational
context and the consideration of the environment. Nevertheless, those aspects
are essential when proving the system to be safe.

5 Conclusion

The KARYON project developed an architectural pattern, which allows to react
on a degraded functionality by switching to different levels of service, i.e. to
differnt control schemes. The decision is based on the assessment of system health
in a broad sense. In this paper, we focussed on failures of the sensor system. For
a simple example we showed how the notion of validity can be used for design
time analysis and also in run-time assessment of sensor data. A reliable safety
kernel monitors the validity and takes actions if validity drops below a predefined
bound. The bounds on validity and the necessary knowledge for the controller
can be statically analysed at design time and transformed into safety rules to be
executed at run-time for configuring controller functions.

Acknowledgment. This work has been supported by the EU under the FP7-
ICT programme, through project 288195 Kernel-based ARchitecture for safetY-
critical cONtrol (KARYON).

References

1. (ISO), ISO 26262-1 to ISO 26262-9, 1st edn. (2011)

2. Casimiro, A., Kaiser, J., Schiller, E.M., Costa, P., Parizi, J., Johansson, R., Librino,
R.: The karyon project: Predictable and safe coordination in cooperative vehicular
systems. In: 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems and
Networks Workshop (DSN-W), pp. 1–12. IEEE (2013)

3. Brade, T., Zug, S., Kaiser, J.: Validity-based failure algebra for distributed sensor
systems. In: 2013 IEEE 32nd International Symposium on Reliable Distributed
Systems (SRDS), pp. 143–152. IEEE (2013)

54 T. Brade et al.

4. Ni, K., Ramanathan, N., Chehade, M.N.H., Balzano, L., Nair, S., Zahedi, S.,
Kohler, E., Pottie, G., Hansen, M., Srivastava, M.: Sensor network data fault types.
ACM Transactions on Sensor Networks (TOSN) 5(3), 25 (2009)

5. Zug, S., Dietrich, A., Kaiser, J.: Fault-handling in networked sensor systems. In:
Fault Diagnosis in Robotic and Industrial Systems (2012)

6. Moffat, R.J.: Describing the uncertainties in experimental results. Experimental
Thermal and Fluid Science 1(1), 3–17 (1988)

7. Stamatis, D.H.: Failure Mode and Effect Analysis: Fmea from Theory to Execution.
ASQ Quality Press, Milwaukee (2003)

8. Elmenreich, W.: Fusion of continuous-valued sensor measurements using confidence-
weighted averaging. Journal of Vibration and Control 13(9-10), 1303–1312 (2007)

9. Piontek, H.-M.: Self-description mechanisms for embedded components in cooper-
ative systems. Der Andere Verlag (2007)

10. Duta, M., Henry, M.: The fusion of redundant seva measurements. IEEE Transac-
tions on Control Systems Technology 13(2), 173–184 (2005)

11. Blanke, M., Schröder, J.: Diagnosis and fault-tolerant control, vol. 115. Springer
(2003)

12. Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-
based redundancy: A survey and some new results. Automatica 26(3), 459–474
(1990)

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 55–62, 2014.
© Springer International Publishing Switzerland 2014

Collaborative Development of Safety-Critical Automotive
Systems: Exchange, Views and Metrics*

Johan Ekberg1, Urban Ingelsson2, Henrik Lönn3, Magnus Skoog4, and Jan Söderberg5

1 Arccore AB, Gothenburg, Sweden
2 Semcon Sweden AB, Linköping, Sweden

3 Volvo Group, Advanced Technology and Research,
Gothenburg, Sweden

4 Autoliv Electronics, Linköping, Sweden
5 Systemite AB, Gothenburg, Sweden

Abstract. Automotive system development involves a large set of organizations
and disciplines. In particular, vehicle manufacturers rely on a large set of sup-
pliers to provide components and systems. To successfully develop and inte-
grate these components, stakeholders exchange requirement specifications that
define in detail the component properties. Because of the complexity of a typi-
cal automotive system, requirement specifications are error prone and time con-
suming to negotiate with a correct result. In addition, most systems have safety
implications and require rigorous means to achieve and argue safety. Recent
autonomous and semi-autonomous systems are particularly complex and
critical.

The Synligare project addresses these challenges by providing model-based
technologies to assist collaborative development of safety critical systems. The
project is working along three lines as explained below.

Model Exchange: Being able to exchange models rather than documents to
convey engineering information improves efficiency and precision in collabora-
tion between stakeholders. Version and variant information is an important as-
pect to secure validity of information.

Views: Understanding system solutions and analysis results is difficult as more
and more aspects need to be considered. Appropriate views, based on formal-
ized system representations, makes engineering information more accessible.

Metrics: Development status and system properties can sometimes be repre-
sented and tracked by means of metrics. Such automatically and continuously
provided measures, makes development effort more predictable and indirectly
ensure safety.

This paper will describe aspects on exchange, views and metrics identified
in the Synligare project, and illustrate with examples how it can be applied in
practical system development.

* This work was supported by VINNOVA under the FFI Programme.

56 J. Ekberg et al.

1 Background

Automotive system development involves a large set of organizations and disciplines.
In particular, vehicle manufacturers rely on a large set of suppliers to provide compo-
nents and systems. To successfully develop and integrate these components, stake-
holders exchange requirement specifications that define in detail the component
properties. Because of the complexity of a typical automotive system, requirement
specifications are error prone and time consuming to negotiate with a correct result. In
addition, most systems have safety implications and require rigorous means to
achieve and argue safety. Recent systems for autonomous and semi-autonomous
driving are particularly complex and critical.

The Synligare project addresses these challenges by providing model-based tech-
nologies to assist collaborative development of safety critical systems.

This paper will describe preliminary results from the project and starts with a de-
scription of the modelling and tooling infrastructure used. It then goes on to discuss
technology for exchange, views and metrics. The paper concludes with a summary.

2 Infrastructure

The modelling approach from AUTOSAR [1] and the EAST-ADL [3] architecture
description language is used as basis for the views and metrics identified, detailed and
prototyped in Synligare. Tooling is developed based on the SystemWeaver enterprise
modelling platform from Systemite AB, Enterprise Architect from Sparx Inc. and the
Eclipse tool platforms EATOP [4] and Artop [2] for EAST-ADL and AUTOSAR,
respectively.

3 Collaboration

Collaboration between stakeholders occurs in various engineering phases and regard-
ing phase-specific kinds of engineering artefacts. In this paper we will focus on col-
laboration between manufacturers of automotive products and suppliers of automotive
components. The relation can be considered recursively, i.e. Tier-1 suppliers rely on
Tier-2 suppliers for their deliveries, etc.

One style of collaboration, with low level of interaction is illustrated in Fig. 1. The
vehicle manufacturer provides high level requirements together with a limited but
detailed interface specification in the early engineering phase. In the early phase,
modified models are exchanged as a handshake, but not until the end of development,
the supplier comes back with a component implementation.

In a more cohesive development scenario, the vehicle manufacturer and it suppliers
exchange engineering artifacts continuously, Fig. 2. The collaboration starts as before
with a description of high level requirements and intentions from the vehicle manu-
facturer, which the supplier inspects, corrects and returns. But in this scenario, the

 Collaborative Development of Safety-Critical Automotive Systems 57

supplier soon returns an abstract solution, which the vehicle manufacturer can analyse
and integrate with existing functionality. After corrections and suggestions, the sup-
plier gets an updated version of the solution and continues to add details, gradually
fulfilling more of the requirements.

We will use the reference model in Fig. 3 as a basis for characterizing engineering
artefacts. The reference model uses abstractions from Vehicle Level capturing vehicle
needs and requirements without solution information, down to Implementation Level
with complete specifications. Operational Level corresponds to the final product. The
right side of each “V” is concerned with verification and validation of detailed up to
overall aspects (altitude). V&V may concern different degrees of integration from
individual functions up to complete vehicle (thickness of V).

With this reference model in mind, the kind of information exchanged in the early
phase would be requirements, use cases and vehicle features from vehicle level, to
characterize the high level requirements. In the same phase, some of the detailed in-
terfacing requirements would be known which can be captured by AUTOSAR ele-
ments on the Implementation level and complemented with textual requirements.

In the low interaction scenario, the next delivery from the supplier would be
AUTOSAR models and corresponding code.

Fig. 1. Illustration of collaboration style with little exchange

Fig. 2. Illustration of collaboration style with frequent exchange

Model
Detail

Engineering Phase

Legend

From Manufacturer

From Supplier

Size indicates level of
completeness

Model
Detail

Engineering Phase

Legend

From Manufacturer

From Supplier

Size indicates level of
completeness

58 J. Ekberg et al.

Fig. 3. Reference model for the engineering life cycle and engineering artifacts

In the more coupled scenario, the supplier would deliver models representing solu-
tions of the agreed features, with more details as development progresses. The vehicle
manufacturer would integrate and verify, and thus be able to detect mistakes in the
manufacturer’s specifications or in the supplier’s solutions. It is also an opportunity to
improve safety, since the safety properties can be explicitly modelled and inspected in
the integrated system.

4 Exchange and Analysis

One concern in Synligare is the appropriate management of versions and variants
during collaboration. In particular, it is essential that correctness and safety is not
jeopardized due to mistakes in this area.

We assume in our context that models are used for exchanging engineering infor-
mation. Specifically, we assume rich models according to EAST-ADL/AUTOSAR
with content of various categories such as requirements, software components, timing
annotations and variability.

When a stakeholder receives a model from another stakeholder, some of the con-
tent is unchanged, some is new and some is changed, compared to the current, local
version.

In the AUTOSAR and EAST-ADL standards, models are organized in packages
where contained elements have a globally unique UUID and a package-unique “short
name”. The latter is used for references within the model. By comparing an existing
and an acquired model, it is possible to highlight areas where changes were made and
allow these changes to be accepted or rejected.

A challenge is to deal properly with intra-model references when new version of an
element arrives. Both versions of an element must co-exist for backward compatibil-
ity reasons, but both versions should not necessarily be subject to the same references.
The project is investigating concepts and views to assist the engineering effort in this
area.

Models Product

Degree of Integration
Implementation

level

Design
level

Analysis
level

Vehicle
level

Operational
level

 Collaborative Development of Safety-Critical Automotive Systems 59

5 Views

Views represent the system under development from a certain perspective or view-
point [1]. By collecting relevant elements in a view, adequate information for a
certain role in a certain method or process phase can be presented. Fig. 4 shows ex-
amples of criteria for viewpoints onto a system model, which would result in several
useful views.

Fig. 4. Example of viewpoints on a multi-aspect system model

5.1 Structural Viewpoints

The model structure is a fundamental basis for defining effective viewpoints that
helps understanding product models.

Based on the SystemModel element, model artifacts on a specific abstraction level
can be viewed. By combining with a VehicleFeature, only parts relevant for that Ve-
hicleFeature would be exposed.

Another useful view is the set of functions that are allocated to a specific ECU, or
the set of signals that communicate over a certain bus. The latter can be established by
investigating the functions allocated to ECUs that are linked with the chosen bus,
and/or where allocation constraints tie function connectors to such bus.

5.2 Safety Viewpoints

Viewpoints useful for working with functional safety include in particular those that
show safety artifacts. Showing all safety goals for a certain item provides overview of
the top level safety concerns. Showing in a specific architecture all components
that are realizing the features contained in an Item, provides understanding
for the system solutions to be secured. Showing requirements and elements that
make up the functional or technical safety concept assists working with the safety
mechanisms.

§
§

§
§

§§§§§§§§§§§
§§§§§§§§§§

§§§§§§§§
§§§§§§§§

§§§§§§§§§§§§§§§§§§§§
§§§§§§§§§§§§§§§§

§
§

§§§§§§§§§§§§§§§§§
§§§§§§§§§§§§§

§§§§§§§§§§§
§§§§§§§§§§§

§§§§§§§§§§§§§§§§§§§§§§§§§§§§
§§

§

System structure Requirements

Ab
st

ra
ct

io
n

le
ve

l

Specifics of views - examples

Status (Preliminary, agreed, built, tested,

60 J. Ekberg et al.

5.3 Requirements-Related Viewpoints

Views that expose requirements in an effective way are particularly important when
multiple stakeholders collaborate. Showing requirements clustered on features, func-
tions, components, or other designated architectural elements, make a large set of
requirements more tangible. Showing requirements together with relevant attributes
gives an overview of the status, responsibilities or other markings of the requirements.
Requirements may have different kinds and may concern different aspects, which is
also a relevant basis for how requirements are organized and presented.

6 Metrics

Various metrics on engineering documentation can be used to assess the product’s
properties or the development progress. In Synligare, we are investigating metrics that
can assist the collaborative aspects of development, with particular focus on safety
aspects. In general, all metrics that assist planning and follow-up engineering work
are beneficial from a safety perspective, since faults caused by lack of resources and
lack of time are impeded.

A metric is calculated on the basis of an entire system specification or parts the-
reof. Examples of delimitations include

• Architecture part - The metric concerns a particular architecture or parts thereof
• Requirement set - The metric concerns a particular requirement set
• Project - the metric concerns a particular project

A hierarchy of metrics based e.g. on the structural hierarchy of the system (system,
subsystem, etc.) is conceivable. Depending on character, metrics can in a tool or in a
report be visually represented as lists, flags and colors in addition to plain numbers.

6.1 Progress Metrics

Development progress can be assessed based on the status of the model or based on
assessments of actual status that is reflected in the model.

Requirement Progress
Assuming that requirements are used to specify what the product shall do, they can
also be the basis for assessing progress. Progress of requirement allocation is meas-
ured as the fraction of requirements allocated to architectural elements. Because re-
quirements may be derived to more specific requirements, a requirement with one or
more derived requirements is also considered as allocated. Progress of requirement
implementation is measured as the fraction of requirements that are implemented in
the product. This criterion is not well-defined, as it may concern requirements with a
final design, final software specification, final code, compiled code, etc. On compu-
ting this metric, the model can be inspected for one of the criteria mentioned, or a
specific flag that is manually set by the engineer is used as a basis.

 Collaborative Development of Safety-Critical Automotive Systems 61

Verification Progress
In EAST-ADL, verification is linked to requirements. For each requirement one or
several verification cases can be defined, each of which may pass or fail.

Verification progress may thus concern the fraction of requirements that are veri-
fied or where a verification method is defined. If multiple verification cases are de-
fined per requirement, the fraction may be based on verification cases instead. In case
verification is done, a useful metric is the fraction of passed vs. failed requirements.

Realization Progress
The EAST-ADL model provides means to relate model elements to its abstract coun-
terpart. For example, a function or ECU is linked to the Vehicle Feature it is realizing.
In the end all Vehicle Features should be realized down to the Software or hardware
Component level. On computing realization progress, one must decide which criterion
to use, for example realization in software, function or hardware architecture. One
must also be aware that it is not possible to know how many concrete elements are
required for realizing an abstract element. For this reason, an alternative approach is
to use a specific flag which is manually set when a feature is deemed to be realized.

Safety-related Progress Metrics
The ISO26262 functional safety standard defines a number of engineering artifacts
that shall be defined in the context of its Item. One of these artifacts is the safety goal,
which is the starting point for organizing safety requirements. Examples of metrics
include the fraction of Items with safety goals defined or the fraction of safety goals
with functional safety requirements. Because it is system specific, it is not possible to
know how many safety goals or safety requirements are needed. It is still a useful
metric, since the amount must be non-zero.

Another safety-related metric is the fraction of functional safety concepts that are
matched by a technical safety concept. This can be computed based on derivation
relations between functional and technical safety requirements combined with realiza-
tion relations between analysis functions and design functions making up the architec-
tural aspects of the functional and technical safety concepts, respectively.

6.2 Product Metrics

As opposed to progress metrics, product related metrics are typically absolute. One
metric that is relevant for strategic decisions regarding development rigor or priority,
is the number of manufactured vehicles that are impacted by a certain engineering
artifact. This can be computed based on the take rate annotations of vehicle features
realized by the engineering artifact considered. Similarly, total revenue or cost can be
computed by combining take rate information with financial annotations.

Various dependability metrics are of course safety relevant too. These include fail-
ure rate and other hardware architecture metrics.

62 J. Ekberg et al.

6.3 Identifying Context

In general, it is necessary to be aware of context when computing metrics based on
fractions. The AUTOSAR/EAST-ADL notion of package is one possible context.
Another is to consider a certain feature, function, hardware component and compute a
fraction among the related elements.

7 Summary

Model based software and systems engineering represents state-of-the-art technology
and is a key enabler for better products and development methodology in the automo-
tive industry. By taking advantage of the fact that engineering information is more
precise and organized systematically compared to document-based practice, collabo-
ration between stakeholders, most notably vehicle manufacturers and its suppliers can
be enhanced.

This paper has described preliminary results and directions from the Synligare pro-
ject. As a means to work efficiently with model-based exchange of engineering
information, the project is identifying views and metrics that allow exchanged infor-
mation to be investigated and assessed conveniently. Tool prototypes based on EAST-
ADL and AUTOSAR are built on the SystemWeaver, EATOP and Artop platforms.

References

1. AUTOSAR Development Partnership: AUTOSAR web site,
http://www.autosar.org/

2. AUTOSAR Tool Platform User Group: AUTOSAR Tool platform,
http://www.artop.org/

3. EAST-ADL Association: EAST-ADL web site, http://www.east-adl.info/
4. EATOP Eclipse Open Source Project: EAST-ADL Tool platform,

http://www.eclipse.org/eatop
5. International Organization for Standardization: Systems and software engineering —

Architecture description. International Standard ISO/IEC/IEEE 42010:2011 (2011)
6. International Organization for Standardization: Road Vehicles – Functional Safety – Part 1

to 9. International Standard ISO/FDIS 26262 (November 2011)
7. Synligare Consortium: Synligare Project website, http://www.synligare.eu/

Towards Energy Efficient, High-Speed

Communication in WSNs

Attila Nagy and Olaf Landsiedel

1 Gothenburg University, Sweden
2 Chalmers University of Technology, Sweden

nagat@student.chalmers.se, olafl@chalmers.se

Abstract. Traditionally, protocols in wireless sensor networks focus on
low-power operation with low data-rates. In addition, a small set of pro-
tocols provides high throughput communication. With sensor networks
developing into general propose networks, we argue that protocols need
to provide both: low data-rates at high energy-efficiency and, addition-
ally, a high throughput mode. This is essential, for example, to quickly
collect large amounts of raw-data from a sensor.
This paper presents a set of practical extensions to the low-power,

low-delay routing protocol ORW. We introduce the capability to
handle multiple, concurrent bulk-transfers in dynamic application sce-
narios. Overall, our extensions allow ORW to reach an almost 500%
increase in the throughput with less than a 25% increase of the power
consumption during a bulk transfer. Thus, we show that instead of de-
veloping a new protocol from scratch, we can carefully enhance an exist-
ing, energy-efficient protocol with high-throughput extensions. Both the
energy-efficient low data-rate mode and the high throughput extensions
transparently co-exist inside a single protocol.

Keywords: high-throughput, opportunistic routing, Wireless Sensor
Network.

1 Introduction

In wireless sensor networks (WSNs), most protocol stacks are designed for low
data-rates. This is a widespread application scenario in WSNs and matches the
limited resources of sensor nodes in terms of bandwidth and energy. However,
there is a set of situations, in which we demand for high-speed bulk-transfers:
the energy efficient transport of large amounts of data through the resource
constrained WSNs. Such scenarios, for example, include the distribution of OS
updates and configurations, or the collection of raw measurement traces and logs
from individual nodes.

In this paper we argue that instead of developing a new protocol, it is sufficient
to extend an existing energy-efficient, low data-rate protocol with a set of care-
fully designed high-throughput extensions. For this, we base our design on the
existing energy-efficient, opportunistic routing protocol, ORW [6]. Our exten-
sions cover a wide range of scenarios including intra-path interference, inter-path
interference and concurrent bulk transfers. We provide three key mechanisms:

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 63–70, 2014.
c© Springer International Publishing Switzerland 2014

64 A. Nagy and O. Landsiedel

(a) Sample topol-
ogy: Node A
reaches C via B
on reliable links
or directly on an
unreliable link.

(b) Traditional unicast routing in
WSNs: Although C might over-
hear some transmission from A,
packets are addressed to B to en-
sure stable routing.

(c) Opportunistic Routing in
ORW: The first node that wakes
up, receives a packet, and pro-
vides sufficient routing progress
acknowledges and forwards it.

Fig. 1. Basic idea of ORW: Utilizing the first woken neighbor as forwarder, ORW
reduces energy consumption and delay. This exploiting of spatial and temporal link
diversity also increase resilience to link dynamics.

1. Our first extension to the ORW protocol initiates a novel collision avoidance
method for high-throughput scenarios. It is applied beside the already exist-
ing, well functioning collision detection technique for low data-rate settings.

2. The second extension’s purpose is to stabilize the EDC routing metric used
by the ORW protocol to estimate the latency, i.e., duty-cycled wake-ups,
required for a packet to reach the sink from a given node.

3. The third extension disables duty-cycling during a bulk transfer for the nodes
that are participating in an ongoing bulk transfer.

The remainder of this paper continues by briefly discussing the ORW protocol
to provide the required background in Section 2. We describe related work in
Section 3, and show the design of our high-throughput extensions to the ORW
protocol in Section 4. Section 5 evaluates these extensions and we conclude in
Section 6.

2 Background

ORW targets duty-cycled protocol stacks. For simplicity we here illustrate the
basic concept of ORW utilizing an asynchronous low-power-listening MAC, such
as in X-MAC [1]. In low-power-listening a sender transmits a stream of packets
until the intended receiver wakes up and acknowledges it (see Fig. 1b). To inte-
grate opportunistic routing into duty cycled environments, we depart from this
traditional unicast forwarding scheme in one key aspect: The first node that (a)
wakes up, (b) receives the packet, and (c) provides routing progress, acknowl-
edges and forwards the packet, see Fig. 1c. For example, in Figure 1a node A
can reach node C either directly via an unreliable link or via B. Commonly, tra-
ditional routing ignores the unreliable link A → C and relies on A → B → C for
forwarding. ORW extends this, by also including A → C into the routing pro-
cess: If A → C is temporary available and C wakes up before B, ORW will utilize

Towards Energy Efficient, High-Speed Communication in WSNs 65

it for forwarding. This reduces the energy consumption and delay (see Fig. 1c).
To select forwarders, ORW introduces EDC (Expected Duty Cycled wakeups)
as routing metric. EDC is an adaptation of ETX [2] to energy-efficient, anycast
routing in duty-cycled WSNs.

Our design enables an efficient adaptation of opportunistic routing to the
specific demands of wireless sensor networks: (1) In contrast to opportunistic
routing in mesh networks, forwarder selection in ORW focuses on energy effi-
ciency and delay instead of network throughput: It minimizes the number of
probes until a packet is received by a potential forwarder. (2) It integrates well
into duty-cycled environments and ensures that many potential forwarders can
overhear a packet in a single wake-up period. Thereby, ORW exploits spatial
and temporal link-diversity to improve resilience to wireless link dynamics. (3)
The fact that only a small number of nodes receive a probe at a specific point in
time simplifies the design of a coordination scheme to select a single forwarder.
This limits overhead of control traffic.

However, in the design of ORW we focused on low data-rate traffic, as this
is the most common scenario in WSNs. In this paper, we now take the next
step and widen our application scenarios: We extend ORW to high-throughput
settings, i.e., to support bulk transfers.

3 Related Work

There exist several approaches to high-throughput communication in WSNs. For
instance, Packet in Pipe [7] (PIP) is a connection-oriented, multi-hop, multi-
channel, TDMA-based solution. Another approach is Flush [5], a CSMA-based
protocol applying a rate-control algorithm along with end-to-end acknowledg-
ments. Both of these protocols are not designed to handle multiple concurrent
bulk transfers. Moreover, they do not integrate well with other routing protocols.
Their design is tailored to being the only routing protocol in place at a specific
point in time. We argue that this assumption is not practical as low data-rate
applications are the common application scenario in WSN. Thus, we believe any
high-throughput protocol must co-exist efficiently with low-data rate protocols.

On the other hand, the Lossy Link, Low Power, High Throughput [4] protocol
(LLH) allows for several concurrent bulk transfers crossing each others paths.
This protocol uses duty-cycling with low-power listening, has a high resistance
against both intra-path and inter-path interference, and applies a CSMA based
MAC protocol. From these three high-throughput solutions the LLH resembles
the most to the extended ORW protocol due to its low-power property and
the capability to handle concurrent bulk transfers. However, in contrast to our
work, LLH assembles a new protocol to be deployed alongside with existing low-
power, low-rate protocols. This leads to an increased code base and potentially
additional energy consumption, as two protocols need to be operated in parallel.
As a result, the may both have own state and each map apply own network
maintenance such neighbor discovery or wireless link estimation.

66 A. Nagy and O. Landsiedel

P1 P1 P2 P3 P4 P5 P6 P7 P8
T
ra
n
sm

is
si
o
n A

B

C

D
u
ty

C
y
cl
e

Time

A

B

C

100% 100% 100% 100% 100% 100%100% 100%

Without busy-flag: With busy-flag:

Fig. 2. Collision avoidance by the extensions: Node B forwards all the packets
from node A. When node C starts its duty cycle, it receives the packets with busy-flag,
and therefore does not acknowledge them.

4 Design

In this section, we identify the limitations of ORW in high-throughput scenarios
and next introduce three extensions to enable high-throughput communication
in ORW.

4.1 Limitations of ORW in High-Throughput Scenarios

We begin with a discussion of the limitations of ORW in presence of high data-
rates. The base ORW protocol performs poorly in the bulk transfer scenario due
to the following key problems: (1) contention and packet collisions, (2) unstable
routing metrics, and (3) early termination of duty cycles.
1. Problem: High Contention and Packet Collisions. Bulk transfers are

streams of packets leading to many, concurrent transmissions in the network.
This inherently increases contention and as a result the possibility of colli-
sions, especially when there are multiple possible paths for a packet between
the source node and the sink node.

2. Problem: Unstable EDC Routing Metric. EDC as routing metric in
ORW estimates the expected duty cycles that are required for a packet to
traverse the topology from a node to the sink. Our analysis indicates that
this metrics tends to fluctuate rapidly in case of high contention. This is
especially the case in topologies where the path of a bulk packet has a high
number of hops but just a few possible paths exist for the packet. The result
of this fluctuation are loops in the packet’s path and, via these loops, packet
loss.

3. Problem: Nodes do not stay awake until burst is completed. Duty-
cycling during a bulk transfer can lead to situations where nodes that are

Towards Energy Efficient, High-Speed Communication in WSNs 67

heavily used turn off their radio receiver, as their duty cycles have expired.
This forces ORW to find a new, alternative forwarder or to wait for that par-
ticular forwarder to wake-up again. As a result, it increases the transmission
time of packets and the power consumption of the whole network.

4.2 Extending ORW to High-Throughput Scenarios

In the following, we present our extensions to ORW to mitigate the challenges
discussed above and to enable energy-efficient and reliable high-throughput com-
munication.

Collision Avoidance: Our collision avoidance extension is divided into two
parts: a sender and a receiver part. In the sender part, the design contains a
special flag, the busy-flag. A sender sets it to indicate that it has locked onto a
specific forwarder to transfer a bulk of packets. A forwarder shall only forward
packets from senders that have locked onto it. Other potential forwarders shall,
upon receiving packets with the the flag set, not forward it and quickly go back
to sleep to safe energy. As a result, this extensions limits contentions between
nodes to be elected as forwarder. Figure 2 illustrates how this collision avoidance
extension works with one sender node A and two receiver nodes B and C.

Stabilizing the EDC Routing Metric: ORW, by default, updates its routing
estimates after each transmission. Thus, based on its success or failure the quality
estimation of the wireless link to the neighboring nodes is updated. In high-
throughput scenarios, with many current transmissions this leads to erroneous
estimates. Our solution is to simply prohibit the EDC update of a node if it is
involved in a bulk transfer. Thus, we update the routing metric at the end of
each bulk transfer, i.e., after 10 to 20 packets, and not during it.

Keeping Nodes Awake: Finally, we prohibit nodes that are involved in a bulk
transfer from going back to sleep before the bulk transfer has completed.

5 Evaluation

Our evaluation presents two types of benchmarks: (1) micro-benchmarks and
(2) macro-benchmarks. For the micro-benchmarks we use a WSN simulation
environment, Cooja, and for the macro-benchmark we utilize Indriya [3], a three-
dimensional wireless sensor network deployed across three floors of the National
University of Singapore.

The micro-benchmarks use two types of metrics: (1) reliability, (2) power
consumption of the whole bulk transfer. We evaluate each of our three extensions
separately and we show their combination:

1. ORWE-BF: busy-flag extension to avoid contention and collisions.
2. ORWE-EDC: stabilization of the EDC routing metric.
3. ORWE-DC: stabilization of the duty-cycle.
4. ORWE: the combination of all three extensions.

68 A. Nagy and O. Landsiedel

0.95

0.96

0.97

0.98

0.99

1

1.01

1 2 3 4 5 6 7 8 9

R
el
ia
b
ili
ty

[%
]

Number of Parallel Forwarders

ORW

ORWE

ORWE-BF

ORWE-EDC

ORWE-DC

(a) Reliability: Our extensions have the
same level of reliability as the base ORW
design.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

P
ow

er
C
on
su
m
p
ti
on

[s
]

Number of Parallel Forwarders

ORW

ORWE

ORWE-BF

ORWE-EDC

ORWE-DC

(b) Power consumption: Drastic in-
crease in the ORW design when the topol-
ogy increases. In contrast, our extensions
show only a minimal increase.

Fig. 3. Parallel forwarder nodes

0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

1
1.05

1 2 3 4 5 6 7 8 9

R
el
ia
b
ili
ty

[%
]

Number of Hops

ORW

ORWE

ORWE-BF

ORWE-EDC

ORWE-DC

(a) Reliability: ORWE has a higher re-
liability than the base ORW protocol.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9

P
ow

er
C
on
su
m
p
ti
on

[s
]

Number of Hops

ORW

ORWE

ORWE-BF

ORWE-EDC

ORWE-DC

(b) Power consumption: ORWE has
the lowest power consumption.

Fig. 4. Intra-path interference

Our micro-benchmarks evaluate three types of scenarios in a controlled envi-
ronment. The first scenario, inter-path interference, shows the best performance
improvement. The topology we use for this type contains a set of parallel for-
warder nodes between the source and sink nodes. The more potential forwarders
we deploy, the higher the chance for collisions of acknowledgments is. While the
base ORW protocol resolves collisions per packet, our extensions allow to lower
this intensity to one collision per bulk transfer. Figure 3 shows the reliability
and power consumption of this scenario: The power consumption stays on a low
level without any performance degradation in the reliability.

The second type of scenario, intra-path interference, aims to show the per-
formance of our extensions in a topology where there is only one path between
the source and the sink, but that path contains a high number of hops. In this
scenario, the extensions perform significantly better than the base protocol in all

Towards Energy Efficient, High-Speed Communication in WSNs 69

0.5

0.6

0.7

0.8

0.9

1

1.1

1 2 3 4 5 6

R
el
ia
b
ili
ty

Number of Concurrent Bulk-Transfers

ORW

ORWE

ORWE-BF

ORWE-EDC

ORWE-DC

(a) Reliability: The bottleneck scenario
highlights the limitations of all design: the
contention leads to packet losses in all de-
signs. Nonetheless, ORWE improves over
default ORW.

-1
0
1
2
3
4
5
6
7
8

1 2 3 4 5 6

P
ow

er
C
on
su
m
p
ti
on

[s
]

Number of Concurrent Bulk-Transfers

ORW

ORWE

ORWE-BF

ORWE-EDC

ORWE-DC

(b) Power consumption: ORWE has
the lowest power consumption.

Fig. 5. Bottleneck scenario: Multiple sources with 4 potential forwarders

the metrics. For instance, ORWE uses the 10% of the power that is used by the
base ORW protocol for the same bulk transfer. Moreover, we increase the relia-
bility in the meantime. Figure 4 shows the reliability and power consumption for
this scenario. The third type of scenario shows that our extensions are capable
of handling multiple concurrent bulk transfers with only a minor performance
degradation.

The third type of topology evaluates a case when a number of source nodes
concurrently sending bulk packets exceeds the number of forwarders, see Fig-
ure 5. This topology formulates a bottleneck scenario in the sense that the num-
ber of forwarder nodes are not able to serve the performance demand generated
by the source nodes creating a special collision critical situation.

The macro-benchmark serves as a platform for the evaluation on a larger
scale. Overall, our results show that our extensions use 25% of the power that
are used by the base ORW protocol with a slightly higher reliability.

6 Conclusion

In this paper we show, that by adding three carefully designed extensions to the
ORW protocols, we can extend it from a low data-rate protocol to also support
high-throughput scenarios at high energy-efficiency. Our future work includes a
detailed testbed evaluation and an experimental comparison to the state of the
art.

Conversely, by applying our extensions we obtain a significant performance
improvement in all the metrics that we presented in this paper. Lastly, these
extensions have no effect on the non-bulk packet transfer, since they are only
activated when the transmission rate exceeds a certain level. Thus, these exten-
sions transparently integrate into ORW and are backwards compatible with the
base protocol.

70 A. Nagy and O. Landsiedel

References

1. Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a Short Preamble MAC
Protocol for Duty-Cycled Wireless Sensor Networks. In: SenSys: Proc. of the ACM
Int. Conference on Embedded Networked Sensor Systems (2006)

2. De Couto, D.S.J., Aguayo, D., Bicket, J., Morris, R.: A High-Throughput Path Met-
ric for Multi-Hop Wireless Routing. In: MobiCom: Proc. of the ACM Int. Conference
on Mobile Computing and Networking (2003)

3. Doddavenkatappa, M., Chan, M.C., Ananda, A.L.: Indriya: A low-cost, 3D wireless
sensor network testbed. In: Korakis, T., Li, H., Tran-Gia, P., Park, H.-S. (eds.)
TridentCom 2011. LNICST, vol. 90, pp. 302–316. Springer, Heidelberg (2012)

4. Duquennoy, S., Österlind, F., Dunkels, A.: Lossy links, low power, high through-
put. In: Proceedings of the 9th ACM Conference on Embedded Networked Sensor
Systems, SenSys 2011 (2011)

5. Kim, S., Fonseca, R., Dutta, P., Tavakoli, A., Culler, D., Levis, P., Shenker, S.,
Stoica, I.: Flush: A reliable bulk transport protocol for multihop wireless networks.
In: Proceedings of the 5th International Conference on Embedded Networked Sensor
Systems, SenSys 2007 (2007)

6. Landsiedel, O., Ghadimi, E., Duquennoy, S., Johansson, M.: Low power, low delay:
Opportunistic routing meets duty cycling. In: IPSN 2012: Proceedings of the 11th
ACM/IEEE International Conference on Information Processing in Sensor Networks
(April 2012)

7. Raman, B., Chebrolu, K., Bijwe, S., Gabale, V.: Pip: A connection-oriented, multi-
hop, multi-channel tdma-based mac for high throughput bulk transfer. In: Proceed-
ings of the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys
2010 (2010)

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 71–79, 2014.
© Springer International Publishing Switzerland 2014

Comparing Adaptive TDMA against a
Clock Synchronization Approach

Luis Almeida1, Frederico Santos2, and Luis Oliveira1

1 IT/FEUP, University of Porto, Portugal
{lda,dee10023}@fe.up.pt

2 DEE-ISEC, Polytechnic Institute of Coimbra, Portugal
fred@isec.pt

Abstract. Teams of cooperating robots are getting more popular fostered by
hardware platforms as well as technologies and techniques for coordination that
are becoming widely available. The wireless communication is one such
technology that impacts directly on the quality provided by the cooperative
applications running atop. In cases where the team robots transmit periodically,
it has been shown that synchronizing their transmissions so that they occur out
of phase is beneficial, e.g. in a TDMA manner. However, persisting periodic
interfering traffic may increase collisions with the team traffic and thus
downgrade the channel quality. The Adaptive TDMA self-synchronized
protocol was then proposed to improve the resilience to this type of
interference. In this paper we assess the effectiveness of Adaptive TDMA in
comparison with a traditional TDMA implementation based on clock
synchronization. The results of practical experiments show a reduction in
packet losses when the interfering traffic is short, typically single packet.1

Keywords: TDMA, synchronization, adaptation, cooperation, information
exchange.

1 Introduction

Cooperative robotics has been motivating substantial research work since several
years [1,2,3]. It is a useful approach to many practical robotic applications for both
military and civil purposes, from search and rescue in catastrophic situations, to
demining or maneuvers in contaminated areas.

Recently, the availability of hardware platforms as well as technologies and
techniques needed for coordination of autonomous agents is fostering the use of teams
of cooperating robots. One such technology is wireless communication but its use still
raises several challenges. In fact, the wireless medium is open, prone to errors, and
fast fading, thus leading to limited communication range and problems such as hidden

1 This work was partially supported by the Portuguese Government through FCT grant

CodeStream PTDC/EEI-TEL/3006/2012.

72 L. Almeida, F. Santos, and L. Oliveira

and exposed nodes. Moreover, being an inherently shared medium, some kind of
access control is required.

The option for an existing wireless communication standard, such as the IEEE
802.11, solves those problems up to a certain extent, particularly using the infra-
structured mode. In fact, this mode implies that all the communications pass through
an Access Point (AP), which enforces team membership consistency, i.e., an agent is
considered as part of the team whenever it has an active link with the AP [4].
Nevertheless, despite the existence of a fairly complex distributed arbitration
mechanism in IEEE 802.11, access collisions can still occur and their probability
raises significantly with the network load as well as with certain transmission
patterns, e.g., periodic transmissions with coherent periods2 [5,6].

In this work we address the problem of packet losses due to medium access
collisions in IEEE 802.11 infra-structured networks using the common Distributed
Coordination Function (DCF) access control method. This is likely the most
common communications technology used today in teams of cooperating robots. We
follow a previous line of work that proposed synchronizing the team transmissions in
a round in a Time-Division Multiple Access (TDMA) manner [4]. We then propose
an improvement to the adaptation mechanism proposed therein that is more robust to
timing interferences caused by the AP itself. Moreover, we present a comparison
with a traditional TDMA implementation based on clock synchronization in the
presence of coherent periodic interfering traffic. This comparison was still lacking
in the referred framework. We will see that the adaptive version achieves lower
packet losses when the interfering traffic is short, typically a single packet per
transaction.

The paper is organized as follows. Section 2 presents a brief survey of related
work, Section 3 discusses the implementation of TDMA over IEEE 802.11 networks,
Section 4 compares a clock-synchronized with the adaptive implementations of
TDMA while Section 5 concludes the paper.

2 Related Work

The work on slotted approaches in wireless communications, both for data and voice,
is rather vast and old. For example, in [9,10,11] the authors propose using dynamic
TDMA frameworks where slots in a static round structure are assigned dynamically to
nodes. However, these approaches are normally centralized in which a master
receives slot requests and assigns slots to nodes dynamically. The original Point
Coordination Function (PCF), as well as the more recent Controlled Channel Access
(HCCA) of the Hybrid Coordination Function (HCF), of IEEE 802.11 also work in a
similar manner with the AP scheduling the nodes traffic in a centralized collision-free
way. Conversely to these approaches, we seek a fully distributed access coordination
scheme, which is a typical property of TDMA protocols.

2 We use the expression “coherent periods” to refer to periods in which one is equal or an

integer multiple of the other one.

 Comparing Adaptive TDMA against a Clock Synchronization Approach 73

Following an approach similar to [4] the authors of RI-EDF [8] synchronize slots
based on the reception time instants of the transmission of other nodes in a distributed
fashion. However, the protocol was not developed to cope with uncontrolled non-
complying traffic in the channel.

A well-known and widely used distributed access control technique is Carrier
Sense Multiple Access with Collision Avoidance (CSMA-CA), which is the basic
mechanism of IEEE 802.11 DCF. However, this technique may behave poorly in the
presence of interfering periodic flows [4,6] and this is why we are pursuing the use of
TDMA techniques. Finally, TDMA techniques are typically developed atop clock
synchronization mechanisms that provide a consistent global clock [7]. In this case,
the slots structure in the round is fixed during all system operation. In our work we
will use an open software package named Chrony [12] to achieve such global clock
and drive the clock-synchronized version of TDMA that will be used for comparison.

3 TDMA Communication Framework

TDMA is a common temporal multiplexing scheme for periodic communications that
provides each node with an exclusive fixed duration transmission window (or slot).
These slots are organized in a round that repeats continuously. For cooperating robots
in a team that frequently share their state in a periodic fashion, TDMA is rather
convenient. In this case, assigning a slot to each robot3, its transmissions will be
separated in time from those of the other nodes (they occur in different slots) and thus
the occurrence of in-team medium access collisions is precluded.

However, if uncontrolled interfering traffic cannot be avoided, herein called
external traffic, which is the general case we are considering, then two issues must be
addressed. On one hand, there must be a collision resolution mechanism since access
collisions are now possible. This is granted by the underlying IEEE 802.11 protocol
(DCF). On the other hand, the nodes in the team must use windows that are
sufficiently large (Txwin) to accommodate both their own transmissions (Mk,i) and the
expected external traffic (Fig. 1). Note that under heavy external traffic load, it is still
possible that the transmissions of a node in the team are significantly delayed and fall
inside the following window, creating interference within the team.

Fig. 1. TDMA transmission control of wireless communications within a team of 4 nodes
considering equal slots (i.e., all robots have similar communication requirements)

3 In the scope of this work we will use robot, agent and node interchangeably.

Txwin Txwin Txwin Txwin

Ttup

M0,i M1,i M2,i M3,i M0,i+1

74 L. Almeida, F. Santos, and L. Oliveira

The implementation using clock-synchronization is straight forward once the
global clock G(t) is in place. Node k is allowed to transmit whenever:

ሻݐሺܩ mod ௧ܶ௨௣ ൌ ݇ כ ௫ܶ௪௜௡, ݇ ൌ 0. . . ݊ െ 1 (n nodes)

In practice this is achieved with timers that trigger the respective transmissions.

However, this approach may perform poorly, with high significant packet losses
during certain periods of time, herein called critical periods, independently of the
network load. This is the case in the presence of interfering external periodic traffic
with approximately coherent periods. In this case, given the fixed TDMA round
structure, the protocol will continue triggering transmissions at the same time as the
interference source, until the clock drifts eventually set those instants apart (Fig. 2).

Consequently, a periodic interference with a coherent period will cause persistent
interference, independently of the load, increasing the probability of collisions and
consequent packet losses. In fact, this pernicious phenomenon also happens when the
robots in the team transmit periodically, with similar periods, but unsynchronized. In
this case, each one will be a coherent periodic interference for the others, which is the
motivation to use a TDMA approach in the team.

Fig. 2. Critical interference period arising from approximately coherent periodic transmissions

3.1 Adaptive TDMA

To solve the problem of persisting interference, we proposed the dynamic adaptation
of the TDMA round phase, named Adaptive TDMA [4]. This protocol, is sensitive to
the delays suffered by team members and uses such delays to rotate the phase of the
TDMA round. In a situation of periodic interference, a transmission of a team
member will eventually be delayed by the interfering source. The remaining members
of the team can then detect such delay and postpone their own transmissions by the
same amount of time, effectively shifting the phase of the TDMA round so that the
following transmissions would not collide with the interfering source again.

Moreover, this technique also carries along a further benefit since each node now
synchronizes with the others in the team by measuring the reception instants of the
respective packets and thus clock synchronization is no longer needed.

 Comparing Adaptive TDMA against a Clock Synchronization Approach 75

The work in [4] includes both the adaptation mechanism as well as a dynamic
reconfiguration of the round structure, according to robots that dynamically join and
leave the team. This is orthogonal to the current work and thus it will not be
considered here. The focus will thus be on the adaptive TDMA mechanism, only.

Moreover, we use an improved version of the adaptive mechanism proposed in [4]
in which just an automatically elected reference node, namely the one with the lowest
ID among the active ones, senses the delays in the team transmissions and adjusts the
round phase. All other nodes transmit after receiving from the reference node in each
round and with an offset equal to that of the respective slot (Fig. 3). The reference
node is automatically reassigned in case the current one leaves the team.

The reference node (node 0) determines its transmission instant in the following
round (i+1) as follows, considering the previously computed transmission instant for
the current round (i) and the delays δk suffered by nodes 1 to k in this round (if lower
than the maximum allowed Δ adjustment):

 ଴ܶ,௜ାଵ ൌ ଴ܶ,௜ ൅ ௧ܶ௨௣ ൅ max௞ୀଵ..௡ିଵ,ఋೖழ∆ ௞ߜ

The transmission instants for the remaining nodes are defined as follows, where ෠ܶ଴,௜ is an estimation of ଴ܶ,௜ considering the wireless transmission latency:
 ௞ܶ,௜ ൌ ෠ܶ଴,௜ ൅ ݇ כ ௫ܶ௪௜௡, ݇ ൌ 1. . ݊ െ 1

If the reference node does not receive from any of the other nodes during one
round (or receives with a delay larger than Δ) then it transmits Ttup later. Similarly, if
the other nodes do not receive from the reference node in one round, they transmit Ttup
after their previous transmission.

Fig. 3. The improved Adaptive TDMA protocol with a single adapting reference node

This mechanism is particularly better than the originally proposed one when in the
presence of an AP with the power management feature active and a fairly long DTIM
period. In such case the transmissions instants in the former approach would be
altered and the team would not synchronize. With the new mechanism, the reference
node transmission instants may still be altered (implying a potential large error in ෠ܶ଴,௜)
but this will impact the start of the round, only. The remaining transmissions in the
team are still separated in time according to the respective slots in the round.

76 L. Almeida, F. Santos, and L. Oliveira

4 Comparing Clock-Synchronized and Adaptive TDMA

When comparing Adaptive TDMA with clock synchronized TDMA there is one
immediate difference. The former merges synchronization and data transmission
while the latter needs a clock synchronization service and then implements data
transmission alone. Moreover, the clock synchronization service requires
transmissions of its own that must be accommodated by the data protocol. For these
reasons we believe that Adaptive TDMA is simpler to deploy and use.

Moreover, clock synchronization algorithms are typically master-slave such as
Chrony [12], frequently without master redundancy, which makes them sensitive to
single point failures. Conversely, Adaptive TDMA is fully distributed and thus
resilient by nature to the failure of any of its nodes.

Finally, to compare both approaches quantitatively with respect to packet losses in
the presence of near coherent periodic interference we carry out several experiments
using the ping command issued from an external computer. The results were extracted
from a sequence of logs of a team with four nodes, during 5min of operation, using a
round of 99.5ms. The reason for such period is to make it slightly different from that
of the ping traffic, which was set to sub-multiples of 100ms with 1kB packets. With
this difference in periods, we expect a high contention interval between both types of
traffic to occur recurrently approximately every 20s, resulting from the difference of
the frequencies of the interfering periodic processes.

The clock synchronized TDMA results are shown as chrony. Those concerning
Adaptive TDMA appear as Rec Adap TDMA (since the actual protocol includes the
reconfigurable part). Note that there is still a certain residual level of external traffic
that was circulating in the medium at the time the experiments were carried out.

The results shown in Fig. 4 reveal an advantage of Adaptive TDMA that is
expected. If the team transmissions collide at a given moment with the interfering
ping packets, eventually a team transmission will be delayed shifting the whole
TDMA round so that the following transmissions move away from the interference.

This does not happen with the clock synchronized method, which keeps
transmitting in moments of high collision probability until the clock drifts separate the
transmitting instants of the interfering processes, which may take a significant amount
of time, potentially creating a long critical period.

Finally, Fig. 5 shows the actual offsets of the nodes transmissions in the TDMA
round, with respect to the transmissions of node 0, for both synchronization methods
and with additional ping traffic of one 1KB packet every 20ms. In this plot, we have
excluded larger intervals caused by packet losses for the sake of clarity. At the right
side of the plots we show the mean value of the respective slot offset. The top line
represents the interval between consecutive transmissions of node 0, thus showing the
effective round period.

In general, the clock synchronized approach exhibits more symmetrical variations
in the slot intervals, which is expected given the fixed regular average slot offsets.
The adaptive approach shows essentially positive variations, only, due to the sliding
phase mechanism that absorbs delays into the round period. This can be seen in the
larger average period than the programmed value of 9.5ms, as opposed to the clock
synchronized case that maintains an average round period very close to the
programmed one.

 Comparing Adaptive TDMA against a Clock Synchronization Approach 77

Fig. 4. Histograms of consecutive lost packets with no ping, or 1KB single packet ping traffic
with variable frequency

Fig. 5. Transmission offsets in the round with respect to the reference node in both clock
synchronized and Adaptive TDMA with 1KB ping every 20ms of external traffic

78 L. Almeida, F. Santos, and L. Oliveira

5 Conclusion

TDMA is an adequate temporal multiplexing approach to separate transmissions in
time and avoid collisions. This is particularly useful in wireless communications
within teams of robots that typically transmit periodically and with similar periods to
cooperate towards a common goal. However, typical TDMA implementations based
on clock synchronization are agnostic to potential interferences from external traffic
that is outside the control of the protocol. This can be particularly negative with near
coherent periodic interferences that can cause long lasting critical periods.

To improve resilience to such periodic interferences, an adaptive TDMA
mechanism with a sliding phase was proposed previously. However, not only such
mechanism had several limitations but also a comparison with the clock synchronized
approach was missing. Thus, in this paper we have shown an improved version of the
Adaptive TDMA protocol together with a quantitative comparison with the clock
synchronized approach concerning packet losses. This comparison has confirmed the
effectiveness of the proposed Adaptive TDMA protocol in the referred cases.

References

1. Weiss, G.: Multiagent systems. A Modern Approach to Distributed Artificial Intelligence.
MIT Press (2000)

2. Kitano, K., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup: The Robot World
Cup Initiative. In: Proc. of IJCAI 1995 Workshop on Entertainment and AI/Alife,
Montreal (1995)

3. Dietl, M., Gutmann, J.-S., Nebel, B.: Cooperative Sensing in Dynamic Environments. In:
Proc. IROS 2001 (2001)

4. Santos, F., Almeida, L., Lopes, L.S.: Self-configuration of an Adaptive TDMA wireless
communication protocol for teams of mobile robots. In: Proc. of ETFA 2008 - 13th IEEE
Conference on Emerging Technologies and Factory Automation, Hamburg, Germany,
September 15-18 (2008)

5. Oliveira, L., Almeida, L., Santos, F.: A Loose Synchronisation Protocol for Managing RF
Ranging in Mobile Ad-Hoc Networks. In: Röfer, T., Mayer, N.M., Savage, J., Saranlı, U.
(eds.) RoboCup 2011. LNCS, vol. 7416, pp. 574–585. Springer, Heidelberg (2012)

6. Ordoñez, B., Oliveira, L., Moreno, U.F., Cerqueira, J., Almeida, L.: Utilização de
Protocolo de Comunicação para Sincronização das Mensagens para Controle Cooperativo
Baseado em Consenso. In: Proc. of CBA 2012 - Congresso Brasileiro de Automação,
Campina Grande, Brasil, September 2-6 (2012) (in Portuguese)

7. Kopetz, H.: Real-Time Systems Design Principles for Distributed Embedded Applications.
Kluwer (1997)

8. Crenshaw, T.L., Tirumala, A., Hoke, S., Caccamo, M.: A robust inplicit access protocol
for real-time wireless collaboration. In: Proc. of ECRTS 2005 – Euromicro Conference on
Real-Time Systems, Palma de Mallorca, Spain, July 2005, pp. 177–186 (2005)

9. Wilson, N.D., Ganesh, R., Joseph, K., Raychaudhuri, D.: Packet CDMA versus dynamic
TDMA for multiple access in an integrated voice/data PCN. IEEE J. on Selected Areas in
Communications 11(6), 870–884 (1993)

 Comparing Adaptive TDMA against a Clock Synchronization Approach 79

10. Young, C.D.: Usap: A unifying dynamic distributed multichannel TDMA slot assignment
protocol. In: Proc. of MILCOM 1996 - Military Communications Conference, vol. 1, pp.
235–239 (October 1996)

11. Kanzaki, A., Uemukai, T., Hara, T., Nishio, S.: Dynamic TDMA slot assignment in ad hoc
networks. In: Proc. of AIDA 1996 - Advanced Information and Networking Applications,
pp. 330–335 (March 1996)

12. Mora, F.: Bring an Atomic Clock to Your Home with Chrony. Linux Journal 2002(101)
(September 2002), http://chrony.tuxfamily.org

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 80–83, 2014.
© Springer International Publishing Switzerland 2014

Introduction:
ERCIM/EWICS/ARTEMIS Workshop on Dependable
Embedded and Cyberphysical Systems and Systems-of-

Systems (DECSoS’14) at SAFECOMP 2014

A European Approach to Critical Systems Engineering

Erwin Schoitsch1 and Amund Skavhaug2

1 AIT Austrian Institute of Technology GmbH, Vienna, Austria
erwin.schoitsch@ait.ac.at

2 NTNU, Trondheim, Norway
Amund.Skavhaug@ntnu.no

1 Introduction

This workshop at SAFECOMP follows already its own tradition since 2006. In the
past, it focussed on the conventional type of “embedded systems”, covering all de-
pendability aspects (in the meaning of IFIP WG 10.4, defined by Avizienis, Lapries,
Kopetz, Voges and others). To emphasize more the relationship to physics, mecha-
tronics and the notion of interaction with an unpredictable environment, the terminol-
ogy changed to “cyber-physical systems” (CPS). Collaboration and co-operation of
these systems with each other and humans, and the interplay of safety and security are
leading to new challenges in verification, validation and certification/qualification.

In a highly interconnected world, a finite number of independently operable and
manageable systems are networked together for a period of time to achieve a certain
higher goal as constituent systems of a so-called “system-of-systems”. Examples are
the smart power grid with power plants and power distribution and control, smart
transport systems (rail, traffic management with V2V and V2I facilities, air traffic
control systems), advanced manufacturing systems, mobile co-operating autonomous
robotic systems, smart buildings up to smart cities and the like.

The impact on society as a whole is considerable - thus dependability (safety, re-
liability, availability, security, maintainability, etc.) evaluated in a holistic manner
becomes an important issue, including resilience, robustness, and sustainability. CPSs
are a targeted research area in Horizon 2020 and public-private partnerships such as
ECSEL (Electronic Components and Systems for European Leadership), which inte-
grates the former ARTEMIS, ENIAC and EPoSS efforts, where industry and research
(“private”) are represented by the industrial associations ARTEMIS-IA (for
ARTEMIS, embedded intelligence and systems), AENEAS (for ENIAC, semiconduc-
tor industry) and EPoSS (for “Smart Systems Integration”), and the public part is
represented by the EC and the national public authorities of the member states which
take part in the ECSEL Joint Undertaking. Funding comes from the EC and the na-
tional public authorities (“tri-partite funding”: EC, member states, project partners).

 Introduction: ERCIM/EWICS/ARTEMIS 81

2 ARTEMIS/ECSEL: The European Cyber-Physical Systems
Initiative

This year the workshop is co-hosted by the ARTEMIS projects

• MBAT1 (“Combined Model-based Analysis and Testing of Embedded
Systems”, http://www.mbat-artemis.eu) and

• nSafeCer1 (“Safety Certification of Software-intensive Systems with Re-
usable Components”, http://www.safecer.eu),

• CRYSTAL1 (“Critical Systems Engineering Factories”,
http://www.crystal-artemis.eu),

• ARROWHEAD1 (“Ahead of the Future”, http://www.arrowhead.eu/) and
• EMC² (Embedded multi-core systems for mixed criticality applications in

dynamic and changeable real-time environments, http://www.emc2-
project.eu)1.

ARTEMIS (Advanced Research and Technology for Embedded Intelligence and
Systems) was one of the European, industry-driven research initiatives. The economic
impact in terms of jobs and growth is expected to exceed € 100 billion over ten years.
As a Joint Undertaking it is funding mainly a set of rather big projects, following the
ARTEMIS Strategic Research Agenda in its work program and conducting each year
a separate call for proposals based on its work program. From Mid 2014 onwards
ARTEMIS has become part of the ECSEL PPP, but the current ARTEMIS projects
will be continued according to the ARTEMIS rules, but managed by the ECSEL JU.
The five co-hosting ARTEMIS projects will be described briefly:

MBAT will achieve better results by combining test and analysis methods. A new
leading-edge Reference Technology Platform (RTP) for effective and cost-reducing
validation and verification of Embedded Systems will be developed. MBAT project
will strongly foster the development of high-quality embedded systems in the trans-
portation sector at reduced costs (in short: higher quality embedded systems at lower
price). Higher quality embedded systems will in turn increase the overall quality and
market value of the transportation products. This will be of high value for the Euro-
pean industry and future projects, and contribute to the overarching ARTEMIS Goal
of a Common Technology Reference Platform. Therefore close co-operation with
related projects is envisaged, especially with those of the ARTEMIS Safety & High-
reliability Cluster (e.g. CESAR, MBAT, SafeCer, iFEST, R3-COP).

nSafeCer aims at increased efficiency and reduced time-to-market together with
increased quality and reduced risk through composable certification of safety-relevant
embedded systems in the industrial domains of automotive and construction equip-
ment, avionics, and rail. nSafeCer will also develop certification guidelines for other
domains, including cross-domain qualification and the application of the nSafeCer
Certification framework in new domains. nSafeCer will provide support for efficient
reuse of safety certification arguments and prequalified components within and across

1 The projects MBAT (grant agreement n° 269335), nSafeCer (grant agreement n° 295373),

CRYSTAL (grant agreement n° 332830), ARROWHEAD (grant agreement n° 332987) and
EMC² (grant agreement n° 621429) received funding from the EU ARTEMIS Joint Undertak-
ing and the partners’ national programmes/funding authorities.

82 E. Schoitsch and A. Skavhaug

industrial domains. This addresses the overarching goal of the ARTEMIS JU strategy
to overcome fragmentation in the embedded systems markets.

CRYSTAL, a large ARTEMIS Innovation Pilot Project (AIPP), aims at fostering
Europe’s leading edge position in embedded systems engineering by facilitating high
quality and cost effectiveness of safety-critical embedded systems and architecture
platforms. Its overall goal is to enable sustainable paths to speed up the maturation,
integration, and cross-sector reusability of technological and methodological bricks in
the areas of transportation (aerospace, automotive, and rail) and healthcare providing
a critical mass of European technology providers. CRYSTAL will integrate the con-
tributions of previous ARTEMIS projects (CESAR, MBAT, iFEST, SafeCer etc.) and
further develop the ARTEMIS RTP (Reference Technology Platform) and Interop-
erability Specification and create a sustainable innovative eco-system in the area of
critical embedded systems engineering.

ARROWHEAD, a large AIPP addressing the areas production and energy system
automation, intelligent-built environment and urban infrastructure, is aiming at enabl-
ing collaborative automation by networked embedded devices (from enter-
prise/worldwide level in the cloud down to device level at the machine in the plant)
and achieving efficiency and flexibility on a global scale for five application verticals:
production (manufacturing, process, energy), smart buildings and infrastructures,
electro-mobility and virtual market of energy.

EMC² is up to now the largest ARTEMIS AIPP with EMC2 bundling the power
for innovation of 97 partners from embedded industry and research from 19 European
countries and Israel with an effort of about 800 person years and a total budget of
about 100 million Euro. It started April 2014. The objective of the EMC² project is to
develop an innovative and sustainable service-oriented architecture approach for
mixed criticality applications in dynamic and changeable real-time environments.
It provides the paradigm shift to a new and sustainable system architecture which is
suitable to handle open dynamic systems:

• Dynamic Adaptability in Open Systems, scalability and utmost flexibility,
• Utilization of expensive system features only as Service-on-Demand in order

to reduce the overall system cost,
• Handling of mixed criticality applications under real-time conditions,
• Full scale deployment and management of integrated tool chains, through the

entire lifecycle.

The AIPPs ARROWHEAD and EMC² are addressing “Systems-of-Systems” as-
pects in context of critical systems, whereas SafeCer, MBAT and CRYSTAL are
devoting their major efforts towards creating a sustainable eco-system of a CRTP
(Collaborative Reference Technology Platform) based on an ARTEMIS common IOS
(Interoperability Specification).

3 This Year’s Workshop

The workshop DECSoS’14 comprises the following sessions (in brackets: Acronym
of the related ARTEMIS project if it is basis of the work reported):

Introduction
• Erwin Schoitsch, Amund Skavhaug. ERCIM, EWICS, ARTEMIS: An (Euro-

pean) introduction to different aspects of critical systems engineering.

 Introduction: ERCIM/EWICS/ARTEMIS 83

Formal Analysis and Verification
• S. Salvi, D. Kästner, T. Bienmüller and Ch. Ferdinand: True Error or False

Alarm? Refining Astree’s Abstract Interpretation Results by EmbeddedTe-
ster’s Automatic Model-based Testing [MBAT]

• M. Oertel, O. Kacimi and E. Boede: Formal Verification of Implementation
Models against Safety Specifications [MBAT]

• Ch. Ellen, M. Böschen and T. Peikenkamp: MTBF Inconsistency Analysis on
Inferred Product Breakdown Structures [CRYSTAL]

• F. Moscato, R. Aversa and B. Di Martino: Critical Systems Verification in
MetaMORP(h)OSY [CRYSTAL]

Railway Applications: Safety Analysis and Verification
• V. Frédérique, A. Ginisty, E. Soubiran and V.- D. Tchapet-Nya: Report on

the Railway Use case of the Crystal project: Objectives and Progress
[CRYSTAL]

• M. Carloni, O. Ferrante, A. Ferrari, G. Massaroli, A. Orazzo, L. Velardi and
Ida Petrone: Contract-based Analysis for verification of Communication-
Based Train Control (CBTC) system. [MBAT]

• G. Barberio, B. Di Martino, N. Mazzocca, L. Velardi, A. Amato, R. De Gug-
lielmo, U. Gentile, S. Marrone, R. Nardone, A. Peron and V. Vittorini: An
Interoperable Testing Environment for ERTMS/ETCS control systems.
[CRYSTAL]

Resilience and Trust: Dynamic Issues
• L. Laibinis, I. Pereverzeva and E. Troubitsyna: Modelling Resilient Systems-

of-Systems in Event-B.
• N. Kajtazovic, Ch. Preschern, A. Höller and Ch. Kreiner: Towards Assured

Dynamic Configuration of Safety-critical Embedded Systems.
• D. Schneider, E. Armengaud and E. Schoitsch: Towards Trust Assurance

and Certification in Cyber-Physical Systems. [EMC²]

The workshop will hopefully provide some insight into the topics, and enable
fruitful discussions during the meeting and afterwards. As chairpersons of the work-
shop we want to thank all authors and contributors who submitted their work, and
want to express our thanks to the SAFECOMP organizers who provided us the oppor-
tunity to organize the workshop at SAFECOMP 2014 in Florence. Particularly we
want to thank the EC and national public authorities who made the research work
possible. We want not to forget the continued support of our companies and organiza-
tions, of ERCIM (European Research Consortium for Informatics and Mathematics,
with its Working Group on Dependable Embedded Software-intensive Systems) and
EWICS, the creator and main sponsor of SAFECOMP, with its working groups, who
always helped us to learn from their networks.

We hope that all participants will benefit from the workshop, enjoy the conference
and will join us again in the future!

Erwin Schoitsch Amund Skavhaug
AIT Austrian Institute of Technology GmbH NTNU, Trondheim, Norway

True Error or False Alarm?
Refining Astrée’s Abstract Interpretation Results

by Embedded Tester’s Automatic Model-Based Testing

Sayali Salvi1, Daniel Kästner1, Tom Bienmüller2, and Christian Ferdinand1

1 AbsInt GmbH, Science Park 1, 66123 Saarbrücken, Germany
2 BTC Embedded Systems AG, Gerhard-Stalling-Str. 19, D-26135 Oldenburg, Germany

Abstract. A failure of safety-critical software may cause high costs or even en-
danger human beings. Contemporary safety standards require to identify potential
functional and non-functional hazards and to demonstrate that the software does
not violate the relevant safety goals. Typically for ensuring functional program
properties model-based testing is used while non-functional properties like oc-
currence of runtime errors are addressed by abstract interpretation-based static
analysis. Hence the verification process is split into two distinct parts – currently
without any synergy between them being exploited. In this article we present an
approach to couple model-based testing with static analysis based on a tool cou-
pling between Astrée and BTC EmbeddedTester R©. Astrée reports all potential
runtime errors in C programs. This makes it possible to prove the absence of
runtime errors, but typically users have to deal with false alarms, i.e. spurious no-
tifications about potential runtime errors. Investigating alarms to find out whether
they are true errors which have to be fixed, or whether they are false alarms can
cause significant effort. The key idea of this work is to apply model-based testing
to automatically find test cases for alarms reported by the static analyzer. When a
test case reproducing the error has been found, it has been proven that it is a true
error; when no error has been found with full test coverage, it has been proven
to be a false alarm. This can significantly reduce the alarm analysis effort and
reduces the level of expertise needed to perform the code-level software verifica-
tion. We describe the underlying concept and report on experimental results and
future work.

1 Introduction

Safety-related software has to satisfy stringent quality requirements. The complexity of
software-implemented functionality grows at a fast pace. Development teams have to
meet tight budget constraints and face increasing pressure to reduce time-to-market. To
meet these conflicting goals the development process has to be sound and efficient.

A leap in development efficiency can be reached by a holistic model-centric approach
to software development, testing and verification. In model-based development the soft-
ware is graphically developed at a high abstraction level, typically by hierarchical finite
state machines and data flow diagrams which represent specification and model at the
same time. From this high-level model the implementation is automatically generated
by configurable code generators, often in the form of C code. Model-based testing aims

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 84–96, 2014.
c© Springer International Publishing Switzerland 2014

True Error or False Alarm? 85

at automating testing activities and integrating the development of both design artifacts
and test artifacts in a unified framework. This makes it possible to automatically create
test architectures, and generate and execute the test cases.

All contemporary safety standards require to identify functional and non-functional
hazards and to demonstrate that the software does not violate the relevant safety goals.
Depending on the criticality level of the software the absence of safety hazards has
to be demonstrated by formal methods or testing with sufficient coverage. This holds
not only for DO-178B/DO-178C, but also for related norms like ISO 26262, and IEC-
61508. Functional properties can be efficiently addressed by automatic model-based
testing. The critical non-functional safety-relevant software characteristics are essen-
tially implementation-level properties, e.g., whether real-time requirements can be met,
whether stack overflows can occur, and whether there can be runtime errors like invalid
pointer accesses, or divisions by zero. Because of the high abstraction level of model-
based development these properties are largely hidden from the developers. Moreover
they are very hard to check experimentally, i.e., by testing and measurements. Identify-
ing safe end-of-test criteria for program properties like timing, stack size, and runtime
errors is an unsolved problem. In consequence the required test effort is high, the tests
require access to the physical hardware and the results are not complete.

Formal verification methods provide an alternative, in particular for safety-critical
applications. One such method is abstract interpretation, which allows properties to be
proven for all program runs with all inputs [8]. Nowadays, abstract interpretation-based
static analyzers that can detect stack overflows [14] and violations of timing constraints
[16], and that can prove the absence of runtime errors, are widely used in industry [15]
(cf. Sec. 2). The advantage of abstract interpretation is that it enables full control and
data coverage, but can be easily automatized and can reduce the testing effort.

In consequence, from a workflow perspective the verification process is split into
two parts: model-based testing is used for showing functional program properties, and
static analysis to prove the absence of non-functional program errors. In the course of
the MBAT project1 a concept for integrating model-based testing and static analysis
has been developed which enables both aspects to be addressed seamlessly [13]. This
concept has been realized by a tool coupling between BTC EmbeddedTester R© [7], and
the static analysis tools aiT WCET Analyzer [1], StackAnalyzer [2], and Astrée [3]
from AbsInt. Model-level information like execution model or environment specifica-
tions are automatically taken into account, reducing setup for test and analysis efforts
and improving analysis precision. Tests and analyses can be launched seamlessly and
produce unified result reports. While significantly improving the efficiency of the V&V
process the tool coupling as described in [13] is mostly limited to workflow aspects and
does not yet exploit the full potential of a combination of the two verification technolo-
gies, static analysis and model-based testing.

In this article we describe a deep technical integration between static runtime er-
ror analysis and model-based testing, implemented as a tool coupling between Astrée
and BTC EmbeddedTester R©. Astrée is a sound static analyzer which can find all po-
tential runtime errors in C programs. It works with an abstract semantics of the pro-
gram which makes it possible to compute results even for big applications – the largest

1 http://www.mbat-artemis.eu/

http://www.mbat-artemis.eu/

86 S. Salvi et al.

application investigated so far contains more than two million LOC. The downside of
the abstraction mechanism is that there can be false alarms, i.e. spurious notifications
about potential runtime errors, which are not actual bugs. Therefore, all alarms have to
be investigated by the developers to determine whether they correspond to true errors
which have to be fixed, or whether they are false alarms. This can cause significant
effort. The key idea of this work is to apply model-based testing to automatically find
test cases for alarms reported by Astrée. When BTC EmbeddedTester R© finds a test case
reproducing the error, it has not only been proven that it is a true error, but users can
directly investigate the situation in a debugger. When no test case reproducing the error
could be found, the interpretation depends on the test model generation: when full test
coverage can be achieved, the absence of the error has been proven. Situations where
no full test coverage was possible, or where the error could not be reproduced in the
given amount of time, have to be manually investigated – but even here the test cover-
age obtained is a valuable feedback for the user. With this coupling the effort for alarm
analysis can be significantly reduced. Preliminary experimental results demonstrate the
viability of our approach.

The article is structured as follows: we introduce the key concepts of static runtime
error analysis in Sec. 2. Sec. 3 gives an overview of model-based testing with a focus on
the concept of C observers which provide the basis for our methodological integration.
The concept to automatically generate test cases for Astrée alarms is explained in Sec. 4.
Experimental results are presented in Sec. 5 and Sec. 6 concludes.

2 Static Runtime Error Analysis

Over the last few years static analyzers based on abstract interpretation have evolved
to be the state of the art for verifying non-functional software properties. A static ana-
lyzer is a software tool which computes information about the software under analysis
without executing it. Abstract interpretation is a semantics-based method for program
analysis which belongs to the formal verification methods. Its results are sound, i.e.,
they are valid for all program runs with all inputs and achieve full data and control
coverage. The soundness of the analysis can be formally proven. Examples of abstract
interpretation based static analyzers are tools to compute safe upper bounds on the
worst-case execution time and the maximal stack usage of tasks [11] and to prove the
absence of runtime errors [15]. Runtime errors like arithmetic overflows, array bound
violations, divisions by zero, and invalid pointer accesses are critical programming er-
rors. They can destroy the data integrity of a program, causing the program to behave
erroneously, or to crash altogether. A well-known example for the possible effects of
runtime errors is the explosion of the Ariane 5 rocket in 1996. The analyzer Astrée [3]
is an abstract interpretation based static runtime error analyzer which finds all potential
runtime errors in C programs, thereby enabling users to prove the absence of runtime
errors [6]. Astrée analyzes structured C programs with the sole restrictions that no dy-
namic memory allocation and no recursion should be used, which is typically the case
for safety-critical applications. The class of errors reported includes out-of-bound array
accesses, erroneous pointer manipulations and dereferencing, integer and floating-point
division by zero, integer and floating point overflows and invalid operations. Astrée

True Error or False Alarm? 87

also detects read accesses to uninitialized variables, detects shared variables accessed
by asynchronous threads and performs a sound value analysis for them, and enables
users to prove user-defined static assertions. The static assertions can be applied to ar-
bitrary C expressions so that functional program properties can be addressed. When
Astrée does not report an assertion failure alarm, the correctness of the asserted expres-
sion has been formally proven. The core of Astrée is a sophisticated analysis engine
which allows to fine-tune the analysis precision to the software under analysis. This
makes very low false alarm rates possible: safety-critical avionics software of several
100,000 lines of C code could be analyzed successfully with Astrée without any false
alarm [4,15].

Since Astrée is based on an abstract semantics of the program there can be false
alarms, i.e. spurious notifications about potential runtime errors which are caused by
the overapproximation inherent to the analysis. False alarms can also be caused by
preconditions that have not been made known to Astrée. Therefore, all alarms have to
be investigated by the developers to determine whether they correspond to true errors
which have to be fixed, or whether they are false alarms. This can cause significant
effort.

2.1 Runtime Errors and Alarms

Runtime errors can occur in situations where the behavior of the C program is unde-
fined, or unspecified according to the C semantics [12]. A notification about a potential
runtime error is termed as Alarm. Astrée distinguishes two main types of alarms:

Type A: alarm about a runtime error which has unpredictable results. The analyzer
reports the alarm and continues the analysis for scenarios where the error does not
occur. For contexts where the error definitely occurs, the analyzer reports a definite
runtime error and stops the analysis as there is no feasible continuation. Examples
are out-of-bound array accesses, or write accesses via dangling pointers.

Type C: alarm about a runtime error which has a predictable outcome. The analyzer
continues the analysis by overapproximating all possible results, including the ef-
fect of the error. Examples are integer overflows, invalid shifts, invalid cast opera-
tions.

The alarm messages displayed in the Astrée GUI possess a well-defined format. It pro-
vides details such as execution context of the alarm scenario, alarm location, type of
alarm and the actual alarm text message. In addition to this, users can also request for
program invariants, i.e., access the value ranges of variables the analyzer has computed
for each specific context. The alarm messages have the following syntax:
(context at filename:line1.column1-line2.column2)+ ALARM(class): alarm message

The context information provides a forward sequence of unfinished function calls
to reach the alarm location, loops encountered in these functions before reaching the
alarm location and disambiguated conditional statements encountered before reaching
the alarm location. The syntax is the following:

call#f@line
function f is called at line line.

88 S. Salvi et al.

loop@line=n/m or loop@line>=m+1
n is the rank of loop iteration and m is the unroll level. The first n iterations of the
loop at line line are unrolled by the analyzer.

if@line=true or if@line=false
if condition at line line is evaluated to true or false resp.

The location information provides start coordinates line1.column1 and end coor-
dinates line2.column2 of the code fragment in the file filename for which the alarm
message is issued. The class is one of the alarm types, i.e., A or C. An example of an
alarm message is shown here:

[call#analysis_wrapper@4 at astree.cfg:4.5-21
loop@17=1/3 at astree.cfg:17.2-25.3
call#fuelratecontroller@23 at astree.cfg:23.4-22
call#IntakeAirflowEstimation@9921 at frc.c:9921.3-26
call#Tab2DS17I2T4169_a@10221 at frc.c:10221.4-21
loop@9554>=2 at frc.c:9554.3-9558.24
ALARM (C): implicit signed int->unsigned char conversion range
[-1, 254] not included in [0, 255] at frc.c:9555.6-16]

The alarm is reported for a potential overflow which occurs in the second or later
iteration of the loop from line 9554 to line 9558 in file frc.c. The lines above describe
the precise call stack traversed to reach the loop in the potential error scenario.

Astrée uses various abstract domains to compute program invariants providing de-
tailed information about the values of variables and the relations between them in every
possible execution context [6]. All computed invariants can be inspected by the users;
depending on the option setting they can be observed either at each statement or in the
beginning of each function, and they can be context-insensitive or context-sensitive. In
the latter case the computed abstract values are shown separately for each execution
context.

Note that Astrée computes an abstract semantics and provides local abstract invari-
ants attached to program points. Thus, in case of a potential runtime error users can
access the alarm message along with its context and the invariants. But it does not pro-
vide a concrete execution trace for the alarm, since each abstract trace represents a set
of concrete execution traces.

3 Model-Based Testing

In this section we give an overview of model-based testing with the example of BTC
EmbeddedTester R© (ET). ET provides an automated test and verification environment
for Simulink/TargetLink and also for handwritten C code. It is capable of perform-
ing various tasks such as automatic test case generation and execution, back-to-back
testing, automatic test analysis, automatic test and coverage reporting, debugging, and
import/export of test cases.

3.1 Test Case Generation

ET can generate input stimuli vectors and test vectors. Input stimuli vectors represent
a set of input values per execution step for a number of execution steps. They can be

True Error or False Alarm? 89

either imported or generated using vector generation engines. ET uses two engines:
the Automatic Test vector Generation engine (ATG) and the Code Verification analysis
engine (CV). ATG is a random engine based on well-tuned heuristics which is fast,
but not complete. If a test goal cannot be reached, it is unclear whether the goal is
unreachable or the engine just could not reach it. In contrast, the CV engine is complete.
It tries to generate vectors by claiming that a certain test goal is unreachable [5]. A
counterexample, if there is one, is provided as a vector, otherwise the goal is proven
unreachable because it uses an exhaustive technique based on symbolic model checking
that checks the full search space. The input stimuli vectors can then be used to generate
test vectors. Test vectors represent a set of input and output values per step. The output
values in a test vector are the expected values. So, when test vectors are generated using
simulation with input stimuli vectors, the output values in them need to be reviewed. ET
also supports back-to-back testing in which case the output values are not required to
be reviewed. Test vectors with expected values can also be imported in ET. ET supports
various kinds of simulations like MIL (model-in-the-loop), SIL (software-in-the-loop)
and PIL (processor-in-the-loop).

3.2 Observer

ET provides the possibility to define evaluation functions (C code) which can be used
to decide if the behaviour of the system under test is correct or invalid. These eval-
uation functions are called observers. Observers are integrated automatically into the
test execution/simulation environment of a system under test by ET. ET generates tests
that cover observers and performs automatic test execution of the system under test in
co-execution/simulation with observers. Observers are used in ET, e.g., for requirement
verification, standard analysis, or additional test (e.g., equivalence class test cases) gen-
eration.

A C-observer (more precisely a commitment observer) is a small C function that
evaluates some property of the system under test. It returns a boolean value indicating
whether the observed property is valid or invalid. C-observer code can check conditions
on interface objects of the system under test, i.e., inputs, outputs, calibration variables
and display variables. An example of an observer is shown here:

/* Observer Evaluation Function */
unsigned char eval_OBS_2_RV_fuel_rate() {

unsigned char evalResult = 1;
if (!(fuel_rate >= 0 && fuel_rate <= 32358))
evalResult = 0;

return evalResult;
}

3.3 Property Location Language – PLL

ET uses the Property Location Language (PLL) for uniquely identifying code properties
(i.e., test cases). For example, to generate input stimuli vectors for a code property the
corresponding PLL expression of the code property has to be provided.

90 S. Salvi et al.

In general, a PLL expression has three parts, identifying code properties relevant
for testing: 1) one or several property classes like Statement (STM), Relation Operator
(RO), Decision (D), Division by 0 (DZ) etc. ; 2) a unique ID of a specific entity of this
property class in the code; 3) a specific property value of this entity. One example is
D:3:1, where “D” denotes the decisions in the code, “3” is the unique ID of a decision
in the code (IDs are automatically generated by ET) and “1” represents the case that
the decision evaluates to true. In case of observers, the PLL expression has two addi-
tional parts in the beginning i.e., in total five parts: it starts with “O:[OBSID]:...”, where
[OBSID] is a unique identifier of an observer. e.g., O:OBS_1:D:3:1.

3.4 Integration of C-Observer in ET

Step1. An observer is defined by a user or it is generated automatically from some
source, e.g., requirement specification.

Step2. Stimuli vectors are generated for the observer. Using the right PLL formulation
to indicate the desired observer test properties is important.

Step3. The generated stimuli vectors are used to generate the corresponding test vec-
tors.

Step4. The ET debugging feature can be used to perform step-by-step debugging and
analysis of the behaviour of the generated vector. Alternatively, in some use cases
like requirement verification, the test vectors are automatically executed. During
test execution, the observer is run in parallel with the system under test and the
return value of the observer is used to check whether the system execution is valid.
The execution is valid when the return value is 1 and invalid when it is 0.

4 Combining the Two Worlds

Our goal is to combine the static analyzer Astrée with BTC EmbeddedTester R© in order
to validate whether an alarm is a true error or a false alarm. The key idea is to automat-
ically transform an alarm reported by Astrée (described in Sec. 2.1) into a C-observer
that can be integrated in ET (described in Sec. 3.2). This transformation includes insert-
ing some code fragments into the source code under test and generating the observer
code that exploits the information provided by the inserted code. The code modifica-
tions are free of side effects and do not interfere with normal program execution. The
integration includes creating an ET profile for the modified version of system under test
and importing the observer into the profile. ET supports generating test vectors from the
observers. This approach can be applied to any category of errors detected by Astrée.
In the following we demonstrate our approach with four exemplary alarm categories.

As already stated in Sec. 2.1, alarm messages contain the precise location of the
code fragment that is responsible for the alarm. The code insertion phase uses the alarm
message and its location information to store the error condition into variables at the
appropriate location. These variables include one flag variable which indicates if the
alarm condition is reachable. Note that the flag variable needs to be global so that it
becomes a part of an interface of the system under test: only then it becomes observable
by ET. The code insertion is explained in detail for each of the four selected alarm
categories in the following subsections. The observer code just consists of checking the

True Error or False Alarm? 91

flag value. If the flag value is true, an error condition has been reached. The observers
are designed to return 0 when the flag value is true. Our generic observer code is shown
in Fig.1.

unsigned char eval_OBS_1() {
unsigned char evalResult = 1;
if (__ET_flag_1 != 0)
evalResult = 0;

return evalResult;
}

Fig. 1. Generic Observer Code

4.1 Division by Zero

The alarm message for divisions by zero is <type> division by zero
[interval], where “type” can be either integer or float. A simple example of an
integer division by zero alarm is shown below.

The location details fuelratecontroller.c:9596.27-9597.66 in the alarm
message provide the code fragment for which the alarm is issued: it extends from col-
umn 27 in line 9596 to column 66 in line 9597. The corresponding code fragment, a
division expression, is highlighted after clicking on the alarm message in the GUI:

We parse the division expression to retrieve its denominator and then generate code
which stores the condition under which the denominator becomes zero into a flag vari-
able. We assume that execution of the denominator expression has no side effects. The
generated assignment is put at the program point just before the division expression
(cf. line 9595 in the above image). The flag variable __ET_flag_1 is then used in an
observer as shown in Fig.1.

4.2 Overflow in Arithmetic

The alarm message for arithmetic overflows of numerical types reads <type>
arithmetic range [interval] not included in [interval].

92 S. Salvi et al.

The two intervals in the message show the actual value range computed for the ex-
pression and the acceptable value range, respectively. Here is an example of an alarm
message on an overflow of an unsigned int.

The message gives the location fuelratecontroller.c:1600.28-1601.53
of the code fragment i.e., the arithmetic expression for which the alarm is issued. The
fragment is highlighted at lines 1600 and 1601 in the image below.

The arithmetic expression is parsed in order to retrieve its operator and the correspond-
ing operands. In this example, it is ’+’ operator. Now we have to check if the operands
can evaluate to such values that when are added to each other they cause an overflow.
The corresponding code is shown in lines 1595-1598 in the above image. Note that the
operands, which may be complex expressions, are stored into variables of type “type”
and it is ensured that the inserted code does not raise the overflow alarm itself. The
code generated for this category of alarm can vary based on the arithmetic operator
(i.e., whether it is + or - etc.), whether it is signed or unsigned arithmetic and whether
the overflow is w.r.t. minimum and/or maximum bound.

4.3 Overflow in Conversion

The third category of alarms is associated with overflows in conversions, i.e., type casts.
The alarm message reads<type1>-><type2> conversion range [inter-
val] not included in [interval]. An expression responsible for this alarm
evaluates to a value of type “type1”. An overflow may occur when a type of an expres-
sion value is converted implicitly or explicitly to type “type2”. This alarm message
shows the range of potential values of the expression before and after conversion in the
first and second interval, respectively. We determine the region of the first interval that
does not overlap with the second interval. The required instrumentation then consists
of storing the expression value into a variable of type “type1” and checking whether
a value of this variable is in the non-overlapping region of the first interval. The check
is put at a location just before the expression that is responsible for an alarm.

4.4 Invalid Dereference

The fourth category of alarms considered is associated with invalid pointer
dereferences: Invalid dereference: dereferencing <value> byte(s)

True Error or False Alarm? 93

at offset(s) <value> may overflow the variable <name> of byte-
size <value>. This alarm is raised when dereferencing a pointer expression that
points to an invalid location, e.g., because it has not been properly initialized. The mes-
sage indicates the offset, expressed in bytes, and the byte size of the dereferenced vari-
able “name”. An example of alarm message is shown below:

and the corresponding code fragment array[n] is highlighted at line 1480 in the
image below:

In the specific case of the pointer dereference in the example message above, array+n
accesses offsets from 34 to 34 + 610 bytes, which exceeds the valid offset range of
[0,612− 2] bytes. To capture the error condition here we have to check whether deref-
erencing array+n would leave the feasible range as shown at lines 1471-1473 and
1478-1479 in the image above. The comparison (array == (const UInt16*)
global_array) is used to identify the correct alarm context. In general the function
f2 containing the code with the alarm is invoked from different call sites with different
parameters. The specific alarm under analysis is for one specific context where f2 is
called with global_array as a parameter. Generating the instrumentation code for
pointer dereferences currently is ongoing work. We plan to use program slicing to ex-
plicitly construct the possibly invalid pointer value and check it for feasibility. Astrée
already provides a program slicer which can be reused for this purpose.

5 Experiments and Practical Experience

We performed experiments to investigate the applicability of our approach with a cou-
ple of control applications: namely, a fuel rate controller from the automotive domain
and a simple flight control system from the avionics domain. The fuel rate controller
is a fixed-point implementation generated by dSPACE TargetLink [9] from a MAT-
LAB/Simulink model and consists of 2837 lines of code. Also the avionics example is
a model-based design; here Esterel SCADE [10] has been used as a code generator. The
implementation consists of 2205 lines of floating-point C code.

Executing an Astrée analysis on each of the two applications provides us with a list
of alarms. The obtained alarms did not include division by zero alarms. Thus, for our

94 S. Salvi et al.

purpose we modified the fuel rate controller code to induce an integer division by zero
alarm and the flight controller code to induce a float division by zero alarm.

In our implementation we have extended Astrée to automatically generate observers
and insert the associated instrumentation code snippets into the source code for each
alarm selected by the user. The implementation is ongoing work: so far we have suc-
cessfully accomplished the automatic handling of division by zero alarms; the support
of overflow alarms currently is restricted to a limited set of C-operators. For the ex-
amples where the implementation is not available yet, we have manually written the
observers and the instrumentation code snippets in the same form as the implementa-
tion shall provide.

The generated observers have been verified with ET. This includes generating the
ET profiles from the instrumented source code, importing the observers into those pro-
files, and generating the stimuli vectors that cover the observer properties. As explained
in Sec. 3.3, a PLL string is used to represent the observer property. In our case, we
are interested in generating a stimuli vector for the trace that demonstrates the actual
alarm condition. This is the case when the flag variable is true, i.e., when the cor-
responding observer returns 0. So, the PLL string that is used during verification is
“O:[OBSID]:V:0”, where “V:0” stands for the return value zero. It is possible that no
vector is generated during stimuli vector generation. This indicates that the specified
code properties are not reachable during any execution. In our case, it means that the
alarm under investigation is a false alarm. Table 1 shows the result of stimuli vector
generation for our observers performed at the highest level of the subsystem hierarchy
of the software under analysis.

In order to ascertain the correctness of the obtained results, we debug the generated
stimuli vectors when the status is covered, whereas we do a manual inspection of the
code when the status is unreachable. ET provides a feature to produce a debugging

Table 1. Stimuli Vector Generation Results: covered - stimuli vector is generated (true error);
unreachable(inf) - stimuli vector is not generated (false alarm)

Alarm
Category

Controller Alarm Message Status

Integer division
by zero

fuel rate ALARM (A): integer division by zero [0, 65535]
at fuelratecontroller.c:9596.27-9597.66

unreachable(inf)

Float division
by zero

flight ALARM (A): float division by zero [0., 10000.]
at ComputePitchRoll_FlightControl.c:512.28-54

covered

Arithmetic
overflow

fuel rate ALARM (C): unsigned long arithmetic range [0,
6516407190] not included in [0, 4294967295] at
fuelratecontroller.c:1600.28-1601.53

unreachable(inf)

Conversion
overflow

fuel rate ALARM (C): implicit signed int->unsigned char
conversion range [-1, 254] not included in [0,
255] at fuelratecontroller.c:9568.6-16

unreachable(inf)

Invalid
dereference

fuel rate ALARM (A): invalid dereference: dereferencing
2 byte(s) at offset(s) 34+2*[0;305] may overflow
the variable PressEst_z_table of byte-size 612 at
fuelratecontroller.c:9449.18-28

covered

True Error or False Alarm? 95

environment directly from the vector. Through debugging it is possible to analyze the
execution trace covered by the vector. In our case, we check if the trace reaches the
alarm condition.

The results show that all alarm categories investigated can be successfully handled
for both input applications.

6 Future Work and Conclusion

In this article, we have presented an approach to automatically classify the alarms pro-
duced by a static analyzer as true errors or false alarms by applying model-based testing
techniques to stimulate appropriate error conditions. We have described the principles
of this interaction between static analysis and model-based testing and have developed
an implementation based on a tool coupling between the static runtime error analyzer
Astrée and the model-based testing tool BTC EmbeddedTester R©. Our approach signifi-
cantly reduces the effort for alarm analysis, i.e., investigating alarms to find out whether
they are true errors which have to be fixed, or whether they are false alarms. As the tool
coupling can run fully automatically it also opens the alarm investigation process to
users with less experience than manual investigation requires. Preliminary experiments
demonstrate the viability of our approach with fixed-point and floating-point applica-
tions from the automotive and aerospace domains. To the best of our knowledge this
is the first successful combination of static analysis and model-based testing to exploit
synergies between these techniques in the V&V process of safety-critical software.

Our future work, in a first step, aims at completing the implementation to handle all
four exemplary alarm categories automatically. In a further step, the mechanism has to
be extended to cover the full set of Astrée alarms. Also further experiments on industry-
relevant applications will be conducted to check how the proposed method scales with
large-scale software projects.

Acknowledgement. The work presented in this paper has been supported by the ITEA2
project TIMMO-2-USE and the EU ARTEMIS Joint Undertaking under grant agree-
ment no. 269335 with the German BMBF (MBAT project).

References

1. AbsInt GmbH. aiT Worst-Case Execution Time Analyzer Website,
http://www.AbsInt.com/ait

2. AbsInt GmbH. StackAnalyzer Website, http://www.AbsInt.com/sa.
3. AbsInt GmbH. Astrée Website, http://www.AbsInt.com/astree.
4. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.: Static

analysis and verification of aerospace software by abstract interpretation. In: AIAA In-
fotech@Aerospace 2010, number AIAA-2010-3385, pp. 1–38. American Institue of Aero-
nautics and Astronautics (April 2010)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

http://www.AbsInt.com/ait
http://www.AbsInt.com/sa
http://www.AbsInt.com/astree

96 S. Salvi et al.

6. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Ri-
val, X.: A Static Analyzer for Large Safety-Critical Software. In: Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation (PLDI
2003), San Diego, California, USA, June 7-14, pp. 196–207. ACM Press (2003)

7. BTC Embedded Systems AG. BTC BTC EmbeddedTester R© Website,
http://www.btc-es.de/index.php?idcatside=2.

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: POPL 1977: Proceedings of the
4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp.
238–252. ACM Press, New York (1977)

9. dSPACE GmbH. TargetLink Website, http://www.dSPACE.com/go/TargetLink
10. Esterel Technologies. SCADE Suite,

http://www.esterel-technologies.com/products/scade-suite
11. Ferdinand, C., Heckmann, R.: Static Memory and Execution Time Analysis of Embedded

Code. SAE 2006 Transactions Journal of Passenger Cars - Electronic and Electrical Sys-
tems 9 (2007)

12. ISO/IEC 9899:1999 (E). Programming languages – C (1999)
13. Kästner, D., Brockmeyer, U., Pister, M., Nenova, S., Bienmüller, T., Dereani, A., Ferdinand,

C.: Combining Model-based Analysis and Testing. In: Embedded Real Time Software and
Systems Congress ERTS2 (2014)

14. Kästner, D., Ferdinand, C.: Proving the Absence of Stack Overflows. In: SAFECOMP 2014:
Proceedings of the 33th International Conference on Computer Safety, Reliability and Secu-
rity (to appear, 2014)

15. Kästner, D., Wilhelm, S., Nenova, S., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné,
A., Rival, X.: Astrée: Proving the Absence of Runtime Errors. In: Embedded Real Time
Software and Systems Congress ERTS2 (2010)

16. Souyris, J., Pavec, E.L., Himbert, G., Jégu, V., Borios, G., Heckmann, R.: Computing the
Worst Case Execution Time of an Avionics Program by Abstract Interpretation. In: Pro-
ceedings of the 5th International Workshop on Worst-case Execution Time (WCET 2005),
Mallorca, Spain, pp. 21–24 (2005)

http://www.btc-es.de/index.php?idcatside=2
http://www.dSPACE.com/go/TargetLink
http://www.esterel-technologies.com/products/scade-suite

Proving Compliance of Implementation Models

to Safety Specifications�

Markus Oertel, Omar Kacimi, and Eckard Böde

OFFIS e.V., Eschwerweg 1, 26121 Oldenburg, Germany
{oertel,kacimi,boede}@offis.de

Abstract. Current safety standards like the ISO 26262 require a con-
tinuous safety argumentation starting from the initial hazard and risk
assessment, down to the implementation of hardware and software. To
enable re-use of components and ease handling of changes in the system,
modular safety cases are addressed by many research projects. Current
approaches are focusing on hierarchical safety specifications describing
the relevant fault propagation behavior. Nevertheless, it needs to be en-
sured that the final implementation meets the safety specification. Cur-
rently, this is at most a manual and error prone process of matching
fault trees or test results to the specification. In this paper, we present
an automated approach based on fault-injection and model checking for
proving the compliance of an implementation to a safety specification. In
our multi-aspect analysis, (safety and functional aspect) we rely on the
popular specification mechanism of safety contracts and implementations
modeled in Matlab/Stateflow.

Keywords: Verification and Validation, Safety Critical Systems, Model-
based Design, Fault-Injection, Fault Modeling, Model Checking, Formal
Methods.

1 Introduction and Related Work

Safety standards like the ISO 26262[8] or the DO178c[17] require a safety case
to argue the absence of unreasonable risk for humans caused by the item to
be developed. The safety concepts that describe the architectural decisions re-
garding the detection and the mitigation of faults are important elements of the
safety case. Starting from a functional safety concept at very early stages of
the system development, this fault propagation specification is further refined
at lower abstraction levels, e.g. the hardware and software implementation level.
If this safety specification and the functional requirements are refined to an ac-
ceptable level, the specification can be implemented in terms of hardware and

� The research leading to these results has received funding from the ARTEMIS
Joint Undertaking under grant agreement n°269335 (MBAT), and the German Fed-
eral Ministry of Education and Research (BMBF) under the funding ID 01IS11019
(SAFE, an ITEA2 Project) and ID 01IS12005M (SPES XT Project).

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 97–107, 2014.
© Springer International Publishing Switzerland 2014

98 M. Oertel, O. Kacimi, and E. Böde

software. Nevertheless, to complete the safety case, an argumentation about the
compliance of the implementation to the requirements needs to be provided.

This is typically done by reviews or testing[6]. Although advances have been
made in the field of automatic testcase generation, testing techniques suffer from
their incompleteness, since only a selection of all possible test-vectors are applied
to the system. To test safety properties, fault injection[20] can be used. Another
possibility consists on comparing existing Fault tree analyzes(FTA) or Failure
modes and effects analyzes (FMEA) with the safety specification. Again, this is
a manual error prone process.

In this paper we present a formal approach allowing to automate the process
of analyzing the compliance of the fault detection and mitigation capabilities
of an implementation with the safety specification. To achieve this, the safety
requirements need to be stated in a formal way. There are multiple formalization
approaches for safety concepts, starting from the very theoretical “function-
structure-models” [5] or the notion of processes and channels [12], which are
both not suitable for production use, since they require a special structural
model. The HipHops approach [15,14] can be applied to development models
like Simulink, but lacks some important features such as timing support. In this
paper we are focusing on the concept of safety contracts [13].

Contracts separate a requirement into assumptions and a promise [2]. The
assumptions specify the required behavior of the environment, while the promise
states the expected functionality provided by the component. This separation
allows to reason about the correct decomposition of requirements [4,7], which
is essential for a modular safety case. The assertions themselves are described
in a formal, pattern-based language, which can be translated to many target
languages such as LTL or timed-automata [1] in order to enable automated
verification .

In addition to a formal specification, we need a technique to analyze the
fault tolerance behavior of a component in a formal way. Approaches such as
[19] verify formalized fault trees against formal implementation models. Furthe-
more, several fault injection analyzes that rely on model checking like [3] and [9]
have been presented. In this paper we focus on a fault injection based-technique
[16], [10] that is called model-based safety analysis MBSA. The MBSA processes
functional requirements and provides complete results as cut-sets and allows to
define custom faulty behavior in the implementation model, which is specified
using Matlab/Stateflow. Cut-sets are unique combinations of malfunctions oc-
currences that can cause a system failure. A cut-set is said to be minimal if no
event can be removed from the set and the combination of malfunctions still
leads to a failure[11].

We introduce safety contracts and the MBSA in section 2. In section 3, we
explain how the MBSA is used to prove the correct implementation of a safety
contract. We apply this procedure to an example in section 4 and finally conclude
the work in section 5 with an outlook on improvements and future research
directions.

Verifying Safety Contracts 99

2 Background

We briefly introduce the pattern language for safety together with the predefined
contract templates as well as the model-based safety analysis.

2.1 Safety Contracts

Safety contracts[13] are a technique for specifying fault propagation. The as-
sumption and the promise of a contract are expressed using safety pattern which
are textual building bricks, with user filled attributes. The most commonly used
pattern describes, that a combination of faults and failures does not occur in
a run of the system. These expression sets may contain one or more faults and
failures.

none of {expr-set1, expr-set2,...} occurs

the LTL semantics of this pattern are defined as:

(G!e1 ∨G!e2) ∧ (G!e3 ∨G!e4),

with expr set1 = {e1, e2} and expr set2 = {e3, e4}. I.e., that in every expr-set
one fault occurs at most. The fault are generally assumed to be independent, but
dependence between them can be separately specified. There exists a abbreviated
pattern which just considers a single expression-set, with identical semantics as
described above:

{expr-set} does not occur

In a top-down approach the faults are typically expected defects in functions
selected by experts. If they are refined to a particular level it needs to be shown
that the selected hardware and software component match the expectations. In
a bottom-up approach, the potential malfunctions of a component can be found
in the safety manual or identified by techniques like FMEA.

Patterns are formally defined on traces, i.e. system runs with an evolution
over its variables [7]. Hence, a requirement pattern restricts the possible runs
of a system. Pattern 1 and its derived Pattern 2 state that only system runs in
which the combination of malfunctions (stated in the expression sets) is absent
are accepted.

Oertel et.al [13] presented several contract templates that can be used to
describe typical safety concepts. In this work we focus on the most commonly
used templates that we want to connect to implementation models. The basic
template is depicted in contract C1 that describes the propagation of input and
internal faults (mf in the assumption) to a failure at the level of one of the
component’s outputs.

C1

A: none of {{mf 11 ...,mf 1n},..., {mf n1 ...,mf nm}}
occurs.

P: {output mf} does not occur.

100 M. Oertel, O. Kacimi, and E. Böde

Safety contracts are able to express the degradation of a system as required
by the ISO 26262, i.e. switching to a safe-state. This safe-state is expressed in
functional terms (e.g. functional variables need to be in a defined range), and is
therefore just considered as an identifier in safety contracts. Contract template
C2 is using this mechanisms to state, that a system is either operating normally
or that it is in a safe-state, if the combination of malfunctions in the assumption
is not present.

C2

A: none of {{mf 11 ..., mf 1n},..., {mf n1 ...,mf nm}}
occurs.

P: {output fail and !safestate} does not occur.

This contract implies that there is never a situation in which a wrong output is
present in the absence of the safe-state. This timing behaviour might be correct
for safety concepts using multi-channel architectures and voting, but it is not
correct in case malfunctions are detected by periodic tests. Therefore the perm

operator has been introduced, leading to an additional contract template C3

C3

A: none of {{mf 11 ..., mf 1n},..., {mf n1 ...,mf nm}}
occurs.

P: {perm(output fail and !safestate)} does not occur.

In terms of LTL, perm is just a “globally” operator. This contract tem-
plate guarantees, that the system is not permanently failing, without eventually
switching to a safe-state. i.e., finally the safe-state will be established.

2.2 The Model-Based Safety Analysis

The MBSA [16] performs fault injection in a model of the system’s nominal be-
havior. The correctness of this model can be checked with typical model checking
techniques against the functional requirements. The MBSA can be used to au-
tomatically assess which combinations of malfunctions lead to the violation of a
selected functional requirement. The resulting cut-sets (of malfunctions) can be
represented as a fault-tree. The analysis currently supports nominal behavioral
models formalized in Matlab/Stateflow1 while requirements are provided in a
formal language called RSL [1] to enable automatic processing.

The faults to be injected can have different types specified in a library. This
library defines the deviation of a variable in the implementation model from its
intended value. Commonly used deviations are:

Stuck-at: this pattern describes the case an internal variable of the system
model is stuck at an erroneous value.
Random: this pattern is used to describe cases in which random changes to the
value of an internal variable occur.
User defined: This pattern is used in case the desired fault behavior can’t be
modeled using the fault library. The pattern allows then the custom modeling of
this fault behavior in the same language of the implementation model. Accord-
ingly, the fault is not injected later in the process in the nominal model but it

1 http://www.mathworks.de/products/simulink/

http://www.mathworks.de/products/simulink/

Verifying Safety Contracts 101

is rather embedded in the nominal model. Additional input variables are then
added to the model to control the activation of the injected fault.

The current implementation supports two analysis engines as a backend. The
first one is based on the VIS model checker 2. The VIS based backend guarantees
complete results since the full state space is checked. The monte-carlo simulation
based engine can be used to cope with models that are more challenging in terms
of the state space size. In this case however, the completeness is not guaranteed
anymore. In the present work, we use the VIS based engine.

At runtime, the nominal model is injected with the faults. Additionally, an
observer automaton for the analyzed requirement is generated and injected in
the model. The resulting overall model is finally translated to the VIS format
and passed to the model checker. The analysis identifies all state sequences
leading from the set of initial system states over the activation of faults to the
observation of the violation of the functional requirement. These paths are the
basis for computing the set of minimal cut-sets leading to the failure.

For convenience, we will refer from now on to the MBSA as a function with
three arguments: an Implementation I and a set of faults F and the functional
requirement r that the system shall implement. Each fault f ∈ F is a tuple
(id, fm) consisting of a name of the fault (id) and a formal description of the
deviation the fault causes. The result is a set C of fault combinations leading to
the violation of r.

MBSA(r, I, F) = C ⊆ P(F),

with P denoting the powerset.

3 Verifying Safety Contracts Using the MBSA

The safety contracts specify the propagation of faults in the system, addressing
the correctness of a signal. In contrast, functional specifications are concerned
about the occurrence and order of signals. While the incorrectness of an output
signal with respect to internal faults of a component can be expressed in func-
tional terms (e.g. that a calculation does not deliver the expected result) the
combination of input faults and internal faults cannot be put in the functional
context of a component, since the propagating correctness refers to signals and
calculations outside of the scope of a single component.

Nevertheless, the safety mechanisms themselves are described in a functional
way. E.g., “a watchdog is periodically sending a signal to a component. After a
timeout a default value is used to override the components output”. Still, this
description is not talking about malfunctions in any way.

The MBSA is a multi-aspect analysis, since it analyzes a functional imple-
mentation model and injects faults, described in the safety aspect. Figure 1
describes the principal relation between a safety contract, the malfunctions of a
system and the result of the MBSA on the example of a simple fault propagation
contract C1.

2 http://vlsi.colorado.edu/~vis/

http://vlsi.colorado.edu/~vis/

102 M. Oertel, O. Kacimi, and E. Böde

Input Fault FailureInternal
Fault

violates

Safety Contract

Assumption:
 Combinations of Faults
 does not occur
Promise:
 Failure does not occur

Functional
Requirement Top Level

Event

Assumes
 combinations

 of faults

elements of

Component

Fault Tree Analysis of Im
plem

entation

Cut-Set Cut-Set

non occurrence of

needs to correspond to

Fig. 1. Relation of a Safety Contract to an FTA results

C1

A: none of {{mf 11 ...,mf 1n},..., {mf n1 ...,mf nm}}
occurs.

P: {output mf} does not occur.

The assumption of a safety contract specifies the combination of malfunctions
that potentially leads to a wrong output which is described in the promise.
If the output of a component C is wrong, this means that the requirement r
describing the expected value is violated. r is passed to the MBSA, together with
all malfunctions f ∈ F that might occur in a component. The resulting cut-sets
of the MBSA need to comply with the assumptions of the safety contract Cass:

MBSA(r, I, F) ⊆ Cass

The MBSA is not capable of injecting input faults, i.e. a wrong signal that is
propagating to this component. Restricting the input variables would potentially
only reduce the cut-sets, not enlarge them. I.e., the model checker evaluates less
paths in the state-space of the system. In order to provide a possibility to identify
an input signal as faulty, the intended value must be known. Therefore, we extend
the model with an additional component that simulates the input malfunction
by an internal malfunction.

Original ComponentExtended
Component

Input
MF

Int.
MF

Fig. 2. Extending the system model to represent input malfunctions

Safety contracts describing safety mechanisms (see Contract C2) can include
a reference to the safe-state of the system.

Verifying Safety Contracts 103

C2

A: none of {{mf 11 ..., mf 1n},..., {mf n1 ...,mf nm}}
occurs.

P: {output fail and !safestate} does not occur.

The safestate is a placeholder in the safety specification, since the safe-state
is a functional state of the system. E.g. the safe-state for an engine cooling sys-
tem is the maximum fan speed to avoid that the engine overheats. To be able
to check the safety contract with the MBSA, we need to provide a functional
requirement, that uses this functional representation of the safe-state (safes-
tate fun). For contract C2 the requirement r that is passed to the MBSA is:

r = G(fr(output fail) ∨ safestate fun),

where fr(output fail) is the functional requirement that the failure is violating.
The cut-sets returned by the MBSA for the specified requirement specify cases
in which neither the correct value is calculated, nor the safe-state is set.

An additional feature of safety contracts is the possibility to represent time in
the safety concept. Contract C3 uses the perm operator to indicate that finally
the wrong output will be detected and a safe-state will be established.

C3

A: none of {{mf 11 ..., mf 1n},..., {mf n1 ...,mf nm}}
occurs.

P: {perm(output fail and !safestate)} does not occur.

It may be sufficient for an abstract safety concept to specify that the wrong
result is not permanently in the system, however, for a concrete implementation
it is necessary to specify a time bound. This time bound, the Fault Tolerant
Time Interval specifies the maximum time between the occurrence of the fault
and the attainability of the safe-state. Hence, the requirement statement to be
checked by the MBSA is, informally:

whenever failure occurs then (safestate or !failure)
occurs within the FTTI

The semantics of this requirement are depicted in the observer automaton in
figure 3.

0

!f

1
f && !safestate/cnt=0

safestate

!safestate/cnt++

fail
cnt==bound

Fig. 3. Automaton for Perm with a given Bound

4 Example

We demonstrate the check of safety contracts using the MBSA on a highly
simplified light manager system of a road vehicle. The purpose of this system is
to decide on an analog environment light signal (aLightIn1) if the front light of
the vehicle shall be switched on. The system has one potential hazard: switching

104 M. Oertel, O. Kacimi, and E. Böde

Command

Monitor

Override

aLightIn2

aLightIn1

lightDecSys

valid

lightDecCmd

Fig. 4. Architecture of the Light Manager System

off the lights while driving in the dark. This hazard has been discovered and
classified by the regular Hazard and Risk Analysis (HARA) of the ISO 26262. To
prevent the hazard a redundant architecture is used (see Figure 4). The command
component computes the switching decision (lightDecCmd) and communicates it
to a Monitor and a Override component. The Monitor independently computes
a switching decision based on a redundant analog environment light signal. If
the computed value deviates from the one coming from the Command unit, the
valid signal is set to false. In this case, either one component is dysfunctional or
one of the input signals is not correct. Accordingly, The Override establishes
the safe-state. The safe-state for this system is lightDecSys==1 i.e. that it is
recommended to turn on the light.

The safety contract for the complete system (see C4) guarantee that the
system will create a correct output or is in the safe-state, if there is only one
malfunction in the system.

C4
A: {more than 1 malfunction} does not occur.

P: {lightDecSys fail and !SafeState} does not occur.

more than 1 malfunction is a textual macro that can be used to avoid typing
all double cut-sets of the identified faults of the system (which are depicted in
table 1.

This top level requirement is split up into three contracts belonging to the
sub-components of the system. The Command component delivers a correct output
if the input is correct and the command itself does not fail. This behaviour is
represented by Contract C5.

C5
A: none of {{aLightIn1 fail},{command fail}} occurs.

P: {lightDecCmd fail} does not occur.

The valid signal of the Monitor is correct if the input is correct and the monitor
itself does not fail (see contract C6

C6
A: none of {{aLightIn2 fail},{monitor fail}} occurs.

P: {valid fail} does not occur.

The Override component fails only in establishing the safe-state or delivering a
correct output if both, the valid signal and the output of the Command are wrong.

C7
A: none of {{valid fail, lightDecCmd fail}} occurs.

P: {lightDecSys fail AND !SafeState} does not occur.

Verifying Safety Contracts 105

Table 1. Malfunctions and Functional Requirements of the Automatic Light Manager

Malfunction Violated Functional Requirement / Unintended Behaviour
aLightIn1 fault in1 stuck at 0
aLightIn2 fault in 2 stuck at 0
command fault cmd out random
lightDecCmd fail command shall determine if the light should be switched on according to

the sensed environment light
monitor fault valid random
valid fail monitor shall calculate if the light shall be switched on and compare the

results with the value calculated by the command unit. If they differ, set
valid to false

lightDecSys fail
(override view)

if valid is true, pass through lightDecCmd out, otherwise return 1 as light-
DecSys.

lightDecSys fail
(top level view)

The component shall calculate if the front lights need to be switched on,
according to the environment light situation.

Table 1 lists all malfunctions in the system. For internal or input malfunctions
the corresponding faulty behaviour is represented in a monospaced font.

We can now check e.g. the safety contract C5 against the implementation of
the Command component. The Stateflow model is depicted in figure 5. It consists
out of two states and calculates the light recommendation based on the analog
input value. If the input is greater than two the output will be set to true,
otherwise to false. This easy one-step calculation as been chosen to keep the
example simple, more complicated and timed executions are not restricted by
the approach.

inIsFalse
entry:out_cmd=false;

inIsTrue
entry:out_cmd=true;

2[aLightIn1>2]1

[aLightIn1<=2]

[aLightIn1>2]

Fig. 5. Stateflow model of the command

Now, the requirement for the MBSA needs to be generated. The Command

component has the formalized requirement rcmd.

rcmd = G(((aLightIn1 > 2) → (lightDecCmd == 1))

&&((aLightIn1 ≤ 2) → (lightDecCmd == 0)))

Running the MBSA, we obtain the following results:

MBSA(rcmd, Icmd, {(aLightIn1 fault, stuck-at), (command fault, random)})
= {{aLightIn1 fault}, {command fault}}

The resulting cut-sets are identical to the assumption of contract C5, the
implementation is compliant to the contract.

This component did not include any safety mechanisms. As an example for
a more complex system, we perform the same steps again on contract C4 for
the complete light manager. The requirement rtop of the top level component is

106 M. Oertel, O. Kacimi, and E. Böde

nearly identical to the one of the command, in addition the safe-state (lightDec-
Sys==1) is a valid output.

rtop = ((aLightIn1 > 2) → (lightDecSys == 1))

&&((aLightIn1 <= 2) → (lightDecSys == 0))

‖(lightDecSys== 1)

It is not surprising that the requirement is very similar, since the functionality
of the command is the base functionality of the whole system, the additional
components (monitor and override) have been only added to gain a certain level
of fault tolerance. Therefore we do not need to consider in 2 in the description
of the functionality, since its only purpose is redundancy. Running the MBSA,
we get the following results:

MBSA(rtop, ISystem, {//all faults from table 1//}) =
{{aLightIn1 fault, aLightIn2 fault}, {aLightIn2 fault, monitor fault},

{aLightIn1 fault, command fault}, {aLightIn1 fault, monitor fault},
{aLightIn2 fault, command fault}{monitor fault, command fault}}

Since no single cut-set has been identified, the top level contract has been
respected.

5 Conclusion

We have presented an approach to prove the compliance of an implementation to
a safety specification. Our approach currently supports Matlab/Stateflow mod-
els. The safety properties are specified using safety contracts. Therefore, a safety
view of a system can be built, which allows to reason about the correct refinement
of safety requirements (by using virtual integration techniques for contracts) and
an correct fulfillment of these requirements by an implementation. This reduces
verification effort, since integration tests can be replaced to a certain extent.

The use of model checking makes the approach prone to the state-space ex-
plosion problem. Nevertheless, we are able to check realistic functional safety
concepts (braking system example from the ARP 4761 [18]) within minutes. A
more detailed benchmarking still needs to be performed. Furthermore we are
restricted to discrete time, which is a limitation introduced by the stateflow
semantics and the LTL-based backend.

Although the majority of safety concept is can already be analyzed with our
approach, we plan to cover the remaining language constructs in the pattern
language of the safety contracts. On a larger time scale we plan to integrate also
stochastical safety specifications in the approach, verifying if the implementation
behaves es expected w.r.t quantified faults.

References

1. Baumgart, A., Böde, E., Büker, M., Damm, W., Ehmen, G., Gezgin, T., Henkler,
S., Hungar, H., Josko, B., Oertel, M., Peikenkamp, T., Reinkemeier, P., Stierand,
I., Weber, R.: Architecture modeling. Tech. rep., OFFIS (March 2011)

Verifying Safety Contracts 107

2. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., baptiste Raclet, J.,
Reinkemeier, P., Sangiovanni-vincentelli, A., Damm, W., Henzinger, T., Larsen,
K.: Contracts for systems design. Tech. rep., Research Centre Rennes – Bretagne
Atlantique (2012)

3. Bozzano, M., Villafiorita, A.: Improving system reliability via model checking:
The FSAP/NuSMV-SA safety analysis platform. In: Anderson, S., Felici, M.,
Littlewood, B. (eds.) SAFECOMP 2003. LNCS, vol. 2788, pp. 49–62. Springer,
Heidelberg (2003)

4. Damm, W., Hungar, H., Josko, B., Peikenkamp, T., Stierand, I.: Using contract-
based component specifications for virtual integration testing and architecture de-
sign. In: Design, Automation Test in Europe Conference Exhibition (2011)

5. Echtle, K.: Fehlertoleranzverfahren. Springer (1990)
6. Ellims, M., Bridges, J., Ince, D.: The economics of unit testing. Empirical Software
Engineering 11(1), 5–31 (2006)

7. Hungar, H.: Compositionality with strong assumptions. In: Nordic Workshop on
Programming Theory (November 2011)

8. ISO: Road Vehicles - Functional Safety. International Standard Organization, iSO
26262 (November 2011)

9. Joshi, A., Heimdahl, M.P.E.: Model-based safety analysis of simulink models using
SCADE design verifier. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP
2005. LNCS, vol. 3688, pp. 122–135. Springer, Heidelberg (2005)

10. Kacimi, O., Ellen, C., Oertel, M., Sojka, D.: Creating a reference technology plat-
form: Performing model-based safety analysis in an heterogeneous development
environment. In: Proceedings of the MODELSWARD Conference (2014)

11. Kececioglu, D.: Reliability engineering handbook, vol. i. PTR Prentice Hall, En-
glewood Cliffs (1991)

12. Lamport, L., Merz, S.: Specifying and verifying fault-tolerant systems. In: Lang-
maack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994.
LNCS, vol. 863, pp. 41–76. Springer, Heidelberg (1994)

13. Oertel, M., Mahdi, A., Böde, E., Rettberg, A.: Contract-based safety: Specification
and application guidelines. In: Proceedings of the 1st International Workshop on
Emerging Ideas and Trends in Engineering of Cyber-Physical Systems (2014)

14. Papadopoulos, Y., Maruhn, M.: Model-based synthesis of fault trees from matlab-
simulink models. In: International Conference on Dependable Systems and Net-
works, DSN 2001, pp. 77–82 (2001)

15. Papadopoulos, Y., McDermid, J.A.: Hierarchically performed hazard origin and
propagation studies. In: Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP
1999. LNCS, vol. 1698, pp. 139–152. Springer, Heidelberg (1999)

16. Peikenkamp, T., Cavallo, A., Valacca, L., Böde, E., Pretzer, M., Hahn, E.M.: To-
wards a unified model-based safety assessment. In: Górski, J. (ed.) SAFECOMP
2006. LNCS, vol. 4166, pp. 275–288. Springer, Heidelberg (2006)

17. RTCA: DO-178C: Software Considerations in Airborne Systems and Equipment
Certification. Radio Technical Commission for Aeronautics (RTCA) (2011)

18. SAE: ARP4761: Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment (1996)

19. Schäfer, A.: Combining real-time model-checking and fault tree analysis. In:
Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, Springer,
Heidelberg (2003)

20. Svenningsson, R., Vinter, J., Eriksson, H., Törngren, M.: MODIFI: A MODel-
Implemented Fault Injection Tool. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS,
vol. 6351, pp. 210–222. Springer, Heidelberg (2010)

MTBF Inconsistency Analysis on Inferred

Product Breakdown Structures

Christian Ellen, Martin Böschen, and Thomas Peikenkamp

OFFIS - Institute for Information Technology
Escherweg 2,26121 Oldenburg, Germany
{ellen,boeschen,peikenkamp}@offis.de

Abstract. This article describes our current work on the combination
of an ontology-based knowledge representation and formal analysis pro-
cedures. We use formalized system engineering knowledge and partial
architectural information (induced by a set of requirements) to formal-
ize natural language requirements and to identify inconsistencies based
on this formalization. Our analysis combines requirements specified by
patterns and an ontology-based product breakdown structure. As an ex-
ample, we identify inconsistencies between Mean Time Between Failure
(MTBF) specifications of systems and their subsystems.

Keywords: MTBF Analysis, Ontology, Requirements Engineering,
Verification.

1 Introduction

In system design, using natural language requirements is the most common way
for people to express their needs and there are good reasons for that: Compared
with the modeling formalisms used in industry today, natural language is more
expressive, thus allowing an efficient and comprehensive capturing of the prob-
lem. An additional benefit is that requirement engineers do not have to learn a
new specification mechanism or — even worse — have to learn several of them
including their usually non-trivial relationships. The major drawback of natural
language requirements is their ambiguity which has two important negative con-
sequences: First, the risk of misinterpretation of the needs of the users expressed
by these requirements. This risk increases when the requirements are refined
and may lead to expensive design iterations. Second, the inconsistencies in (the
original or refined) requirements are difficult to detect not only because of the
aforementioned ambiguity, but also because even trivial inconsistencies can only
be detected by humans.

In this article we present current work done in the CRYSTAL Project1 where
we use information from three sources to disambiguate and analyze requirements:

1. Information defined by physical laws and/or agreed rules to determine typical
system parameters (like the MTBF)

1 http://www.crystal-artemis.eu/

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 108–118, 2014.
c© Springer International Publishing Switzerland 2014

http://www.crystal-artemis.eu/

MTBF Inconsistency Analysis 109

2. Ontological knowledge about the domain or the system under construction
3. Information extracted from the requirement text itself.

We present a simple example in this article in which information is provided
as follows: For (1) we use the classical equation to determine a system MTBF
out of the component MTBFs. More precisely, we analyze if the required Mean
Time Between Failures (MTBF) and Mean time to Repair (MTTR) values of
parent systems and their subsystems are consistent. For (2), the example shows
how to extract information about the system structure and how to organize it
in an ontology-like structure called Product Breakdown Structure (PBS). Such
information is typically present in structural models available in many industrial
contexts. In our example we show moreover, how this information can also be
extracted from the requirement text itself. For (3) we show how to use a set of
boilerplates or patterns[4], which force a certain structure on requirements, re-
sembling the structure of the natural language text. This similarity can be used
to perform on-the-fly analysis of natural language requirements. In the CRYS-
TAL project, the Requirements Authoring Tool from the Reuse Company[12] is
used for this step. While entering a new requirement, it guides the requirement
engineer to the best boilerplate by making suggestions. The boilerplates used in
the example are equipped with a formal, trace-based semantical model, which
allows formal analysis methods to be applied. This approach has been investi-
gated for example within the CESAR project [11] and is starting to get tool
support [3] as well as some industrial acceptance.

Although we are using an existing technical infrastructure, the overall ap-
proach is independent to any tool or format and can be tailored to different
ontology formats, like OWL[5] or RSHP[8].

The rest of the article is structured as follows: Section 2 introduces the PBS
as our main ontology structure and Section 3 outlines the specification of MTBF
requirements as well as methods to identify inconsistencies. The article concludes
with Section 4.

2 Product Breakdown Structure

In the early requirements elicitation phase, a detailed component model of the
system with interfaces and interconnection may not be available. But for the
initial specification of MTBF a very abstract view of the system and of its
subsystems is already enough. This abstract representation of the system is called
the product breakdown structure (PBS). In the following, we use a very simple
ontology, defined along the lines of [1].

2.1 Definitions

A formal definition of the ontology structure used in a PBS is provided by
Definition 1. It defines the elements of a PBS by using standard ontology terms
like concepts and relations[5].

110 C. Ellen, M. Böschen, and T. Peikenkamp

Definition 1. PBS A PBS is an ontology S = {C, Ctype,
part−→,

is a−→,
con←→} , s.t.:

– c1, c2 ∈ C are concepts denoting system and subsystem elements,
– t1, t2 ∈ Ctype are concepts denoting types of system elements,

–
part−→: defines pairwise relationships c1

part−→ c2 between two system elements
denoting their direct hierarchical relationship,

–
is a−→: defines pairwise relationships c1

is a−→ t1 between a system element and
a type,

–
con←→: defines pairwise relationships c1

con←→ c2 denoting the existence of a
connection between c1 and c2

In the following, we use the short form Ctype(c) to represent the set of all

t ∈ Ctype for which c
is a−→ t is defined within the PBS ontology.

A PBS is a reduced component model which defines some of the system ele-
ments and parts of their decomposition hierarchy into subsystems. Such a simple
view is available even in early stages of the development process and can be re-
fined during further development. For example in early stages of the design of a
car breaking system, the fact that it will at least consists of different actuators,
a breaking pedal and a computational ABS unit can be used as a first PBS. This
PBS can be refined if more detailed information of the system becomes available,
like the different types of actuators used.

Therefore, the PBS also includes a weak typing of systems and subsystems
by allowing, but not requiring, the definition of an is a relationship between a
system and a type. By using this concept it is for example possible to express
that a refined disc brake system is an actuator of the braking system. A PBS
may also include information about the connection between systems. In fact, it
is not limited to the concepts and relations of Def. 1. The PBS ontology can be
extended with any additional knowledge of the system.

To avoid inconsistent structures, e.g. in the hierarchy of the elements, some
additional constraints have to be met:

Definition 2. PBS Consistency A PBS S is consistent, iff for all c1, c2 ∈ C:

– C ∩ Ctype = ∅
–

part−→ induces a forest of directed tree

–
is a−→ induces a directed acyclic graph

–
con←→ is symmetric

These simple constraints can be checked by an ontology reasoner (e.g. Her-
miT2).

An example of a PBS is shown in Figure 1. It shows a braking system, which
consists of a pedal, an ABS-Controller and a brake actuator. The ABS-Controller
can be further divided into two ABS-Systems, which are redundant for safety
reasons, and a voter, which compares their output values.

2 http://hermit-reasoner.com/

http://hermit-reasoner.com/

MTBF Inconsistency Analysis 111

ABS1 ABS2

VoterPedal

Braking System

ABS-Controller

Brake-Actuator
Redundant ABS

Fig. 1. Example PBS of a car braking system and the decomposition of its ABS-
Controller

Using the concepts of Definition 1, the set of components for the braking
system is: C = { Braking System, Pedal, ABS-Controller, Brake-Actuator}. Fur-
thermore, we have the following relations:

Pedal
part−→ Braking System

Brake-Actuator
part−→ Braking System

ABS-Controller
con←→ Pedal

ABS-Controller
con←→ Brake-Actuator

2.2 Creation of the PBS

The PBS can be created by using different means, like a component modeling
tool (e.g. Papyrus for EAST-ADL3). The downside of this approach is that the
usage of a dedicated modeling tool may introduce additional constraints or the
need to specify not yet available information. This requires design decisions
which reduce the freedom for design space exploration in later stages of the
development process.

As we defined the PBS as an ontology, a more natural option is to use an
ontology-editor like Protégé. It is a very generic tool that doesn’t force a specific
methodology. Missing information is assumed to be not modeled yet, it is not
interpreted as not existent.

Finally, another option is to derive the PBS knowledge directly from the
current set of already defined requirements. The inferred information may not
be as accurate and complete as an explicit model, but can be sufficient for early
analysis activities in cases where no explicit model is available.

In this article, we present the third approach, which uses only the informa-
tion in the requirements to create the PBS. A PBS can be generated in several

3 http://www.papyrusuml.org

http://www.papyrusuml.org

112 C. Ellen, M. Böschen, and T. Peikenkamp

steps, which are outlined as followed. First we extract all components from the
requirement. A domain ontology can help to identify notions like system com-
ponents. The outcome of this step is a list of components of the system. In a
second step, the relations between these components will be extracted. Natu-
ral language processing techniques can be used to extract these relations. The
following table shows some examples:

Table 1. Natural language requirements and extracted relations

Requirement Extracted relation

The pedal of the brake pedal
part−→ brake

If the Braking System controller outputs .. controller
part−→ Braking system

The pedal sends its signal to the controller controller
con←→ pedal

The signals of the control unit will be processed in
the voter

control unit
con←→ voter

2.3 Incompleteness

With the definitions we have so far, it is already possible to perform a first anal-
ysis. One example is to check the requirements for completeness. We won’t go
into a philosophical discussion what completeness means, but rather take a prac-
tical approach and search for indications of incompleteness. This is a common
approach for analyzing requirements for completeness [11]. The motivation is,
that it is hard to define completeness in an ontology which only captures parts of
a system architecture. Therefore, we only try to identify incomplete structures.
For example, a connection between two components c1

con←→ c2 (i.e. c1
con←→ c2)

induces the fact that they are part of a higher level component. If such a system
is not specified, this is an indication of incompleteness within the specification.
This motivates our next definition:

Definition 3. PBS Incompleteness (Ancestor) A PBS is ancestor-incomplete if

there exists c1, c2 ∈ C s.t. c1
con←→ c2 and c1 and c2 have no common

part−→-ancestor.

3 Analysis

The mean time between failures (MTBF) is an important concept in the develop-
ment of safety critical systems [2]. It describes the mean time between the begin-
ning of the up-time of a system to the beginning of the next unplanned downtime
due to a failure. In this section we will discuss, how MTBF requirements can
be specified using simple patterns and how an early consistency analysis may
be applied to this requirements by using the partial architectural information
provided by the PBS.

Some standards like the ISO26262 [6] use the concept of failures in time (FIT)
rather than MTBF and there are other important safety measures, e.g. mean

MTBF Inconsistency Analysis 113

time to failure (MTTF). In this article, we use the MTBF calculations as an
example. In addition, there are many valid means to estimate the MTBF and
compute the composition of systems in the literature (e.g. [2]) or more practical
by engineers (e.g. [7]). Here, we use one rather simple way and provide the
necessary assumptions. Formally the MTBF can be defined as:

MTBF =

∫ ∞

0

tf(t)dt

Here, f(t) denotes the failure probability density function which describes the
probability of an component-failure at time t.

For a simplified computation of the MTBF compositions, we apply some as-
sumptions. The first assumption is that for the consistency analysis all occur-
rences of failures are independent. This assumption is motivated by the fact
that the consistency of the MTBF specification is evaluated purely on the PBS
structure and that no information on failure dependencies is available. The com-
putations can be adapted if such information is available. The second assumption
is that f(t) is instantiated by an exponential distribution, i.e. f(t) = λe−λt, with
a constant failure rate λ. This assumption is typical, if only the “useful life pe-
riod” of a component according to the so called “bathtube”[2] distribution is
relevant. By using this assumption the MTBF is given by 1

λ .

3.1 MTBF Pattern

Similar to a boilerplate, a pattern defines a textual structure of a requirement
to support the requirements engineer to write unified requirements. A pattern
is more restrictive than a boilerplate because it not only defines a textual base
structure with open parameters, but restricts the instantiation of the parameters
to specific syntax [4,9]. This allows a strict formal interpretation of a pattern.
In this case the pattern to define a requirement on the MTBF of components
expects two parameters: C′ ⊆ C a subset of components for which the MTBF
shall be defined and Θ ∈ T a time value from the current time domain. This
pattern is defined in Table 2.

The formal semantics of the pattern defines the minimum MTBF values for
any component c ∈ C′ as entry in the partial function MTBFp : C ∪ Ctype � T .
The function is only partially defined, because not all elements of the PBS may
have a MTBF definition. It defines for a subset of PBS conceptsDef(MTBFp) ⊆
C ∪ Ctype a MTBF value from the time domain which is lower bounded by the
Θ value of a requirement.

The pattern No. 1 can be used to specify the minimal MTBF for a single
component as well as for a group of components, which shall have the same
MTBF. The second pattern (Table 3) defines the MTBF for a specific type of
component. Its semantics are that every instance c ∈ C within the PBS which
is of one of the types t ∈ C′

type ⊆ Ctype has to have at least an MTBF of Θ.
Both patterns are explicitly naming components or types. Therefore, they can
be linked to existing components or types in the PBS or can be used to infer
new elements of the ontology.

114 C. Ellen, M. Böschen, and T. Peikenkamp

Table 2. MTBF Pattern No. 1

Structure The MTBF of C′ shall be at least Θ

Meaning The pattern specifies a lower bound Θ on the MTBF of the compo-
nents listed in the set C′.

Intuition With this pattern a requirement engineer can directly specify the
target MTBF for a single component of the PBS, as well as, for a
set of components which shall have the same target MTBF.

Example The MTBF of {BrakingSystem} shall be at least 16.605h
The MTBF of {ABS1, ABS2} shall be at least 20.000h

Formal
semantic ∀c ∈ C′ :MTBFp(c) ≥ Θ

Table 3. MTBF Pattern No. 2

Structure The MTBF of each C′
type shall be at least Θ

Meaning The pattern specifies a lower bound Θ on the MTBF of all instances
within the PBS of the component types listed in the set Ctype.

Intuition With this pattern, a requirement engineer can directly specify the
target MTBF of a component type. The requirement is applied to

each instance defined by
is a−→ within the PBS.

Example The MTBF of each {brake-actuator} shall be at least

16.000h

Formal
semantic ∀t ∈ C′

type,∀c ∈ C, Ctype(c) = t :MTBFp(c) ≥ Θ

An MTBF specification is considered inconsistent with the typing of a PBS,
if there is an entry defined in the partial function MTBFp s.t. the type requires
a higher MTBF value than an instance of the type:

Definition 4. MTBF Inconsistency (typing) A partial function MTBFp is in-
consistent for a consistent PBS S, iff there exists a c ∈ C, with c ∈ Def(MTBFp)
∧ Ctype(c) �= ∅, s.t:

MTBFp(c) < max
t∈Ctype(c)

(MTBFp(t))

Such inconsistencies may arise during the requirement elicitation phase and
can be identified using the (implicit) PBS structure.

The MTBF information specified using both patterns can be combined to
a single function MTBF : C → T . The function uses ⊥ as a special symbol
denoting that no MTBF specification is provided for a PBS component:

MTBF Inconsistency Analysis 115

MTBF (c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

MTBFp(c) if c ∈ Def(MTBFp)

maxt∈Ctype(c)(MTBFp(t)) if c /∈ Def(MTBFp)

and Ctype(c) �= ∅
⊥ else

(1)

This function assigns an MTBF value to every PBS component instance and
resolves the MTBFp specifications of the type by giving precedence to directly
specified MTBF values over values derived from the types of a component. If
MTBFp is consistent, MTBF will return the value of the hardest (highest)
applying MTBF requirement or ⊥. The function can be used to analyze further
sources of inconsistencies between the specification and the PBS structure. The
most interesting one is the correct relation of the MTBF values defined on a
parent component to the specification of its sub-components. The combination
of the MTBF values of the sub-components must at least match the required
MTBF of the parent component.

3.2 Compositional MTBF

For the computation of the combined MTBF of several sub-components, the
pure knowledge of the individual MTBF of the components is not sufficient, also
the mean time to repair (MTTR) needs to be specified. This can be done by
using a specific MTTR pattern as defined in Table 4.

Table 4. MTTR Pattern

Structure The MTTR of C′ shall be at most Θ

Meaning The pattern specifies an upper bound Θ on the MTTR of the com-
ponents listed in the set C′.

Intuition With this pattern a requirement engineer can directly specify an
individual MTTR for a single component of the PBS, as well as, for
a set of components.

Example The MTTR of {BrakingSystem} shall be at most 2000h
The MTTR of {ABS,Brake} shall be at most 1500h

Formal
semantic ∀c ∈ C′ :MTTRp(c) ≤ Θ

Analogue to the MTBF functions, the semantic of the MTTR defines entries
of a partial function MTTRp : C � T . The pattern allows the definition of
individual MTTR values for each component.

In a typical application many other aspects will be captured by requirements,
e.g. safety contracts [10] can be used to define the dependencies or independence
between failures. This knowledge has to be taken into account for the analysis
of inconsistencies.

116 C. Ellen, M. Böschen, and T. Peikenkamp

The combination of different MTBF values is based on the type of compo-
sition of the sub-components and can either be serial or parallel. So far the
PBS definition 1 only defines the part relation and does not define the type
of decomposition. Our assumption is that if not otherwise stated, a component
has a serial decomposition. This means that any failure of a sub-component re-
sults in an failure of the parent component. For example, the Braking System
of Figure 1 is assumed to be serial decomposed into the Pedal component, the
ABS-Controller, and the Brake-Actuator system.

Under the stated assumptions, the combined value MTBFserial for a serial
composed component can be computed by adding the individual failure rates of
the sub-components λserial =

∑
λ and using the assumption MTBF = 1

λ :

MTBFserial(C′) =

∏
c∈C′ MTBF (c)∑
c∈C′ MTBF (c)

(2)

Here, C′ is a set of sub-components which have an MTBF specification (i.e.
MTBF (c) �= ⊥). Sub-components without an MTBF specification are explicitly
ignored in the formula. The function MTBFserial defines an upper bound on
the combined MTBF, since adding an MTBF specification to one of the sub-
components only decreases the value of the function. Therefore, an analysis which
checks the consistency of the MTBFserial with the parent MTBF value may
only be used to identify inconsistencies in the specification:

Definition 5. MTBF Inconsistency (serial composition) Let S be a consistent
PBS, c ∈ C be a serial composed component, C′ ⊂ C the set of sub-components

of c, with ∀s ∈ C′ : s
part−→ c ∈ S and MTBF (c) �= ∅. The MTBF specification of

C′ is inconsistent to the MTBF of c, iff

MTBFserial(C′) < MTBF (c)

This definition can be used to identify inconsistencies in early phases of the
design. In case an MTBF specification is inconsistent, an engineer may decide
to plan for a redundant implementation of a component to increase its overall
MTBF value. This can be specified in the PBS by the pattern defined in Table
5. The pattern only provides a very simple mean to express some safety concept
and is only suitable for the early stages of the design. Refinements of such spec-
ifications may be done by using more elaborated concepts like safety patterns
[10].

The combined MTBF of parallel sub-components can be computed by mul-
tiplying their failure rates λ which are scaled down by the MTTR of the sub-
components: λpar =

∏
λ ·

∑
MTTR

The scaling with MTTR is motivated by the fact, that if a failure of a com-
ponent occurs, another sub-component may already be in its failure state4 and

4 The full derivation can be found in [7].

MTBF Inconsistency Analysis 117

Table 5. Redundancy Pattern

Structure C′ shall be implemented redundant

Meaning The pattern specifies that each of the components in C′ shall be
composed of redundant sub-components.

Intuition A requirement engineer may use this pattern to specify that a com-
ponent is part of a safety concept in which it consists of a several
redundant components which are composed in parallel.

Example {ABSpar} shall be implemented redundant

therefore the associated MTTR has to be accounted for. Using MTBF = 1
λ

results in:

MTBFpar(C′) =

∏
c∈C′ MTBF (c)∑
c∈C′ MTTR(c)

(3)

If the MTTR information is not available for every component, a global com-
mon MTTR value can be assumed.

Definition 6. MTBF Inconsistency (parallel composition) Let S be a consistent
PBS, c ∈ C be a parallel composed component, C′ ⊂ C the set of sub-components

of c, with ∀s ∈ C′ : s
part−→ c ∈ S and MTBF (c) �= ∅. The MTBF specification of

C′ is inconsistent to the MTBF of c, iff

MTBFpar(C′) < MTBF (c)

The combinations of the different inconsistency statements from Def. 4,5, and
6 may be applied to different layers within the PBS structure to find inconsis-
tencies within the MTBF specifications. For example, the main ABS-Controller
of Figure 1 is a serial composition of a Voter and a subsystem consisting of two
redundant ABS-Controllers. In general, the analysis has to check the tree struc-

tures induced by the
part−→-Relation starting from the leafs to check the MTBF

consistency for each sub-component and the complete system.

4 Conclusion

In this article we have briefly discussed the idea to infer implied structures of a
potential system model in the early stages of the development process and how
to manage this knowledge using a PBS. Furthermore, we introduced a set of pat-
terns which allows a requirement engineer to specify MTBF and MTTR values
on elements of this PBS and defined formally statements to identify inconsisten-
cies between the different MTBF specification. The presented approach shows
the benefits of the combination of ontology knowledge and consistency analysis
tasks.

118 C. Ellen, M. Böschen, and T. Peikenkamp

In future work, we will evaluate this approach in case studies and thereby
extend the means to extract PBS knowledge. An integration into the Require-
ments Quality Toolchain [12] and an application of more complex analysis tasks
is planned.

Acknowledgments. The research leading to these results has received fund-
ing from the ARTEMIS Joint Undertaking under Grant Agreement N◦332830
(CRYSTAL) and German national funding from BMBF N◦01IS13001A.

References

1. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. International Handbooks on Information Systems,
pp. 3–28. Springer (2004)

2. Bozzano, M., Villafiorita, A.: Design and Safety Assesment of Critical Systems.
Auerbach Publications (2011)

3. BTC Embedded Systems: BTC Embedded Specifier,
http://www.btc-es.de/index.php?idcatside=52 (last visited May 27, 2014)

4. Damm, W., Hungar, H., Henkler, S., Stierand, I., Josko, B., Oertel, M., Reinke-
meier, P., Baumgart, A., Büker, M., Gezgin, T., Ehmen, G., Weber, R.: SPES2020
Architecture Modeling. Tech. rep., OFFIS e.V. (2011)

5. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: Owl 2 web
ontology language primer. W3C Recommendation 27(1), 123 (2009)

6. International Standard Organization: Road Vehicles - Functional Safety (November
2011)

7. Lin, D.L.: Reliability characteristics for two subsystems in series or parallel or n
subsystems in m out of n arrangement. Tech. rep., Aurora Consulting Engineering
LLC (2006),
http://auroraconsultingengineering.com/doc files/

Reliability series parallel.doc

8. Llorens, J., Morato, J., Genova, G.: RSHP: an information representation model
based on relationships. In: Damiani, E., Madravio, M., Jain, L. (eds.) Soft Com-
puting in Software Engineering. STUDFUZZ, vol. 159, pp. 221–253. Springer,
Heidelberg (2004)

9. Mitschke, A., Loughran, N., Josko, B., Oertel, M., Rehkop, P., Häusler, S., Ben-
veniste, A.: RE Language Definitions to formalize multi-criteria requirements V2.
Tech. rep., The CESAR Consortium (2010),
http://cesarproject.eu/fileadmin/user upload/

CESAR D SP2 R2.2 M2 v1.000.pdf

10. Oertel, M., Mahdi, A., Böde, E., Rettberg, A.: Contract-based safety: Specification
and application guidelines. In: Proceedings of the 1st International Workshop on
Emerging Ideas and Trends in Engineering of Cyber-Physical Systems, EITEC
2014 (2014)

11. Rajan, A., Wahl, T. (eds.): CESAR - Cost-efficient Methods and Processes for
Safety-relevant Embedded Systems, No. 978-3709113868. Springer (2013)

12. The Reuse Company: Requirements Quality Suite,
http://www.reusecompany.com/requirements-quality-suite

(last visited May 27, 2014)

http://www.btc-es.de/index.php?idcatside=52
http://auroraconsultingengineering.com/doc_files/Reliability_series_parallel.doc
http://auroraconsultingengineering.com/doc_files/Reliability_series_parallel.doc
http://cesarproject.eu/fileadmin/user_upload/CESAR_D_SP2_R2.2_M2_v1.000.pdf
http://cesarproject.eu/fileadmin/user_upload/CESAR_D_SP2_R2.2_M2_v1.000.pdf
http://www.reusecompany.com/requirements-quality-suite

Critical Systems Verification in

MetaMORP(h)OSY

Rocco Aversa, Beniamino Di Martino, and Francesco Moscato�

DIII, Second University of Naples
DiSciPol, Second University of Naples, Italy

{rocco.aversa,beniamino.dimartino,francesco.moscato}@unina2.it

Abstract. Multi Agent Systems (MAS) methodologies are emerging as
a new approach for modeling and developing complex distributed sys-
tems. When complex constraints have to be verified on critical systems
Model Driven Engineering (MDE) methodologies allow for the design and
implementation of systems correct by construction. Usually verification
is enforced by formal analysis. This paper presents MetaMORP(h)OSY
(Meta-modeling of Mas Object-based with Real-time specification in
Project Of complex SYstems) methodology and framework. They pro-
vide a mean for building MAS models used to verify properties (and
requirements) of Critical Systems following a MDE approach. In partic-
ular, this work describes model transformation algorithms used in Meta-
MORP(h)OSY to verify real-time and timed reachability requirements.

Keywords: Formal Models, Reliability, Model Driven Engineering.

1 Introduction

Complexity of Software and Hardware systems is growing more and more day by
day. Errors in any phase of the life cycle of these systems may lead to significant
consequences ([1, 2]).

The growing of complexity is coupled with the raising difficulties in distin-
guishing hardware from software components in critical systems. Embedded sys-
tems in automotive and aerospace industries are made up of billion of line of
source code that are also used for describing behaviors of reconfigurable hard-
ware components [3]. Due to this complexity, it has been predicted that “the
current development process is reaching the limit of affordability of building
safe...” critical systems [4]. Novel technologies are going to be used in critical
environments in order to improve safety and security, but the introduction on
new components in a complex system makes it more complex and design and
implementation require proper methodologies in order to validate requirements.

Model-Driven Engineering (MDE) methods and techniques try to solve this
problem by facilitating definition, composition, implementation and verification

� Corresponding author.

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 119–129, 2014.
c© Springer International Publishing Switzerland 2014

120 R. Aversa, B. Di Martino, and F. Moscato

of complex systems. Nowadays very few enterprises use MDE in their develop-
ment cycles and they usually performs verification by using other techniques
(testing above all). This problem is discussed in [5] that reports a study of MDE
practices in industries. In brief, the survey describes how very few enterprises
(especially in the field of critical systems development) use Model-Based tech-
niques in order to verify requirements and how many of these enterprises have
interests in introducing MDE techniques in their development processes in order
to improve it. In addition, the survey shows that UML is the preferred modeling
language that enterprises would use in their MDE frameworks.

CRYSTAL1 project aims at fostering Europes leading edge position in embed-
ded systems engineering in particular regarding quality and cost effectiveness of
safety-critical embedded systems and architecture platforms. Its overall goal is
to enable sustainable paths to speed up the maturation, integration, and cross-
sectoral reusability of technological and methodological bricks of the factories
for safety-critical embedded systems engineering in the areas of transportation
(aerospace, automotive, and rail) and healthcare providing a critical mass of
European technology providers. In particular, one of the goal of the project is
the definition of proper tool chain and methodologies based on formal models
for verification and test definition process. Traceability of the model, both on
system requirements and on generated tests, may support users in the analysis of
the impact of modification in system requirements during the whole life cycle of
the system, reducing time needed to modify test cases after changes in require-
ments. The graphic approach is a good method in order to understand the test
and to manage test suite (revisions, recycled tests..). While the object-oriented
meta-language allows to adopt features such as data abstraction, encapsulation,
messaging, modularity, polymorphism, and inheritance.

This work describes some of the results obtained during the investigation of
research activities performed by The Second University of Naples in CRYSTAL
project. In particular, we will describe the MetaMORP(h)OSY Model Driven
Engineering Framework that copes with several goals of CRYSTAL project.

This paper describes the model transformations techniques used in Meta-
MORP(h)OSY, (Meta-modeling of Mas Object-based with Real-time specifica-
tion in Project Of complex SYstems) in order to verify requirements at design
time, and to build testbeds at run-time for verification of same properties. For-
mal modeling and analysis of Multi-Agent Systems (MAS) form the basis for the
application for aforementioned techniques. MAS represent a model for designing
and developing complex systems[6] coping with their increasing complexity.

Several methodologies have been proposed for MAS design and development
[7, 8]. However software engineering has not provided yet any approach to model
and verify dependability during all the life cycle.

MetaMORP(h)OSY([9]) framework is based on Papyrus [10] and it defines
modeling profiles (or meta-models) for the definition of real-time MAS models.
Verification at every life-cycle step is performed by implementing translation

1 http://http://www.crystal-artemis.eu/

http://http://www.crystal-artemis.eu/

Critical Systems Verification in MetaMORP(h)OSY 121

algorithms which translate design, simulation and run-time description into for-
mal models [11–13].

2 State of The Art

The use of MDE techniques in modeling and verification of complex and critical
systems is growing more and more, especially in industrial domain.

Usually UML could be considered as the standard modeling language to use,
but it is not the best tool for modeling agent based systems[14]. The problem
in standard UML-based languages for multi-agent systems, is that agents pro-
activity is hard to describe. This is why several languages for Agent Based models
have been developed like Agent-UML [15], Agent Modeling Language (AML)[16]
(a semi-formal visual modeling language based on the UML 2.0 superstruc-
ture) or the one defined for the Prometheus methodology [17]. The Prometheus
methodology has been coped with INGENIAS[18]: it consists of a meta-model
describing MAS from different perspectives like environment, goals and tasks,
specifying the behavior of each agent. Anyway INGENIAS focuses only on the
generation of executable software and no verification issues are addressed espe-
cially for critical systems.

A tool that uses an approach similar to MetaMORP(h)OSY is SCADE[19]. It
enacts model checking to verify properties at design time and implements them
onto embedded systems. It is nowadays at a mature implementation stage, but
unlike MetaMORP(h)OSY, it implements only verification of state reachability
properties (by mean of Model Checking) and it focuses on embedded and control
system. Model transformation focused on a single domain is common for MDE
tools and methodologies. For example, another framework which focuses on the
generation of executable embedded code in TOPCASED [20].

The MetaMORP(h)OSY modeling methodology is oriented towards require-
ments verification. Differently from other proposed approaches, it uses both ver-
tical and horizontal transformation in order to follow requirement verification
during all life cycle of the system. The design model (DSML) is based on UML
and it is an extension of AML with time support. It also allows to specify prop-
erties to evaluate by means of definition of proper Observers. Model Transfor-
mation algorithms can be coped with different Observers by including proper
plugins in the framework. Model transformations are used both for the analyses
of design models, and for the implementation of run-time components. Hence
MetaMORP(h)OSY is a more versatile framework and at the state of the art
it has been used both for verification of properties and generation of running
embedded systems (like in this work), and also to provide support for design
and provisions of cloud services[13, 21]. It also supports different verification
techniques (and new ones can be plugged in) including multi-formalisms and
multi-solution approaches [12].

The use of Formal models in ERTMS verification is not a new approach: in
[22], authors translates ERTMS subsystems into a State-based transition system,
which is analyzed by using model checking techniques, but no MDE methodology

122 R. Aversa, B. Di Martino, and F. Moscato

is defined in their work; in [23] (and [24]) an MDE methodology is described for
the verification of a Movement Authority (MA): it uses an UML-based (CSP
Process Algebra - based) modeling language, but only structural and functional
properties of the system are considered.

3 MetaMORP(h)OSY

MetaMORP(h)OSY framework (see [25, 9, 13] for further descriptions) allows
for definition of design models by using a proper META-Model (or modeling pro-
file) which is based on UML diagrams. The MetaMORP(h)OSY methodology
uses MAS abstraction at design stage. MAS definition follows the Beliefs, De-
sires, Intentions (BDI[26]) paradigm. Formal rules for MAS design are defined
in a Unified Modeling Language (UML) profile called RT-AML (Real Time -
Agent Modelling Language). In MetaMORP(h)OSY, the definition of properties
is also assured by the definition of a common ontology which describes formally
cloud components and services and a taxonomy of properties which is possi-
ble to analyze on different MAS models components[9, 27]. Proper annotation
techniques and models (like the one discussed in [28, 29]) should be coped with
agents definition to specify requirements.

The MDE methodology in MetaMORP(h)OSY is enacted by means of two
main components: Observer and Translators Observers are used in order to eval-
uate properties both on (abstract) models and (real) running systems. Trans-
lators implement both vertical and horizontal transformation [30]. Horizontal
transformations translate models into other (formal) ones at the same level of
abstraction: they are used in order to create analyzable models from descriptive
ones (for example: real time properties are verified on design models translating
UML models into timed automata). Vertical transformation are usually used
in MetaMORP(h)OSY in order to translate abstract models into finer grained
models. This kind of transformation usually usually is not fully automated. Re-
quirements tracing in vertical transformations requires the creation of proper
Observers able to verify abstract requirements on finer grained models.

Requirements in MetaMORP(h)OSY are tracked during all system life cycle:
this involves the definition of proper MDE techniques and transformation able
to define properties to verify on system components at design, simulation and
run-time stages.

The modeling profile in MetaMORP(h)OSY is named RT-AML (Real Time
- Agent Modeling Language). In RT-AML, agents behavior is defined by using
BDI logic in terms of beliefs of an agent, goals they want to achieve and the
plans available to reach the goals. RT-AML is compliant with MARTE profiles
[9] for modeling of real-time properties in UML profiles. They main components
of an Agent Diagram are: AgentRT, PlanRT, DgoalRT and BeliefRT. They
are defined as UML stereotypes which contains all properties needed to describe
Agent structures and behaviors (like temporal properties: arrival time, execution
time, deadlines; availability etc.) AgentRTs define agents structures with their
attributes; PlanRTs defines agents Intentions while reaching a goal state; Dgoal-
RTs declare decidable goals for AgentRTs (i.e. goals whose reachability can be

Critical Systems Verification in MetaMORP(h)OSY 123

determined under real-time constraints). Descriptions of RT-AML Activity and
Sequence Diagrams are omitted for the lack of space. Anyway, they are similar
to UML Activity and Sequence. In order to define properties that can be eval-
uated on models by proper Observers an Observer Diagram must be defined. It
must contain the specification of requirements to verify, the elements on which
requirements are defined, the life cycle phase when analysis has to be performed
and the kind of analysis to perform. Supported requirements are defined in an-
other profile. It mainly consists in a taxonomy of dependability properties and
it was introduced in [21].

4 Case Study

As proof of concept we show the use of MetaMORP(h)OSY in the design proto-
typing and monitoring of Movement Authority (MA) in an ERTMS (European
Rail Traffic Management System) level 2 system [31]. The model we propose
analyzes a specification consisting in the verification of a real-time property. We
consider the case when an authorization to move must be sent. Because of the
lack of space, we do not model here the variables considered to decide for an
authorization or not (i.e. distances, dynamics, timestamps, vitality checks etc.).
In this example, we take in account only the events (and not their contents, as-
suming that the decision if for movement) exchanged during the protocol, time
elapsed to take decisions and deadlines to respect in each action. A MA is an
authorization to move for a train (EuroCab). The Authorization is grant by the
Radio Block Center (RBC) that analyzes EuroCab position (transmitted by the
EuroCab itself) and other environment information and decides for movement
authorization or not. MetaMORP(H)OSY modeling of this system requires the
definition of an RT-AML model. Fig.1 reports the structure of the two AgetRTs

Fig. 1. Agent Diagram

124 R. Aversa, B. Di Martino, and F. Moscato

Fig. 2. Activity Diagram

Fig. 3. Sequence Diagrams

used to model Eurocab and RBC respectively. They both have one belief (con-
taining the state of the environment, including network), one goal (ReceiveMA
and SendMA respectively) and one plan (GetMA and CalcMA respectively).
Hence, EuroCab desires to receive an MA, while RBC desires to Send the MA
to the EuroCab if no problem is detected. RBC performs a majority voting in
order to decide for MA or not (in CalcMA plan), while EuroCab only wants to
acquire its MA (performing the GetMA plan).Once Agents structure are defined
(stereotypes properties are omitted for simplicity and lack of space), behavioral
diagrams can be specified. In particular, each plan in the Agent Diagram is as-
sociated to an Activity Diagram, describing the actions enacted to reach goals
during plan execution.

Critical Systems Verification in MetaMORP(h)OSY 125

Fig. 4. Schedulability Observer

Algorithm 1. Timed Schedulability Translator

Identify all ActionStates and Transitions in Activity Diagrams of all Agents.
for act in ActivityDiagrams do
create a new TimedAutomaton
for i in ActionStates of act do
Create a new Node in TimedAutomaton[act] with proper properties from agents
model;
Node Invariants depend on properties of Action States and AgentRT stereo-
types.

end for
for j in Transitions of act do
Create a new Transition in TimedAutomaton[act];
if Transition[j] has a guard then
create a channel in the Timed Automaton with the guard’s name
Define a “?” synchronization on the newly created Transition
Create a new Transition in TimedAutomaton[act];
Transition Guards and time resets depend on properties of Action States and
AgentRT stereotypes.

end if
end for
Select a Sequence Diagram
Create a New Product Automaton
for obj in Agent in Sequence Diagram do
Add the Timed Automaton related to the agent to the product Automaton

end for
Add a new Timed Automaton to the Product Automaton for stimula.
for stim in Stimulus of Sequence Diagram do
Add a New Node in the Stimulus Timed Automaton
Add a New Transition in the Stimulus Timed Automaton with a channel with
the same name of the Stimulus

end for
end for
Verify Property

126 R. Aversa, B. Di Martino, and F. Moscato

Fig. 2 shows the activity diagrams of GetMA (on the left) and CalcMA (on
the right). Notice that MetaMORP(h)OSY uses labels and guards on Transi-
tionRT transitions in order to model synchronizations and interactions among
agents. In order to complete behavioral modeling, MetaMORP(h)OSY uses Se-
quence Diagrams in order to specify interactions for given scenarios. Finally, in
MetaMORP(h)OSY, a RT-AML Sequence Diagram for each interaction scenario
has to be provided. As (part of the) possible interaction scenario the sequence
in Fig.3 is reported.

Once structural and behavioral models have been defined, users must declare
which properties want to analyze on the system. This is done by means of Ob-
server Diagram definition. Fig.4 shows the Observer Diagram that requires the
verification of schedulability property on GetMA plan.

In this example, the schedulability property is equivalent to a timed state
reachability problem. The depicted Observer enact a model transformation by
mean of a Translator, from RT-AML to Timed Automata which is analyzed by
model checking. This translation algorithm works as described in Alg.1.

Fig.5 shows part of the obtained result. The model is analyzable by the UP-
PAAL Model Checker.

Fig. 5. Translated Model

5 Conclusions and Future Work

In this work we have described a methodology that supports the design, verifi-
cation and validation of multi-agent systems, in particular, has been described
the framework to support these activities, focusing on each phase. The method-
ology can be used in the design of MAS real-time and design models to allow to
verify the requirements in a MDE scenario. This work has showed Model Driven

Critical Systems Verification in MetaMORP(h)OSY 127

Engineering techniques in order to realize complex monitoring and testing en-
vironments in embedded system development. Thank to the flexibility of the
framework design and implementation by using MDE techniques it is general
enough for managing a wide range of systems. The framework has been devel-
oped with an high modularity to allow a rapid extension of it. To prove the
actual flexibility, MetaMORP(h)OSY has been used for a test case, a 2-out-3
railway safety system, that permit to show the framework at work in all phases.

The framework covers the entire design phase of models of systems, going
beyond the abstraction, next releases will cover largest and varied application
contexts in which it makes sense to model the interaction between the compo-
nents as a multi-agent system for example, anyone familiar with UML models
may use the framework and shape it with a MAS system. As already discussed,
have been provided tools to extend the framework, that in later versions, could be
expanded with new formal verification methods or new properties to be checked
on the system.

Acknowledgement. The research leading to these results has received funding
from CRYSTAL: the ARTEMIS Joint Undertaking under Grant Agreement N
332830 and from specific national programs and / or funding authorities.

References

1. Bureau, A.T.S.: Ao-2008-070: In-flight upset, 154 km west of learmonth, wa, 7
october 2008. In: Airbus A330-303. Tech. rep (October 2008)

2. Williams, M.: Toyota to recall prius hybrids over abs software. In: Computerworld
(2010)

3. Charette, R.N.: This car runs on code. IEEE Spectrum 46 (2009)
4. Feiler, P.H.: Model-based validation of safety-critical embedded systems. In: 2010
IEEE Aerospace Conference, pp. 1–10. IEEE (2010)

5. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices in
industry. In: 2011 33rd International Conference on Software Engineering (ICSE),
pp. 633–642 (May 2011)

6. Guessoum, Z., Briot, J.P., Faci, N., Marin, O.: Towards reliable multi-agent sys-
tems: An adaptive replication mechanism. Multiagent Grid Syst. 6, 1–24 (2010)

7. Kavi, K.M., Aborizka, M., Kung, D., Texas, N.: A framework for designing, mod-
eling and analyzing agent based software systems. In: Proc. of 5th International
Conference on Algorithms and Architectures for Parallel Processing, pp. 23–25
(2002)

8. Da Silva, V.T., De Lucena, C.J.P.: From a conceptual framework for agents and
objects to a multi-agent system modeling language. Autonomous Agents and Multi-
Agent Systems 9, 145–189 (2004)

9. Moscato, F., Aversa, R., Amato, A.: Describing cloud use case in metamorp(h)osy.
In: IEEE Proc. of CISIS 2012 Conference, pp. 793–798 (2012)

10. PapyrusGroup: Papyrus uml, http://www.papyrusuml.org
11. Franceschinis, G., Gribaudo, M., Iacono, M., Marrone, S., Moscato, F., Vittorini,

V.: Interfaces and binding in component based development of formal models. In:
IEEE Proc. of VALUETOOLS 2009 Conference, vol. 44 (2009)

http://www.papyrusuml.org

128 R. Aversa, B. Di Martino, and F. Moscato

12. Moscato, F., Vittorini, V., Amato, F., Mazzeo, A., Mazzocca, N.: Solution work-
flows for model-based analysis of complex systems. IEEE T. Automation Science
and Engineering 9(1), 83–95 (2012)

13. Moscato, F., Martino, B.D., Aversa, R.: Enabling model driven engineering of cloud
services by using mosaic ontology. Scalable Computing: Practice and Experience
13(1) (2012)

14. Bauer, B.: UML class diagrams revisited in the context of agent-based systems. In:
Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222,
pp. 101–118. Springer, Heidelberg (2002)

15. Bauer, B., Müller, J.P., Odell, J.: Agent uml: A formalism for specifying multiagent
software systems. Int. Journal of Software Engineering and Knowledge Engineer-
ing 11, 91–103 (2000)

16. Trencansky, I., Cervenka, R.: Agent modeling language (aml): A comprehensive
approach to modeling mas. Whitestein Series in Software Agent Technologies and
Autonomic Computing 29, 391–400 (2005)

17. Gascueña, J.M., Navarro, E., Fernández-Caballero, A.: Model-driven engineering
techniques for the development of multi-agent systems. Engineering Applications
of Artificial Intelligence 25(1), 159–173 (2012)

18. Fernández-Caballero, A., Gascueña, J.M.: Developing multi-agent systems through
integrating prometheus, INGENIAS and ICARO-T. In: Filipe, J., Fred, A., Sharp,
B. (eds.) ICAART 2009. CCIS, vol. 67, pp. 219–232. Springer, Heidelberg (2010)

19. Abdulla, P.A., Deneux, J., St̊almarck, G., Ågren, H., Åkerlund, O.: Designing safe,
reliable systems using scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS,
vol. 4313, pp. 115–129. Springer, Heidelberg (2006)

20. Farines, J., De Queiroz, M., da Rocha, V., Carpes, A., Vernadat, F., Cregut, X.: A
model-driven engineering approach to formal verification of plc programs. In: 2011
IEEE 16th Conference on Emerging Technologies Factory Automation (ETFA),
pp. 1–8 (September 2011)

21. Moscato, F., Aversa, R., Martino, B.D., Fortis, T.F., Munteanu, V.I.: An analysis
of mosaic ontology for cloud resources annotation. In: IEEE Proc. of FedCSIS 2011
Conference, pp. 973–980 (2011)

22. Ghazel, M.: Formalizing a subset of ertms/etcs specifications for verification pur-
poses. Transportation Research Part C: Emerging Technologies 42, 60–75 (2014)

23. Ayed, R.B., Collart-Dutilleul, S., Bon, P., Idani, A., Ledru, Y.: B formal validation
of ERTMS/ETCS railway operating rules. In: Ait Ameur, Y., Schewe, K.-D. (eds.)
ABZ 2014. LNCS, vol. 8477, pp. 124–129. Springer, Heidelberg (2014)

24. James, P., Moller, F., Nguyen, H., Roggenbach, M., Schneider, S., Treharne, H.:
Techniques for modelling and verifying railway interlockings. International Journal
on Software Tools for Technology Transfer, 1–27 (2014)

25. Moscato, F., Venticinque, S., Aversa, R., Di Martino, B.: Formal modeling and
verification of real-time multi-agent systems: The REMM framework. In: Badica,
C., Mangioni, G., Carchiolo, V., Burdescu, D. (eds.) Intelligent Distributed Com-
puting, Systems and Applications. SCI, vol. 162, pp. 187–196. Springer, Berlin
(2008)

26. Wooldridge, M.: Agent-based software engineering. In: IEE Proceedings on Soft-
ware Engineering, pp. 26–37 (1997)

27. Amato, F., Casola, V., Mazzocca, N., Romano, S.: A semantic-based document
processing framework: a security perspective. In: 2011 International Conference on
Complex, Intelligent and Software Intensive Systems (CISIS), pp. 197–202. IEEE
(2011)

Critical Systems Verification in MetaMORP(h)OSY 129

28. Amato, F., Casola, V., Mazzocca, N., Romano, S.: A semantic approach for fine-
grain access control of e-health documents. Logic Journal of IGPL 21(4), 692–701
(2013)

29. Amato, F., Casola, V., Mazzeo, A., Romano, S.: A semantic based methodology
to classify and protect sensitive data in medical records. In: 2010 Sixth Inter-
national Conference on Information Assurance and Security (IAS), pp. 240–246.
IEEE (2010)

30. Mens, T., Gorp, P.V.: A taxonomy of model transformation. Electronic Notes in
Theoretical Computer Science 152, 125–142 (2006); Proceedings of the Interna-
tional Workshop on Graph and Model Transformation (GraMoT 2005) (2005)

31. Bloomfield, R.: Fundamentals of european rail traffic management system-ertms.
IET Standards (2006)

32. Ciccozzi, F., Sjodin, M.: Enhancing the generation of correct-by-construction code
from design models for complex embedded systems. In: 2012 IEEE 17th Conference
on Emerging Technologies Factory Automation (ETFA), pp. 1–4 (September 2012)

33. Altera: Quartus ii,
http://www.altera.com/products/software/quartus-ii/about/

qts-performance-productivity.html

34. Hirel, C., Sahner, R., Zang, X., Trivedi, K.S.: Reliability and performability mod-
eling using SHARPE 2000. In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U.
(eds.) TOOLS 2000. LNCS, vol. 1786, pp. 345–349. Springer, Heidelberg (2000)

35. Červenka, R., Trenčanský, I., Calisti, M., Greenwood, D.P.A.: AML: Agent model-
ing language toward industry-grade agent-based modeling. In: Odell, J.J., Giorgini,
P., Müller, J.P. (eds.) AOSE 2004. LNCS, vol. 3382, pp. 31–46. Springer, Heidel-
berg (2005)

36. Nicol, D., Sanders, W., Trivedi, K.: Model-based evaluation: from dependability
to security. IEEE Transactions on Dependable and Secure Computing 1(1), 48–65
(2004)

37. Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L.: Supporting the verification
of compliance to safety standards via model-driven engineering: Approach, tool-
support and empirical validation. Information and Software Technology 55(5),
836–864 (2013)

http://www.altera.com/products/software/quartus-ii/about/qts-performance-productivity.html
http://www.altera.com/products/software/quartus-ii/about/qts-performance-productivity.html

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 130–136, 2014.
© Springer International Publishing Switzerland 2014

Report on the Railway Use-Case of the Crystal Project:
Objectives and Progress

Alexandre Ginisty1, Frédérique Vallée1,
Elie Soubiran², and Vidal-delmas Tchapet-Nya2

1 All4tec, Massy 91300 France
{frederique.vallee,alexandre.ginisty}@all4tec.net

² IRT SystemX Integration Center Nano-Innov
Building N3 - 8, avenue de la Vauve

91120 Palaiseau, France
{elie.soubiran,vidal-delmas.tchapet-nya-ext}@transport.alstom.com

Abstract. This paper aims at describing the contribution of the technological
brick Safety Architect to the CRYSTAL project. The goal of the CRYSTAL
project is to provide a platform of interoperability between tools supporting all
the steps constituting the lifecycle of a product.

Based on a railway use-case, the goal is to provide support for realization of
safety analysis with All4tec tool Safety Architect (especially automating the
filling of safety documents). The first steps have consisted in the automatic
generation of FMEA. The automatic management of the Hazard Log through
DOORS is currently in development, and the next steps will deal with the
change management facilities.

Keywords: MBSA, Safety Architect, FMEA, Fault Tree, Interoperability.

1 CRYSTAL Project: CRitical sYSTem engineering
AcceLeration

The overall project goal of CRYSTAL is to foster Europe’s leading edge position in
the design, development, and deployment of interoperable safety-critical embedded
systems in particular regarding quality, cost effectiveness, flexibility, reusability, ac-
celeration of time to market, continuous integration of innovations, and sustainability.

CRYSTAL gathers and connects the main European players regarding embedded
systems engineering in the areas of Aerospace (onboard and ground systems), Auto-
motive (onboard systems and parts of the roadside infrastructure), Rail (onboard and
interlocking systems), and Healthcare(patient and hospital staff safety, new medical
procedures, medical apparatus) providing a critical mass of European technology
providers to achieve both societal impact regarding future safer transport and
Healthcare and technological advances in terms of cross domain platform-based
reusability.

 Report on the Railway Use-Case of the Crystal Project: Objectives and Progress 131

CRYSTAL wants to have a significant impact to strengthen European competitive-
ness, increase the efficiency of the embedded software development in the industry
and allow the emergence of new markets and societal applications. The primary ob-
jective of CRYSTAL is to increase the maturity, reusability, and the ease of integra-
tion of technology bricks – which are defined as building blocks of integrated tool
chains including e.g. software components, specific tools, engineering methods, inter-
faces, or even standards – and to demonstrate their impact through both domain and
cross-domain environments.

CRYSTAL will exploit domain-specific insights into embedded system design and
safety processes to investigate and establish cross-domain synergies. Consequently,
currently fragmented research results will be integrated into a harmonized framework
for safety-critical systems development. This will build on and extend existing do-
main-specific and domain-independent standards.

2 Case-Study: MBSE-MBSA Interaction in the Development of
a Signalling System

Description

The use-case is oriented on the development of a signalling system and more pre-
cisely on interactions that take place between safety and system design teams includ-
ing transverse activities such as requirement management and traceability, and change
management.

Fig. 1. Safety Analysis workflow

132 A. Ginisty et al.

The applicative case-study that supports the evaluation of the methodology and its
associated tools is a system function called “Compute traction orders”. While being
limited to one single system function, this case-study is representative of the system
since it contains both critical and non-critical sub-functions and considers both real-
time and operational constraints. The use-case will allow to structure and strengthen
the development platform and framework of such systems, especially in the scope of
multi-viewpoint system modelling (e.g. operational, functional, constructional, dys-
functional…). A simplified view of interoperability needs between system model,
safety analysis and requirement management is represented in the following
workflow:

Fig. 2. Description of the CBTC system

3 Technologic Brick Description: Safety Architect

The aim of this brick is to support local FMEA (Failure Mode and Effects Analysis)
on the model elementary components and to generate automatically Fault Trees. Us-
ing a system functional design or its physical architecture model by any interoperabil-
ity mean (IOS), the user performs a local analysis inside Safety Architect, by linking
failure modes of the outputs of the components to the failure modes identified on the
component inputs. During the local analysis, the user also analyses the effects of in-
ternal failures of the component on its outputs.

In parallel, the user can also identify safety barriers that prevent the development
of a single fault up to an unacceptable failure, participating thus to the safety objec-
tives compliance.

The user must also define which failure modes are the feared events (FE). These
events will be studied by the global analysis provided by the tool Safety Architect. A
dysfunctional simulation of the system is then executed by propagating failures along
the dataflow dependencies of components and until a feared event is reached.

 Report on the Railway Use-Case of the Crystal Project: Objectives and Progress 133

Fig. 3. Safety Architect Workflow

Fig. 4. Data model: Engineering loop

134 A. Ginisty et al.

Fig. 5. SHA needs for interoperability

The results of this propagation are formulated through Fault Trees. In case of modifi-
cation of the system or software model, Safety Architect is able to perform an impact
analysis that reduces the rework costs that can be very high for a FMEA. For exam-
ple, the addition or modification of a function or component can be analysed for
safety concern with the reuse of the previous analysis.

4 Realizations

First work on the use-case has been made around the need for Safety Engineers to
create System Hazard Analysis (SHA) documents. When performing the System Ha-
zard Analysis, the Safety Engineer takes into account the System Detailed design, the
Preliminary Hazard Analysis1and the system design tools. Given the fact that SHA
makes use and traces heterogeneous elements that come from these artefacts it is ne-
cessary to ensure interoperability of tools and data. These artifacts must be interoper-
able in order to ease data exchange, to improve the System Hazard Analysis and to
generate the System Hazard Analysis Report.

1 The preliminary hazard analysis is performed by a consequence to cause analysis and de-

scribes exhaustively the accident scenario.

 Report on the Railway Use-Case of the Crystal Project: Objectives and Progress 135

In term of interoperability needs, the following information is required:

• Traceability Relationships between the safety requirements and the systems
• Traceability Relationships between the system functions and theirs failure modes
• Traceability Relationships between the safety requirements and the failure modes

they mitigate
• Traceability Relationships between the safety requirements and the system re-

quirements in order to update and improve system requirements
• Traceability matrix of all failure modes to failure causes and failure effects

Starting from a functional architecture model, Safety Engineers are performing local
analysis using Safety Architect, consisting in linking failure modes of inputs of a
block to failure modes in outputs. Safety Engineers have also to create a feared event
library (or reuse a previous one, for an analysis in the same domain for example).
After putting feared events from the library to the failure modes in the model, they
can export their work to generate automatically FMEA documents.

Fig. 6. Example of Safety Architect view

Fig. 7. Example of generated FMEA for a generic system. Includes the functions/components,
the ports, the failure modes concerned, the cause, effect and potential accident of a failure
mode, and some specific properties (Risk Reduction Factor, Mode, etc.)

136 A. Ginisty et al.

5 Ongoing Work

The work achieved on the case-study has demonstrated that Safety Architect was
suitable to capture a dysfunctional specification and to generate FT or FMEA. The
next challenge is to integrate SA in a complex engineering environment that gathers
change management tools, configuration tools, quality tools etc… Indeed, considering
traceability needs, the tool that ensures safety analysis has to manage the evolution of
system architecture and configuration as well as requirements evolution. We require
configuration management in order to control changes throughout the system life-
cycle. So we can evaluate changes before they are approved. We need to control
product releases and updates, to record and report components status, to manage the
process execution and its tools. Configuration management must facilitate team work.
It can also manage revision of requirements through version control.

Requirements change management activities include:

• Analyzing changes management: Any change request must be documented and
recorded. An impact analysis can be performed and the decision whether the
change has to be implemented or not.

• Implementing changes management: Existing requirement must be considered as
obsolete when it has been deleted or replaced by the new requirement.

A traceability links must be established between obsolete and new requirement. This
must allow registering modifications that have been performed.

These aspects will be developed in the course of the year thanks to the Crystal
project.

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 137–146, 2014.
© Springer International Publishing Switzerland 2014

Contract-Based Analysis for Verification
of Communication-Based Train Control (CBTC) System

Marco Carloni1, Orlando Ferrante1, Alberto Ferrari1,
Gianpaolo Massaroli2, Antonio Orazzo2, Ida Petrone2, and Luigi Velardi2

1 Advanced Laboratory on Embedded Systems, via Barberini, 50, Rome, Italy
2 Ansaldo Signalling and Transportation Solutions, via Argine, 425, Naples, Italy

{marco.carloni,orlando.ferrante,alberto.ferrari}@ales.eu.com,
{gianpaolo.massaroli.prof644,antonio.orazzo,

ida.petrone.prof423,luigi.velardi}@ansaldo-sts.com

Abstract. In this paper we apply the contract theory to the analysis of the door
control functionality in a metro train. The system under development is speci-
fied and modeled by rail domain experts. Contract theory is used to formalize
some safety requirements that can be then automatically analyzed by our devel-
oped tool suite, Formal Specs Verifier (FSV). The produced work that derives
by working with and on FSV represents a good starting point for matching the
industrial needs in the field of system analysis and testing and for the definition
of new analysis methods that provides indications on how to efficiently reduce
the effort of making an exhaustive testing.

Keywords: requirement engineering, model-based design, contract theory,
semi-formal verification, model checking.

1 Introduction

In requirements engineering the need to fix the specification of the system under de-
sign through the adoption of an unambiguous language is paramount. This goal
improves both automation, i.e. the minimization of the human intervention in the
development process of services and/or goods, and traceability, i.e. the connection of
models, tests, and analyses with requirement definitions to help manage changes and
reduce waste in the design flow.

The main contribution of this work is the application of Contract-Based Design for
the analysis of a part of the on-board sub-system of the Ansaldo STS CBTC System,
which commands the passengers’ doors of a metro train. This analysis is performed as
part of the MBAT European Project (2011-2014) that aims at exploiting synergies
between formal analysis and testing for the verification and validation (V&V) of em-
bedded systems. We use ALES tool suite Formal Specs Verifier [1] to model the re-
quirements as contracts and to perform automatic analyses that formally verify the
contracts against the model. The interesting results we get give us the right stimulus to
progress this activity on the implementation of new techniques for reducing the effort
of V&V of complex systems.

138 M. Carloni et al.

The paper is organized as follows: in section 2 the railway use case is presented.
Section 3 shortly describes the developed technology conforms to the applied Con-
tract-based Analysis principles. In section 4 the activities of requirements formaliza-
tion, modelling, and analyses are illustrated. Finally, section 5 summarizes the
performed activity and outlines the future steps.

2 The Use Case Under Investigation

As said before, the use case provided by ASTS (Ansaldo STS) derives from CBTC, an
automatic innovative system for the management of railway traffic in an urban area. It
is particularly used for metropolitan projects with the aim to overcome the limitations
of conventional fixed-block systems optimizing the transportation levels and ensuring
safety and shortest headways in the newest Rapid Transit Metro systems.

CBTC technology ensures that the trains stop at the right position at the stations,
open and close the doors, leave the stations, keep the correct speed and the secure
distance between them, and so on, by means of systems integrated in the trains, on the
tracks, on the stations and in the control room, which have the capability to exchange
real-time data in continuous way.

The correct integration of these different sub-systems and the consequent proper
operation of the final system in compliance with the given requirements, involves
deep and extensive activities of analysis and testing on the CBTC functions. Due to
the high costs of the traditional development process, in this work we adopt the new
tools and methods to reduce the effort through the combination of analysis and testing
techniques developed in MBAT project and described in the next sections.

3 The Formal Specs Verifier (FSV) Tool-Suite

ALES laboratory has recently implemented the Formal Specs Verifier (FSV) tool-
suite to support Contract-based Design (CBD) for analysis and testing. CBD metho-
dology was proposed in [2], [3], [4] to facilitate the development of the work among
different design groups. The contract definition relies on the concept of sys-
tem/component interface in a component-based model. A system/component is a hie-
rarchical entity that represents a unit of design and components are interconnected
and communicate through ports carrying discrete or event values. The interface of a
system/component is defined by its ports. Moreover, implementations and require-
ments can be attached to components. Requirements are expressed as contracts.
Finally, a contract formalizes expectations between the system/component and its
environment. In this context, the models are “rich” - not only profiles, types, or tax-
onomy of data, but also models describing the functions, performances of various
kinds (time and energy), and safety[5].

FSV is presently capable of automatically processing a Matlab Simulink model file
producing an internal representation for execution of formal verification and test
generation. In this work we exploit two specific tools of the suite: the BCL toolbox
and the Formal Verification tool.

 Contract-Based Analysis for Verification of CBTC System 139

3.1 FSV-BCL Toolbox

The FSV-BCL toolbox is a Simulink library implementation of the Block-based Con-
tract Language (BCL), a ALES proprietary language for requirement formalization
[6], that we developed during the evolution of this activity. This toolbox is a graphical
editor built to assist the engineers in tackling the complexity of requirement formali-
zation by providing a library of patterns to univocally define requirements.

3.2 FSV-Formal Verification

The analysis execution, performed by FSV-Formal Verification, allows for checking
the satisfaction relation using formal verification by the implementation of the model
checking technique [1]. The implementation of this technique is sketched in Figure 1.
The implementation provides different method engines according to the designer
needs.

Fig. 1. FSV - Formal Verification, model checking implementation

Basically, FSV-Formal Verification takes as inputs a model of the system and a de-
scription of the requirement specification, i.e. the desirable behavior, provided by the
FSV-BCL tool. Once the designer has selected the contract to be verified, FSV-
Formal Verification automatically checks if this contract is not violated. If an error is
recognized the tool provides an executable counter-example, technically named har-
ness model, showing that the model behaves in an undesired way when stimulated by
a particular input trace produced by the tool. Thus the harness model provides evi-
dence that the model is faulty and needs to be revised. If no errors are found, the
model description can be refined by taking new design decisions that make the model
more concrete and the verification process can be restarted.

140 M. Carloni et al.

4 Modeling, Requ

Figure 2 depicts the ASTS
[7]. The workflow is compo

The elements on the left
from system Functional Re
guage, the system dynamic
eration is calibrated on this
from the specifications them
helpful to reduce the numb
Rules, indeed, define the in
these input variables will be
time and costs during the te

The central part is relate
system model is built starti
Implementation on Target.

The right part concerns
the system model, aiming,
testing phase (which are de
in terms of number of disc
ties [10] [11].

4.1 System Modeling

The system function under
tionality of the ASTS CBT

uirements Formalization, and Analysis

 workflow for combination of Analysis & Testing (A&
osed of three main parts.

Fig. 2. ASTS workflow

part are related to the Dynamic Testing phase [8]: start
equirements Specifications (FRS), written in natural l

c model is manually defined, and the Automatic Test G
s model. In the ATG phase the Reduction Rules (deriv
mselves and/or from one's own domain characteristics)
ber of the tests which have to be executed. The Reduct
nput variables which don’t affect the output ones; therefo
e set to default values to test the output ones, saving he

est execution phase [9].
d to the model definition and the system design phases:
ng from system FRS, and it leads to the automatic Syst

the Contract-based Analysis we perform in this work

, through the exploitation of synergies with the dynam
escribed hereinafter), to achieve a more efficient workfl
overed errors and effort spent to perform the V&V act

r investigation is the implementation of an on-board fu
C system. The role of this function is to manage the se

&T)

ting
lan-

Gen-
ving

are
tion
ore,

ence

the
tem

k on
mic

flow
tivi-

unc-
et of

 Contract-Based Analysis for Verification of CBTC System 141

actions related to the opening and the closing of the train doors for safe passenger
transfer. This includes: 1) ensuring that the train is stopped and correctly aligned at
the platform; 2) the safe immobilization of the train during the passenger exchange; 3)
the safe management of the opening and the closing of the train doors and 4) the safe
departure of the train when the train doors are closed and locked. Following a compo-
nent-based methodology, the system behavior (architecture and functionality) is mod-
eled using the MATLAB Simulink/Stateflow software [12].

4.2 Requirements Formalization

The requirements taken into account are specified in natural language and classified
in 2 categories: safety (Table 1) and reachability (Table 2). For space limitations only
one contract for each category is presented. In applying the contract formalization, the
first step consists in finding out the signals included in each requirement; signal labels
are included in brackets after the relevant text object in Table 1. The second step is to
map each requirement, according to the signals, to a specific system component or to
the system itself that has those signals entering to its ports. Next, from the point of
view of the system/component, the assumptions on the input signals are defined and
the promises on the signals are set with respect to the related requirement and by us-
ing a formal notation. Table 3 and Table 4 show the requirements translated in the
contract formalization.

Table 1. Safety

Req. ID Natural Language Description

RS01

if train's polarity (TP_train_polarity) is positive, the right platform side is not to
be opened at some point while that train is at that platform (cur-
rent_platform_side), and the driver has commanded the doors on the right side
of the train to open (driver_door_open_rqst_right) then it never happens that
the check of the manual door selection (manual_door_selection_error) won't
be failed.

Table 2. Reachability

Req. ID Natural Language Description

RR01

During the life of the system there must exist a combination of values for the
inputs signals that produces the following output combination: both the check
of the manual door open right selection (ma-
nual_door_open_right_selection_error) fails and the check of the manual door
open left selection (manual_door_open_left_selection_error) fails.

Table 3. Safety Contract

Contract ID Formal Language Description

CS01

ASSS01
TP_train_polarity in {“positive”,”negative”,“unspecified”} &&
current_platform_side in {“left”,”right”,”left_then_right”,
right_then_left”,”none”}

PRMS01
(TP_train_polarity = “positive”) && (current_platform_side =
“left”) && (driver_door_open_rqst_right = TRUE)  !(!ma-
nual_door_selection_error)

142 M. Carloni et al.

Table 4. Reachability Contract

Contract ID Formal Language Description

CR01
ASSR01

TP_train_polarity in {“positive”,”negative”,“unspecified”} &&
current_platform_side in {“left”,”right”,”left_then_right”,
“right_then_left”,”none”} && platform_tp_line_direction in
{“TRUE”, “FALSE”}

PRMR01
F((manual_door_open_right_selection_error) && (ma-
nual_door_open_left_selection_error))

The formal notation is suitable for a machine going to process the contracts, as

FSV-Formal Verification, but it does not result really “polite” to the engineer that has
to formalize the requirements. This is the main reason to motivate the ALES engineer
to implement the graphical editor of the BCL. By using the FSV-BCL toolbox, devel-
oped for the Simulink environment, the contracts are graphically modeled enriching
the functional model of the system. Figure 3 shows the FSV-BCL model of the safety
contract CS01: system inputs are colored in green while system outputs are colored in
red. For CS01 there are 3 system inputs and 1 system output. All these signals are
inputs for the contract. By exploiting the pattern blocks for the specification of the
contracts, provided by the BCL toolbox, we rapidly build the logic describing the
assumption and the promise of CS01. Finally, the “P” block allows us fixing the final
logic value we expect to be kept during the analysis. Following the BCL guidelines,
we repeat the model construction for all the contracts we are going to analyze.

Fig. 3. Safety Contract (CS01)

4.3 Contract-Based Analysis

FSV supports a rich subset of the language constructs provided by Simulink and
STATEFLOW software. Therefore, we use the FSV-Formal Verification tool to
process the overall Simulink schematic (system model and contracts) and perform the
following Contract-based Analyses: 1) safety analysis; 2) coverage analysis. The re-
sults of the analyses consist in a text report showing if the contract is verified or vi-
olated. The evidence of a contract violation is eventually provided by a simulation
trace through the generation of an executable Simulink test harness model.

 Co

Safety Analysis. The safe
listed in Table 1 will never
tem is the case of a driver
side of the train: the platfor
tries to open the right side
sengers like traumas and f
bad situations, the system
states/combination of hazar
space, it is possible to dem
erwise, if the dangerous sit
sign of the system and/or t
when the exploration is not
could not occur with a certa
ysis, the contracts declare
Therefore, each contract w
unreachable. The screensho
promise of contract CS01 is

Fig. 4. FSV-Formal V

Coverage Analysis. The c
the system not stimulated b
result with static analysis al
applied the static analysis w
as shown in Figure 5, starti
cation can provide two resu
ponding test case is missin

ontract-Based Analysis for Verification of CBTC System

ety analysis aims to ensure that the hazardous scenar
r occur. An example of hazard identified in the ASTS s
which attempts to manually open the doors on the wro

rm is on the left of the train current direction, but the dri
doors. This situation can cause serious injuries to the p

fulguration (if the train line is electrified). To avoid th
m has to be explored in order to detect the hazard
rdous conditions. If the exploration is complete on the s

monstrate that the hazardous scenario is not reachable; o
tuation is reached, the analysis indicates the erroneous
the erroneous definition of requirements. On the contra
t complete, it is possible to state that the unwanted scena
ain value of probability [13]. In the performed safety an
in their promises that some situation will never happ

will be never violated if the relative system states will
ot of Figure 4 shows the output of FSV that states that
s verified (VERIF. STATUS=TRUE).

Verification: the result of safety analysis for contract CS01

overage analysis provides a measure of the states/parts
by the test set. As a consequence, the combination of
llows justifying the not covered branches of the model.
with contracts in carrying out this operation. In particu
ing from the not covered branches, the FSV-Formal Ver
ults: 1) The state is reachable. This implies that the corr
ng. Through the counter-example provided by the analy

143

rios
sys-
ong
iver
pas-
hese
dous
tate
oth-
de-

ary,
ario
nal-
pen.
l be
the

s of
this
We

ular,
rifi-
res-
ysis

144 M. Carloni et al.

Fig. 5

Fig. 6. FSV-Formal Verificati
sis of contract CR01

5. Coverage Analysis: an A&T technique

on: test harness generation and execution for the coverage an

naly-

 Contract-Based Analysis for Verification of CBTC System 145

tool, it’s possible to achieve a feedback between analysis and testing phases, i.e. the
test to include in the dynamic analysis phase itself or 2) the state is not-reachable.
This last condition has to be justified by the user. The possible explanations are two.
The state is effectively not-reachable (similar to “dead code”), likely due to the mod-
ifications occurred during the system development phases. This state has to be deleted
or the state is a “defensive state” and it has been intentionally added in order to be
not-reachable in correspondence of any input combination (mandatory for SIL4). The
coverage analysis was executed for the contract in Table 4 must happen at least one
time during the system lifetime. Even in this case, we can use FSV to explore that
this liveness property occurs: we negate the requirement and we find that the negated
property is violated. Therefore, the produced counter-example gives the sequence of
input values that leads to the reachability of the required condition that thus results
covered.

Figure 6 collects some images of the FSV processing for this coverage analysis: in
the upper image the result of the negated contract violation is shown, on the left the
model of the negated contract and the input traces for the test harness are illustrated,
and, finally, on the right side the simulation output produced by the Simulink test
harness is visualized in the moment when the property fails. In this case, since the
contract was defined on a combinatorial part of the system, the desired result, i.e. the
false condition, is obtained in the first step of the simulation.

5 Conclusion and Future Work

In this work, we applied the contract-based design methodology for analyzing the
model of the Ansaldo STS CBTC System. The safety and coverage requirements were
formalized as contracts to be processed by FSV, a tool suite we are developing for the
verification of the embedded systems. FSV aided us to automatically verify the con-
tracts against the modeled system through the satisfaction relation checking tech-
nique. In order to reduce the overall effort of complex systems design, we plan to
extend our work on the following three main axes: methodology refinement, analysis
testing tool suite improvement, enlargement of the set of analyses to perform through
the implementation of other interesting analyses based on the definition of new cate-
gories of identified requirements.

Acknowledgements. The research leading to these results was partially funded by the
EU ARTEMIS Joint Undertaking under grant agreement no. 269335 (project MBAT)
and the Italian Ministry of Education, University and Research (MIUR).

References

1. Ferrante, O., Benvenuti, L., Mangeruca, L., Sofronis, C., Ferrari, A.: Parallel NuSMV: A
NuSMV Extension for the Verification of Complex Embedded Systems. In: Ortmeier, F.,
Daniel, P. (eds.) SAFECOMP 2012 Workshops. LNCS, vol. 7613, pp. 409–416. Springer,
Heidelberg (2012)

146 M. Carloni et al.

2. Benveniste, A., Caillaud, B., Passerone, R.: Multi-viewpoint state machines for rich com-
ponent models. In: Model-Based Design for Embedded Systems. CRC Press (November
2009)

3. Benvenuti, L., Ferrari, A., Mangeruca, L., Mazzi, E., Passerone, R., Sofronis, C.: A con-
tract-based formalism for the specification of heterogeneous systems. In: Forum on Speci-
fication & Design Languages (FDL 2008) (September 2008)

4. Mangeruca, L., Ferrante, O., Ferrari, A.: Formalization and completeness of evolving
requirements using Contracts. In: 2013 8th IEEE International Symposium on Industrial
Embedded Systems, SIES (2013)

5. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.-B., Reinkemeier, P.,
Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.: Contracts for System
Design (2012)

6. Ferrante, O., Passerone, R., Ferrari, A., Mangeruca, L., Sofronis, C., D’Angelo, M.: Moni-
tor-Based Run-Time Contract Verification of Distributed Systems. In: 9th IEEE Interna-
tional Symposium on Industrial Embedded Systems, SIES, Pisa (2014)

7. Marrone, S., Nardone, R., Orazzo, A., Petrone, I., Velardi, L.: Improving Verification
Process in Driverless Metro Systems: The MBAT Project. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 231–245. Springer, Heidelberg (2012)

8. CESAR: CESAR Project, Cost-efficient methods and processes for safety relevant embed-
ded systems, http://www.cesarproject.eu/ (accessed 2012)

9. Bonifacio, G., Marmo, P., Orazzo, A., Petrone, I., Velardi, L., Venticinque, A.: Improve-
ment of Processes and Methods in Testing Activities for Safety-Critical Embedded
Systems. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS,
vol. 6894, pp. 369–382. Springer, Heidelberg (2011)

10. De Nicola, G., di Tommaso, P., Rosaria, E., Francesco, F., Pietro, M., Antonio, O.: A
Grey-Box Approach to the Functional Testing of Complex Automatic Train Protection
Systems. In: Dal Cin, M., Kaâniche, M., Pataricza, A. (eds.) EDCC 2005. LNCS,
vol. 3463, pp. 305–317. Springer, Heidelberg (2005)

11. De Nicola, G., di Tommaso, P., Esposito, R., Flammini, F., Marmo, P., Orazzo, A.:
ERTMS/ETCS: Working Principles and Validation. In: Proceedings of the International
Conference on Ship Propulsion and Railway Traction Systems, SPRTS 2005, Bologna, Ita-
ly, pp. 59–68 (2005)

12. MathWorks In: Simulink - Simulation and Model-Based Design,
http://www.mathworks.com/products/simulink

13. di Tommaso, P., Esposito, R., Marmo, P., Orazzo, A.: Hazard Analysis of Complex Distri-
buted Railway Systems. In: Proc. of International Symposium on Reliable Distributed
Systems, SRDS 2003, Florence, Italy, pp. 283–292 (2003)

An Interoperable Testing Environment

for ERTMS/ETCS Control Systems

Gregorio Barberio1, Beniamino Di Martino2, Nicola Mazzocca3, Luigi Velardi4,
Aniello Amato1, Renato De Guglielmo4, Ugo Gentile3, Stefano Marrone5,

Roberto Nardone3, Adriano Peron3, and Valeria Vittorini3

1 MATE Consulting s.r.l., Salerno, Italy
{g.barberio,a.amato}@tabit.it

2 Seconda Università di Napoli, DIII, Aversa, Italy
beniamino.dimartino@unina2.it

3 Università di Napoli “Federico II”, DIETI, Napoli, Italy
{nicola.mazzocca,ugo.gentile,roberto.nardone,

adrperon,valeria.vittorini}@unina.it
4 AnsaldoSTS, Napoli, Italy

{Luigi.Velardi,Renato.DeGuglielmo}@ansaldo-sts.com
5 Seconda Università di Napoli, DMF, Caserta, Italy

stefano.marrone@unina2.it

Abstract. Verification of functional requirements of critical control
systems requires a hard testing activity regulated by international stan-
dards. As testing often forms more than fifty percent of the total develop-
ment cost, to support the verification processes by automated solutions
is a key factor for achieving lower effort and costs and reducing time to
market. The ultimate goal of the ongoing work here described is the de-
velopment of an interoperable testing environment supporting the system
level testing of railway ERTMS/ETCS control systems. The testing en-
vironment will provide a standardized interface to enable the integration
testing between sub-systems developed by different companies/suppliers.
We present the first outcomes obtained within the ARTEMIS project
CRYSTAL which tackles the challenge to establish and push forward an
Interoperability Specification (IOS) as an open European standard for
the development of safety-critical embedded systems.

Keywords: Functional Testing, Railway Control System, Model-Based
System Testing, Model Driven Engineering, Test Case Generation.

1 The RBC Use Case within the Crystal Project

The ARTEMIS Joint Undertaking project CRYSTAL (CRitical sYSTem engi-
neering AcceLeration) [2] takes up the challenge to establish and push forward
an Interoperability Specification (IOS) and a Reference Technology Platform
(RTP) as a European standard for safety-critical systems. CRYSTAL is strongly
industry-oriented and will provide ready-to-use integrated tool chains having a
mature technology-readiness-level. To achieve technical innovations (“technology

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 147–156, 2014.
c© Springer International Publishing Switzerland 2014

148 G. Barberio et al.

bricks”), CRYSTAL adopts a user-driven approach based on applying engineer-
ing methods to industrially relevant Use Cases from the automotive, aerospace,
rail and health-care sectors [15] and increases the maturity of existing concepts
developed in previous European and national projects like CESAR [1], iFEST [3],
MBAT [4]. The work described in this paper was born in the rail domain, and
specifically from the needs expressed by Ansaldo STS (ASTS), an international
transportation leader in the field of signalling and integrated transport systems
for passenger traffic (Railway/Mass Transit) and freight operation. The indus-
try needs expressed by the ASTS’s Use Case are oriented to improve the quality
and the efficiency of existing Verification & Validation (V&V) processes. In fact,
testing activities are time-consuming tasks whose efficiency is a primary issue in
a global competitive market and whose quality can not be decreased due to the
adherence to international standards.

The ASTS’s Use Case is centred on the Radio Block Centre (RBC) system, a
computer-based system whose aim is to control the movements of the set of trains
on a track area under its supervision, in order to guarantee a safe inter-train
distance according to the ERTMS/ETCS specifications. ERTMS/ETCS (Euro-
pean Rail Traffic Management System/European Train Control System) [16] is a
standard for the interoperability of the European railway signalling systems en-
suring both technological compatibility among trans-European railway networks
and integration of the new signalling system with the existing national train in-
terlocking systems. Each ERTMS/ETCS controlled track is usually divided into
several sub-tracks, each of them is supervised by a single RBC in charge of con-
currently and continuously controlling a number of connections with trains. The
main objective of the train control system is to timely transmit to each train its
up-to-date Movement Authority (MA) and the related speed profile. The MA
contains information about the distance the train may safely cover, depending
on the status of the forward track. RBC is also in charge of managing emergency
situations if the communication with one or more trains is compromised.

In this context, this paper presents an interoperable testing environment sup-
porting the system level testing of railway ERTMS/ETCS control systems being
developed within CRYSTAL. The paper is organized as follows: Section 2 pro-
vides a bird-eye view of the testing environment and related technological bricks
involved in the ASTS Use Case. The subsequent Sections contain more informa-
tion about the state of development of each Brick: Section 3 addresses modelling
and test case generation carried out in the Rail Model Brick; Section 4 and Sec-
tion 5 describe the architecture of the IOP Test Writer and Log Analyzer Bricks,
respectively. Finally Section 6 describes how the Bricks are integrated into the
CRYSTAL RTP/IOS.

2 An Environment for ERTMS/ETCS Interoperable
Testing

The user needs expressed by ASTS within the CRYSTAL project are oriented
to the automation of the system level testing activities, and to the realisation of

An Interoperable Testing Environment for ERTMS/ETCS Control Systems 149

a tool chain providing full support to interoperable testing. In this Section the
complete workflow of the automated testing process is described as well as the
components of the tool chain and their relationships.

The proposed workflow complies with the ASTS Use Case requirements and
will improve the current testing process, starting from the definition of the sys-
tem specification to the generation of test reports. In detail, it enables semi-
automatic generation of test cases from a set of test specifications, relying on
a Model-Driven methodology. The generated test cases are then automatically
transformed into executable test scripts, which can be executed on the real sys-
tem or on simulation environments. Test logs are then analysed and test reports
are automatically generated.

In Fig. 1 (a) the complete workflow is represented by an activity diagram, the
tool chain and the involved technological bricks are described in Fig. 1 (b). The
same figure also reports the links between each activity of the workflow and its
supporting brick.

Fig. 1. CRYSTAL enhancements: the testing workflow (a) and the bricks implementing
the tool chain (b)

With respect to the current process implemented in ASTS, this workflow
introduces three main advantages:

– automatic generation of test cases from test specification: in the current pro-
cess, adopted by ASTS, test cases are manually generated by domain experts

150 G. Barberio et al.

which are able to control the high complexity of these systems. This activ-
ity is heavy and error prone, in addition the training of new testers is very
expensive as they must have a great experience, that could be acquired only
working on several different projects.

– generation of test script in IOP notation: due to the heterogeneity of sim-
ulation environments, system level testing requires an interoperable testing
environment where different simulators can exchange information. The gen-
eration of test scripts in IOP notation, under development by UNISIG, allows
for the execution of interoperable tests in a multi-suppliers environment.

– tool supported analysis of test logs : the decision about the outcomes of test
cases is currently performed by inspecting big log files; the adoption of a tool
which is able to parse generated logs reduces the efforts of navigating them
and generating reports.

The first activity of the testing workflow is the realization of a system spec-
ification, performed manually by V&V engineers by using a proper modeling
language and a graphical modeling environment. The specification of the system
is given by a high-level description of the system behaviour and by the set of
functional requirements the system shall satisfy. By the same environment, the
test specifications are defined in order to describe the essential features that a
test case must accomplish (e.g., the sequence of transitions that the test case
shall stress). Test cases are generated from the system and test specifications in
semi-automatic way.

According to the proposed workflow, test cases can be analyzed (at the state
this is not automated) and, if they are rejected by engineers, some updates on the
source specifications can be performed. Test cases are then transformed into exe-
cutable test scripts, through a transformation in the IOP notation. This language
supports the creation of interoperable and multi-supplier testing environments.

Test scripts are executed and proper test logs are generated. The execution of
test cases has not been considered in the CRYSTAL project, since each railway
operator is interested in using proprietary testing environment. However test logs
can be parsed in order to detect possible inconsistencies between planned test
case and test execution. These inconsistencies can be due to wrong specification
(and it is necessary the feedback to the source model), otherwise they trace bugs
in the developed system. Finally test reports can be generated.

Fig. 1 (b) shows the tool chain that will support the execution of the proposed
workflow. Three technological bricks will be developed in the CRYSTAL project,
they are: Rail Model, IOP Test Writer and Log Analyzer. The first one provides
the modeling environment to describe the system and the test specifications, it
is also able to generate test cases implementing the appropriate transformations
to and from the specific model checker, as explained in the next Section. The
second brick supports the generation of test scripts written in IOP Language
(according to the concept of an interoperable testing environment). The last one
is able to parse the test logs and to generate test reports from them. Some details
about these technological bricks are given in the following Sections, as well as
some technological hints.

An Interoperable Testing Environment for ERTMS/ETCS Control Systems 151

3 Rail Model: Model-Based Test Sequences Generation

The inputs of the Rail Model brick are a formal state based specification of the
system behaviour and of its requirements. From them, chains of model trans-
formations allows to obtain Test Cases by applying model checking techniques.
This approach is based on the previous experiences on extending UML with the
V&V UML Profile [10,14]. The approach under development envisages a) the
definition of a proper formal state-based language (DSTM4Rail) to be used for
modeling the behaviour of the system under test and to formalize the require-
ments from which the test specifications are obtained; b) the implementation of
the transformation chains in order to obtain the test cases; c) and the definition
of a proper set of test specification patterns which will provide general reusable
models for recurrent classes of requirements.

The CENELEC standards [6,7] explicitly recommend the usage of state-based
formalisms, as the dynamic of critical control systems, based on a sequential
computation, can be abstracted as a state-transition system. Despite the great
number of works addressing the usage of state machine and their extensions,
within CRYSTAL the railway industry expressed the need for a concise formal
modeling notation, able to easily capture some characteristic features of the
specific domain, to be used in model-driven test automation environments. In
particular, at the state, ASTS keeps out the possibility of using several UML
diagrams and prefers an ad-hoc formal language, developed from scratch, with
the objective to be as simple as possible and as rich as needed for modeling the
behaviour and the requirements of a railway control system for system testing
purposes.

DSTM4Rail extends Hierarchical State Machines [5]. Its peculiarity mainly
resides in the semantics of fork-and-join which allows dynamic (bounded) in-
stantiation of machines (processes) and parallel execution of machines inside a
box. Each state machine may be parametric over a finite set of dynamically evalu-
ated parameters; in addition the same machine may be dynamically instantiated
many times without explicitly replicating its entire structure.

DSTM4Rail also allows to model the requirements and add proper information
to the behavioural models for implementing requirement traceability. ATL (Atlas
Transformation Language) [13] is used to translate the DSTM4Rail model of the
system to a NuSMV [8] or Promela [12] specification and the DSTM4Rail model
of the requirement to verify into a CTL/LTL specification or into a Promela
property (e.g., a never claim) which are added to the NuSMV or Promela model,
respectively. Indeed, it is well known that test case generation may be obtained
by using the ability of a model checker to construct counterexamples to violated
properties: a counterexample defines the sequence of steps which are interpreted
as a test case [11].

Fig. 2 shows a DSTM4Rail specification model of a particular functionality
of RBC (i.e., Management of the train movement in the box) and its realization
in the prototype modeling environment.

During the movement of the train, RBC periodically sends the Movement
Authority (MA) to the train (Section 1). Concurrently, RBC has to monitor the

152 G. Barberio et al.

Fig. 2. A DSTM4Rail model and a tool screenshoot

commands that come from the Centralized Traffic Control (CTC) where a human
operator may raise an alarm which requires the train to brake: in this case an
Unconditional Emergency Stop (UES) message is sent to the train. On the other
hand, when the train successfully ends its trip, it performs the End of Mission
(EoM) procedure. This scenario needs for representing concurrently executing
machines, one of whom may force the termination of the others. DSTM4Rail
models this situation by a preemptive join, as shown in Fig. 2 where the processes
CENTRAL CONTROL and PERIODIC MA are executed concurrently but,
when the first machine reaches the UES exiting node, the join on the left forces
with preemption the process PERIODIC MA to terminate. In this case the
machine EMERGENCY MANAGEMENT is instantiated. On the contrary, if
the process PERIODIC MA terminates in the EoM exiting node, the join on the
right forces with preemption the CENTRAL CONTROL to terminate, and the
END OF MISSION machine is instantiated.

State of the development : up to date a first and stable version of the DSTM4Rail
formalism has been implemented, within the Eclipse Modelling Framework
(EMF), by an Ecore metamodel. To represent DSTM4Rail in a user-friendly
way, a graphical editor has been realized through functionalities provided by the
Eclipse Graphical Modeling Framework (GMF). A screen shot of the graphical
environment is shown in Fig. 2.

The implementation of the transformations is an ongoing activity. At the
state, a set of test specification patterns has been also defined, based on the
notion of Dwyers’s property specification patterns [9].

An Interoperable Testing Environment for ERTMS/ETCS Control Systems 153

4 IOP Test Writer

The Rail Model brick, described in Section 3, generates the sequence of the steps
specifying the test case. These traces need to be translated into an concrete no-
tation in order to be executed on simulated environments. Since ERTMS/ETCS
based infrastructures are composed by different subsystems that can be supplied
by different technology providers, the testing and simulation environments re-
flect this heterogeneity being a federation of different simulators developed by
different teams. One of the requirements for a an interoperable testing environ-
ment is that each component must speak a common “testing” language. The
IOP Notation is developed by the UNISIG (Union Industry of Signaling). Prop-
erly interpreted by vendor-specific adapters, IOP can support the creation of
integrated testing environments. The aim of the IOP notation is not limited to
simulated environments as it can be used to give commands and interpreting the
states of real systems: the scenario depicted in the Fig. 3 exemplifies its usage
in on-field testing.

Fig. 3. IOP Test Writer

Since all the ERTMS technology providers are interested in increasing the
level of interoperability of their products, ASTS is moving its testing tool set
and environments to the IOP notation. According to this wish, the IOP Test
Writer can extremely accelerate the test implementation phase by automatically
generating the test scripts written in IOP language from the test cases created
by Rail Model.

The IOP Test Writer tool will consists of two modules according to software
engineering best practises: the TestWriter and the Load/Store Manager. Each
module performs some specific tasks and shows a set of interfaces used to interact
with the other module. More specifically:

154 G. Barberio et al.

– the Load/Store manager module provides the interfaces to interact with
the external modules (for example the RailModel) and with the other tech-
nologies within the Crystal IOS. Load/Store manager module loads the test
sequences produced by the Rail Model Brick and stores their results in the
system: such interaction is accomplished by means of IOS/RTP;

– the IOP Writer module provides the transformation of the test cases ex-
pressed in a Ecore language to a test cases expressed in IOP notation by
means of a Model-to-Text (M2T) transformation.

State of the development: up to date, the IOP Test Writer is in its design phase.
The idea is to develop it in Java as an Eclipse plug-in to make the integration
with the Rail Model brick easier.

5 Log Analyzer

The Log Analyzer brick aids the V&V engineer to state if the execution of a
specific test passes/fails. Hence, the Log Analyzer has two different sources: (1)
a test case as generated by the Rail Model brick, (2) the logs created by the
execution of a test case (after its translation into the IOP notation) on the
specific testing environment. According to such inputs, the Log Analyzer may
find if logs and the test case match. Such operation would be pointed out to the
V&V engineer who is able to decide if the test passes, fails (due to an error in
the system model) or fails (due to a misinterpretation of the requirements).

The Log Analyzer has a modular architecture according to software engineer-
ing best practises:

– the Load manager module provides the interfaces to interact with the ex-
ternal modules and with the other technologies within the Crystal IOS. The
Load manager loads the test sequences produced by the Rail Model Brick:
such interaction is accomplished by means of IOS/RTP;

– the Parsing and Analysis module is used to parse the logs of the test execu-
tions. Moreover, each log is analyzed according to the inputs and then the
fail/pass decision is taken for the single log.

– the Report module focuses on building up summary information about the
entire testing campaign and in generating supporting tables for traceability,
coverage, etc.;

– the Export module has the role to export the report of a testing campaign and
the related execution logs. The target report will be conform to widespread
document formats (e.g. pdf files or spreadsheets).

State of the development: up to date, the Log Analyzer is in its design phase.
As it is not called automatically after the first two bricks, the design teams of
this tool is evaluating the possibility to implement it as a stand-alone tool.

An Interoperable Testing Environment for ERTMS/ETCS Control Systems 155

6 Integration in RTP/IOS

As shown in Figure 1, each Technology Brick interacts with an External Tool
Interface module. This External Tool Interface module implements a custom
solution for the integration of RailModel, IOP Test Writer and Log Analyzer
or a flexible solution for a generic integration, based on the technologies avail-
able in Crystal Reference Technology Platform / Interoperability Specifications
(RTP/IOS). The RTP is a generic platform for the integration of model-based
tools. It is composed by a set of interoperable tools, methods and processes
designed to increase the quality of development processes of safety critical em-
bedded systems. This integration platform will host tools coming from different
stakeholders (vendors, industrial & academic partners, etc.) that realise Bricks
within the project. Therefore there is the need for a common non-proprietary
standard to realise this interoperability functionality within the RTP.

The CRYSTAL IOS would accomplish this task by adopting the Open Services
for Lifecycle Collaboration (OSLC), a framework that moves to the integration
of data, workflows and processes among product lifecycles. OSLC is divided in
several workgroups each of which addressing specific integration scenariosThe
set of scenarios and specifications are named OSLC Domain. The presence of
different domains introduces the necessity to manage the coherence among them.
This need is satisfied by a set of standard rules and patterns, contained in the
OSLC Core Specification, and all the domain groups must adopt these rules for
the specifications. The union of a OSLC Core Specification and a OSLC Domain
constitutes a OSLC protocol that is used in order to add interoperability to a
specific tool chain, as in CRYSTAL. Some work packages in CRYSTAL are
devoted to the study of existing standards and to the proposition of proper
technological solutions in order to integrate the Technology Bricks with the
RTP/IOS.

Here a brief description of how the tool chain presented in this paper will be
integrated in the RTP/IOS is reported. According to the Fig. 1, the tool chain
uses the RTP by loading/storing the artifacts generated during the process. Each
brick interacts with the RTP/IOS via its Load/Store Manager. More specifically:

– Rail Model loads existing DSTM model of the system/test specification pre-
viously defined and stores DSTM models created with the Modelling Envi-
ronment. The module may store test cases generated by the Test Generator
module;

– IOP Test Writer loads existing test cases from the RTP/IOS. In addition it
stores IOP compliant test cases generated by the IOP Writer;

– Log Analyzer loads existing test cases from the RTP/IOS. Both the logs of
the test executions and the report are stored out of the RTP/IOS.

Acknowledgments. This paper is supported by research project CRYSTAL
(Critical System Engineering Acceleration), funded from the ARTEMIS Joint
Undertaking under grant agreement number 332830 and from ARTEMIS mem-
ber states Austria, Belgium, Czech Republic, France, Germany, Italy, Nether-
lands, Spain, Sweden, United Kingdom.

156 G. Barberio et al.

References

1. CESAR: Cost-Efficient methods and proceses for SAfety Relevant embedded sys-
tems, http://www.cesarproject.eu/

2. CRYSTAL: CRitical sYSTem engineering AcceLeration,
http://www.crystal-artemis.eu/

3. iFEST: industrial Framework for Embedded Systems Tools,
http://www.artemis-ifest.eu/

4. MBAT: Combined Model-based Analysis and Testing of Embedded Systems,
http://www.mbat-artemis.eu/

5. Alur, R., Kannan, S., Yannakakis, M.: Communicating hierarchical state machines.
In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS,
vol. 1644, pp. 169–178. Springer, Heidelberg (1999)

6. CENELEC. Cenelec, en 50128: Railway applications - communication, signalling
and processing systems - software for railway control and protection systems (2011)

7. CENELEC. Cenelec, en 50126: Railway applications - demonstration of reliability,
availability, maintainability and safety (rams) - part 1: Generic rams process (2012)

8. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: Nusmv: a new symbolic model
checker. International Journal on Software Tools for Technology Transfer 2 (2000)

9. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, ICSE 1999, pp. 411–420. ACM, New York (1999)

10. Flammini, F., Marrone, S., Mazzocca, N., Nardone, R., Vittorini, V.: Model-driven
V&V processes for computer based control systems: A unifying perspective. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 190–
204. Springer, Heidelberg (2012)

11. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from re-
quirements specifications. SIGSOFT Softw. Eng. Notes 24(6), 146–162 (1999)

12. Holzmann, G.: Spin Model Checker, the: Primer and Reference Manual, 1st edn.
Addison-Wesley Professional (2003)

13. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

14. Marrone, S., Flammini, F., Mazzocca, N., Nardone, R., Vittorini, V.: Towards
model-driven v&v assessment of railway control systems. International Journal on
Software Tools for Technology Transfer, 1–15 (2014)

15. Pflügl, H., El-Salloum, C., Kundner, I.: CRYSTAL, CRitical sYSTem engineering
AcceLeration, a Truly European Dimension. ARTEMIS Magazine 14, 12–15 (2013)

16. UIC. ERTMS/ETCS class1 system requirements specification, ref. SUBSET-026,
issue 2.2.2 (2002)

http://www.cesarproject.eu/
http://www.crystal-artemis.eu/
http://www.artemis-ifest.eu/
http://www.mbat-artemis.eu/

Modelling Resilient Systems-of-Systems

in Event-B

Linas Laibinis1, Inna Pereverzeva1,2, and Elena Troubitsyna1

1 Åbo Akademi University, Turku, Finland
2 Turku Centre for Computer Science, Turku, Finland

{linas.laibinis,inna.pereverzeva,elena.troubitsyna}@abo.fi

Abstract. Ensuring resilience – the ability to remain dependable in
dynamic environment – constitutes a major challenge for engineering
systems-of-systems (SoS). In this paper, we take a mission-centric view
on the behaviour of SoS and demonstrate how to formally reason about
their dependability. We use Event-B as our modelling framework and
demonstrate how to formally specify and verify generic system-wide de-
pendability properties as well as the dynamic behaviour of SoS. The
proposed approach is exemplified by a case study – a flight formation
system. As a result, we argue that Event-B offers a scalable approach to
formal modelling of SoS and facilitates engineering of resilient SoS.

Keywords: Systems-of-systems, formal modelling, Event-B, refinement.

1 Introduction

Systems-of-Systems (SoS) are characterised by high complexity, reconfigurabil-
ity and adaptability. Usually a SoS consists of loosely coupled systems (we will
further call them components) that interact with each other to achieve com-
mon goals [3]. Typically, the constituting systems autonomously decide on their
actions to accomplish the desired collaborative behaviour. Since there is no cen-
tralised component that would orchestrate functioning of the constituting sys-
tems, ensuring resilience of SoS becomes especially challenging.

To address this problem, in this paper we propose a formal generic approach
to modelling dependable SoS. We structure the behaviour of SoS in terms of
missions – the collaborative actions of the SoS components working on achieving
the required goals. In our modelling, we follow the systems approach and define
the behaviour of the overall system and the relevant part of its environment
within a common specification. This allows us to express and verify system-wide
properties. By decomposing the obtained model of a SoS into the respective
specifications of its components, we ensure that, despite their autonomy, the
constituents will act in a dependability-preserving way.

We rely on the Event-B formalism and its associated Rodin platform to for-
mally specify and verify behaviour of resilient SoS. Event-B [2] is a state-based
framework that relies on abstract modelling, refinement, and theorem prov-
ing to create and verify specifications of complex systems. To create such a
specification, the designers start with an abstract model that only captures the

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 157–166, 2014.
c© Springer International Publishing Switzerland 2014

158 L. Laibinis, I. Pereverzeva, and E. Troubitsyna

most essential system behaviour and its properties. In a number of correctness-
preserving steps – refinements, the abstract model is transformed into a detailed
specification of the overall system. The resultant specification is further decom-
posed into specifications of the independent subsystems that are guaranteed to
preserve the system-level properties through their interactions. The Rodin plat-
form [9] automates the development and verification in Event-B.

In this paper, we propose a generic model of a resilient SoS and exemplify
the proposed approach by its instantiation to a flight formation case study. Our
generic development defines the methodology of specifying the behaviour and
properties of a SoS without cluttering the reasoning with application-specific
details. When applied to a particular system, the proposed generic pattern is
instantiated and populated with application-specific details, as we demonstrate
by the flight formation example. We believe that the formal system-level reason-
ing is essential for modelling resilient SoS and argue that Event-B constitutes a
suitable basis for achieving this goal.

The paper is organised as follows. In Section 2 we give an overview of the
Event-B formalism. In Section 3 we present our generic model of a resilient
SoS derived by refinement in Event-B. In Section 4 we exemplify the proposed
approach by a case study – a satellite flight formation. Finally, in Section 5 we
present some concluding remarks and discuss the future work.

2 Modelling and Refinement in Event-B

Event-B is a state-based formal approach that promotes the correct-by-construc-
tion development paradigm and formal verification by theorem proving [2]. In
Event-B, a system model is specified using the notion of an abstract state ma-
chine. An abstract state machine encapsulates the model state represented as
a collection of variables, and defines operations on this state, i.e., it describes
the behaviour of the modelled system. A machine usually has the accompany-
ing component, called context. A context may include user-defined carrier sets,
constants and their properties (model axioms). In Event-B, the model variables
are strongly typed by the constraining predicates called invariants. Moreover,
the invariants specify important properties that should be preserved during the
system execution.

The dynamic behaviour of the system is defined by a set of atomic events. An
event is essentially a guarded command that can be defined as follows:

evt =̂ any vl where g then S end

where vl is a list of new local variables, g is the guard, and S is the action. The
guard is a state predicate that defines the conditions under which the action
can be executed. In general, the action of an event is a parallel composition of
deterministic or non-deterministic assignments.

Event-B employs a top-down refinement-based approach to system develop-
ment. A development starts from an abstract system specification that nondeter-
ministically models the most essential functional requirements. In a sequence of
refinement steps, we gradually reduce non-determinism and introduce detailed

Modelling Resilient Systems-of-Systems in Event-B 159

design decisions. In particular, we can add new events, split events as well as
replace abstract variables by their concrete counterparts, i.e., perform data re-
finement. When data refinement is performed, we should define so called gluing
invariant as a part of the invariant of the refined machine. The gluing invariant
defines the relationship between the abstract and concrete variables.

The Event-B refinement process allows us to gradually introduce implementa-
tion details, while preserving functional correctness. The consistency of Event-B
models, e.g., invariant preservation, should be formally demonstrated by dis-
charging the relevant proof obligations. The verification efforts, in particular,
automatic generation and proving of the required proof obligations, are signifi-
cantly facilitated by Event-B tool support – the Rodin platform [9].

There are several features of Event-B that make the framework an attrac-
tive option for modelling SoS. Firstly, abstraction allows us to define system-
wide properties of complex systems and verify them over all execution traces.
Secondly, refinement enables system modelling at different architectural layers.
Furthermore, proofs in combination with refinement allow us to verify complex
systems in a highly automated manner. Finally, a special form of refinement –
decomposition – allows us to derive specifications of constituent systems in such
a way that system-level properties would be preserved despite their autonomy.
In the next section, we will demonstrate how to derive a generic specification of
a SoS by refinement in Event-B.

3 Deriving a Generic Specification of a SoS

The aim of our development is to derive a detailed yet generic specification of
resilient SoS. The resulting generic Event-B development can be applied (by
formal instantiation) to a family of systems sharing similar traits. We cover a
class of SoS that have the following characteristics:

– A SoS should accomplish a number of pre-defined missions;
– The current mission can be changed or restarted depending on the internal

system state or changes in the system environment;
– Each mission has the associated scenario that contains a number of steps

(phases), reaching the last of which indicates completion of the mission;
– SoS functioning can be disrupted by internal or external events (e.g., hard-

ware or communication failures, adverse environment changes) that can put
the SoS into an unsafe state. In that case, the SoS should react by switching
to a degraded yet safe state (mode) of functioning;

– At different architectural levels the system behaviour is governed by the
SENSE → PLAN → ACT pattern, i.e., the system first senses the envi-
ronment changes and/or its internal failures, then plans on how to react on
those, and finally acts on its decisions either changing its course of actions
of by continuing the current mission;

– A SoS consists of a number of constituent systems coordinating their ac-
tivities to achieve the common mission. The coordination is achieved by
inter-component communication to ensure that they are in the same mission
and its phase, or that that they all are in the degraded state.

160 L. Laibinis, I. Pereverzeva, and E. Troubitsyna

IN_MISSION COMPLETED

UNSAFEDEGRADED

Initialisation

Fig. 1. System meta-states and their transitions

Next, we will outline our formal development of such a mission-oriented SoS
in Event-B. We will start with a very abstract description of a SoS (consisting
of a single event) and then unfold the system complexity by four refinement
steps, gradually introducing the notions of missions and their scenarios, the sys-
tem environment and communication, the cyclic behaviour pattern, and finally
decomposing the SoS into its constituent systems.

Abstract Model. In the initial specification, we abstractly model the system
state and state transitions. We partition the system state space into four groups
(meta-states): IN MISSION (i.e., the system is progressing towards the current
mission), COMPLETED (i.e., the current mission is completed or in the last
completing phase), UNSAFE (i.e., the system is disrupted by external or internal
adverse events) and DEGRADED (i.e., the system is in a degraded yet safe
state). The possible transitions between the meta-states are shown on Fig.1.

In the model context component, we introduce the abstract type STATES and
its partitioning into disjoint subsets IN MISSION , COMPLETED ,
UNSAFE , and DEGRADED . Moreover, we define the relation Trans modelling
possible transitions between states. The allowed transitions depicted in Fig.1 are
formulated as a number of axioms constraining Trans , as shown below:

axm7: Trans ∈ STATES ↔ STATES
axm8: ∀s·s ∈ IN MISSION ⇒ Trans[{s}] = IN MISSION ∪ COMPLETED ∪ UNSAFE
axm9: ∀s·s ∈ COMPLETED ⇒ Trans[{s}] = IN MISSION ∪ COMPLETED ∪ UNSAFE
axm10: ∀s·s ∈ UNSAFE ⇒ Trans[{s}] = UNSAFE ∪ DEGRADED
axm11: ∀s·s ∈ DEGRADED ⇒ Trans[{s}] = IN MISSION ∪ UNSAFE ∪ DEGRADED

The dynamic system behaviour is represented by the single event ChangeState:

ChangeState =̂ begin state :∈ Trans[{state}] end
Here the variable state ∈ STATES models the current system state. The event
allows for nondeterministic state change, restricted only by the relation Trans. In
our abstract specification, Trans imposes very loose constraints on possible state
transitions. In the following refinements, we gradually unfold both SoS structure
and its behaviour, constraining at the same time allowed state transitions.

First Refinement. In the first refinement step, we focus on the pre-defined
system missions and their scenarios. In the model context, we introduce the
abstract sets MISSIONS and PHASES, as well as several abstract constants
and functions interrelating system missions, scenarios, and phases.

Modelling Resilient Systems-of-Systems in Event-B 161

axm6: init mission ∈ MISSIONS
axm7: Scenarios ∈ MISSIONS → (PHASES ↔ PHASES)
axm9: fnc ∈ MISSIONS → (PHASES ↔ N)
axm10: ∀m, ph1, ph2·(ph1 �→ ph2) ∈ Scenarios(m) ⇒ fnc(m)(ph2) < fnc(m)(ph1)

Here the constant init mission stands for the initial system mission, the func-
tion Scenarios formally relates each mission with some pre-defined chain of the
mission phases. The function fnc is needed to guarantee that each such scenario
is well-defined, i.e., there exists a decreasing measure (variant) for each scenario,
therefore it cannot continue indefinitely and mission will be either accomplished
or abandoned.

To model the dynamic behaviour of the SoS, we introduce new variables mis-
sion, phase, and failure, standing respectively for the current system mission,
its current phase, and a detected failure. The abstract event ChangeState is now
refined into a number of events specifying under what conditions the system may
enter a particular meta-state or stay within it (e.g., see the events Progressing
and Completion given below). Moreover, the introduced notions of SoS mission
and scenario allow us to elaborate on the IN MISSION meta-state as well as
distinguish between the mission progressing and completing steps.

Progressing =̂ refines ChangeState
any new ph
when state ∈ IN MISSION ∧ failure = FALSE ∧

(phase �→ new ph) ∈ Scenarios(mission)
then state :∈ IN MISSION ‖ phase := new ph end

Completion =̂ refines ChangeState
when state ∈ IN MISSION ∪ COMPLETED ∧ failure = FALSE ∧

¬(∃ph·ph ∈ PHASES ∧ (phase �→ ph) ∈ Scenarios(mission))
then state :∈ COMPLETE end

Finally, we also add a new event ChangeMission allowing the system to non-
derministically change its current mission (if the system is not in the UNSAFE or
DEGRADED states). In the later refinement steps, this event will be constrained
to model a reaction on communication or a detected environment change.

Second Refinement. In the second refinement step, we elaborate on the system
communication aspect. In particular, the current mission can be changed as a
reaction to a received message. Moreover, the system may enter a degraded state
as a result of incoming communication or, vice versa, the system is required to
send an outgoing message if some internal error is detected, thus resulting in
a degraded system state. For brevity, we omit a detailed description of this
refinement step. Later, when the SoS will be decomposed into its constituent
systems, we will further elaborate on the communication mechanisms to ensure
dependability preserving communication.

Third Refinement. In the third refinement step, we introduce the behavioural
pattern SENSE → PLAN → ACT typically governing behaviour of autonomic
systems. At each cycle, the system checks (senses) the environment for possible
changes (failures, arrived messages, etc.), then decides on a system reaction (e.g.,
moving to a degraded state, changing its current mission), and finally continues

162 L. Laibinis, I. Pereverzeva, and E. Troubitsyna

its mission execution in a possibly changed (as a result of the previous PLAN
step) state. If no changes are detected, only the ACT step is executed.

We extend the model context by a new enumerated set, STEPS, consisting
of the constants SENSE, PLAN, and ACT. A new variable, step, is introduced
to reflect the current step of the cycle and is used (in the event guards and
actions) to enforce the fixed order of execution. The existing model events are
consequently partitioned into the three groups associated to the above steps.

To illustrate the performed model transformation, below we present the event
ToUnsafe LocFailure that models detection of a local failure that consequently
brings the system into an unsafe state.

ToUnsafe LocFailure =̂ refines ToUnsafe LocFailure
where state ∈ IN MISSION ∪ COMPLETED ∪ DEGRADED ∧ step = SENSE
then state :∈ UNSAFE ‖ failure := TRUE ‖ step := PLAN end

The event is a part of the SENSE step. As a result, the system moves to the
following step PLAN, where the corresponding event(s) will be triggered, trying
to bring the system into a degraded system state. Moreover, in the ACT step,
this failure also leads to sending an outgoing message to the involved parties.

In this refinement, we are able to prove the invariant property
failure = TRUE ⇒ step = PLAN,

which states that we only allow the system to enter an unsafe state right after
the SENSE step is finished (i.e., when step = PLAN). It essentially means that
during the PLAN step the system must be able to react immediately to this
situation, bringing the system into a degraded yet safe state, if necessary.

Fourth Refinement. In the last refinement step, we decompose the SoS into
its constituents coordinating their activities in order to accomplish a common
mission. For brevity, we demonstrate our approach on two constituent systems.

As a result of this refinement step, the system state, state ∈ STATES, is data
refined by a combination of separate states state1 ∈ STATES1 and state2 ∈
STATES2 belonging to the separate constituting systems. The corresponding
state spaces STATES1 and STATES2 are introduced in the model context. Simi-
larly, these state spaces are partitioned into the disjoint subsets: IN MISSION1 ,
COMPLETED1 , UNSAFE1 , DEGRADED1 for STATES1, and IN MISSION2 ,
COMPLETED2 , UNSAFE2 , DEGRADED2 for STATES2.

The context also introduces a function Map (a partial injection), mapping
two new states (from the same meta-state) into the corresponding old one. This
function formally defines a gluing invariant for the performed data refinement
step, i.e., it establishes a correspondence between the state of the SoS and the
states of its constituting systems.

axm17: Map ∈ STATES1 × STATES2 �� STATE
axm18: ∀st1, st2·st1 ∈ UNSAFE1 ∧ st2 ∈ UNSAFE2 ⇒ Map(st1 �→ st2) ∈ UNSAFE
axm19: ∀st1, st2·st1 ∈ DEGRADED1∧ st2 ∈ DEGRADED2⇒ Map(st1 �→ st2) ∈ DEGRADED

In the machine part, we duplicate all the model events, allocating them to the
first and second systems respectively. The main difference between the duplicated
events is, of course, that these events now update either state1 or state2 of the
constituting systems. The gluing invariant formally expresses the relationships
between these states and the abstract variable state they replaced:

Modelling Resilient Systems-of-Systems in Event-B 163

in sync = TRUE ⇒ state =Map(state1 	→ state2).

The additional condition in this invariant reflects the fact that, once the SoS
is decomposed, we cannot guarantee that certain state changes that should be
coordinated between the constituting systems will happen synchronised. A cer-
tain synchronisation delay caused by necessary extra communication between
the systems is needed to re-establish a consistent state of the overall SoS.

The new global variable in sync reflects whether the system is currently syn-
chronised or not. Once any of the components gets “de-synchronised”, in sync
becomes FALSE, blocking its nominal activities until synchronisation is con-
firmed by communication with the other component. The new events modelling
this communication are also introduced in the model. Note that a communica-
tion failure is treated as a failure leading to an unsafe state by both systems,
which forces both of them to move to a degraded state.

Further Possible Refinements. In the following refinements the systemmodel
can be further extended. Introducing details of communication protocols would
allow us to replace (data refine) the global variable in sync by its local
counterparts in sync1 and in sync2, thus making the system decentralised and
autonomous. The meta-state DEGRADED can be elaborated by introducing
concrete fault tolerance and recovery mechanisms. Also, separate components
can be refined in different ways thus implementing different component roles.

As a result of our formal modelling, we have formally defined the relationships
between the SoS mission, states of the constituting systems and faults. We have
clearly defined the situations under which the system goes through unsafe states
and enforced transitions that bring it to a safe state.

4 Case Study: Satellite Flight Formation

In this section we will briefly describe our case study – Satellite Flight Forma-
tion [10] – and illustrate how the proposed generic approach can be applied to
model a SoS from the space domain.

Case Study Description. Satellite flight formation is a mission critical SoS.
The main goal of the system is acquisition of valuable scientific data. The scien-
tific instruments are distributed over two satellites flying in a formation with the
relative position control. The spacecrafts operate on an elliptical orbit where the
mission objectives are performed at apogee (low gravity region of the orbit).
The formation is periodically broken and reacquired since it cannot be main-
tained at particular orbit regions (e.g., perigee). The satellites flying in a for-
mation must act collaboratively by coordinating their activities via frequent
communication.

The satellites autonomously manage the formation and, in most cases, take
mission critical decisions with no ground supervision. The used metrology sensors
allow for formation acquisition and relative position determination maintenance.
Thus, even in majority of the off-nominal situations, the constituent spacecrafts
are able to autonomously re-adjust and continue the mission.

164 L. Laibinis, I. Pereverzeva, and E. Troubitsyna

The main mission of the Satellite Flight Formation system is organised into
several sub-missions (also called modes), such as Science and Parking. The Sci-
ence mode is an operational system mode during which the scientific data are
obtained, while the Parking mode is used to performmaintenance activities when
it is not possible to get scientific data. In their turn, Science and Parking con-
sist of a number of sequential stages, called phases. For instance, Science mode
consists of the preparation phase, the science phase (when scientific experiments
are performed at apogee), the preparation to the drifting phase, and the free
drifting phase (at perigee). In some cases, the ground control may change the
current sub-mission (e.g., may order to go to Parking from the Science mode).

During the mission execution a number of off-nominal situations may occur.
Some of them may lead to potential collision between the satellites. For instance,
an internal failure may result in a wrong satellite attitude or communication
between both satellites can be lost. In these cases, both spacecrafts should co-
ordinate by switching to the Manual mode (with the pre-defined safe orbits and
no other manoeuvres allowed). When the communication between satellites is
lost, both satellites should go to the Manual mode independently. Recovery from
such dangerous situations is performed under ground supervision.

Supporting Formal Modelling of Satellite Flight Formation. The formal
development presented in Section 3 is generic, since its parameters (abstract con-
stants defined in the context) can be instantiated in different ways, provided that
their expected properties are provably shown to be true. To apply the proposed
generic approach in the flight formation modelling, we can interpret the Science
and Parking modes as two concrete missions of the system to be developed, i.e.,
the abstract set MISSIONS in our generic models can be instantiated with the
concrete set {Science,Parking}. The pre-defined sequences of their phases can be
formalised as concrete instances of the Scenarios function. The system operating
in the Manual mode corresponds to the model states belonging to DEGRADED.

Each SoS component adjusts its behaviour by sensing (detecting) changes in
its environment or the internal state. For the case study, they correspond to
the changed orbit segment (perigee, apogee), communication from the ground
control or other components, an internal failure. As a result, it can move to a
different mission or its phase, or enter a degraded state. It also has an obligation
to inform the other components to coordinate their activities in achieving the
joint mission. These aspects of the case study fit very well with the behavioural
pattern SENSE → PLAN → ACT specified in our generic models.

In this paper, the presented generic development stops at the decomposition
of the overall system into several components with identical basic functionality.
In the case study, one of the satellites (called master) has a higher degree of
control over coordination of joint activities. Moreover, different protocols are
used for inter-component communication in different situations. We believe that
these implementation details can be introduced in additional refinement steps of
our formal development.

Modelling Resilient Systems-of-Systems in Event-B 165

5 Conclusions and Related Work

In this paper, we presented an approach to formal modelling of SoS in Event-B.
In particular, we have proposed a generic development pattern that allowed us
to develop a complex SoS in a correctness-preserving way. In addition, we have
briefly discussed how the proposed generic development can be instantiated to
model a flight formation – a SoS consisting of two autonomous spacecrafts.

Engineering of SoS is an actively developing research area. In general, there
are two main directions that are pursued – integration of the development tech-
niques to address the variety of issues associated with engineering of SoS and
extension of specific existing frameworks to achieve versatility. Among the ap-
proaches pertaining to the former, a work has been done within the COMPASS
project [3] on unifying several formal frameworks. Among the latter ones, there
are the works dedicated to extending formal frameworks, e.g., by integrating
modelling of the continuous behaviour into a system model, see [1]. Moreover, a
verification-centric approach has been put forward by Ortmeier [8], while agile
development techniques have been experimented with by Gorski [4].

The approach presented in this paper is more focused and pragmatic – we
have investigated how to use a mature technology of Event-B to model and verify
system-wide properties of SoS and derive the conditions that the constituent sys-
tems should preserve to guarantee overall system dependability. Among obvious
advantages of the proposed approach is a good scalability and the availability of
industrial strength automated tool support. The generic development, proposed
in the paper, essentially defines the reusable modelling patterns that can further
facilitate the use of the proposed technology for SoS development.

The approach proposed in the paper continues our line of research on formal
modelling of complex dependable systems from various domains. It builds on
the ideas of goal-oriented modelling [7], resilient agent systems [6], fault tolerant
systems [11] and layered architectures [5]. As a future work, it would be inter-
esting to further experiment with the decomposition methods needed to derive
communication protocols and dependability contracts verifiable at run-time.

References

1. Abrial, J.-R., Su, W., Zhu, H.: Formalizing Hybrid Systems with Event-B. In: Der-
rick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene,
E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 178–193. Springer, Heidelberg (2012)

2. Abrial, J.R.: Modeling in Event-B. Cambridge University Press (2010)
3. COMPASS, EU FP7 project, http://www.compass-research.eu/
4. Górski, J., �Lukasiewicz, K.: Towards Agile Development of Critical Software. In:
Gorbenko, A., Romanovsky, A., Kharchenko, V. (eds.) SERENE 2013. LNCS,
vol. 8166, pp. 48–55. Springer, Heidelberg (2013)

5. Iliasov, A., Troubitsyna, E., Laibinis, L., Romanovsky, A., Varpaaniemi, K., Ilic,
D., Latvala, T.: Developing mode-rich satellite software by refinement in Event-B.
Sci. Comput. Program. 78(7), 884–905 (2013)

6. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: A refinement-based approach to de-
veloping critical multi-agent systems. IJCCBS 4(1), 69–91 (2013)

http://www.compass-research.eu/

166 L. Laibinis, I. Pereverzeva, and E. Troubitsyna

7. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: Formal Goal-Oriented Development
of Resilient MAS in Event-B. In: Brorsson, M., Pinho, L.M. (eds.) Ada-Europe
2012. LNCS, vol. 7308, pp. 147–161. Springer, Heidelberg (2012)

8. Ortmeier, F.: Dependability in Pervasive Computing: Challenges and Chances.
JITR 5(1), 1–17 (2012)

9. Rodin: Event-B Platform, http://www.event-b.org/
10. Tarabini, L., Castellani, A., Llorente, S., Fernandez, J.M., Ruiz, M., Mestreau-

Garreau, A., Cropp, A., Santovincenzo, A.: PROBA-3 MISSION. In: 5th Inter-
national Conference on Spacecraft Formation Flying Missions and Technologies
(2013)

11. Tarasyuk, A., Pereverzeva, I., Troubitsyna, E., Latvala, T., Nummila, L.: For-
mal Development and Assessment of a Reconfigurable On-board Satellite Sys-
tem. In: Ortmeier, F., Lipaczewski, M. (eds.) SAFECOMP 2012. LNCS, vol. 7612,
pp. 210–222. Springer, Heidelberg (2012)

http://www.event-b.org/

Towards Assured Dynamic Configuration

of Safety-Critical Embedded Systems

Nermin Kajtazovic, Christopher Preschern,
Andrea Höller, and Christian Kreiner

Institute for Technical Informatics,
Graz University of Technology,
Infeldgasse 16, Graz, Austria

{nermin.kajtazovic,christopher.preschern,
andrea.hoeller,christian.kreiner}@tugraz.at

Abstract. Assuring systems quality is an inherent part of developing
safety-critical embedded systems. Currently, continuous increase of sys-
tems complexity, in particular that of software, makes this development
challenging. In response, more and more software faults are remaining
unidentified at design-time so that changes and maintenance need to be
performed at an increased rate. Unfortunately, today’s safety-critical sys-
tems are not designed to be upgraded or maintained in a seamless way, so
that the overhead of performing changes may be considerable, especially
when such changes require to re-verify and re-validate the whole system.
In this paper, we present an approach to perform software changes in

the operation and maintenance phase of the systems lifecycle. Changes
are performed dynamically, by replacing parts of software (i.e., software
components) with their functionally equal out-of-the-box instances. In
order to prevent the impact of changes on systems integrity, we provide
a support to model and to analyze the system. The main outcome here
is that specific kind of changes can be maintained without adding any
development costs.

Keywords: safety-critical embedded systems, component-based systems,
dynamic configuration.

1 Introduction

Maintaining a correct function even in presence of faults is an important charac-
teristic of safety-critical embedded systems. In order to reduce the risk of failures,
and thus to avoid the potential environmental damages or harm on humans, their
hardware/software development has to be rigorous and quality assured.

Currently, rapid and continuous increase of systems complexity, in particular
that of software, makes the development of these systems challenging [4] [12]. In
response, more and more software faults are remaining unidentified at design-
time so that changes and maintenance need to be performed at an increased rate.
Concrete examples of such change and maintenance demands are quite often

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 167–179, 2014.
c© Springer International Publishing Switzerland 2014

168 N. Kajtazovic et al.

recalls of vehicles, medical devices, and other products. Some of these recalls are
related to faults located in the software functions, such as the control algorithms,
libraries, flaws in modification or adaptation, and other. According to recent
studies related to defect analysis in recalls, those faults are getting more frequent,
as more and more functions are being implemented in software [2]. Eliminating
those faults in most current safety-critical systems is quite difficult, in particular
because it has to be evidenced that the changed system still maintains certain
level of quality – a so called safety integrity in the notation of safety standards.
To provide such an evidence, many steps in the development lifecycle have to
be repeated. In addition, depending on the impact of changes and regulations of
the considered safety standard, new certification might be required.

In this paper, we present an approach to perform software changes in the
operation and maintenance phase of the systems lifecycle. Changes are per-
formed dynamically, by replacing parts of software (software components [5])
with their functionally equal out-of-the-box instances. Before any change can
be performed, a new system configuration is analyzed against the violation of
the safety integrity. Thus, only the configurations that pass this analysis step
can be installed into the system dynamically. To enable such assured dynamic
configurations, we have provided the following basis in our previous work: (a) a
runtime mechanism that allows to load the out-of-the-box software components
into a real-time operating system dynamically – the dynamic linker [10], and
(b) a design-time mechanism to ensure the consistency of new system config-
urations [11]. This consistency mechanism performs the analysis of a changed
system based on modelled properties which describe certain system attributes,
such as memory and timing budgets for example1. In order to determine whether
changes caused by replacing software components have an impact on the safety
integrity, there is a need to identify which attributes may be relevant here. For
this purpose, we analyze in this paper how the change management is regu-
lated in some safety standards, and under which conditions the replacements of
components are allowed.

The main outcome here is that for specific kind of changes, in which software
components can be replaced, the system does not need to be turned back into the
development phase. Furthermore, if the re-certification of the system is required,
the original certification data can be reused, since they are not impacted by those
changes. In response, replacements of software components can be maintained
without any development costs.

The remainder of this paper is organized as follows: Section 2 provides a
brief overview of relevant related work. Section 3 describes how changes are
handled in safety standards, and which system attributes have to be considered
when analyzing changes. In Section 4 the proposed approach is described, and
a short discussion is given in Section 5. Finally, concluding remarks are given in
Section 6.

1 We use the notation system attributes to identify various functional and non-
functional system aspects, such as performance requirements, constraints, etc.

Assured Dynamic Configuration of Safety-Critical Embedded Systems 169

2 Related Work

Now we turn to a brief overview of related studies. We summarize here some
relevant articles that handle the analysis of changes in safety-critical embedded
systems.

To date, much research has been done on analyzing planned changes in soft-
ware architectures for safety-critical systems [1] [15] [13] . In the work by Adler
et al. [1], an adaptive architecture for safety-critical automotive systems is pro-
posed. The main goal here is to increase the systems availability by allowing
software components to implement diverse behaviours, so that in the event of
failures or degradation of quality, the automotive system can continue operating
by switching between correct implementations. Since different implementations
of components may have different quality, the authors provide a design-time
analysis to prevent mixing not allowed combinations of component implementa-
tions. For this purpose, they define a quality system, with a set of fixed quality
types. A more advanced framework for dynamic adaptation of avionics systems
was developed by Montano [15]. The goal is to adapt the system to new, correct
configurations, in case of failures. To perform this, a common quality system de-
fines the contracts between functions and available static resources (e.g. memory
consumption, CPU utilization, etc.) and in this way it restricts the possible set of
correct configurations. An important aspect of this work is that it demonstrates
the CP approach to solving the composition problem. However, the quality type
system only considers static resources, and does not consider contracts between
functions. Ultimately, the approach is strongly focused on dynamic adaptation
with human-assisted decision making. Similar reconfiguration strategy is used in
[13], but the consistency of the reconfiguration here is ensured by the runtime
mechanisms (partitioning).

There are also some works which focus on upgrading safety-critical systems
[20] [16] [19]. One of the most notable is work done in the scope of the project
PINCETTE, which has as a goal to perform live upgrades of software systems
that control the safety-critical processes [20]. Although the topic is beyond the
scope of available validation methods in the practice, the aim is to evaluate
the feasibility of formal methods to such use cases. In contrast to our data
flow-oriented analysis, the focus here is on validating the interaction between
upgraded behaviours. Another work [16], done in the scope of the RECOMP
project, addresses also live upgrades as one of the goals to reduce the costs
for certifying systems. However, only dynamic linker has been realized here,
without considering the analysis of changes. Finally, the work in [19] shows how
to validate changes of upgraded safety-critical system. Here, model checker is
used to verify changed behaviour.

In summary, various analysis methods have been developed to validate changes.
However, none of the approaches discussed here consider regulations of stan-
dards, to identify whether changes they support are allowed and, if so, to which
extent.

170 N. Kajtazovic et al.

3 Addressing Changes in Engineering of Safety-Critical
Embedded Systems

Identifying system requirements affected by changes is a crucial step in the
change management process. To determine which requirements and which re-
lated system attributes influence the systems safety integrity, we analyze in the
following how changes are regulated in safety standards. Based on this analysis,
we build a list of system attributes that we further use to construct our software
architecture, and to build properties for our software components.

3.1 Change Management in Safety Standards

In general, standards for functional safety provide the guidelines on how to
align the system development with the safety lifecycle in each phase. One aspect
of these guidelines are activities related to maintenance and operation phase
of the systems lifecycle. Changes in the operation phase are usually handled
in the context of the supporting processes defined in standards, such as the
maintenance, the configuration management, and the change management [18].
In the following, we describe the change management defined in the IEC 61508,
which is a generic safety standard applied in the industry. We align our approach
to this standard, because many guidelines it provides can also be found in other
standards applied in specific industrial sectors, since they represent derivatives
of the IEC 61508 (e.g., the ISO26262 standard provides similar guidelines for
maintaining changes in automotive systems).

The lifecycle of the IEC 61508 standard comprises the engineering activi-
ties for software and systems scope. Changes in the operation and maintenance
phase of systems are described in parts 1, 2 and 3 of the standard, in the con-
text of the supporting processes: maintenance, configuration management, and
change management. Each of these processes has defined steps, the inputs and
the work products it shall produce. To ensure the safety integrity after imple-
menting changes, the standard prescribes requirements that have to be fulfilled
and a list of possible techniques and measures to apply within these processes.
The requirements are mainly related to activities that need to be performed if
safety integrity is affected by changes. In Table 1, we have filtered out the most
relevant requirements. Basically, if safety integrity is affected by changes the
standard recommends to (i) perform the hazard and risk analysis in order to
identify additional faults that might be introduced by such changes and (ii) to
return to the appropriate phase in the software lifecycle to implement changes.
On the system level (part IEC61508-2), it is recommended to use the same de-
velopment equipment and expertise (e.g., tools, previous system configuration,
project artifacts, etc.), in order to just focus on changed parts only. In addi-
tion to requirements, developers have the option to choice which techniques and
measures to perform, based on the level of safety integrity they want to achieve
after implementing changes (bottom part of the table). Among them, the most
influential measure here from the aspect of costs is a need for the verification and
validation. For the highest levels of safety integrity, the standard recommends to

Assured Dynamic Configuration of Safety-Critical Embedded Systems 171

Table 1. IEC 61508 requirements, measures and techniques related to change man-
agement (an excerpt)

Requirements on software change management, IEC 61508-3
7.8.2.3 An analysis shall be carried out on the impact of the proposed software modification on

the functional safety of the E/E/PE safety-related system: a) to determine whether or
not a hazard and risk analysis is required; b) to determine which software safety lifecycle
phases will need to be repeated.

7.8.2.5 All modifications which have an impact on the functional safety of the E/E/PE safety-
related system shall initiate a return to an appropriate phase of the software safety lifecycle.
All subsequent phases shall then be carried out in accordance with the procedures spec-
ified for the specific phases in accordance with the requirements in this standard. Safety
planning (see Clause 6) shall detail all subsequent activities.

Requirements on system change management, IEC 61508-2
7.8.2.3 Modifications shall be performed with at least the same level of expertise, automated tools

(see 7.4.4.2 of IEC 61508-3), and planning and management as the initial development of
the E/E/PE safety-related systems.

7.8.2.4 After modification, the E/E/PE safety-related systems shall be reverified and revalidated.
Recommended techniques and measures, IEC 61508-3 A.8

2 Reverify changed software module
3 Reverify affected software modules
4a/4b Revalidate complete system or Regression validation

perform the re-verification and re-validation of the complete system (measures
2, 3, 4a in the Table 1). Alternatively, regression validation would also suffice
(measure 4b). Nevertheless, changed artifacts (from the work products of the
hazard and risk analysis down to the test reports) have to be newly certified.

In summary, the change impact on safety integrity implies to update many
work products throughout the systems lifecycle, to repeat particular steps of
that lifecycle and to re-verify and re-validate the system. However, according
to requirements 7.8.2.3 and 7.8.2.5, those activities have to be performed only
if there is an impact on the functional safety (i.e., the systems safety integrity
is changed). Our goal in this context is to allow changes to an extent to which
they have no impact on the systems safety integrity. For this purpose, we need
to evaluate the requirement 7.8.2.3-a, for every change request. If there is no
need for the hazard and risk analysis, changes are allowed, otherwise not. To
realize this, we first need to identify the system attributes that have an impact
on systems safety integrity. Based on these attributes, we can set constraints
on the architectural level (e.g., software components, layers, operating system
configuration, etc.) that would allow us to evaluate the requirement 7.8.2.3-a. In
the following, we introduce these attributes.

3.2 Impact of Changes on System Requirements

Safety standards set requirements to achieve the functional safety, while leaving
the space for the developers on details on how they should implement those re-
quirements. The same holds for the change management, i.e., the IEC 61508 does
not specify which system attributes have to be considered when analysing the im-
pact of changes. More concrete guidelines about this can be found in the avionics
domain, concretely in the concept Reusable Software Component (RSC) from
the Federal Aviation Administration (FAA) that was developed for the standard

172 N. Kajtazovic et al.

DO-178B, to enable reuse of software components and their late integration into
a certified safety-critical system [7]. Similar to change management, the aim is
to maintain the functional safety after integrating components. Although RSC
provides concrete information about reusing pre-fabricated components, no fo-
cus has been given on how to design such components for reuse – for example,
how to describe the context in which components have to operate (embedded
system, environment, etc.) and which system attributes contribute to that con-
text. Similar to RSC, the concept Safety Element out of Context (SEooC) as
part of the automotive standard ISO26262 defines reuse for the sub-systems, but
on the abstraction level of requirements.

To our knowledge, the only available official publication that handles change
management in detail and is related to safety standards are the FAA guidelines
on analyzing the impact of changes in software [6] [17]. Here, a collection of
the concrete system attributes that might be affected by changes is presented.
This collection is made to help developers in the post-certification process of
the DO-178B standard to ensure the safety integrity of the changed system by
determining the impact of changes on the system, and by estimating the overhead
to re-verify, re-validate and re-certify the system. Although avionics domain is
addressed here, most of those attributes are common to embedded systems in
general. In Table 2, we summarize the common system attributes.

Table 2. Considered system attributes to analyze impact of changes, according to
Federal Administration Aviation (FAA) [6]

System attribute Description
traceability requirements, design, tests, procedures
memory margin memory allocation requirements (volatile, non-volatile mem-

ory)
timing margin timing requirements (task scheduling, interface timing, ...)
data flow coupling between software components (data syntax, seman-

tics)
control flow coupling between software components (events, calls, ...)
input/output interfaces with the external world (bus, hardware, memory,

...)
development environment and pro-
cess

compilers, linkers, loaders, tools

operational characteristics runtime mechanisms (changes on limits, i.e. contracts, excep-
tion handling, ...)

partitioning change on protective safety mechanisms

We use some of the FAA attributes as the first class entities to maintain the
consistency of the system, and to estimate the impact of changes. We discuss
the selection of attributes in the following section more in detail.

4 Ensuring Consistency of System Configurations

In this section, we introduce our approach to ensuring the consistency of system
configurations. To this end, we show how we define a system using attributes

Assured Dynamic Configuration of Safety-Critical Embedded Systems 173

System Model

System Constraint Network
Constraint

Variable

Variable

Constraint

Software
Component 1

Platform
(Embedded System)

Software
Component n

Component Contracts System
Definition

Platform Contracts

Contract n-2Contract n 2
Contract n-1Contract n-1

Contract nSystem
Attributes

Contract n-2Contract n 2
Contract n-1Contract n-1

Contract nSystem
Attributes

Consistency
Analysis

System Architecture Dynamic
DeploymentDynamic Parts

(Exchangeable) Load Software
Component
Load Application

Constraint

Variable

Variable

Constraint

Constraint Variable...
Software Component 1 Software Component n

...

Static Parts
(Fixed or Configurable)

Component level:
definition of
contracts on system
attributes (e.g. FAA
system attributes)
System level:
definition of
contracts for the
Platform
System composition

Software Application

Component Container (Middleware)

Operating System

Initial analysis
Change impact
analysis

Hardware

...

Fig. 1. Proposed workflow for ensuring systems consistency: system modelling using
contracts to describe attributes (top), consistency analysis (middle) and dynamic de-
ployment of software components (bottom)

described in the previous section, and how we analyze the impact of changes.
All information about systems consistency is contained in those attributes.

The proposed approach in the workflow form is depicted in Figure 1. On the
top, a model of the system is defined. This model consists of the two elements:
software components which implement certain application-level functions, and
the platform, which is a model of an embedded system. Both software compo-
nents and the platform implement certain contracts, in order to express relations
to other dependent components or platform. These contracts are the fundamen-
tal elements of the system model that allow us to maintain the consistency of the
system. They contain the information about system attributes discussed in the
previous section, and provide means to build relationships to other contracts.
Based on those relationships, impact of changes in one particular contract can be
tracked throughout the complete system. We introduce contracts later in Section
4.2. In the next step of the workflow, the system in terms of contracts is trans-
lated into a so called constraint network, i.e., a set of inter-connected variables
and constraints. This constraint network represent contracts and their relation-
ships in another problem domain, which allows us to automatically analyze the
consistency of the system by evaluating constraints.

174 N. Kajtazovic et al.

In the last step of the workflow, components can be dynamically loaded into
the platform, depending on results of the analysis. If all constraints in the anal-
ysis step are satisfied, the system modelled in the first step is consistent, i.e., we
say the system configuration is assured. Thus, any change in the modelling step
can be captured and analyzed in the constraint network.

In the following, we describe parts of this workflow more in detail.

4.1 Software Architecture

To perform changes in the system by replacing some parts of it, there is a need
for an adequate architectural support, i.e. a design for upgrades [9]. Another im-
portant aspect here is that a degree of flexibility shall be balanced to an extent
to which an the impact of changes on system attributes listed in Table 2 can be
managed. For example, if changes in behaviour of certain software functions can-
not be analyzed (e.g., in the constraint network from Figure 1), replacing those
functions with different behaviours shall not be approved. Therefore, certain
limitations are necessary to set on the design.

For our system, we use a Component-based Software Engineering (CBSE) [5],
which is currently a key paradigm applied for building safety-critical systems.
Automotive AUTOSAR, standards such as IEC61131/499 and IEC61850, are
some of the reference component-based architectures. In those architectures, soft-
ware components implement parts of systems functions, such as the controllers,
software sensor and actuators. Due to well-defined interfaces, component may
implement functions on different granularity levels, e.g., like Matlab Simulink
function blocks and sub-systems, thus allowing for compositional (hierarchical)
design. Moreover, well-defined interfaces allow their reuse, customization for the
use in different contexts, and so forth.

Our software architecture is depicted in Figure 1 (bottom part). Here, software
components implement certain software functions composed into an application,
whereas their lifecycle, their coordination and resources from the operating sys-
tem are managed by the underlying middleware, i.e., a component container.
Changes related to software may impact any of these layers, and therefore any
of the introduced system attributes. In order to be able to analyze such an
impact, we set limitation on the design so that replacements of software com-
ponents are allowed only. That means, some of the system attributes are fixed
at design-time so that changes have no influence on those attributes. For ex-
ample, connections between software components have to be static, since they
may affect the functional requirements if changed (e.g., adding/removing soft-
ware components, or changing connectors may affect systems behaviour), and
this can only be analyzed manually.

With our limitations, the impact of changes is related to software components
and their interaction with the platform only. However, such cases are also not
trivial, since changes may still have an impact on systems consistency. For ex-
ample, the consistency may be compromised if the replaced software component
implements interfaces with different semantics, e.g. different value intervals pro-
vided to dependent components, and new intervals were not considered during

Assured Dynamic Configuration of Safety-Critical Embedded Systems 175

the system verification. Similarly, mixing components with different quality lev-
els may cause the same effects, e.g. deploying components qualified for the lower
level of the safety integrity than the integrity of the platform.

The main impact of changes here is on (i) resource management, in particular
on task and memory management for components, and on (ii) interfaces between
components and their interfaces to the platform. From the perspective of the
software architecture, the configuration of tasks (i.e., number of tasks, their
scheduling policy, etc.) and the organisation of memory (i.e., memory layout,
size of the heap, and allocation to tasks) are static features. However, they have
to be included in the analysis since exchanged components may have different
demands with regard to resources (timing, memory).

Similarly, the connections and interfaces between components are static, but
many details have to be considered in order to ensure that the integration or the
composition is correct (i.e., the syntax and the semantics, such as units, valid
intervals of certain data values, etc.). In addition, some components may imple-
ment many alternative behaviours so that different configurations of interfaces
are possible. Therefore, we consider interfaces in our analysis. Finally, details
with regard to the development process and the operational profile are also parts
of the analysis. In Table 3, we summarize system attributes that we include in
the analysis, and possible types of changes (right column). The systems consis-
tency is therefore analysed based on these changes only. The remaining systems
attributes from Table 2 are fixed at design time, and cannot be influenced, i.e.,
the control flow of components, their interaction semantics and behaviour are
implemented as a static part of the architecture.

Table 3. System attributes considered in the consistency analysis, selected from FAA
attribute collection [6]

System attributes Allowed changes
memory margin components: volatile and non-volatile memory

platform: volatile memory (allocated to tasks), non-volatile mem-
ory

timing margin components: execution time
platform: task execution time

data flow components/platform: syntax (datatype, interface), semantics (in-
tervals, values, specific constraints (units, standard compliance,
configuration and calibration data, ...))

development environment
and process

components/platform: tools (compiler, linker, specific constraints
(build options, ...)), version

execution platform components/platform: architecture (cpu, floating point support,
...), safety integrity level

4.2 System Modelling

To integrate the information about selected attributes from Table 3 into the sys-
tems structure, we use Contract-based Design paradigm (CBD) [3]. According to
CBD, software components and the platform implement certain contracts, which
capture part of that information (i.e., a quality stamps or properties). In addi-
tion to capturing information, contracts provide means to integrate components
and platform.

176 N. Kajtazovic et al.

Among few types of different contract available, such as state transition-based
contracts like interface automata, probabilistic contracts, etc., we use a form that
is based on data semantics, i.e., data flow contracts [3]. According to this type,
every contract consists of data parameters, and expressions (or properties) on
those data parameters in form of assumption and guarantees. The guarantees
describe a valid behaviour in form of expressions, that can evaluate to true/-
false, depending on the evaluation of expressions in assumptions. For specifying
contracts, various formalisations can be used, for example logic languages such
as propositional logic, first order logic, their extensions, and other.

In Figure 2, we show how the structure of our software components is defined
to match with used contracts, and how different types of system attributes are
modelled using contracts. A trivial example is shown here just to simplify the
demonstration. Similar to the structure of contracts, every software component
and the platform are defined as a set of data parameters, input and output data
variables. In addition to this information, they contain a list of implemented
contracts. Thus, data parameters in contracts relate to data parameters of their
corresponding components/platform.

Another essential aspect of CBD are the relationships between contracts,
which allow to verify the composition between two contracts, if their assump-
tions and guarantees are defined in a formal way. In our example, the contracts
of components MIS and MIIAS are related with each other using a composition
relation, which is valid only if these contracts are compatible and can interact.
Concretely, this means the relation is valid if the contract of a component which
accepts data, the C1 implemented by component MIIAS, can be satisfied by

Injection Time
and

Ignition Time
Actuation System

MIIAS

Ignition System
MIS

Injection System
MFS

Mass Air
Flow

Engine Speed

Injection Time

Ignition TimeIgnition System
MIS

Ignition System

Component Structure Specification

Data Parameters

Inputs Outputs

tigsen

ffl

Name Type Unit Datatype ...

... sen in min int16

...

-1

Data

Implemented Contracts
AND0<=sig<=6400

50<=tig<=150

0<=fig<=100

IMPLIES
()

()
()

AND0<=sig<=6400

50<=tig<=150

0<=fig<=100

IMPLIES
()

()
ANANANANANANDDDDDD000000<<<<<<======ssssssigigigigigig<<<<<<======646464646464000000000000

50<=tig<=150

000000<<<<<<======ffffffigigigigigig<<<<<<======101010101010000000

IMPLIES
((((((())))))

()AND0<=sen<=6400

50<=tig<=150

0<=ffl<=100

IMPLIES
()

()

ffl

ffl

sen tig

tin

tig

tin

Platform

Contract C1 for MIS

0<=sen<=6400
0<=ffl<=100

Assumptions

Guarantees

Contract C1 for MIIAS

Assumptions

Guarantees

tig-tin>=40

25<=tig<=200

Contract C1 for MFS

mem1=2400

Assumptions

Guarantees
true

Contract C1 for Platform
Assumptions

Guarantees
mem1<=44000

true

Contract C1 for MFS

sil=3

Assumptions

Guarantees
true

Contract C1 for Platform
Assumptions

Guarantees
sil>=2

true

AND

Resources

Quality information

Interfaces

50<=tig<=150

Fig. 2. Structure definition of software components and the platform, and supported
types of contracts shown on an example of the engine controller, adopted from [8]

Assured Dynamic Configuration of Safety-Critical Embedded Systems 177

the guarantees of the providing component. In the example, this can evaluate to
true only if the assumption (25 ≤ tig ≤ 200) can also evaluate to true2. This can
only be satisfied, if the guarantee of the contract C1 of MIS , (50 ≤ tig ≤ 150),
matches with the assumption (25 ≤ tig ≤ 200), which is the case in the example,
since MIIAS can accept more values of tig (for more details, please refer to [11]).
Therefore, guarantees and assumptions of dependent components are interre-
lated by their expressions. In a similar way, we define contracts for resources
and quality information, as shown in the figure.

Based on relationships between contracts, information about the system at-
tributes on a system level is maintained. Changes in any contract (or exchanges
of contracts) can be captured by evaluating assumptions/guarantees of other
dependent contracts.

4.3 Consistency Analysis

The consistency analysis is based on verifying relations between contracts, in
particular, by evaluating their assumptions and guarantees. As a background
technology, we use Constraint Programming paradigm (CP) [14], which is a
widely applied method to solve decision and optimization problems. The essen-
tial aspect of CP is a problem definition, which is represented as a network of
variables of various types and constraints. Here, constraints represent various
kinds expressions on variables (logical, arithmenic, etc.), and can be related to
other constraints. Solving that problem means evaluating all constraints in the
network. Thus, there is a solution if all constraints in the network are satisfied.

In our approach, we translate the system modelled in form of contracts into
such a constraint network. For this purpose, we have defined a model of a con-
tract, its variables, assumptions and guarantees, and relations between contracts
as network elements, i.e., variables and constraints. The systems consistency is
therefore analyzed by evaluating constraints that are derived from contracts (for
more details, please refer to [11]).

5 Discussion

We showed in this paper that simple replacements of software components are
not trivial. Many details about functional and non-functional aspects of software
components have to be considered to ensure that replacements have no impact
on systems integrity. One of the major challenges here is to determine how much
information should be considered in the analysis, to have a confidence in its
results. With the list of systems attributes we introduced in this work, some
fundamental aspects are covered, but much more details might be required,
depending on the specific domain. This collection of attributes can be extended
according to types of contracts introduced.

2 This data is related to the ignition time of an engine controller tig. The components
modelled here implement contracts in order to satisfy the timing requirement on
allowed difference between injection and ignition time, i.e. (tig − tin).

178 N. Kajtazovic et al.

The analysis method presented here can also be applied to some existing
component-based systems, but in some cases with certain limitations. In AU-
TOSAR for example, changes would be possible on a level of Runnables, which
are units of the execution inside of AUTOSAR software components, and have a
generalized standard behaviour (read, execute, write) [12]. In contrast, changes
of complete software components could not be supported, because events for
the execution of Runnables are user-defined, and other techniques are required
here to analyze the interaction between those events. Generally, for synchronous
data flow systems, such as IEC61131-based systems, or Matlab Simulink func-
tion blocks, it is more easily to apply the analysis, since software components
used here have a standard behaviour and standard execution semantics.

6 Conclusion

In this paper, we presented an approach to perform changes on safety-critical
embedded systems in the operation and maintenance phase. Changes are lim-
ited to replacements of software components. To prevent the impact of such
type of changes on systems integrity, we have analyzed which related system at-
tributes might be affected when replacing software components. Based on those
attributes, we provided a modelling means to build a system including attributes
on the level of software components and their platform (embedded system), and
we provided a consistency analysis of such a modelled system. The main out-
come of this work is that for replacements of software components the system
does not need to be turned back into the development phase.

The collection of attributes described here provides a foundation for the future
work. One of the major challenges here is to determine how much information
is required to describe software components and their platform, in order to have
a confidence on results of the consistency analysis. This may depend on many
factors, such as used software architecture, domain-specific details, and so forth.

As part of our ongoing work, we will analyse different component-based ar-
chitectures with regard to the use case of replacing software components, and
derive specific system attribute out of them. The aim is to extend the proposed
modelling and analysis support to system attributes, which can be commonly
used in safety domains.

References

1. Adler, R., Schaefer, I., Trapp, M., Poetzsch-Heffter, A.: Component-based modeling
and verification of dynamic adaptation in safety-critical embedded systems. ACM
Trans. Embed. Comput. Syst. 10(2), 20:1–20:39 (2011)

2. Alemzadeh, H., Iyer, R., Kalbarczyk, Z., Raman, J.: Analysis of safety-critical
computer failures in medical devices. IEEE Security Privacy 11(4), 14–26 (2013)

3. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.B., Reinkemeier,
P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T., Larsen, K.: Contracts
for Systems Design. Tech. rep., Research Report, Nr. 8147, 2012, Inria (2012)

Assured Dynamic Configuration of Safety-Critical Embedded Systems 179

4. Butz, H.: Open integrated modular avionic (ima): State of the art and future
development road map at airbus deutschland. Department of Avionic Systems at
Airbus Deutschland GmbH Kreetslag 10, D-21129 Hamburg, Germany (-)

5. Crnkovic, I.: Building Reliable Component-Based Software Systems. Artech House,
Inc., Norwood (2002)

6. FAA: Guidelines for the Oversight of Software Change Impact Analyses used to
Classify Software Changes as Major or Minor. Notice 8110.85, FAA (2000)

7. FAA: AC20-148 Reusable Software Components. Tr, FAA (2004)
8. Frey, P.: Case Study: Engine Control Application. Tech. rep., Ulmer Informatik-
Berichte, Nr. 2010-03 (2010)

9. Gluch, D., Weinstock, C.: Workshop on the State of the Practice in Dependably
Upgrading Critical Systems: April 16-17, 1997. Special report, Carnegie Mellon
University, Software Engineering Institute (1997)

10. Kajtazovic, N., Preschern, C., Kreiner, C.: A component-based dynamic link sup-
port for safety-critical embedded systems. In: 20th IEEE ECBS (2013)

11. Kajtazovic, N., Preschern, A., Hoeller, C., Kreiner, C.: Constraint-based verifica-
tion of compositions in safety-critical component-based systems. In: IEEE/ACIS
SNPD (June 2014)

12. Kindel, O., Friedrich, M.: Softwareentwicklung mit AUTOSAR: Grundlagen, En-
gineering, Management in der Praxis. dpunkt Verlag, Auflage: 1 (2009)

13. Lopez-Jaquero, V., Montero, F., Navarro, E., Esparcia, A., Catal’n, J.: Supporting
arinc 653-based dynamic reconfiguration. In: 2012 Joint WICSA and ECSA (2012)

14. Marriott, K., Stuckey, P.J.: Programming with Constraints: An Introduction. The
MIT Press (March 1998)

15. Montano, G.: Dynamic reconfiguration of safety-critical systems: Automation and
human involvement. PhD Thesis (2011)

16. Pop, P., Tsiopoulos, L., Voss, S., Slotosch, O., Ficek, C., Nyman, U., Ruiz, A.:
Methods and tools for reducing certification costs of mixed-criticality applications
on multi-core platforms: the recomp approach. In: WICERT (2013)

17. Rierson, L.: A systematic process for changing safety-critical software. In: Proceed-
ings of the 19th Digital Avionics Systems Conference, DASC, vol. 1, pp. 1B1/1–
1B1/7 (2000)

18. Smith, D., Simpson, K.: A Straightforward Guide to Functional Safety, IEC 61508
(2010 Edition) and Related Standards, Including Process IEC 61511 and Machinery
IEC 62061 and ISO 13849. Elsevier Science (2010)

19. Soliman, D., Thramboulidis, K., Frey, G.: A methodology to upgrade legacy indus-
trial systems to meet safety regulations. In: 2011 3rd International Workshop on
Dependable Control of Discrete Systems (DCDS), pp. 141–147 (June 2011)

20. Zhang, M., Ogata, K., Futatsugi, K.: Formalization and verification of behavioral
correctness of dynamic software updates. Electronic Notes in Theoretical Computer
Science 294, 12–23 (2013); Proceedings of the 2013 VSSE Workshop

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 180–191, 2014.
© Springer International Publishing Switzerland 2014

Towards Trust Assurance and Certification
in Cyber-Physical Systems

Daniel Schneider1, Eric Armengaud2, and Erwin Schoitsch3

1 Fraunhofer IESE, Kaiserslautern, Germany
daniel.schneider@iese.fraunhofer.de

2 AVL List GmbH, Graz, Austria
eric.armengaud@avl.com

3 AIT Austrian Institute of Technology GmbH, Vienna, Austria
erwin.schoitsch@ait.ac.at

Abstract. We are currently witnessing a 3rd industrial revolution, driven by ever
more interconnected distributed systems of systems, running under the umbrella
term of cyber-physical systems (CPS). In the context of this paradigm, different
types of computer-based systems from different application domains collabo-
rate with each other in order to render higher level services that could not be
rendered by single systems alone. However, the tremendous potential of CPS is
inhibited due to significant engineering challenges with respect to the systems
safety and security. Traditional methodologies are not applicable to CPS with-
out further ado and new solutions are therefore required. In this paper, we
present potential solution ideas that are currently investigated by the European
EMC² research project.

Keywords: Cyber-physical systems, trust, safety, security, system engineering.

1 Introduction

The introduction of electronic control systems has revolutionized almost all technolo-
gy domains (e.g., transportation, home and factory automation, energy, health and all
kinds of services) by providing major cost decrease and quality increase of the exist-
ing functionalities, and even by enabling new functionalities. For example, today’s
cars are controlled by a computing network of up to 100 electronic control units tak-
ing over the optimal energy distribution and transfer between the different sources
(hybrid vehicle) according to the chosen road and traffic situation, and today’s planes
are providing fly-by-wire in order to improve controllability, safety and comfort.

Moore´s law [12], stating the doubling of the computer capacity every 2 years, is
still a strong enabler for this fast function increase and at the same time cost-per-
function decrease. The current development trend for computing platforms has moved
from increasing the frequency of single cores to increasing the parallelism (increasing
the number of cores on the same die). Multi-core and many-core technologies have
strong potential to further support the different technology domains, but at the same
time present new challenges. From the potentials point of view they provide:

 Towards Trust Assurance and Certification in Cyber-Physical Systems 181

• More computing resources, thus enabling more complex algorithms and / or inte-
gration of different functionalities on a single platform, finally leading to cost re-
duction and efficiency increase for the intended application

• Integrated mechanisms and new CPU architectures, e.g. built-in memory protec-
tion mechanisms, trusted Networks on Chip (NoC), as developed in the ARTEMIS
project ACROSS [28], thus enabling the development of new safety / security con-
cepts and reducing the SW related efforts for providing trust and dependability of
the application

At the same time, new challenges arise due to the existing integration needs and the
computing platform enabling this high degree of integration. From the dependability
point of view, the following challenges can be highlighted:

• Application integration and mixed-criticality: Different applications are running
on the same platform, possibly of different criticality level. The independence be-
tween the applications and the most demanding criticality shall not be endangered
by applications of lower criticality.

• Seamless dependability / trust concept up to SW and system: efficient integration
of the computing platform dedicated mechanisms into the overall dependability
concept of the system

• The trend toward highly interconnected systems (cyber-physical systems (CPS))
leads to a concept shift from single closed systems (sensors – controller – actuators
known at design time) towards open interconnected and collaborating systems of
systems (intelligent control systems evolving and interacting in a dynamic envi-
ronment for a bounded amount of time and sharing dependability responsibility).

• A further challenge is that safety can no longer be considered in an isolated and
independent way from security. Since CPS are open heterogeneous interconnected
systems of different manufacturers security threats are inevitable.

These challenges are aggravated by the fact that many CPS applications are

inherently safety- and security-critical and adequate safety / security assurance (and
certification) is thus indispensable. Safety / security co-engineering is consequently a
pre-requisite for enabling full deployment of cyber-physical systems. Missing depen-
dability evidence can be a show stopper for product release or even lead to costly
recall action. On the other side, proper dependability development usually leads to
reduction of V&V costs and avoid late and costly re-design [29].

Unfortunately, the established engineering methodologies are not applicable with-
out further ado. Engineering safe and secure adaptive systems implies a huge engi-
neering overhead due to the combinatorial complexity and the insufficient scalability
of the established approaches (i.e. it would be necessary to foresee and analyze any
variant a system might assume during its lifetime). For open systems (of CPS), it
might even be outright impossible to build upon established approaches since the
safety / security properties of the different participants (that are meant to inte-
grate/collaborate at runtime) are not known at development time already. Moreover,
existing functional safety standards even explicitly prohibit concepts like dynamic
adaptation, run-time assurance or self-healing (e.g. IEC61508 [6]).

182 D. Schneider, E. Armengaud, and E. Schoitsch

In this context, the newly started ARTEMIS EMC² project1 aims at answering
these challenges. The consortium consists of 97 partners for an overall budget of al-
most 100M€. The project consists of six technical work-packages and six living labs:

The technical work-packages are focusing on a specific technology (e.g., SW para-
digm, multi-core HW architectures, tool integration, certification), while the living
labs are providing use cases from different domains (e.g., automotive, avionics, space,
industrial manufacturing, internet of things).

This paper presents the solution approach that is envisioned by the EMC² WP6 “Sys-
tem qualification and certification” to overcome the challenges illustrated above. The
approach is based on two main pillars which are the respective focus of the two technic-
al Tasks of the WP: The co-engineering of safety and security at development time
(Section 3) as well as means to shift the final certification step into runtime (Section 4).

2 State of the Art

The state of the art that is relevant for the solution approach envisioned by EMC² is
twofold. On the one hand, there is the research question of safety and security co-
engineering. And on the other hand, there is the research question of modularizing
safety and security in an adequate way to enable runtime certification in the context of
CPS.

Considering the first aspect, there is previous work of the project partners particu-
larly in projects like DECOS [2] and the ARTEMIS projects SafeCer [17] and related
projects like OPENCOSS [18] or SESAMO [24]. DECOS focused on the Validation
and Verification (V&V) and Certification support process aiming at a component
based, incremental and modular approach towards system certification. nSafeCer is
aiming particularly at a compositional approach of certification and re-certification
enabling re-use of pre-qualified components based on a component model using con-
tracts as basic element and appropriate process models allowing simplified (re-)
certification, being well aware of the fact that most functional safety standards do
not directly foster this approach. Some effort is undertaken to influence relevant
standards (IEC, ISO) in the long term. OPENCOSS has extended the notion of
SILs (Safety Integrity levels) towards resilience and reliability (dependability),
defining so-called ARRLs (Assured Reliability and Resilience Levels) of compo-
nents, defining how a failure of a component influences its impact (it drops by one
ARRL). By a set of composition rules similar to ISO 26262, higher level compo-
nents/subsystems/systems can be built with a known ARRL. These approaches are
primarily towards composability (re-use) and safety/dependability. SESAMO, on the
other hand, is addressing the issue of combined safety and security management.
SESAMO key elements are:

• a methodology to reduce interdependencies between safety and security mechan-
isms and to jointly ensure their properties

1 http://www.emc2-project.eu/

 Towards Trust Assurance and Certification in Cyber-Physical Systems 183

• constructive elements for the implementation of safe and secure systems
• procedures for integrated analysis of safety and security
• an overall design methodology and tool-chain utilizing the constructive elements

and integrated analysis procedures to ensure that safety and security are intrinsic
characteristics of the system.

As for the second aspect, existing modular safety assurance approaches constitute a
possible starting point for the envisioned approach. Related research typically refers
to the term modular certification, which is one of the most important current trends in
safety research. In the Avionics domain, Rushby [8] introduced the use of modular
certification for software components in the context of IMA architectures. The main
goal of this approach is to enable an incremental assurance for the certification of an
IMA system. In the area of generic safety cases, another important approach in the
support of modular certification was introduced by Althammer [2]. The modulariza-
tion concepts introduced as part of the DECOS (Dependable Embedded Components
and Systems) project have the main objective of facilitating the systematic design and
deployment of integrated systems. Bate and Kelly [5] presented an approach to allow
a modular construction of safety cases based on the modeling language GSN [7]. In a
later publication, Kelly [13] demonstrated that many principles from the field of soft-
ware architecture can be applied to managing and representing safety cases as a com-
position of safety case modules. Following Kelly’s work, Fenn et al. [4] describe an
approach extending the GSN to create modularized safety cases with the use of con-
tracts.

Not so well known in the safety and the security community are the IEC TC 56
Dependability standards [21][22]. Although they do not directly address safety or
security but rather dependability in a more general form, they provide some guidance
applicable to both, safety and security, in the context of the same system and its com-
ponents. [21] focuses on the Dependability Case, [22] on the issue of how to build
components for trusted systems and how to build trusted systems from components.
The concepts of safety cases and dependability cases are aiming at building dependa-
ble systems by design and verify them during development, predictability is the major
requirement. All standards in the safety and dependability area are based on this prin-
ciple by now. The security standard Common Criteria (ISO 15408)[23] classifies
components according to EALs (Evaluation Assurance Levels 1-7, 7 being the high-
est) and specify how to identify which EAL is required for a product (relates to
“component” in the CPS context) in an application. The ISO 27000 series [15][16]
addresses security in an organization from a holistic system point of view, considering
all factors, not only ICT.

The approaches presented so far focus on the modular safety assurance during de-
velopment time (safety/security by design, predictability a major concern) and are
therefore designed to support human safety engineers in their activities. Runtime
assurance and certification, as it is our goal in EMC², has rarely been addressed in
research up to now. Ideas for the certification at runtime were first introduced by
Rushby [9][10]. He describes first ideas that it should be possible to perform formal
analyses at runtime, making it possible to formally verify that a component behaves

184 D. Schneider, E. Armengaud, and E. Schoitsch

as specified during execution. However, he does not provide concrete solutions. As
one possible approach, Schneider and Trapp introduced the concept of Conditional
Safety Certificates (ConSerts)[1][3][11], which facilitate the modular definition of
conditional safety certificates for single components and systems using a contract-like
approach. This approach will be a starting point for our work in EMC² and will thus
be considered in some more detail in Section 4.

3 Safety and Security – Trust by Design

As described in section 2, there are several approaches towards safety engineering or
security engineering at design and development time for predictable critical systems.
They are either based on life-cycle type processes (functional safety standards IEC
61508, IEC 61511, ISO 26262, in security e.g. the Microsoft Secure Software Devel-
opment Lifecycle or the NIST Security Considerations in the System Development
Life Cycle (SP 800-64)), or on system considerations (ISO 27000 series, German IT-
Baseline Protection handbook). Co-engineering safety and security with generation of
evidence that can be used for static evidence derived from requirements at design time
and possibly as basis for runtime aspects is not state of the art. There are several ap-
proaches under development and evaluation coming either from the safety community
or the security community to extend methods applicable to cover both sides of the
coin, safety and security. Both are focused on the “conventional” side taking predic-
tability as major concern.

A first (weak) approach can be taken from IEC 61508, Ed. 2.0, 2010. A working
group tried to include security as an important second issue besides safety, since at
this time security standards and regulations were focusing on large business systems
and networks.

It was tried to align requirements for SILs (safety requirements) with related secu-
rity requirements of appropriate level for products (components from CPS view
point). This is based on the idea that a similar level of rigidness as defined e.g. in IEC
61508 and ISO 15408 should be applied to the SRLs on both sides (see Table 1). In
case the risk and vulnerability analysis (combined safety and security analysis) pro-
vides evidence that different levels are required for both issues then the recommenda-
tions shall change.

Table 1. SRLs and related verification requirements (proposal)

SRL Security

Require-
ments Level

Security functions and related
Evaluation Assurance Levels
according to ISO/IEC 15408

Hardware, software or ASICS
and related Safety Integrity Lev-
els according to ISO/IEC 61508

Low EAL 3 + ? SIL 1

reduced EAL 4 SIL 2

Full EAL 5 SIL 3

 Towards Trust Assurance and Certification in Cyber-Physical Systems 185

A combined Safety/Security Life Cycle was drawn (proposal, Fig. 1):

Fig. 1. A possible approach to a Unified Safety & Security Life cycle

The security management life cycle should in the end be integrated in a holistic, uni-
fied model of parallel, equivalent activities:

• Definition and Implementation of Security Policy from „Concept“ to „Security
Requirements Allocation“ similar to the safety life cycle,

• Security during System Development (includes Security during the whole lifecycle
of the system (Documentation, Evaluation and Certification)

• Maintaining Security Level during Operations (includes Maintenance, Change
Management and Incident Handling), Disaster Recovery and Business Continuity
Planning). This is a critical issue in context of safety certification: Security outlives
rather quick its life time, so frequent updates are necessary – quite opposite to what
safety people want, to avoid re-assessment and re-certification!

More details are to be found e.g. in [20][24][18]. Concerning applicable methods,
some examples are FMEVA (extended Failure Mode, Effect and Vulnerability Analy-
sis) [25], Attack Trees and State/Event Fault Trees [26][27].

Unfortunately, the approach was in the end not accepted, security should not be
tackled in such detail. The conclusion was to add separate clauses into IEC 61508
everywhere where security could have an impact on safety giving advice on how to
integrate the security aspect as an additional hazard (risk) for the safety-critical sys-
tem, i.e. to look at the safety impact of security breaches and then derive requirements
for the safety critical system, based on a joint hazard, risk and vulnerability analysis.
From a complete Annex remained a few clauses only, but at least there is some poin-
ter in IEC 61508 to the security issue in safety related systems [20].

In EMC², the Work package WP 6.2, Assurance methodologies for EMC² Systems,
will focus on the assurance of safety and other qualities as well, particularly security
vulnerabilities and countermeasures through system life-time and maintenance of the

186 D. Schneider, E. Armengaud, and E. Schoitsch

integrity and assurance levels. Focus will be on necessary extensions of safety & se-
curity co-analysis, co-design, combined development and V&V approaches as well as
the development of appropriate runtime testing approaches and maintenance during
the operational phase. This is necessary to maintain the system which was “safe and
secure by design” based on the assumption of predictable behavior (static approach
plus monitoring for maintenance purposes).

An additional innovative feature of EMC² is the combination of safety and security
attributes as part of the assurance strategy. On one hand, dependable embedded
computer systems are crucial for many applications in the fields of transportation,
automation, and medicine, where a tremendous progress had been made building
ultra-dependable systems out of less reliable components. A multitude of practical
techniques with respect to fault masking, error detection, fault diagnosis and recovery
has evolved to improve the reliability of safety-critical system. Unfortunately, almost
all of these approaches focus on the safety aspect and ignore that the system can be
under active and intentional malicious attack. On the other hand, securing information
systems and communication are well-established topics in the security research com-
munity. Security standards for the Internet and Web services are widely-deployed in
IT systems. However, the focus is on securing the information, as best described by
the Confidentiality, Integrity, and Availability (CIA) triangle model. Embedded mul-
ti-core systems pose new challenges because the targets of malicious attacks are
beyond the CIA aspects of information in the system: they are targeting at embedded
systems control functions! For example, attackers can attempt to compromise safety
through manipulation with integrity or availability attributes, or by misusing interfac-
es for maintenance purposes. The “foreseeable misuse” is one of the key aspects to be
considered at design time.

The related innovation in the EMC² project will be to investigate, develop, and va-
lidate methodologies and technical solutions for a holistic approach to safety and
security, throughout system lifetime, while taking into account the mission-critical
and real-time requirements.

4 Safety and Security – Runtime Certification

Apart from the major challenge of co-engineering safety and security as it has been
discussed in Section 3, the open and dynamic nature of the considered systems creates
additional safety and security engineering challenges.

On the one hand, the capability of systems to adapt dynamically to changes in their
environments (e.g. the availability of resources) generates a significant combinatorial
complexity that must be dealt with in the context of the development time safety and
security analyses. Any potential variant the system under investigation might assume
during its lifetime must be foreseen and analyzed. Established safety engineering
approaches do not provide any particular means to remediate this issue, which is not
very surprising given that adaptive behavior is even prohibited by some of the most
prominent current safety standards (e.g. IEC61508 [6]). It shall be noted, however,
that this does not mean that adaptive (embedded) systems do not exist. In fact, many

 Towards Trust Assurance and Certification in Cyber-Physical Systems 187

systems are adaptive as of today, but their adaptive behavior is not engineered in an
adequate and explicit way. This kind of implicit adaptivity of systems makes it even
more difficult to apply proper engineering methodologies to ensure their safety and
security. A new way of thinking and new corresponding approaches are required in
this regard, because otherwise it will hardly be possible to benefit from the full poten-
tial of CPS.

On the other hand, beyond being adaptive, the targeted systems are also open for
dynamic integration in the sense of a dynamically evolving system of systems. Differ-
ent systems from different manufacturers are combined at runtime in order to render
higher level services that could not be rendered by one single system alone. Ensuring
the safety and security of such dynamic compositions based on established engineer-
ing approaches is actually impossible per definition. We already emphasized that
established approaches wholly build on development time analyses and a complete
understanding of the system under development and its environment. However, for
the case of open system, the system constituents of the dynamically created systems
are largely unknown at development time and can thus not be analyzed in an adequate
way.

A potential solution to these problems lies in shifting parts of the assurance and
certification activities into runtime, when the actual system constituents and configu-
rations are known and all relevant information can be obtained. Ultimately, this
means that systems are to be enabled to (re-)certify themselves whenever dynamic
adaptation or integration occurs. At this point it is clear that the amount of responsi-
bility that is transferred to the system and into runtime is a decisive aspect. The more
safety and security intelligence is shifted into runtime, the higher the flexibility that is
gained. At the same time, however, the complexity of the required runtime mechan-
isms rises, too. And in general, it would hardly be possible to completely formalize
and automate all the reasoning that is required from a safety engineer for engineering
a safety concept for a given system. Therefore it must be the goal to keep the runtime
aspect as light weight as possible, yet it has to be sufficient to enable dynamic adap-
tion and integration.

A promising solution approach is to utilize modular conditional certificates as they
have been proposed in [1] [3] [11]. These are post-certification artefacts, meaning that
the actual certification has been conducted in the traditional way with safety engineers
analyzing the system and developing an adequate safety concept. However, in con-
trast to closed and static system, there are certain variation points in the certificate.
These are bound to formalized external dependencies that could not be resolved at
development time already and shall thus be resolved at runtime. This is what makes
the certificates “conditional” and provides the flexibility in the certificates that is
required to be fit for a sufficiently wide range of concrete integration scenarios. Of
course, the conditional certificates must also be modular, because certification needs
to be conducted at the level of the units of composition of the targeted systems of
systems. The concept of modular conditional certification is illustrated in Fig. 2 and
elaborated in the following.

188 D. Schneider, E. Armengaud, and E. Schoitsch

Fig. 2. Concept of modular conditional certificates

The conditional certificates are to be evaluated automatically and autonomously by
the system at the moment of integration at runtime, based on runtime representations
of the certificates of the involved units of composition. This certificate evaluation
could either be realized off-board and/or on-board. Off-board checks are useful, if the
integration of new systems/components or the adaptation of a given sys-
tem/component does not need to happen in real-time. In this case, the emerging sys-
tem can be evaluated through an off-board service (e.g., in the cloud) using more
sophisticated (co-)analysis capabilities. If the integration must happen on-the-fly, or if
no connection to an external service is available, the evaluation must happen on-
board. In this case, the system(s) support a runtime evaluation based on efficient
embedded runtime representations of the certificates and corresponding evaluation
mechanisms and protocols.

Once all conditions are resolved and the evaluation is finished, an overall certifi-
cate variant can be determined for the actual composition that has been formed. In a
sense, the final certification step has therewith been postponed into runtime and we
could consequently speak of “runtime certification”. Whenever the overall system
composition changes or the system adapts itself, a re-evaluation of the conditional
certificates must be conducted and the overall certificate for the composition must be
updated. Such a re-evaluation might well be triggered by a minor dynamic adaptation
in one of the subsystems, which, however, can easily trigger a chain reaction in rely-
ing components leading to complex reconfiguration sequences. Therefore, there is a
strong interdependency between dynamic adaptations and the dynamic evaluations of
the conditional certificates. An adaptation might lead to an invalidation of the current
certificate and thus to a re-evaluation and to the determination of a new one. This in

 Towards Trust Assurance and Certification in Cyber-Physical Systems 189

turn might then violate given top-level trust requirements, which might then again
trigger additional adaptations to regain sufficient trust guarantees (e.g. by graceful
degradation, which could imply a loss of application features).
The work on Conditional Safety Certificates (ConSerts) presented in [1][3][11]will
constitute a starting point for our work. This initial approach provides promising con-
cepts and ideas but, as of yet, lacks the maturity that would be required for industrial-
strength solutions as they are envisioned by EMC². Moreover, the approach needs to
be augmented in order to take additional properties beyond safety into account. This
specifically concerns security, as it is one main focus of EMC² and WP6, but might
also concern other less critical properties, such as properties that are related to per-
formance.

5 Conclusion and Outlook

CPS have the potential to revolutionize our daily lives, but before this potential can be
unlocked some important challenges need to be tackled. At the heart of these chal-
lenges, there is the need to ensure safety and security of the new generation of CPS.
In this paper we outline a corresponding solution approach that is based on two main
pillars, which are also the main focus of the qualification and certification work pack-
age of the EMC² project. On the one hand, we strive for sound safety security engi-
neering and establishing integrated trust cases. And on the other hand, we deem it
necessary to shift parts of the certification measures into runtime to overcome the
combinatorial complexity inherent to CPS. With advances in these two fields we be-
lieve that we can get a significant step closer to the vision of safe and secure intercon-
nected CPS and “systems of cyber-physical systems”.

Acknowledgment. The research leading to these results has received funding from
the ARTEMIS Joint Undertaking under grant agreement n° 621429 (project EMC²)
and from the respective national funding authorities. Previous work was funded by the
ARTEMIS JU under grant agreements n° 269265 and 295373 (projects pSafeCer and
nSafeCer) and from respective national funding authorities.

References

[1] Schneider, D., Trapp, M.: Conditional Safety Certification of Open Adaptive Systems.
ACM Trans. Auton. Adapt. Syst. 8(2), Article 8, 20 pages (2013)

[2] Althammer, E., Schoitsch, E., Eriksson, H., Vinter, J.: The DECOS Concept of Generic
Safety Cases - A Step towards Modular Certification. In: Proceedings of the 35th Euro-
micro Conference on Software Engineering and Advanced Applications, pp. 537–545
(2009)

[3] Schneider, D., Trapp, M.: Conditional Safety Certificates in Open Systems. In: Proceed-
ings of the 1st Workshop on Critical Automotive Applications: Robustness & Safety
(CARS 2010). ACM (2010)

190 D. Schneider, E. Armengaud, and E. Schoitsch

[4] Fenn, J., Hawkins, R., Kelly, T.P., Williams, P.: Safety Case Composition Using Con-
tracts – Refinements Based on Feedback from an Industrial Case Study. In:15th Safety
Critical Systems Symposium (2007)

[5] Bate, I., Kelly, T.P.: Architectural considerations in the certification of modular systems.
In: Anderson, S., Bologna, S., Felici, M. (eds.) SAFECOMP 2002. LNCS, vol. 2434, pp.
321–333. Springer, Heidelberg (2002)

[6] IEC 61508, Ed. 2.0, 2010, Part 1-7. Functional safety of electrical/electronic/programmable
electronic safety related systems, International Electrotechnical Commission.

[7] Kelly, T.P, Concepts and Principles of Compositional Safety Cases. COMSA/2001/1/1,
Research Report commissioned by QinetiQ (2001)

[8] Rushby, J.: Modular certification. NASA Contractor Report CR-2002-212130, NASA
Langley Research Center (2002)

[9] Rushby, J.: Just-in-Time Certification. In: proceedings of the 12th IEEE International
Conference on Engineering Complex Computer Systems (ICECCS 2007), pp. 15–24
(2007)

[10] Rushby, J.: Runtime certification. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp.
21–35. Springer, Heidelberg (2008)

[11] Schneider, D., Trapp, M.: A Safety Engineering Framework for Open Adaptive Systems.
In: Proc. of the Fifth IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, SASO (2011)

[12] Moore, G.E.: Cramming more components onto integrated circuits. Electronics Maga-
zine, 4 (1965) ISSIN 0883-4989

[13] Kelly, T.: Using software architecture techniques to support the modular certification of
safety-critical systems. In: Proceedings of the Eleventh Australian Workshop on Safety
Critical Systems and Software, SCS 2006, vol. 63, pp. 53–65. Australian Computer So-
ciety, Inc., Darlinghurst (2006)

[14] IEC 62443: Industrial communication networks - Network and system security. Interna-
tional Electrotechnical Commission

[15] ISO/IEC:27002: Information technology - security techniques - Code of practice for in-
formation security management. International Organization for Standardization (ISO), In-
ternational Electrotechnical Commission (IEC)

[16] ISO/IEC 27005, Information technology — Security techniques — Information security
risk management. International Organization for Standardization (ISO), International
Electrotechnical Commission, IEC (2008)

[17] SafeCer (Safety Certification Safety Certification of Software-intensive Systems with
Reusable Components), ARTEMIS project n° 269265/295373 (pSafeCer/nSafeCer),
http://www.safecer.eu

[18] 7. OPENCOSS (Open Platform for EvolutioNary Certification Of Safety-critical Sys-
tems), European Integrated Project in FP7 , http://www.opencoss-project.eu

[19] ISO 26262 (2011/2012), Part 1- 10, “Road vehicles – functional safety”
[20] Schoitsch, E.: Safety and/vs. Security: Towards a System Engineering approach for

Trust? In: Proceedings of ISSC 2013 (31st International Systems Safety Conference),
IEEE Conference Proceedings, Boston, USA, August 12-16, System Safety Society, Bos-
ton (2013), Paper #134 in electronic proceedings, ISBN 978-0-9858710-1-7

[21] IEC 62741/Ed1, 2013: Reliability of systems, equipment and components. Guide to the
demonstration of dependability requirements. The dependability case

[22] IEC/PAS 62814/Ed1, 2013: Dependability of Software Products Containing Reusable
Components – Guidance for Functionality and Tests

 Towards Trust Assurance and Certification in Cyber-Physical Systems 191

[23] ISO 15408, 2009: Information technology – Security techniques – Evaluation criteria for
IT security

[24] SESAMO (Security and Safety Modelling), http://www.sesamo-project.eu
[25] Schmittner, C., Gruber, T., Puschner, P., Schoitsch, E.: Security application of failure

mode and effect analysis (FMEA). In: Bondavalli, A., Di Giandomenico, F. (eds.)
SAFECOMP 2014. LNCS, vol. 8666, pp. 311–326. Springer, Heidelberg (2014)

[26] Steiner, M., Liggesmeyer, P.: Combination of Safety and Security Analysis - Finding Se-
curity Problems That Threaten The Safety of a System. In: SAFECOMP 2013 - Work-
shop DECS (ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical
Systems) of the 32nd International Conference on Computer Safety, Reliability and
Security (2013)

[27] Roth, M., Liggesmeyer, P.: Modeling and Analysis of Safety-Critical Cyber Physical Sys-
tems using State/Event Fault Trees. In: SAFECOMP 2013 - Workshop DECS (2013)

[28] ACROSS (Artemis project: ARTEMIS CROSS-Domain Architecture),
http://www.across-project.eu

[29] Ebert, C., Jones, C.: Embedded Software: Facts, Figures and Future, pp. 42–52. IEEE
Computer Society (2009)

Introduction to the Safecomp 2014 Workshop:
DEvelopment, Verification and VAlidation of

cRiTical Systems
(DEVVARTS ’14)

Francesco Brancati1, Nuno Laranjeiro2, and Ábel Hegedüs3

1 ResilTech s.r.l.,
Piazza Iotti, 25 - 56025 Pontedera (PI) - Italy

2 CISUC, Department of Informatics Engineering,
University of Coimbra, Coimbra, Portugal

3 Budapest University of Technology and Economics,
Department of Measurement and Information Systems,

Magyar tudósok krt. 2., 1117 Budapest, Hungary
francesco.brancati@resiltech.com, cnl@dei.uc.pt,

abel.hegedus@mit.bme.hu

Introduction

The DEVVARTS ’14 workshop focuses on novel methods for the development,
verification and validation (V&V) and certification of Critical Systems, where
the necessary effort for V&V frequently exceeds the core development time when
using traditional methods. The “soft” IT industry rapidly turns to system inte-
gration based on the reuse of hardware and software components, but for safety
related applications this will still evolve primarily due to the lack of composable
V&V and certification. All this poses serious difficulties to companies, which
are on one hand constrained to meet predefined quality goals, whereas, on the
other hand, are required to deliver systems at acceptable cost and time to mar-
ket. Large companies mainly follow a brute-force approach by focused large
volume investment into tooling and in-house training, but even high-tech SMEs
are highly vulnerable to the new challenges. Definition of methods, strategies
and tools assuring an adequate and simultaneously productive V&V is one of
the most challenging goals. It is hard to establish a proper tradeoff between
achievable quality with a particular technique (in terms of RAMS attributes)
and the costs required for achieving it. The situation is even worse in the case of
integration of existing SW in a safety critical system to be certified, since, assess-
ing products which encompass COTS software is a challenge although modern
standards consider this possibility. An additional concern is the usage of re-
cently adopted methods for SW development like MDD, since the certification
of systems using software developed with these supports is at the limit of the
applicability of the existing standards, and only the most recent ones are aligned
with these ‘modern’ methods.

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 192–194, 2014.
c© Springer International Publishing Switzerland 2014

Introduction to the DEVVARTS ’14 Workshop 193

The goal of the workshop on critical systems, their development, V&V and
certification is to encourage new trends and ideas about model-based design and
certification, experimental assessment of safety, reliability and security, effort
evaluation and prediction models for V&V activities, SW-FMEA methodolo-
gies, certifiability of critical architectures based on diversity of HW and SW
COTS, component integration and V&V, tool certification, human skill aspects
of V&V, design for certifiability, interactions and contradictions between safety
and security from a certification point of view and techniques for dependable
and secure services.

Program

The program of DEVARTS ’14 consists of 6 high-quality papers, covering the
above-mentioned topics. We have separated these papers into three mini-sessions
based on their focus and the topics they cover:

– Model checking approaches:
1. "Verification of fault-tolerant system architectures using model check-

ing" by Jussi Lahtinen ;
2. "Verification of a real-time safety-critical protocol using a modelling lan-

guage with formal data and behaviour semantics" by András Vörös,
Tamás Tóth and István Majzik

– Tools:
1. "Visualization of Model-Implemented Fault Injection Experiments" by

Daniel Skarin, Jonny Vinter and Rickard Svenningsson;
2. "Cost-Effective Testing for Critical Off-The-Shelf Services" by Fabio

Duchi, Nuno Antunes, Andrea Ceccarelli, Giuseppe Vella, Francesco
Rossi and Andrea Bondavalli;

– System and tool assessment:
1. "On Security Countermeasures Ranking through Threat Analysis" by

Andrea Bondavalli, Andrea Ceccarelli, Felicita Di Giandomenico, Fabio
Martinelli, Ilaria Matteucci and Nicola Nostro;

2. "Enabling Cross-domain Reuse of Tool Qualification Certification Arte-
facts" by Barbara Gallina, Shaghayegh Kashiyarandi, Karlheinz Zugs-
bratl and Arjan Geven;

Thanks

We are grateful to the SAFECOMP organization committee and collaborators
for their precious help in handling all the issues related to the workshop. We also
thank all the authors of the submitted papers who manifested their interest in
the workshop. With their participation the First SAFECOMP Workshop on De-
velopment, Verification and Validation of Critical Systems provides an excellent
venue for cooperation and discussion for the experts in this field. Special thanks
are finally due to Program Committee members and additional reviewers for the
high quality and objective reviews they provided.

194 F. Brancati, N. Laranjeiro, and Á. Hegedüs

Acknowledgements. This workshop has been supported by the CECRIS (CEr-
tification of CRItical Systems) research project (FP7-PEOPLE-IAPP-324334-
CECRIS). The project aims at taking a step forward in the growing field of
development, verification and validation and certification of critical systems.
The project focuses on the more difficult/important points of (safety, efficiency,
business, . . .) of critical system development, verification and validation and
certification process. The scientific objectives of the project are study both the
scientific and industrial state of the art methodologies for system development
and the impact of their usage on the verification and validation and certification
of critical systems. Moreover the project aims at developing strategies and tech-
niques supported by automatic or semi-automatic tools and methods for these
type of activities, whose cost-quality achievements are well-predictable in order
to tie costs of application of techniques to the RAMS attributes level achieved
by the product being tested. The project will draw-up guidelines to support
engineers during the planning of the verification & validation phases.

Verification of Fault-Tolerant System

Architectures Using Model Checking

Jussi Lahtinen

VTT Technical Research Centre of Finland,
Systems Engineering, P.O. Box 1000, FI-02044 Espoo, Finland

jussi.lahtinen@vtt.fi

Abstract. Model checking is a formal method that has proven useful
for verifying e.g. logic designs of safety systems used in nuclear plants.
However, redundant subsystems are implemented in nuclear plants in
order to achieve a certain level of fault-tolerance. A formal system-level
analysis that takes into account both the detailed logic design of the
systems and the potential failures of the hardware equipment is a difficult
challenge. In this work, we have created new methodology for modelling
hardware failures, and used it to enable the verification of the fault-
tolerance of the plant using model checking. We have used an example
probabilistic risk assessment (PRA) model of a fictional nuclear power
plant as reference and created a corresponding model checking model
that covers several safety systems of the plant. Using the plant-level
model we verified several safety properties of the nuclear plant. We also
analysed the fault-tolerance of the plant with regard to these properties,
and used abstraction techniques to manage the large plant-level model.
Our work is a step towards being able to exhaustively verify properties on
a single model that covers the entire plant. The developed methodology
follows closely the notations of PRA analysis, and serves as a basis for
further integration between the two approaches.

Keywords: Model checking, nuclear power plants, architecture, hard-
ware failure, fault-tolerance.

1 Introduction

The verification of digital instrumentation and control (I&C) systems is chal-
lenging because of complicated control functions, and because the state spaces
of the designs easily become too large for comprehensive manual inspection. For-
mal methods can provide more confidence on the correctness of I&C systems.

Model checking [1] is a computer-aided formal verification method that uses
models quite similar to those used in simulation. However, unlike simulation,
model checkers examine the behaviour of the system design exhaustively and
compare it with the system specification. The specification is expressed in a
suitable language, such as temporal logics, describing the permitted behaviours
of a system. Given a model and a specification as inputs, a model checking algo-
rithm determines whether the system has violated its specification. If a violating

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 195–206, 2014.
c© Springer International Publishing Switzerland 2014

196 J. Lahtinen

behaviour is found the model checker will give a counter-example execution of the
system demonstrating how the specification has been violated. In this work, we
have used the model checking tool NuSMV [2], and formalised the requirements
as state invariants.

We have previously applied model checking to the verification of logic de-
signs of individual safety systems, see e.g. [3]. There is, however, also need to
examine the overall system safety and fault-tolerance on the plant-level. The
Finnish regulatory guides on nuclear safety (YVL guides) require that all indi-
vidual safety systems are single-failure tolerant. For some systems it should also
be possible to perform the safety function even if any single component fails and
any other component is simultaneously out of operation due to repair or main-
tenance. The traditional plant-level architecture analysis methods such as fault
tree analysis (FTA), failure mode and effects analysis (FMEA) and probabilistic
risk assessment (PRA) are not intended for exhaustively examining the complex
functionality of the digital automation systems. Model checking, on the other
hand, can be used to verify the logical designs exhaustively. Thus, it is tempting
to try to expand the scope of model checking to the plant-level so that the overall
system behaviour could be analysed in detail. This approach could be beneficial
in finding potential errors in system design that arise from a combination of a
hardware failure and a software design error.

In our earlier work [4] we developed preliminary methodology for hardware
fault models using a small fictitious model. In this paper we improve on this
methodology. The intent is to model failures in i.e. telecommunication links,
microprocessors, measurement devices, pumps and valves. The operation of the
actuators and the effects of failures to how signals are interpreted in the I&C
systems are modelled. The developed methodology serves as a framework for ver-
ification of high-level system properties and fault-tolerance, which has previously
been quite difficult.

We have used a fictitious PRA model and created a corresponding model that
can be used for model checking. The PRA model depicts a boiling water reactor
(BWR) type nuclear power plant, which has four-redundant safety systems. We
verified several system level safety properties, and analysed the level of fault-
tolerance the plant model had with regard to these properties. We have also used
simple abstractions, and simplifications to make the verification more feasible.
The biggest simplification when compared to a real system is that no time delays
have been implemented in the safety system logics. We have also assumed that
all hardware failures are permanent. The methodology is quite compatible with
PRA, and it serves as a basis for further integration between the two approaches.
More details on our work can be found in a research report [5].

2 Related Work

Model checking has been previously used to analyse system faults and fault-
tolerance. FSAP/NuSMV-SA [6] is a safety assessment platform that can be

Verification of Fault-Tolerant System Architectures Using Model Checking 197

used for injecting faults into a system model and verifying the system fault-
tolerance using model checking. A similar fault injection approach is described
in [7], where a wheel brake system is verified using SCADE.

The Altarica language [8] was designed for formally specifying the behaviour
of failing systems. Altarica is used in e.g. [9] in combination with model checking
to assess safety requirements of the AIRBUS A320 hydraulic system.

Other work combining model checking and analysis of fault-tolerance is cov-
ered in e.g. [10,11,12]. In [10], a dual-redundant system for a spacecraft controller
is verified using the model checker Spin. [11] and [12] are process algebra based
modelling approaches for formalising fault-tolerant systems.

Our work, in contrast to the ones above, is about modelling larger systems in
which many types of hardware faults are possible. The modelling methodology is
built on top of the NuSMV modelling language. Our work also has a connection
to PRA analysis.

3 Description of the Example System

The case study model used in this work is based on a PRA model of a nuclear
power plant. The model depicts a fictive and simplified boiling water reactor
(BWR) type nuclear power plant (NPP). In this section, the model is only briefly
introduced on a general level. Detailed information on the PRA model can be
found from [13] and [14].

The plant model includes eight different safety systems that are mostly four-
redundant. The safety systems are divided into two separate subsystems: Re-
actor Protection System (RPS) and Diverse Protection System (DPS), which
are implemented on different automation hardware. The RPS safety systems
are: automatic depressurisation system (ADS), component cooling water system
(CCW), emergency core cooling system (ECC), service water system (SWS) and
residual heat removal system (RHR). The DPS safety systems are: emergency
feed water system (EFW), and main feed water system (MFW). In addition, the
AC power system belongs to both RPS and DPS. The model describes the op-
eration logic of the safety systems, the hardware equipment used to implement
each system, and the associated failure modes for each piece of equipment.

The safety systems read measurements, and actuate their dedicated pumps
and valves when necessary to prevent damage in the reactor core. The actuation
logic of the safety systems is implemented in four separate acquisition and pro-
cessing unit (APU) computers. Measurements, which are also four-redundant,
are separately brought to each APU. The control signals calculated by the re-
dundant APUs are collected in several voting units (VU) that decide on sending
the actuation commands to the pumps and valves.

The safety systems are designed so that the plant can survive a set of poten-
tially hazardous events called initiating events. Five initiating events are defined:
loss of coolant accident (LOCA), loss of feed water due to e.g. main feed water
pump failures (LOFW), loss of online power (LOOP), disturbances in normal
plant operation without the loss of primary coolant (Transient), and the loss of
DC power. Depending on the initiating event there are different success criteria

198 J. Lahtinen

for the safety systems. The success criteria can be derived from event trees that
exist for each initiating event.

4 Modelling

We used the PRA model introduced in Section 3 as reference and created a
corresponding model using the NuSMV modelling language that can be used
for model checking. We modelled seven out of the eight safety systems that are
part of the PRA model. Only the AC power system was not included in the
model due to excessive modelling effort required. The model files are available
on request. We modelled the system as a discrete time model in which signal
propagation is instantaneous, i.e. inputs from measurements reach the outputs
of a safety system on the same clock cycle if delays are not implemented in the
safety system logic. The modelling methodology was kept as modular as possible.

APU logic module

Open/Close valve
Start/Stop pump

Failure module

nro_of_faults

Function block library

VU logic module

Open/Close valve
Start/Stop pump

Hardware component
module

nro_faults
component status

CCF failure module

nro_of_CCFs

CCF

realizes
affected_ids
failure_mode

Process module

Reactor water level
Water level in EFW pump room
Water level in ECC pump room
ADS manual commands
CCW manual commands
SWS manual commands
MFW manual commands
RHR manual commands
Feedwater system room temperature
Reactor containment pressure

Pump

running

Valve

open

Main module

Default replacement values for detected failures
Individual system success criteria
Overall scenario success criteria
scenario
failures
CCFs

Link module
APU to APU

output1

Link module
Measurement to APU

output1

Link module
APU to VU

output1

Link module
VU to pump

output1

Link module
VU to valve

output1

Fig. 1. Model composition

The main idea of the methodology is to use link modules to make connections
between measurements, logic modules and equipment. The link modules are
parameterised with links to the hardware that implement that link, as hardware
failures may cause the received value of a variable to be interpreted differently.

The modular composition of the model is illustrated in Fig. 1. The main
components of the model are the logic modules (APU and VU), the various link
modules, process module, and a failure module. The connections in Fig. 1 are
either one-to-one or one-to-many, and should be read as ‘creates an instance of’.
For example, the main module creates a single instance of the failure module.

Verification of Fault-Tolerant System Architectures Using Model Checking 199

Fig. 1 also shows some of the variables calculated and output by the modules.
For example, the main module calculates the success criteria for individual safety
systems and scenarios. Successful operation means for e.g. ECC that in one of
the four redundancies, the pump is running and the corresponding valve is open.
A large LOCA scenario is survived when both ECC and RHR systems operate
successfully.

4.1 Logic Modules

A function block based design was manually created for each safety system. The
logic design was written using a function block based approach because that has
been a convention in our earlier work, see e.g. [15] for some information on how
function block diagrams were modelled. The logic could be designed using the
function blocks: AND, OR, NOT, and a 2-out-of-4 vote function block.

Logic was designed both for the APU computers and the voting units in sep-
arate modules. The APU computers check whether the actuation commands
should be sent based on the measurement values received as input. The vot-
ing units calculate their outputs (start/open and stop/close) using 2-out-of-4
function blocks on the input signals.

4.2 Failure Module

As shown in Fig. 1, the failure module is used to store all instances of hardware
components. Below is the hardware component type module for APU computers.

MODULE APU_failuremodule(id, CCFmodule)

VAR

FROZENVAR processor_status : {OK, hang_detected, hang_undetected,

dropout_detected,dropout_undetected, delayed_detected,

delayed_undetected, rand_detected, rand_undetected};

FROZENVAR digital_input_status : {OK, stuck_to_current_detected,

stuck_to_current_undetected};

FROZENVAR digital_output_status : {OK, stuck_to_current_detected,

stuck_to_current_undetected};

FROZENVAR backplane_or_powersupply_status:{OK, loss_of_function};

DEFINE

nro_faults := toint(processor_status != OK)

+ toint(digital_input_status != OK)

+ toint(digital_output_status != OK)

+ toint(single_failure_in_backplane) ;

single_failure_in_backplane :=

(backplane_or_powersupply_status != OK) &

! CCFmodule.APU_backplane_CCF.realizes;

ASSIGN

init(backplane_or_powersupply_status):= case

CCFmodule.APU_backplane_CCF.realizes &

200 J. Lahtinen

(id in CCFmodule.APU_backplane_CCF.affected_ids) :

CCFmodule.APU_backplane_CCF.failure_mode;

TRUE : {OK, loss_of_function};

esac;

The module has as parameter the hardware component id number and a ref-
erence to the module where all the CCFs are stored. Because the APU computer
has many elements that can fail (processor, digital input module, digital out-
put module, backplane and power supply), each element has its own variable
indicating the status (OK or one of the failure modes) of the component. The
variables are of type FROZENVAR which in the NuSMV modelling language
means that the variable value cannot change after the initial time point, i.e.
we assume that all faults are permanent. In addition to these variable decla-
rations the hardware component module also calculates the number of expe-
rienced failures in the particular APU since several simultaneous failures can
be possible. Since common cause failures have influence on the status of in-
dividual components the module also uses an init clause to force the related
variable to the value dictated by the effective common cause failures. The vari-
able CCFmodule.APU backplane CCF .realizes is a Boolean variable indicating
that a common cause failure involving the APU backplane is in effect.

Failures can be either detected or undetected. Detected and undetected fail-
ures were modelled as separate failure modes following the reference material.
The detection of failures is carried out by the link modules that replace the
signal values with a predetermined default value in case of one of the detected
failure modes is present.

The failure module is also used to decide which of the hardware components
experience a failure. The decision is non-deterministic but the number of single
failures and common cause failures are bound by parameters the model. All
hardware failures are added up and a constraint clause (INVAR declaration of
the NuSMV modelling language) is added to restrict the model to only those
situations that are according to the failure assumptions.

The failure module creates an instance of a separate common cause failure
(CCF) module that stores all the CCFs. The hardware equipment instances are
given a distinct ID number when they are instantiated. The ID numbers are used
for handling common cause failures. A CCF affects many hardware components,
so each common cause failure is modelled by defining a set of ID numbers that
are affected by the CCF, and the failure mode related to that CCF.

4.3 Link Modules

Link modules are used whenever some piece of information is transferred from
one place to another in the plant automation. The link module executes this
transfer of information but simultaneously the effects of possible faults affecting
the information are taken into account. Since there are only a small number of
different type of links (e.g. APU-to-APU, measurement to APU, etc.) link type
modules were created that can be parameterised with equipment related to the
particular link.

Verification of Fault-Tolerant System Architectures Using Model Checking 201

As an example of link module behaviour, consider a measurement of wa-
ter level that is used as input on an APU computer. The read value depends
on whether e.g. the measurement device or the input module of the APU has
failed, and whether the failure has been detected. The link modules handle this
behaviour in the model and change the perceived logical value of the measure-
ment accordingly. The link type module for measurement-to-APU links is below.

MODULE LINK_MEAS_APU(in1, measurement, apu, DFLT)

VAR

prevout : boolean;

DEFINE

output1 := case

apu.backplane_or_powersupply_status != OK : FALSE;

apu.digital_input_status = stuck_to_current_detected : DFLT;

apu.digital_input_status = stuck_to_current_undetected : prevout;

measurement.status = fail_high_detected : DFLT;

measurement.status = fail_low_detected : DFLT;

measurement.status = drift_detected : DFLT;

measurement.status = freeze_detected : DFLT;

measurement.status = fail_high_undetected : TRUE;

measurement.status = fail_low_undetected : FALSE;

measurement.status = drift_undetected : ! in1;

measurement.status = freeze_undetected : prevout;

TRUE : in1;

esac;

ASSIGN

init(prevout):= FALSE;

next(prevout):= output1;

The parameter in1 refers to the variable transferred by the link module,
measurement is the measuring device from which the value is received, apu refers
to the APU computer receiving the information, and DFLT is the replacement
value used if a failure is detected. The transferred variable value is a Boolean
variable. The TRUE value of the variable means that the threshold related to
the measurement has been surpassed. The FALSE value of the variable means
that the physical value is still below the related threshold. The module consists
of a single case clause that defines the value of output1. The case clause goes
through all possible failure modes of the measuring device and the APU that
can influence how the variable is read and interpreted in the APU logic. In
case of a detected failure (failure modes attached with “ detected”) the module
uses the DFLT value for output1. In case of non-detected failures the output is
changed according to the failure mode. Two of the failure modes are such that
the variable value freezes to the previous value. This has been modelled using a
separate variable prevout.

202 J. Lahtinen

4.4 Process Module

The process module plays the role of an environment model, and decides on
the values of the physical parameters of the plant. These values are the ac-
tual physical values independent from the measured values which are suspect to
faults. These physical parameters have been modelled mainly as Boolean vari-
ables instead of real valued variables. In the case study the physical parameters
are mostly compared against a single limit value. From the model perspective
it only matters whether the physical parameters are below or above this limit.
This behaviour can be achieved using only Boolean variables.

The process module has as input the initiating event that is under examina-
tion. Four initiating events were modelled (LOCA, LOOP, LOFW, Transient)
using a single enumerative variable scenario that determines the used initiating
event. The variable scenario forces certain physical parameters to have a partic-
ular value. For example, in all initiating events the reactor water level becomes
low. Consequently, the corresponding variables in the model shall also indicate
that the reactor water level is low. The process module consists of case clauses
that implement these kinds of rules for all scenarios. The variable scenario also
has an additional possible value FREE. In this case the physical parameters of
the plant experience no restrictions what so ever: the values of the parameters
are selected non-deterministically.

4.5 Abstractions and Property Verification

In order to simplify the model we did some light abstractions. As an example,
the measurement devices have a failure mode freeze that can be modelled us-
ing a single variable that stores the device’s output at the previous time step.
We made an abstraction in which we use a random variable instead. Another
abstraction was to replace unneeded logic modules with interface modules. An
interface module contains no function blocks, and the outputs of the module
are defined as free variables. Both of these abstractions are over-approximations
that preserve the truth value of universal properties (e.g. safety properties). If
the over-approximated model does not have a bad state, then a bad state cannot
exist in the more concrete model either.

We also concentrated on verifying simple state invariant properties only. The
traditional BDD based model checking techniques were too time consuming on
our case study model. Most bounded model checking techniques do not give
proofs when specifications are true. We used the k-induction algorithm imple-
mented in NuSMV that can also prove properties in some cases.

4.6 Modelling Choices

In our approach we modelled hardware component failures so that each com-
ponent has a dedicated variable that expresses the status of that component.
We then used INVAR clauses to restrict the number of simultaneous failures.
This approach was much simpler and clearer than the alternative of using

Verification of Fault-Tolerant System Architectures Using Model Checking 203

e.g. enumerative variables to select the failing components and failure modes.
The practice of using component ID numbers, and maintaining a list of IDs af-
fected by a common cause failure, seemed also an effective way to handle CCFs.

Another successful modelling choice was to create link type modules for differ-
ent types of links that could be parameterised with the components associated
with a particular link instance. A more laborious alternative would have been
to bind the signals in a case-specific manner to the components that are used to
transfer them, and alter the signal value according to failures in the components.
This alternative approach would be laborious because a case clause would have
to be written for each link instance, and the number of link instances in the
model is very large. We also parameterised the link modules with the modules
of the relevant equipment, instead of individual variables within the modules.
This seemed to make the link modules a lot simpler.

The PRA model did not include any descriptions of time delays used in the
I&C systems, and thus no timers were added to the logic modules. However,
in real I&C systems timers are regularly used. Adding timers into the function
block diagrams is straightforward but doing so may lead to a model that is
computationally more challenging.

In our methodology we assumed that all failures were permanent. This as-
sumption simplifies modelling, and verification times significantly. In the future,
the methodology could be extended to cover non-permanent failures as well. We
also did not focus on propagation of failures, where a single failure could lead
to another type of failure. Propagation of a failure can also be classified as a
common cause failure.

In our model the environment model is quite free. For example, the opera-
tional states of pumps and valves do not affect the physical parameters, so there
are no feedbacks implemented in the model environment. It would have been
technically possible to model these feedbacks but this would have overcompli-
cated the model. Secondly, the intention in our modelling is not to cover the
process aspect of the plant in a very detailed manner.

In a more realistic I&C system some failures can be detected by the I&C unit
equipment, and in case of such a detection the signal might be marked e.g. using
a status bit. In a more realistic model the fault detection capabilities of a system
should be modelled as part of the logical design of the system and not as a part
of the link modules. In this case study, the status bits were not used or modelled
since such behaviour and logic was not described in the reference material.

5 Results

We verified several formal specifications on the case study model, and analysed
the fault tolerance of the plant with respect to these specifications. The specifi-
cations were formalised from the list of requirements in Table 1.

The first four requirements are plant-level requirements that require the in-
clusion of several safety systems in order to be verified.

The fault-tolerance of the plant was analysed by verifying the requirements
using four different failure assumptions: 1) no single failures assumed, 2) one

204 J. Lahtinen

Table 1. Requirements checked on the case study model

Number Requirement

1 In case of a LOCA initiating event, the plant safety systems shall fulfil
the related success criteria.

2 In case of a LOFW initiating event, the plant safety systems shall fulfil
the related success criteria.

3 In case of a LOOP initiating event, the plant safety systems shall fulfil
the related success criteria.

4 In case of a TRANSIENT initiating event, the plant safety systems
shall fulfil the related success criteria.

5 In case of a LOFW/LOOP/TRANSIENT initiating event, the EFW
safety system shall start a pump and open a valve in at least one of the
four redundant subsystems.

6 In case of a LOCA/LOFW/LOOP/TRANSIENT initiating event, the
ECC safety system shall start a pump and open a valve in at least one
of the four redundant subsystems.

7 In case of a LOOP/TRANSIENT initiating event, at least two out of
the three MFW pumps shall be started.

8 In case of a LOFW/LOOP/TRANSIENT initiating event, at least four
out of the eight ADS release valves shall be opened.

9 In case of a LOCA/LOFW/LOOP/TRANSIENT initiating event, at
least one out of the four RHR pumps shall be started.

single failure assumed, 3) two single failures allowed, and 4) three single failures
assumed. Common cause failures were not assumed because the list of com-
mon cause failures included in the model was not extensive. The requirements
were written as state invariants, and verified using the k-induction algorithm
provided by the NuSMV tool. We also used the NuSMV parameters –dynamic
(dynamic variable reordering) and –coi (cone of influence reduction) for better
performance. The k-induction method could prove all properties on bound 1.
The verification times varied from 29 s to 108 s depending on the requirement,
and the failure assumptions. Memory requirements varied from 90 MB to 113
MB. The size of the state space could not be calculated for the full model. A
simpler model including three (ECC, CCW, SWS) out of the seven safety sys-
tems consisted of 1.1× 10260 different states out of which 1.9× 10160 states were
reachable.

Certain assumptions about the process variables had to be made as well.
For example, the ECC system is stopped whenever a high water level (vari-
ables ECCi0CL001-H1 and ECCi0CL002-H1) is measured in the ECC pump
room. Because of this, in requirement 1 we assume that the water level does not
rise. This assumption does not prevent faulty measurements of the water level.
The failure assumption was made using two variables: failures (the number of
simultaneous single hardware component failures) and CCFs (the number of si-
multaneous common cause failures). For example, the formalised property for
requirement 1 assuming two single failures is:

Verification of Fault-Tolerant System Architectures Using Model Checking 205

INVARSPEC (failures = 2 & CCFs = 0 & scenario = LOCA & !

processmodule.ECCi0CL001-H1 & ! processmodule.ECCi0CL002-H1

-> LOCA_No_Core_Damage);

All requirements in Table 1 except requirement 7 are true even if two si-
multaneous failures are assumed. Requirement 7 becomes false in the case of
two single failures. This is because the MFW system is three-redundant. In the
counter-example for requirement 7 the voting modules on redundancies 1 and 2
fail. Subsequently, only the pump on train 3 is started.

6 Conclusions

We have presented methodology for modelling failures. The methodology serves
as a framework for the verification of the fault-tolerance of the plant by taking
into account the hardware configuration of the system and the various failure
modes of the hardware components. We used a PRA model of a nuclear power
plant as reference and created a corresponding model that can be used for model
checking. We then verified the fault-tolerance of the model with respect to several
properties.

Our modelling approach included several abstractions that are over-approxi-
mations. These abstractions retain the truth value of universal properties but
the abstractions should be applied carefully so that the system model is always
larger than the system itself.

The main challenge in verifying large plant-level models is that the result-
ing model can become very large. The biggest current limitation of using our
methodology in practice is that adding timing behaviour to the logic modules
significantly increases the complexity of the model checking problem. Using the
IC3 algorithm [16] for verification is a potential approach, as well as the portfo-
lio based approach [17].For liveness properties, a liveness to safety reduction, as
described in [18], could be used.

Our work intends to bridge the gap between model checking and PRA meth-
ods. The model is entirely based on PRA reference material. This suggests that
a single well-defined system-level model of the plant could be used for both
PRA and model checking. We are also planning to find more synergy between
the methods. For example, it may be possible to generate parts of the model
checking models based on PRA analysis data sheets. We also want to find out
whether the two methods can provide inputs for one another.

References

1. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)
2. FBK-IRST, Carnegie Mellon University, University of Genova and University of
Trento: NuSMV model checker v.2.5.4 (2012)

3. Lahtinen, J., Valkonen, J., Björkman, K., Frits, J., Niemelä, I., Heljanko, K.: Model
checking of safety-critical software in the nuclear engineering domain. Reliability
Engineering & System Safety 105, 104–113 (2012)

206 J. Lahtinen

4. Lahtinen, J., Launiainen, T., Heljanko, K.: Model checking methodology for large
systems, faults and asynchronic behaviour - SARANA 2011 work report. VTT
Technology 12, VTT Technical Research Centre of Finland (2012),
http://www.vtt.fi/inf/pdf/technology/2012/T12.pdf

5. Lahtinen, J.: Hardware failure modelling methodology for model checking. Re-
search report: VTT-R-00213-14, VTT Technical Research Centre of Finland (2014),
http://www.vtt.fi/inf/julkaisut/muut/2014/VTT-R-00213-14.pdf

6. Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA safety analysis platform. In-
ternational Journal on Software Tools for Technology Transfer 9(1), 5–24 (2007)

7. Joshi, A., Heimdahl, M.P.E.: Model-based safety analysis of simulink models using
SCADE design verifier. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP
2005. LNCS, vol. 3688, pp. 122–135. Springer, Heidelberg (2005)

8. Arnold, A., Point, G., Griffault, A., Rauzy, A.: The AltaRica formalism for de-
scribing concurrent systems. Fundam. Inf. 40(2,3), 109–124 (1999)

9. Bieber, P., Castel, C., Seguin, C.: Combination of fault tree analysis and model
checking for safety assessment of complex system. In: Bondavalli, A., Thévenod-
Fosse, P. (eds.) EDCC 2002. LNCS, vol. 2485, pp. 19–31. Springer, Heidelberg
(2002)

10. Schneider, F., Easterbrook, S.M., Callahan, J.R., Holzmann, G.J.: Validating re-
quirements for fault tolerant systems using model checking. In: ICRE, pp. 4–13.
IEEE Computer Society (1998)

11. Bernardeschi, C., Fantechi, A., Gnesi, S.: Model checking fault tolerant systems.
Softw. Test., Verif. Reliab. 12(4), 251–275 (2002)

12. Bruns, G., Sutherland, I.: Model checking and fault tolerance. In: Johnson, M.
(ed.) AMAST 1997. LNCS, vol. 1349, pp. 45–59. Springer, Heidelberg (1997)

13. Authén, S., Holmberg, J.E.: Reliability analysis of digital systems in a probabilistic
risk analysis for nuclear power plants. Nuclear Engineering and Technology 44(5),
471–482 (2012)

14. Authén, S., Gustafsson, J., Holmberg, J.E.: Guidelines for reliability analysis of
digital systems in PSA context - Phase 3 status report. NKS Report NKS-277,
Nordic Nuclear Safety Research, NKS (2013)

15. Pakonen, A., Mätäsniemi, T., Lahtinen, J., Karhela, T.: A toolset for model check-
ing of PLC software. In: IEEE 18th Conference on Emerging Technologies & Fac-
tory Automation (ETFA), pp. 1–6 (September 2013)

16. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

17. Sterin, B., Een, N., Mishchenko, A., Brayton, R.: The benefit of concurrency in
model checking. In: Proceedings of the International Workshop on Logic Synthesis,
IWLS 2011, pp. 176–182 (2011)

18. Kuismin, T., Heljanko, K.: Increasing confidence in liveness model checking results
with proofs. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
32–43. Springer, Heidelberg (2013)

http://www.vtt.fi/inf/pdf/technology/2012/T12.pdf
http://www.vtt.fi/inf/julkaisut/muut/2014/VTT-R-00213-14.pdf

Verification of a Real-Time Safety-Critical

Protocol Using a Modelling Language with
Formal Data and Behaviour Semantics

Tamás Tóth, András Vörös, and István Majzik

Budapest University of Technology and Economics, Hungary

Abstract. Formal methods have an important role in ensuring the cor-
rectness of safety critical systems. However, their application in industry is
always cumbersome: the lack of experts and the complexity of formal lan-
guages prevents the efficient application of formal verification techniques.
In this paper we take a step in the direction of making formal modelling
simpler by introducing a framework which helps designers to construct
formal models efficiently. Our formal modelling framework supports the
development of traditional transition systems enriched with complex data
types with type checking and type inference services, time dependent be-
haviour and timing parameters with relations. In addition, we introduce a
toolchain to provide formal verification. Finally, we demonstrate the use-
fulness of our approach in an industrial case study.

1 Introduction

Nowadays, an ever increasing number of information systems are embedded sys-
tems that have a dedicated function in a specific, often safety critical application
environment (e.g., components of a railway control system). In case of safety
critical systems, failures may endanger human life, or result in serious environ-
mental or material damage, thus ensuring conformance to a correct specification
is crucial for their development.

To guarantee that a system operates according to its specification, formal
verification techniques can be used. These techniques are based on formal rep-
resentation of both systems and their properties (requirements), which makes
it possible to apply mathematical reasoning to investigate their relationship.
Moreover, these methods allow verification of systems in an early phase of the
development life cycle.

Since behavior of safety critical systems is often time dependent, the notion
of time has to be represented in their models. The most prevalent way to model
timed systems is the formalism of timed automata. However, this formalism is
only suitable to describe timed behavior with respect to constant values, thus
its expressive power is not sufficient to model systems with parametric behavior.
Parametric timed automata, an extension of the original formalism, addresses
this problem.

In this paper we introduce a formal modelling framework for supporting the
efficient development of parametric timed automaton based formal models. The

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 207–218, 2014.
c© Springer International Publishing Switzerland 2014

208 T. Tóth, A. Vörös, and I. Majzik

modelling language is essentially based on the language of the well-know Sym-
bolic Analysis Laboratory (SAL) framework1 with extensions to simplify the
work of the modellers. These extensions enable the modelling of time dependent
behaviour on language level.

In the following, first we introduce the main features of language by modelling
the development version of an industrial protocol. Then we present our model
checking workflow and demonstrate the feasibility of it by the verification of the
protocol.

Related Work. Our work is inspired by the SAL model checker [7] and its
language (our extensions are introduced in Section 3). The SAL language en-
ables compact modeling of systems in terms of (unlabeled) symbolic transition
systems, however it doesn’t support explicit modeling of time related behavior.
The aim was to preserve compatibility so that the timed models of our extended
language can still be transformed to the input of SAL. As another related tool,
UPPAAL [1] is a model checker widely used for the verification of timed systems.
It has a graphical interface and it provides efficient model checking algorithms
to verify timed automata. UPPAAL models can also be transformed to our lan-
guage with some restrictions: our formalism does not handle complex function
declarations. Our approach has different strengths as the underlying Satisfia-
bility Modulo Theories (SMT) technologies are efficient for even complex data
structures of the modelled systems. In addition, complex synchronisation con-
straints can be compactly expressed in our approach. The industrial case study
we use was first introduced in [8], where the SAL model checker was used for the
verification. Our paper now is based on the lessons learnt from that work. Simple
fault models were introduced in the case study, for a more general overview we
refer the interested reader to [4,2].

2 The ProSigma SCAN Protocol

ProSigma is a microcontroller based system being developed by Prolan Ltd.
Its primary role is to provide reliable communication between the modules of a
railway control system. Since this functionality is highly safety critical, it has to
be implemented on the highest safety integrity level, SIL4. The system consists
of so-called ProSigma devices, that are interconnected in an IP based network.
Each ProSigma device contains a so-called ETH unit that is responsible for
data transport and so-called LG units (in object modules) that are responsible
for handling field objects such as switches and signals. Communication between
these units is based on the proprietary SCAN protocol. A part of the messages is
forwarded within a ProSigma device, while the other messages are sent through
the ETH unit to another ProSigma device addressed by the message.

A ProSigma application typically consists of a control side (e.g., a device at a
supervisory control system) and an object side (e.g., a device at a field object).

1 http://sal.csl.sri.com/

http://sal.csl.sri.com/

Verification of a Real-Time Safety-Critical Protocol 209

During connection handling, a connection is established and maintained between
an LG unit of the control side and an LG unit of the object side. Connection
handling includes the following two tasks:

– Establishing the connection: a link is built between the two sides.
– Object state transfer: each side sends its state to the other side.

During connection handling, the state of each connection has to be kept track
of at both sides. A connection is defined by the following:

– The connected pairs - the field side has at most four, while the control side
has at most one pair.

– The ETH unit providing the connection.

The connection is alive if and only if it is alive through at least one ETH unit.
In the first design of the protocol, the connection handling was characterized by
the following properties:

The connection is handled via OBJ messages (OBJ1, OBJ2, OBJUP,
OBJDOWN). Received OBJ messages are processed on two levels. On the first
level, based on the timestamps provided in the message, it has to be checked
whether the message can be accepted to establish, respectively maintain the
connection. On the second level, the acceptability of the object state has to be
examined (the object state is more up-to-date than the one accepted last time,
it is sent by the right unit, etc.).

The connection is established in a two-way handshake: the first message
is initiating the connection, and the response to it serves as an acknowledgement.
In particular, on the field side, the connection is initiated by sending OBJ1 and
is acknowledged by receiving OBJ2. On the control side, sending OBJ2 initiates
and receiving OBJUP acknowledges the connection.

LG units on the field side must establish the connection with all corresponding
control sides through each ETH units independently.

Object state is transferred via two messages (OBJUP, OBJDOWN).
Sending and receiving object state on an ETH channel is possible only after the
LG units of the field side and the control side established connection through
the ETH channel. The transfer is triggered by the ETH unit of the field side via
periodic TIMESYNC messages to the corresponding LG units.

The following model (Figure 1) represents a connection as administered on
the field and the control side, respectively, as a network of timed automata with
an extended syntax that admits intuitive manipulation of data structures and
handshake over multiple input and output labels.

In the model, all messages originate from either of the sides, and propagate for
at least TPropMin and at most TPropMax time units. Assuming that the other
parameters of the system are proportional to the propagation time, it will never
be the case that a message or the object state stored in it is not acceptable due
to an outdated timestamp. Thus in order to simplify the model, the timestamps
of messages and acceptability checks are not included in the model (although
both the altered timed automata formalism and the specification language enable
their modeling).

210 T. Tóth, A. Vörös, and I. Majzik

(a) Field side (b) Control side

Fig. 1. Connection handling on the field and control side

(a) Channel (b) Fault model

Fig. 2. Models of the channel and the possible fault occurrences

Channel: The channel serves as a communication medium between compo-
nents. Its model (Figure 2(a)) has a role to store and delay messages for a
certain amount of time specified by its parameters, and then dispatch them.

Initially, the channel is empty. If a message is dispatched and the channel
is not full, then the message is stored. If the delay of a message is over, and
some component is able to receive it, then the message is forwarded to that
component. If the component instantly sends a response, then the response is
stored in place of the forwarded message.

Field side: The model of the field side is presented on Figure 1(a).
On the field side, the connection is initially in state Reset. As described above,

the connection establishment phase is initiated by receiving a TIMESYNC mes-
sage from the ETH unit. For the sake of simplicity, receiving a TIMESYNC
message is modeled with a clock clkSync and corresponding invariants. When
the clock reaches clkSync, the field module sends OBJ1 to the control side and
traverses to state Connecting.

Verification of a Real-Time Safety-Critical Protocol 211

In state Connecting, the LG unit waits for tRtMax time units for the OBJ2
message acknowledging the connection. If received in time, the connection is set
to state Connected, and the object state transfer phase starts on the field side.
Otherwise, as clock clkReset reaches tRTMax, the connection resets.

Object state transfer is also synchronized by TIMESYNC messages. When
received, the field LG unit sends its state to the control side in a messageOBJUP.
If the time since the last OBJDOWN message received reaches tRtMax, the
connection resets on the field side.

Control Side: Similarly to connection handling on the field side, initially, the
connection is in state Reset. When receiving OBJ1, the LG unit sends an OBJ2
message as response and sets the connection state to Connecting (Figure 1(b)) .

State Connecting is maintained for at most tRtMax time units. If no OBJUP
is received in that interval, the connection state is set to Reset. For an OBJUP
message received in time, the control LG unit sends its object state in an OBJ-
DOWN message, and sets the connection to Connected. If the time since the last
OBJUP message received reaches tRtMax, the connection state is set to Reset.

Fault Model: Since the system has to operate in a safety critical setting,
guarantees have to be given for scenarios including unexpected events. For that
purpose, the model is extended first with a simple fault model that describes
loss of a single message in the channel. The fault model is depicted on Figure
2(b).

3 The Language

The following section demonstrates the capabilities of our extended modelling
language by a step-by-step description of the model of the connection handling
in the SCAN protocol.

All elements of the model are encapsulated in the context of a specification.
A specification can have parameters that can be assigned concrete values later
on. In this case, a parameter n is introduced to represent the capacity of the
channel.

specification ProSigmaSpec(n : natural) {
// Type definitions
// Constant definitions
// Function definitions
// Constraint definitions
// System definitions
// Property definitions

}

To model automata locations and messages, two enumeration types are de-
fined. Moreover, a type for timing parameters is introduced as the set of non-
negative reals, and a subrange is introduced to serve as an index for messages in
the channel.

212 T. Tóth, A. Vörös, and I. Majzik

type Location : enum { reset, connecting, connected};
type Message : enum { null, obj1, obj2, objup, objdown };
type Param : { x : real | x >= 0 };
type Index : [1 to n];

Other supported data types include function, array, tuple and records types,
that can be combined to form more complex types.

Timing parameters can then be conveniently modeled as constants of type
Param. To represent a concrete setting of parameters, a value is assigned to
each constant.

const tRTMax : Param := 6.0;
const tSync : Param := 3.0;
const tPropMin : Param := 1.0;
const tPropMax : Param := 1.0;

However, parameters do not need to be defined explicitly, but can also be
represented by constraints expressing their relationships:

constraint 2 * tPropMax <= tRTMax;

Representing the model of the channel using the language is straightforward.
The channel has inputs msgEvent and send that together model the synchro-
nization primitive send(x). Received messages are stored in array pending, until
clock clkReceived reaches the timeout interval. The synchronization primitive
receive(x) is modelled by output receive.

system Channel := {
input var msgEvent : boolean;
input var send : Message;
global var pending : array Index of Message;
global var clkReceived : array Index of clock;
output var receive : Message;
...

}

The invariant that ensures that messages are delayed for at most tPropMax
time units can be modelled explicitly.

invariant forall (i : Index) : (
pending[i] = ::null imply clkReceived[i] <= tPropMax

);

Analogously to invariant constraints, also urgency constraints can be specified
that prohibit time to elapse in certain states.

Initial values of the variables are assigned in an initialization section.

Verification of a Real-Time Safety-Critical Protocol 213

initialization {
let receive = ::null;
let pending = [i : Index | ::null];

}

Similarly, transitions of the automaton can be mapped to transition sections.
For example, the transition that dispatches a message and stores the immediate
response in a single step can be modelled as follows.

transition async (i : Index) :
msgEvent’ and send’ /= ::null and
pending[i] /= ::null and clkReceived[i] >= tPropMin --> {
let pending’[i] = send’;
let clkReceived’[i] = 0.0;
let receive’ = pending[i];

}

The keyword async denotes that there is an instance of the transition for
each index i. The formula followed by --> serves as the guard of the guarded
command. Aposthrophes mark the next state of a variable.

Transitions of the modules can then be defined in a way that complements
the definition of the channel. For example, the transition of the Control module
that models receiving an OBJ1 message in location Reset can be specified as
follows:

transition control_location = ::reset and
receive’ = ::obj1 --> {
let msgEvent’ = true;
let send’ = ::obj2;
let control_location’ = ::connecting;
let control_reset’= 0.0;

}

Here, receive is an input variable, whereas send and msgEvent are global
variables. Notice that the model is modular in the sense that responsibilities
of communicating modules and the channel are completely separated. Given all
modules are defined, the system can be composed in the following way:

system ProSigma :=
(FieldLG [] ControlLG [] FaultModel) || Channel;

That is, communicating modules are composed asynchronously, then the result
is composed synchronously to the channel.

Temporal properties can then be defined over the composed system. For ex-
ample, the model can be validated by checking the property expressing that the
capacity of the array for received messages is sufficiently big:

214 T. Tóth, A. Vörös, and I. Majzik

property capacity : ProSigma models
G exists (i : Index) : pending[i] = ::null;

The liveness property that expresses that eventually a stable connection is
established is the following – note that the usual temporal operatorsG (globally)
and F (eventually) are used:

property live : ProSigma models F G (
field_location = ::connected and
control_location = ::connected

)

4 The Verification Workflow

The semantics of the language is provided by a series of simplifying model trans-
formations, and a mapping to an SMT problem. Figure 3 depicts the verification
workflow. Dashed lines sign the possible extensions with other modelling and
verification technologies.

Fig. 3. Verification workflow

The starting point of the workflow is a model in the above language given
either directly, or as a result of a transformation from other timed formalisms,
e.g. UPPAAL [1].

Verification of a Real-Time Safety-Critical Protocol 215

As a first step, the system is automatically flattened, that is, the result of a
synchronous, respectively asynchronous composition is established. This is per-
formed by merging the variables, invariant and urgency constraints, and initial-
ization and transition definitions of the components. For example, the following
transition of the system ProSigma is a result of merging the two transitions
presented in the previous section:

transition control_location = ::reset and receiveˆ = ::obj1 and
msgEvent’ and send’ /= ::null and
pending[1] /= ::null and clkReceived[1] >= tPropMin --> {
let pending’[1] = send’;
let clkReceived’[1] = 0.0;
let send’ = ::obj2;
let control_location’ = ::connecting;
let control_reset’ = 0.0;
let msgEvent’ = true;
let receive’ = pending[1];

}

During this step, many of the constructed transitions can be eliminated by
simply checking the satisfiability of their guards with a call to the underlying
SMT solver [6].

In the next step, the model is automatically ”untimed” by expressing the
semantics of delay transitions explicitly:

transition control_location = ::reset and receiveˆ = ::obj1 and
msgEvent’ and send’ /=::null and
pending[1] /= ::null and clkReceived[1] + d >= tPropMin --> {
let field_location’ = field_location;
let field_reset’ = field_reset + d;
let field_sync’ = field_sync + d;
let send’ = ::obj2;
let msgEvent’ = true;
let control_location’ = ::connecting;
let control_reset’ = 0.0;
let receive’ = pending[1];
let pending’ = [i : Index |

if i = 1 then send’ else pending[i]
];
let clkReceived’ = [i : Index |

if i = 1 then 0.0 else clkReceived[i] + d
];

}

Here, a combined transition semantics [5][7] is considered, where a transition
merges the effects of a delay transition, followed by a discrete transition. For
that purpose, a new input variable d is introduced to represent time delay. Such

216 T. Tóth, A. Vörös, and I. Majzik

an untimed system model can easily be mapped to SAL or other intermedi-
ate formalisms. At the same time, transition (and initialization) definitions are
completed, that is, assignments for unmodified variables (e.g., variables of asyn-
chronous components) are made explicit. As a result, each variable (even those
of some complex data type) is assigned a value in at most one assignment of a
behavior definition.

The symbolic transition system represented by the model can then be easily
expressed in SMT by transforming initialization and transition definitions of the
system to predicates I(x̄), respectively T (x̄, x̄′) as usual [3].

The tooling is implemented in Eclipse2 using Eclipse Modeling Framework3

and relating technologies.

– Abstract syntax. The abstract syntax of the language is implemented as a
metamodel in EMF. It is defined as an extension of the core language suitable
for defining complex data types and expressions.

– Concrete syntax. The textual concrete syntax is defined by an LL∗-parsable
grammar. The textual editor is then generated using the Xtext4 tooling.

– Semantics. Model transformations that define the semantics of the language
are implemented in Xtend5.

– Well-formedness rules. Together with other validation constraints, algo-
rithms for type checking and type inference are implemented for the type
system of the language.

The formal modeling framework supports the development and analysis of
transition systems enriched with complex data types, time dependent behaviour,
timing parameters with relations and also synchronous and asynchronous com-
position of modules. The tooling provides type checking and type inference to
further improve usability.

5 Verification of the Protocol

To check the properties of the first design, bounded model checking in depth
k = 18 was executed. As a result, the counterexample depicted on Figure 4.
arised. On the diagram, the direction of the arrows symbolizes processing order
of events occurring at the same time.

The counterexample reveals that if events occur in a particular order, the
loss of even a single message can keep the connection from getting established,
contrary to expectations. Due to delay and jitter in IP networks, a situation like
that is possible even in practice. The situation can be prevented by modifying
the control module so that it responds to OBJ1 with OBJ2 in state Connecting.
The design models were updated accordingly, and the avoidance of this situation
was proven by repeated verification.

2 http://eclipse.org/
3 http://eclipse.org/modeling/emf/
4 http://eclipse.org/Xtext/
5 http://eclipse.org/xtend/

http://eclipse.org/
http://eclipse.org/modeling/emf/
http://eclipse.org/Xtext/
http://eclipse.org/xtend/

Verification of a Real-Time Safety-Critical Protocol 217

Fig. 4. Counterexample for the liveness property

6 Evaluation and Conclusion

This paper is one step towards scalable formal modelling. We proposed a mod-
elling language to provide better support for the designers of formal models by
focusing on the aspects of data semantics, time dependent behaviour, parameter-
ization, and synchronous and asynchronous composition of components. Instead
of manually coding flat transition systems, we provided automated model trans-
formations from our extended language to more simple transition systems that
can be directly mapped to the input of existing SMT solvers. This way and
automated verification workflow is offered.

To evaluate the effectiveness of our language, the formal model of the intro-
duced case study was developed in both our and the SAL languages. Comparing
the results, the complexity of the developed models are the following:

The SAL model contains:

– 5 components for modelling the basic behaviour consisting of 410 lines of
code,

– 2 components for supporting the proper analysis of the temporal logic spec-
ification consisting of 105 lines of code,

218 T. Tóth, A. Vörös, and I. Majzik

– 3 components for recognizing the loops in the state space (required for the
verification) consisting of 145 lines of code.

The formal model in our extended language contains 4 components and 235 lines
of code, which demonstrates that the new language has its advantage. Moreover,
it does not require additional components for the analysis.

Compared to UPPAAL timed automata, the main advantage of our language
is the greater flexibility in the handling of clock variables and clock constraints.
However, as UPPAAL provides a graphical modelling interface, in case of small
models it makes the development of formal models more simple. Regarding the
efficiency of verification, both approaches have their strengths.

In the future we plan to further improve our language with higher level mod-
elling constructs. We also plan to develop new model checking algorithms based
on induction techniques.

Acknowledgement. This work and the collaboration with Prolan Ltd. has
been supported by the project CErtification of CRItical Systems (CECRIS,
http://www.cecris-project.eu/), Marie Curie Industry-Academia Partnerships
and Pathways (IAPP) nr 324334, within the context of the EU Seventh Frame-
work Programme (FP7).

References

1. Behrmann, G., David, A., Larsen, K.G., Möller, O., Pettersson, P., Yi, W.: Uppaal
- present and future. In: Proc. of 40 th IEEE Conference on Decision and Control,
IEEE Computer Society Press (2001)

2. Bozzano, M., Villafiorita, A.: The fsap/nusmv-sa safety analysis platform. Interna-
tional Journal on Software Tools for Technology Transfer 9(1), 5–24 (2007)

3. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability
solving. Formal Methods in System Design 19(1), 7–34 (2001)

4. Joshi, A., Miller, S.P., Whalen, M., Heimdahl, M.P.E.: A proposal for model-based
safety analysis. In: The 24th Digital Avionics Systems Conference, DASC 2005,
vol. 2, p. 13 (October 2005)

5. Kindermann, R., Junttila, T., Niemelä, I.: SMT-based induction methods for timed
systems. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS, vol. 7595,
pp. 171–187. Springer, Heidelberg (2012)

6. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

7. Pike, L.: Real-time system verification by k-induction. Tech. Rep. TM-2005-213751,
NASA Langley Research Center (May 2005)

8. Tóth, T., Vörös, A., Majzik, I.: K-induction based verification of real-time safety
critical systems. In: Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T.,
Kacprzyk, J. (eds.) New Results in Dependability & Comput. Syst. AISC, vol. 224,
pp. 469–478. Springer, Heidelberg (2013)

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 219–230, 2014.
© Springer International Publishing Switzerland 2014

Visualization of Model-Implemented
Fault Injection Experiments

Daniel Skarin, Jonny Vinter, and Rickard Svenningsson

Department of Electronics, SP Technical Research Institute of Sweden, Sweden
{daniel.skarin,jonny.vinter,rickard.svenningsson}@sp.se

Abstract. MODIFI is a fault injection tool targeting software developed as
Simulink models. In this paper, we describe three techniques for visualizing
fault injection results obtained using the MODIFI tool. The first technique
shows the progress of a fault injection campaign, and the outcome of individual
experiments, using a 3D visualization of the fault injection campaign. The
second technique, referred to as sensitivity profiling, identifies parts of a model
that are sensitive for a specific fault model. The third technique shows how er-
ror propagates in a Simulink model. The sensitivity profiling and error propaga-
tion techniques are based on intuitive coloring of Simulink blocks. The three
visualization techniques are demonstrated using a Brake-by-Wire system.

Keywords: Fault injection, Simulink, Visualization.

1 Introduction

Model-based development of software has become more and more common over the
years. Software can be designed and verified using behavioral models developed in
e.g. Simulink [1], which is one of the most popular tools for this purpose. For safety-
related software developed in Simulink, compliance with recommendations from
functional safety standards may be required. For example, if the international stan-
dards IEC 61508 [2] or ISO 26262 [3] are used, they require that systems shall be able
to handle faults, and fault injection is either recommended or mandatory according to
these standards. Fault injection is an experimental method to exercise and evaluate
error detection and recovery mechanisms, and it can also be used in an iterative man-
ner to improve software robustness.

There have been some initiatives to develop fault injection support for models [4,
5, 6, 7], including the MODIFI (MODel-Implemented Fault Injection) tool [8]. The
setup and execution of new fault injection experiments for Simulink models using
MODIFI is done in the same manner for any Simulink model. The analyses of the
fault injection experiments can be more difficult since they are application-specific
and have to be tailored for each Simulink model. MODIFI analyses the output values
for the experiments conducted on the Simulink model to determine failures (safety
requirements violations). For a more detailed analysis, it is important to reveal error
detection and propagation inside the software model. Hence, tool support that besides

220 D. Skarin, J. Vinter, and R. Svenningsson

visualizing the outcome of the experiments [8] also visualizes error propagation and
sensitive blocks inside the model would be beneficial. With such support, the devel-
oper can debug the modelled software and identify robustness issues by navigating
inside the target Simulink model.

This paper presents new analysis functionality in the MODIFI tool that visualizes
how errors propagate through the model, and identify sensitive blocks in the model.
This can be used to reveal problems and to design more robust software. We exem-
plify the usefulness of our approach using a Brake-by-wire model and by using both
bit-flip faults and sensor fault models.

The paper is organized as follows. Section 2 presents the MODIFI tool in more de-
tail and Section 3 explains the visualisation techniques supported by MODIFI. In
Section 4, we exemplify the use of the visualization techniques on a Brake-by-Wire
application developed in Simulink. Finally, conclusions are given in Section 5.

2 The MODIFI Fault Injection Tool

A model-based approach for software development is commonly used in the automo-
tive industry, and Simulink [1] and TargetLink [9] are two examples of tools that can
be used to develop automotive software. MODIFI is a fault injection tool for depen-
dability assessment of software developed as Simulink models. Using this tool, non-
functional properties such as error detection coverage of fault tolerance mechanisms,
can be tested using Simulink models as a complement to physical fault injection tests
on the target system. This method makes it possible to perform fault injection testing
in early phases of the development, and the same environment is used for the devel-
opment of the software, as well as functional and non-functional testing.

2.1 Fault Injection in Simulink Models

The objective of fault injection is to introduce artificial fault or errors in a system to
test the system in presence of errors. The injection of faults using MODIFI is done by
rerouting the connection between blocks in the model to also include a fault model.
This is illustrated in Fig. 1 and Fig. 2, which show a Simulink model before and after
MODIFI has inserted a fault injection block. The fault injection block will pass the
input value to the output port unmodified unless a trigger is enabled. The trigger,
which is based on the simulation time, will cause the block to apply the fault model, a
bit-flip in this case, to the output. Fig. 2 also shows that MODIFI turns signals in the
model into Simulink test points [10] which all have logging enabled.

Fig. 1. Simulink model before fault injection

 Visualization of Model-Implemented Fault Injection Experiments 221

Fig. 2. Simulink model after insertion of a fault injection block for bit-flips

Fault injection in Simulink models can be used to identify weaknesses in a system
in early phases of the development. It might also be useful for showing compliance
with standards for functional safety such as ISO 26262. As stated in Part 6 of the
standard [11], the test environment for software testing shall correspond to the target
environment. For model-based development, testing can be performed on a model if
the tests are followed by a back-to-back comparison between the model and the object
code. This is done to ensure that the behaviour of the model and the code generated
from it is equivalent with respect to the test objectives. The same approach is used in
reference workflows described for the development of safety-related software using
tools such as Simulink and TargetLink [12, 13]. Fault injection can therefore be done
on Simulink models, if the tests are complemented with fault injection tests on the
physical system.

2.2 Fault Models

MODIFI supports a wide range of fault models and can easily be extended with new
fault models. In our current implementation, we provide fault models for single bit-
flip faults and for sensor faults. The single bit-flip fault model is commonly used to
emulate the effects of transient hardware faults, and we use this fault model to emu-
late the effects of hardware faults that affect registers and memory which are visible
to software running on a microprocessor.

The fault models for sensors which are implemented in MODIFI are based on the
ISO 26262 standard. Although the standard does not provide a generic fault model for
sensors, Annex D in Part 5 [14] lists typical fault models failure modes that should be
investigated when diagnostic coverage is evaluated. The standard lists the following
typical failure modes for sensors: out-of-range, stuck in range, offsets, and oscilla-
tions. In addition to the previously mentioned fault modes, MODIFI also supports
stuck-at and gain faults. Fig. 3 shows how MODIFI implements the different fault
models for sensors. The parameters, e.g., amplitude and frequency for oscillations, are
defined by the user during the configuration of a fault injection campaign.

As input when implementing support for sensor failures, we used the failure modes
listed in Annex D in Part 5 of ISO 26262 but there are also other classifications of
sensor failures. For example, Balaban et al. [15] discuss how sensors can supply faul-
ty values due to, e.g., manufacturing inefficiencies, wear, and incorrect calibration or
handling. They divide behaviors of faulty sensors into the following categories: bias,
drift, scaling (or gain failure), noise, and hard fault. Hard faults are further divided

222 D. Skarin, J. Vinter, and R. Svenningsson

Fig. 3. Example of sensor fault models

into loss of signal, stuck sensor and intermittent. Ni et al. [16] present definitions and
possible causes of faults, and describe faults such as outliers, spikes, stuck-at, calibra-
tion, and clipping.

3 Visualization of Fault Injection Experiments

The analysis of fault injection experiments is a time-consuming task that can be
simplified using graphical visualization techniques. This section describes three tech-
niques included in MODIFI that help a user in the analysis of fault injection experi-
ments. Two of the techniques provide the user with a graphical overview of a fault
injection campaign, i.e., a set of experiments. The third technique aids the user in
understanding how an error propagates in a single experiment.

3.1 Experiment Outcomes

MODIFI shows the progress of a fault injection campaign and the outcome of indi-
vidual experiments using a three-dimensional cube. Fig. 4 shows an example of a
campaign with a total of 21 experiments. Each box within the cube represents
one experiment, and the color of each box shows the status of the experiment.

Lower limit

Upper limit

Out of range Stuck in range

Offset Oscillation

Fault injected

Stuck at zero

S
en

so
r

va
lu

e

Time
Fault injected

Gain

Time

Correct signal

Faulty signal

 Visualization of Model-Implemented Fault Injection Experiments 223

Fig. 4. Graphical visualization of progress and experiment outcomes using a 3D cube

For experiments which have been performed, a green color shows that the injected
fault or error did not have an impact on the produced results, and a red color shows
that the produced output differed from a fault-free execution of the model.

As an extensive fault injection campaign can be very time consuming to run, the
cube gives the user a good overview of the progress of the experiments. It can also
help to identify problems with the simulation of the model or with the setup of the
campaign. For example, experiment outcomes which differ significantly from the
expected behavior, e.g., Simulink throwing exceptions for several experiments, can
indicate an incorrect configuration that the graphical visualization can reveal before
waiting for all fault injection experiments to finish.

3.2 Sensitivity Profiling

One of the main purposes of performing fault injection is to identify parts of a system
that is sensitive for certain kinds of faults. Such parts may require extra attention and
perhaps adding or reconstructing fault handling mechanisms. MODIFI has support to
aid a user in finding sensitive parts of a Simulink model by coloring it according to
the outcome of a fault injection campaign. Fig. 5 shows an example of fault sensitivi-
ty profiling based on a campaign for a majority voter intended for, e.g., a Triple
Modular Redundancy (TMR) system. Each block in the model which has been
targeted by the fault injection campaign gets a color based on its sensitivity of the
injected faults.

224 D. Skarin, J. Vinter, and R. Svenningsson

Fig. 5. Example of sensitivity profiling for a majority voter

A green color indicates that faults injected into the block’s output ports did not
propagate through the model and did therefore not have an effect on output ports. As
we can see in Fig. 5, none of the injected faults that affected a single input had an
impact on the output. A red color indicates that faults injected into the output ports of
the block propagated through the model and had an effect on the output ports. The
output ports that have been subject to fault injection are also assigned with a percen-
tage, which indicates the fraction of experiments which lead to an incorrect output. In
the figure, all faults injected in the last block before the output (a switch block)
caused the output to be incorrect. This is due to the switch being a single point of
failure in this implementation of the majority voter.

This visualization technique is similar to the graphical analysis described for
FOCUS [17], which is a simulation environment for analyzing the fault susceptibility
of VLSI designs. FOCUS includes a graphical analysis that visualizes the functional
units which are affected by faults, and how faults propagate on interconnects and
external pins. Techniques to visualize similar results have also been presented by
Jones et al. in [18] and Munkby and Schupp in [19]. Jones et al. describe a technique
to assist in the process of locating errors and faults. They use colors to map different
outcomes from the execution of a program to statements in the executed program,
making it possible to locate statements that are involved in executions leading to a
program failure. Munkby and Schupp present a tool which visualizes the outcome of
experiments using colors, similar to the technique presented by Jones et al. The tool
produces a program-dependence graph with color annotations that correspond to the
outcome of fault injection experiments. This graph provides an overview of instruc-
tion and fault coverage, and can also aid the user in finding patterns and anomalies.

3.3 Error Propagation Visualization

While sensitivity profiling describes parts of a Simulink model that are sensitive to a
fault model, error propagation analysis is used to analyze how errors propagate
through a model. This technique, which is applicable for a single experiment, is useful
for debugging fault handling mechanisms, e.g. to ensure that fault handling mechan-
ism are activated and that errors are properly handled by the mechanisms.

Fig. 6 shows the error propagation for an experiment with the model for a majority
voter model, where a stuck at zero fault was injected during two iterations. The block

 Visualization of Model-Implemented Fault Injection Experiments 225

where the injection was performed is marked yellow (Port 1). The fault caused the
output from the upper subtract block (Subtract1) to differ from a fault-free simulation,
and the faulty values propagated to the block Interval Test, but were then masked by
the final switch block (Switch 1).

Fig. 6. Error propagation visualization example for a majority voter

4 Case Study: Brake-by-Wire Model

This section demonstrates the usage of MODIFI on a prototype brake-by-wire system
which has been developed by AB Volvo for research purposes. We first give an over-
view of the brake-by-wire model, and then describe how MODIFI can emulate the
effects of faults on the sensors that measure the wheel speed. Finally, we show how
the visualization techniques can help to analyze the results from the experiments.

4.1 Brake-by-Wire Model

Fig. 7 shows the architecture of the brake-by-wire model. The model consists of five
control units where the Global Brake Controller (GBC) is in charge of distributing the
brake torque requested by the driver to four individual control units, one for each
wheel of the car.

Fig. 7. Brake-by-wire Architecture

226 D. Skarin, J. Vinter, and R. Svenningsson

Each wheel node is responsible of applying the requested brake torque through the
actuation of a brake caliper. The wheel node executes a simple algorithm which im-
plements an anti-lock braking system (ABS). The algorithm can be described using
the following pseudo-code:

IF (WheelSpeed/VehicleSpeed) > LowerThreshold

 AND (WheelSpeed/VehicleSpeed) < UpperThreshold THEN

 BrakeTorque = RequestedBrakeTorque

ELSE

 BrakeTorque = 0.0

ENDIF

The wheel speed is calculated based on the input from a Hall Effect sensor. Such a
sensor may produce a sine wave signal with a frequency that is proportional to the
rotational speed of the wheel, as depicted in Fig. 8.

Fig. 8. Wheel speed calculation

To demonstrate sensitivity profiling and error propagation analysis, we apply two
different failure modes mentioned in the ISO26262 standard [14]. We apply the oscil-
lation fault model on the signal representing the feedback from the Hall Effect, and
the bit-flip fault model on the signals inside the behavior model of the wheel node.

The result of applying the oscillation fault model may vary depending on the im-
plementation of the Hall Effect sensor signal conditioner. In our implementation, we
assume that the number of zero crossings will increase as an effect of oscillations
superimposed on the Hall Effect sensor signal, as shown in Fig. 9. This will cause the
estimated wheel speed to be higher than the actual wheel speed (154 RPM in Fig. 9
instead of 98 RPM in Fig. 8). Since we inject faults directly into the behavior model,
which takes the estimated wheel speed as input, we use the offset fault model to
represent an oscillation superimposed on the Hall Effect sensor signal.

 Visualization of Model-Implemented Fault Injection Experiments 227

Fig. 9. Wheel speed calculation with Oscillation Fault Model

4.2 Fault Injection Results

Fig. 10 shows the sensitivity profiling for about 20 000 injections of single bit-flip
faults in the brake-by-wire model. We can see that the output of the last block
“LockDetect” is the most sensitive part of the model part under analysis, where 40.6%
of the injected faults lead to an incorrect output. This is reasonable since there are no
fault handling mechanisms after this block, and faults here will therefore affect the
output. The figure also shows that no faults were injected in the output of the compar-
ison block Relational Operator. This is because there was no fault model implemented
for Booleans in the fault library used for these experiments.

Fig. 10. Sensitivity profiling of a campaign with the bit-flip fault model

Fig. 11 shows an example of how error propagation is visualized for an Offset fault
model that was applied on the wheel rotation input signal of the BBW model. This
block is marked yellow according to the description in Section 3.3.

228 D. Skarin, J. Vinter, and R. Svenningsson

Fig. 11. Error propagation analysis for an offset fault model

Fig. 11 shows how the errors injected into the rotary encoder hardware propagates
throughout the model. These model blocks are colored red. Some model blocks be-
come unaffected and are colored green. Each block output signal is annotated with a
number, which corresponds to the number of iterations that were affected by the in-
jected faults. Fig. 12 shows that 809 iterations were affected on the input to the
ABS_RR_Wheel block, while only 284 iterations were affected on the output port,
hence errors are masked out within this block. For example, the switch Thre-
shold_10km/h masks out errors coming from the block If v>=10km/h and errors com-
ing from the second input port block so that only 284 errors propagate through the
switch block. Further analysis can be done by more in-depth inspection of the If
v>=10km/h block to find out where errors are masked out inside that block.

Fig. 12. Error propagation analysis for an offset fault model (inside block ABS_RR_Wheel)

1
M_abs: Brake_Torque

Threshold_10km/h

T_Nm

v_km/h

w_rpm

BrakeTorque

If v>=10 km/h

3
w: wheel Rotation (rpm)

2
v: Vehicle Velocity (km/h)

1
T: Requested Torque (Nm)

809

0

468

492

284

 Visualization of Model-Implemented Fault Injection Experiments 229

5 Conclusions

Traditionally, fault injection is used as a testing method for evaluation of fault toler-
ance in hardware or software. However, by using model-implemented fault injection
(MIFI) as implemented in the MODIFI tool, fault injection can be used in early steps
of software development. This is possible due to the increased utilization of model-
based software development using tools like Simulink. Besides being used for valida-
tion of fault tolerance, MIFI can be used to help developers focus on improvement of
the most fault sensitive parts of a Simulink model.

We have proposed three visualization methods. The first method visualizes the
outcome of experiments in a fault injection campaign using a three-dimensional cube.
The second method is used for sensitivity profiling and can help developers pinpoint
the most fault sensitive parts of a Simulink model. The third technique can be used for
validation of fault handling mechanisms and to visualize the effect of injected faults.
This error propagation analysis helps developers to ensure that fault handling mechan-
isms are correctly implemented and thoroughly tested.

Acknowledgments. We would like to thank Mafijul Islam and Johan Haraldsson at
AB Volvo for the Brake-by-Wire Simulink model used in the case study. This work
was partly funded by the ARTEMIS Joint Undertaking research project VeTeSS un-
der grant agreement n° 295311 and the national research project BeSafe funded by
Vinnova (Swedish Governmental Agency for Innovation Systems) within the Vehicle
Development Program (Diary number: 2010-02114).

References

1. The Mathworks, Inc., http://www.mathworks.se/products/simulink/
2. IEC 61508:2010: Functional safety of electrical/electronic/programmable electronic

safety-related systems
3. ISO 26262:2011: Road vehicles — Functional safety
4. Vinter, J., Bromander, L., Raistrick, P., Edler, H.: FISCADE - a fault injection tool for

SCADE models. In: Proceeding of the 3rd IET Conference on Automotive Electronics,
University of Warwick, UK, June 28-29 (2007) ISBN: 978-0-86341-815-0

5. Vulinovic, S., Schlingloff, B.H.: Model based dependability evaluation for automotive
control functions. In: Invited Session: Model-Based Design and Test, 9th World Multi-
Conference on Systemics, Cybernetics and Informatics, Florida (2005)

6. Isacson, J., Ljungberg, M.: Fault injection in Matlab/Simulink. Master’s Thesis Report,
Department of Computer Science and Engineering, Chalmers University of Technology,
Göteborg, Sweden (2008)

7. Joshi, A., Heimdahl, M.P.E.: Model-Based Safety Analysis of Simulink Models Using
SCADE Design Verifier. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP 2005.
LNCS, vol. 3688, pp. 122–135. Springer, Heidelberg (2005)

8. Svenningsson, R., Vinter, J., Eriksson, H., Törngren, M.: MODIFI: A mODel-
implemented fault injection tool. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS,
vol. 6351, pp. 210–222. Springer, Heidelberg (2010)

230 D. Skarin, J. Vinter, and R. Svenningsson

9. dSPACE, http://www.dspace.com/en/pub/home/products/sw/pcgs/
targetli.cfm

10. The MathWorks, Inc, “Simulink User’s Guide”
11. ISO 26262-6:2011: Road vehicles - Functional safety - Part 6: Product development at the

software level
12. Conrad, M.: Testing-based translation validation of generated code in the context of IEC

61508. Formal Methods in System Design, 35(3), 389–401 (2009)
13. Beine, M.: A Model-Based Reference Workflow for the Development of Safety-Critical

Software. Embedded Real Time Software and Systems (2010)
14. ISO 26262-5:2011: Road vehicles - Functional safety - Part 5: Product development at the

hardware level
15. Balaban, E., Saxena, A., Bansal, P., Goebel, K.F., Curran, S.: Modeling, Detection, and

Disambiguation of Sensor Faults for Aerospace Applications. IEEE Sensors Journal 9(12),
1907–1917 (2009)

16. Ni, K., et al.: Sensor network data fault types. ACM Transactions on Sensor Networks
(TOSN) 5(3), Article No. 25 (May 2009)

17. Choi, G.S., Iyer, R.K.: FOCUS: An experimental environment for fault sensitivity analy-
sis. IEEE Transactions on Computers 41(12), 1515–1526 (1992)

18. Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist fault locali-
zation. In: Proceedings of the 24th International Conference on Software Engineering.
ACM (2002)

19. Munkby, G., Schupp, S.: Improving fault injection of soft errors using program dependen-
cies. In: Practice and Research Techniques, TAIC PART 2008. Testing: Academic & In-
dustrial Conference. IEEE (2008)

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 231–242, 2014.
© Springer International Publishing Switzerland 2014

Cost-Effective Testing for Critical Off-the-Shelf Services

Fabio Duchi1, Nuno Antunes2, Andrea Ceccarelli3, Giuseppe Vella4,
Francesco Rossi1, and Andrea Bondavalli3

1 Resiltech S.r.l, Piazza Nilde Iotti, 25 Pontedera – PI, Italy
{fabio.duchi,francesco.rossi}@resiltech.com

2 University of Coimbra, Polo II - Pinhal de Marrocos, 3030-329 Coimbra, Portugal
nmsa@dei.uc.pt

3 CINI-Consorzio Interuniversitario Nazionale per l'Informatica, University of Florence
Viale Morgagni 65, I-50134, Florence, Italy

{bondavalli,andrea.ceccarelli}@unifi.it
4 Engineering Ing. Informatica S.p.A., Viale Reg. Siciliana 7275, Palermo, Italy

giuseppe.vella@eng.it

Abstract. Defining cost-effective verification and validation tools is one of the
biggest research challenges of the area. Such tools speedup and reduce the cost
of the assessment of Off-The-Shelf (OTS) software components that must un-
dergo proper certification or approval processes to be used in critical scenarios.
Previously we introduced the design of framework for testing of critical OTS
applications and services, to improve reusability, thus aiming to reduce testing
time and costs. In this paper we present an implementation of the framework
that allows applying, in a cost-effective fashion, functional testing, robustness
testing and penetration testing to web services. We present details on the im-
plementation and we describe the procedure to use the framework to conduct
testing campaigns in web services. Finally, the framework usability and utility
is demonstrated based on a case study.

Keywords: testing, monitoring, critical applications, verification and valida-
tion, certification, assessment.

1 Introduction

Rigorous Verification and Validation (V&V) forms the fundaments of critical appli-
cations and has been largely applied in scenarios that involve life and mission critical
embedded systems. It has also been applied through years in several domains as the
railway [4] and space [14], and recently a strong effort has been made to standardize
these practices for automotive [6]. Although checking a system using V&V methods
frequently exceeds the effort needed for the core development time, it is frequently
used as a design-time quality control process for the evaluation of the compliance
between a product, service, or system [12].

As the industry rapidly turns to system integration based on the reuse of hardware
and software components, also known as Off-The-Shelf (OTS) components, it is ne-
cessary to apply rigorous V&V techniques to assess the applications. However, while

232 F. Duchi et al.

hardware OTS is nowadays widely accepted and used, software OTS still creates
serious difficulties to companies, which are constrained to meet predefined quality
goals while are required to deliver systems at acceptable cost and time to market. This
leads to one of the biggest challenges to the V&V community: to define methods,
strategies and tools able to validate a system adequately, while simultaneously keep-
ing the cost and delivery time reasonably low. The problem grows when it is neces-
sary to include OTS components in a critical system that has to be certified. As a
matter of fact, although modern standards consider the possibility of assessing prod-
ucts, which encompass OTS software, this is still considered a challenge [5].

In industrial practices, integration and usage of OTS software components in criti-
cal systems is generally supported by two different assessment processes requiring
both testing to understand the behavior of the component and to assess that it does not
introduce hazards in the system. In the first process, whenever applicable, the activity
is limited to assess the integration, verifying that the OTS component is properly
wrapped in the system without affecting system’s safety. In the second, a complete
assessment of the OTS component is performed; this may include activities as pro-
duction of documentation, reverse engineering, and static analysis, among others.

A recent work introduced the design of an advanced framework for testing and
monitoring critical applications and services [1]. The idea is that by monitoring both
the applications and the system where these are executing, while applying diverse
forms of testing, it is possible to better detect problems, maximizing the effectiveness
of the tests. The proposed framework consists of two main components: 1) Instru-
mented System, a monitoring environment where the applications or services can be
executed and monitored, and 2) Test and Collect, contains a set of adaptable tools for
application testing, and data storage and analysis.

This paper presents an implementation and execution of the framework in [1] for
testing and monitoring of web services. The implementation includes tools that allow
the user to apply to the web services different types of testing: functional, stress, ro-
bustness and penetration testing. During the different testing processes, the system
variables are monitored both at middleware level (Application Server) and at operat-
ing system level. Additionally, the paper details the steps and the processes that the
user must follow to use the framework to perform web services testing.

A case study was devised to evaluate the framework, focused on the services of the
Liferay Portal, an enterprise web platform project that aims for immediate delivery of
robust business solutions for organizations. This case study allowed us to demonstrate
the flexibility, usability and utility of the framework. The results revealed the services
under test performing quite well in the situations tested. Obviously, the quality of the
tests performed depends on the testing tools used, but this discussion is out of the
scope of this work, as the merits of each tool were evaluated and discussed in differ-
ent works by their authors [2, 9].

The structure of the document is as follows. The next section presents the design of
the testing framework from [1] and the implementation we developed. Section 3
presents the process to use the framework for testing web services. Section 4 presents
the case study conducted while the Section 5 presents the results of the experiments.
Finally, Section 7 concludes the paper.

 Cost-Effective Testing for Critical Off-the-Shelf Services 233

2 Testing Framework

The framework aims at providing a tool-platform for automatic testing of web servic-
es, with little or even without knowledge of their internal structures. Despite the most
common approach for testing OTS web services is the “black box”, the tool has been
designed in order to take advantages of any piece of information available.

The framework architecture is made up of two systems: i) Instrumented System,
and ii) Test and Collect. The former is the system in which the web service is running;
the latter is the system that is used to stimulate the web service and to collect evi-
dences of its behavior. Although the current implementation focuses on Java Web
Services running over a Tomcat 7 Application Server (AS) and a Linux CentOS 6
Operative System (OS), the proposed solution can be evolved to different platforms
and Web Services Middleware (WSM).

Fig. 1 (a) shows the interactions between the two systems of the framework: the
testing tool invokes methods of the web service triggering specific functionalities, and
at the same time the analysis tools read information on the overall status of the opera-
tive system and service middleware.

(a)

(b)

(c)

Fig. 1. Framework architecture: (a) overall view and interactions; (b) Detailed functioning of
the Test and Collect. (c) Detailed functioning of the Instrumented System.

2.1 Instrumented System (IS)

Considering that weaknesses can affect the middleware layer (e.g., depleting available
free memory in the heap) and the operating system layer (e.g., exchanging a huge
amount of data or delaying the overall system), both of them are monitored. The

234 F. Duchi et al.

middleware (AS) monitoring activity relies upon Java Management Extension (JMX)
technology that is shipped with Java Runtime Environment (JRE). Although the JRE
provides basic probes for monitoring the virtual machine behavior, usually the mid-
dleware enriches the set of parameters that can be monitored. This set of parameters,
in turn, provides an overall picture of internal state of the middleware.

OS Monitoring activity has been supported by “System Tap”[11] with which a set
of probes have been defined as two kernel modules. Due to the nature of kernel mod-
ules, the amount and the types of operations comprises in the modules affect perfor-
mance and stability of system, thus, by common non-blocking IPC mechanisms, the
data elaboration was moved outside the kernel modules as a user space application.

2.2 Test and Collect

This node is made of two components (see Fig. 1(b)): i) testing, and ii) storage and
analysis. The testing component controls the execution of the testing tools. Although
the framework is designed to be fully automated, the human interaction cannot be
completely avoided at least for the test execution. The level of human interaction can
vary from test to test, thus each testing tool should provide its own interaction inter-
face. It is mandatory that the testing tool communicates with the storage and analysis
module to trace testing activity, providing information as test input/output, and execu-
tions results and durations that should be logged by the storage module to match the
results provided by the IS during the execution of these tests.

The storage and analysis module is also in charge of harvesting data from the IS
probes and of structuring and storing them in order to facilitate the subsequent data
analysis. The storage component is made up of three modules: i) Probes Collector
(PC), ii) Data Manager (DM) and iii) Database (DB).

The PC is responsible of reading data from IS probes and due to the different
sources (middleware or OS) it needs to use different policies to respect the data avail-
ability and probe servers constraints. Data read from probes are then managed by the
DM component that organizes the data coming from middleware structuring it in
order to provide the state of the monitored system from a specific point of view. A
different management policy is followed for data read from the OS probes that are
aggregated due to the high frequency with which these data are produced.

Finally, data is stored in the underlying database. Subsequent “Data Analysis” is
primarily conducted by the OLAP methodology, thus the database schema has been
defined following a “star schema” approach, by a semantic classification, data has to
be classified among:

• Facts tables – represent measure on the system;
• Dimensions tables – represent the context in which tests has been conducted.

There are multiple facts tables, each one collecting data from a specific point of
view. These tables are connected to each other by a “common” facts table. Each facts
table includes correlated information such as usage of memory, usage of CPU and so
forth.

 Cost-Effective Testing for Critical Off-the-Shelf Services 235

3 Conducting Cost-Effective Testing

The framework has been developed to support different kinds of testing tools. One of
the main concerns that has led to its development was the minimization of the effort
needed for the adaptation of existing tool to the framework. To fit this constraint, each
testing tool is seen as a different application that communicates with the framework
by an interface with several optional fields. Furthermore, the interface includes the
possibility to exchange files to support any kind of results produced by the testing
tools.

Although tools must provide mandatory information, such as “test execution time”,
“test duration”, and “test results” which are compulsory for having a meaningful
analysis, they can provide more detailed information, such as raised exceptions or
execution time of a part of the test.

Due to the loosely coupling between the testing tools and the framework, almost
every existing tool can be integrated into the framework, provided that it exposes the
external interface that the framework prescribes. Open source and commercial tools
can be integrated as far as they provide an API or their input can be controlled and
their output monitored.

The testing tools currently available allow performing functional & stress test, pe-
netration test and robustness test. The testing framework has been developed mini-
mizing the human interaction especially during the testing activities. With the present
tools, the human interaction is indeed focused in the configuration phase, which has to
be performed one time for each tool. Such tools can provide common configurations
as well as they can propose a configuration that suits the testing needs.

3.1 Functional and Stress Testing

Functional test is a quality assurance process based on black-box approach that aims
to provide a proof of implementation correctness regarding to the specifications of the
software under test. The test is performed feeding the software under test with well-
known values and examining the output produced.

Although common functional tests involve the test of single methods, within this
context, it has been followed an approach which tackles high-level functionalities.
The approach consists of a set of workflows that mimics the behavior of a software
user for executing specific high-level tasks, which in turn can comprise the invocation
of a huge variety of methods [3].

The workflows definition is a cornerstone of this approach and it has to be defined
specifically for each service under test considering its interface and the software spe-
cification. Workflows define how and when the service interface of the software un-
der test has to be questioned and, also, they provide the information needed for the
subsequent phase of result validation. Following the black-box approach the verifica-
tion is done invoking specific methods of the service for checking its internal status.

The importance of these workflows is further emphasized due to the fact that they
can be used as bricks for compound and complex workflows for Stress testing. Stress

236 F. Duchi et al.

testing is a form of deliberately intense testing used to determine the stability of a
given system.

The tool developed for functional test, properly configured with suitable
workflows, can stimulate the system under test in order to provide evidence of stabili-
ty. Workflows for Stress testing have been defined from the high-level tasks identified
for the functional tests by parallelizing multiple high-level tasks invoked from a varie-
ty of users and abbreviating to the minimum the delay between sequential invoca-
tions.

3.2 Robustness Testing

Robustness testing is a specific form of black-box testing that attempts to characterize
the behavior of a system in the presence of erroneous or unexpected input conditions
[7]. The tool instrumented in the testing framework implements the technique pro-
posed in [13]. The approach consists of a set of robustness tests that is applied during
execution in order to disclose both programming and design problems.

The set of robustness tests is automatically generated by applying a set of prede-
fined rules (see detailed list in [13]) to the parameters of each operation of the web
service during the workload execution. An important aspect is that rules focus
difficult input validation aspects, such as: null and empty values, valid values with
special characteristics, invalid values with special characteristics, maximum and min-
imum valid values in the domain, values exceeding the maximum and minimum valid
values in the domain, and values that cause data type overflow. The robustness
of the web services is characterized according to the failure modes adapted from the
CRASH scale.

3.3 Penetration Testing

Penetration testing is nowadays one of the most used techniques by web developers to
detect vulnerabilities in their applications and services. This technique assumes par-
ticular relevance in the web services environment, as many times clients and provid-
ers need to test services without having access to the source code (e.g. when testing
third-party services), which prevents the use of more effective techniques that require
that access. The tool instrumented in the testing framework implements a technique
targeting the detection of SQL Injection vulnerabilities in web services. The tool was
originally presented in [2]. Comparing to other existing web vulnerability scanners
based on penetration testing, this approach presents three key improvements:

• It uses a representative workload to exercise the services and understand the ex-
pected behavior (i.e. the typical responses in the presence of valid inputs);

• It uses a more complete set of attacks. The attacks considered are a compilation of
all the attacks performed by a large set of scanners plus many attack methods that
can be found in the literature;

• It applies well-defined rules to analyze the web services responses in order to
improve coverage and reduce false positives. These rules include comparing the

 Cost-Effective Testing for Critical Off-the-Shelf Services 237

responses obtained when using malicious inputs with the normal responses (i.e.
responses in the presence of a valid workload) and with the responses from classic-
al robustness tests [8].

4 Case Studies: Liferay Web Services

Liferay is a free and open source Java software that was initially developed to provide
an open source enterprise quality portal. Since the early stages of development, Life-
ray has been widely adopted for intranet as well as extranet enterprise solution. Even-
tually, it brought Liferay to have a big supporting community, which, together with
the Liferay foundation, contributed to define a generic and extendible product.

The success passes through an extendible architecture by plugins that, in turn, en-
compass collaboration, social networking, and single sign on, per-component privi-
leges policy as well as e-commerce tools. Third-party plugins are also available to
provide more advanced feature such as Microsoft office integration.

A plugin can be seen as a J2EE-Servlet and is referred to as a portlet. Portlets
communicate with each other using the services that each one exposes that, in turn
perform the portlets business logic. More details on Liferay can be found in [10].

Our installation of Liferay includes the version 6.0 of the portal and 83 deployed
SOAP (Simple Object Access Protocol) web services. This case study aims at using
the testing framework to detect flaw in a product out of the shelf. The case study en-
compasses Functional, Stress, Penetration and Robustness tests; all of them are further
detailed in the follow.

4.1 Functional Tests

In order to verify the correctness of Liferay services, a study on its plugins interaction
has been conducted. The necessity for the preliminary study has been felt because of
the strictly correlated invocations among methods exposed by web services.

The preliminary study has been exploited to define workloads that could mimic the
behavior of Liferay internal interactions. Even simple activity, like posting a message
on the blog by UI interface, could involve a plethora of plugins including authentica-
tion, user information retrieving, permission checking and finally messaging service.

In order to stimulate Liferay in a way that could resemble human activities, many
Workloads have been defined to cover Liferay functionalities by mimicking the beha-
vior of human interaction. Mimicked actions encompass posting a message in the blog
and in the forum, creating an event in the calendar, creating a directory-tree in the file
repository and uploading a file in it.

These workloads, in order to highlight possible weakness in terms of concurrency
management, have been used to define other workloads for stress tests. Those tests
have been designed from the workloads defined for functional tests in order to evaluate
Liferay behavior under a heavy load. For each workload, that mimics a specific action,
a new one is defined as a composition of many copies of the same workload, these

238 F. Duchi et al.

copies differ just for the user. The purpose of this approach is to simulate multiple
users activities on Liferay, that stimulate the same services and some shared data.

The stress test, as it is designed, suits especially well when there isn’t a sound
knowledge of web services internal mechanism; the deeper is the knowledge of web
service internals the more effective workloads can be designed.

4.2 Robustness Tests

Due to the preliminary study performed for the functional test, a generic knowledge
of methods invocation was available to configure the tool to generate better tests. This
knowledge was especially important for the tool to use values that exercise the code
of the web service under test in a more complete way. After the configuration of the
tool it submits the robustness tests in an automated way and reports the robustness
problems found.

4.3 Penetration Tests

Again, the available knowledge of methods invocation was key to configure the tool
to generate better workloads and attackloads. This is especially relevant for this tool
as its effectiveness is depending on the completeness of its workloads. After this con-
figuration, the test execution is a straightforward process in which the tool submits its
workload and attackload to the web service and then reports the vulnerabilities found.

5 Tests Results

Experiment execution is made up of three phases, where just the final one is specific
for the kind of test that has to be conducted. The phases are:

1. Set up Service Under Test (SUT),
2. Data Logger execution,
3. Testing tool execution.

On the first phase the service under test is started up. This phase includes also the
startup of middleware and OS probes. The second phase can be launched simulta-
neously, as it does not read information from OS or middleware probes: it just pre-
pares the structures needed for logging.

During test execution, the testing framework logs raw tests results and prints on the
console information on the tests execution (test currently running, test duration, etc.).
This information is useful for monitoring the tests execution.

Test results are collected during test execution; at the tests termination, collected
data are flushed into a database.

Different tools that range from very specific tools such as R or MatLab to com-
monly available and general-purpose tool such as OpenOffice-Calc are installed on
the Test and Collect system, connected to the database, and can be used to retrieve
and analyze data.

 Cost-Effective Testing for Critical Off-the-Shelf Services 239

5.1 Functional Test

Due to the wide usage and the extended support that Liferay received from its com-
munity since its development started, it was expected that Liferay passed all the func-
tional tests defined.

Fig. 2 shows an extract of the workload (set of services invocations) used for creat-
ing a new event on a calendar (it includes logging in to the system, listing the availa-
ble/subscribed calendars, choosing the first one and listing all the events of February,
adding the new item then logging out; subsequently further invocations checks that
the event was correctly recorded). The invocation correctness is verified by a visual
inspection of Liferay services.

The output produced during the execution of the test is displayed on the screen of
the Test and Collect system and consists of a sequence of services methods invoca-
tions. For each one of these, the HTTP response code is printed out. In a functional
test is mandatory that the HTTP response code would match with the expected one.

Fig. 2. An extract of the workload to set a new Calendar event

5.2 Stress Test

The aim of this stress testing is to assess the ability to resist against a workload which
leverage on high frequency of requests, and the results can be evaluated in term of
system loads and resource usage. Table 1 shows the average CPU usage and amount
of free memory; the former one is furthermore detailed distinguishing between
process CPU load and system CPU load, with system CPU load that encompasses any
task running on the system. Free memory is furthermore detailed as well distinguish-
ing between free heap memory, used for java objects and free non-heap memory.

The table encompasses the experiments of 5, 10 and 100 simultaneous execution of
the “New Calendar Event” workload. Data are collected 1 times per second. Table 1
shows that the CPU usage of service process remains quite stable despite the increase

240 F. Duchi et al.

of the number of requests. Process CPU load, the system load as well as memory
usage vary as the number of parallel requests increase. The table shows that system
resources usage clearly increases due to the waits for Disk Output activities, which
rise.

Table 1. Extract Test Results for New Calendar Event

Parallel re-

quests (nr)

Process CPU

Load (%)

System CPU

Load (%)

System Load

Average

Free Heap

Memory (B)

Free Non

Heap Mem(B)

IO Written/

Read Data (B)

5 0,303 0,382 1,54 100128920 24899588 5959

10 0,125 0,651 1,20 86411094 22482534 77344

100 0,134 0,999 2,34 84833658 21993838 184244

5.3 Robustness Tests

Fig. 3 shows an extract of the robustness test report, in which all the tests reported
robustness problems. This would suggest weakness in the services, but a manual in-
spection revealed that while tool reports “PROBLEM”, the service actually correctly
identify and discard the invalid request. We explain this with the help of Fig. 4.

Fig. 3. Extract from robustness test results

Fig. 4(a) shows an extract of a robustness test involving the Poll Service, in partic-
ular the “addQuestion” method. Liferay, relying on Axis 2 for parsing values,
automatically manages the invalid value for the parameter “expirationDateMonth”
rejecting the request and without passing it to the "actual" service. The rejection caus-
es an HTTP 533 (which belongs to the “internal error” family): the tool used for ro-
bustness testing, operating at black-box, is not able to distinguish this answer from
any other internal error, and consequently the “PROBLEM” code is displayed in
Fig. 4(b) which shows the response that Liferay produces for the request.

(a)

(b)

Fig. 4. Example of robustness test: (a) request; (b) response

 Cost-Effective Testing for Critical Off-the-Shelf Services 241

In general, Liferay uses Axis2 for service publishing and interface, Axis2 is re-
sponsible for parsing values passed by SOAP as well as for invoking the actual Java
method which was remotely requested. The parsing phase consists also of a validation
phase in which the parsed values are validated against their destination types con-
straints. The failure of this phase implies the subsequent rejection of the request and
thus the generation of a response with HTTP code 500.

5.4 Penetration Tests

Fig. 5 shows an extract of the results of the penetration tests applied to Liferay Calen-
dar Service. The extracted data, as well as the entire test results, show the robustness
of Liferay against penetration attacks. All the potentially risky requests are identified
and discarded by the Axis2 Layer for services interface, by the Object Relational
Mapping (ORM) layer for objects persistency and by the permission checking me-
chanism, which constitute a cornerstone for Liferay services interoperability.

Fig. 5. Calendar Service penetration tests result

In fact, Liferay exposes its services using Axis2, which validates the invocation pa-
rameters before passing the request to the "actual" service. Additionally, Liferay re-
lays upon Hibernate (the ORM used), which provides an SQL parameter sanitizing
service that, in turn, uses named queries that work on top of statements of the JDBC
API; all those layers operate the necessary actions to avoid risks from malicious re-
quests. Finally, the invocations involving items that the user is not authorized to use,
are identified by the Liferay Permission Service.

6 Conclusion

This paper presents an implementation of a cost-effective testing framework for web
services. The framework allows users to easily apply functional testing, stress testing,
robustness testing and penetration testing to their web services. The procedure to use
the framework is described and its usability is illustrated with a case study that uses
the Liferay platform, composed of several web services. The framework can orches-
trate the use of the tools and reduce the human effort by reutilizing the information
provided at configuration time within multiple tools.

Future work includes the evaluation of the framework in different scenarios and the
extension of the approach to other types of software other than web services. Addi-
tionally, the framework can be modified to use more than one Instrumented System at
the same time, allowing to test more complex systems. Finally, it can be extended to
take advantage of other kinds of information monitoring.

242 F. Duchi et al.

Acknowledgements. This work has been partially supported by the European Project
FP7-2012-324334-CECRIS (CErtification of CRItical Systems), the TENACE PRIN
Project (n. 20103P34XC) funded by the Italian Ministry of Education, University and
Research, and the PON Ricerca e Competitività 2007 - 2013 VINCENTE (A Virtual
collective INtelligenCe ENvironment to develop sustainable Technology Entrepre-
neurship ecosystems) project.

References

1. Antunes, N., et al.: A monitoring and testing framework for critical off-the-shelf applica-
tions and services. In: 2013 IEEE International Symposium on Software Reliability Engi-
neering Workshops (ISSREW), pp. 371–374 (2013)

2. Antunes, N., Vieira, M.: Detecting SQL Injection Vulnerabilities in Web Services. In:
Fourth Latin-American Symposium on Dependable Computing 2009 (LADC 2009), pp.
17–24. IEEE Computer Society, Joao Pessoa (2009)

3. Ceccarelli, A., et al.: A Testbed for Evaluating Anomaly Detection Monitors Through
Fault Injection. In: 5th IEEE Workshop on Self-Organizing Real-Time Systems
(SORT 2014), Reno, Nevada, USA (2014)

4. IEC 61508 TC: IEC 61508, Functional Safety of Electrical/Electronic/Programmable Elec-
tronic (E/E/PE) Safety Related Systems, Part 3: Software Requirements. IEC, Geneva,
Swiss (1998)

5. IEEE Computer Society. Software & Systems Engineering Standards Committee: 1012-2012
- IEEE Standard for System and Software Verification and Validation. IEEE Computer
Society (2012)

6. ISO 26262: Road vehicles - Functional safety - Part 6: Product development at the soft-
ware level (2011)

7. Koopman, P., DeVale, J.: Comparing the robustness of POSIX operating systems. In:
Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing. Digest of
Papers, pp. 30–37 (1999)

8. Laranjeiro, N., et al.: Improving Web Services Robustness. In: IEEE 7th International
Conference on Web Services (ICWS 2009), Los Angeles, CA, USA, pp. 397–404 (2009)

9. Laranjeiro, N., et al.: Wsrbench: An On-Line Tool for Robustness Benchmarking. In:
IEEE International Conference on Services Computing, SCC 2008, pp. 187–194 (2008)

10. Liferay, Inc.: Liferay Portal, http://www.liferay.com/
11. Prasad, V., et al.: Locating system problems using dynamic instrumentation. In: 2005

Ottawa Linux Symposium, pp. 49–64 (2005)
12. Tran, E.: Verification/Validation/Certification. In: Koopman, P. (ed.) Topics in Dependa-

ble Embedded Systems. Carnegie Mellon University (1999)
13. Vieira, M., et al.: Benchmarking the Robustness of Web Services. In: 13th Pacific Rim In-

ternational Symposium on Dependable Computing, PRDC 2007, pp. 322–329 (2007)
14. RTCA DO-178C/EUROCAE ED-12C - Software Considerations in Airborne Systems and

Equipment Certification (2011)

On Security Countermeasures Ranking
through Threat Analysis

Nicola Nostro1,2, Ilaria Matteucci3, Andrea Ceccarelli1, Felicita Di Giandomenico2,
Fabio Martinelli3, and Andrea Bondavalli1

1 University of Florence, Firenze, Italy
{nicola.nostro,andrea.ceccarelli,bondavalli}@unifi.it

2 ISTI - CNR, Pisa, Italy
f.digiandomenico@isti.cnr.it

3 IIT-CNR, Pisa, Italy
{ilaria.matteucci,fabio.martinelli}@iit.cnr.it

Abstract. Security analysis and design are key activities for the protection of
critical systems and infrastructures. Traditional approaches consist first in apply-
ing a qualitative threat assessment that identifies the attack points. Results are
then used as input for the security design such that appropriate countermeasures
are selected. In this paper we propose a novel approach for the selection and
ranking of security controlling strategies which is driven by quantitative threat
analysis based on attack graphs. It consists of two main steps: i) a threat analysis,
performed to evaluate attack points and paths identifying those that are feasi-
ble, and to rank attack costs from the perspective of an attacker; ii) controlling
strategies, to derive the appropriate monitoring rules and the selection of coun-
termeasures are evaluated, based upon the provided values and ranks. Indeed,
the exploitation of such threat analysis allows to compare different controlling
strategies and to select the one that fits better the given set of functional and se-
curity requirements. To exemplify our approach, we adopt part of an electrical
power system, the Customer Energy Management System (CEMS), as reference
scenario where the steps of threat analysis and security strategies are applied.

1 Introduction

The usage of Information and Communication Technology (ICT) systems in Critical
Infrastructures (CI) rapidly increases. Some of the most prominent examples of CI are
electric power systems, telecommunication networks, transportation systems. The in-
troduction of ICT components, however, has pros and cons. The advantages are mainly
related to the management of communications among components of a CI and the con-
trol of their functionalities. On the other hand, the pervasive introduction and utiliza-
tion of ICT infrastructure exposes the system to cyber security vulnerabilities. Indeed,
CI systems may occasionally fail for different reasons that go from natural disasters to
accidental failures, or malicious attacks from both insider or outsider attackers [19].

In this context, it is important to be able to analyse system architecture in order to
find possible points of failure and to provide appropriate countermeasures able to guar-
antee the reliability and security of the system. The goal of this paper is to describe

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 243–254, 2014.
c© Springer International Publishing Switzerland 2014

244 N. Nostro et al.

a framework for the ranking and selection of controlling strategies against security at-
tacks. The evaluation and selection of the appropriate strategy are driven by a security
model-based evaluation of the considered system. Our approach consists in synergi-
cally combining model-based quantitative security assessment and security controlling
strategies definition to rank security countermeasures, and then to select the most appro-
priate one for guaranteeing the security of the system against a certain class of attackers.
A model consists of the construction of a system’s representation, based on the charac-
teristic to be analysed and on the modelling formalism to be used. To this aim, we use
the ADVISE tool [13], which allows a quantitative model-based evaluation of security
properties. Such a modelling activity is helpful to identify critical attack paths, useful to
realize attacks on the system under analysis, as well as the probability, time and costs to
successfully achieve an attack, based on different adversary profiles and attack prefer-
ences. The measures obtained from the security analysis are then exploited to evaluate
different controlling strategies, specified as process algebra operators enhanced with
quantities [6,4], in order to make trade-off decisions between the cost of a strategy and
the reliability of the system.

As an application use case for the proposed approach, we focus on the Costumer
Energy Management Systems (CEMS) that is a service of the low voltage grids for an
advanced energy management, based on tariff information and an integration of dis-
tributed energy resources (DER) for a more balanced grid stability. A basis for this
control network is established by the deployment of a comprehensive Advanced Me-
tering Infrastructure (AMI) for Automated Meter Reading (AMR), able to monitor the
electricity consumption of households collected by smart meters. These connections
may be subject to cyber attacks. Hence, we firstly model potential attacks to the CEMS
architecture, focussing on the Man in the Middle (MIM) attack. Two profiles of attack-
ers are considered and analysed to obtain an evaluation of the average cost of the attack.
Hence, we apply each controlling strategy to MIM attack’s models and we evaluate their
cost to select the best one (if any) to cope with the attack.

The paper is structured as follows: Section 2 presents our framework for ranking se-
curity strategies according to quantitative threat analysis and Section 3 shows how our
approach works on the CEMS use case scenario. Section 4 discusses the existing liter-
ature on modelling approaches, threat analysis framework, and quantitative definition
and evaluation of security controlling strategies. Finally Section 5 draws conclusions
and describes some ongoing and future works.

2 Ranking Security Strategies through Threat Analysis

The aim of this section is to describe our integration of two existing approaches, one for
the model-based security assessment, and the other for quantitative security controlling
strategies, in such a way to provide a novel approach for the evaluation, ranking, and
selection of the best security countermeasure, if any.

A graphical representation of the workflow is depicted in Figure 1. We start from the
specification of a system. The system is described by its functional and non-functional
requirements. Once the system has been modelled, a threat analysis of the system is
performed in order to evaluate possible risks, point of failures, and so on.

On Security Countermeasures Ranking through Threat Analysis 245

Fig. 1. The workflow of the proposed approach

The output of the threat analysis consists of a series of possible attacks that can be
perpetrated on the system. Furthermore, the analysis provides an estimation of the cost
of each attack. Given the variety of potential attackers behaviour, we define several
strategies for their monitoring and controlling. Such strategies work by following the
attacker’s behaviour step by step. Then, we use the information on the cost of the attack,
obtained through the threat analysis, in order to rank and select the controlling strategy
that better fits with the system requirement. In the following we present more in detail
the modelling approach and the definition of quantitative controlling strategies.

2.1 Modelling Approach and Threat Analysis

In this section we recall some basic notion about modelling approaches and threat anal-
ysis of a modelled system.

Modelling Approaches. Modelling of systems is an activity that is widely used espe-
cially in the early stages of design, in order to detect design errors, deficiencies and
vulnerabilities, thus avoiding them from being detected after the deployment of the sys-
tems, which could cause serious and, in the worst case, catastrophic consequences.

Modelling consists of the construction of a system’s representation based on the
characteristic to be analyzed and on the modelling formalism to be used. In particular,
security models shall describe how and when a security violation occurs, its impact on
the system under analysis, proper countermeasures to the attack with relative costs and
effects on the system. Research in security analysis has developed a variety of models,
each focusing on particular levels of abstraction and/or system characteristics. Impor-
tant classes of modelling approaches are represented by: Attack Trees [22], Privilege
Graphs [8], Attack Graphs [23], and ADVISE [13].

246 N. Nostro et al.

In this work we adopted ADversary VIew Security Evaluation (ADVISE), which
extends the concept of attack graph by building executable models driven by the prefer-
ences of attack. Analyses performed through ADVISE can be tailored in order to reflect
the behavior of attackers with different goals, preferences, resources, skill, knowledge
and access to the system, thus specifying several attacker profiles. An attack is com-
posed of a sequence of steps. All the potential attack steps against the system are defined
as the Attack Execution Graph (AEG). Each step allows the achievement of a goal or the
progress of the attack. With respect to attack graphs, ADVISE introduces the concept
of time, probability, and costs associated to each single attack step. The combination
of the AEG and the attacker profile allows to generate an executable model useful to
produce relevant analysis output based on security metrics.

Threat Analysis. Threat analysis represents an activity typically required for various
types of systems, in particular it finds wide application in contexts of complex systems,
especially when they require the integration of multiple infrastructures, technologies,
and people. The purpose of the analysis is to create a data base of threats, vulnerabili-
ties and countermeasures, always taking into account the costs of implementation and
the severity of the threats that must be handled [20]. However, identifying all the poten-
tial vulnerabilities, and the related threats of a system, especially if complex, appears
to be a quite difficult process, which may take a long time, and not ensuring a full cov-
erage. For this reason, the first step of the analysis is related to the identification of the
assets of interest, which can be modified, damaged, and made unavailable. They can be
digital (e.g., software sources, sensitive data), physical (e.g., servers), commercial (e.g.,
corporate brand). Once the assets have been identified they are prioritized according
to their relevance, thus giving the proper weight and priority to vulnerabilities, threats,
and countermeasures The output of this first step is usually represented by a simple
table, where each row represents an identified asset, and columns contain an ID of the
asset, a name, a description, and a priority. Afterwards, an analysis of the system’s vul-
nerabilities and threats is carried out. At this stage, based on the reference architecture
each module, component, part of the system, must be analyzed to identify the vulner-
abilities and the threats. A vulnerability is represented by a bug, a flaw, a weakness
or exposure of an application; a system, a device or a service which could lead to is-
sues of confidentiality, integrity or availability. A threat represents the occurrence of
a harmful event, by exploiting one or more vulnerabilities. Similarly to the assets, the
output is represented by two other tables. Each row of the vulnerabilities and threats ta-
bles represents an identified vulnerability and threat, respectively. The tables produced
are cross-referenced, in order to understand which threat can exploit a vulnerability to
affect an asset.

2.2 Quantitative Controlling Strategies

Starting from the Schneider’s seminal work [21], a lot of effort has been spent on for-
mally characterizing what kind of policies can be monitored and enforced at runtime
and how. In particular, the adoption of formalisms such as automata, e.g., [2] or process
algebras [15], allows to better define the interactions between target and enforcement
mechanism as well as enforcement capabilities.

On Security Countermeasures Ranking through Threat Analysis 247

Table 1. Semantics definitions for quantitative control rules

E
a,k→ E′ F

a,k′
→ F ′

E � F
a,k∗k′
→ E′ � F ′

(A) E
�a,k→ E′ F

a,k′
→ F ′

E � F
τ,k∗k′
→ E′ � F ′

(S) E
�a.b,k→ E′ F

a,k′
→ F ′

E � F
b,k→ E′ � F

(I)

Hereafter, we adopt the process algebra formalism in order to define quantitative
controlling strategies [6]. We define security controller process algebra operator E �K
F , where E is the controller process, F is the possible malicious system, and K , that
ranges over {A,S, I}, i.e., Acceptance operator, Suppression operator, and Insertion
operator, identifies the possible strategies that can be applied in order to control the
behaviour of (possibly untrusted) target components by a control program.

The alphabets of E, F , and of the resulting process E � F are different, as E may
perform control actions of the form a, �a.b, �a for a, b ∈ Act, denoting respectively
the actions of acceptance, suppression, and insertion, that regulate the actions of F , and
the resulting processE�F may perform internal actions, denoted by τ , as a consequence
of suppression. Each action of both, the controller and the target are associated to a
measure. We use semirings for specifying quantities and for modelling two fundamental
modes of composing process behaviour, either by combination of different traces, or by
sequential composition.

Definition 1. A semiring K = (K,+,×,0,1) consists of a set K with two binary op-
erations +,×, and two constants 0,1, such that + is associative, with neutral element
0; × is associative, with neutral and absorbing elements 1,0; × distributes over +.

Semirings have a partial order �, such that k1 � k2 if, and only if k1 + k2 = k2.
Intuitively, � indicates preference, that is, k1 � k2 can be read as k2 is “better” than
k1.

Controlling strategies are represented by multiple labelled transition system (MLTS
for short) that are labelled transition systems where each transition is labelled by pairs
(a, k) where k ∈ K is a quantity associated to the effect a.

The acceptance rule (A) constrains the controller and the target to perform the same
action, in order for it to be observed in the resulting behaviour. In particular, if F per-
forms the action a with a measure k′ and the same action is performed by E with a
measure k (so it is allowed on the system), then E � F performs the action a with an
observed value that is the product of those of the controller and of the target, k∗k′. This
implies that any good action is allowed. Bad actions are prevented because they are not
allowed by E.

The suppression rule allows to hide actions happening for an external user but leaves
they happen for guaranteeing the functionality of the system. Hence, the suppression
rule (S) allows the controller to hide actions of the target by performing the control
action �a with a measure k. The target wants to performs the action a with a measure
K ′, but the action is not performed by the controlled entity and the observed result is a
τ action, with the value calculated as the product k ∗k′ of the suppressing and the target

248 N. Nostro et al.

action. Then E � F performs the action τ that suppresses the action a, i.e., a becomes
not visible from external observation.

The insertion rule (I) describes the capability of correcting some bad behaviour of
the target, by inserting another action in its execution trace by performing a control
action �a followed by an action, e.g., b. The value of insertion is the value of the
controller, i.e., k; this accounts for the fact that the target does not perform any action,
but rather stays in its current state.

In the qualitative case [15], they are applied in a non-deterministic way. Hence, the
approach has been extended by associating to each action a “quantity”, as, for instance,
the cost of an action or a benefit associated to a step [16][6]. This allows us to evaluate
each strategy with respect to a certain measure and select the rule to apply according to
a certain value. In particular, we consider the result of threat analysis as input values of
controlling rules, in such a way to be able to combine them in the most appropriate way
for maximizing the result.

Controller strategies are evaluated with respect to their execution path, i.e., a se-
quence (a1, k1) · · · (an, kn) from the root of the process to the end of the execution.
We call T (A) the set of paths rooted in A. Given a path (a1, k1) · · · (an, kn), we define
its label l(t) = a1 · · · an, and its run weight |t| = k1 × . . . × kn ∈ K . We define
valuation of process A the value �A� =

∑
{t∈T (A)} |t|. Hence, we are able to rank

different strategies and, eventually, select the “best” solution by applying the following
definition.

Definition 2 ([6]). Given an agent F , and a semiring K, a controller E2 is better than
a controller E1 with respect to F , and we denoted it by E1 �K,F E2, if and only if
�E1 � F � �K �E2 � F �.

3 Use Case: Customer Energy Management System

In order to describe how the proposed approach works, in this section, we focus on the
Customer Energy Management System (CEMS) as use case scenario [12]. A CEMS is
an application service or device that communicates with devices in the home. It may
have interfaces to the meter to read usage data or to the operations domain to get pric-
ing or other information to make automated or manual decisions to control energy con-
sumption more efficiently. Among the functionalities of the CEMS, the most critical
operations that must be secured are: i) direct load/generation management and ii) com-
munication of power consumption information. The CEMS can be connected to home
automation devices and to the EMG by means of shared network (e.g., the home WiFi,
office LAN). The use of already deployed IP network is extremely appealing however,
IP-based networks, when not well secured, are subject to cyber attacks. The attack can
be executed either from the Internet or from a device connected to the Home Area Net-
work (HAN) (Figure 2) which has been previously tampered, such as a personal com-
puter or the Local Network Access Point (LNAP), and may have special information
or authorizations (e.g., Energy Management Gateway (EMG) login credentials, remote
management of home automation devices).

For illustrative purpose, we concentrate on a Man In the Middle (MIM) attack on
the CEMS model (one of the potential identified threats). In MIM attack an opponent

On Security Countermeasures Ranking through Threat Analysis 249

Fig. 2. The logical view of CEMS interconnections

captures messages exchanged between the EMG and the CEMS. It can delay the mes-
sages or alter their content to produce an undesired effect, or simply collect data without
altering the content, thus causing a violation of integrity, availability or confidentiality.

Specifically, we consider two different attack goals and two different adversaries
(attackers). The first attack aims at corrupting the messages exchanged between the
CEMS and the EMG in order to compromise the integrity property. Bringing the first
attack to completion with success, results in altering the electrical devices operation.
The second attack goal attempts to gather (sensitive) information during the message
exchange, thus leading to a violation of confidentiality property. When this attack is
successfully carried out, it allows the disclosure of sensitive information about the cus-
tomer or the energy supplier. Among the potential attackers, we consider two different
profiles related to a hacker and to a criminal trying to achieve both the attack goals.

Due to space constraints, this section only provides a high-level description of the
ADVISE model. Figure 3 shows the Attack Execution Graph of the MIM attack which
aims at achieving the two identified attack goals, represented by the ovals in figure. The
graph represents the attack steps the adversary has to perform in order to realize his
goal. Specifically, Figure 3 shows a total number of ten attack steps (represented by
rectangles). The first seven steps are common for the two different attack goals.

For both of the goals, the attacker, initially, has to gain the network access. The
second attack step, called configuration step, represents the activity required to allow the
attacker to intercept the messages exchange on the network, e.g., by exploiting a router
with some malicious programs to intercept messages between the CEMS and the EMG.
Then, the next attack steps are the generic activities an attacker has to follow to realize a
(Public-Key encryption) MIM attack: i) Attacker intercepts a conversation request from
CEMS (EMG) with its public key; ii) Attacker sends a conversation request to EMG
(CEMS) with its own public key; iii) EMG (CEMS) receives request, and sends reply
encrypted with attacker’s key; iv) Attacker sends a reply encrypted with CEMS’s key
(EMG’s key), intercepted at step i); v) Attacker receives from CEMS (EMG) a message
encrypted with attacker’s key. At this point the attacker can simply decrypt the message
and get sensitive information, thus realizing one of the attack goals, or s/he can modify
the message and send it to EMG (CEMS), thus achieving the other attack goal.

The attack execution graph, described above, is valid both for the hacker and crimi-
nal, whose profiles are defined through a set of specific characteristic. Specifically, the
adversary profile defines a set of access domains, knowledges, and attack skills, owned

250 N. Nostro et al.

Fig. 3. ADVISE Attack Execution Graph for Man in the Middle attack

by the attacker before the attack begins. For each attack goal, the attacker assigns a spe-
cific payoff value, obtained by achieving that goal. Moreover, each adversary defines
three attack preference weights: maximizing the payoff (Weightpayoff), e.g., achiev-
ing the attack goal; minimizing costs (Weightcost); and minimizing the probability of
being detected (Weightdetection). Each of the attack step has a specific duration of
time, cost, success probability, and detection probability, which are specific for each
adversary profile, based on the ability to attack. Table 2 shows the set of parameters
used to define the attackers. We want to point out that the assigned values are arbitrary
and they are used for illustrative purpose only. Anyway, when considering a realistic
scenario such values could be derived from statistical data on the field of interest, if
available. In absence of actual data, a range of plausible values could be chosen and ex-
ercised through the model in order to perform a sensitivity analysis, thus identifying the
criticality of the system. For both the profiles, the adversary does not care about detec-
tion, while s/he is more attracted by the attack step cost than the potential payoff. Due to
the different ability of attackers, Table 2 shows different values about success probabil-
ity for each attack step, reasonably the probability to successfully get through the attack
steps is higher for the hacker with respect to the criminal. ADVISE considers cost and
time as unitless quantities in the model, and it is up to the modeller of taking care that all
input values are in the same cost unit (Euros, Millions of Euros, etc.) and the same time
unit (seconds, minutes, days, etc.). Analysis results of the average cost for the adver-
saries to achieve a specific attack goal are shown in Table 3. The costs reported in Table
3 are combined with the costs of controlling strategy actions in order to evaluate the cost
of different quantitative controlling strategies with respect to attacks’ behaviour. Indeed,
such a measure can be specified through the semiring C = (R+ ∪ {∞},min,+,∞, 0)
Due to space constraints, we just consider two simple controlling strategies, E1 and E2,
that act differently only on the first action GainNetAccess. The first countermeasure
E1 modifies the behaviour by introducing an access request to identify the attacker. The

On Security Countermeasures Ranking through Threat Analysis 251

Table 2. Definition of Criminal and Hacker profiles

Hacker Criminal

Adversary Preferences
Weightpayoff 0.2 0.2
Weightcost 0.8 0.8
Weightdetection 0.0 0.0

Success Probability Attack Steps

Gain Network Access 0.95 0.87
Configuration 0.95 0.87
Interception Request 0.99 0.9
Send Request to Receiver 0.99 0.9
Receiver Pub Key 0.99 0.9
Send Adversary Pub Key 0.99 0.9
Receive Encrypted Message 0.99 0.9
Corrupt Message 0.99 0.9
Send Corrupt Message 0.97 0.89
Read Message 0.99 0.9

other one, E2 works by intercepting the GainNetAccess and suppressing it in order
to avoid the communication between the attacker and the CEMS system.

E1 = (�GainNetworkAccess, 2).(SendAccessRequest, 5).E
E2 = (�GainNetworkAccess, 6).E

where E is a controller process that works by suppressing all attackers’ actions. In
this way, even if the attacker tries to perform an attack action, it is not visible from
outside so it cannot interact with the system. This means that the attacker perpetrates
the attacks but it interacts only with the controller process and its execution does not
alter the functionality of the target system. It is worth noticing that both the strategies
we consider here do not block the execution of the attack. This is because it may halt
the execution of the target system, with consequent violation of safety and resiliency
requirements. In order to compare E1 and E2 we have to apply them on the attacker’s
behaviour. Since the two attackers perform the same execution path, they are the same
for the two controlling strategies. To eximplify how the strategies are evaluated, we first
consider the criminal attack and we assume that the cost of each action is proportional to
its probability. Assuming the cost of gain network access is 10, we obtain the following:

E1 � C = (�GainNetworkAccess, 3).(SendAccessRequest, 5)�
(GainNetworkAccess, 10).(E � C ′)

E2 � C = (�GainNetworkAccess, 6) � (GainNetworkAccess, 10).(E � C′)

Noting that the × of the semiring C is the + of real number and the + is the minimum,
the evaluation of E � C′, �E � C′� = 31 a constant of the two evaluations, according

Table 3. Total average cost for an adversary to achieve a particular attack goal

Corrupt Messages Read Messages

Hacker 65 45
Criminal 115 95

252 N. Nostro et al.

to Definition 2, the evaluation is �E1 � C� = min((3 + 5), 10) + 31 = 39 while the
evaluation of E2 is E2�C = min(6, 10)+31 = 37. Hence the best controlling strategy
is E2 because it guarantees the security requirement but costs less than the E1.

Let us now suppose that the hacker spends less than the criminal for gaining the
access to network, e.g., it spends 6. In this case, �E1 �H� = min((3+5), 6)+31 = 37
and E2 � H = min(6, 6) + 31 = 37. Hence, there is no difference between the cost of
the two strategies. In this case, they are both optimal.

It is worth noting that more complex strategies can be defined. However, using this
method the evaluation is always an equation made of the two operations of the semiring,
so it is not difficult to calculate. Furthermore, note that, even if the controlling strategies
can be defined in such a way to cover all possible situations, this is not the case in real
life. Thus, in order to balance between cost and likelihood we can choose, at design
time, not to control all the possible attack’s paths. However, the paper does not focus
on this aspect, which will be tackled in future investigations.

4 Related Work

Security assessment relied for several years on qualitative analyses only. Leaving aside
experimental evaluation and data analysis [17], [7], model-based quantitative security
assessment is still far from being an established technique, despite being an active re-
search area. Specific formalisms for security evaluation have been introduced in the lit-
erature, enabling to some extent the quantification of security. Attack trees are closely
related to fault trees: they consider a security breach as a system failure, and describe
sets of events that can lead to system failure in a combinatorial way [18]; they however
do not consider the notion of time. Attack graphs extend attack trees by introducing the
notion of state, thus allowing more complex relations between attacks to be described.
Mission Oriented Risk and Design Analysis (MORDA) assesses system risk by calcu-
lating attack scores for a set of system attacks. The scores are based on adversary attack
preferences and the impact of the attack on the system [11]. The recently introduced
ADVISE formalism [13] extends the attack graph concept with quantitative informa-
tion and supports the definition of different attackers profiles.

Recently, the interest is moving also toward the definition and quantitative evaluation
of countermeasures and controlling strategies able to (partially) guarantee security of a
system. In [5], the authors introduce the notion of lazy controllers, which only control
the security of a system at some points in time, and based on a probabilistic modelling
of the system, quantify the expected risk. In [1] the case where some actions are uncon-
trollable (i.e., cannot be stopped) has been considered. To cope with this, the authors
define which kind of policies can be enforced by using controller modelled as a Deter-
ministic Turing Machine. In a recent approach [14], the authors deal with probabilistic
cost enforcement based on input/output automata to model complex and interactive
systems. Associating to each execution trace a probability and a cost measure, it is pos-
sible to evaluate the expected cost of the monitor and of the monitored systems. Also,
in [9], a notion of cost is used to compare correct enforcement mechanisms (defined
as state machines) with different strategies. In [10], the authors evaluate the proposed
controlled strategies in order to find the optimal one by using dynamic programming.
The approach is developed in the context of software monitoring, where the system is

On Security Countermeasures Ranking through Threat Analysis 253

represented as a Directed Acyclic Graph, and where rewards and penalties with correct-
ing actions are taken into account. From a different perspective, Bielova and Massacci
propose in [3] a notion of distance among traces, thus expressing that if a trace is not
secure, it should be edited to a secure trace close to the non-secure one.

Our approach differs from those listed above since it presents a novel approach,
which combines modelling and threat analysis with quantitative controlling strategies
definition. We believe that this is an advantage with respect to previous works because it
allows to define focused and customized controlling strategies for each attack. Indeed,
in previous work, especially in the qualitative security literature, controlling strategies
are defined and applied regardless the behaviour of the attacker. On the contrary, us-
ing the analysis results, we are able to drive the selection of a controlling strategy for
managing the security of the considered system. Furthermore, we describe the proposed
approach through a reference scenario from the electrical power grid case study.

5 Conclusion and Future Works

This work represents a first step in the analysis of optimal countermeasures selection in
presence of an attack. We focus on the description of a novel approach for identifying
the best (the better) strategy in terms of cost of both attacker and controller among
several controlling strategies. The approach is an integration of two existing framework
for the model-based security assessment and the specification of quantitative controller
strategies. We show how the approach works by means of the CEMS, by modelling its
functionalities and analysing possible threats. We focus on Man in the Middle attack to
evaluate quantitative controlling strategies. As a result, we are able to compare different
strategies with respect to such attacker’s behaviour and choose the one with a lower cost.

As an ongoing work, we are considering also the probability of attack as an additional
aspect that leads to the identification of the optimal solution. As future work, we plan
to introduce the selected controller process into the system in such a way to be able to
analyse the impact of the controller on the system. This would allow us to close the loop
and fully evaluate the effectiveness of the proposed solution.

Acknowledgement. This work has been partially supported by the TENACE PRIN
Project (n. 20103P34XC) funded by the Italian Ministry of Education, University and
Research, by the Regional Project POR-CREO 2007-2013 SECURE!, and by pub-
lic funding from the ARTEMIS Joint Undertaking SESAMO (Grant Agreement No.
295354).

References

1. Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable security policies revisited. In:
Degano, P., Guttman, J.D. (eds.) POST. LNCS, vol. 7215, pp. 309–328. Springer, Heidelberg
(2012)

2. Bauer, L., Ligatti, J., Walker, D.: Edit automata: Enforcement mechanisms for run-time se-
curity policies. International Journal of Information Security 4(1-2) (2005)

3. Bielova, N., Massacci, F.: Predictability of enforcement. In: Erlingsson, Ú., Wieringa, R.,
Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 73–86. Springer, Heidelberg (2011)

254 N. Nostro et al.

4. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. LNCS, vol. 2962.
Springer, Heidelberg (2004)

5. Caravagna, G., Costa, G., Pardini, G.: Lazy security controllers. In: Jøsang, A., Samarati, P.,
Petrocchi, M. (eds.) STM 2012. LNCS, vol. 7783, pp. 33–48. Springer, Heidelberg (2013)

6. Ciancia, V., Martinelli, F., Ilaria, M., Morisset, C.: Quantitative evaluation of enforcement
strategies: Position paper. In: Danger, J.-L., Debbabi, M., Marion, J.-Y., Garcia-Alfaro, J.,
Heywood, N.Z. (eds.) FPS 2013. LNCS, vol. 8352, pp. 178–186. Springer, Heidelberg (2013)

7. Cinque, M., Cotroneo, D., Natella, R., Pecchia, A.: Assessing and improving the effective-
ness of logs for the analysis of software faults. In: 2010 IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 457–466 (2010)

8. Dacier, M., Deswarte, Y.: Privilege graph: An extension to the typed access matrix model.
In: Gollmann, D. (ed.) ESORICS 1994. LNCS, vol. 875, pp. 319–334. Springer, Heidelberg
(1994)

9. Drábik, P., Martinelli, F., Morisset, C.: Cost-aware runtime enforcement of security policies.
In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM 2012. LNCS, vol. 7783, pp. 1–16.
Springer, Heidelberg (2013)

10. Easwaran, A., Kannan, S., Lee, I.: Optimal control of software ensuring safety and function-
ality. Tech. Rep. MS-CIS-05-20, University of Pennsylvania (2005)

11. Evans, S., Wallner, J.: Risk-based security engineering through the eyes of the adversary. In:
Information Assurance Workshop, Proc. of the 6th Annual IEEE SMC, pp. 158–165 (2005)

12. Hägerling, C., Kurtz, F.M., Wietfeld, C., Iacono, D., Daidone, A., Di Giandomenico, F.: Se-
curity Risk Analysis and Evaluation of Integrating Customer Energy Management Systems
into Smart Distribution Grids. CIRED Workshop Proc. (ed.) Accepted to be Published in the
Technical Track About Telecommunications and Data Management

13. LeMay, E., Ford, M.D., Keefe, K., Sanders, W.H., Muehrcke, C.: Model-based Security Met-
rics Using ADversary VIew Security Evaluation (ADVISE). In: Proc. of the 8th Int. Conf. on
Quantitative Evaluation of SysTems, QEST, pp. 191–200. IEEE Computer Society (2011)

14. Mallios, Y., Bauer, L., Kaynar, D., Martinelli, F., Morisset, C.: Probabilistic cost enforce-
ment of security policies. In: Accorsi, R., Ranise, S. (eds.) STM 2013. LNCS, vol. 8203,
pp. 144–159. Springer, Heidelberg (2013)

15. Martinelli, F., Matteucci, I.: Through modeling to synthesis of security automata. ENTCS
179 (2007)

16. Martinelli, F., Matteucci, I., Morisset, C.: From qualitative to quantitative enforcement of
security policy. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012. LNCS, vol. 7531, pp.
22–35. Springer, Heidelberg (2012)

17. Mendes, N., Neto, A., Duraes, J., Vieira, M., Madeira, H.: Assessing and comparing security
of web servers. In: 14th IEEE Pacific Rim International Symposium on Dependable Com-
puting, PRDC 2008, pp. 313–322 (2008)

18. Nicol, D., Sanders, W., Trivedi, K.: Model-based evaluation: from dependability to security.
IEEE Transactions on Dependable and Secure Computing 1(1), 48–65 (2004)

19. Nostro, N., Ceccarelli, A., Bondavalli, A., Brancati, F.: A methodology and supporting tech-
niques for the quantitative assessment of insider threats. In: Proc. of the 2nd International
Workshop on Dependability Issues in Cloud Computing, pp. 1–6 (2013)

20. Practical threat analysis (pta), http://www.ptatechnologies.com/
Documents/PTA for Software.pdf (accessed May 2014)

21. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and Sys-
tem Security 3(1), 30–50 (2000)

22. Schneier, B.: Secrets & Lies: Digital Security in a Networked World, 1st edn. John Wiley &
Sons, Inc., New York (2000)

23. Wang, L., Singhal, A., Jajodia, S.: Toward measuring network security using attack graphs.
In: Proc. of the ACM Workshop on Quality of Protection, QoP 2007, pp. 49–54 (2007)

http://www.ptatechnologies.com/Documents/PTA_for_Software.pdf
http://www.ptatechnologies.com/Documents/PTA_for_Software.pdf

Enabling Cross-Domain Reuse of Tool

Qualification Certification Artefacts

Barbara Gallina1, Shaghayegh Kashiyarandi1,
Karlheinz Zugsbratl2, and Arjan Geven2

1 MRTC, IDT,
Mälardalen University, P.O. Box 883, SE-72123 Väster̊as, Sweden

{name.surname}@mdh.se
2 TTTech, Wien, Austria

{name.surname}@tttech.com

Abstract. The development and verification of safety-critical systems
increasingly relies on the use of tools which automate/replace/
supplement complex verification and/or development tasks. The safety
of such systems risks to be compromised, if the tools fail. To mitigate this
risk, safety standards (e.g. DO-178C/DO330, IEC 61508) define prescrip-
tive tool qualification processes. Compliance with these processes can be
required for (re-)certification purposes. To enable reuse and thus reduce
time and cost related to certification, cross-domain tool manufacturers
need to understand what varies and what remains in common when tran-
siting from one domain to another. To ease reuse, in this paper we focus
on verification tools and model a cross-domain tool qualification pro-
cess line. Finally, we discuss how reusable cross-domain process-based
arguments can be obtained.

Keywords: Tool qualification processes, safety cases, process-based ar-
guments, safety standards, DO-178C, ISO 26262, IEC 61508, Software
Process Engineering Meta-model (SPEM) 2.0, Goal Structuring Nota-
tion (GSN).

1 Introduction

In the context of safety-critical systems engineering, software is increasingly
developed and verified (semi)-automatically. Tools for code generation as well as
for verification are introduced to (semi)automate/replace/supplement complex
tasks. Since safety might be compromised if such tools fail, safety standards (e.g.
IEC 61508 [1]) prescribe tool qualification processes (which represent process
reference models for tool qualification). More recently DO-178C [2], which is
going to become the de-facto standard for certifying avionic software, and more
precisely its supplement DO330 has entered the scene with new requirements on
the tool qualification process. This supplement provides a very detailed process
which has been conceived to be used for cross-domain certification, assumed that
the domain-specific documents confirm its applicability. As a consequence, since

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 255–266, 2014.
c© Springer International Publishing Switzerland 2014

256 B. Gallina et al.

compliance with the DO330 process reference model may constitute a mandatory
requirement for certification purposes, companies (including TTTech) used to
develop tools in compliance with either DO-178B [3] or IEC 61508 have to quickly
perform a gap analysis in order to introduce adequate changes in their processes
for being prepared for efficient re-certification.

In the automotive domain and within the context of intra-domain certifica-
tion, we face similar circumstances such as the introduction of new standards
and thus new requirements related to processes. For this case, we proposed to
exploit the time for the gap analysis to reach a solution that goes beyond ad-
hoc and temporary patches. More specifically, to enable flexible but compliant
development processes, we proposed (and presented in [4]) to adopt a safety-
oriented process line approach and model the set of prescriptive processes as a
process line. The time for the gap analysis was thus used to identify and model
the commonalities and variabilities among processes in order to enable reuse of
process elements. The experience gathered in the automotive domain is exploited
and further developed in this work. More specifically, in this paper we do not
only enable reuse of process elements by modeling a cross-domain tool qualifi-
cation process line, but we also enable reuse of certification artifacts by relating
the process line with the corresponding family of process-based arguments re-
lated to process compliance. To do that, we show how reusable process-based
arguments can be obtained from a process line. The need of harmonizing qualifi-
cation guidance amongst standards is clearly stated in the perspectives discussed
in [5]. The demand for reusing certification data related to the tool qualifica-
tion process is explained in [6], while the motivation of providing a knowledge
base concerning qualification effort is described in [7]. Our proposal for enabling
reuse of process-related artifacts contributes to the satisfaction of these above-
mentioned needs and addresses the current problems as stated in related work
and faced in practice. More specifically, the tool qualification process line con-
tributes in engineering the harmonization of the standards. It systematizes the
comparative study we performed on the set of tool qualification processes. With
this, the relation between the process line and the set of corresponding process-
based arguments enables reuse of certification artifacts and at the same time
constitutes a knowledge base of certification strategies.

The rest of the paper is organized as follows. In Section 2, we provide essen-
tial background information. In Section 3 we present our cross-domain safety-
oriented process line constituted of tool qualification processes. In Section 4, we
give an intuition concerning the derivation of reusable process-based arguments
from the process line. In Section 5 we discuss related work. Finally, in Section 6
we present some concluding remarks and future work.

2 Background

In this section, we present the background information on which we base our
work. In particular, in Section 2.1 we provide essential information concern-
ing prescriptive tool qualification processes. In Section 2.2, we briefly present

Reuse of Tool Qualification Certification Artefacts 257

SPEM 2.0, the process modeling language used to model the tool qualification
process line. In Section 2.3, we briefly present Goal Structuring Notation (GSN),
the graphical notation used to argue about process compliance.

2.1 Tool Qualification Processes

To ensure that tools behave correctly concerning the imposed safety require-
ments, safety standards define tool qualification processes. These processes are
typically constituted of three phases: classification, qualification, and usage [8].
During the classification phase, the tools are classified according to the level of
confidence that is required to ensure their behavior is in-line with the safety re-
quirements. Levels are named differently from one standard to another: tool con-
fidence levels in the ISO 26262 [9], tool criteria in the DO-178C and tool classes
in the IEC 61508. If a tool is considered to be harmless, it can be used without
requiring any qualification. During the qualification phase, the tools that were
considered potentially harmful, have to be qualified, i.e. manufacturers have to
show absence of hazardous events (failures that might lead to accidents). Finally
during the usage phase, tools can be used within the specified restrictions.

Tool qualification processes embrace two categories of tools: development tools
and verification tools. In the context of this paper the focus is put on verifica-
tion tools. More specifically, the work has been performed having in mind the
tool qualification process related to the TTE-Verify tool, a verification tool of
TTEthernet networks. As a result, those parts of the standards which deal with
the active contribution to the development, e.g. code generation, are not covered
in this work.

2.2 Safety-Oriented Process Lines and SPEM 2.0

Safety-oriented process lines [10] represent sets of safety-oriented processes
that exhibit: full commonalities (equal process elements), partial commonalities
(structured process elements that are partially equal), and some variabilities
(e.g. optional process elements). Safety-oriented process lines can be modeled by
adopting a two-phase approach consisting of a first phase aimed at modeling the
domain and a second phase aimed at modeling the single processes.

SPEM (Software Process Engineering Meta-model) 2.0 [11] is the OMG’s stan-
dard for systems and software process modeling. The selection of SPEM 2.0 for
modeling process lines was extensively motivated in [10]. SPEM 2.0 offers sup-
port for the definition of reusable process content. Process engineers are enabled
to define reusable work definition elements (e.g. tasks) as well as other process
elements. An additional package called Method Plugin supports the creation of
repositories for reuse of process content. SPEM 2.0 also offers support for vari-
ability modeling enabling the specification of (safety-oriented) process lines, as
explored in [10] and in [4]. In Table 1, we recall some of the SPEM 2.0 graphical
modeling elements that can be interrelated to model the process dynamics. In
the table, we focus on the elements that we subsequently use in Section 3.

258 B. Gallina et al.

Table 1. Icons denoting Method Content Use elements

Task TaskUse WorkProduct

As discussed in [12], these elements could be extended to better model safety
aspects. However, currently this extension does not embrace cross-domain needs.
In the context of this work, we thus take the standardized SPEM 2.0 and provide
SPEM 2.0 models by using Eclipse Process Framework Composer [13], which is
a SPEM 2.0-compatible open source tool for authoring development method
content and publishing processes.

2.3 Process Compliance and GSN

Safety cases are contextualized structured arguments containing process and
product-based sub-arguments. These sub-arguments are aimed at linking evi-
dence with claims regarding system safety. In this paper, we focus on process-
based arguments and more specifically on these process-based arguments that
are used to show that the verification tools used to verify the software have been
developed in compliance with the tool qualification process mandated by the
standard. To document process-based arguments, we use the graphical notation
called GSN [14]. The selection of GSN for documenting safety cases was exten-
sively motivated in [15, 16]. GSN permits users to structure their argumentation
into flat or hierarchically nested graphs (constituted of a set of nodes and a set
of edges), called goal structures. To make the paper self-contained, we recall the
concrete syntax of the GSN core modeling elements used in Section 4 in Figure 1.
The following list provides their informal semantics:

– Goal: represents a claim about the system.
– Strategy: represents a method that is used to decompose a goal into sub

goals.
– Context: represents the domain or scope in which a goal, evidence or strategy

is given.
– Supported by: represents an inferential or evidential relationship. Inferential

relationships declare that there is an inference between goals in the argument.
Evidential relationships declare the link between a goal and the evidence used
to substantiate it.

– In context of: represents a contextual relationship.

As Figure 1 shows, all the nodes are characterized by an identifier (ID) and
a statement which is supposed to be written in natural language. Beyond the
modeling elements presented in Figure 1, we also make use of the diamond-
shaped element to characterize to-be-developed argumentation branches. Curly
brackets within statements are used to denote variables.

Reuse of Tool Qualification Certification Artefacts 259

Fig. 1. Partial concrete syntax of GSN

3 A Cross-Domain Tool Qualification Process Line

As discussed in [10], whenever prescriptive processes mandated by the standards
exhibit evident similarities they can be treated as a safety-oriented process line.
This fosters reuse of process elements thanks to the systematic engineering of
commonalities and variabilities between processes. To identify commonalities
and variabilities between tool qualification processes, the guidelines provided
in [10] are followed. Thus, for each standard and for each phase, the following
actions are taken:

– identification of activities, tasks, steps;
– identification of the order in which activities and tasks should be performed;
– identification of the way in which tasks are grouped to form activities;
– identification of the way in which activities are grouped to form phases.

This identification requires a very detailed analysis of each of the explicit and
implicit process-related pieces of information provided in the standard. Similarly
to what has been done in [4], the gathered information has been documented in
a spreadsheet (depicted in Figure 2) and then used to model the cross-domain
process line in EPF Composer/SPEM2.0 according to the methodological frame-
work proposed in [4].

Fig. 2. Cut of the spreadsheet documenting the comparative analysis

The compatibility matrix only compares DO-178C/DO330 and IEC 61508
because no classification is required anymore. The reason is that ISO 26262-
8:11.4.6 states that a tool developed according to the DO330 standard can be

260 B. Gallina et al.

considered sufficient for being suitable for ISO 26262 ASIL-D projects. The in-
terested reader may refer to [17] for further details on the standards comparison.
Figure 4 represents the SPEM 2.0/EPF-based safety oriented tool qualification
process line. We create this process line in SPEM/EPF by following the method-
ological approach introduced in [4]. We thus make use of the package Method
Plugin and we define a series of plug-ins aimed at containing base elements. As
Figure 3 shows, we then organize them by using two logical packages (Base and
Processes).

Fig. 3. Top-level view of the SPEM2.0/EPF-based tool qualification process line

We use Base (respectively Processes) for organizing plugins related to the
Domain (Process) engineering phase. More specifically, we define one plug-in for
each type of commonality (either full or partial) and variability (i.e., optional).
We also define a plug-in for all the variants that are related to either partial
commonalities or variabilities. In this paper, the naming convention used for
tasks classified as partial commonality is that the name of DO330 is used.

Fig. 4. Lower-level view of the SPEM2.0/EPF-based tool qualification process line

Reuse of Tool Qualification Certification Artefacts 261

Figure 5 details the process elements contained in the plugin related to the
full commonalities. It is in compliance with the information initially collected in
the spread sheet.

Fig. 5. SPEM2.0/EPF-based tool qualification process line

From Figure 5, it clearly emerges that the task named Develop the source code
is the only full commonality.

Once a cross-domain safety-oriented process line constituted of tool qualifi-
cation processes is available, (partial) commonalities as well as variabilities are
clearly systematized and single processes can be easily derived. Figure 6 and
Figure 7 represent the single-processes derived from the safety oriented process
line by selecting and composing desired process elements.

Fig. 6. Derived DO330-compliant tool qualification process

More specifically, to create single processes and thus populate the logical
package Delivery Processes, full and partial commonalities must be selected.
Finally to characterize single processes eventual additive as well as optional
elements must also be selected. Besides selection, ordering of the process elements
is necessary. This is done by setting the predecessor (as shown in Figure 8).

As it can be seen by comparing the two Figures 6 and 7, the two derived pro-
cesses exhibit few variabilities in terms of tasks and thus the effort performed to

262 B. Gallina et al.

Fig. 7. Derived IEC 61508-compliant tool qualification process

Fig. 8. Task ordering

be compliant with IEC 61508 can be rather easily reused to obtain the certifica-
tion stamp by certification authorities responsible for checking compliance with
DO330.

4 Enabling Reuse of Certification Artifacts

To (re)certify tools, process compliance is required. Manufacturers have to show
that the qualification process mandated by the standard has been performed.
When moving from one domain to another, it is crucial to reuse certification
data in order to reduce time and cost. To do that, the first necessary step is
the recognition that certification data related to a process line exhibits com-
monalities and variabilities. Thus, a compositional approach based on product
line-oriented practices enabling the selection and composition of commonalities
and variabilities is the key solution for showing process compliance.

Typically, a company has to provide structured arguments which can be ex-
pressed graphically or in natural language to show compliance. In this section,
based on the process line presented in Section 3 and on GSN recalled in Sec-
tion 2.3, we give an intuition about how such compositional and reusable process-
based arguments could look like. Our goal is thereby to illustrate how reuse can
be enabled and accelerated via the tool qualification process line, thus we do not
show a complete process-based argument.

Figure 9, in particular, shows how the sub-goal structure (fragment of the
process-compliance argumentation) can reflect the tool qualification process line.

From Figure 9 we retrieve the following argument fragment: the process is
compliant with the process mandated by the standard under consideration.

Reuse of Tool Qualification Certification Artefacts 263

Fig. 9. Goal structure fragment representing a process-based argument

To support this top-level claim (G1 in Figure 9), a strategy (S1) is used to decom-
pose it into sub-claims (G2-G4) which step by step can be more easily supported
by evidence. The strategy focuses on a specific process element (i.e. task) and
argues that compliance is achieved because all the common tasks and all the
standard-specific tasks have been performed. From this argument fragment that
only considers the initial break-down structure of the entire argumentation, it
clearly emerges that:

– G2, once fully developed, can be easily fully reused.
– G3, once fully developed, can be easily partially reused.
– G4, once fully developed, cannot be reused.

Thus, the main effort during re-certification is expected to be limited to the
development of G4.

5 Related Work

The necessity of ensuring compliance with the standards as well as the demand
for reducing time and cost related to the certification process is currently pro-
viding the motivation for several research projects (e.g. [18, 19] and [20]).

To ensure compliance as well as reduce time and cost, different solutions (com-
pliance checking, reuse, etc.) are being investigated under different perspectives,

264 B. Gallina et al.

most of them product-based ones. Exceptions to this product-based focus are
the contributions presented in [21–23].

In [21], the authors propose a workflow-based approach to provide: 1) refer-
ence models for the safety processes mandated by the standards and 2) automatic
compliance checking capabilities of user-defined processes against reference mod-
els. However, the authors focus on single standards and do not investigate reuse
possibilities.

In [22], the authors propose future research directions to address reuse issues in
the context of cross-domain certification as well as in the context of evolutionary
products. Their intention is to provide a common certification framework.

In [23], the authors propose a meta-model to capture entities (e.g. certification
objectives with respect to the safety level) involved in software product line
certification. Their proposal aims at representing the first step towards certifiable
software product lines. It, indeed, has a potential to solve reuse issues at the
process level but does not discuss reuse issues at the argumentation level.

6 Conclusion and Future Work

In this paper, we have presented a novel approach to reduce cost and time during
the tool certification process. We have shown that by modeling the family of tool
qualification processes via a safety-oriented process line, it is possible to identify
reusable process elements and thus speed up the re-certification process when
tools are expected to be used in different domains. We have also shown that these
reusable process elements are reflected in the process-based arguments and thus
not only qualification data (evidence) has the potential to be reused but also
process-based sub-arguments. The main attention in this paper was given to the
verification tools, however the approach can be extended to other tool categories
as well as other kinds of safety-related processes. Due to space reasons, we also
focused on process-related tasks and work products. As extensively discussed
in [24], reuse also embraces all the other crucial process elements (namely, roles,
work products, and guidance).

In a medium-term future, we aim at further developing our approach. First of
all we will start to define a pattern for process compliance targeting cross-domain
tool qualification processes. Then, we will work on providing an adequate tool-
support allowing for semi-automatic generation of process-based and pattern-
based arguments from process models. A master thesis on this research direction
is already ongoing [25]. Finally, we also plan to introduce metrics to measure the
real gain that our approach introduces.

Acknowledgments. This work has been partially supported by the European
Project ARTEMIS SafeCer [18] and by the Swedish SSF SYNOPSIS project [19].

Reuse of Tool Qualification Certification Artefacts 265

References

1. IEC61508: Functional safety of electrical/electronic/programmable electronic
safety-related systems (2010)

2. RTCA Inc.: Software Considerations in Airborne Systems and Equipment Certifi-
cation, RTCA DO-178C (EUROCAE ED-12C), Washington DC (2013)

3. RTCA Inc.: Software Considerations in Airborne Systems and Equipment Certifi-
cation, RTCA DO-178B (EUROCAE ED-12B), Washington DC (1992)

4. Gallina, B., Kashiyarandi, S., Martin, H., Bramberger, R.: Modeling a safety- and
automotive-oriented process line to enable reuse and flexible process derivation. In:
8th IEEE International Workshop Quality-Oriented Reuse of Software (July 2014)

5. Camus, J.L., Dewalt, M.P., Pothon, F., Ladier, G., Boulanger, J.L., Blanquart,
J.P., Quere, P., Ricque, B., Gassino, J.: Tool qualification in multiple domains:
Status and perspectives. In: Embedded Real Time Software and Systems, Toulouse,
France, February 5-7, vol. 7991. Springer (2014)

6. Kornecki, A.J., Zalewski, J.: Design tool assessment (December 15, 2003)

7. Kornecki, D.A.J., Zalewski, D.J.: The qualification of software development tools
from the DO-178B certification perspective. CrossTalk - The Journal of Defense
Software Engineering (April 2006)

8. Slotosch, O.: Model-Based Tool Qualification: The Roadmap of Eclipse towards
Tool Qualification. In: Cerone, A., Persico, D., Fernandes, S., Garcia-Perez, A.,
Katsaros, P., Ahmed Shaikh, S., Stamelos, I. (eds.) SEFM 2012 Satellite Events.
LNCS, vol. 7991, pp. 216–229. Springer, Heidelberg (2014)

9. ISO26262: Road vehicles Functional safety. International Standard (November
2011)

10. Gallina, B., Sljivo, I., Jaradat, O.: Towards a Safety-oriented Process Line for
Enabling Reuse in Safety Critical Systems Development and Certification. In: Post-
Proceedings of the 35th IEEE Software Engineering Workshop, SEW-35, Greece
(2012)

11. Object Management Group: Software & Systems Process Engineering Meta-Model
(SPEM), v2.0. Full Specification formal/08-04-01 (2008)

12. Gallina, B., Pitchai, K.R., Lundqvist, K.: S-TunExSPEM: Towards an Extension
of SPEM 2.0 to Model and Exchange Tunable Safety-oriented Processes. In: Lee,
R. (ed.) SERA 2013. SCI, vol. 496, pp. 215–230. Springer, Heidelberg (2013)

13. Eclipse Process Framework, http://www.eclipse.org/epf/

14. GSN: Community Standard Version 1 (November 2011),
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf

15. Dardar, R., Gallina, B., Johnsen, A., Lundqvist, K., Nyberg, M.: Industrial expe-
riences of building a safety case in compliance with iso 26262. In: IEEE 23rd Inter-
national Symposium on Software Reliability Engineering Workshops (ISSREW),
pp. 349–354 (2012)

16. Gallina, B., Gallucci, A., Lundqvist, K., Nyberg, M.: VROOM & cC: A Method
to Build Safety Cases for ISO 26262-compliant Product Lines. In: SAFECOMP
Workshop on Next Generation of System Assurance Approaches for Safety-Critical
Systems (SASSUR), HAL/CNRS Report (September 2013)

17. Gallina, B., et al.: nSafeCer, D121.1: Generic process model for integrated devel-
opment and certification (2014)

18. ARTEMIS-JU-269265: SafeCer-Safety Certification of Software-Intensive Systems
with Reusable Components (2013), http://www.safecer.eu/

http://www.eclipse.org/epf/
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
http://www.safecer.eu/

266 B. Gallina et al.

19. SYNOPSIS-SSF-RIT10-0070: Safety Analysis for Predictable Software Intensive
Systems. Swedish Foundation for Strategic Research

20. FP7 OPENCOSS: Open platform for evolutionary certification of safety-critical
systems

21. Chung, P.W.H., Cheung, L.Y.C., Machin, C.H.C.: Compliance flow - managing the
compliance of dynamic and complex processes. Know.-Based Syst. 21(4), 332–354
(2008)

22. Espinoza, H., Ruiz, A., Sabetzadeh, M., Panaroni, P.: Challenges for an open and
evolutionary approach to safety assurance and certification of safety-critical sys-
tems. In: First International Workshop on Software Certification (WoSoCER), pp.
1–6 (2011)

23. Braga, R.T.V., Trindade Jr., O., Castelo Branco, K.R., Neris, L.D.O., Lee, J.:
Adapting a Software Product Line Engineering Process for Certifying Safety Crit-
ical Embedded Systems. In: Ortmeier, F., Lipaczewski, M. (eds.) SAFECOMP
2012. LNCS, vol. 7612, pp. 352–363. Springer, Heidelberg (2012)

24. Kashiyarandi, S.: Reusing Process Elements in the Context of Safety Critical
Systems Development and Certification. Master’s thesis, Mälardalen University,
School of Innovation, Design and Engineering, Sweden (to appear)

25. Asghar Ali, E.: Deriving reusable process-based arguments from process models in
the context of safety critical systems development and certification. Master’s the-
sis, Mälardalen University, School of Innovation, Design and Engineering, Sweden
(ongoing)

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 267–268, 2014.
© Springer International Publishing Switzerland 2014

1st International Workshop on the Integration of Safety
and Security Engineering

(ISSE ’14)

Laurent Rioux1 and John Favaro2

1 THALES Research & Technology
1, av Augustin Fresnel, F-91767 PALAISEAU Cedex

laurent.rioux@thalesgroup.com
2 Intecs S.p.A.

via Umberto Forti 5, 56121 Pisa, Italy
john.favaro@intecs.it

1 Introduction

The growing complexity of critical systems is creating new challenges for safety and
security engineering practices: it is now expected that delivered products implement
more and more complex features, while respecting strict requirements on safety and
security. For such systems, an ever-increasing portion of design effort is therefore
spent on safety and security assessment and verification. Applying safety verification
without considering security properties is no longer possible since safety decisions
have an impact on system security properties and vice-versa.

The challenge addressed by this workshop relates to the inefficiency and ineffec-
tiveness of combining engineering activities related to safety and security properties
of the software or the system. The inefficiency relates to the costs and time required
to perform both safety and security engineering. The ineffectiveness relates to the
potentially redundant or contradictory solutions elaborated by the safety engineering
and security engineering activities. These issues are mainly due to the clustering of
these two engineering domain activities.

The purpose of the ISSE’14 workshop was to share ideas, experiences and solu-
tions to concretely combine or integrate safety and security engineering activities. As
a result, the ISSE’14 workshop aimed at providing a forum for practitioners and re-
searchers to present contributions and share ideas on combining safety and security
process, methods, tools and verification techniques and their applicability to industrial
critical systems. It also aimed at promoting discussions, closer interaction, cross-
fertilization of ideas, and synergies across the breadth of the safety and security
research communities, as well as attracting industrial participants from different
domains having a specific interest in safety and security verification.

The workshop was conceived with the intention of becoming a unique place to ex-
change and discuss ideas about the issues and opportunities associated with combining
or integrating safety and security engineering. To that end, a questionnaire was distri-
buted to the participants in order to capture the first elements for a community-building
effort that would contribute to a sustainable series of workshops in the future.

268 L. Rioux and J. Favaro

2 Workshop Format

According to the stated objectives, the workshop was organized primarily as a discus-
sion forum as opposed to a mini-conference. The morning session included summary
presentations of results on safety and security integration by the organizing projects
MERGE and SESAMO, followed by two invited talks and presentations of research
and experience papers selected for their potential to stimulate discussion and debate,
including:

• an application of Failure Mode, Vulnerabilities and Effects Analysis (FMVEA) to
safety and security analysis of intelligent and cooperative vehicles;

• an adaptation of models devised for safety assessment of avionics platforms in
order to analyse their security, with the aim of developing common models and
tools to assess safety and security;

• a uniform approach to risk communication in distributed IT environments combin-
ing safety and security aspects.

The afternoon session was dedicated to discussions and interactions on challenges in
the integration of safety and security engineering. For this, a panel including research
representatives promoting different approaches animated a discussion with participa-
tion of the attendees, aiming to identify the scientific and industrial stakes in the inte-
gration of both engineering domains. The session concluded with a synthesis report
agreed by the attendees. This report will be published at the next workshop.

Acknowledgements. The ISSE ’14 workshop was supported by the following
projects:

• Multi-concerns Interactions System Engineering (MERgE). The ITEA 2
project MERgE (www.merge-project.eu) aims to develop and demonstrate innova-
tive concepts and design tools to address multi-concerns interactions in systems,
targeting the elaboration of effective architectural solutions with a focus on safety
and security.

• Safety and Security Modelling (SESAMO). The ARTEMIS JU SESAMO project
(www.sesamo-project.eu) is addressing the root causes of problems arising with
convergence of safety and security in embedded systems at architectural level,
where subtle and poorly understood interactions between functional safety and
security mechanisms impede system definition, development, certification, and
accreditation procedures and standards. The SESAMO approach is to develop a
component-oriented design methodology based upon model-driven technology,
jointly addressing safety and security aspects and their interrelation for networked
embedded systems in multiple domains.

From Safety Models to Security Models:
Preliminary Lessons Learnt

Pierre Bieber and Julien Brunel

ONERA-DTIM
2 Av Edouard Belin, BP 74025, F-31055 Toulouse

{Firstname.Lastname}@onera.fr

Abstract. We aim at developing common models and tools to assess
both safety and security of avionics platforms so we studied the adapta-
tion of models devised for Safety assessment in order to analyse security.
In this paper, we describe a security modelling ana analysis approach
based on the AltaRica language and associated tools, we illustrate the
approach with an avionics case-study. We report lessons learnt about
the convergence and divergence points between security and safety with
respect to modelling and analysis techniques.

1 Introduction

Taking into account information security risks is a relatively new task in the
development of safety-critical aircraft systems. Recent transport aircraft includ-
ing Airbus A380 and Boeing B787 contain a security architecture that organizes
the avionics platform in domains: aircraft control, airline information services,
passenger information and entertainment Services. Security mechanisms such
as firewalls and digital signature infrastructure are in place in order to control
information flows and applications that belong to these domains.

In parallel to the development of these security architectures, an international
effort has led to the creation of Airworthiness Security Process (AWSP) docu-
ment ED-202/DO-326 [10] that standardizes the development process of aircraft
systems with respect to security. This document aims at providing a joint basis
for the certification of information security aspects of aircraft systems. Conse-
quently, this document focuses on security aspects that have an effect on the
safety of the aircraft, these aspects are called “Security for Safety”. The doc-
ument does not deal with other security aspects concerning, for instance, the
protection of passenger privacy or the protection of aircraft manufacturer intel-
lectual property. In this paper we restrict ourselves to the modelling and analysis
of “Security for Safety”.

The first generation of security architecture has to evolve in order to deal
with new services for airlines such as remote maintenance or paper-less cockpit.
An important goal for the design of new security architectures is to keep the
costs of their implementation and assessment of security architecture as low as
acceptable.

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 269–281, 2014.
c© Springer International Publishing Switzerland 2014

270 P. Bieber and J. Brunel

In the past decade an approach has been defined to help assess efficiently the
safety of systems. This approach, called Model Based Safety Assessment [4], is
based on the use of formal models of aircraft systems and of associated tools to
automatically perform parts of the safety assessment required in the airworthi-
ness certification process.

In this paper we describe an attempt to adapt the Model Based Safety Assess-
ment approach in order to deal with Information Security aspects. We believe
that the reuse of safety models and assessment tools should reduce the cost of
security assessment. In the following of the paper, we first summarize the main
aspects of the Model Based Safety Assessment methodology. Then we explain
the adaptation of models to deal with security and we describe how we used
two safety assessment tools to perform security analysis. Finally we list several
preliminary lessons learnt.

2 A Summary of Model Based Safety Assessment

2.1 Safety Model

Model Based Safety Assessment aims at supporting the Preliminary System
Safety Assessment (PSSA) [8]. Before the PSSA is performed, the Functional
Hazard Analysis identifies the Failure Conditions (e.g. safety critical situations
of the system) and assesses their severity on a scale going from No Safety Effect
(NSE) to Catastrophic (CAT). Then, during the Preliminary System Safety
Assessment, safety models (or alternatively fault-trees) are built and analysed. A
safety model describes formally in which node a fault occurs and how this fault
propagates inside the system architecture in order to cause a Failure Condition.

Fig. 1. Layered Architecture Model

As shown in the previous figure the safety model is organised into several
layers :

– Functional Layer : at the top of the layers are depicted functional nodes,
Em_Function is a function that emits a data flow (represented by the nodes

From Safety Models to Security Models: Preliminary Lessons Learnt 271

DataFlow1a and DataFlow1b) towards a receiver function called
Rec_Function. The links relating functional nodes represent the routing of
the data-flow from an emitter to the receiver. All these nodes use resources
from the logical layer. The links between the logical and functional layers
connect functional nodes with the logical resources that they use.

– Logical Layer: this layer groups logical nodes such as software, partitions,
virtual links or network messages that implement the functional nodes. All
these nodes use resources from the physical layer. The links between the
logical and physical layers connect logical nodes with the physical resources
that they use.

– Physical Layer: this layer groups physical nodes such as computers, mass-
memory storage, network communication equipment and links. They are
used to implement the logical nodes. All these nodes are located in a Zone.
The links between the zone and physical layers connect physical nodes with
their installation zone.

– Zone Layer: this layer describes the various installation zone of interest:
cockpit, avionics bay; cabin, aircraft vicinity, airport, maintenance operation
center, . . .

To implement the Model Based Safety Assessment approachwe have been using
the AltaRica language and associated tools [2]. Each of the nodes in the previous
diagram is modelled formally by an AltaRica node_selected in a predefined li-
brary. For instance, nodes Dataflow1a and Dataflow1b are instances of the formal
node DataFlow that has two inputs I and R and one output O. When it is in its
correct mode and its resource is in its correct mode, this node propagates on its
output the value of its input, it does not propagate any value if the node or its
resource is in the lost mode and otherwise an erroneous value is propagated.

node DataFlow
flow

O: FailureType:out; I,R: FailureType:in;
state

Status: FailureType;
event

F_loss,F_error
trans

(Status �=lost) |− F_loss →Status:= lost;
(Status = ok) |− F_error →Status:= erroneous;

assert
O = case {

Status=ok and R=ok: I,
Status=lost or R=lost: lost,
else erroneous

};
init

Status:= ok;
edon

272 P. Bieber and J. Brunel

The state section declares state variables names and domains. Values of vari-
able Status are in user defined domain FailureType that is the enumeration ok,
lost, erroneous. These values denote the failure status of a node. The correct
value is used when the node is working correctly, the lost value is used when the
node is not producing any output, the value erroneous is used when the node
is producing an output whose value deviates from what is expected. The flow
section declares variables that are used to model data exchanged with interfaced
components, the FailureType domain is used.

The event section declares failure events. In the trans section, a transition is
associated with failure event. The transition associated with event F_loss may
only be triggered when the node is not lost. The new value of Status is lost. The
value of a state variable can only be modified by transitions.

The assert section, defines how the value of output O is computed using the
values of inputs I and O and state variable Status.

The init section states that initially the component is working correctly.
A library of AltaRica nodes was developed in order to help building safety

models for avionics platform architectures. This library includes AltaRica nodes
that describe functional, logical and physical nodes. The library was used in order
to develop safety models to assess the safety of Integrated Modular Avionics [9].
In this type of architecture, computation or communication resources are shared
by several functions or data flows. Consequently, the fault of a shared physical
node has an impact on all logical and functional nodes that are connected with
this physical node. For instance, in the previous figure, data flows DataFlow1a
and DataFlow1b are connected to the same physical node called Phy_Item1. So
if Phy_Item1 is lost then both data flows would be lost.

2.2 Safety Analysis

The design of aeronautics safety critical systems deals with two families of faults:
random faults of equipments and systematic faults in the development of the
equipment, which include errors in the specification, design and coding of hard-
ware and software. Two different approaches are used when assessing whether the
risk associated with these two types of faults is acceptable. Qualitative require-
ments (minimal number of failures leading to a Failure Condition) and quan-
titative requirements (maximal probability of a Failure Condition occurrence)
are associated with equipment faults whereas requirements stated in terms of
Development Assurance Levels (DAL) are associated with development faults.

For both types of requirements, the first step of the safety analysis is the
computation of the minimal combinations of node faults leading to the Failure
Conditions. These combinations are called Minimal Cut Sets (MCS). They are
used to compute the mean probability of the Failure Condition in order to assess
whether the designed architecture is safe enough. The MCS are also analysed
to check whether there are combinations made of a single fault event that could
lead to the Failure Condition.

In order to generate the MCS we used the sequence generator from the Cecilia
OCAS toolset. The tool takes as input a Failure Condition (actually it is the

From Safety Models to Security Models: Preliminary Lessons Learnt 273

name of the output variable of a node representing the Failure Condition in the
model) and an Order (the maximum size of the scenarios), then it computes a
set of minimal sequences of events in the model that lead from the initial state to
a state where the Failure Condition is satisfied. A MCS is a sequence of pairs of
the form CpName.FName where, CpName is the name of a node of the AltaRica
model and FName is either F_loss or F_error.

Several kind of analysis of the MCS are possible. In the domain of Integrated
Modular Avionics (IMA), a first analysis can be performed on the basis of MCS
that only include functional node faults. This first analysis provides an indication
of the safety of the system before integrating the system on the IMA platform.
Then another analysis if performed using MCS that only include physical node
faults. This second analysis is used to assess the safety of the system after inte-
gration on the IMA platform. The size of both MCS can be compared in order
to check whether the effect of common mode failures related wiht IMA shared
resources is acceptable.

Another analysis of MCS is performed in order to check the DAL allocation.
We check that the DAL allocated to each node dominates the DAL of the Failure
Conditions it contributes to. A node contributes to a Failure Condition if a fault
of this node appears in one of the MCS of the failure condition. Table 2 gives
the basic DAL allocation rules for Failure Conditions (Sev is the severity of the
Failure Condition).

Sev NSE MIN MAJ HAZ CAT
DAL E D C B A

Fig. 2. Basic DAL allocation

New DAL allocation rules introduced in the revised ARP4754a [8] allow to
downgrade the original DAL allocated using the basic rule, in cases when nodes
involved in the minimal cut sets are known to be pair-wise independent. In
order to check these new rules Onera has developed the DALculator [1]. This
tool uses as input a file containing MCS for a Failure Condition It also needs
an indication of the reference DAL of the Failure Condition. For instance, if the
DAL of the Failure Condition is B, and a MCS leading to this Failure Condition
is {Cp1.F_loss, Cp2.F_loss, Cp3.F_error} then allocating DAL B to Cp1
and DAL D to Cp2 and Cp3 would be acceptable according to the new DAL
allocation rules provided that Cp1 is independant from Cp2 and from Cp3.
Consequently, it is possible to build highly dependable systems at DAL B with
components of mixed DAL B and D.

3 Towards Model Based Security Assessment

3.1 Security Models

We aim at reusing the safety node library in order to build security models. We
investigated the main Threat Conditions for the avionics platform and concluded

274 P. Bieber and J. Brunel

that availability and integrity concepts in safety and security were very similar.
Consequently, we propose to use the value lost also to denote the status of a
component that was subject to an availability threat. We name T_block the
generic threat that leads to losing the availability of an item in the architecture.
We propose to use the value erroneous for the status of a component that was
subject to an integrity threat. We name T_forge the related generic threat.

The main difference between Threat Conditions and Failure Conditions is
that there is no direct counterpart to confidentiality in the safety domain. We
first thought that, as we were interested in “security for safety”, we could avoid
dealing with confidentiality. But a number of security mechanisms rely on secret
attributes as keys or passwords. If the confidentiality of these attributes is com-
promised then the security mechanism cannot work properly and this could lead
to a safety problem. So we decided to deal with confidentiality. We extended the
domain FailType with a new value, named public, which represents the status
of a component whose confidentiality was compromised. We name T_listen the
related generic threat.

The platform model was extended with an Agent layer in order to be able to
relate a threat with the agent that initiates the attack. The node associated with
an agent is very simple, it contains an event T_initiate that represents attack
initialisation. Whenever an attack is initiated, the output of the agent node is
set to the Boolean value true and this value is propagated to the items located
in the zone where the agent is located.

In safety models, the propagation of a failure mode follows the links connecting
nodes. We propose to use the same principle in a security model. Let’s consider
the example shown in the following figure. A threat in physical item Phy_item
was exploited by an Agent, its status is erroneous. The picture shows the propa-
gation of this integrity threat from Phy_Item to function Rec_Function. To ease
the understanding of propagation, the colours of nodes and links depend of their
current value. In the picture, erroneous components and links are coloured in red
whereas components coloured in green are working properly. The propagation
path starts at component Phy_item, then it goes to Log_item whose integrity is
comprised due to its reliance on Phy_item, then Em_Function is also erroneous
because it relies on the Log_Item. Then the integrity attack propagates through
the functional layer to go from the emitter function to the receiver function.

Other types of propagations should be taken into account when dealing with
security: indirect propagation through shared resources. For instance, when a
logical item as a piece of software is attacked, if the computer that hosts the
software is not protected this attack also contaminates the computer. And then,
when the computer is attacked it is also likely that all other pieces of software
hosted by the computer are contaminated. Similarly, communication links are
shared by several computers. It is likely that an attack on one computer can
contaminate the communication link and the connected computers. We have
extended the models in order to describe this type of indirect propagation. We
added event T_contaminate to nodes in the physical layer such that when one

From Safety Models to Security Models: Preliminary Lessons Learnt 275

Fig. 3. Propagation of threats through the functional layer

of the logical node using this physical node is attacked, the attack is propagated
to the physical item and to all the other logical nodes using this physical node.

3.2 Security Mechanism Library

Security mechanisms are nodes that cannot be reused from the safety models.
We developed a library of models of security mechanisms that can be used to
secure an avionics platform, this library includes models for :

– Zone Access Control: This mechanism blocks the attack initiation signal sent
by an agent. This is implemented by controlling the physical access of agents
into a zone of the platform. This is an organisational security mechanism.

– Physical Item Access Control: This mechanism blocks the attack initiation
signal sent by an agent. This is implemented by controlling the access of
agents to a physical item.

– Contamination Control: This mechanism blocks the contamination of a shared
resource by an attacked logical item. This can be implemented by an Opera-
tion System partitioning service or by virtualization tools.

– Local integrity mechanism: This mechanism blocks an erroneous value and
transforms it into a lost value. This could represent a message filtering device.

– End to End integrity mechanism: This mechanism is made of a pair of mech-
anisms: the first one prepares the proof of integrity of a value and the second
one checks the integrity proof. This represents digital signature.

Each security mechanism is implemented as an AltaRica node containing as-
sertions that formalize their influence on the propagation of threat values as
(erroneous, lost or public). All the nodes in the security mechanisms library con-
tain an event called T_bypass that voids the limiting effect of the mechanism
on threat propagation.

276 P. Bieber and J. Brunel

3.3 Data Loading System Model

Using the nodes in the library of layered architectures and in the library of secu-
rity mechanisms we have developed a model of the Data Loading System. This
system is in charge of loading new software releases in the embedded computers
of the aircraft.

Fig. 4. DLCS Security Model

– Functional Layer: We have detailed the part of Data Loading functions that
are related with a request for data loading initiated from a portable main-
tenance terminal (PMAT) that is connected via wifi to the platform. The
load dataflow is emitted by the DataLoading function and is received by
the Flight Management (FM) function. The load dataflow is divided into 4
nodes in order to make it easier to relate the data flow with the support-
ing resources. The functional layer also contains a very abstract view of the
flight operation function (FlightOps). This function is described by a unique
node. In this model, its role is to study the potential contamination between
various functions.

– Logical Layer: The model consists of 4 logical nodes to describe the software
components needed to implement the Data Loading (and part of the Flight
Ops) functions. For the sake of simplicity, we have not included logical nodes
for the network components (wifi, router, and GTW). In that case, data flow
nodes are directly linked to physical resources.

From Safety Models to Security Models: Preliminary Lessons Learnt 277

– Physical Layer: the model includes the major physical nodes useful for the
Data Loading functional chain: computers such as PMAT, AS (Avionics
Server) and IMA (Integrated Modular Avionics) and communication equip-
ment such as wifi, router and GTW (Communication Gateway).

– Zone Layer: The model contains only one zone of interest where the wifi link
can be attacked. We have not modelled all the other zones of the aircraft
because we have supposed that either the agents that can access the plat-
form are trusted (pilot, cabin crew, ..) or there are sufficient organizational
controls in order to stop an attack that would originate in other zones such
as the cockpit, cabin or aircraft vicinity.

– Agent Layer: the model contains only one type of agent that represents the
General population as we have considered, for this example, that all other
types of agents are trusted.

Two kinds of security mechanisms were used in the model:

– End to End Integrity Control is used to model the signature of loads with
a digital signature exchanged by the PMAT (sign component) and the AS
(check component).

– Contamination Control is used three times. VM models a virtualisation ser-
vice running on the AS server in order to control the contamination of logical
items. VPN models a virtual private network mechanism associated with the
router, FW models a firewall associated with the gateway.

3.4 Security Analysis

We reuse safety analysis tools that were presented earlier to assess the security
of the model. We use the Cecilia OCAS Sequence Generator in order to generate
threat scenarios leading to a threat condition. We want to use the DALculator in
order to analyse threat scenarios in order to allocate a security level with nodes
of an avionics platform.

We were interested in two Threat Conditions related with the Data Loading
system:

– “Loss of update of Flight Management software due to a Data Loading via
wifi”. We consider that this Threat Condition is moderately severe because
this could potentially lead to the loss of the Flight Management system when
the aircraft is on ground.

– “Erroneous update of the Flight Management software due to a Data Loading
via wifi”. We consider that this Threat Condition is more severe because this
could potentially lead to an erroneous behaviour of the Flight Management
system during flight.

We generated all threat scenarios including a maximum of 6 threat events.
As in the case of MCS, a threat scenario is a sequence of pairs of the form
CpName.ThreatName that starts from the initial state of the system where no
attack is launched and leads to a state where the system is attacked. In a threat

278 P. Bieber and J. Brunel

scenario, CpName is the name of a logical node or a physical node or a security
mechanism or a user name, and ThreatName is the name of the threat being
activated on the component. It could be: T_forge (corruption threat), T_listen
(disclosure threat), T_block (denial of service threat), init (user attack activa-
tion) , T_bypass (circumvention of a security mechanism) or T_contamination
(propagation of a threat from one component to another).

Let us consider a threat scenario leading to the erroneous update of the Flight
Management software.

{’Agent.T_init’, ’PMAT.T_forge’}
This Threat Scenario is made of two pairs. The first pair ’Agent.T_init’

means that the user called Agent is the initiator of the attack and the second
pair ’PMAT.T_forge’ means that a corruption attack is performed on physical
node PMAT. The corruption of the physical node has a negative effect on the
behaviour of the end to end integrity protection mechanisms. As this could lead
to an undetected corruption of the load then it could be the case that the flight
management function is updated with a corrupted load.

Let us now consider a more complex Threat Scenario leading to the loss of up-
date of the Flight Management function. This scenario involves the propagation
by the router of an attack.

{’Agent.T_init’, ‘router.T_contamination’, ’AS.T_block’,
‘router.T_contamination’}

In this scenario, Agent initiates the attack. The next step is
‘router.T_contamination’. This means that the router could propagate the
attack initiation signal to components physically linked with the router (e.g.
wifi). The following step is ’AS.T_block’, which means that a denial of ser-
vice attack is performed on the avionics server. The last step of the scenario
is ‘router.T_contamination’, which means that the denial of service attack is
propagated to the router and all components connected to the router. Since the
router is lost (due to the propagated denial of service attack) and should be used
to communicate the software load, then the software load is not received by the
Flight Management function that cannot be updated.

Let us now consider another threat scenario:
{’Agent.T_init’, ‘router.T_contamination’, ’AS.T_block’,

’FW.T_bypass’, ’GTW.T_contamination’}
In this scenario, Agent initiates the attack, and then the router propagates

the attack initiation signal to nodes physically linked with the router. Then, a
denial of service attack is performed on the avionics server. The next step of the
scenario is ’FW.T_bypass’, which means that the firewall is deactivated. In the
last step the denial of service attack is propagated to the gateway.

Among the 13 threat scenarios that lead to the loss of the Flight Management
there are 11 scenarios of size 2, and 2 of size 3. Among the 40 threat scenarios that
lead to an erroneous behaviour of the Flight Management there are 9 scenarios
of size 2, 21 of size 3 and 10 of size 4. All these scenarios can be reviewed in
order to check whether there are enough security mechanisms in the avionics
platform.

From Safety Models to Security Models: Preliminary Lessons Learnt 279

We used the DALculator tool to check the allocation of a Security Level to
each of the components that appear in the threat scenarios. The Security Level
of security mechanisms measures the expected efficiency of this mechanism. The
Security Level for other nodes can be seen as a level of Trust in the node. The
Security Level is measured using the same range of values as the DAL : from E
to A.

Due to the severity of the Threat Condition “erroneous update of the FM
software due to the DLCS via wifi” we have considered that its Security Level is
B.

We have considered that the Security Level of nodes Agent and wifi is level
D. This means that their trust level is very low. We considered that the Security
Level of the node Flight Ops is level C because it is little bit more trusted than
external entities as the Agent or the wifi network.

The solution checked by the DALculator is described in the following figure.
In this solution the efficiency of the end to end integrity functions (sign and
check nodes) should be rather high (level B). The trust in the resources used
to check the signature is consistent as AS and L_DL should also have level B.
A similar efficiency is required for VPN and VM. The level of trust in other
components is rather low (level D).

Fig. 5. Security Level Allocation

280 P. Bieber and J. Brunel

4 Conclusion

4.1 Preliminary Lessons Learnt

This first experiment in using AltaRica to build security models helped us to
analyse convergence and divergences points between Safety and Security mod-
elling and assessment:

– The layered model for the safety analysis of avionics platform was reused
efficiently for the security model. We only had to add the Agent layer to
model threat activation.

– The AltaRica code was easily extended to deal with security threats. The
main addition was related with the modelling of confidentiality.

– We had to model the propagation of threats due to the use of shared re-
sources. Although, propagation of an integrity or availability fault is a safety
concern that is considered in IMA developement we never included this type
of propagation in the safety models we have been building so far in order to
help System safety Assessment.

– The OCAS sequence generator was used successfully to generate Threat
Scenarios. As the models could include both fault and threat events, it should
be possible to generate scenarios that combine fault and threats in order to
analyse complex requirements mixing safety and security.

– Using DAL to model the security level of nodes in the architecture was
possible. Extra work is needed in order to check the consistency of DAL
allocation rules with security level allocation rules such as the ISO 27005
risk reduction approach (see [3] for a comparison of DAL level and Security
Level).

4.2 Related Work

The work described in this paper is preliminary. The most relevant related work
seems to be the attack tree approach [5]. This approach proposes to use the
classical fault tree notation in order to study security. As in our work, the attack
tree contains basic events representing elementary threats. In some variants of
the notation, the tree also include a description of the effect security barriers.
In [7] the authors propose to use an extension of the fault-tree notation in order to
deal with dynamic aspects of the threat propagation. Both of the previous works
tend to focus on a quantitative assessment of security requirements whereas
we have been working on qualitative requirements because this would be more
consistent with the Airworthiness Safety process. Another relevant approach
was proposed by the CORAS project [6] , this notation aims at assisting the
security risk analysis. A difference between this approach and our work is that
the CORAS can be applied before the security architecture is designed whereas
our approach is applied once the security architecture is established.

From Safety Models to Security Models: Preliminary Lessons Learnt 281

Acknowledgements. The research described by this paper was partially sup-
ported by the ITEA project MERGE and DGAC project ARCS.

References

1. Bieber, P., Delmas, R., Seguin, C.: DALculus – theory and tool for development
assurance level allocation. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFE-
COMP 2011. LNCS, vol. 6894, pp. 43–56. Springer, Heidelberg (2011)

2. Bieber, P., Seguin, C.: Safety Analysis of Embedded Systems with the AltaRica
Approach. In: Industrial Use of Formal Methods: Formal Verification, ch. 3. Wiley
(2013)

3. Blanquart, J.-P., Bieber, P., Descargues, G., Hazane, E., Julien, M., Leonardon,
L.: Similarities and dissimilarities between safety levels and security levels. In: Pro-
ceedings of the Embedded Real-Time Systems and Software Conference (ERTS2
2012) (2012)

4. Bozzano, M., Villafiorita, A., Aakerlund, O., Bieber, P., Bougnol, C., Böde, E.,
Bretschneider, M., Cavallo, A., Castel, C., Cifaldi, M., Cimatti, A., Griffault, A.,
Kehren, C., Lawrence, B., Luedtke, A., Metge, S., Papadopoulos, C., Passarello, R.,
Peikenkamp, T., Persson, P., Seguin, C., Trotta, L., Valacca, L., Zacco, G.: Esacs:
an integrated methodology for design and safety analysis of complex systems. In:
Proceedings of ESREL 2003. Balkema Publisher (2003)

5. Kordy, B., Mauw, S., Radomirovic, S., Schweitzer, P.: Attack-defense trees. Journal
of Logic and Computation 24, 55–87 (2012)

6. Lund, M.S., Solhaug, B., Stoelen, K.: Model-Driven Risk Analysis. The CORAS
Approach. Springer (2010)

7. Piètre-Cambacédès, L., Bouissou, M.: The promising potential of the bdmp for-
malism for security modelling. In: Proceedings of the 39th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN 2009) (2009)

8. S. S-18 and E. W.-. committees. Arp4754a - guidelines for development of civil
aircraft and systems. SAE aerospace (2010)

9. Sagaspe, L., Bel, G., Bieber, P., Boniol, F., Castel, C.: Safe allocation of shared
avionics resources. In: Proceedings of the Ninth IEEE International Symposium on
High-Assurance Systems Engineering (HASE 2005) (2005)

10. WG72. Ed202 - airworthiness security process specification. EUROCAE (October
2010)

FMVEA for Safety and Security Analysis

of Intelligent and Cooperative Vehicles

Christoph Schmittner, Zhendong Ma, and Paul Smith

Safety & Security Department,
Austrian Institute of Technology, Austria

{christoph.schmittner.fl,zhendong.ma,paul.smith}@ait.ac.at

Abstract. Safety and security are two important aspects in the anal-
ysis of cyber-physical systems (CPSs). In this short paper, we apply a
new safety and security analysis method to intelligent and cooperative
vehicles, in order to examine attack possibilities and failure scenarios.
The method is based on the FMEA technique for safety analysis, with
extensions to cover information security. We examine the feasibility and
efficiency of the method, and determine the next steps for developing the
combined analysis method.

Keywords: safety and security analysis, vulnerability and effect analy-
sis, FMEA, FMVEA, cyber-physical system (CPS), failure mode, threat
mode, intelligent vehicle.

1 Introduction

Cyber-physical systems (CPSs) are systems in which networked computers con-
trol physical entities. CPSs are widely used in mission-critical applications, such
as in the power grid, industrial process, aerospace, and automotive domains,
where safety is critical. Since CPSs increasingly rely on Information and Com-
munication Technology (ICT), attacks in cyberspace can lead to devastating
consequences in the physical world. Therefore, ensuring safety and security in
the engineering process are two equally important aspects for developing systems
with high availability, reliability and dependability.

In the past, safety engineering has been applied to build dependable systems
out of less reliable components. A multitude of practical techniques such as fault
masking, error detection, fault diagnosis, and recovery have evolved to improve
the reliability of safety-critical system. Since the operations of these systems also
depends on software and communicated information, malicious attacks to infor-
mation security must be considered and appropriately addressed. Commonly, the
focus of security can be described by the Confidentiality, Integrity, and Avail-
ability (CIA) model. A safety analysis needs to include security risks, determined
by vulnerability, threat, and impact with respect to the CIA model.

This short paper presents our ongoing work for building a holistic approach to
safety and security analysis for the assessment of vulnerabilities and risks of CPSs
in different application domains, in which networked embedded systems are used

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 282–288, 2014.
c© Springer International Publishing Switzerland 2014

FMVEA for Safety and Security Analysis 283

for applications with different criticality levels. Specifically, we apply the Failure
Mode, Vulnerabilities and Effect Analysis (FMVEA) method [3] to the safety
and security analysis of intelligent and cooperative vehicles. As a type of CPSs,
vehicles in the automotive domain are very safety-critical. Intelligent vehicles are
equipped with sophisticated in-vehicle embedded systems and electronic control
units (ECUs) with complex software (e.g., a modern luxury car runs on 100
million lines of code [1]), and are able to communicate with other entities in
a cooperative system – this introduces new security challenges that need to be
addressed [8]. FMVEA has the potential to bring both safety and security into
analysis. In the following, Sec. 2 introduces the FMVEA method and Sec. 3
gives an overview of the vehicle system to be analysed by FMVEA. Section 4
summarises initial results from applying FMVEA for safety and security analysis
of the vehicle system, followed by the conclusion and future work in Sec. 5.

2 Failure Mode, Vulnerabilities and Effect Analysis

FMVEA [3] is a combined analysis method for safety and security. It is based
on the Failure Mode and Effects Analysis, as described in IEC 60812 [6]. In the
FMEA approach, each component of a system is analyzed for potential failure
modes. Based on the detail level and maturity of the design, components can
be HW/SW-modules or functions. A failure mode is the manner in which the
component fails [6] or the manner by which a occurred fault is observed [4].
In the next step the effects of the failure mode on the system are identified. A
failure mode could cause a component to cease to function and still only have a
negligible effect on the functionality of the complete system. After the severity
of the final effect is determined, potential causes are identified. Based on the
causes, the probability of the failure mode is estimated. This process is repeated
until every failure mode of the component and every component on the chosen
analysis level is examined.

FMVEA extends this approach with a security analysis. Components are not
only examined for failure modes, but also for threat modes. While a failure mode
describes how a system quality attribute [10] fails, a threat mode describes how
a security attribute of the components fails. It is the manner by which a occurred
threat is observed. Causes for failing security attributes are vulnerabilities. In
order to estimate the frequency of threat modes, potential attackers (threat
agents) are identified. The probability of a threat mode is determined based on
the threat agent and the vulnerability. The results of a FMVEA are the failure
and threat modes of a system, and their causes and consequences. In addition,
failure and threat modes are evaluated in terms of probability and severity. We
refer the reader to [3] for a more detailed description of FMVEA.

3 System of Intelligent and Cooperative Vehicles

Modern intelligent vehicles include highly heterogeneous and complex systems,
consisting of a combination of mechanical and electronic components – they are

284 C. Schmittner, Z. Ma, and P. Smith

cyber-physical systems. Our focus is on the safety and security aspects of the
hardware and software of the in-vehicle system. Although there is no one-size-fits-
all general system architecture, based on [9], we derive a system architecture that
includes the most important interconnected Electronic Control Units (ECUs) in
modern vehicles (shown in Fig. 1). The Local Interconnect Network (LIN) for
connecting sensors to ECUs and the Media Oriented Systems Transport (MOST)
Bus for multimedia applications is omitted, in order to decrease complexity.

Engine Control
Module

Electronic Brake
Control Module

Transmission
Control
Module

Body Control
Module

Telematics

Heating, Ventilation,
Air Conditioning

Inflatable
Restraint

Sensing and
Diagnostic

Module

Instrument
Panel

Cluster/
Driver

Information
Center

Remote Control
Door Lock
Receiver

Radio

Theft
Deterrent
Module

Low speed bus

High speed bus

Fig. 1. Intelligent vehicle system architecture, including key Electronic Control Units

As can be seen in Fig. 1, the ECUs are connected to two types of vehicle
buses. The Engine Control Module (ECM), Electronic Brake Control Module
(EBCM) and Transmission Control Module (TCM) are safety/mission-critical
components, which are connected to the high-speed bus. Meanwhile, the Remote
Control Door Lock Receiver (RCDLR), Heating, Ventilation, Air Conditioning
(HVAC), Inflatable Restraint Sensing and Diagnostic Module (SDM), Instru-
ment Panel Cluster/Driver Information Center (IPC/DIC), Radio, and Theft
Deterrent Module (TDM) are less safety/mission-critical components, which are
connected to low-speed bus. Furthermore, the Body Control Module (BCM) and
Telematics Module are connected to both the high- and low-speed bus at the
same time. The choice of usage between the low-speed and high-speed bus is
mostly driven by timing requirements, bandwidth and cost of the components
– not security concerns. As for industrial standards, most system are connected
by the Controller Areas Network (CAN) or FlexRay bus, and use AUTOSAR
as the software platform.

4 FMVEA Analysis

As FMVEA is an extension to the SW/Functional-FMEA approach, the first step
is to decompose a system into functions. We can distinguish between processing

FMVEA for Safety and Security Analysis 285

and communication functions. In [13], potential failure modes for input and
output, and processing functions are listed. For the threat modes, the examples
in [12] are used. Due to space restrictions, we focus on critical failure/threat
modes. For the risk assessment, severity is rated from 1 (lowest) to 6 (highest).
The risk number is based on the multiplication of severity and probability.

The analysis focuses on the Telematics Control Unit (TCU), because it bridges
two buses with different safety-criticalities, and possesses long-range communi-
cation capability. Due to the lack of source authentication or encryption on the
CAN-bus, controlling one ECU allows complete control of all other devices on
the same bus. Table 1 lists some of the TCU functions given in [5]. The TCU
communicates over a wireless communication infrastructure with a Telematics
Network Operations System (TNOS), which provides most of the services for
the telematics unit.

Table 1. Functions of TCUs

Safety and Security Services Information and Navigation Entertainment Diagnostics

send crash data call technical support receive voice com-
mands

transmit diagnostic
data

send vehicle position connect wifi/bluetooth de-
vices

connect to external
media sources

receive over the
air(OTA) firmware
updates

receive door lock signal

For the purpose of analysis, we combined the functions from Table 1 with
the generic failure/threat modes from [13], [12], in order to identify all potential
failure/threat modes for this function. [13] is a report on the usage of the failure
mode and effects analysis for the analysis of software-based systems. In a litera-
ture survey lists of failure modes are identified. We used a list which differenti-
ates between failure modes for input/output functions (Missing data, Incorrect
data, Timing of data, Extra data) and failure modes for processing functions
(Halt/Abnormal termination, Omitted event, Incorrect logic, Timing/Order).
For threat modes Spoofing, Tampering, Repudiation, Information disclosure, De-
nial of service and Elevation of privilege were considered. Afterwards we analysed
each threat/failure mode for effects, causes, severity and probability.

Threat properties are based on the capabilities and motivation of the attacker.
For this, we assumed an attacker with reasonable technical and operational ca-
pabilities, as described in [2], where the attacker is able to analyze the system to
develop malicious input and deliver the input either by physical access or radio
communication channels. System susceptibility is based on reachability and in-
formation available about the system. The attack probability is the sum of both
ratings. According to ISO 26262 [7], for fault-based risks, the probability is the
probability of exposure. In order to estimate risks, the values of probability and
severity are multiplied. An excerpt of the detailed FMVEA analysis of TCU is
given in Tab. 2.

286 C. Schmittner, Z. Ma, and P. Smith

T
a
b
le

2
.
F
a
il
u
re
M
o
d
e,
V
u
ln
er
a
b
il
it
ie
s
a
n
d
E
ff
ec
t
A
n
a
ly
si
s
o
f
T
C
U

ID
co
m
p
o
n
en
t

V
u
ln
er
a
b
il
it
y
/

F
a
il
u
re
C
a
u
se

T
h
re
a
t
M
o
d
e
/

F
a
il
u
re
M
o
d
e
T
h
re
a
t
E
ff
ec
t
/

F
a
il
u
re
E
ff
ec
t

S
y
st
em

S
ta
tu
s

S
y
st
em

E
ff
ec
t

Severity

System
Susceptibility

Threat
Properties

Attack/
Failure
Probability
Risk

1
O
T
A

in
su
ffi
ci
en
t
a
u
-

th
en
ti
ca
ti
o
n
o
f

T
N
O
S

A
tt
a
ck
er
m
a
s-

q
u
er
a
d
es
it
se
lf

a
s

T
N
O
S

a
n
d

se
n
d
s

ow
n
fi
rm
w
a
re

u
p
d
a
te

A
tt
a
ck
er

d
ep
lo
y
s

ow
n
fi
rm
w
a
re

sa
m
e
su
sc
ep
ti
b
il
-

it
y
in
a
ll
sy
st
em

st
a
te
s

sa
fe
ty
-c
ri
ti
ca
l,

A
tt
a
ck
er

h
a
s

co
n
tr
o
l
ov
er

th
e

v
eh
ic
le

6
4

4
8

4
8

2
O
T
A

w
ir
el
es
s

co
n
-

n
ec
ti
o
n
,

su
s-

ce
p
ti
b
il
it
y

to
ja
m
m
in
g

A
tt
a
ck
er
in
te
r-

ru
p
ts
O
T
A

U
p
d
a
te

is
in
te
r-

ru
p
te
d

U
p
d
a
ti
n
g

n
o
n
e

1
6

4
1
0

1
0

3
O
T
A

d
is
tu
rb
a
n
ce

w
h
il
e

tr
a
n
s-

m
it
ti
n
g

u
p
-

d
a
te

U
p
d
a
te
d
a
ta
is

in
co
rr
ec
t

in
co
rr
ec
t

fi
rm
w
a
re

is
a
p
p
li
ed

U
p
d
a
ti
n
g

sa
fe
ty
-c
ri
ti
ca
l,

fi
rm
w
a
re

co
u
ld

in
cl
u
d
e

cr
it
ic
a
l

fa
u
lt
s

6
..
.

..
.

6
3
6

4
O
T
A

co
n
n
ec
ti
o
n

is
lo
st

D
a
ta

m
is
si
n
g

fr
o
m
u
p
d
a
te

U
p
d
a
te

is
in
te
r-

ru
p
te
d

U
p
d
a
ti
n
g

n
o
n
e

1
..
.

..
.

6
6

5
b
lu
et
o
o
th

co
n
n
ec
ti
o
n

a
tt
a
ck
er

ex
-

p
lo
it

b
u
ff
er

ov
er
fl
ow

in
b
lu
et
o
o
th

im
-

p
le
m
en
ta
ti
o
n

T
h
e

a
tt
a
ck
er

co
u
ld

u
se

a
a
lr
ea
d
y

co
n
-

n
ec
te
d
d
ev
ic
e

a
n
d
ex
te
n
d
it
’s

p
ri
v
il
eg
es

A
tt
a
ck
er

is
a
b
le

to
ex
ec
u
te

co
d
e

o
n
T
C
U

co
n
n
ec
te
d

to
co
m
p
ro
m
is
ed

d
ev
ic
e

sa
fe
ty
-c
ri
ti
ca
l,

A
tt
a
ck
er

h
a
s

co
n
tr
o
l
ov
er

th
e

v
eh
ic
le

6
3

4
7

4
2

6
ex
te
rn
a
l
m
e-

d
ia

n
o
co
n
g
es
ti
o
n

co
n
tr
o
l

a
t

T
C
U

d
a
ta

ov
er
fl
ow

a
t
T
C
U
fr
o
m

st
re
a
m
in
g
d
a
ta

T
C
U

m
a
lf
u
n
c-

ti
o
n
s

st
re
a
m
in
g

co
n
-

n
ec
ti
o
n

T
C
U
se
rv
ic
es
n
o
t

lo
n
g
er
av
a
il
a
b
le

3
..
.

..
.

6
1
8

7
tr
a
n
sm
it
d
ia
g
-

n
o
st
ic
d
a
ta

m
a
n

in
th
e

m
id
d
le

a
tt
a
ck

o
n
G
S
M

b
a
se

st
a
ti
o
n

A
tt
a
ck
er

is
m
a
n
ip
u
la
ti
n
g

d
ia
g
n
o
st
ic

d
a
ta

w
ro
n
g

d
a
ta

is
tr
a
n
sm
it
te
d

sy
st
em

re
ce
iv
es

”
li
m
p

h
o
m
e

co
m
m
a
n
d
”
fr
o
m

T
N
O
S

re
d
u
ce
d
fu
n
ct
io
n
-

a
li
ty

2
3

4
7

1
4

FMVEA for Safety and Security Analysis 287

5 Conclusion and Future Work

This paper presents our ongoing work to develop a holistic approach to safety and
security analysis of mission-critical CPS. While our analysis of intelligent and
cooperative vehicles gives a good overview of vulnerable functions of the TCU,
the risk rating was a relatively complex process. Often attacks on critical CPSs
consisted of multiple steps [11]. Thus, the assignment of system susceptibility was
not straightforward. FMVEA is based on the functional and software-FMEA.
Both approaches are best used for an early design time assessment of systems.
Similar to them the FMVEA allows to anticipate the effects of potential failures
and threats during design time and thus enable to focus the development and
verification effort there.

At this time, the analysis is focused on a single vehicle. In an next step we
will include cooperating vehicles and analyse a system of cooperating vehicles.
We will also extend the FMVEA to model and analyse multi-stage attacks. In
addition, while there are many existing lists of potential failure modes for differ-
ent domains, in IEC 60812 [6] or [13], potential threat modes and vulnerabilities
need to be examined further. Microsoft’s STRIDE (Spoofing, Tampering, Re-
pudiation, Information disclosure, Denial of service and Elevation of privilege)
was used as a generic threat mode catalogue. In future work, we will build a
more specific threat catalogue for CPSs and intelligent systems in different do-
mains. Another research direction we will follow is to apply FMVEA to other
domains with different use cases, and compare it with other safety and security
analysis methods such as Combined Harm Assessment of Safety and Security for
Information Systems (CHASSIS).

Acknowledgments. Research leading to these results has received funding
from the EU ARTEMIS Joint Undertaking under grant agreements no. 621429
(EMC2) and from the FFG (Austrian Research Promotion Agency) on behalf of
BMVIT, The Federal Ministry of Transport, Innovation and Technology.

References

1. Charette, R.N.: This Car Runs on Code. IEEE Spectrum 46(3), 3 (2009),
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

2. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive Experimental
Analyses of Automotive Attack Surfaces. In: Proceedings of the 20th USENIX
Conference on Security (2011)

3. Schmittner, C., Gruber, T., Puschner, P., Schoitsch, E.: Security Application of
Failure Mode and Effect Analysis (FMEA). In: The 33rd International Conference
on Computer Safety, Reliability and Security (SafeComp) (in press, September
2014)

4. Department of Defense: MIL STD 1629A, Procedures for performing a failure
mode, effect and criticality analysis (1980)

5. Hughes Systique Corporation: Automotive Telematics (2006)

http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code

288 C. Schmittner, Z. Ma, and P. Smith

6. International Electrotechnical Commission: Analysis Techniques for System Reli-
ablity - Procedure for Failure Mode and Effects Analysis (FMEA) (2006)

7. International Organization for Standardization: ISO 26262 Road vehicles – Func-
tional safety (2010)

8. Kargl, F., Ma, Z., Schoch, E.: Security Engineering for VANETs. In: 4th Workshop
on Embedded Security in Cars (ESCAR 2006), Berlin, Germany (November 2006)

9. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental Security
Analysis of a Modern Automobile. In: Proceedings of the 2010 IEEE Symposium on
Security and Privacy, SP 2010, pp. 447–462. IEEE Computer Society, Washington,
DC (2010)

10. Laprie, J.C.: Dependable computing: Concepts, limits, challenges. In: Proceedings
of the Twenty-Fifth International Conference on Fault-Tolerant Computing, FTCS
1995, pp. 42–54. IEEE Computer Society, Washington, DC (1995)

11. Ma, Z., Smith, P.: Determining risks from advanced multi-step attacks to critical
information infrastructures. In: Luiijf, E., Hartel, P. (eds.) CRITIS 2013. LNCS,
vol. 8328, pp. 142–154. Springer, Heidelberg (2013)

12. Microsoft: Security Development Lifecycle - SDL Process Guidance Version 5.2.
Microsoft (2012)

13. Pentti, H., Atte, H.: Failure mode and effects analysis of software-based automation
systems. In: VTT Industrial Systems, STUK-YTO-TR 190 (August 2002)

Uniform Approach of Risk Communication

in Distributed IT Environments Combining
Safety and Security Aspects

Jana Fruth and Edgar Nett

Otto-von-Guericke University Magdeburg,
Faculty of Computer Science, Department of Distributed Systems,

Postfach 4120, D-39106 Magdeburg, Germany
{jana.fruth,edgar.nett}@ovgu.de

Abstract. The trend to compose real time systems with standard IT
known from conventional office domains results in heterogeneous techni-
cal environments. Examples are modern industrial process automation
networks. It is a challenging task, because of potential impacts of se-
curity incidents to the system safety. For example, robot control units
could be manipulated by malicious codes. The term “risk communica-
tion” is introduced, to describe alarm communication in human-machine
interaction scenarios. User adapted risk communication between humans
and industrial automation systems, including home robotics, can prevent
hazards and/or threats to the entire system safety and security. Current
safety and security risk communication standards are compared to exam-
ine the adequacy for our uniform approach. This paper focuses on alarm
system standards in the industrial process automation domain and in-
trusion detection systems from the conventional desktop IT domain. A
uniform model based approach for risk communication in distributed IT
environments is introduced.

Keywords: uniform approach, risk communication standards, alarms,
safety and security aspects, human-machine interaction.

1 Introduction and Motivation

Today, intelligent technical systems in industrial and consumer domains are of-
ten used to increase comfort, efficiency and safety of such systems. Applied
technical components are called ubiquitous and/or embedded systems [21]. The
composition of real time systems known from industrial domains with standard
information technologies (IT) known from conventional office domains of organ-
isations results in heterogeneous technical environments. Examples can be seen
in systems for industrial process automation. Motivated by the need of higher
efficiency, standard IT network components and/or protocols like Ethernet or
TCP/IP are applied frequently [19]. One example of this is the remote mainte-
nance of industrial field components over the Internet. Formerly, these systems
are designed to be closed and separated from other external systems, providing

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 289–300, 2014.
c© Springer International Publishing Switzerland 2014

290 J. Fruth and E. Nett

protection against cyber-attacks [10][19]. Integration of standard desktop IT in
industrial domains increases the likelihood of introducing known vulnerabilities
of the desktop IT network components and protocols as well as the occurrence
of security1 incidents in the industrial environment.

Historically, the environment of real time systems2 was mainly protected
against system failures by safety and reliability mechanisms. Examples include a
safe system design to avoid electric shocks, safety fences in front of machines, and
dead man switches to stop a running system [23] . Protection mechanisms against
cyber attacks were considered as unnecessary in industrial real time systems, be-
cause of their closed and separated character [10][19]. Conventional desktop IT in
organisations were protected against cyber attacks with security mechanism. Ex-
amples are confidentiality protection mechanism with encryption, authenticity
protection mechanism using passwords or biometrics, and availability protection
mechanism based on introducing data redundancy. The before mentioned recent
fusion of real time systems with desktop IT can trigger interdependencies be-
tween security incidents and the system safety of real time systems. One example
is the manipulation of robot control units for manufacturing caused by malicious
codes3 in an assembly line [14]. The malfunction of industrial robots control units
could have several implications, e.g. produced workpieces could be damaged and
people near the robot can be injured. Furthermore, the manufacturing of de-
fective workpieces or the stagnation of manufacturing can result in extensive
financial losses. One typical example was the famous malicious attack in the do-
main of industrial automation systems [24], called Stuxnet. A worm was written
to manipulate Siemens control components in Iranian nuclear power plants [24].
It was not detectable for the alarm management system for various reasons, e.g.
the usage of insider knowledge by Stuxnet, like the exploitation of previously
unreleased security vulnerabilities of Windows and the use of stolen certificates
for authentication purposes. Another reason could be the absence of any cyber
attack detection system like an intrusion detection system (IDS)4 in the plant.

In this paper the term of risk communication is used. Risk [11] is defined as the
product of occurrence probability of a damaging event and severity of potential
damage, caused by that event. In the security world the event is named threat5,
in the safety world it is called hazard6. Figure 1 illustrates the basis of the risk

1 In this paper the term “security” is defined as computer security for information
technical systems. In [11] security is specified as property of a fail-safe system, which
can only enter system states, which can cause no unauthorised manipulation or
retrieval of information.

2 Real time systems are computer systems which underlay specific time conditions
determined by environmental requirements [17].

3 Malicious logic or malicious codes are software programs written by attackers to
realise automated attacks on computer systems [9]. Examples are computer viruses,
worms, and Trojan horses.

4 Intrusion detection systems detect attacks based on analyses of log records of unex-
pected activities and known attacker activities [9].

5 A threat is defined as potential violation of security [9].
6 Hazards are undesirable conditions, which potential cause accidents [16].

Uniform Approach of Risk Communication in Distributed IT Environments 291

communication approach described in this paper, based on [8] and [16]. We fo-
cus on risk communication between humans (operators, users, plant management
etc.) and industrial automation systems (including home robotics). To avoid acci-
dents, users should be aware of the critical changes in the system states, especially
caused by security threats from conventional IT systems. Furthermore, their inter-
actions have to be guided with the automation system. Application examples are
previously mentioned robots in industrial domains. Another domain of robots are
private households, where service robots operate autonomously and support users
in various domestic tasks. At present world widely only a few autonomous domes-
tic robots are used, but the demand is expected to increase in future [15]. Caused
by limited technical abilities, current household robots can only accomplish sim-
ple tasks, like floor cleaning or law-mowing. In the future technical properties will
have developed further, and the tasks of domestic robots will be more sophisti-
cated, so those robots will be worthwhile attack targets. One potential security
attack could be the malicious manipulation of the robot control (threat)(see fig-
ure 1). This attack could potentially cause undesirable robotmovements (hazard),
so that human users can be frightened or/and injured (accident). Two main chal-
lenges have to be considered: first, the dynamic and less predictable behaviour of
security threats, and second, the difficulty in analysis and management of security
risks, caused by the complexity of heterogeneous systems. One approach to solve
these challenges is to warn the users of potential security threats with impacts on
the safety of the system. If the system is not able to take an automatic decision,
a manual selection of protection mechanisms by users against specific threats can
be the alternative solution. This requires a detailed analysis of current security
risks and decisions, and clarify which risks have to be communicated to the users.
Furthermore, user friendly and comprehensible risk communication to safety and
security novices has to be designed and realised.

Effective communication of risks to users can prevent consequences for the
overall system security and safety and the personal welfare of users caused by
security and safety incidents. New concepts are needed to close the gap between
risk management (with people involved) and risk communication in heteroge-
neous technical environments to cope with potential security and safety interde-
pendencies. A uniform model based approach is sketched in this paper.

THREAT
(Security)

HAZARD
(Safety)

ACCIDENT
(Safety)

e.g. manipulation
of robot control

e.g. undesirable
robot movement e.g. harm of persons

FAULT
(Security)

ERROR
(Security/

Safety)

FAILURE
(Safety)

Potential security-
safety impacts

THREAT
(Security)

HAZARD
(Safety)

e.g. manipulation
of robot control

e.g. undesirable d i bl
robot movement

FAULT
(Security)

ERROR
(Security/yy

ySafetyy)))

FAILURE
(Safety)

-

SYSTEM

Dependencies of
fault, error, failure

Fig. 1. Basis of risk communication approach (based on [8] and [16])

292 J. Fruth and E. Nett

The paper is structured as follows: in Section 2 a short overview and a com-
parison of state of the art of standards for risk communication in the safety and
security domain are illustrated. Furthermore, selected approaches are described
regarding their contributions to our uniform approach. Section 3 describes the
uniform approach for risk communication in heterogeneous domains. Section 4
concludes the paper and shows future prospects.

2 State of the Art: Risk Communication Standards

The following sections describe the state of the art of risk communication stan-
dards. Until now different approaches of risk communication of protection sys-
tems in both worlds, real time systems and desktop IT systems, exist. Therefore,
we select two different types of standards: first, alarm management standards of
the industrial process management domain (see section 2.1) and second, intrusion
detection system standards and recommendations of the desktop IT domain (see
section 2.2). Furthermore, we use only standards and recommendations, which
are available free of charge via our library and the Internet. These are stan-
dards by the German Institute for Standardisation (DIN), including European
(EU) and International (ISO) DIN norms, and recommendations by approved
industrial and computer security organisations. Section 2.3 concludes the sec-
tion with a comparison of current standards of risk communication using own
evaluation criteria. In section 2.4 first approaches towards an uniform approach
of risk communication in distributed IT environments are sketched.

2.1 Alarm Management Standards in the Industrial Process
Management

Alarm management systems are defined as systems to detect systematic failures
and principles [6]. Monitoring systems generate alarms and warning messages to
provide operators with tasks in the process management. Different from warning
messages, alarms need to be acknowledged by the operator. Via the acknowledge-
ment the operator confirms that he has noticed the change of the system status.
Alarms and messages have the specific task to assist the operators in alarm anal-
ysis and decision taking to realise countermeasures. Alarm management systems
in the industrial process domain focus mainly on protection of the system safety.
The detection of cyber attacks and use of protection mechanisms against security
incidents were irrelevant in the past.

Human friendly alarm management design techniques are realised to minimise
the cognitive overload of the operator. Examples include optical-acoustical de-
sign principles, few amount of messages, guidance through prioritisation, and
bundling and suppression of alarms [6]. The feedback is designed for a standard
user. Specific user-adapted design approaches are not used.

Uniform Approach of Risk Communication in Distributed IT Environments 293

2.2 Intrusion Detection System Standards for Information
Technology in Organisations

Intrusion detection is defined as active monitoring of computer systems or net-
works in desktop IT domains to detect attacks and misuse [1]. Intrusion detection
systems are instruments, which provide IDS process (from event detection, eval-
uation, escalation, and documentation). An IDS detects so called cyber attacks
based on analysis of log records of unexpected activities and known attacker
activities [9]. The detection of malicious activities on the computer systems are
the main task of IDS, so it focuses on computer security. The realisation of safety
requirements is not the goal for IDS in homogeneous desktop IT systems.

IDS also applies techniques to minimise the cognitive overload of their users.
Examples are optical-acoustical design principles, efforts to reduce the amount
of alarm messages, prioritisation, and suppression of alarms [1]. The feedback
via alarm messages is designed for a standard user, too. In IDS specific user
adapted design approaches are not applied.

2.3 Comparison of Risk Communication Standards

This section compares risk communication standards of the industrial process
management domain and desktop IT domain. The comparison is based on the
following evaluation criteria:

1. The nature of content (model vs. procedure)
2. Provided phases of the human-automation interaction process (see [22])

(stage 1: information acquisition, stage 2: information analysis, stage 3: de-
cision selection, stage 4: action implementation)

3. Advantages and properties not covered for the realisation in heterogeneous
technical environments7

The phases of the human-automation interaction process is based on the core-
spondent taxonomy from Parasuraman et al. [22]. They introduced a model,
which categorises four stages of functions of automation systems according to
the human psychological process [18]. In the model various levels of automation
from low to high are differentiated, which determine the level of guidance to the
human operator by the automated system. In the first stage of information ac-
quisition, input data is acquired corresponding to the sensation and perception
of information by humans. While systems with high level of automation filter out
most critical information, low level automation systems present all input data to
the operators and guide operator’s attention to most relevant data. The stage of
information analysis, provides operators with integrating raw data, draw inter-
ferences and generating predictions. Automation function at this stage requires
higher cognitive functions such as information integration and cognitive interfer-
ence. Systems with high level of automation reduce the amount of information to

7 The new risk communication standard is not targeted at heterogeneous technical
systems as such, but at systems being safety and security critical.

294 J. Fruth and E. Nett

one single hypothesis regarding the system state. Low level automation systems
extrapolate the current information and predict future status to the operators.
In the stage of decision selection, appropriate decisions or actions are selected
from many alternatives corresponding to the cognitive stage of decision making.
While high level automation systems present and/or select the optimal decision
or action to the operators, low level automation systems provide the complete
set of alternatives to operators. In the last stage of action implementation the
operator is aided by the automated system by the execution of a selected ac-
tion. This stage corresponds with the human cognitive status of response and
execution. While low level automation systems simply assist the operators in
the execution of the action, high level automation systems take over more of the
control from the operator [18].

Table 1. Comparison of selected Risk Communication Standards / Recommendations

Standard Content Advantages Properties not covered

Industrial process control (Safety)

DIN EN
62541-9 /
IEC 62541
(2012) [4]

Model 1) Formal description of
alarms via a holistic infor-
mation model (OPC unified
architecture) 2) Exemplary
models

1) No providing of infor-
mation acquisition 2) Only
focus on system failures
(safety) 3) No user specific
model/design examples

NA 102
(Worksheet,
2008) [3]

Procedure 1) Providing of all four
stages 2) Holistic and in-
terdisciplinary approach of
alarm management design
3) Optical and acoustical de-
sign pattern 4) Examples of
practical experiences

Only focus on system fail-
ures (safety)

VDI/VDE
3699, Blatt
5 (German
Draft, 2013)
[6]

Model Strategies to minimise the
cognitive overload of opera-
tors (e.g. minimising, auto-
mated selection, and priori-
tisation of alarms)

1) No providing of informa-
tion acquisition and analysis
2) Only focus on system fail-
ures (safety) 3) Only optical
alarm design

Desktop IT (Security)

ISO/IEC DIS
27039 (Draft,
2013) [5]

Procedure 1) Providing of all four
stages 2) Holistic procedure
of selection, deployment and
operation of IDS in an or-
ganisation

1) Only focus on cyber at-
tacks (security) 2) Only gen-
eral description of handling
of IDS alerts (information
and severity of attacks) -
no user specific design ap-
proaches

BSI - Guide-
line for
introduction
of IDS (2002)
[1]

Procedure 1) Providing of all four
stages 2) Holistic procedure
of selection, deployment and
operation of IDS in an or-
ganisation

1) Only focus on cyber at-
tacks (security) 2) Only gen-
eral description of alert and
incident handling - no user
specific design approaches

Uniform Approach of Risk Communication in Distributed IT Environments 295

Table 1 summarises a selected risk communication standards and recommen-
dations. For the sake of clarity, the term “alarm” refers to both alarm and
warning message in the table. The table also serves as an indicator for potential
approaches which can be integrated in our new approach of a risk communica-
tion standard for heterogeneous systems. The content described in the table in
column “properties not covered” is basis for our motivation for a new standard
in that field. In the following, the standards and recommendations described in
table 1 are specified, primarily the three standards of industrial process control
and secondly the two standards in the desktop IT domain.

The DIN EN 62541-9 standard [4] is a detailed and formal description of
alarms using a specific modelling language. It gains its advantage by its ex-
emplary models, which illustrate the formal concepts. Properties not covered
include the lack of the information acquisition phase, selected focus on safety
incidents, as well as lack of user specific design concepts.

The NA 102 [3] is a worksheet which recommends holistic and interdisciplinary
alarm design principles. It shows advantage by providing all four stages of the
human-automation interaction process model, the use of optical and acoustical
design pattern, and the illustration with practical examples. The standard only
focuses on system failures (safety).

The VDI/VDE 3699 standard [6] describes a model for alarms and messages
during process control with screens. Furthermore, user friendly design methods
of alarms / messages for screens in the process control of primary control units
are recommended. Properties not covered include the center on the stages of
decision selection and action implementation in the human-automation interac-
tion model, the focus on system failures (safety), and recommendations for only
optical design principles.

ISO/IEC DIS 27039 [5] is a draft of a procedure, which describes an holistic
approach of selection, deployment and operation of IDS in an organisation. It
provides all four stages of the human-automation interaction process model,
including event detection, analysis, response, and data storage. However, it fails
to address cyber attacks (security) and user specific design approaches while
handling IDS alerts.

BSI recommendation [1] is a guideline for the introduction of IDS in an or-
ganisation. It also provides all four stages of the human-automation interaction
process model. Besides that, it also supports the holistic conception of selection,
deployment and operation of IDS in an organisation (conception - integration
- operation - revision). However, similar to ISO/IEC DIS 27039, it also fails to
address cyber attacks (security) or user specific design approaches.

2.4 First Approaches towards an Uniform Approach of Risk
Communication in Distributed IT Environments

This section describes three different approaches, which are parts of the previous
scientific work of the first author of this publication. These approaches include
parts, which could be integrated in our uniform approach of risk communication
in distributed IT environments. The first model based approach [12] is introduced

296 J. Fruth and E. Nett

to realise secure data management in embedded systems. The processed data of
the system are linked with specific properties of the system components to de-
tect modifications of security properties of the system. The different views on the
system could be included in our uniform approach. The second model based ap-
proach was published in [20]. It describes interdependencies between safety and
security incidents for embedded systems on component level. What could also
contribute to our uniform approach is the modeling of the principle of cause and
effect with so called primary and secondary events. The third approach describes
a user adapted multimedia-based design for the interaction between humans and
industrial robots [13]. The design applies visual and acoustical information. One
example is the visual and textual description of the primary security incident,
which causes the warning. Furthermore, instructions to the operator are visu-
alised, such as calling the supervisor and/or push the emergency button. It’s
multimedia-based design principles are used in our uniform approach to ease the
user’s understanding of complex contexts in heterogeneous systems. The three
models alone are not sufficient for the development of a uniform approach of
a risk communication for safe and secure heterogeneous systems, because they
cover different aspects separately.

3 Uniform Approach for Risk Communication in Safety
and Security Domains

As existing risk communication standards and approaches are not sufficient to
solve the problems of heterogeneous systems with safety and security require-
ments, an uniform approach is introduced in this paper. In section 3.1 a generic
system model is illustrated. Section 3.2 describes a first approach of user adapted
risk communication in human-automation interaction scenarios.

3.1 Generic System Model

A generic model of a system seems to be promising, because of its dynamic
adaptability suitable for the current risk situation. The overall system model
consists of various parts, which represent specific views to the system (see also
figure 2):

1. model of technical components of the system (including interacting persons
and the environment)

2. model of the data, which is processed by the system
3. model of the requirements on the system safety and security
4. model of realised safety and security mechanism
5. model of level of protection (safety and/or security level)

The component model includes technical components of the system, including
both hardware and software. Exemplary software components of a service robot
in a household could be executable codes for movement control (see figure 2).
Other parts of the component model is human, like users, who interact with

Uniform Approach of Risk Communication in Distributed IT Environments 297

Data D

System data

User data

Meta data

Process
protocol data

Communication
protocol data

Date D

Datamodel
(per component)

Security

Non-
Repudiation

Availability

Confidentiality

Privacy

Safety

...

Availability

Reliability

Authenticity

Security-
Requirement S

Vulnerable
data

Protection
data

State data

Session data

...

...

Component-
model

Technology

...

......

...

......

...

......

Components C

Component C

Software

...

...

......

Hardware

Mechanism
M

Mechanism
(Safety/Security)

(per component
+ data

+ requirements)

active

a priori

a posteriori

passive

Security-
mechanism

Safety-
mechanism

...

Requirements
(Safety/Security)

(per component
+ data)

Security-
Level

very high

normal

high

Safety-
Level

Security-
Level L

Level
(Safety/Security)

(based on models of components
+ data, conditioned by requirements and realised mechanism)

...

...

...

Integrity

Functional
data

......

Persons / Group
of Persons

Environment

Executable
Code

Source Code

Integrity Cryptographic
Hash function

Security-Level high

Example:

Fig. 2. Generic model and example of a heterogeneous system, including the safety
and security properties

the technical system and the environment which influences the system from the
outside, like weather conditions. The data model represents the data which is
processed by technical components, such as functional data like source code of
a robot control program. The safety and security requirement model describes
the system’s safety requirements like reliability and the requirements of the se-
curity like data integrity to detect unauthorised data manipulation. The model

298 J. Fruth and E. Nett

of the safety and security mechanism represents the realised safety and security
protection mechanisms per component and data, e.g. redundancy of technical
components or use of cryptographic hash functions to detect manipulation of
data integrity. Based on the information about the protection state of the tech-
nical system a level of protection can be reflected. In cases of hazards (safety)
and/or threats (security) conclusions to the system’s safety and/or security pro-
tection status could be made on the basis of the generic model. Furthermore,
the activation and/or influence of interdependencies between safety and security
incidents could be estimated and countermeasures could be implemented. One
existing challenge is the realisation of real time requirements of the system, if
security protection mechanisms are used.

3.2 User Adapted Risk Communication

Besides a generic system model a user adapted risk communication is necessary
to prevent safety and security incidents which have impacts on the entire system
and the users. So the user is able to select safety and/or security protection
mechanisms in unpredictable situations. Therefore, a holistic approach to user
adapted human-automation interaction is necessary for an adequate risk commu-
nication. Previous described standards show lack in this area (see section 2.3).
Various facts have to be considered in the human-automation interaction process
to realise safe and secure heterogeneous systems. In the stage of information ac-
quisition the necessary input data has to be selected, including data which could
have an impact on the safety and security status of the system. Examples are
deviant data, such as an increasing distance value of a sensor (safety) and anoma-
lous data traffic of the robot with an unknown communication node (security).
The next stage of information analysis implies the derivation of conclusions and
predictions for the safety and security of the system and the environment of the
collected input data. Furthermore, information which has to be reported to the
user have to be selected. One example is the hypothesis of current security at-
tack on the movement control (safety) of the service robot by an attacker. In the
third stage of decision selection specific actions to restore the protection status
of the system have to be selected from many alternatives. One example is the
advice for a reconfiguration of protection mechanisms against unauthorised use
of the service robot, such as firewall procedures. The last stage of action imple-
mentation has to assist the users while realising the restoration of the system
status. This includes the user adapted design of the communicated data. One
example is the assistance to reconfigure firewall procedures.

4 Conclusion and Future Work

In this paper a selection of current safety and security risk communication
standards and recommendations are compared using selected evaluation crite-
ria. We focus on alarm system standards in the industrial process automation
domain and intrusion detection systems known from conventional desktop IT

Uniform Approach of Risk Communication in Distributed IT Environments 299

domain. A series of DIN standards and recommendations, which are available
free of charge from approved industrial and computer security organisations,
are reviewed. Current risk communication standards and recommendations offer
domain-specific solutions, but are not sufficient to fulfill safety and security re-
quirements of distributed IT environments with safety and security properties.
Therefore a new model based approach is introduced.

There are still gaps concerning joint (unified) safety and security analysis,
development and maintenance/operation. Therefore, further safety and security
standards and approaches used in general in industrial context should be taken
into account in the future. Exemplary safety standards are IEC 61508 (Func-
tional Safety)8 or ISO 13482 (Safety requirements for personal care robots)[7]
and security standards, like ISO 15408 (Common Criteria)[2] or the ISO 2700x
series (Security Management)9. As such, the analysis of appropriate abilities will
be extended to cover security and safety requirements in heterogeneous systems.

Furthermore, in the future, our generic approach for risk communication in
heterogeneous systems with safety and security requirements has to be specified
and evaluated. Practical implementations on selected heterogeneous systems are
planed. Exemplary systems are service robots, which manoeuvre in an envi-
ronment with different obstacles and interact with persons and other technical
devices. Safety and security incidents, including interdependencies, should be
simulated. On the basis of our model, user specific alarm and warning messages
should be generated.

Acknowledgments. We would like to thank Manuela Kanneberg and Kun
Qian for proofreading the paper.

References

[1] Introduction to Intrusion Detection Systems - Guideline to introduce IDS. Tech.
Rep. 1.0, BSI - German Federal Office for Information Security, ConSecur GmbH
(October 2002)

[2] ISO/IEC 15408: Common Criteria for Information Technology Security Evaluation
(2007)

[3] NA 102: Alarm Management. Tech. rep., NAMUR (October 2008)
[4] DIN EN 62541-9 / IEC 62541: OPC unifed architecture, Part 9: Alarms and

conditions (June 2013)
[5] ISO/IEC DIS 27039: Information technology - Security techniques - Selection,

deployment and operations of intrusion detection systems (IDPS) (July 2013)
[6] VDI/VDE 3699 Blatt 5: Process control with screens - Alarms/messages (German

Draft) (May 2013)
[7] ISO 13482: Robots and robotic devices – Safety requirements for personal care

robots (2014)

8 http://www.iec.ch/functionalsafety/, last access: 26. June 2014.
9 http://www.27000.org/, last access: 26. June 2014.

http://www.iec.ch/functionalsafety/
http://www.27000.org/

300 J. Fruth and E. Nett

[8] Avizienis, A., Laprie, J.C., Randell, B.: Fundamental concepts of dependability.
Tech. rep., UCLA Computer Science Department - University of California (USA),
LAAS-CNRS (France), University of Newcastle upon Tyne (UK) (2001)

[9] Bishop, M.: Computer Security: Art and Science. Addison-Wesley Professional
(2003)

[10] Byres, E., Lowe, J.: The Myths and Facts behind Cyber Security Risks for Indus-
trial Control Systems. In: VDE Congress 2004, Berlin, Germany (2004)

[11] Eckert, C.: IT-Sicherheit: Konzepte - Verfahren - Protokolle. Oldenbourg Verlag
München Wien (2008)

[12] Fruth, J., Dittmann, J., Ortmeier, F., Feigenspan, J.: Metadaten-Modell für ein
sicheres eingebettetes Datenmanagement. In: D-A-CH Security 2010, pp. 359–370
(2010)

[13] Fruth, J., Krätzer, C., Dittmann, J.: Design and Evaluation of Multi-Media Secu-
rity Warnings for the Interaction between Humans and Industrial Robots. In: Elec-
tronic Imaging Conference 7575: Intelligent Robots and Computer Vision XXVIII:
Algorithms and Techniques, IS&T/SPIE, San Francisco Airport, CA, USA, Jan-
uary 23-27 (2011)

[14] Fruth, J., Münder, R., Gruschinski, H., Dittmann, J., Karpuschewski, B., Find-
eisen, R.: Sensitising to security risks in manufacturing engineering: An exem-
plary VR prototype. In: Second International Workshop on Digital Engineering,
pp. 39–44 (2011)

[15] IFR Statistical Department: Executive Summary: World Robotics 2013 (2013)
[16] Kopetz, H.: Real-time Systems: Design Principles for Distributed Embedded Ap-

plications. Kluwer international series in engineering and computer science. Kluwer
Academic Publishers (1997)

[17] Krishna, C.M., Shin, K.G.: Real-Time Systems. McGraw-Hill (1997)
[18] Lehto, M.R., Lesch, M.F., Horrey, W.J.: Safety warnings for automation. In:

Springer Handbook of Automation, pp. 671–695. Springer (2009)
[19] Lueders, S.: (No) Security in Automation!? In: VGB PowerTech, vol. 88,

pp. 127–130. Essen, Germany (2008)
[20] Neubüser, C., Fruth, J., Hoppe, T., Dittmann, J.: Wechselwirkungsmodell der

Safety und Security. In: D-A-CH Security 2011: Bestandsaufnahme, Konzepte,
Anwendungen, Perspektiven; Tagungsband, pp. 67–78 (2011)

[21] Paar, C., Weimerskirch, A.: Embedded security in a pervasive world. Information
Security Technical Report 12(3), 155–161 (2007)

[22] Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels
of human interaction with automation: IEEE Transactions on Systems Man and
Cybernetics, Part A: Systems and Humans. IEEE Transactions 30, 286–297 (2000)

[23] Storey, N.: Safety-Critical Computer Systems. Addison Wesley Longman Limited
(1996)

[24] Symantec: Stuxnet Introduces the First Known Rootkit for Industrial Control
Systems. Symantec Offical Blog (August 2010),
http://www.symantec.com/connect/blogs/

stuxnet-introduces-first-known-rootkit-scada-devices

(last access June 26, 2014)

http://www.symantec.com/connect/blogs/stuxnet-introduces-first-known-rootkit-scada-devices
http://www.symantec.com/connect/blogs/stuxnet-introduces-first-known-rootkit-scada-devices

Introduction to the Safecomp 2014 Workshop:

Reliability and Security Aspects for Critical
Infrastructure Protection (ReSA4CI 2014)

Silvia Bonomi1 and Ilaria Matteucci2

1 Dipartimento di Ingegneria Informatica Automatica e Gestionale
”Antonio Ruberti”

Università degli Studi di Roma ”La Sapienza” Via Ariosto 25, 00185, Roma, Italy
bonomi@dis.uniroma1.it

2 Instituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche (IIT-CNR),

Via G. Moruzzi, 1 Pisa, Italy
ilaria.matteucci@iit.cnr.it

Introduction

The ReSA4CI workshop aims at providing a forum for researchers and engineers
in academia and industry to foster an exchange of research results, experiences,
and products in the area of reliable, dependable, and secure computing for crit-
ical systems protection from both a theoretical and practical perspective. Its
ultimate goal is to envision new trends and ideas about aspects of designing, im-
plementing, and evaluating reliable and secure solutions for the next generation
critical infrastructures. Critical Infrastructures present several challenges in the
fields of distributed systems, dependability and security methods and approaches
crucial for improving trustworthiness on ICT facilities. The workshop aims at
presenting the advancement on the state of art in these fields and spreading their
adoption in several scenarios involving main infrastructures for modern society.

Critical infrastructures (CIs) are at the hearth of any advanced civilized
country. These infrastructures include among others: finance and insurance,
transportation (e.g. mass transit, rails and aircrafts), public services (e.g., law
enforcement, fire and emergency), energy, health care. Hence, their destruction or
disruption, even partially, may, directly or indirectly, strongly affect the normal
and efficient functioning of a country. The global scope and massive scale of to-
day’s attacks necessitate global situational awareness, which cannot be achieved
by the isolated local protection systems residing within the IT boundaries of
individual institutions. This leads to foster the investigation of innovative
methodologies for gathering, processing and correlating huge amounts of data
understanding anomaly behaviours and learning automatically always-evolving
cyber threats with the final aim to prevent and/or mitigate their consequences.

A workshop on reliability and security aspects in the general domain of CI is
motivated by the unsuitability of current approaches due to the novel challenges
imposed by always smart and powerful adversaries. In fact, several works exist in

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 301–303, 2014.
c© Springer International Publishing Switzerland 2014

302 S. Bonomi and I. Matteucci

the literature about these research themes. However, existing solutions are usu-
ally applied to specific and closed system making them not general enough to be
extended to other types of CI. The innovative and challenging aspect is to define
new protection strategies in the context of complex, evolvable, and extremely
heterogeneous systems and with respect to always evolving adversaries.

Program

The program of ReSA4CI 2014 consists of and 6 high-quality papers, covering
the above-mentioned topics. In particular, we can group them in two main classes
according to their topic:

– Session1: Security and Dependability of Critical Infrastructure
• Laura Carnevali, Marco Paolieri, Fabio Tarani, Enrico Vicario and Ku-
miko Tadano. “Modeling and evaluation of maintenance procedures for
gas distribution networks ”

• Peter Popov, Kizito Salako and Oleksandr Netkachev. “Quantification
of the Impact of Cyber Attack in Critical Infrastructures”

• Paolo Franchin and Luigi Laura. “Probabilistic inference in the physical
simulation of interdependent critical infrastructure systems”

– Session 2. Methodologies and Analysis of Distributed Systems
• Cesario Di Sarno and Alessia Garofalo. “Energy-Based Detection of
Multi-Layer Flooding Attacks on Wireless Sensor Network”

• Luca Montanari, Roberto Baldoni, Claudio Ciccotelli, Federico Lom-
bardi, Alessandro Donno and Adriano Cerocchi. “Towards a non-Intrusive
Recognition of Anomalous System Behavior in Data Centers”

• Richard M. Zahoransky, Thomas Koslowski and Rafael Accorsi. “To-
wards Resilience Assessment in Business Process Architectures”

Each paper was selected according to at least two reviews produced mainly
by Program Committee members and a little percentage of external reviewers.
Selected papers come from several countries around the world. In addition, we
are glad to host two keynote speakers, Dr. Barbara Gallina and Prof. Michele
Colajanni, that have contributed in the litterature about Security, Dependability,
Risk Analysis, and Principles of Critical Infrastructure Protection.

Thanks

We would like to thank the SAFECOMP organization committee and collabora-
tors for their precious help in handling all the issues related to the workshop. Our
next thanks go to all the authors of the submitted papers who manifested their
interest in the workshop. With their participation the First SAFECOMP Work-
shop on Reliability and Security Aspects for Critical Infrastructure Protection
(ReSA4CI 2014) becomes a real success and an inspiration for future workshops
on this new and exciting area of research. Special thanks are finally due to Pro-
gram Committee members and additional reviewers for the high quality and
objective reviews they provided.

Introduction to the Safecomp 2014 Workshop 303

Acknowledgement. This workshop has been supported by

– the TENACE PRIN Project (n. 20103P34XC), that aims to study the degree
of maturity of the Italian critical infrastructures in order to provide solutions
to protect them.

– the SESAMO EU project , (Grant Agreement No. 295354), that addresses
the root causes of problems arising with convergence of safety and security
in embedded systems at architectural level.

– the PANOPTESEC FP7 EU project (Grant Agreement No. 610416), that
aims at the definition of methods and tools for dynamic risk assessment and
management.

Workshop Organizers

Silvia Bonomi, University of Rome La Sapienza, Italy
Ilaria Matteucci, IIT-CNR, Italy

Keynote Speakers

Michele Colajanni, University of Modena and Reggio Emilia, Italy
Barbara Gallina, Mälardalen University, Sweden

Program Committee

Valentina Bonfiglio, University of Florence, Italy
Silvia Bonomi, University of Rome La Sapienza, Italy (co-chair)
Felicita Di Giandomenico, ISTI-CNR, Italy
Karama Kanoun, LAAS, France
Ilaria Matteucci, IIT-CNR, Italy (co-chair)
Alessia Milani, University of Bordeaux, France
Simin Nadjm-Tehrani, Linköping University, Sweden
Federica Paci, University of Trento, Italy
Marta Patino Martinez, Technical University of Madrid, Spain
Marinella Petrocchi, IIT-CNR, Italy
Maria Gradinariu Potop-Butucaru, UPMC Paris 6, France
Sara Tucci Piergiovanni, CEA, France

Additional Reviewer

Francesco Santini, IIT-CNR, Italy

Modeling and Evaluation of Maintenance

Procedures for Gas Distribution Networks
with Time-Dependent Parameters

Laura Carnevali1, Marco Paolieri1, Fabio Tarani1,
Enrico Vicario1, and Kumiko Tadano2

1 Dipartimento di Ingegneria dell’Informazione - Università di Firenze, Italy
{laura.carnevali,marco.paolieri,fabio.tarani,enrico.vicario}@unifi.it

2 Central Research Laboratories - NEC Corporation, Kawasaki, Japan
k-tadano@bq.jp.nec.com

Abstract. Gas networks comprise a special class of infrastructure, with
relevant implications on safety and availability of universal services. In
this context, the ongoing deregulation of network operation gives rele-
vance to modeling and evaluation techniques supporting predictability
of dependability metrics. We propose a modeling approach that repre-
sents maintenance procedures as a multi-phased system, with parameters
depending on physical and geographical characteristics of the network,
working hours, and evolution of loads over the day. The overall model
is cast into a non-Markovian variant of stochastic Petri nets, which al-
lows concurrent execution of multiple generally distributed transitions
but maintains a complexity independent of network size and topology.
Solution is achieved through an interleaved execution of fluid-dynamic
analysis of the network and analytic solution of the stochastic model
of the procedure. Solution provides availability measures for individual
sections of the network as well as global quality of service parameters.

Keywords: gas distribution networks, non time-homogeneous systems,
performance evaluation, Markov regenerative processes, transient
stochastic state classes.

1 Introduction

Quantitative evaluation of availability is gaining increasing relevance for the ef-
ficient operation of gas distribution networks, led by several causes including
competitive challenges raised by re-organization of utilities, issues of homeland
security, demand-response control applications, and automation capabilities of-
fered by smart monitoring and actuation devices [22]. This motivates investiga-
tion in modeling and solution methods, both in the tactic perspective supporting
decision during run-time operation and in the strategic perspective related to
planning of topology, localization of sensing/actuation devices and evaluation of
sustainable service levels.

The problem has been widely investigated in telecommunication and power
systems, yet gas networks are different in notable aspects, such as: localization

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 304–315, 2014.
c© Springer International Publishing Switzerland 2014

Modeling and Evaluation of Maintenance Procedures 305

of failure and network reconfiguration, which may involve much less automation
and may result in a large variability of timings; regulation of controllable inputs,
which involves processes running on a much slower time scale; a lower level of
network redundancy and a different perspective on the criticality of interrup-
tions; flexibility in management of input pressure levels, which allows trading
efficiency of operation against resilience to transient faults.

Most of the literature on the analysis and simulation of gas networks fo-
cuses on the fluid-dynamics perspective, mainly oriented to assess flow rates and
pressures across network elements [14,11]. Optimization of operations has been
addressed in various aspects, notably to favor efficient integration within multi-
carrier systems combining provisioning of electric and gas power [19,17,16,18].
In [23] fluid-dynamic analysis of a section of a real gas network is repeated for
different configurations of demand reflecting the statistics of usage in different
day hours and seasons.

In a previous paper [6], we proposed a method for modeling the availability of
middle/low pressure gas networks, which consists in an interleaved execution of
i) a quasi-static fluid-dynamic analysis of the network and ii) a stochastic model
of the failure management procedure. The latter uses non-Markovian temporal
parameters, thus overcoming the limits of memoryless and unbounded support
of exponential distributions. As a distinctive trait, fluid-dynamic calculations
are decoupled from the non-Markovian stochastic analysis and the complexity
of stochastic analysis is insensitive to topology and size of the gas network.

In this paper, the model of [6] is extended so as to capture non-homogeneous
temporal parameters. As a matter of fact, failure management procedures and
their impact on network operation may be affected by various time-dependent
parameters, including the responsiveness of repair infrastructure and the gas
consumption rate, both of which can be modeled through cycles with phases
of deterministic duration. In the evaluation stage, the evolution over time of
the failure management actions is analyzed through transient analysis based on
stochastic state classes and generalized Markov renewal equations, as proposed
in [15]. Stochastic analysis provides the probability over time of any feasible
operating condition of the network after a failure. Transient probabilities are
then aggregated on the basis of the results of fluid dynamics analysis, identify-
ing service levels in each operating condition, which enables the derivation of
availability measures for each node in the network.

The rest of the paper is organized in four sections. In Section 2, we present
both the failure management model (Section 2.1) and the fluid-dynamics model
(Section 2.2). In Section 3, we recall the salient aspects of the solution technique
of [15] (Section 3.1) and we discuss how the results of stochastic transient analysis
are exploited to derive transient and average availability measures (Section 3.2).
In Section 4, we exemplify the proposed approach on a small-sized case study of
the literature (Section 4.1) and we present the obtained transient and average
availability measures (Section 4.2). Finally, conclusions are drawn in Section 5.

306 L. Carnevali et al.

2 Model

The gas distribution network comprises a kind of hybrid system combining con-
tinuous physical variables affecting fluid dynamics (pressure and flow rate) with
the temporal behaviour of actions taken to recover from a failure. This duality
is coped with by the interaction of two separate models: a stochastic model is
used to analyse the timings of the failure management procedure (Section 2.1),
whereas a fluid-dynamics simulator is used to quantify the lack of service metrics
associated with each possible set of boundary conditions (Section 2.2).

For what concerns the fluid dynamics, gas is supplied to a low-pressure distri-
bution network from a medium-pressure transmission network through a set of
regulating stations (input nodes), and it is withdrawn by end-users at a certain
number of load nodes. In the perspective of analysis, input nodes have a known
pressure, whereas load nodes have a known flow balance, with their pressure
depending on topology and flow patterns in the network. As a first approxima-
tion, which is valid for most existing distribution networks, the flow balance at
load nodes is considered to depend on the time-of-day, whereas pressure at the
supply nodes is considered constant. To guarantee correct operation as well as
commercial standards, pressure at each load node should exceed a given mini-
mum threshold and should not be greater than a maximum allowed value.

Whenever a network component fails, pressure levels and flow rates may be
affected, and a set of maintenance actions is undertaken in order to restore the
correct operating mode. These actions usually affect network topology and flow
patterns: for instance, if a leaking pipe is detected, the nearest upstream and
downstream valves are closed to isolate the faulty section, while other section-
ing valves may be opened to minimise the number of end-users affected. The
temporal evolution of repair actions and their effects are conditioned by vari-
ous time-dependent parameters: on the one hand, the duration of some phases
depends on the time-of-day, i.e., on the responsiveness of the system (e.g., avail-
ability of repair personnel may be lessened or null during nighttime); on the
other hand, the degradation of the quality of service perceived by end-users de-
pends on the load level throughout the network, which in turn varies according
to a cyclic daily pattern.

Without loss of generality, the failure management procedure can be conve-
niently abstracted as a phased-mission process [20], consisting of three phases.
The first phase includes operations occurring before physical intervention on the
network, e.g., organisation of work team, planning and transportation on site.
This phase is considered to end when the failed component (e.g., pipe) is ex-
cluded from the network, which comprises the first variation of topology. Hence,
load nodes are partitioned into three classes:

– i) offline nodes, disconnected from any supply node;
– ii) online served nodes, connected with sufficient pressure;
– iii) online not served nodes, connected but with pressure lower than required.

The second phase represents actions occurring while the network status is in a
modified configuration with respect to regular operation. In this phase repair is

Modeling and Evaluation of Maintenance Procedures 307

performed, while pressure is concurrently controlled at some regulating station,
so as to restore the correct pressure levels at online load nodes during repair.

The third phase begins when the regular topology is restored, and it includes
actions that do not affect user-perceived quality of service but are necessary
for the operator to close the maintenance procedure. It is worth noting that
the division in three phases has a general character and can be tailored to any
specific procedure, as long as there exists a single continuous phase during which
the network topology is modified.

The quality of service maintained throughout the procedure is captured by
various metrics of performability, including the number of nodes served with an
insufficient pressure and the amount of gas requested by users and not delivered.

2.1 Stochastic Model

The process of failure management can be represented as a stochastic Time Petri
Net (sTPN) [24,5] extended with features such as enabling conditions and update
functions, which reproduce modeling mechanisms that are usual in such envi-
ronments such as SAN networks [12] and do not change the essence of analysis.
As regards sTPN syntax and semantics, the reader is referred to [24].

The model is shown in Figure 1. Two looped chains of deterministic (DET)
transition are use to model the dependence of repair responsiveness (places
workHour, extraHour and nightTime) and load levels (places highLoad, medLoad
and lowLoad) on the time-of day. The duration of each transition corresponds

endPhase2

t14

endPhase3

repairStarted

unSect

t20

P0

preRepair

t24

nightTime

p4

sect

start

[3,4] uni

regulate2
[1.9,2.1] uni

t13

[2,3] uni

p5

endPhase1

t15

10

[0,1] uni

9

p7

loadMed

t23

5

P25

[3,4] uni[3,4] uni

[2,3] uni

loadLow t19loadHigh2

[1.9,2.1] uni

t26

loadHigh1

6

regulate3
[1.9,2.1] uni

t30extraHour

[4,6] uni

8

t18

[1,11] expol

P75P50

[2,3] uni

[3,4] uni
t25

regulate4

t21

4

regulate1
[1.9,2.1] uni

p6

t27

t22

t16workHour

p1

P100

postRepair

repairDone

[2,3] uni

6

e

Fig. 1. The sTPN specification of the failure management model. IMM, DET and
GEN transitions are represented by thin bars, thick gray bars, and thick black bars,
respectively. The distributions associated with timed transition refer to the case study
analyzed in Section 4.

308 L. Carnevali et al.

to the duration of the preceding phase, while the sum of the durations of each
loop amounts to 24 h, thus modeling in both cases a cyclical daily pattern.

The failure management procedure is divided in three parts. Transition preRe-
pair represents actions taken during phase 1 (no network status modification).
The time duration of phase 1 activities can have much different characterisa-
tion depending on organisational issues or network topology in each specific
context. To illustrate the ability of the modeling and analysis technique in ac-
commodating such difference, we use here a general (GEN) transition with an
expolynomial (EXPOL) distribution over bounded support, which was derived
so as to be bounded over [1, 11] h and have an expected value equal to 3 h, and
a variance equal to 2 h2. The immediate (IMM) transition sect models the end
of phase 1 and the beginning of phase 2.

The dependence of the repair speed on the time-of-day can be modelled by
a number of parallel transitions which are alternatively enabled according to
the marking of the corresponding DET loop. In doing so, an approximation
is introduced following the same approach applied in [20]: when the time-of-
day phase changes, two possible modelling strategies lead to different results.
In the first case, the previously enabled transition is disabled and one of the
mutually exclusive ones is newly enabled (thus disregarding the time elapsed
since the enabling of the former, lengthening the total duration and leading to a
worst-case approximation). Alternatively, at the time-of-day phase change, the
previously enabled transition could be fired, thus shortening the total duration.

To restrain the impact of approximation, the repair activity is partitioned
in four steps of equal duration, in a manner somehow similar to what happens
in continuous phase approximations, where time advancement is consolidated
into discrete markings [2,21]. This is represented in the model by the chained
transitions linking places repairStarted and repairDone.

Concurrently with the repair procedure, pressure in the system is gradually
raised, thus affecting service status of various load nodes. The process, intrinsi-
cally continuous, is discretised in four phases of equal duration represented by
places P0 through P100.

The final places of the two concurrent processes enable transition unSect,
which represents the network status being reverted to normal operation as well
as the end of phase 2. Since pressure regulation is stopped when the repair
phase ends, an update function is associated with transitions t23 and t27, which
empties places P0 through P75 and puts a token in place P100.

Finally, transition postRepair models phase 3. Three absorbing places are
chained to the output of transitions sect, unSect and postRepair transitions, so
as to monitor the time elapsed from the start of the procedure to the end of each
of the three main phases.

As previously mentioned, during the repair phase pressure at some input node
is regulated (raised) in order to minimise the service impact on end users. The
final pressure to be reached after the increase is calculated by means of the fluid-
dynamic model as the minimum of two values: the minimum pressure necessary
at the supply node so that all connected load nodes experience a pressure higher

Modeling and Evaluation of Maintenance Procedures 309

than the corresponding required pressure threshold, and the maximum pressure
at the supply node so that no load node experiences a pressure higher than
its maximum tolerated pressure. By means of the exposed modelling, a factual
separation between the fluid dynamic model (whose complexity does depend
on the complexity of the studied network) and the stochastic model (whose
complexity does not) is achieved. In particular, the fluid dynamic model is used
for two different purposes:

– to calculate the pressure increase to be imposed at the supply node in order
to restore adequate pressure to all online load nodes;

– to evaluate service status at load nodes during each phase of the failure
management process.

In the latter case, it is necessary to perform a certain number of analyses de-
pending both on the load values considered (time-dependence of flow balance
at load nodes) and on the number of steps representing the pressure increase
process (time-dependence of pressure level at supply nodes). For each simula-
tion, various measures representing service levels can be calculated and used as
reward rates in the stochastic model.

2.2 Fluid-Dynamic Model

Given a set of boundary conditions, fluid-dynamic calculations are performed to
assess the network state in terms of pressures at nodes and mass flow rates in
pipes. In detail, two sets of equations are written to evaluate the mass balances
at nodes and the pressure loss along pipelines, taking pressures at supply nodes
and mass flow rates withdrawn at load nodes as inputs.

The first set of equations states that, for each node n, the signed sum of flow
rates that enter or exit from n must be equal withdrawn flow rate Qw

n , i.e.,:

∑
i∈Ient

n

Qin −
∑
j∈Iex

n

Qnj =

⎧⎨
⎩

0 if n is a passive node

Qw
n if n is a load node

(1)

where Ientn and Iexn are the sets of indexes of pipelines that enter and exit from
node n, respectively.

The second set of equations is used to calculate the pressure loss for each
pipeline m, according to the Darcy-Weisbach formulation:

δPm = f · δL

Dm
· ρV

2

2
(2)

where ρ is the gas density, V is the average gas velocity, Dm is the pipeline
diameter, and f is the Darcy friction factor calculated by means of the Colebrook
equation [10] for turbulent flows and the Poiseuille formula for laminar flows.

Combining Equations 1 and 2, a non-linear system is written and solved
through an iterative procedure based on the Newton-Raphson method.

310 L. Carnevali et al.

3 Evaluation

The model of Section 2.1 is evaluated through regenerative transient analysis
based on stochastic state classes [15,24] using the Oris tool [7,4,1].

3.1 Quantitative Transient Analysis

The solution technique of [15] supports the transient analysis of models with
multiple concurrent GEN transitions that underlie a Generalized Semi-Markov
Process (GSMP) with equal-speed timers [13,9]. The state of the underlying
GSMP is sampled after each transition firing and an additional timer called τage
is maintained to account for the absolute elapsed time. This identifies a transient
stochastic graph whose states are named transient stochastic state classes (tran-
sient classes for short), each made of a marking plus the joint support and PDF
of τage and the times-to-fire of the enabled transitions. The marginal PDF of τage
permits to derive the PDF of the absolute time at which a transient class can
be entered, enabling the evaluation of continuous-time transient probabilities of
reachable markings within a given time horizon, provided that the number of
transient classes that can be reached within that time interval is either bounded
or can be truncated under the assumption of some approximation threshold on
the total unallocated probability.

The complexity of the solution technique can be reduced in the case that the
model underlies a Markov Regenerative Process (MRP) that always reaches a re-
generation point, i.e., a state where the future behavior is independent from the
past behavior through which it has been reached. In this case, transient analysis
is limited to the first regeneration epoch and repeated from every regenerative
point, supporting the derivation of the local and global kernels that characterize
the MRP behavior [8,9,3] and enabling the evaluation of the transient proba-
bilities of reachable markings at any time through the numerical integration of
generalized Markov renewal equations.

3.2 Evaluated Measures

Each marking in the stochastic model can be associated with a reward rate
corresponding to the relevant metrics of performability. Since lack of service ex-
perienced by end-users is determined on the basis of pressure regulation status
(places P0 through P100) and load level (places highLoad, medLoad, lowLoad),
reward rates are associated to the twelve reachable combinations. In particu-
lar, performability is measured through the number of non-served nodes (either
offline or online with insufficient pressure) and non-served gas demand corre-
sponding to such nodes.

Moreover, the absorbing places in the failure management model are used to
evaluate the Cumulative Distribution Function (CDF) of the completion time of
any of the three phases, allowing the derivation of average measures.

Modeling and Evaluation of Maintenance Procedures 311

4 A Case Study

We illustrate here the gas distribution network considered in the experimental
validation (Section 4.1) and we discuss the obtained results (Section 4.2).

4.1 Experimental Setting

Figure 2 shows a topological representation of the sample gas distribution net-
work analyzed in the experiments. The network has a double-loop topology and
is made of a supply node marked as A, six load nodes marked as B through G,
and fifteen pipelines.

Operating parameters of the network components have been chosen so as to
experience different degrees of network unavailability following different pipeline
failures. In detail, three load levels are considered, and the correponding with-
drawal rates at load nodes are reported in Table 1. Moreover, each load node is
supposed to have a minimum required pressure of 20 mbar. During the regular
operation of the network, the pressure in each load node is greater than the
corresponding pressure threshold, so that all nodes are properly served.

Fig. 2. Sample gas distribution network.
The shaded nodes are supply nodes, while
the others are load nodes. The dashed pipe
is the one whose failure is considered.

Table 1. Mass flow rates of the nodes of
the gas distribution network shown in Fig-
ure 2 for three different load scenarios

Node maxLoad medLoad minLoad
(Sm3/h) (Sm3/h) (Sm3/h)

B 200 150 100
C 200 150 100
D 150 113 75
E 200 150 100
F 200 150 100
G 100 75 50

Once a failure is detected and located, the corresponding pipe is excluded
from the network and the load nodes are divided into online and offline nodes. If
the failed pipe does belong to one of the main loops, no load node will be offline,
whereas if the failed pipe is one of the radial connections from the main loops
to a load node, one ore more of such nodes will.

For failures of pipes belonging to the ring, the pressure regulation time is char-
acterized by assuming a pressure increase rate of 2 mbar/h and using the results
of the fluid-dynamic analysis which provides the minimum pressure increase ΔP
to be actuated at the supply node so that all online nodes are served.

312 L. Carnevali et al.

4.2 Experimental Results

Without loss of generality, we illustrate the process of analysis with reference
to a failure occurring at pipe R12 as an example for discussion. Note that we
deliberately focus on a failure of a pipeline that belongs to the network ring,
as such failures will leave more load nodes not served than failures of radial
pipelines and make pressure regulation a sensible choice.

Fluid-Dynamic Analysis. As a first step, a calculation is performed by ex-
cluding the failed pipe from the network and leaving every other parameter
unchanged. The pressure at each node is shown in the third column of Table 2
in the highLoad scenario. Comparing the pressure values with those in the first
column (regular operation), it can be noted that the nodes originally downstream
of the failed pipe (B and C) experience a great pressure loss due to the change
in flow patterns, whereas other load nodes suffer smaller decreases.

Table 2. Pressures at nodes during the different steps of pressure regulation and regular
operation in the highLoad scenario. Shaded cells correspond to nodes not served.

node regular P0 P25 P50 P75

A 40.0 40.0 46.0 52.0 58.0

B 38.8 0.0 0.0 2.8 9.1
C 31.1 3.6 5.5 9.4 15.6
D 21.4 6.8 11.3 16.5 22.7
E 28.1 18.1 22.9 28.3 34.5
F 31.7 22.8 27.7 33.2 39.3
G 29.7 8.1 11.0 15.5 21.7

From the values in Table 2, global metrics can be derived. Table 3 shows
the reward rates as calculated by aggregating the results of the fluid-dynamic
analysis in terms of nodes not served and demand not served.

Table 3. Reward rates from fluid-dynamic calculations

scenario P0 P25 P50 P75

number of nodes not served

highLoad 5 4 4 2
medLoad 4 2 - -
lowLoad - - - -

demand not served (Sm2/h)

highLoad 850 650 650 400
medLoad 650 400 - -
lowLoad - - - -

Modeling and Evaluation of Maintenance Procedures 313

Stochastic Analysis. As a first step, the probability of having completed each
phase of the procedure at time t (given that procedure is started at 10 a.m.)
is calculated and reported in Figure 3(a). Figure 3(b) shows the probability of
being in each of the markings corresponding to a degradation of the perceived
service quality at time t.

(a) (b)

(c)

Fig. 3. Results of the stochastic analysis: (a) probability of completion of each phase
by time t, (b) transient probability of being in a marking with lack of service at time
t and (c) expected value of nodes not served and demand not served at time t

Each peak refers to a different pressure level, solid lines representing high-
Load scenario and dashed lines corresponding to medLoad. The four peaks lie at
approximately equal distances from each other, corresponding to the duration of
the regulation step (note that the “medLoad P50” line is not shown, as it brings
no service disruption, but it can be inferred from the “highLoad P50” line). Fig-
ure 3(c) shows the expected values of the two lack of service measures, calculated
using values in Table 3 as reward rates. Thus, considerations arise on the critical
time-of-day in terms of service disruption and on the global impact of the fail-
ure, e.g., the discontinuity at 18 h corresponds to increased lack of service due
to rising load in the network, which leads to lower pressure especially for nodes
farther away from the supply station, while the area below the dashed curve
represents the expected gas amount not sold due to the maintenance procedure.

314 L. Carnevali et al.

5 Conclusions

Being a universal service, gas distribution networks represent a critical infras-
tructure with notable safety and availability issues. Their operation is cyber-
physical, as the intrinsically physical infrastructure (which is geographically
extended and follows deterministic laws) interacts with remote control strate-
gies and operational and maintenance procedure in determining the temporal
evolution of service status. Therefore, modelling and evaluation shall couple hy-
brid behaviour of continuous physical variables and stochastic timing, usually in
non-Markovian classes, with parameters depending on time-of-day such as repair
organisation responsiveness and level of gas consumption in the network. The
proposed modelling and solution approach decouples these complexities, making
stochastic timed analysis independent of the size and topology of the network
and, viceversa, allows fluid-dynamic analysis to be carried out on a finite number
of configurations. Results support evaluation of performability measures that an-
swer relevant needs for ongoing deregulation of markets for distribution utilities.

Acknowledgments. We thank Terranova for help in gaining insight of the
issues of gas distribution networks, and Regione Toscana for support within the
programme “POR CRO FSE 2007-2013” under the specific project Ernesto. We
also thank Massimo Nocentini for his contribution in the experimentation stage.

References

1. http://www.oris-tool.org
2. Bobbio, A., Horváth, A., Telek, M.: Phfit: A general phase-type fitting tool. In:
Proceedings of the International Conference on Dependable Systems and Networks,
DSN 2002, p. 543. IEEE (2002)

3. Bobbio, A., Telek, M.: Markov regenerative SPN with non-overlapping activity
cycles. In: Int. Computer Performance and Dependability Symp., IPDS 1995, pp.
124–133 (1995)

4. Bucci, G., Carnevali, L., Ridi, L., Vicario, E.: Oris: a tool for modeling, verification
and evaluation of real-time systems. International Journal on Software Tools for
Technology Transfer 12(5), 391–403 (2010)

5. Carnevali, L., Grassi, L., Vicario, E.: State-Density Functions over DBM Domains
in the Analysis of Non-Markovian Models. IEEE Trans. on SW Eng. 35(2), 178–194
(2009)

6. Carnevali, L., Paolieri, M., Tarani, F., Vicario, E.: Quantitative evaluation of avail-
ability measures of gas distribution networks. In: VALUETOOLS (September 2013)

7. Carnevali, L., Ridi, L., Vicario, E.: A framework for simulation and symbolic state
space analysis of non-markovian models. In: Flammini, F., Bologna, S., Vittorini,
V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 409–422. Springer, Heidelberg
(2011)

8. Choi, H., Kulkarni, V.G., Trivedi, K.S.: Markov regenerative stochastic Petri nets.
Perform. Eval. 20(1-3), 337–357 (1994)

9. Ciardo, G., German, R., Lindemann, C.: A characterization of the stochastic pro-
cess underlying a stochastic petri net. IEEE Transactions on Software Engineer-
ing 20(7), 506–515 (1994)

http://www.oris-tool.org

Modeling and Evaluation of Maintenance Procedures 315

10. Colebrook, C.: Turbulent flow in pipes, with particular reference to the transition
region between smooth and rough pipe laws. Journal of the Institution of Civil
Engineers (London) (1939)

11. Costa, A., de Medeiros, J., Pessoa, F.: Steady-state modeling and simulation of
pipeline networks for compressible fluids. Brazilian Journal of Chemical Engineer-
ing 15(4), 344–357 (1998)

12. Courtney, T., Gaonkar, S., Keefe, K., Rozier, E., Sanders, W.H.: Möbius 2.3: An
extensible tool for dependability, security, and performance evaluation of large and
complex system models. In: IEEE/IFIP Int. Conf. on Dependable Systems and
Networks (DSN), pp. 353–358 (2009)

13. Glynn, P.W.: A GSMP formalism for discrete-event systems. Proceedings of the
IEEE 77, 14–23 (1989)

14. Herrán-González, A., Cruz, J.D.L., Andrés-Toro, B.D., Risco-Mart́ın, J.: Model-
ing and simulation of a gas distribution pipeline network. Applied Mathematical
Modelling 33(3), 1584–1600 (2009)

15. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian
models using stochastic state classes. In: Performance Evaluation (2012)

16. Koeppel, G., Andersson, G.: Reliability modeling of multi-carrier energy systems.
Energy 34(3), 235–244 (2009)

17. Li, T., Eremia, M., Shahidehpour, M.: Interdependency of natural gas network
and power system security. IEEE Transactions on Power Systems 23(4), 1817–1824
(2008)

18. Mart́ınez-Mares, A., Fuerte-Esquivel, C.: Integrated energy flow analysis in nat-
ural gas and electricity coupled systems. In: North American Power Symposium
(NAPS), pp. 1–7. IEEE (2011)

19. Munoz, J., Jimenez-Redondo, N., Perez-Ruiz, J., Barquin, J.: Natural gas network
modeling for power systems reliability studies. In: Power Tech Conf. Proc., IEEE
Bologna, vol. 4, p. 8 (2003)

20. Mura, I., Bondavalli, A.: Markov regenerative stochastic Petri nets to model and
evaluate phased mission systems dependability. IEEE Transactions on Comput-
ers 50(12), 1337–1351 (2001)

21. Reinecke, P., Krauss, T., Wolter, K.: Hyperstar: Phase-type fitting made easy. In:
QEST, pp. 201–202 (2012)

22. Smart Grids Task Force of the European Commission. Mission and work pro-
gramme. Technical report (2012)

23. Szoplik, J.: The Gas Transportation in a Pipeline Network. In: Al-Megren, H. (ed.)
Advances in Natural Gas Technology. InTech (2012) ISBN: 978-953-51-0507-7

24. Vicario, E., Sassoli, L., Carnevali, L.: Using stochastic state classes in quantitative
evaluation of dense-time reactive systems. IEEE Trans. SW Eng. 35(5), 703–719
(2009)

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 316–327, 2014.
© Springer International Publishing Switzerland 2014

Quantification of the Impact of Cyber Attack
in Critical Infrastructures

Oleksandr Netkachov, Peter Popov, and Kizito Salako

Centre for Software Reliability, City University London, UK
{Oleksandr.Netkachov.1,P.T.Popov,K.O.Salako}@city.ac.uk

Abstract. In this paper we report on a recent study of the impact of cyber-
attacks on the resilience of complex industrial systems. We describe our ap-
proach to building a hybrid model consisting of both the system under study
and an Adversary, and we demonstrate its use on a complex case study - a ref-
erence power transmission network (NORDIC 32), enhanced with a detailed
model of the computer and communication system used for monitoring, protec-
tion and control. We studied the resilience of the modelled system under differ-
ent scenarios: i) a base-line scenario in which the modelled system operates in
the presence of accidental failures without cyber-attacks; ii) scenarios in which
cyber-attacks can occur. We discuss the usefulness of our findings and outline
directions for further work.

Keywords: Critical Infrastructures, Power Transmission Network, IEC 61850,
stochastic modelling.

1 Introduction

Security of industrial control systems (ICS) used to control critical infrastructure (CI)
has been extensively studied in the last few years by both industry and academia.
Generally, the services offered by CI are somewhat robust with respect to single com-
ponent failures of the underlying network. The reaction to multiple and cascading
failures, however, is much harder to predict. Dependencies and interdependencies are
an important source of risk and a significant factor in our uncertainty of risk assess-
ment, particularly the risk due to cascading failures in which the rate and size of loss
is amplified.

Although there are similarities between the ICS and the information and communi-
cation technology (ICT) systems, important differences between the two exist [1].
High availability and real-time response to events in industrial systems make some
defenses against cyber-attacks widely used in ICT (e.g. patching) inadequate for ICS.

The literature rarely acknowledges other differences between the ICT and ICS,
which make the detection of failures/cyber-attacks in the ICS easier to achieve than in
the ICT. The processes that an ICS controls are generally either directly observable or
reliable methods for indirect measurement exist. For instance, whether a power gene-
rator is connected to the power grid or not, is either directly observable or can be es-
tablished reliably using sophisticated software tools such as state estimators.

 Quantification of the Impact of Cyber Attack in Critical Infrastructures 317

The paper is organized as follows: In section 2 we state the problem of quantitative
risk assessment studied in the paper. In section 3 we provide a description of the
modeling framework, the approach we take to modeling cyber-attacks on ICS and a
brief description of the case study used to illustrate the approach. Section 4 summa-
rizes our findings, section 5 – the related research. Finally, section 6 concludes the
paper and outlines directions for future research.

2 Problem Statement

In the past we developed a method for quantifying the impact of interdependencies
between CI [2], which we called Preliminary Interdependency Analysis (PIA). PIA
starts by a systematic search for CI interdependencies at a fairly high level of abstrac-
tion; interdependencies which might otherwise be overlooked. In a separate study [3]
we demonstrated that although using a high level of abstraction is useful, the risk
assessment results are, in general, quite sensitive to the level of abstraction. PIA ac-
knowledges this fact via a set of refinements in model building, which invite the mod-
eller to create hybrid models of the modelled infrastructures and choose the level of
modelling abstraction that suits the specific study. The software tools developed to
support the PIA method allow the modeller to quickly build complex hybrid models
which combine: i) stochastic models of the elements of the modelled system, which
account for functional, spatial and other stochastic dependencies between these ele-
ments, and ii) domain specific deterministic models, necessary in case a high fidelity
analysis is sought. Such deterministic models, e.g. flow models, typically operate on a
subset of modelled elements.

Cyber security of ICS has been a topic of active research recently (some important
contributions are summarised in the Related Research section). Its practical impor-
tance, the need for empirical studies and the difficulties with these have been widely
recognised.

A common problem with cyber security research is that it concentrates on security
incidents in the ICT/ICS, while the real impact of successful attacks is rarely quanti-
fied. As a result, quantitative risk assessment is difficult. As we pointed out in the
introduction, while such an approach is, to some extent, justified in ICT systems (for
instance, how one assesses the impact of information theft is an open debate), with
industrial systems the real impact of a cyber incident may be relatively easy to quan-
tify. For instance, the impact of losing a generator in a power system as a result of a
cyber-attack will vary between 0, in case other generators can provide additional
power to compensate fully for the lost generator, to losses due to not supplying power
to some consumers, in case the spare power generation capacity of the other genera-
tors in the network is insufficient to meet the current power demand. PIA models are
well suited for quantitative risk assessment as they model, stochastically, both the
controlled plant and the ICS. So far, however, PIA has not been used to explicitly
address cyber security concerns. Bridging this gap is the focus of this paper. We pro-
pose to extend the PIA method by adding an Adversary model and building on the
recent work by others in this direction, e.g. the ADVISE formalism [4].

318 O. Netkachov, P. Popov, and K. Salako

3 Solution

Due to a lack of space we concentrate on describing the extension of the PIA method.
Technical details about the newly implemented simulation engine, used for resilience
assessment of our chosen case study, the NORDIC 32 system, in the presence of cy-
ber-attacks will be provided in separate publications.

3.1 The System under Study

We use a non-trivial case study of a power transmission network to demonstrate the
analysis one can undertake with the extended PIA and to evaluate how well the
method scales to realistically complex industrial systems.

Fig. 1. NORDIC 32 power system topology

The system under study is shown in Fig. 1. The system model was developed by
the FP7 EU project AFTER (http://www.after-project.eu/Layout/after/). It is based on
a reference power transmission network, NORDIC 32, enhanced with an industrial
distributed control system (IDCS) compliant with the international standard IEC

 Quantification of the Impact of Cyber Attack in Critical Infrastructures 319

61850 “Communication networks and subsystems in sub-stations”. A detailed de-
scription of the case study is beyond the scope of this paper, but a short summary is
provided below.

The transmission network consists of a large number of transmission lines which
connect 19 power generators and 19 loads. All connections of lines, generators and
links are done in 32 sub-stations. Each sub-station is arranged in a number of bays.
Each bay is responsible for connecting a single element – a line, a generator or a load
– to the transmission network.

In this case study the sub-stations are assumed compliant with IEC 61850. Fig. 2
shows an example of a sub-station. The other sub-stations have similar architecture
but may contain different numbers and types of bays. Some sub-stations may have
generators and/or loads and all connect transmission lines.

Fig. 2. An example of a sub-station compliant with IEC 61850

The sub-stations are connected via a sophisticated ICT infrastructure (not shown
for lack of space), which includes a number of control centres, communication chan-
nels and data centres. At the top of the hierarchy is a National Control Centre, which
communicates with 3 Regional control centres, which in turn monitor and control the
operation of the sub-stations in their respective regions either via direct communica-
tion channels or via channels provided by public data centres.

320 O. Netkachov, P. Popov, and K. Salako

Each bay is responsible for (dis)connecting one element from the transmission
network. This is achieved by a set of elements – relays and electronic devices1 of the
following two types – either a protection device or a control device. The function of
the protection devices is to disconnect the power elements from the transmission net-
work, e.g. as a result of overloading of a line or of a generator. The control devices,
on the other hand, are used to connect or disconnect the power elements from the
network and are typically used by either the operators in the respective control centres
or by “special purpose software” (SPS) designed to undertake some of the operators’
functions automatically.

Each sub-station has a Local Area Network (LAN), which allows the local devices
to communicate with each other. The LAN is protected from the rest of the world by a
firewall (as shown by the “brick wall” in Fig. 2). Legitimate traffic in and out the sub-
station is allowed, of course.

Each of the protection or control functions (with respect to the individual bays) is
available whenever there exists a minimal cut set of available equipment supporting
the function. A predicate defining minimal cut sets is provided with each function:
some functions are achieved using functionally redundant components, others are not.

We model the entire system probabilistically, by building a stochastic state ma-
chine for each element included in the system description. Each state machine has two
states – “OK” and “Fail”. Depending on the element type, its model in addition to a
state machine may include additional properties. For instance, the model of a genera-
tor will have a property defining the maximum output power; the model of a load
includes the power consumed as an additional property, etc. The interested reader
may find further details in [2].

3.2 Modelling Cyber-Attacks

Now we describe an Adversary model, added to the model of the system.
For the system under study, each sub-station has a dedicated firewall which iso-

lates the sub-station from the rest of the world. We assumed that an intrusion detec-
tion/prevention system (IDS/IPS) would monitor the traffic in the sub-station’s LAN.
When the IDS/IPS detects illegitimate traffic it blocks the Adversary from accessing
the assets controlled through the sub-station’s LAN.

Our study is limited to the effect of a single type of attack on system behavior: a
cyber-attack via the firewall of a sub-station. The Adversary model we developed is
adapted from a recent publication [9]. The model is shown in Fig. 3 using the Sto-
chastic Activity Networks (SAN) formalism.

This model assumes that the Adversary is initially idle (represented by the SAN
place labeled “Idle”). With some regularity, defined by the activity Attack_interval,
the Adversary launches a cyber-attack on the system by trying to penetrate the Fire-
wall of one of the 32 sub-stations defined in NORDIC-32 model. The selection of the
sub-station to attack is driven by either a uniform distribution, defined over the 32
sub-stations (“Indiscriminate attacker profile”), or by a non-uniform distribution,
defined in a way to capture the preferences of the Adversary.

1 IEC 61850 distinguishes between Intelligent Electronic Devices (IED), functions and nodes.

Nodes are responsible for implementing a specific function (i.e. protection or control) and can
involve several IED.

 Quantification of the Impact of Cyber Attack in Critical Infrastructures 321

Fig. 3. Model of Adversary applied to NORDIC 32

We chose to model the preferences of the Adversary by setting the distribution
over the set of sub-stations in such a way that the Adversary would prefer to attack
either the largest generators or the largest loads (“major targets” profile). Under this
profile we assumed that the Adversary is equally likely to switch off generators or
loads and will never attempt to switch off a transmission line. Under the current mod-
el we also assume that the firewalls of all sub-stations are equally easy/difficult to
penetrate. In fact, the SAN model in Fig. 3 is a sub-model of our Adversary model: it
does not include how our Adversary chooses a sub-station. Instead, this model shows
the steps that follow the Adversary’s initial selection of a sub-station to attack:

─ The Adversary may target each of the firewall configuration rules. The decision of
which rule to attack is modeled by the activity Firewall_attack. In Fig. 3 we assume
that there are 4 rules to choose between, which is just an example. The model as-
sumes that the rules are equally likely to be chosen by an attacker – the probabili-
ties associated with the outputs of the Firewall_attack activity are all set to 0.25.

─ Once a rule is selected (modeled by the places Rule_1 – Rule_4), the Adversary
spends time trying to break the selected rule, which is modeled by the activities At-
tack_1 – Attack_4, respectively. This effort may be successful or unsuccessful. In
the case of a failed attempt, the Adversary returns to an idle state and may launch
another attack later, likely to be on a different sub-station.

─ In the case of a successful penetration through the firewall, the model enters the
state “Penetrated”, which in turn has three alternative options for the Adversary to
proceed: to switch off a generator (in case a bay exists in the sub-station, via which
a generator is connected to the grid), to switch off a load (in case a bay exists in the
sub-station via which a consumer is connected to the grid) or disconnect a line
from the grid (selecting at random one of those controlled by the sub-station).

─ If the Adversary succeeds, she leaves the sub-station. In other words the Adversary
under this model affects at most one bay per attack. This choice is modeled by the
instantaneous activity Next_step, which returns the Adversary to the state “Idle”.

─ IDS/IPS is modeled by the activity IDS_detection, which is enabled if the model
state is “Penetrated”. This activity competes with the activities selecting which bay

322 O. Netkachov, P. Popov, and K. Salako

will be targeted by the Adversary. The Adversary may be detected before she
switches off a bay. As soon as the activity IDS_detection fires, the attack is aborted
and the Adversary is returned to “Idle”.

A successful attack may trigger further activities in the system. For instance, any
malicious switching-off of a bay may be “detected” when a new power flow calcula-
tions is run. If so, via the respective control function, an attempt is made to reconnect
those bays which have been disconnected by the Adversary.

In the presented Adversary model we assume that all timed activities are exponen-
tially distributed. We studied the effect of the rates of some of these distributions on
the selected utility function (discussed below).

4 Findings

4.1 Rewards

We were interested in measuring the effect of cyber-attacks on the system under
study. We chose to compare the behavior of a base-line model, i.e. a model without
cyber-attacks, with the behavior of the model in which cyber-attacks are enabled
(“system under attack”). For the comparison we chose as a reward (utility function)
the deviation of the supplied power, in the presence of failures and attacks, from the
known maximum power supplied of 10,940 MW. This reward has been used in the
analysis of power systems by others [9]. Other suitable candidates would be the size
of cascades as we have done in the past [3]. We compute the reward at any state-
machine event in the model and log these values during the simulations. Clearly, for
every simulation run, the value of the supplied power varies over time to form a con-
tinuous-time stochastic process. We study the following two statistics of this process:

─ The average power supplied during a simulation run. This would be lower than the
maximum power. We selected, somewhat arbitrarily, the length of a simulation run
to be the equivalent of 10 years of operation. The average over this period will vary
between simulated runs, and we look at the distribution of this average over a
number of runs.

─ The standard deviation of the power supplied during a simulation run, as a meas-
ure of the variability of the supplied power. This statistic, too, varies between the
simulation runs, and we look at the average over a number of simulation runs.

4.2 Studies

The studied system is non-trivial. It consists of more than 1500 modeling elements.
With the chosen parameterization, based on input from domain experts, we observed
a significant number (~7000 … 32,000) of events over a single simulation run. Many
of these events require power flow calculations and control optimizations, which take
considerable time to complete. As a result, a single simulation run takes approximate-
ly 5 min to complete. Obtaining results with high confidence would require a large

 Quantification of the Impact of Cyber Attack in Critical Infrastructures 323

number of simulation runs: empirically we established that with ~500 simulation runs
we obtain Relative Standard Errors (RSE) for these statistics no greater than 10%.

We completed 7 simulation campaigns which are summarized as follows:

• A base-line scenario - only accidental failures are possible and no cyber-attacks.
• A scenario with daily cyber-attacks, where substations are intelligently chosen by

the attacker. Accidental network component failures occur.
• Scenarios in which we varied the cyber-attack frequency, no accidental failures:

─ Substations are randomly chosen by the attacker. The attacks occur with differ-
ent rates: once per year, once per month, once per week or once per day.

─ Substations are intelligently chosen by the attacker and occur once per day.

4.3 Results

Our findings are summarized in the plots below.

Attacks Only Cases
The simulation results from this study are shown in Fig. 4.

The figure on the left shows the effect of frequency of attacks on the distribution of
the supplied power when accidental component failures are ignored. The two distri-
butions on the left of this plot represent the case of daily attacks. The difference be-
tween the two curves is in how the Adversary chooses a target. The left most plot
(labeled “Major Targets”) represents the case when the Adversary chooses the 5 larg-
est generators and loads with probabilities 0.5, 0.25, 0.1, 0.1 and 0.05, respectively:
the largest generator and the largest load are chosen with 0.5 probability while the
probabilities of attacking the next largest generators/loads decreases with their size.
This case, thus, represents the case of an Adversary whose objective is to cause max-
imum immediate disruption. The second curve of daily attacks (second from the left in
the plot) represents the system behavior with an Adversary who is indifferent between
the targets, i.e. each of the sub-stations is chosen at random (with the same probability
of 1/32). Clearly, the impact of such indiscriminate attacks is lower than the well
targeted attacks, which is not surprising. Note that for rare attacks (which vary be-
tween once a year and once a week) the mean of the supplied power hardly differs
from the maximum of 10, 940MW. However, when the rate of attack is increased to
one a day, we see a noticeable and statistically significant difference in the distribu-
tions and their means. We checked the statistical significance of the differences using
Kolmogorov-Smirnov two-sample test at a 1% significance-level, which confirmed
that in our model there is an ordering: increasing the frequency and sophistication of
attacks reduces the average power supplied by the network.

The plot on the right of Fig. 4 shows the distribution of the standard deviation of
the supplied power (calculated over the sample of 500 experiments representing each
of the simulated cases). Now the ordering between the cases is reversed: the daily
attacks have larger standard deviation than the cases with rarer attacks – the two plots
on the right hand side of the plot represent the two cases of “daily” attacks. The case
of “Major Targets” has the largest standard deviation. This indicates that the variation
of the supplied power is greatest when the targets are selected so as to cause the larg-
est immediate damage, i.e. in this cases the system’s behavior is the most erratic.

324 O. Netkachov, P. Pop

Fig. 4. Attacks only study: Di
power

Accidental Failures and A
Similar trends are observe
elements of the modeled sy
repaired – the state machin
from “Failed” states to “OK
losses were due to acciden
attacks.

Fig. 5. Accidental failures an

The mean and standard
Fig. 5. The ordering betwee
to the one observed earlier:
tion of the supplied power.
two aspects – less power is

pov, and K. Salako

istributions of the Mean and Standard Deviation of the supp

Attacks Cases
ed when we enabled accidental failures (see Fig. 5). T
ystem may fail randomly and if they do – will be eventua
nes of the modeling elements provide stochastic transiti
K” states. We compared the case of “No Attacks”, i.e.
ntal failures only, with the case of daily “Major Targe

nd cyber-attacks: Mean and standard deviation of supplied pow

variation of the supplied power for both cases is shown
en “No Attacks” and “Major Targets” shows a trend sim
attacks decrease the mean and increase the standard dev
In other words, the negative consequences of attacks h
supplied and the system behaves more erratically.

plied

The
ally
ions
the

ets”

wer

n in
milar

via-
have

 Quantification of the Impact of Cyber Attack in Critical Infrastructures 325

5 Related Research

Different aspects of SCADA system security have been studied extensively.
Influential reports by both the Department of Homeland Security [8] and the Na-

tional Institute of Standards and Technology (NIST) [1] provide a comprehensive
discussion of current SCADA architectures and best practice approaches for their
security.

Stochastic models have been used in the past to address, specifically, the cyber se-
curity of industrial control systems. For instance, Ten et. al [9] offer a model based on
stochastic Petri nets, adapted for cyber security on power transmission systems. The
study is similar to ours, except that Ten et. al do not provide a base line study and
primarily concentrate on cyber-attacks under a fixed model parameterisation.

The ADVISE formalism [4] offers an alternative approach to stochastic modelling
of a rational Adversary. The utility function used by ADVISE is computed based on
the preferences of an adversary and on the likelihood of an attack being detected. The
modelling approach allows for non-determinism – in terms of an outcome of a par-
ticular step in an attack – but any decision that the adversary would need to take
during the attack is driven by her preferences, defined in the model statically. The
formalism allows one to study one attacker and attack-strategy at a time; comparison
of the impact of multiple, different attackers and attack-strategies requires building
separate models and studies.

An interesting approach to modelling an adaptive adversary is developed by Marti-
nelli et al [10]. The key idea there is captured by a graph describing the steps that an
adversary could take, including “stepping back” in case of unsuccessful attack.

Nash equilibrium has recently become popular in cyber security research, e.g. [11].
The ideal of Nash equilibrium is attractive as it establishes, under fairly broad as-
sumptions, the existence of the worst consequences from cyber-attacks without hav-
ing to define, in detail, the attacks in specific contexts.

6 Conclusions

We described an approach to stochastic modelling of industrial control systems in
which both accidental failures and cyber-attacks are treated in a unified way:

─ accidental failures of the elements of the systems are modelled as stochastic state
machines which allow the modeller to chose the right level of modelling abstrac-
tion (by selecting the most appropriate state machine);

─ malicious behaviour of an Adversary (i.e. cyber-attacks) are modelled by stochastic
state machines too, and these capture the behaviour of an adversary (their knowl-
edge/preferences about the assets under attack);

─ the dependencies between the behaviour of the modelled elements – including
accidental failures and the effects of successful cyber-attacks – are modelled via a
set of additional models that are either deterministic – such as power flows – or
probabilistic – e.g. stochastic dependencies between the elements of the system.

326 O. Netkachov, P. Popov, and K. Salako

We illustrated our approach on a non-trivial case study and report on the initial
findings from a useful sensitivity analysis: we studied the effect, on system resilience,
of varying model parameters of different threats and defenses. More specifically, we
confirm that indiscriminate poorly prepared cyber-attacks will have negligible effect
while attacks launched by a highly knowledgeable adversary – one capable of target-
ing the most critical components of power systems (large generators and consumers)
– can cause significant disruption.

Our approach allows one to explore the space of possible defenses, if necessary in-
creasing the level of detail. For instance, we could explore the possibility of deploying
IDS/IPS with different coverage in the different sub-stations. One would expect that
higher coverage should be associated with assets which are highly critical, but under-
taking detailed modeling will allow one to be more precise in stating how much better
these IDS/IPS should be in order for the negative impact of cyber-attacks to be mini-
mized to an acceptable level.

We chose a simple attack to illustrate the approach. Extending the work to more
sophisticated scenarios of attacks is straightforward. Each new attack would require a
new state machine, which would define the steps of an Adversary in launching an
attack, a relatively simple task. A more interesting scenario would involve distributed
attacks by an intelligent adversary.

We envisage extending the work in a number of ways. Expanding the work model-
ing adversaries at the same level of abstraction, i.e. ignoring the specifics of the com-
munication protocols used in the ICS. A number of attack scenarios are of immediate
interest. An obvious extension of the adversary model used in this paper is one in
which the adversary may attack more than one sub-station, e.g. until she eventually
gets caught. Another scenario of interest would be to consider attacks which do not
cause harm immediately. For instance, once access to a sub-station LAN is gained the
adversary could change the thresholds of protection devices/functions. Such attacks
lead to no immediate consequences for the power system, but incorrect threshold
value may trip a line incorrectly in the future, e.g. as a result of even a minor acciden-
tal failure. When multiple protection thresholds are altered the problem may escalate
and lead to large cascades. Finally, scenarios of simultaneous and/or coordinated at-
tacks by multiple Adversaries (SWARM attacks) are important in practice.

Some cyber-attacks exploit deficiencies of the communication protocols. The PIA
approach – building hybrid models with level of abstraction tailored to the needs of
the particular study – fits the modeling task well. In a recent study [12] we recorded
evidence that the PIA style of modeling scales well to such detailed models.

Last but not least, the recent work to re-engineer the tools supporting the PIA me-
thod makes it suitable to “study the future”, i.e. for studies in which the system under
study evolves. The changes may concern the system topology (e.g. the system may
grow if the study period spans several decades), the model parameters (e.g. the effect
of ownership change /lack of investment may impact the resilience of the system)
and, not least, the cyber crime patterns may evolve over time.

 Quantification of the Impact of Cyber Attack in Critical Infrastructures 327

Acknowledgement. This work has been partially supported by the EU Framework
Programme 7 project AFTER (“A Framework for electrical power systems vulner-
ability identification, defence and Restoration”, Grant agreement no: 261788), and by
the EU ARTEMIS JU programme project SESAMO (“Security and Safety Model-
ling”, Grant agreement no: 295354).

References

1. Stouffer, K., Falco, J., Kent, K.: Guide to Supervisory Control and Data Acquisition
(SCADA) and Industrial Control Systems Security, p. 164. National Institute of Standards
and Technology (NIST) (2006)

2. Bloomfield, R.E., et al.: Preliminary Interdependency Analysis (PIA): Method and tool
support, p. 56. Adelard LLP (2010)

3. Bloomfield, R., Buzna, L., Popov, P., Salako, K., Wright, D.: Stochastic Modelling of the
Effects of Interdependencies between Critical Infrastructure. In: Rome, E., Bloomfield, R.
(eds.) CRITIS 2009. LNCS, vol. 6027, pp. 201–212. Springer, Heidelberg (2010)

4. Ford, M.D., et al.: Implementing the ADVISE security modeling formalism in Möbius. In:
The 43rd Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, Budapest (2013)

5. Sanders, W.H.: Mobius, http://www.mobius.illinois.edu/ [cited]
6. IRRIIS. Integrated Risk Reduction of Information-based Infrastructure Systems (IRRIIS)

(2006–2009), http://www.irriis.org/ [cited]
7. Hearing Before The Subcommittee On National Security, Cybersecurity: Assessing The

Immediate Threat To The United States 2011, House of Representatives One Hundred
Twelfth Congress First Session (2011)

8. US-CERT, Recommended Practice: Improving Industrial Control Systems Cybersecurity
with Defense-In-Depth Strategies, US-CERT, p. 44 (2009)

9. Ten, C.-W., Liu, C.-C., Manimaran, G.: Vulnerability Assessment of Cybersecurity for
SCADA Systems. IEEE Transactions on Power Systems 23(4), 1836–1846 (2008)

10. Krautsevich, L., Martinelli, F., Yautsiukhin, A.: Towards Modelling Adaptive Attacker’s
Behaviour. In: Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., Miri, A., Tawbi, N.
(eds.) FPS 2012. LNCS, vol. 7743, pp. 357–364. Springer, Heidelberg (2013)

11. Johnson, B., Grossklags, J., Christin, N., Chuang, J.: Are Security Experts Useful? Baye-
sian Nash Equilibria for Network Security Games with Limited Information. In: Gritzalis,
D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 588–606.
Springer, Heidelberg (2010)

12. Cavalieri, S., et al.: Quantitative Assessment of Distributed Networks through Hybrid Sto-
chastic Modelling. In: Bruneo, D., Distefano, S. (eds.) Quantitative Assessments of Distri-
buted Systems, pp. 1–39. Scrivener Publishing LLC, USA (to appear)

Probabilistic Inference in the Physical

Simulation of Interdependent Critical
Infrastructure Systems

Paolo Franchin1 and Luigi Laura2,3

1 Dept of Structural and Geotechnical Engineering,
“Sapienza” University of Rome, Via A. Gramsci 53, 00197, Roma, Italy

paolo.franchin@uniroma1.it
2 Dept. of Computer, Control, and Management Engineering “Antonio Ruberti”,

“Sapienza” University of Rome, Via Ariosto 25, 00185, Roma, Italy
laura@dis.uniroma1.it

3 Research Centre for Transport and Logistics (CTL),
“Sapienza” Università di Roma, Italy

Abstract. One of the main tasks that can be performed with a Bayesian
Network (BN) is the probabilistic inference of unobserved values given
evidence. Recently, a framework for physical simulation of critical in-
frastructures was introduced, accounting for interdependencies and un-
certainty; this framework includes the modeling of the interconnected
components of a critical infrastructure network as a BN. In this paper
we address the problem of the triangulation of the resulting BN, that is
the first step in many exact inference algorithms.

1 Introduction

A framework has been recently proposed for the performance simulation of Crit-
ical Infrastructures (CI) under seismic hazard, at the regional or urban scale [4].
This framework has been developed within a research project on seismic vulner-
ability of buildings and lifelines (SYNER-G 2012, [12]), and is thus denoted in
the following as SYNER-G framework, or simply framework. It consists of a set
of models, that can be jointly used to assess the impact of regional seismic haz-
ard on CI, in terms for instance of reduced service level, or a community, e.g. in
terms of social loss metrics such as displaced population [3].The framework has
also been employed to evaluate the probability distribution of a city’s resilience
[5], adopting the definition in Asprone et al. [1].

Inside this framework the uncertainty is described in terms of random
variables and their joint probability distribution. Probabilistic dependencies are
represented through a Bayesian Network whose nodes correspond to uncertain
elements within the modeled physical systems and hazard, as done, e.g., in [2].
However, so far, and contrary to [2] the full power of BNs has not been ex-
ploited, and the network is used only in a forward simulation: the only proba-
bilistic analysis methods currently employed are, indeed, the plain Monte Carlo

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 328–338, 2014.
c© Springer International Publishing Switzerland 2014

Probabilistic Inference in the Physical Simulation 329

and Importance Sampling, the latter enhanced with K-means clustering [6]. The
focus in the development of the framework was on the accurate description of
physical interactions and of systems’ performance in terms of service level (i.e.
describing flows in the utility and transportation networks, rather then limiting
the analysis to pure connectivity problems). The next step thus is that of adding
the capability of performing Bayesian inference on unobserved components given
evidence on others.

We recall that a BN [7] is a directed acyclic graph in which nodes represent
the problem variables (usually random variables with a finite number of possi-
ble states); and the edges represent relationships of relevance between the joined
variables. To perform efficient inference in Bayesian networks, the network graph
needs to be triangulated. Note that the quality of this triangulation largely deter-
mines the efficiency of the subsequent inference, but the triangulation problem
is unfortunately NP-hard [13], and there is a rich literature proposing heuristic
methods, as discussed in the survey of Kjærul [8]: the range of techniques varies
from simple random elimination; maximum cardinality search [14] to simulated
annealing [9]. We refer the interested reader to the already mentioned survey of
Kjærul [8] and to the more recent work of Larrañaga et al. [11], that employ a
genetic algorithm approach. A more detailed coverage of BNs and inference in
BNs can be found in the books [7,10].

Thus, motivated by the need of efficient inference in the SYNER-G framework,
in this paper we analyze the generic BN built by this framework, i.e. associated
to a Complex Infrastructure system, and provide an explicit triangulation of the
corresponding moralized graph; our analysis, therefore, forms the basis for the
explicit construction of the junction tree, that is the auxiliary graphical structure
needed by the most typical inference engines [7].

This paper is organized as follows: in the next section we describe the few
aspects of the framework that we will use as the basis of our analysis. In Section 3,
we detail our main result: the triangulation of a generic BN corresponding to a
CI system. Finally, we conclude in Section 4.

2 The Framework for Physical Simulation of Critical
Infrastructures

In this section we recall the fundamental aspects of the SYNER-G framework
for physical simulation of critical infrastructures. We refer the interested reader
to [3,5,4,12] for more details.

For the purpose of this paper we can refer to Figure 1, which depicts an in-
stance of the most basic CI system of systems, made up of two interconnected
infrastructure systems, each with two components. In particular, system 1 is
a power network with a generation node (point-like component 1) and a sub-
station (point-like component 2). The latter provides power to a pump (point-like
component 3), which is part of system 2, a water-supply network, and inputs wa-
ter into a pipe (line-like component 4) that conveys it to an end-user or demand
node. Figure 1 shows also a grid with six points and a simple seismic source of

330 P. Franchin and L. Laura

rectangular geometry. The seismic hazard model generates events with location
within one of the active sources (in the figure just one) and of magnitude con-
strained by the source properties. The model then translates the corresponding
energy in the local intensity at each grid point, from which it is interpolated
to the sites of each component (the power source, the sub-station, the pump,
the pipe centroid, etc). The state of physical damage of each component can
thus be assessed based on their vulnerability and functional analysis can be car-
ried out to determine the level of residual functionality, if any, as a consequence
of the event. Uncertainty affects all of the above elements in the framework,
from the seismic sources, the intensity felt at each site as a result of an earth-
quake, the state of components and the system performance given the physical
damage. This uncertainty is modeled as anticipated with a network of random
variables, described in in Figure 2. The figure actually shows a “superset” of the
Bayesian Network we consider in this paper: more precisely, we do not include
the third layer, i.e. the System of Systems functional model, that is regarded as
a “deterministic layer”. Figure 2 is the BN produced by the framework for the
system of systems and seismic environment in Figure 1, and is representative of
the generic BN produced by the framework. The BN has a hierarchical structure,
and three portions can be identified: the top one corresponds to the distributed
seismic hazard, the middle one to the components physical vulnerability, and
the bottom one to the systems’ (functional) models. The seismic intensity at the
grid points (six in this example) has a central role not only in the BN, but, as
we will see in the following, in the triangulation process. For the purpose of this
paper the exact meaning of each node is not relevant, only the topology of the
network is important. Nonetheless, from top to bottom, the variables are: event
magnitude M, source S, event location L, inter- and intra-event errors η and
ε, respectively (that measure deviation in the regression model that lead from
magnitude and location to local intensities), local intensities at the bedrock, at
grid points and components’ sites, Sgr and Sr, respectively, and local intensity
at the surface SS, amplification A, damage state D, rupture state B, number of
leaks NL, and, finally, performance indicators PI. The gray nodes, in any part of
the graph, represent represent epistemic uncertainty on the distribution param-
eters of other variables. More details can be found in [4]. The nodes for which
we might have evidence have been colored in yellow.

The corresponding graphical representation is shown in Figure 2, that is a
“superset” of the Bayesian Network we will consider in this paper: more precisely,
we will not consider the third layer, i.e. the System of Systems functional model,
that, for the moment, we consider a deterministic layer inside the framework.

3 Inference in the Bayesian Network Associated with the
SYNER-G Framework

In this section we describe the triangulation of the generic BN produced by the
framework. As a first step, we need to moralize the BN, by adding edges between
common parents of a given node, and then drop the orientation from the original
BN set of edges.

Probabilistic Inference in the Physical Simulation 331

Seismic Source (S)
grid point 1

grid point 5grid point 4

grid point 2

component 4
Pipe

overhead
line

dependency
edges

System 1
Electric
Power

Network

System 2
Water

Supply
System

component 3
Pump

component 2
Sub-station

component 1
Power source

end-user

Event (M,L)

grid point 6

grid point 3

Fig. 1. Basic CI system of systems made up of two interconnected systems, each with
two components

In Figure 2 we can see, as already mentioned, an example of a generic Bayesian
Network produced by the framework. We will not consider the third layer of the
figure, i.e. the System of Systems functional model ; the nodes for which we
might have evidence have been colored in yellow. From the figure is it possible
to appreciate the hierarchical structure of the model, and the fact that the grid
points have a central role not only in the BN, but, as we will see in the following,
in the triangulation process.

3.1 Graph Moralization

The graph moralization is the process of turning the directed BN into an undi-
rected graph. We refer to the BN shown in Figure 2, that is a generic Bayesian
Network produced by the framework, in order to identify the common parents
for each node, starting from the top part of the graph:

– Yellow nodes are the ones for which we might have evidence.
– The gray nodes, in any part of the graph, represent epistemic uncertainty

on the distribution parameters of other variables, and none of these nodes
have an entering edge.

– The parents of S are θS and M .
– The parents of L are θS and S.
– The parents of η are θη and S.
– The parents of the generic εi are θε and u.
– The parents of the generic Sgir , i.e. the local seismic intensity at the generic

grid point, are η, L, M and the corresponding εi.

332 P. Franchin and L. Laura

Physical
vulnerability
model

Regional seismic hazard model

Sg3rSg2rSg1r

u

η

θη θε

Sg4r

S

M

L

θS
θM

Ss1 Ss2 Ss3 Ss4Sg4

Sr1 Sr2 Sr3 Sr4A1 A2 A3
A4

θA4

θA2
θA1 θA3

D1 D2 D3

NL4

D4 B4

λ4

θF3θF2θF1 θF4

Sg5r Sg6r

ε6

ε5
ε3

ε1

ε2
ε4

θL

System of Systems
functional model

Functional
model

Functional
model

Consequence
model

PI PI

PI

Fig. 2. BN representing uncertainty in the system in Figure 1: circles represent ran-
dom variables, rectangles represent “analytical/numerical models”, arrows represent
statistical dependence among random variables or input/output to/from a model

Probabilistic Inference in the Physical Simulation 333

u

η

θη

θε

S

M

L

θS

θM

ε6

ε5

ε3

ε1

ε2

ε4θL

Sg3rSg2rSg1r

Ss1 Ss2 Ss3 Ss4Sg4

Sr1 Sr2 Sr3 Sr4A1 A2 A3
A4

θA4

θA2
θA1 θA3

D1 D2
D3

NL4

D4
B4

λ4

θF3θF2θF1 θF4

Sg6rSg4r
Sg5r

Fig. 3. Moral graph of the top part (left) and the bottom part (right) of the BN shown
in Figure 2

– The parents of the generic Sri are the four grid nodes that correspond to the
vertices of the grid element the corresponding component belongs to.

– The parents of the generic Ai is the corresponding θAi .
– The parents of the generic Ssi are the corresponding Ai and Sri.
– In case of point-like components, such as the first three components of Fig-

ure 1, corresponding to nodes D1, D2, and D3 in Figure 2, the parents of
the generic Di node are the corresponding node Ssi and θFi.

– In case of line-like components, as the fourth component of Figure 1, corre-
sponding to node D4, there is more structure: we have in this case a variable
corresponding to peak ground deformation, i.e. Sg4, that is children of node
Ss4 and, together with node θF4 they are the parents of node λ4 (rate of
failures per unit length). The parents of D4 are the nodes NL4 and B4 that
are children of node λ4.

We show in Figure 3 left and right, respectively, the top and the bottom
part of the moral graph obtained; note that we do not show the links between
the two parts that are, for each generic Sgir, a connection with η, L, M and the
corresponding εi. We will first simplify the two parts, and then we will reconnect
them in a single figure.

3.2 Triangulation

As a first step in the triangulation phase consider the moral graph corresponding
to the top part of the BN shown in Figure 2, i.e. the moral graph shown in
Figure 3 (left). Here we see that, if we follow the elimination order θM , θS , θη,
θL, and S, we are left with the graph shown in Figure 6 (left) without the need
of inserting any fill-in edge.

In the case of the bottom part of the BN shown in Figure 2, we show in
Figure 4 the elimination order of the subgraph that links intensity to damage

334 P. Franchin and L. Laura

Ss1

Sr1A1

θA1

D1θF1

Ss1

Sr1A1

θA1

D1

Ss1

Sr1A1

D1

Ss1

Sr1

D1

Ss1

Sr1 Sr1

Fig. 4. A perfect elimination order for the “intensity-damage” subgraph of a point-like
component

Ss4Sg4

Sr4 A4

θA4

NL4 D4

B4
λ4

θF4

Ss4Sg4

Sr4 A4

NL4 D4

B4
λ4

θF4

Ss4Sg4

Sr4

NL4 D4

B4
λ4

θF4

Ss4Sg4

Sr4

NL4 D4

B4
λ4

Ss4Sg4

Sr4

NL4

B4
λ4

Ss4

Sr4

Ss4Sg4

Sr4

Ss4Sg4

Sr4

λ4

Ss4Sg4

Sr4

B4
λ4

Sr4

Fig. 5. A perfect elimination order for the subgraph “below” a line-like component

for a point-like component. It is possible to see, from both Figure 3 (right) and
Figure 4, that this subgraph has a perfect elimination order. Also in the case of
a line-like component there is a perfect elimination order, as shown in Figure 5.

The application of a perfect elimination order for each component transform
the moral graph of the bottom part of the BN, shown in Figure 3 (right), into
the one depicted in Figure 6 (right). It is important to note that, in this graph,
each node corresponding to a component is a simplicial1 node, and therefore it
can be removed without adding fill-in edges. Therefore, from the original moral
graph shown in Figure 3 (right), we are left only with the grid intensity nodes.

1 Given an undirected graph G = (V,E) and a node X ∈ V , let us denote by nb(X)
the set of neighbors of X, and by fa(X) the family of X, i.e., the set of neighbors
of X plus X. A node A is simplicial if nb(A) is a clique or, equivally, if fa(A) is a
clique.

Probabilistic Inference in the Physical Simulation 335

u

η

θε

M

L

ε6

ε5

ε3

ε1

ε2

ε4

Sg3rSg2rSg1r

Sr1 Sr2 Sr3 Sr4

Sg6rSg4r
Sg5r

Fig. 6. The graphs resulting after the application of a perfect elimination order for
each of the components in the moral graphs shown in Figure 3. Note that each node
corresponding to a component is a simplicial node, and therefore it can be removed
without adding fill-in edges.

u

η

θε

M

L

ε6

ε5

ε3

ε1

ε2

ε4

Sg3r

Sg6rSg4r
Sg5r

Sg2rSg1r

Fig. 7. After some elimination both in the top and the bottom part, in the picture it
is shown the complete resulting graph to be triangulated

Now we can merge the top and bottom parts, in order to obtain the graph
shown in Figure 7, that is the base of our analysis. Note that the above approach
can be extended to any BN generated according to the framework: in particular,
the resulting generic graph will have four distinct clusters:

1. The grid intensity nodes that have links, inside their cluster,according to
their position in the grid: each node, indeed, is connected to the adjacent
nodes in the grid. Outside the cluster, each node is connected to the corre-
sponding ε node and to the L, M , η nodes.

2. The ε nodes, one for each grid node. Inside this cluster there is no link,
whilst outside each of them is connected to i) the L, M , η nodes, ii) to the
corresponding grid intensity node, and iii) the pair θε and u.

3. The pair of nodes θε and u, that are connected together and, both, are
connected to every ε node.

336 P. Franchin and L. Laura

4. The L, M , η nodes: inside the cluster they form a clicque, whilst outside, as
already mentioned, they are connected to each node of the grid and each ε
node.

Now, in order to find a optimal elimination order for this generic graph, we
first recall that we are interested not only in finding the minimal number of fill-in
edges to be added, but also that our goal is to limit the size of the maximum
clique. Therefore, we observe the following properties about the first node to be
removed from this graph:

– If we remove either θε or u, we need to turn the subgraph made of the ε
node into a complete graph, i.e. if we have n nodes (from ε1 to εn) we need
to insert n · (n− 1)/2 edges, and form a clique of n nodes.

– The same above holds for the removal of a node between L, M , and η.
– The removal of an ε node, let us say εi forces the insertion of the following

edges: the complete bipartite graph between the two sets S1 = {u, θε} and
S2 = {L,M, η}, i.e. six edges, plus two edges between Sgir and u, θε if the
node Sgir is still in the graph. Note that, after the removal of any single ε
node, the removal of any other ε node do not require the insertion of any
fill-in edge if the corresponding Sgir has been already removed.

– The removal of a grid intensity node affects only the grid intensity nodes,
since all the other neighbors of each grid intensity node, i.e. L, M , η, and
the corresponding ε node, form already a clique.

From the properties above, it follows that the elimination order for such a
generic graph is the following:

1. the nodes in the grid, according to their position (see below);
2. all the ε nodes;
3. all the remaining nodes, in no particular order since they form a clique: all

of them are simplicial nodes and, therefore, their removal do not require the
insertion of any fill-in edge.

In order to complete, we need to describe a minimal elimination order of the
nodes in a grid. Let us assume that the grid has r rows and c columns, with a
total of r · c nodes. We observe that it is not convenient to remove any internal
node, since it would leave 8 nodes with 8 edges, and therefore we would need to
add 20 fill-in edges2. Note that the removal of corner node do not require any
fill-in edge, and a subsequent removal of the node below the corner node, in the
same column, requires two edges. It is easy to see that the removal of a column
of r nodes requires 2(r − 3) fill-in edges (we do not need two edges for three
nodes: the first and the last in the column, that are corner nodes, and the last
one to be removed). And, we do not need to insert fill-in edges when we remove
the last two columns. Therefore, the overall number of fill-in edges to be inserted
is 2(r − 3) · (c− 2) ≈ 2cr, i.e. twice the nodes in the grid.

2 A clique with 8 nodes has 8 · (8− 1)/2 = 28 edges.

Probabilistic Inference in the Physical Simulation 337

Therefore, the number of fill-in edges required to triangulate the graph is the
following:

1. 2(r − 3) · (c − 2) ≈ 2cr in order to remove the nodes in the grid, according
to their position;

2. 6 to remove all the ε nodes;
3. 0 to remove all the remaining nodes, in no particular order since they form

a cliques.

It follows that the overall number of fill-in edges is approximately twice the
number of the grid nodes, and therefore it is linear in the number of the nodes
of the whole BN.

4 Conclusions

In this paper we addressed the problem of the triangulation of (the moral graph
of) a generic BN produced by the SYNER-G framework to describe uncertainty
associated with a system of interconnected CI systems subjected to seismic haz-
ard. The triangulation of a domain graph is the first step in order to be able to
propagate inference efficiently; unfortunately, the triangulation of a graph is an
NP-hard problem [13], for which several heuristics have been presented in the
literature.

In this paper we analyzed the generic BN built by this framework and pro-
vided an explicit triangulation of the corresponding moralized graph; as already
mentioned our analysis forms the basis for the construction of the junction tree,
that is the auxiliary graphical structure needed by the most typical inference
engines [7]. The algorithm is linear in the number of nodes of the BN. Future
research will look into adding the system performance nodes to the BN and
include them in the triangulation algorithm.

References

1. Asprone, D., Cavallaro, M., Latora, V., Manfredi, G., Nicosia, V.: City ecosystem
resilience analysis in case of disasters. In: Computer Aided Civil & Infrastructure
Engineering (2013) (submitted)

2. Bensi, M.T., Der Kiureghian, A., Straub, D.: A Bayesian network methodology
for infrastructure seismic risk assessment and decision support. Pacific Earthquake
Engineering Research Center (2011)

3. Cavalieri, F., Franchin, P., Gehl, P., Khazai, B.: Quantitative assessment of so-
cial losses based on physical damage and interaction with infrastructural systems.
Earthquake Engineering & Structural Dynamics 41(11), 1569–1589 (2012)

4. Franchin, P.: A Computational Framework for Systemic Seismic Risk Analysis of
Civil Infrastructural Systems. In: Pitilakis, K., et al. (eds.) SYNER-G: Systemic
Seismic Vulnerability and Risk Assessment of Complex Urban, Utility, Lifeline
Systems and Critical Facilities. Geotechnical, Geological and Earthquake Engi-
neering, vol. 31, pp. 23–56. Springer Science+Business Media Dordrecht (2014),
doi:10.1007/978-94-017-8835-9 2

338 P. Franchin and L. Laura

5. Franchin, P., Cavalieri, F.: A framework for physical simulation of critical infras-
tructures, accounting for interdependencies and uncertainty. In: 11th International
Conference on Structural Safety & Reliability, ICOSSAR 2013, New York, NY,
USA, June 16-20 (2013)

6. Jayaram, N., Baker, J.W.: Efficient sampling and data reduction techniques for
probabilistic seismic lifelines assessment. Earthquake Engineering and Structural
Dynamics 39(10), 1109–1131 (2010)

7. Jensen, F., Nielsen, T.D.: Bayesian networks and decision graphs. Springer, Berlin
(2007)

8. Kjærul, U.: Triangulation of graphs – Algorithms giving small total state space.
Technical Report R 90-09, University of Aalborg, Denmark (1990)

9. Kjærul, U.: Optimal decomposition of probabilistic networks by simulated anneal-
ing. Statistics and Computing 2, 7–17 (1992)

10. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press (2009)

11. Larrañaga, P., Kuijpers, C., Poza, M., Murga, R.H.: Decomposing Bayesian net-
works: triangulation of the moral graph with genetic algorithms. Statistics and
Computing 7, 19–34 (1997)

12. SYNER-G 2012, collaborative research project, funded by the European Union
within Framework Programme 7 (2007-2013) under grant agreement no. 244061,
http://www.syner-g.eu

13. Wen, W.: Optimal decomposition of belief networks. In: Proceedings of the Sixth
Conference on Uncertainty in Artificial Intelligence (UAI 1990), pp. 209–224.
Elsevier Science, New York (1990)

14. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing 13, 566–579 (1984)

http://www.syner-g.eu

Energy-Based Detection of Multi-layer

Flooding Attacks on Wireless Sensor Network

Cesario Di Sarno and Alessia Garofalo

University of Naples ”Parthenope”, Department of Engineering, Naples, Italy
{cesario.disarno,alessia.garofalo}@uniparthenope.it

Abstract. Ensuring cyber security on Wireless Sensor Network (WSN)
is a challenging task since nodes are devices with very limited resources.
Existing Intrusion Detection Systems (IDSs) solutions either ensure pro-
tection from attacks at one specific OSI layer, or they ensure multi-layer
protection but with more relevant computational costs. In this work we
propose a new solution which aims at detecting attacks at different OSI
layers by minimizing the number of features required to perform intrusion
detection activities on a WSN node. In this work we consider multi-layer
flooding attack performed at routing and application layers; our experi-
mental tests show that a high correlation exists between the features of
these attacks available at the corresponding layers and energy consump-
tion. This allows to use energy consumption as the only feature to detect
both the attacks even if they are performed at different OSI layers.

Keywords: Wireless Sensor Network, Intrusion Detection System,
flooding attack.

1 Introduction

Nowadays, different assets can be identified in our society whose compromisation
could have catastrophic consequences e.g. energy production and distribution,
telecommunication, water supply and others. For this reason, such assets are
classified as critical [8]. Specifically, the term Critical Infrastructure (CI) is used
to describe these assets that are essential for a society and must be available 365
days a year and 24 hours a day. Thus, CI monitoring is a very important task
to avoid disasters. CI monitoring is often performed through IT solutions so to
allow CI operators to detect anomalies which could cause failures. However, the
drawback of such solutions is that they are exposed to cyber attacks.

Wireless Sensor Network (WSN) represents a possible solution to perform
large scale monitoring of CIs. Specifically, the WSN is a collection of spatially
deployed wireless sensors of small size that allow to monitor environment chang-
ing in a collaborative way without relying on any underlying infrastructure sup-
port. The sensors of a WSN are low-price devices with limited resources in terms
of battery, memory, storage space and computational power. This implies that
classic security systems as Intrusion Detection Systems (IDSs) or complex sys-
tems that perform data correlations [9] to discover security breaches cannot be

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 339–349, 2014.
c© Springer International Publishing Switzerland 2014

340 C. Di Sarno and A. Garofalo

used as they are but they must be re-designed considering these constraints.
Due to such constraints, Intrusion Detection System (IDS) solutions on WSN
are typically designed to detect one single attack [12] [3].

In past works we proposed an IDS [6] for security analysis which was designed
considering limited resources available as a functional requirement. In such work,
only data provided at routing layer of each sensor are analyzed in order to detect
specific routing attacks as sinkhole and sleep deprivation.

In this paper we focus on multi-layer flooding attacks and on solutions useful
to detect them. In flooding attacks, a malicious node sends packets to a target
node continuously. The goal of the attacker is to deplete the resources avail-
able on the node e.g. in order to deny the service provided by that node. By
multi-layer we mean that flooding attacks can be performed at different layers
of OSI model, so this security breach cannot be detected through knowledge of
data belonging to a single OSI layer. In this work two types of flooding attacks
are considered: path based Denial of Service (DoS) and sleep deprivation at-
tacks, which are respectively performed at application layer and routing layer.
In a path based DoS attack, e.g. random data are produced and fed to nodes
through a specific path. The purpose of sleep deprivation attack is to hinder
nodes from going in sleep mode and saving energy. The consequence is that the
low energy resources available on WSN nodes are soon consumed and the service
offered by attacked nodes is no longer available. The purpose of our analysis is
to select the approach that allows detection of multi-layer flooding attacks by
using a low number of features to describe these attacks. Finding the solution
to this problem is a relevant task since nodes of a WSN are devices with limited
resources. The analysis performed highlighted that one specific feature can be
chosen among others since it contains relevant information about flooding at-
tacks independently of the specific layer the attack is launched. Such feature is
the battery consumption profile of WSN nodes; experimental results show a sig-
nificant correlation between variations of battery consumption and multi-layer
flooding attacks.

The paper is organized as follows: in Section 2 we discuss the state of the
art of current IDSs solutions for WSNs used to perform intra-layer and multi-
layer security analysis; in Section 3 we present approaches that can be used to
detect path based DoS and sleep deprivation attacks; in Section 4 we show the
experimental results.

2 Related Work

Many IDSs were proposed in literature to improve WSN cyber-security. We can
divide them in two categories: 1) IDSs designed to perform security analysis on
data gathered from a single OSI layer e.g. routing layer, physical layer and so
on; 2) IDSs designed to perform multi-layer data correlation. IDSs belonging to
the first category provide protection against a small set of cyber attacks since
they are not capable of detecting multi-layer attacks and single-layer attacks; the
latter occurs when the layer attacked is different from the layer monitored by the

Energy-Based Detection of Multi-layer Flooding Attacks on WSN 341

IDS. However, single-layer IDSs are more suitable for devices with limited re-
sources as WSN motes. Instead, IDSs belonging the second category (multi-layer
IDSs) provide a better protection against cyber-attacks that involve different lay-
ers; on the other hand, such IDSs require more resources to perform cross-layer
data correlations.

In [7], the authors present a hybrid model of IDS. Specifically the IDS is
composed of two main components: Central Agent and Local Agent. Each Lo-
cal Agent runs on a different WSN node and it is designed to perform local
security analysis by using data available on that node. Also, Local Agent is pri-
marily designed considering the limited resources of motes. The Central Agent
runs on a server and it performs intensive computation using the ‘alerts’ re-
ceived from Local Agents to validate cyber-attacks. The IDS proposed in [7] is
designed to detect two cyber-attacks: sinkhole and bogus packet. These attacks
are performed at routing layer, so the IDS analyzes data available at the routing
protocol considered, i.e. Collection Tree Protocol (CTP) [11]. The authors do
not analyze the possibility to use techniques to optimize the amount of data
sent from Local Agents to the Central Agent. Instead, techniques as feature se-
lection can be useful because a huge amount of energy cost in WSN is related
to data transmission. The authors do no provide considerations about energy
consumption of solution proposed.

In [6] [10] the authors improve the capabilities of the IDS whose architecture
has been detailed in [7]. The purpose is to improve the detection capabilities and
reduce unnecessary communications and computations related to the generation
of security alerts by Local Agents, since such communications are highly energy-
consuming for WSN motes. Also the Central Agent is equipped with a machine
learning technique in order to improve the attack detection. Several machine
learning approaches are already in use for ensuring ICT security [5]; specifically,
in [6] [10] Decision Tree is used to perform data classification. Also in this case,
the IDS proposed works only with data available at routing layer, specifically
considering Ad Hoc On Demand Distance Vector (AODV) [16] routing protocol.
Experimental tests show the effectiveness of the proposed solution to detect two
attacks that affect routing protocol: sinkhole and sleep deprivation.

Authors in [4] discuss a new multi-layer IDS for WSN. Authors assume a
hierarchical cluster-based network topology that divides the network into several
clusters; each cluster uses a cluster head in order to communicate with the
Base Station (BS), i.e. the component that typically performs computation on
data collected from the WSN. IDS proposed correlates information provided
by different OSI layers of the node (i.e. network, MAC and physical layers) in
order to discover new security breaches. The authors focus only on the detection
capabilities, so they do not propose any technique to reduce the additional energy
consumption due to multi-layer correlation.

Multi-layer correlation is also used in Wireless Mesh Networks. In [17] the
authors propose a multi-layer based anomaly detection model designed to be
equipped on each node. The model proposed is based on machine learning algo-
rithms to estimate profiles of nodes and perform intrusion detection through such

342 C. Di Sarno and A. Garofalo

profiles. Specifically, data provided by MAC layer and network layer are used
to train different classifiers in order to discover cyber-attacks i.e. probe flooding
attack, grey hole attack and black hole attack. Experimental tests show that de-
tection capabilities of multi-layer based IDS overcome the ones in classic network
IDS. However, the study does not provide details about energy consumption of
their solution.

In [13] the authors propose a system that allows to analyze information pro-
vided by different layers of the OSI model in order to detect flooding attack
performed at any layer i.e. application, network, MAC or physical. The authors
do not show which features are selected and used at each layer to detect the
flooding attack. Also, details are not provided about energy consumption. Our
approach also considers flooding attack performed at both application and rout-
ing layer. However, we are interested in finding correlations between features
of attacks at such layers; specifically, our purpose is to minimize the number of
features necessary to perform intrusion detection of multi-layer flooding attacks.

3 Single-Layer and Multi-Layer Detection Approaches
for WSN

In this section we focus on the study of techniques that allow to detect multi-layer
flooding attacks with a low number of features. The attacks considered are: path
based DoS (performed at application layer) and sleep deprivation (performed at
routing layer). The solutions proposed are discussed with reference to a hybrid
IDS model for WSN as shown in Figure 1 and detailed in [6]. We briefly sum-
marize the main components of the IDS architecture shown (Local Agents and
Central Agent). Local Agents are deployed on each mote and their task is: to
gather data provided by a specific layer of OSI model e.g. routing layer; to pro-
cess gathered data to perform security analysis. In particular, the features that
describe a specific attack and their security thresholds are identified in off-line
mode. Then, Local Agents use the thresholds previously identified to perform
online security analysis. When a Local Agent raises a security ‘alert’ this is
sent to the Central Agent. Central Agent performs a complete analysis using

Fig. 1. IDS Architecture

Energy-Based Detection of Multi-layer Flooding Attacks on WSN 343

both ‘alerts’ raised by node and additional information requested to/provided
by neighbors of the potentially malicious node. Finally, the Central Agent gen-
erates an ‘alarm’ if an attack is successfully detected, otherwise the ‘alert’ raised
is discarded. The alarm contains useful information about the security breach
occurred, so the ‘alarm’ itself has to be stored in a secure storage [2] together
with the chain of related ‘alerts’ that caused the ‘alarm’. The purpose of a secure
storage is to provide forensic evidence of the intrusion.

In order to let the IDS shown be able to detect multi-layer flooding attacks,
different approaches can be chosen, each of them having different advantages
and disadvantages. In the first approach, each WSN node uses two Local Agents
to monitor application and routing layer. In this way each Local Agent estimates
its own features and security threshold values to detect the flooding attack at
the corresponding OSI layer monitored. Then, each Local Agent analyzes the
data of its specific layer, and it checks in real-time that the thresholds previ-
ously established are not exceeded. If a threshold is exceeded, an ‘alert’ is sent
to Central Agent. This approach is effective to detect multi-layer flooding at-
tacks but there are some disadvantages that limit this solution. The nodes of
a WSN are devices with limited resources in terms of memory, CPU, energy
and storage space, instead Local Agents perform resource-consuming activities;
e.g. memory space is necessary to store its own code and temporary results of
features computation; CPU slots are required to perform jobs related to security
analysis; the usage of the antenna is necessary to transmit the ‘alert’ to Cen-
tral Agent. Moreover, e.g. the usage of two Local Agents to protect two layers
involved by cyber attacks increases the usage of resources required with respect
to the former solution with a single Local Agent. This has a negative impact on
battery consumption. We emphasize that most of the battery consumption in a
node is due to the communication module (dozens or hundreds of mA).

Another solution to detect multi-layer flooding attack is the following. Each
node is equipped with a single Local Agent that analyzes data provided by both
application and routing layers. In this way the Local Agent can use data gathered
by both layers to detect flooding attacks. Also a feature selection algorithm can
detect redundant data provided by different layers that can be discarded. This
can reduce the number of features that must be monitored to detect multi-layer
flooding attacks. Another advantage of this approach is that the Local Agent
can transmit ‘summary frames’ to the Central Agent which contain informa-
tion about both layers monitored. This solution allows a reduction of battery
consumption with respect to a solution that computes all of the features of the
layers monitored, however still a high number of features has to be computed
in order to detect multi-layer flooding attacks with respect to the single-layer
solution.

The last solution analyzed and chosen in this paper is to use a Local Agent
which monitors features relevant to the attacks considered and independent of
the specific layer the attack is performed at. For instance, in the case of multi-
layer flooding attack, a relevant feature may be the energy consumption on the
node. This is because a generic flooding attack can be considered layer indepen-

344 C. Di Sarno and A. Garofalo

dent, i.e. it is characterized by a malicious node that sends packets to a target
node continuously. Often these packets do not have a specific purpose and they
can also be malformed; however, packets received must be processed before be-
ing discarded by the node even if they contain replayed or malformed data, so
energy consumption is affected by such operations in any case.

The idea proposed in this work is to use the battery consumed by each node
as the only feature to be monitored to detect multi-layer flooding attacks. In
particular, each Local Agent can detect the anomalous behavior of the node using
a single feature, thus ensuring a lower energy and resources consumption with
reference to approaches previously described. At the same time, the detection
accuracy is not decreased since the Central Agent validates the anomaly detected
by the Local Agent by requesting additional information. With respect to the
solution with one Local Agent monitoring two different OSI levels, the approach
proposed is lighter in terms of computational resources because it is based on
one Local Agent per node that analyzes the values of one feature i.e. battery
consumption. A lower number of computations also implies a battery-saving of
the node.

4 Testbed and Experimental Results

An experimental testbed was simulated through Network Simulator v.3 (NS-
3)[14]. In Table 1 the operating conditions implemented are described. In the first
test a typical operating condition of WSNs was implemented e.g. environmental
monitoring; in this scenario, each node performs environmental measurements
within an area to be monitored. Measurements obtained by nodes are periodi-
cally sent to the BS which gathers those data for monitoring purposes. Typical
scenarios of this kind of activities are viticulture and bridge monitoring [1] [15].
In [1] [15] authors show that a dozen of nodes are required to monitor the global
area. Path based DoS and sleep deprivation attacks were also implemented in
NS-3, so to reproduce two different attack scenarios which affect different OSI
layers. So, two simulations were obtained and in each of them the network is af-
fected by just one of the mentioned attacks; as stated before, our purpose was to
test whether flooding attacks at two different layers can be detected by making
use of the knowledge of just one parameter, specifically the battery consumption
of the node.

Table 1. Testbed settings

Network Simulator NS-3[14]
Number of nodes simulated 12
Test 1 Environmental monitoring

Path based DoS attack (t≈840 [s])
Test 2 Sleep deprivation attack (t>0 [s])
Nodes coverage area 400mx300m
Routing Protocol AODV

Energy-Based Detection of Multi-layer Flooding Attacks on WSN 345

(a)

(b)

(c)

Fig. 2. Data packets profile, available charge and battery consumption profile on a
WSN node under path based DoS attack

346 C. Di Sarno and A. Garofalo

In Figure 2 the results of the simulation under path based DoS attack are
shown, where a useful feature to detect this attack is the number of data packets
flowing through a node. In Figure 2(a) the data packets flowing through an
attacked node of the testbed described is shown with respect to the expected data
for the specific task of the node (in our testbed we consider the environmental
monitoring as described before where from t≈840 [s] a path based DoS attack is
launched periodically on the attacked node). In Figure 2(b) the corresponding
available battery charge of the node is shown instead. In Figure 2(c), the same
battery level is shown in terms of battery consumption. Path based DoS attack
does not target the battery consumption, however as we can see in figure the
attack directly affects the remaining energy available on the node. In Figure
2(a), at 0 < t < 840 [s] the node is not under attack. Under this condition, the
average battery consumption is 0.857%/hour (the battery is expected to reach
full discharge in less than 5 days). From t≈840 [s] the node is attacked and
so the average battery consumption increases to 4.435%/hour (the battery is
expected to reach full discharge in less than 1 day). The attack shown in Figure
2(a) can easily be detected by a single-layer IDS only if that specific layer is
monitored. Instead, the attack cannot be detected by an IDS which e.g. is only
monitoring information at routing layer at the moment the attack is occurring
since information in Figure 2(a) is not available to the IDS. As shown in Figure
2(b), it is possible to detect instead a path based DoS attack also by monitoring
the battery consumption on the node. This is even clearer from 2(c), where
the energy consumed by the node is clearly very similar to the data profile in
Figure 2(a). To prove the similarity of such information, the correlation between
information collected in Figure 2(a) and in Figure 2(c) was estimated. Results
are shown in Table 2.

Table 2. Correlation Matrix between features shown in Figure 2(a) and Figure 2(c)

No. data packets Battery consumption
No. data packets 1 0.78
Battery consumption 0.78 1

Similarly, results of sleep deprivation attack simulation are shown in Figure
3, where the average number of routing messages and the energy consumption
are shown respectively in Figure 3(a) and Figure 3(b). The average battery
consumption under this attack is 1.130%/hour (the battery is expected to reach
full discharge in less than 4 days). As discussed for previous tests, also in this
case a single-layer IDS e.g. monitoring only the application layer can only prevent
the path based DoS attack as shown in Figure 2, but it would not be able to
detect sleep deprivation as relevant information for this attack are available at
routing layer. Sleep deprivation attack could be detected instead by a single-
layer IDS placed at routing level which monitors the average number of routing
messages. However, the energy consumed by the node also provides a very similar
information about the ongoing attack. Thus, in both the experiments shown the

Energy-Based Detection of Multi-layer Flooding Attacks on WSN 347

(a)

(b)

Fig. 3. Average routing messages and battery consumption on a WSN node under
sleep deprivation attack

battery consumption is a significant feature to detect any of those attacks, as
also shown by the correlation matrix in Table 2. An IDS could then monitor
only the battery consumption and be able to detect multi-layer flooding attacks.

5 Conclusions

In this paper we focused on reducing the number of features required on WSN
nodes to detect multi-layer flooding attacks. In fact, WSN nodes are devices
with limited resources so intrusion detection activities should be as light as pos-
sible in order to be suitable on such devices. Experimental tests were performed
through network simulator NS-3 to detect such features with respect to two
flooding attacks launched at different layers, specifically path based DoS attack
at application layer and sleep deprivation attack at routing layer. The two exper-
iments performed clearly show that the same, single-layer IDS could not detect
both sleep deprivation and path based DoS attacks by monitoring information
available only at one specific layer. Energy consumption was found instead to be

348 C. Di Sarno and A. Garofalo

a significant feature to detect both attacks; this result allows to reduce the com-
putational effort of intrusion detection architectures to be deployed on WSNs
for this type of attacks.

In the future we plan to test such solution on Local Agents running on WSN
nodes; our purpose will be to deploy one Local Agent per node where energy
consumption is the only feature for local detection of multi-layer flooding at-
tacks and one global Central Agent which validates the detection activities of
Local Agents. Also, we plan to estimate the detection accuracy of such Intrusion
Detection System.

Acknowledgments. This work has been partially supported by the TENACE
PRIN Project (n. 20103P34XC) funded by the Italian Ministry of Education,
University and Research.

References

1. Sensors Mag - Smart Viticulture Project in Spain Uses Sensor Devices to Harvest
Healthier, More Abundant Grapes for Coveted Albarino Wines (February 24, 2014)

2. Afzaal, M., Di Sarno, C., Coppolino, L., D’Antonio, S., Romano, L.: A resilient
architecture for forensic storage of events in critical infrastructures. In: 2012 IEEE
14th International Symposium on High-Assurance Systems Engineering (HASE),
pp. 48–55 (October 2012)

3. Bhattasali, T., Chaki, R., Sanyal, S.: Sleep deprivation attack detection in wireless
sensor network. CoRR, abs/1203.0231 (2012)

4. Boubiche, D.E., Bilami, A.: Cross layer intrusion detection system for wireless
sensor network. International Journal of Network Security & Its Applications 4
(2012)

5. Camastra, F., Ciaramella, A., Staiano, A.: Machine learning and soft computing
for ict security: an overview of current trends. Journal of Ambient Intelligence and
Humanized Computing 4(2), 235–247 (2013)

6. Coppolino, L., D’Antonio, S., Garofalo, A., Romano, L.: Applying data mining
techniques to intrusion detection in wireless sensor networks. In: 2013 Eighth Inter-
national Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PG-
CIC), pp. 247–254 (October 2013)

7. Coppolino, L., D’Antonio, S., Romano, L., Spagnuolo, G.: An intrusion detection
system for critical information infrastructures using wireless sensor network tech-
nologies. In: 2010 5th International Conference on Critical Infrastructure (CRIS),
pp. 1–8 (September 2010)

8. Department of Homeland Security. What is critical infrastructure?
9. Ficco, M., Coppolino, L., Romano, L.: A weight-based symptom correlation ap-
proach to sql injection attacks. In: Fourth Latin-American Symposium on De-
pendable Computing, LADC 2009, pp. 9–16 (September 2009)

10. Garofalo, A., Di Sarno, C., Formicola, V.: Enhancing intrusion detection in wireless
sensor networks through decision trees. In: Vieira, M., Cunha, J.C. (eds.) EWDC
2013. LNCS, vol. 7869, pp. 1–15. Springer, Heidelberg (2013)

11. Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection Tree Proto-
col. In: Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems (SenSys 2009) (November 2009)

Energy-Based Detection of Multi-layer Flooding Attacks on WSN 349

12. Hsu, K., Leung, M.-K., Su, B.: Security analysis on defenses against sybil attacks
in wireless sensor networks

13. Khan, S., Loo, K.K., Din, Z.U.: Cross layer design for routing and security in multi-
hop wireless networks. Journal of Information Assurance and Security 4, 170–173
(2009)

14. National Science Foundation and Planète group. ns-3 (2012),
http://www.nsnam.org/ (last accessed November 28, 2012)

15. Hoult, N., Wu, Y., Wassell, I., Bennett, P., Soga, K., Middleton, C.: Wireless
sensor networks for infrastructure monitoring: Radio propagation. Technical report,
Computer Laboratory & Department of Engineering. University of Cambridge

16. Perkins, C., Royer, E., Das, S.: RFC 3561 Ad hoc On-Demand Distance Vector
(AODV) Routing. Technical report (2003)

17. Wang, X., Wong, J., Stanley, F., Basu, S.: Cross-layer based anomaly detection in
wireless mesh networks. In: Ninth Annual International Symposium on Applica-
tions and the Internet, SAINT 2009, pp. 9–15 (July 2009)

http://www.nsnam.org/

Towards a Non-intrusive Recognition of

Anomalous System Behavior in Data Centers

Roberto Baldoni1, Adriano Cerocchi2, Claudio Ciccotelli1, Alessandro Donno1,
Federico Lombardi1, and Luca Montanari1

1 Cyber Intelligence and Information Security Research Center,
“Sapienza” University of Rome,
Via Ariosto, 25, Rome, Italy

2 Over Technologies, Rome, Italy
{baldoni,ciccotelli,lombardi,montanari}@dis.uniroma1.it,

cerocchi@overtechnologies.it, ale.dnn@gmail.com

Abstract. In this paper we propose a monitoring system of a data cen-
ter that is able to infer when the data center is getting into an anoma-
lous behavior by analyzing the power consumption at each server and
the data center network traffic. The monitoring system is non-intrusive
in the sense that there is no need to install software on the data cen-
ter servers. The monitoring architecture embeds two Elman Recurrent
Networks (RNNs) to predict power consumed by each data center com-
ponent starting from data center network traffic and viceversa. Results
obtained along six mounts of experiments, within a data center, show
that the architecture is able to classify anomalous system behaviors and
normal ones by analyzing the error between the actual values of power
consumption and network traffic and the ones inferred by the two RNNs.

Keywords: monitoring, failure prediction, dependability, critical infras-
tructure, data centers, power consumption, network traffic, non-intrusive,
black box.

1 Introduction

Data centers represent the continuously-growing core infrastructure of every dig-
ital service and a basic pillar of our economy. Thus it is imperative to increase
their resiliency to failures of internal components like switches, wires, servers,
storage etc in order that the failure of one or a few components will not have
a major degradation on the performance and on the availability of the software
services hosted by the data center. Assuming that components can fail unex-
pectedly during service operation, to increase such resiliency there is the need of
advanced monitoring system at data center scale that are able to infer if some-
thing is going wrong in order to take appropriate actions at due time. Almost
all such monitoring systems are developed as intrusive software in the sense that
they need to install an agent on each monitored system, sharing resources with
the monitored system. Apart of the disturbance that agents can provoke to the

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 350–359, 2014.
c© Springer International Publishing Switzerland 2014

Towards a Non-intrusive Recognition of Anomalous System Behavior 351

monitored system, this approach imposes a large usage of human resource to in-
stall and to keep updated the monitoring agents with the consequent explosion of
operative cost. Thus a suitable approach to datacenter monitoring should mini-
mize the deployment and management costs being also agnostic with respect to
applications running in the data center. Agnosticness can be achieved by using
a black-box approach to monitoring.

For black-box monitoring we mean the monitoring system can only have ac-
cess to external health indicators such as: temperature, humidity, network flows,
power consumption. In a previous work [5] we considered network traffic ex-
changes among the data center servers and their power consumption showing
the there is a sharp correlation between these two metrics. In this paper we ex-
ploit this result in order to detect an anomalous behavior of data center servers.

Thus we present NiTREC, a non-intrusive monitoring architecture that takes
as input data center network traffic and the aggregate of servers’ power con-
sumption. The network traffic is used to infer data center power consumption
and vice versa. Thus NiTREC is able to recognize any deviation of the data
center behavior by evaluating the error between inferred values and actual val-
ues. Two Elman Recurrent Networks (RNNs) are used in Nitrec to infer the
aggregate power consumption and data center network traffic.

In order to assess NiTREC capabilities, we did an extensive experimental
evaluation in a real data center owned by the Italian Ministry of Economy and
Finance. After an accurate training of the RNNs, we show that NiTREC is able
to recognize deviations from the normal system behavior with a high level of
accuracy. We also compare accuracy obtained by each of the two RNNs.

2 Background

To better understand the architecture functioning, some details about non-
intrusive monitoring and about Artificial Neural Networks are required. After
these details, NiTREC architecture is presented.

Non-intrusive Monitoring. An intrusive approach to monitoring relies on in-
stalling software probes on each single monitored component (e.g., blade servers).
The management cost of the monitoring system (installation, configuration,
etc.), in terms of human and economic resources, in such complex environments
can be excessive or even prohibitive for many organizations. Conversely, a non-
intrusive approach does not require to install software on each server. Instead, it
relies on a small number of hardware probes properly deployed leading to more
affordable management costs. For this reason a non-intrusive approach is often
an appealing solution, to be deployed together to legacy monitoring systems.

We considered two quantities that can be monitored without installing soft-
ware on observed systems: network traffic and power consumption. Network
traffic can be monitored directly at the network switches level, using network
sniffers deployed in strategic positions of the data centers. Indicators like packet

352 R. Baldoni et al.

rate, bandwidth, message size can be in this way easily computed. Power con-
sumption can be monitored by deploying very precise energy meters, in order
to solve the problem due to the fact that blade servers-based systems aggregate
the consumption. Active power, Reactive power and phase displacement can be
measured.

Artificial Neural Networks. An Artificial Neural Network (ANN) is a machine
learning computational model capable to approximate any non-linear function
of its input, widely used for pattern recognition and forecasting. ANN are struc-
tured as a weighted interconnection system of neurons spread in levels, where
the input level contains the neurons corresponding to the features, the output
level contains the neurons with the estimated resulted values and in the middle,
in order to improve the prediction accuracy, one or more hidden levels could be
insert. The weights of each neuron interconnection are tuned by a learning al-
gorithm, generally based on gradient-descent as the Backpropagation, the most
popular one [19]. Time-series forecasting, in particular for power electric load, is
a well-known problem often addressed with ANNs [11, 13, 7].

Our aim is to exploit the ANN capabilities to infer real-time power consump-
tion starting from network traffic observation and viceversa: to infer network
traffic starting from power consumption measurement. The core concept that
made this possible is the correlation among the two metrics found in [5].

3 NiTREC Architecture

The architecture that we present here has been named NiTREC, Non-inTrusive
deviation Recognizer Exploiting Correlation. It is designed to monitor in a non-
intrusive way a single enclosure of a datacenter, to learn the correct system
behavior and to recognize deviations from that. Considering the advantages of
having a non-intrusive system to monitor and enhance resiliency of a critical
infrastructure data center, we designed and implemented the NiTREC architec-
ture so as to measure and to correlate network data and power consumption in
real time, using artificial neural networks. NiTREC is able to recognize devia-
tions from the correct system behavior after an initial phase of training. The
architecture is depicted in Figure 1. The whole architecture lives inside a cen-
tralizer, an ordinary computer or a blade server, collecting measurement from
the network traffic and the power consumption probes. It takes in input (i) n
streams of network packets1, directly produced by n probes (network sniffers
that capture packets from the switches of the observed system) and (ii) a stream
of power consumption data from the smart-PDUs (that measure with high pre-
cision the power consumption of the monitored enclosure) developed by Over
[1]. The architecture produces in output alerts as soon as the monitoring sys-
tem recognizes deviations from the correct enclosure behavior. Three modules
compose the architecture, a description of them is now provided:

1 In the well-known pcap format.

Towards a Non-intrusive Recognition of Anomalous System Behavior 353

MergeCAP

Centralizer

pcap stream 1

pcap stream 2

pcap stream n

Statistics

Smart-PDU Power data Stream

Network
Statistics
Calculator

Smart-PDU

PCAP
stream AlertsANN

Inferential
Engine

...

Fig. 1. NiTREC, a non-intrusive deviation recognizer exploiting correlation between
power consumption and network traffic

MergeCAP a software module that takes in input n streams of captured packets
and gives in output a single network stream opportunely merged2.

Network Statistics Calculator a software module that takes in input the network
stream and, according to a set of parameters, produces in real-time indicators
(e.g., message rate, bandwidth, message size, message rate per physical machine).
The indicators are grouped in tuples and produced in real-time with a given fre-
quency, for instance, one tuple per second. This led to have a snapshot of the
observed system per second, for example, if we consider message rate, bandwidth,
tcp messages, average message size, we would have a tuple, like the following,
per second:< sec : 3; 4387msg/s; 14042896bps; 2632tcp msgs; 400byte > mean-
ing that during the third second of observation there have been 4387 messages, a
mean bandwidth of 14042896 bit per second, 2632 tcp messages and an average
message size of 400 bytes.

ANN Inferential Engine a software module that using indicators tuples received
from the previous module and power consumption data, correlates them and
according to an implementation of artificial neural network, triggers timely alerts
if it recognizes deviations from correct system behavior. The ANN Inferential
Engine is a crucial part of the architecture, which requires an accurate learning
phase in order to build a knowledge base regarding the observed system, more
details are provided in Sec. 4.

4 Experimental Analysis

We conducted a six months long experimental session along with Sogei s.p.a., a
company of Italian Ministry of Economic and Finance (MEF) that manage the
IT of the ministry. In particular we deployed the NiTREC architecture in order
to monitor a single enclosure of one of the data centers of MEF. For this initial

2 Merging network traces is a solved problem, several tools are available. A synchro-
nization of the probes is required e.g., a NTP server.

354 R. Baldoni et al.

part of the work, we collected traces for off-line processing only. Note that all the
probes were passive with respect to the monitored system and connected to each
other through a switch external to the data center. Therefore, the monitoring did
not introduce additional traffic or delays in the monitored system.Please refer
to [5] for details about probes deployment and dataset creation.

4.1 Testbed and Dataset

The data center is a medium-size facility, featuring 80 physical servers; 250 vir-
tual servers; 20 network devices; 8 security devices; more than 50 different Web
Applications; 2 Storage Area Network with more than 6 TB of disk space; more
than 1000 internal users and more 80.000 external managed single users;We mon-
itored a single enclosure that embeds 5 blade servers, 40 virtual machines, 4 net-
work switches3. Each blade server has 24 cores and 64 GB of RAM. We recorded
a mean packet rate around 2000 pps, with spikes from 10000 to 25000000 pps
while the active power consumed is between 1550 and 1600 watts. The dataset
created is composed by approximately 2.5 TB of pcap network traces and power
consumption data, representing the behavior of the monitored servers from a
network and power consumption point of view, during the period 31 July 2013
- 31 January 2014.

4.2 Neural Networks Implementation and Details

For this work we used Encog 3.2.0 [2] as machine learning framework to employ
two Elman Recurrent Networks, namely: RNN1, which is designed to infer power
consumption having packet rate as input and RNN2, which is designed to infer
packet rate having power consumption as input. In particular, RNN1 and RNN2
are both 4-5-1 networks: 4 inputs nodes, a single hidden layer of 5 nodes and the
output node. RNN1 takes as input packet rate, day, hour and power consumption
at the last-seen instant. It produces as output the inferred power consumption.
RNN2 takes as input power consumption and traffic rate at the last-seen instant,
day and hour. It produce as output the inferred packet rate.

Both the RNNs are trained using Resilient Backpropagation algorithm[12]
as long as the choice of the input node variables is due to a hybrid approach
between time-series and features, as suggested in [4].

4.3 Preliminary Results

The idea of the experimental campaign is to evaluate the ability of the approach
in recognizing deviations from normal behavior of the observed system. In par-
ticular, we evaluated two cases: estimating power consumption from packet rate
and viceversa. In order to do that, we used RNN1 and RNN2 after a learning

3 Network traffic has been monitored through 4 hardware probes attached to the
switches.

Towards a Non-intrusive Recognition of Anomalous System Behavior 355

phase. We used a small part of the dataset (10 days) as training set and a differ-
ent part (3 days) as validation set. Note that the validation phase is performed
off-line, using traces, but is completely equivalent to a physical deployment of the
architecture, in detection mode. Not having the possibility to inject faults in the
observed system4, during the validation, we introduced a deviation in the metric
used to infer the other and we observed how the deviation reflects on values
inferred by the RNN. The idea behind this approach is that a deviation (e.g., an
unjustified augment of power consumption), may reveal a faulty behavior of soft-
ware or hardware components. We found the percent error δ = 100×| v−vinferred

v |
where vinferred is the inferred value and v is the actual value to be an effective

metric to detect deviations. When the percent error exceeds a given threshold δ̂,
we trigger an alert. The threshold δ̂ has been chosen in order to maximize the
F-measure (see below) but more complex approaches can be considered. Figure
2 and Figure 3 graph the behavior of active power, packet rate and percent error
during time. The chosen threshold of percent error has been depicted and the
samples over this that have been highlighted as well. In the first case, represented
in Figure 2, we deployed RNN2, which infers packet rate starting from power
consumption. In the first part of the graph, until 12:00, the ability of RNN2 in its
inference task can be appreciated. After that, we started to progressively increase
the power consumption at 12.00 causing an increase of the percent error. Even
small unattended increases of power consumption quickly cause an augment of
alert, due to augments of percentage error. In the second case (see Figure 3)
we deployed RNN1, in order to infer power consumption starting from network
traffic. Also in this case, during the first part of the graph (until time 12:00) the
ability of RNN1 its inference task can be appreciated, which is better respect
the RNN2 case. After that, we started to inject spare packets incrementally. The
inferred power consumption started to deviate from the measured power, thus
augmenting the percent error, as soon as the packet rate reached 10000 pps.
In this case a more relevant deviation is required in order to have appreciable
variation in the inferred value. Note that, according to the low error obtained
during the period of normal functioning, an augment of the error can fairly be
assumed as an uncommon situation.

In order to better evaluate the accuracy of the proposed approach in both
cases, we computed the metrics reported in Tab. 1 and Tab. 2, where Ntp (num-
ber of true positives) indicates the number of alerts correctly produced, i.e.,
during a deviation from the correct system behavior; Ntn (number of true nega-
tives) is the number of samples of percent error that correctly are under the alert
threshold, i.e., during correct system behavior; Nfp (number of false positive) is
the number of alerts incorrectly produced, i.e., during correct system behavior
and finally Nfn (number of false negatives) is the number samples that incor-
rectly are under the alert threshold, during a deviation from the correct system
behavior.

4 The system is not a test environment but a real Critical Infrastructure datacenter
enclosure in production.

356 R. Baldoni et al.

Fig. 2. RNN2 results. Packet rate is inferred with a good accuracy until 12:00, where
the power consumption has been progressively increased causing an augment of the
error. Some false positives can be seen before 9:00. The first true positive alert has
been triggered at 12:00.

Fig. 3. RNN1 results. Power consumption is inferred with a better accuracy until 12:00,
w.r.t. RNN2. After that, spare packets have been injected in the network trace causing
an augment of the error. Some false positives can be seen before 11:00. The first true
positive alert has been triggered at 12:40.

Towards a Non-intrusive Recognition of Anomalous System Behavior 357

Table 1. RNN1 accuracy

Precision: p =
Ntp

Ntp+Nfp
85.34%

Recall (TP rate): r =
Ntp

Ntp+Nfn
87.45%

F-measure: F = 2× p×r
p+r

86.38%

FP Rate: f.p.r. =
Nfp

Nfp+Ntn
3.00%

Table 2. RNN2 accuracy

Precision: p =
Ntp

Ntp+Nfp
90.67%

Recall (TP rate): r =
Ntp

Ntp+Nfn
71.42%

F-measure: F = 2× p×r
p+r

79.90%

FP Rate: f.p.r. =
Nfp

Nfp+Ntn
1.47%

In both cases we can see a very low false positive rate and a F-measure of at
least of 79.9%, attesting promising future developments of the approach.

5 Related Work

Monitoring based only on network traffic is recognized to be non-intrusive and
black-box, meaning that (i) no application-level knowledge is needed to perform
the monitoring [18, 3, 6], and (ii) the monitor mechanism does not install software
on the monitored system [6]. In [6] CASPER is presented, a non-intrusive and
black-box approach to monitor air traffic control systems. It uses network traffic
only in order to represent the system health so as to recognize deviations thus
triggering failure predictions. At the best of our knowledge, this is the only
work that is both non-intrusive and black-box. Other monitoring systems that
adopt a black-box approach are Tiresias [18] and ALERT [14], however they are
intrusive as they require monitoring software installed on the monitored system.
For what concern power consumption monitoring in data centers, studies have
been conducted in the context of power management and energy efficiency [10,
16, 17]. None of these works, however, concerns dependability and resiliency. In
[8] and [15] network traffic is monitored with the aim of consolidating traffic flows
onto a small set of links and switches so as to shut down unused network elements,
thereby reducing power consumption. However, there is no attempt to correlate
network traffic and power consumption. In [9] a study on correlation between
power consumption data and utilization statistics (CPU load and network traffic)
is presented. This work shows a strong correlation between power consumption
and CPU load of desktop computers. Our previous work [5] investigates the
correlation between power consumption and network traffic to support the design
of a non-intrusive black-box failure prediction system for improving data center
resiliency. The paper reports the results of a period of experimentation conducted
in one of the data centers of the Italian Ministry of Economic and Finance (MEF)
during which a large dataset of network traffic and power consumption data is
collected and analyzed, thus showing that correlation between these data exists
in many periods. To the best of our knowledge this was the first work that
explored the possibility to exploit correlation between power consumption and
network traffic to support dependability of a system. In this work we used the
same dataset.

358 R. Baldoni et al.

6 Conclusions and Future Work

This work is a first step in exploiting in a non-intrusive way the correlation
between network data and power consumption to recognize and predict compo-
nent failures in data centers. During a preliminary 6-months long experimental
campaign we created a dataset (in a completely non-intrusive way) with respect
to the data center’s components (network and servers). The dataset allowed us
to train two neural networks in order to estimate power consumption observing
network traffic and vice versa. We found that the neural networks can be used
to effectively detect anomalous system behavior looking at deviations from data
center network traffic and an aggregate of power consumption of each data cen-
ter component. A deviation from the behavior, learnt during the training phase,
can be used to trigger alerts. As future work, we need to reduce the level of
granularity of the study by looking at correlation on the behavior of a single
data center component. In this paper we are only considering correlation be-
tween aggregate measures, namely network traffic and power consumption. We
are finally developing more complex alert techniques in order to provide a more
effective detection with respect to the threshold mechanism used in this work.

Acknowledgment. This work was partially supported by the PRIN project
TENACE. The authors would like to thank the Italian Ministry of Economy
and Finance for allowing the experimentation in their data centers.

References

[1] Over s.r.l. website, http://www.overtechnologies.com
[2] Encog Machine Learning Framework (2008),

http://www.heatonresearch.com/encog/

[3] Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.:
Performance debugging for distributed systems of black boxes. SIGOPS Oper.
Syst. Rev. 37, 74–89 (2003)

[4] Aniello, L., Baldoni, R., Bonomi, S., Lombardi, F., Zelli, A.: An Architecture for
Automatic Scaling of Replicated Services. To appear in the Proceedings of the
2nd International Conference on NETworked sYStems (NETYS), vol. 5 (2014)

[5] Baldoni, R., Caruso, M., Cerocchi, A., Ciccotelli, C., Montanari, L., Nicoletti, L.:
Correlating power consumption and network traffic for improving data centers
resiliency. ArXiv e-prints (May 2014)

[6] Baldoni, R., Lodi, G., Montanari, L., Mariotta, G., Rizzuto, M.: Online black-
box failure prediction for mission critical distributed systems. In: Ortmeier, F.,
Lipaczewski, M. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 185–197. Springer,
Heidelberg (2012)

[7] Frank, R.J., Davey, N., Hunt, S.P.: Time series prediction and neural networks.
Journal of Intelligent and Robotic Systems 31(1-3), 91–103 (2001)

[8] Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee,
S., McKeown, N.: Elastictree: Saving energy in data center networks. In: Proceed-
ings of the 7th USENIX Conference on Networked Systems Design and Implemen-
tation, NSDI 2010, p. 17. USENIX Association, Berkeley (2010)

http://www.overtechnologies.com
http://www.heatonresearch.com/encog/

Towards a Non-intrusive Recognition of Anomalous System Behavior 359

[9] Kazandjieva, M., Heller, B., Levis, P., Kozyrakis, C.: Energy dumpster diving.
In: SOSP 2009: Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles. ACM, New York (2009)

[10] Lefurgy, C., Wang, X., Ware, M.: Power capping: A prelude to power shifting.
Cluster Computing 11(2), 183–195 (2008)

[11] Park, D.C., El-Sharkawi, M.A., Marks, R.J., Atlas, L.E., Damborg, M.J., et al.:
Electric load forecasting using an artificial neural network. IEEE Transactions on
Power Systems 6(2), 442–449 (1991)

[12] Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: The rprop algorithm. In: IEEE International Conference on Neural Net-
works, pp. 586–591. IEEE (1993)

[13] Senjyu, T., Takara, H., Uezato, K., Funabashi, T.: One-hour-ahead load forecast-
ing using neural network. IEEE Transactions on Power Systems 17(1), 113–118
(2002)

[14] Tan, Y., Gu, X., Wang, H.: Adaptive system anomaly prediction for large-scale
hosting infrastructures. In: Proc. of ACM PODC 2010, pp. 173–182. ACM, New
York (2010)

[15] Wang, X., Yao, Y., Wang, X., Lu, K., Cao, Q.: Carpo: Correlation-aware power
optimization in data center networks. In: 2012 Proceedings IEEE INFOCOM, pp.
1125–1133 (March 2012)

[16] Wang, X., Chen, M.: Cluster-level feedback power control for performance opti-
mization. In: IEEE 14th International Symposium on High Performance Computer
Architecture, HPCA 2008, pp. 101–110 (February 2008)

[17] Wang, X., Wang, Y.: Co-con: Coordinated control of power and application perfor-
mance for virtualized server clusters. In: 17th International Workshop on Quality
of Service, IWQoS, pp. 1–9 (July 2009)

[18] Williams, A.W., Pertet, S.M., Narasimhan, P.: Tiresias: Black-box failure pre-
diction in distributed systems. In: Proceedings of IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2007), Los Alamitos, CA, USA (2007)

[19] Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting With Artificial Neural Networks:
the State of the Art. International Journal of Forecasting 14(1), 35–62 (1998)

Toward Resilience Assessment in Business
Process Architectures

Richard M. Zahoransky, Thomas Koslowski, and Rafael Accorsi

University of Freiburg, Germany
{zahoransky,koslowski,accorsi}@iig.uni-freiburg.de

Abstract. This paper investigates options to access the resilience of
business process architectures, thereby connecting the two hitherto un-
connected areas of Business Process Management and Information Sys-
tem Resilience. The overarching goal is to provide for robust and reliable
business process execution even under adverse and unexpected situa-
tions. Specifically, this paper focuses on one particular resilience indica-
tor as a basis for assessment, namely time. This is because timeliness
and time behavior of activities in business processes directly mirror ef-
fects and impacts of a changing environment on the business process. We
develop an approach based on process mining to analyze the event logs
generated during the execution of processes which extract probability
distributions of a process’s time behavior to model the effects of occured
events. A case study substantiates the applicability of the approach.

1 Introduction

Resilience engineering is an important aspect of dependability, safety and secu-
rity in complex Information Systems (IS) in general [7,14], and Business Process
Management (BPM) in particular [4,11,13]. Instead of investigating operational
risks based on subjective or historical probabilities of occurrence (focus on the
cause of events), resilience shifts attention to the consequences [8,13]. Resilient
systems accept and manage variability rather than trying to preventively miti-
gate or reduce it from the outset.

Among the various resilience indicators, time behavior of a business process
shows its reaction on different type of events and threats, as they delay and slow
down the processing [9]. A less sensitive process architecture will show smaller
delays in its execution even upon high fluctuation of resources. In this paper we
focus on the timeliness and time behavior of processes for resilience assessment,
addressing in particular single processes.

Notwithstanding that resilience is getting much attention in related disciplines
such as Computer Science [20] or Safety Engineering [12], there is an apparent
incongruity between the level of interest paid by business managers and the at-
tention that BPM scholars have given to resilience [4,14]. BPM promises valuable
development towards organizational resilience as a supportive part for applying
preventive, containment and mitigation measures in the face of challenging con-
ditions [4]. However, the majority of recent work remains on a pure conceptual
level while techniques with actual implementation and validation are rare [14].

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 360–370, 2014.
c© Springer International Publishing Switzerland 2014

Toward Resilience Assessment in Business Process Architectures 361

Concretely, this paper investigates the use of Process Mining (PM) for re-
silience detection. PM stands for automatable techniques to analyze business
process models and their execution traces (logs) [1]. We developed a framework
on which data from the PM is further processed on, allowing the extraction of
resilience indicators. Focusing on compliance checking, we report on a case study
for the manufacturing sector. The investigation follows the guidelines of [18] for
conducting and reporting case studies. In particular, we used interviews to ob-
tain: firstly, the shape of a non-trivial order-to-cash workflow; secondly, the set of
concrete resilience requirements derived from the set of global business process
security requirements [5]; and thirdly, the usual execution characteristics.

Our overarching goal is to bring together IS resilience and BPM, thereby
casting resilience engineering into the context of enterprise systems. To this end,
we present a method to model the amount of resources required as a stochastic
function and to sum up the need for the whole business process, including its
branches. We focus on the temporal aspects of the process and, as a resilience
indicator, investigate its time behavior. In our calculations, probability distri-
bution functions (PDF) are used instead of using classical numerical values.
Using distribution functions open up the possibility of considering and measur-
ing uncertainty and to compensate for unknown future risks and behaviors. Our
method is not limited to standard distributions as in many of the previous works.
Using PM, we extract the resource distribution as PDF for each activity.

In the case study used to illustrate the approach, we show that modeling the
time behavior of a workflow as stochastic variable makes it possible to grasp
the concept of resilience by providing a mathematical framework to deduce re-
silience indicators. The ultimate goal is to enable organizations to automatically
identify and assess the interdependence of assets and processes, thereby lifting
the approach to process architectures.
Paper structure. Section 2 elaborates on the research design, providing the basis
of our contribution. Section 3 and 4 focus on the case study, whereas Section 5
compares our contribution with related work.

2 Method and Research Design

We employ the guidelines of [18] to conduct the case study. A case study is the
most appropriate research methodology for this setting, as its primary objec-
tive is exploratory, with a flexible design, and collecting qualitative (instead of
quantitative) data. Concretely, the case study encompasses the following steps:

1. Case study design: the objectives and objects of the case study are defined.
This is given below.

2. Preparation for data collection (Sec. 3).
3. Evidence collection: carry out the analysis (Sec. 3.2).
4. Analysis of collected data (Sec. 3.3).

The “case under study” is the analysis of a real-life business process model
and the log file it produces. The process comes from a medium sized company
in Germany. Fig. 2 depicts the formalization of the process.

362 R.M. Zahoransky, T. Koslowski, and R. Accorsi

To present our approach we use a scenario based on an example workflow.
This section is structured in three parts. First an introduction to the case is
given. Then the requirements are stated. Third, the example is introduced. At
the end the scenario is applied and analyzed.

2.1 Time Behavior of the Workflow - Calculus

The time distribution for the whole workflow can be calculated out of the time
behavior of each activity. In our case the following rules apply:

Sequential Activities. Two activities with known duration pdf behave like
one activity whose pdf is the convolved pdf of both activities. The convolution
of two functions f(t) and g(t) is defined as

(f ∗ g)(t) =
∫

f(t)g(x − τ) dτ (1)

For concrete functions, the integral becomes a sum.
The convolution can be seen as the weighted average of the two functions at

moment t. The resulting function will have an area of 1, given the area under
both functions is also 1. This means, if two pdfs are merged, the result will again
be a pdf. As a rule of thumb, the variance increases and the mean gets shifted.

Conditional Activities. Convolution does not work for conditional activities.
Depending on the outcome of the branch the one or the other path is taken.
For computation the following procedure is done: First, each individual path is
calculated. Second, each path is weighted with the probability that it is taken
(w0 · · · wi). This number can be taken from process mining, it can be estimated
or 1

2 for each path, if unknown. After this, the function must be normalized.
The area beneath the function must sum up to one. This is done by dividing the
resulting function by its integral.

(f ∨ g)(t) = w0 · f(t) + w1 · g(t)∫ ∞
0 w0 · f(t) + w1 · g(t) dt

(2)

2.2 Resilience in Workflows

Different aspects must be taken into account to be able to measure the ability
of a workflow to endure stress and to recover from it. According to [6], resilience
may be defined as

R =
∫ t1

t0

1 − Q(t) dt

where Q(t) is the quality of the system at time t. t0 is the time where a shock
took place and time t1 after recovery of the shock. This resembles the resilience
triangle [6]. In our case Q(t) can be considered the on-time delivery reliability.

Toward Resilience Assessment in Business Process Architectures 363

That is the probability that the desired outcome is reached until the deadline is
due. This calculates to:

Q(t) = P (duration = t) =
∫ t

0
pdf(t) dt = cdf(t) (3)

where pdf is the resulting time distribution of the whole workflow (see Figure 1
where also deadline d is given). In the figure, the quality value Q(t) is the shaded
area below the curve. After a shock, this probability (hence, Q(t)) decreases and
recovers again over time when new resources are built or are restored. cdf is the
resulting cumulative probability distribution. The “R4 framework” developed
by [6] points out four aspects of resilience, all of which can be used with our
proposed approach:

Fig. 1. Calculation for the quality of the given Workflow. Visualized as the shaded area
below the pdf function from 0 to d.

Robustness is the capability to withstand a given level of stress without sig-
nificant loss of function. It describes how sensitive the system is to shocks in
its current state.

Redundancy is the extend to which elements, systems, or other units are sub-
stitutable.

Resourcefulness is the ability to diagnose problems and to initiate solutions
by monitoring all resources and information.

Rapidity describes the property of the system to react fast to changes in its
environment.

We plan to answer the following questions: Firstly, what guarantees can be made
to the costumer regarding the duration of production? The answer will not be a
simple time span but a more sophisticated calculation resulting in a pdf (work-
flow’s completing time and related likelihood). Each activity is assigned a prob-
ability distribution used for calculations. It is later described how to obtain such
distribution. Secondly, how resilient is the workflow against disruptive effects?
If single activities fail, how does it affect the behavior of the whole workflow?

364 R.M. Zahoransky, T. Koslowski, and R. Accorsi

For this we evaluate the impact of each single activity on the whole workflow.
This enables us to simulate the effect when some paths of the workflow are un-
available. To state probability values for the whole workflow, PM may be used
to measure the individual time consumption of single activities. This enables us
to calculate the overall workflow restrains. This is given in the next section. The
PM returns historic data for instance running time. This data already includes
instances where the completion of the workflow was not optimal due to different
occasions, including malfunctions, external shocks or other difficulties. Instead
of estimate each risk individual, they are extrapolated from the PM.

3 Case Study

To provide a basis for analyzing our framework within a realistic setting, an
order-to-cash workflow by a medium-sized company in Germany was chosen.
The example workflow is depicted in Figure 2. In our case we want to asses the
resilience and the delivery reliability of this workflow even under turbulent situ-
ations. It is taken to evaluate the introduced approach for resilience assessment.

3.1 Example Workflow

The workflow is triggered when a customer orders a machinery, or anything
that needs assembly. We assume that the workflow generates a trace inside a
log. By utilizing this log by PM, we extract the timing information needed for
our calculation. The log must contain enough information for the PM to work
[3,13] (such as start and end time, activity ID and instance name). The timing
behavior can still be extracted, even if the workflow model itself is not known.

Start

Incoming
order

pre-
produced?

NO

Print
assembly

plan

YES

Obtain
components

Create parts
list

Acquire
parts

in stock?

NO

Fill out
order

Assemble
components

YES

Obtain from
warehouse

Stage from
warehouse

Send order
On arrival:

inspect

Assemble
parts

Invoicing
and

Dispatch

Final
inspec�on

Print
component

plan

End

Fig. 2. Example workflow used in this paper. Each activity is denoted a probability
density function that it will finish at the given time, see Table 1.

3.2 Evidence Collection

For each activity a PDF is extracted out of the process logs. Some standard ac-
tivities take only short times with a low variance while customized or interrupted
activities exhibit longer duration with high variability. This variability or risk is

Toward Resilience Assessment in Business Process Architectures 365

Table 1. Time behavior of each single activity in the example workflow

Activity pdf: (μ, σ) or (p, b) for γ-distribution
Incoming order log-normal(0.2,0.4)
Print component plan ϕ(0.5, 0.1)
Print assembly plan ϕ(0.6, 0.15)
Create part list γ(0.9, 0.7)
Acquire parts γ(0.8, 0.8)
Fill out order log-normal(0.1, 0.5)
Send order γ(1, 0.5)
Arrival and inspection log-normal(0.25, 0.5)
Obtain from warehouse log-normal(0.07, 0.3)
Stage from warehouse γ(0.8, 0.3)
Assemble parts log-normal(1.3, 0.4)
Assemble Components log-normal(0.4, 0.4)
Final inspection ϕ(1, 0.4)
Invoicing and dispatch ϕ(0.8, 0.3)

modeled with a great variance in the time behavior distribution regardless the
cause of delay.

In order to asses the resilience of a workflow we need information about the
workflow’s completing time. This might be a hard deadline or a point in time
after which the service or product is no longer of value. In our example the
requirement is that it must finish within a given number of days. The historic
data from PM would than be used to calculate the probability that the current
workflow model will end within this deadline. As this is an example workflow,
no historic data is available. Hence, the time response of the single activities are
described by common distribution. A short overview of the single activities are
given:

3.3 Simulation Settings and Analysis

After applying the rules from Section 2.1, Figure 3 shows the resulting pdf
and cummulative probability distributions (cdf) for the time behavior of the
whole workflow. The continuous line is the result for the overall workflow. The
remaning lines symbolize the individual paths within the workflow. The left
figure shows the probability density scaled to one for each path. The right figure
shows the overall probability that the workflow will end until the given time -
the cdf. Again, for the overall workflow and for each single path of the workflow.
The workflow has almost a 90 % change of finishing within 10 days under the
assumption that the fastest path is taken but less than 10 % if the longest path
is taken. If all OR-Splits are considered equally, the overall workfow still has a
change of about 50 % to finish in that time.

It shows the probability distribution function of the duration time of the
workflow. The higher its value (probability density) at time t, the higher is
the probability that it will end at this specific point in time. Figure 3(a) shows

366 R.M. Zahoransky, T. Koslowski, and R. Accorsi

(a) Calculation of the overall time distri-
bution for the example workflow and for
each individual paths. Note: Each pdf’s
area is scaled to 1.

(b) Cumulative time distributions of the
overall workflow and for each individual
paths

Fig. 3. pdf calculation of the example workflow

the pdf for the overall workflow and for each of the possible paths of the workflow.
For readability, the single pdfs are not weighted with their occurrence probability.
Instead they are normalized so that the area accumulates to one.

Integrating the single pdf yields to the depicted cdfs in Figure 3(b). Its value
shows the probability that the workflow will end until time t.

In this section, the results from the case study are discussed and evaluated.

4 Evaluation and Discussion

For our workflow, we calculated the following pdf by using the calculus from
Section 3.3 as seen in Figure 1. We assume a certain deadline to depict our
methodology. The calculated probability density function of the example work-
flow is also verified by a simulation of the workflow. In the simulation each
activity is mapped to a random generator implementing the denoted probability
density. The activities are started according to the structure of the workflow.
Each path of an OR-decision is traversed with a probability of 1

2 . 100 million
runs where simulated for the result depicted in figure 4.

Our evaluation shows 98.98 % probability, that the workflow is finished within
18 days even under disruptive events. As discussed previously, this value is not
based on optimal or worst case scenarios as in previous works but a realistic
estimate based on historic data that already includes adverse impacts. As seen
in Figure 3(a), the greatest change for a delay is when parts are not prepro-
duced and need to be ordered. The additional information can be extracted out
of the time behavior: The robustness of a worklfow is expressed by the slope of
the pdf. The steeper it is at the negotiated delivery time, the more susceptible
the workflow is to external influences. In Figure 1, robustness can be expressed
as the density of the pdf at the projected delivery time (near to zero). If an inter-
ruption happens, the workflow would take slightly longer. However, the overall

Toward Resilience Assessment in Business Process Architectures 367

Fig. 4. Simulation of the needed time (100 Million runs, red bars) in the example
workflow and calculated values (blue line)

probability of the intended completing time would not change significantly as
the shattered area will not decrease much. The redundancy of a workflow can
be calculated as the difference between actual probability of delivery compared
to the negotiated delivery reliability. A higher success rate indicates a surplus
on resources that increase the redundancy.

The quick and accurate information about the observed workflow further en-
hances the resourcefulness and rapidity of the IS: The calculations grant the
possibility to react early to situations that are no longer covered by the workl-
fow’s robustness or redundancy. Furthermore, our framework gives the possibility
to compare different variations of the same workflow. This is useful for work-
flow engineers which start to redesign a given workflow. For each evolved design,
they can compare robustness and redundancy. This also increases rapidity as the
redesign process is more efficient and target-oriented.

It is now possible to rearrange the activities based on the learned numbers to
further increase the operative viability (e.g. by creating the parts list in paral-
lel to creating the components list). Despite the fact that it would slow down
the best case, this modification could decrease the time required when the up-
per path is taken. It would therefore increase the systems capacities to absorb
negative effects as the upper part is essentially involved in the delayed cases.
The time behavior and thus the resilience levels of the re-designed workflow are
instantaneously available as no new data is required.

5 Related Work and Addressed Shortcomings

Research about time behavior of workflows started in the middle of the 1970s.
Ramchandani introduced timed petri nets [17] which he used to model the time
response of asynchronous pipelined processors. Later, this method got adapted

368 R.M. Zahoransky, T. Koslowski, and R. Accorsi

and used by Tsai et al. [19] to model the behavior of workflows. Both have in
common that they use only earliest possible end time and latest finish time of
an activity to represent time constraints. Eder et al. provided a similar approach
to calculate the timeliness of a workflow or if a cancellation of optional activities
is required to reach the deadline [10]. The novelty of this approach is, it could
be used as a monitoring approach on life processes. Also, Pozewaunig et al.
suggested an extension to the PERT model to cooperate time issues [16]. Their
model includes an additional timing aspect with two cases for each activity: worst
and best case, each denoting the first possible start time and the latest possible
start time of an activity. Although these simplification make it easy to calculate
and describe a workflow, it is not well suited when discussing about resilience.
Currently, methods are available to use process mining techniques to predict the
cycle time of a workflow and to tell when a certain case will end. This is done for
example by van Dongen et al. in [9]. In this work, non-parametric regression of
data records in event logs are used to estimate the remaining procession time of
a running instance. In [2] the same question is addressed. A transition system is
built to model the time behavior and to answer, if a given workflow will end in a
given time-span. Also in that work, an implementation for the ProM toolbox is
presented. Another way of dealing with temporal aspects of workflow is done by
Pika et al. in [15]. They identified a set of Process Risk Indicators (PRI) which
intend to capture the potential of delayed process executions.
Despite an undisputed value of existing works, a wide range of limitations for
resilient BPM assessment exist:

Most approaches use parametric descriptions of time such as start/end time
or best/worse case. Moreover, while some of todays approaches see time as a
stochastic process, they often consider only Gaussian distributed values. Even
the regression based method does only output single values as a possible re-
maining execution time and does not supply the user with a probability density
function (pdf) for the remaining time. However, resilience strongly depends on
the behavior between extrema (best case, worse case).The information on how
the system reacts to changes in the environment lies within these two extreme
boundaries (e.g. graceful degradation). The aspect of resilience can only be dis-
cussed when detailed behavior information of a workflow is given so that possible
changes on a workflow model can be simulated accurately to deduce resilience
key indicators. The here presented approach also gives the opportunity to test
at which probability the workflow will end at which time through calculating
the cumulative distribution function (cdf). Our method also makes a monitor-
ing approach possible. When, during an active instance more information of
the workflow are known, the estimation is recomputable and yields in a bet-
ter forecast which can again be expressed as cdf so that a decisionmaker can
efficiently judge the current instance in terms of availability, discrepancies and
capable-to-promise aspects. Depending on the risk-appetite of a company the
order promise can be evaluated at discretionary points and the method will re-
turn a success ratio for this point. By providing a fine grained probability value
instead of providing only the information that the workflow will be delayed, our

Toward Resilience Assessment in Business Process Architectures 369

methods yields the possibility to estimate how much the workflow is delayed and
at which time the delayed workflow will most likely finish. Our approach does
not depend on the classification of PRI to make forecasts. Instead, by using PM
on single activity basis, all risks that already occurred get encompassed and used
for estimation calculations. It is also possible to use the extracted information
for finished, single activities in non-finished instances.

6 Outlook and Conclusion

The proposed approach uses PM to create probability distributions on time be-
havior of worklfows. Instead of relying on an experts view who gauges the possi-
ble risk according to her experience, PM can help and automate this part. The
resulting time probability provides an overall resilience estimation. Repeating
this method yields in even more accurate results and finally enables a moni-
toring approach for resilience assessment during runtime. Our approach is not
dependend on an overall workflow as each activity is considered on its own. This
brings the advantage that the process log does not need to identically match the
workflow, as long as the single activities correspond. A remodeled workflow can
thus be simulated and compared to the original one by using the same process
log. This comparison can be on different resilience dimensions to support workl-
fow designers to improve existing workflows. During execution of a workflow the
current resilience level can be monitored and countermeasures can be initiated
on run-time if the level drops.

In the future, we intend to empirically evaluate the effectiveness of the PM
data with our interview partners in practice. This comparison will allow us to
evaluate both, the usability and the relative benefits of our approach compared
to manual exception handling. Moreover, our introduced method is not limited
to evaluating timing behavior. Depending on the input functions the method
can be extended to estimate economic impacts of a workflow. For instance in a
more complex setup, the functions could be plotted against each other, resulting
in a cost-dependent time behavior. This enables a new and throughout visibility
of a workflow’s resilience on run-time.

References

1. van der Aalst, W.: Process Mining – Discovery, Conformance and Enhancement of
Business Processes. Springer (2011)

2. van der Aalst, W.M., Schonenberg, M., Song, M.: Time prediction based on process
mining. Information Systems 36(2), 450–475 (2011)

3. Accorsi, R., Stocker, T., Müller, G.: On the exploitation of process mining for
security audits: the process discovery case. In: Proceedings of the ACM Symposium
on Applied Computing, pp. 1462–1468. ACM (2013)

4. Antunes, P., Mourão, H.: Resilient business process management: Framework and
services. Expert Syst. Appl. 38(2), 1241–1254 (2011),
http://dx.doi.org/10.1016/j.eswa.2010.05.017

http://dx.doi.org/10.1016/j.eswa.2010.05.017

370 R.M. Zahoransky, T. Koslowski, and R. Accorsi

5. Atluri, V., Warner, J.: Security for workflow systems. In: Gertz, M., Jajodia, S.
(eds.) Handbook of Database Security, pp. 213–230. Springer (2008)

6. Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O’Rourke, T.D., Reinhorn,
A.M., Shinozuka, M., Tierney, K., Wallace, W.A., von Winterfeldt, D.: A frame-
work to quantitatively assess and enhance the seismic resilience of communities.
Earthquake Spectra 19(4), 733–752 (2003),
http://earthquakespectra.org/doi/abs/10.1193/1.1623497

7. Butler, B.S., Gray, P.H.: Reliability, mindfulness, and information systems. MIS
Quarterly 30(2), 211–224 (2006)

8. Caralli, R.A., Allen, J.H., Curtis, P.D., Young, L.R.: Cert resilience management
model, version 1.0 (2010), http://www.worldcat.org/oclc/668434211

9. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction:
When will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM
2008, Part I. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008),
http://link.springer.com/chapter/10.1007/978-3-540-88871-0_22

10. Eder, J., Panagos, E., Pozewaunig, H., Rabinovich, M.: Time management in work-
flow systems. In: BIS 1999, pp. 265–280. Springer (1999)

11. Fenz, S., Neubauer, T., Accorsi, R., Koslowski, T.: FORISK: Formalizing informa-
tion security risk and compliance management. In: 2013 43rd Annual IEEE/IFIP
Conference on Dependable Systems and Networks Workshop (DSN-W), pp. 1–4.
IEEE (2013)

12. Hollnagel, E., Woods, D.D., Leveson, N. (eds.): Resilience engineering: Concepts
and precepts. Ashgate, Aldershot and England and and Burlington and VT (2006)

13. Koslowski, T., Zimmermann, C.: Towards a detective approach to process-centered
resilience. In: Accorsi, R., Ranise, S. (eds.) STM 2013. LNCS, vol. 8203, pp. 176–
190. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-41098-7_12

14. Müller, G., Koslowski, T.G., Accorsi, R.: Resilience - A new research field in busi-
ness information systems? In: Abramowicz, W. (ed.) BIS Workshops 2013. LNBIP,
vol. 160, pp. 3–14. Springer, Heidelberg (2013)

15. Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.:
Profiling event logs to configure risk indicators for process delays. In: Salinesi,
C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 465–481.
Springer, Heidelberg (2013),
http://link.springer.com/10.1007/978-3-642-38709-8_30

16. Pozewaunig, H., Eder, J., Liebhart, W.: ePERT: extending PERT for workflow
management system. In: ADBIS, pp. 217–224 (1997),
http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.21.7538&rep=rep1&type=pdf

17. Ramchandani, C.: Analysis of asynchronous concurrent systems by timed petri
nets. Tech. rep., Massachusetts Institute of Technology, Cambridge, MA, USA
(1974)

18. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14(2), 131–164 (2009),
http://link.springer.com/10.1007/s10664-008-9102-8

19. Tsai, J.P., Jennhwa Yang, S., Chang, Y.H.: Timing constraint petri nets and
their application to schedulability analysis of real-time system specifications. IEEE
Transactions on Software Engineering 21(1), 32–49 (1995)

20. Wolter, K.: Resilience assessment and evaluation of computing systems. Springer,
Berlin (2012)

http://earthquakespectra.org/doi/abs/10.1193/1.1623497
http://www.worldcat.org/oclc/668434211
http://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-540-88871-0_22
http://dx.doi.org/10.1007/978-3-642-41098-7_12
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-642-38709-8_30
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.7538&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.7538&rep=rep1&type=pdf
http://springerlink.bibliotecabuap.elogim.com/10.1007/s10664-008-9102-8

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 371–374, 2014.
© Springer International Publishing Switzerland 2014

Introduction to SASSUR 2014

Alejandra Ruiz1, Tim Kelly2, and Jose Luis de la Vara3

1 ICT-European Software Institute, TECNALIA, Spain
2 Department of Computer Science, University of York, United Kingdom
3 Certus Centre for Software V&V, Simula Research Laboratory, Norway
alejandra.ruiz@tecnalia.com, tim.kelly@york.ac.uk

jdelavara@simula.no

The interest in and need for new safety assurance and certification approaches is
undoubtedly increasing. First of all, critical systems are becoming more pervasive
every day. They are used for a wide range of daily activities related to transportation,
healthcare, or energy consumption, and for increasingly novel applications. Fully
implantable artificial hearts and unmanned aerial vehicles are just two examples.
Society increasingly depends on these systems, and on their safe operation. At the
same time safety assurance and certification is becoming increasingly complex. This
is a result of, for instance, evolution of regulatory practice, the increase in the size and
complexity of the systems, the need for holistic assessment of cyber-physical systems,
and the application of new technologies for enabling features such as autonomous,
cooperative, or self-adaptive system behaviour. In addition, the application of new
technologies in safety-critical systems potentially introduces new vulnerabilities that
are not known yet but could affect to safety integrity.

One of the main drivers for exploring new safety assurance and certification
approaches is to make it more cost-effective. Examples of accidents and near-
accidents as a result of weak safety assurance and certification approaches in industry
have started to gain more attention and concern general audiences. Several recalls
from different car manufacturers, train accidents in Europe, and the issues with
Boeing Dreamliner are some of the most recent cases. Those cases have had
significant impact on the economic performance of the companies, caused
reputational damage, and indicate increased risk to people and/or environment safety.
System suppliers desire reductions in the cost and time associated with safety
assurance. The activities currently required significantly increase the time to market,
as system suppliers have to execute many safety-targeted tasks and demonstrate that
they have been executed. Several studies suggest that safety assurance and
certification can become prohibitively expensive in the near future unless companies
adopt new practices.

Cost-effective safety assurance and certification can be tackled with many different
means. These means include approaches that promote product reuse across systems
and application domains, facilitate incremental and composition certification, support
adequate management of system evolution, help in demonstrating compliance with
safety standards, or aim to improve judgements on system safety. However, one of the

372 A. Ruiz, T. Kelly, and J.L. de la Vara

main challenges lies in ensuring that the new approaches do not introduce new safety
or certification risks. The systems resulting from the application these approaches
must be as safe as the systems resulting from the application of past approaches.
Safety comes first. Although cost is evidently a very important aspect for any
industrial project, it should not be main concern in safety-critical industries.

The Third International Workshop on Next Generation of System Assurance
Approaches for Safety-Critical Systems (SASSUR 2014) aims to explore new ideas
on compositional and evolutionary safety assurance and certification. In particular,
SASSUR aims to provide a forum for thematic presentations and in-depth discussions
about reuse and composition of safety arguments, safety evidence, and contextual
information about system components, in a way that makes assurance and
certification more cost-effective, precise, and scalable.

SASSUR is targeted at bringing together experts, researchers, and practitioners
from diverse communities, such as safety and security engineering, certification
processes, model-based technologies, software and hardware design, safety-critical
systems, and applications communities (railway, aerospace, automotive, health,
industrial manufacturing, etc.).

The topics of interest include:

• Industrial challenges for cost-effective safety assurance and certification
• Cross-domain product certification
• Integration of process-centric and product-centric assurance
• Compliance management of standards and regulations
• Evidence traceability
• Transparency of the safety assurance and certification processes: metrics and

business cases
• Evolutionary approaches for safety and security assurance and certification
• Case-based assurance approaches
• Tools for supporting safety assurance
• Seamless development tool chain for safety critical
• Evolution of standards and trends on transport regulation
• The next challenges of safety critical development in industry
• Human factors in safety assurance and certification
• COTS or external sourcing management of evidence in safety critical system
• Mixed criticality

The papers at SASSUR 2014 address many of these topics. More concretely, the
following eight papers have been accepted:

1. Assuring Avionics - Updating the Approach for the 21st Century. This paper
explains some of the main current issues for safety assurance and certification
in the avionics domain and proposes ways to mitigate them.

2. Rethinking of Strategy for Safety Argument Development. This paper discusses
the role of strategies in safety case development and examines the application
of strategies in existing argument structures.

3. Towards a Cross-domain Software Safety Assurance Process for Embedded
Systems. This paper proposes a cross-domain software assurance process for

 Introduction to SASSUR 2014 373

embedded systems, based on the reuse of safety analysis techniques and tools
for product development in different domains.

4. A Software Safety Verification Method Based on System-Theoretic Process
Analysis. This paper proposes a method for verifying software safety
requirements derived at the system level in order to provide evidence of safety
risk reduction.

5. Quantifying Uncertainty in Safety Cases Using Evidential Reasoning. This
paper introduces an evidence-based approach to deal with uncertainty in
human judgment on safety case development and assessment.

6. Metamodel Comparison and Model Comparison for Safety Assurance. This
paper describes the correspondence between different meta-models or models
proposed for safety assurance and certification.

7. Does Visualization Speed up the Safety Analysis Process? This paper reports
on an experiment that shows the benefits of using visual tool support for
component fault analysis.

8. Agile Change Impact Analysis of Safety Critical Software. This paper outlines
how agile development principles can help a system supplier deal with
software changes and determining their consequences for safety-critical
systems.

Following the review of all the papers submitted to the workshop we are to be able
to compile a high-quality programme of papers that tackle current challenges and
needs in current safety assurance and certification practice. Out of the eight papers,
three are authored or co-authored by practitioners. The other five papers also closely
relate to practical issues, as the authors’ contributions are based on insights gained
into the state of the practice though industry-academia collaborations, participation in
industrial projects, or analysis of existing system failure reports.

Last but not least, we hope that you enjoy SASSUR 2014.

Acknowledgments. We would like to thank the OPENCOSS and SafeAdapt FP7
projects, SAFECOMP 2014 organizers, SASSUR 2014 Steering Committee, Program
Committee members and reviewers, and the authors of the papers submitted to the
workshop for their contribution towards realising SASSUR 2014.

Workshop Committees

Organization Committee
Alejandra Ruiz - TECNALIA, Spain
Tim Kelly - University of York, UK
Jose Luis de la Vara - Simula Research Laboratory, Norway

Steering Committee
John Favaro - Intecs, Italy
Huascar Espinoza - TECNALIA, Spain
Fabien Belmonte- Alstom, France

374 A. Ruiz, T. Kelly, and J.L. de la Vara

Programme Committee and Reviewers
Michael Armbruster - Siemens, Germany
Cheran Arora - University of Luxembourg, Luxembourg
Ronald Blanrue - EADS/Eurocopter, France
Markus Borg - Lund University, Sweden
Marc Born - ikv++, Germany
Daniela Cancila - CEA, France
Ibrahim Habli - University of York, UK
Tudor Ionescu - TTTech, Austria
Sunil Nair - Simula Research Laboratory, Norway
Paolo Panaroni - Intecs, Italy
Ansgar Radermacher - CEA, France
Laurent Rioux - Thales Research and Technology, France
Mehrdad Sabetzadeh - University of Luxembourg, Luxembourg
Sardar Muhammad Sulaman - Lund Univesity, Sweden
Kenji Taguchi - AIST, Japan
Martin Wassmuth - EADS, Germany
Gereon Weiß - Fraunhofer, Germany
Ji Wu - Beihang University, China

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 375–383, 2014.
© Springer International Publishing Switzerland 2014

Assuring Avionics – Updating the Approach
for the 21st Century

Tom Ferrell and Uma Ferrell

Ferrell and Associates Consulting, Inc., Charlottesville, Virginia, USA
{tom,uma}@faaconsulting.com

Abstract. This position paper outlines a number of challenges currently faced
by the aerospace community in addressing system, software, and hardware safe-
ty. These challenges include increasing complexity, lagging regulatory guid-
ance, a divergent set of design assurance guidelines, and ever advancing
technology. To address these challenges, four recommendations are offered:
consolidation of design assurance, increased resiliency in product design, a
move to less prescriptive standards in favor of a goal-based approach, and the
imposition of personnel qualification.

Keywords: ARP-4754, Avionics, Certification, Complexity, Design Assurance,
Digital Design, DO-178, DO-254, Goal-based Assurance, Safety.

1 Introduction

With the publication of the original DO-178, Software Considerations in Airborne
Systems and Equipment Certification, by the RTCA1 in 1982, the era of design assur-
ance as a means for assessing the safety of avionics software was born. This docu-
ment introduced the basic concept that defects can be reduced in fielded software by
way of documented, repeatable development processes coupled with rigorous, struc-
tured verification. This approach has served the aviation industry well and has been
steadily expanded to address aeronautical data production, systems design, and air-
borne hardware development. This paper will argue that while effective in the past,
complexity, changing regulatory oversight, and ever accelerating technical advance-
ment mean that objective-based design assurance as currently practiced is simply
unsustainable and new approaches must be found in the immediate future.

2 Background

DO-178 went through rapid evolution with the A version released in 1985 and a B
version in 1992. DO-178B was the prevailing software guidance for twenty years
until DO-178C was published in December 2011. Formally acknowledged by the US

1 Refers to RTCA, Inc., a Washington DC non-profit organization that serves a Federal Advi-

sory Committee (FAC) to the Federal Aviation Administration (FAA).

376 T. Ferrell and U. Ferrell

Federal Aviation Administration (FAA) in July 2013, DO-178C along with a standa-
lone set of guidelines for tool qualification and three technical supplements is now the
accepted means for demonstrating compliance for airborne software. The airborne
distinction is important as a standalone interpretation of DO-178C known as DO-
278A was also created at the same time for ground and space-based aeronautical
software. While admittedly unscientific, a quick-look at page counts tells the story.
The original DO-178 had sixty-seven pages. Today’s engineers working on a modern
Integrated Modular Avionic (IMA) platform have to be familiar with (and in many
cases comply to) over a thousand pages of official RTCA publications supported by
hundreds of pages of regulatory guidance. The DO-178C family of documents alone
weighs in at over six hundred pages.2

In the early 90’s when it became apparent that companies were moving their digital
designs into ASICs to avoid DO-178A and then DO-178B compliance, a new push
started to create a DO-178-like approach for designs implemented in silicon. This
ultimately resulted in DO-254 being published in 2000. Applicable to all airborne
electronic hardware, DO-254 provides objectives, activities, and data requirements for
development activities from planning through transition to production. Not to be
outdone, the systems community has similarly developed guidelines for design assur-
ance. Known as Aerospace Recommended Practice (ARP) 4754A, these guidelines
employ the now familiar objective-based approach which allows for relatively easy
assessment by the regulatory community. While the guidelines referenced here are
those employed in the US, the approaches used in Europe and other parts of the world
are similar. Suffice it to say, design assurance in accordance with a documented set
of objectives is THE model for gaining approval for onboard systems, software, and
hardware in 2014.

At the same time design assurance has been making its way into different domains
and expanding in scope, technology has continued to advance. Most people are fa-
miliar with Moore’s Law which essentially states that computational power per the
same unit of buying power doubles every two years. Recent advances in 3D digital
design suggest that such growth will continue for some time. Most of this advance-
ment is driven by the computational needs of consumer electronics, especially gam-
ing. Aerospace generally represents a very small market for the large silicon houses
(e.g., Intel, Xilinx, Microchip, Freescale) and hence has little influence over the mar-
ket. As a result, avionics manufacturers find themselves reacting to a market where
technology is constantly advancing faster than the regulatory framework can accom-
modate. A current challenge for avionics suppliers is the rapid shift from single-core
to multi-core processors. In fact, many industry watchers are predicting that it will
become increasingly difficult to find single-core processors in the marketplace. Cur-
rent regulatory guidance along with DO-178C is silent on how to verify and subse-
quently certify multi-core designs. Work is underway on both sides of the Atlantic to
tackle this problem, but initial attempts have involved only small steps. The biggest
problem seems to be demonstration of determinism of multi-core designs due to the
significant level of concurrency and shared resources among cores (e.g., memory,
registers).

2 Includes DO-178C, DO-330, DO-331, DO-332, DO-333, and DO-248C.

 Assuring Avionics – Updating the Approach for the 21st Century 377

3 Compounding Problems

Determinism is but one facet of ‘first principles’ that serve as the foundation of modern
design assurance. Other principles of concern include a never wavering emphasis on
requirements-based verification or what some refer to as ‘directed testing,’ repeatable
processes, and the objective-based demonstration of compliance. These last two items
have given rise, at least in the United States, to a major regulatory focus on Stage of
Involvement (SOI) reviews. Developed with the best of intent to drive consistency in
the application of DO-178B, SOI reviews were intended to be checkpoints in time
where the regulatory authority could assess compliance and require course corrections
(via findings and observations) if adherence to the prevailing design assurance objec-
tives was found lacking. SOI reviews have taken on a life of their own supplanting
other project management milestones to become major program events. Elaborate
checklists have been developed with the regulator often requiring these checklists be
completed for every project, no matter the size, technique or criticality. This has given
rise to what is known in industry as a ‘checklist mentality’ where engineering is re-
duced to a checklist and the process compliance focus trumps the product content.

The problem with all of this is that as complexity has grown and technology has
advanced, the regulatory framework has grown bloated and the objective-based ap-
proach to design assurance is now clearly hampering innovation. Bifurcated design
assurance guidelines addressing software and electronic hardware separately add to
the problem. Instead of coalescing the best approaches to design assurance for digital
designs regardless of implementation, the aerospace industry has created more and
more objectives, activities, and data requirements for individual technologies and
approaches. This specific issue has been compounded by each practitioner communi-
ty introducing variations in terminology and approaches to demonstrating compliance,
often explicitly to avoid confusion or comparison with another community. As ex-
amples of these differences, consider the following:

• DO-178C defines the work to be completed for a given software level while DO-
254 defines the work requirement by data to be produced and submitted for review.

• DO-178C uses quality assurance while DO-254 uses the term process assurance to
describe the same activities.

• ARP-4754A makes use of the same objective format as DO-178C but instead of
noting items as either required or not for a given criticality level, the same concept
is expressed in terms of recommendations and items to be negotiated with the regu-
latory authority.

• DO-254 introduces the term Top-Level Drawing to conform a piece of hardware
while the FAA guidance3 states that what is really meant is a data item similar to a
Software Configuration Index such as that described in DO-178C.

• DO-178C and DO-254 identify five levels of criticality tied to possible aircraft
failure categories while DO-278A introduces a sixth level even though it is still de-
scribing criticality associated with safe aircraft operations.

3 FAA Order 8110.105 (change 1).

378 T. Ferrell and U. Ferrell

This last item is yet another example of bifurcated design assurance. Logic would
demand that both ground and airborne safety-critical software used within the air
traffic control system be held to the same design assurance standard. Modern air
traffic control relies on collaborative decision making between pilot and ground-based
controllers. Much of the situational awareness for both of these parties comes from
space-based navigational aids (e.g. GPS). As Stanislaw Jerzy Lec (Polish Writer and
Aphorist 1906-1966) stated very eloquently “The weakest link in the chain is also the
strongest. It can break the chain.”

While someone outside the aerospace industry may assume that there are solid rea-
sons for all of these examples of variation, when pressed, even those who work with
these guidelines routinely are hard-pressed to provide a solid rationale for the differ-
ences. As veterans of the standards-making process, the authors can state directly that
some of the variations exist solely as a result of political or institutional influences
rather than as a result of solid engineering rationale. As the assessment of guideline
adherence often falls to the same regulatory personnel, the variation noted here has
the effect of adding, not decreasing confusion. At the very least assessment becomes
more complicated. This is before taking into account variations between regulators,
another facet of this challenge as aerospace is a worldwide industry with products that
must meet many sovereign state requirements.

Between the checklist-driven reviews, and the subtleties of individual domains
(e.g., software, hardware, systems, airborne, ground), it is easy to see how a design
assurance regiment that was originally equally focused on product correctness and
process adherence has become unbalanced. Servicing the divergent guidelines and
ensuring checklists are complete draws on limited resources that previously spent a
large portion of their time reviewing robustness of architecture and appropriateness of
designs. It is the author’s assertion that far too much time is now spent on ensuring
an activity is performed rather than looking in detail at the breadth and depth of the
activities to ensure correctness and completeness. A side effect of this shift is a slow
but steady erosion of technical skills among compliance personnel, an aspect already
under serious pressure due to ever advancing technology. Before the chain of aero-
nautical safety breaks, a change of approach is needed.

4 Proposing Solutions

The rest of this paper discusses four specific changes that the authors feel will make a
positive difference in addressing the problems outlined above. These four changes
are as follows:

1. Consolidation of design assurance goals regardless of implementa-
tion/location.

2. Increased resiliency in design.
3. Shift from prescriptive objective-based standards to goal-based standards.
4. Imposition of personnel qualification for aerospace digital design work.

 Assuring Avionics – Updating the Approach for the 21st Century 379

4.1 Consolidated Digital Design Assurance

When one picks up DO-178C, DO-254, or ARP-4754, one is struck by the commo-
nality of many elements. Planning, requirements, design capture, testing, configura-
tion management, and quality assurance appear in all of these documents, albeit with
subtle differences in terminology, associated data requirements, or activities. As they
came into being over time and were often derivative in nature, it is easy to see how
we got where we are at. The time to consolidate and simplify has arrived. It is clear-
ly possible to see how a company could produce a single set of process documents
that are technology agnostic, yet the regulatory framework, and in many cases, the
guidelines themselves provide impediments to such consolidation. It should also be
noted that there are other incentives at work that hinder such consolidation. One such
impediment is that standards bodies such as RTCA and SAE derive significant in-
come from the sale of documents such as DO-178C.

Having different design assurance criteria for different parts of the system (DO-
178 for software, DO-254 for airborne electronic hardware, and even DO-200 for
aeronautical data processing) creates the opportunity for weak links in the overall
design assurance chain. In many cases, the regulator tends to drive the overall com-
pliance across domains to the same set of evaluation criteria anyway. Why not ac-
knowledge this and abstract up a level to capture design assurance principles that can
be universally applied. One should be able to characterize what constitutes a good
requirement, a good test, an acceptable level of configuration management, and ap-
propriate quality oversight, all regardless of domain or implementation technique.
Dealing with the nuances of a domain could be handled through the application of
technical standards solely focused on the types of error classes to be protected against
with a particular technology. In other words, the processes are common and the im-
plementation detail is contained in such a way that it can rapidly be swapped out as
technology evolves. DO-178B lasted for twenty years because it was technology
independent. We are rapidly losing this idea.

4.2 Increased Resiliency at the Digital Level

ARP-4754A requires that system designers look at the overall safety of the system
and ensure that the system is both fail-safe and fault-tolerant. Theoretically, these
concepts are supposed to extend into the digital domain via application of DO-178C
and DO-254. Examples of how this is accomplished include safety monitors, voted
processing lanes, and signal validation (e.g., data currency, range limits). Unfortu-
nately, it is possible for companies to claim that their digital designs are safe because
they’ve met the objectives of these documents even though there are no explicit ob-
jectives for inclusion of fail-safe and fault-tolerant aspects at the digital design level.
The argument frequently given for this is that these types of constructs need to be
captured in the system requirements and then flowed to the software or hardware
teams for implementation. Assuming this is done, the objectives for verifying re-
quirements should pick up such safety-related behavior.

380 T. Ferrell and U. Ferrell

A longstanding controversy surrounding DO-178 is its lack of specific objectives
relating to ‘safety-related requirements.’ The identification of such requirements is
required but the need for dedicated verification and treatment is less than clear. Many
of the companies responsible for digital design of avionics systems do not have the
systems knowledge that an airframer or system integrator has to be able to appro-
priately identify safety-related requirements. Without specific objectives for safety-
related requirements, digital designers are not required to demonstrate that the needed
engineering emphasis (including feedback to system safety) has been accomplished.

As a result of this idea that safety is really a system property, the application of
DO-178C and DO-254 is restricted to assurance that requirements are properly trans-
lated into a digital implementation. While the view serves business objectives of
separation of system and software/hardware requirements, such a view can introduce
gaps in understanding and implementation. The topic of robustness is introduced via
verification to try to address the wide range of abnormal or off-nominal conditions the
digital implementation may experience. This includes addressing the age old problem
that even for a modest-sized program, it is simply not possible to test all possible
digital paths.

This idea of robustness has served the community well in the past but it is unclear
whether this emphasis is sufficient to deal with the increasing digital complexity,
especially when emergent behavior is observed. Rather than trying to eliminate every
possible defect, faults should be expected and protected against. This means always
instituting rigorous exception handling, always implementing redundancy, and always
building in monitors at multiple levels of the implementation. Increasingly, compa-
nies are arguing that such features are unnecessary if rigorous process is applied
throughout the development process. DO-330, the new tool qualification guideline
even opens the door for this by introducing a new category of tools that allows for the
suppression of such checks in certain scenarios. Assuming defects and increasing the
inherent capabilities of the digital implementation to mitigate their effects before they
can propagate to a system boundary simply makes more sense than the current path.

4.3 Goal-Based Standards

The proliferation of explicit objectives and data requirements that must be satisfied
based on implementation approach is simply not sustainable. The major schedule
slips seen on the A380 and then the Boeing 787 are due in part to late software and
hardware compliance. What used to take three years now takes five and the formality
driven by these standards has become so prescriptive that even a single change, no
matter how trivial, late in a project can translate to weeks of rework. Research work
underway on safety or assurance cases looks extremely promising for providing some
relief in this area. The FAA’s emphasis on an ‘accountability framework’ opens the
door for such an approach by requiring the Applicant seeking approval of a system to
clearly state their compliance (and by definition their acceptance of liability) for that
system. Defining top-level safety goals and then picking the most appropriate means
for satisfying those goals rather than trying to follow a one size fits all approach

 Assuring Avionics – Updating the Approach for the 21st Century 381

seems imminently better suited for the rapid technology advance, highly complex
world we live in today.

There are technical and business advantages in specifying goal-based standards ra-
ther than prescriptive regulations. Setting a goal will allow alternate means of
accomplishing compliance. Even though the FAA regulations are in the form of Ad-
visory Circulars (AC) which state “This AC describes an acceptable means, but not
the only means…,” they simply do not provide the flexibility that could be achieved
with a goal-based approach. Advisory Circulars require that the method of how
the compliance is reached be equivalent to the prescribed method specified in the
regulation. For example, if an equivalent method to DO-178B has to be proposed, an
applicant has to prove equivalency to each and every objective of DO-178B.

Short comings of prescribed processes are that the applicant can conduct mandato-
ry activities without paying attention to whether other activities are warranted given
the engineering problem being solved or the method, tools or technology being em-
ployed. Prescriptive regulations originate in the past experience [1] and hence from
known engineering problems using known solutions, methods, tools and techniques.
In absence of such history, innovative solutions may be passed over given the per-
ceived (or real) difficulties in gaining regulatory approval. Alternatively, application
of existing objectives may simply not be sufficient for the new innovation and if ap-
plied, may fall short of demonstrating acceptable safety levels. A goal-based regula-
tion allows industry to focus on the overarching goal of design assurance and safety
regardless of the technical solution chosen (e.g., design, architecture, methods, tools,
and underlying technology).

Increasing complexity and prescriptive standards were the topic of discussion at
two technical committees of Lloyd’s Register in 2011 [2]. It was agreed that goal
based standards convert a culture of passive compliance to one of active ownership.

Even though goal-based requirements have huge advantages, they bring some at-
tendant challenges [3]. These challenges include reaching an agreement on appro-
priateness and the gradations in the quality or quantity of evidence in demonstrating
safety especially for new technology, and difficulties in specifying contracts where
the safety activities and resulting evidence may not be obvious at the start of the
project. These challenges mean that the transition from the current prescriptive me-
thods to goal-based methods for compliance will be difficult.

4.4 Personnel Qualification

The checklists used for SOI audits along with the rote way DO-compliance is being
accomplished has ushered in an era where engineering judgment is deemphasized in
favor of ‘just fill out the paperwork.’ It is the authors’ strongly held view that engi-
neering judgment backed up by a set of defined and accredited credentials are abso-
lutely necessary to ensuring the strong history of safety in the aerospace community is
maintained. There needs to be established grounds for maintaining and demonstrating
currency including the possible use of third-party accreditation. Regulators must
issue interpretive material available to all users. It would help to have regulator-
accepted list of training organizations for digital design topics, and recurrent technical

382 T. Ferrell and U. Ferrell

training should be mandatory. Additionally, a mechanism for formal mentoring of
aerospace safety personnel should be put in place.

Engineers, both those who develop digital systems as well as those who regulate
them, play a significant role in the safety of such systems. Development engineers
(shown as “the Applicant” in figure 1) balance cost, quality and correctness while the
regulators ask the hard questions on safety and implication of fielding the system,
proactively defending public interest and safety as affected by the system to be
fielded.

Regulation for complex systems cannot be solely based on completing a process-
driven checklist. The regulator is obligated to ask probing questions to ensure the
system has been robustly verified and validated in light of known failures of similar
systems in the past, as well as any potential failure modes identified as part of the
current development activity. In a goal-based compliance environment, the author of
the argument should document as to why the author believes that a system is safe and
the reviewer of that argument must ask any questions so fill any gaps in those argu-
ments. Both must have the appropriate knowledge sets to accomplish their respective
roles.

Fig. 1. Matching the Applicant to the Regulator

Figure 1 illustrates this point combining differently skilled regulators and appli-
cants. The greatest chance for success is realized when both parties are highly skilled.
Demanding appropriate personnel qualifications for engineers working in safety criti-
cal systems is not a new idea. Jonathan Bowen [4] argues that building of safety criti-
cal systems must be carried out in a professional and responsible manner by qualified
engineers. While legislation and standards impose external pressures, education and
ethical considerations help provide self-imposed guidelines.

 Assuring Avionics – Updating the Approach for the 21st Century 383

It was the ACM Task Force on Licensing of Software Engineers working on Safe-
ty-Critical Software [5, 6] that made a distinction between licensing of engineers
(using state administered board examinations) and education of engineers that is ne-
cessary and appropriate. Knight and Leveson [6] opine that it is unlikely that a rea-
sonable test for software skills needed for safety-critical systems can be put into a
multiple-choice format which is judged as passed by “minimal competence.” Further,
such tests cannot keep up with the technical advances. A practical solution is to im-
pose relevant accreditation instituted via engineering programs in schools as well as
changes in culture, practice and regulation.

5 Conclusion

This position paper has outlined a number of challenges currently faced by the aero-
space community in addressing system, software, and hardware safety. These chal-
lenges include increasing complexity, lagging regulatory guidance, a divergent set of
design assurance guidelines, and ever advancing technology. To address these chal-
lenges, four recommendations are offered: consolidation of design assurance, in-
creased resiliency in product design, a move to less prescriptive standards in favor of
a goal-based approach, and the imposition of personnel qualification.

References

1. Penny, J., Eaton, A., Bishop, P., Bloomfield, R.: The Practicalities of Goal-Based Safety
Regulation. In: Proc. Ninth Safety-critical Systems Symposium (SSS 2001), Bristol, UK,
February 6-8, pp. 35–48. Springer, New York (2001) ISBN:1-85233-411-8

2. http://www.liwem.org/en/Documents/LIWEM_2012_presentations_
uppdaterad%20aug%202012_del3.pdf (accessed on June 30, 2013)

3. Kelly, T.P., McDermid, J.A., Weaver, R.A.: Goal-Based Safety Standards: Opportunities
and Challenges. In: Proceedings of the 23rd International System Safety Conference. Pro-
ceedings Published by the System Safety Society (August 2005)

4. Bowen, J.: The Ethics of Safety Critical Systems. Communications of the ACM 43(4),
91–97 (2000)

5. http://www.cs.trinity.edu/~jhowland/cs3194/
licensing-software-engineers.pdf (accessed June 30, 2014)

6. Knight, J.C., Leveson, N.G.: Should Software Engineers Be Licensed? Communications of
the ACM 45(11), 87–90 (2002)

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 384–395, 2014.
© Springer International Publishing Switzerland 2014

Rethinking of Strategy for Safety Argument Development

Linling Sun1, Nuno Silva1, and Tim Kelly2

1 Critical Software, SA
Parque Industrial de Taveiro, Lote 49, 3045-504 Coimbra, Portugal

2 Department of Computer Science, University of York
Deramore Lane, York, YO10 5GH, UK

{lsun,nsilva}@criticalsoftware.com, tim.kelly@cs.york.ac.uk

Abstract. A ‘strategy’ in Goal Structuring Notation (GSN) aims to help safety-
case developers and reviewers to understand the inferences in a hierarchy of
safety claims. However, the identification and elaboration of ‘strategies’ in ar-
gument development is not always straightforward in practice. In this paper, we
revisit the role of strategies in the development of safety cases and examine the
application of strategies in some existing argument structures. Four main
sources of information are identified as the basis of strategy formulation. A list
of generic strategy types for argument decomposition and refinement are ana-
lysed in order to facilitate the safety case development and review processes for
assuring system safety.

Keywords: Safety Case, Assurance Case, Argument, Strategy, GSN.

1 Introduction

Safety cases have been increasingly accepted as an assurance technique by many
industrial sectors, e.g. defence, air traffic control, railway, automobile and medical
devices [1]. In the past decade, there are considerable research and application efforts
placed on safety case notations, safety case life cycles, argument patterns, safety case
tools and argument and evidence meta-models. However, a supportive element in the
safety case development process, the ‘strategy’ for describing the relationships be-
tween safety claims of different levels has not been emphasized as much as other key
safety case elements, e.g. claims and evidence items.

Nevertheless, in practice, inexperienced safety case developers had experienced
difficulties with the application of strategies [6], e.g. ‘confusing strategies with goals’
or ‘misunderstanding strategies as judgment branches’. Some engineers find it is help-
ful for argument decomposition with predefined argument decomposition patterns [6],
e.g. architecture decomposition pattern. However, there are limited resources that
specialized in collecting the applicable strategies for argument decomposition.

In [7], seven ways of decomposing claims in assurance cases that are identified
through empirical study are listed. However, there is no guidance and examples re-
garding their usage in the paper. A series of reusable safety case patterns are pre-
sented in [3, 4]. However, they are aiming at guiding safety case construction with

 Rethinking of Strategy for Safety Argument Development 385

existing safety criteria or safety analysis techniques, rather than summarizing and
comparing ways of decomposing safety goals. In existing literature, there are multiple
forms of strategies in use. The titles of the schemes in [11] are helpful descriptions of
reusable strategy types that are often used in informal argumentation. In this paper,
we will discuss the role of strategy in structured argumentation and present a set of
generic strategy types in order to facilitate the argument development and to reduce
improper usage of ‘strategies’.

The paper is structured as follows. Section 2 presents the role of a strategy in ar-
gument development. Section 3 focuses on four main information sources of strategy
and presents a list of typical strategies. Section 4 discusses considerations on the ap-
plication of strategies. Section 5 summarises the paper and identifies the future work.

2 Strategy in Argument Development

Safety case development is an iterative process that occurs along with the other design
and safety activities during the product life cycles. The two main tasks during safety
case development are the development of argument structures and the collection and
presentation of evidence items. Strategy, employed in the development of argument
structures, is an element adopted for a better understanding of the rationale that con-
nects lower safety claims with the higher-level claims they support. In this paper, we
discuss this element in Goal Structuring Notation (GSN) terms [2], whereas it may be
addressed as a different term in other structured notations, e.g. as ‘Argument’ element
in CAE notation [10].

2.1 Strategy in GSN

GSN is one of the widely-used graphical notations for structured arguments. The no-
tation defines a set of graphical symbols that can be used as a means of documenting
and communicating arguments as to how a safety claim is true by presenting support-
ing sub-claims and referencing safety evidence items. The six core GSN elements are
Goals, Strategies, Solutions, Contexts, Assumptions, and Justifications [2]. The core
elements can be connected with two linkage elements: SupportedBy and InContextOf.
The element of strategy is described in [2] as follows.

A strategy, rendered as a parallelogram, describes the nature of the inference
that exists between a goal and its supporting goal(s).

In nature, a strategy is a brief description of the argument approach adopted for in-
ference from lower level safety goals to a higher-level one. It maps to ‘ArgumentRea-
soning’ [5], a meta-model element in Structured Assurance Case Metamodel (SACM)
Developed by OMG System Assurance Task Force. It can be added or inserted to an
existing argument structure to communicate the argument approach adopted between
linked claims. It can also be adopted during the argument development process to
help building up the argument structure top-down or bottom-up. However, it is worth
noticing that a strategy is not a mandatory element in argument structures. A strategy
does not support any goals by itself. It is not one of the determinate factors that affect

386 L. Sun, N. Silva, and T. Kelly

the Boolean values of safety claims. The relations between a hierarchy of safety
claims should be unchanged if a descriptive strategy is added to the existing structure.

The benefits of incorporating strategies in argument development are two-fold.
Firstly, documenting strategies can improve the comprehension of the argument rela-
tions between a higher-level goal and its lower-level ones. Secondly, the presence of a
strategy could help to invoke the need of presenting further information and further
justification for establishing our confidence in the inference steps.

2.2 Argument Development Process

Guidance on safety case development is provided in [2, 9, 10]. One of them is the six-
step method [2] that depicts a structured safety case development process in GSN
terms. The steps of the method include [2]:

Step 1 - Identify the goals to be supported;
Step 2 - Define the basis on which goals are stated;
Step 3 - Identify the strategy used to support the goals;
Step 4 - Define the basis on which the strategy is stated;
Step 5 - Elaborate the strategy (and back to Step 1);
Step 6 - Identify the basic solution.

Three steps in the six-step method are related to strategies. It is obvious from the
process that the elicitation of unstated rationales and context is notably enforced. A
strategy may be implicit or unstated in a structured argument finally presented, but it
is important during the thinking process of safety case development. According to our
studies of safety case structures, it is found that this descriptive element is more in-
formative than it was initially considered. The application of various strategies will
influence the lower-level safety argument and evidence items that can be expected.
Section 3 will provide a list of generic strategies as information references in order to
support the proper application of strategies in future argument development.

3 Generic Strategy Types

We organise typical strategies in use in five groups, principally from the information
sources from which strategies can be formulated. The four major sources include
System Description, Safety Concerns, Standards and Requirements, and Logical Ap-
peals. The generic types of strategies are observed primarily from examples of safety
argument structures1. The types presented are intended to be informative rather than
complete. The aim of presenting typical generic strategies lies in two aspects: 1) to
establish prior knowledge of possible strategies to support and facilitate safety case
development processes; 2) to acknowledge features of typical strategies in order to
guide the development of defensible argument structures.

1 We extract generic strategy types from the occurrences of various strategy types in 10 docu-

ments. Seven of them [2,3,9,12,17,21,26] include example arguments; three of them [3,4,25]
include argument patterns; one of them [27] is a management document, but the requirements
in it also indicate that particular strategy types should be adopted in a safety case.

 Rethinking of Strategy for Safety Argument Development 387

3.1 Source 1: System Description

In any case, there is a system of our safety concern during the safety assurance proc-
ess. To describe a system comprehensively, we may have varied types of information
developed, refined and updated throughout its life cycle, e.g. functions, architecture,
task profiles, operation modes, use scenarios, functional and non-functional proper-
ties. It has been observed as commonplace that system description of various levels of
details can be used for shaping the higher level argument structure in safety cases.
Some generic strategies formulated from this information source include:

S1.1 Argument over all functions implemented by a system
S1.2 Argument over all subsystems/components of a system
S1.3 Argument over all stages of a system task
S1.4 Argument over all system modes

S1.1 and S1.2 are addressed as ‘functional decomposition’, ‘architecture break-
down’ [3, 7]. They are recurrently used in reality. We expand it as an information
source to cover more types of strategies in use that are related to system description.

It is straightforward to argue with the functional or architectural decomposition of
a system and it is easy to implement this type of strategy due to the availability and
admissibility of the associated information of a system. However, we should be aware
of two pitfalls that may come along with this strategy type. Firstly, as it is always
highlighted in system engineering, the interaction between various system compo-
nents should not be overlooked. While we decompose the argument according to the
list of functions (or components) of a system, we must append supplementary sub-
goals in the argument along with other sub-goals associated with these functions - ‘the
interaction between functions is acceptably safe in the system context’ or ‘the inde-
pendence between functions is adequately achieved’. Otherwise, one of the important
hazard sources for system safety would be left out so that the argument validity could
be seriously defected. Secondly, this type of strategy, by itself, does not drive the
goals to a much more tractable level in engineering practice unless the ‘acceptably
safe’ states of a system or subsystems are clarified. It is better to use it in combination
with a strategy that is associated with the interpretation of system safety (to be dis-
cussed in Section 3.2 followed).

3.2 Source 2: Safety Concerns

In practice, safety should be properly specified for a specific system at the system
level and be sufficiently and concretely interpreted at various system levels under
study. Otherwise, the boundary of safety efforts would be unclear and unlimited. In
safety argument development, both the interpretation of the meaning of an ‘accepta-
bly safe’ system and the outputs from various safety analysis activities can be utilised
for structuring arguments. The safety issues of a system may be addressed in a num-
ber of ways, e.g. defining undesired events associated with a system, presenting a list
of hazards for a system or its components, and identifying the contributing factors to a
specific failure condition.

388 L. Sun, N. Silva, and T. Kelly

Some generic strategies observed in use include:

S2.1 Argument over undesired events
S2.2 Argument over factors contributing to undesired events or conditions
S2.3 Argument over hazardous contributions of a component to a system
S2.4 Argument over measures adopted
S2.5 Argument over a quantitative goal

The first generic type, S2.1, is actually based on a more concrete depiction of our
safety concerns. This type of claim decomposition has been addressed as ‘concretion’
in [7] and ‘Interpretation and particularization’ in [13], which intends to restate a
safety claim in less vague forms.

S2.2 and S2.3 have a common basis – the relationships between hazardous condi-
tions and undesired events. But they are viewing the relationship in different direc-
tions. S2.2 is more commonly presented in arguments, for example, ‘Argument over
all hazards identified’, ‘Argument over all failure conditions identified’. Chen et al
are concerned that the difficulty of justifying the completeness of hazard analysis may
lead to unsound assurance case if the argument structure is driven by hazard analysis
results [14]. However, a consideration of negative conditions such as hazards lies in
the heart of safety business. As the completeness issue is embedded in inductive rea-
soning, it is unnecessary to avoid structuring safety argument around hazards of com-
ponents/functions at various levels of system structure, which is the most direct way
to address safety considerations in argument claims. As a kind of partial remedy, we
would recommend to place more rigors in hazard identification and to invoke context
justification and updates in time if that strategy is adopted in usage [16].

Compared to S2.2, S2.3 is less frequently adopted in practice. However, it is good
practice to take into account the top system-level context in a separate safety case of a
subsystem. For example, the top level goal in ‘High Level Software Safety Argument
Pattern Structure’ [4] is decomposed with this type of strategy. In that pattern, the
goal ‘{software Y} is acceptably safe to operate within {system Z}’ is supported by a
sub-goal ‘The contribution made by {software Y} to {system Z} hazards is accept-
able’. During the development and assurance of complex components of a system, it
is helpful to consider the contribution by the components to higher-level system haz-
ards at the beginning of argument decomposition, rather than to define the undesired
events or attributes of the components directly.

S2.4 is commonly adopted to support a safety goal associated with a particular
hazard or undesired event. There are different kinds of safety measures in a system
life cycle, e.g. including design decisions, protective devices, monitor or alarm sys-
tems, barriers, operational procedures. When a safety measure is adopted, we need to
carefully analyze whether it is effective, if there are conditions under which it is effec-
tive and if there are new hazards introduced. These factors should be considered in
argument development, or the argument could be weak for attack. For example, an
auto brake is employed when a moving device is over a prescribed speed limit. A
condition of its effectiveness could be that the measurement of the real-time speed of
the device is working and is accurate. Furthermore, we also need to consider what
may happen if the auto brake is in functioning accidently within the speed limit.

 Rethinking of Strategy for Safety Argument Development 389

Besides the control measures over a hazardous condition, there is another common
means of demonstrating that an undesired event or condition is acceptable (as pre-
sented by S2.5) - to set a quantitative safety goal, such as ‘The likelihood of a hazard-
ous condition is lower than 1×10-6’. We need to consider if the quantitative parameter
required is measurable or checkable at implementation and to consult authorities for
their agreement of the parameter threshold suggested.

3.3 Source 3: Standards and Requirements

From the view of regulators and developers, it is a straightforward way to construct
arguments for certification and audits by stating applicable standards and require-
ments and demonstrating that they have been met. Safety requirements for a system
may be directly taken from safety legislation, regulations, and standards in a specific
domain, imposed by statements in a contract, formulated on the basis of safety or
hazard analysis, or derived from other safety requirements [15]. Claims in safety
cases are similar to requirements in some sense. But a claim is an instance of state-
ments that can be true or false [5] that is to be or has been justified; whereas require-
ments are statements depicting the desired features of a system which are to be
realised in system development. Typical strategies observed in use include:

S3.1 Argument of compliance with all applicable standards and regulations
S3.2 Argument of satisfaction of all (safety) requirements specified in system
development.

S3.1 is commonly considered by industries with prescriptive regulations. S3.2 is a
direct way from the developers’ viewpoint. However, it would be difficult to learn
whether the requirements have addressed hazards sufficiently, if the links between
requirements of a system and hazards in the system are lost. The ‘focus on require-
ments can obscure underlying hazards’ [17]. The argument constructed based on the
hierarchy of requirements is a compliance argument that can contribute to safety as-
surance argument. The compliance argument may have not presented the rationale of
how safety risk is controlled. Or if the requirements stated are primarily process-
related, e.g. compliance with DO-178B, the system could be in a state that it is ready
for certification but with unclear relation to its safety achieved [18,19].

One way in practice is to strengthen the decomposed argument on the basis of sat-
isfying requirements with ‘requirement validity arguments’. The requirement validity
argument should include the following aspects [20]: 1) various level requirements are
defined with a description of their relations to undesired events or conditions at a
system level or hazards at component levels; 2) the decomposition of requirements
has maintained the requirement validity throughout the hierarchy of requirements.

There is research work [19, 21] that intends to build explicit relationships between
requirements from regulatory standards and the hazards addressed by the require-
ments. The work is valuable, which will benefit the communication and confidence
establishment indeed. Due to the diversity of regulations, standards, requirements and
development practice in various industrial sectors, further work needs to be underta-
ken to diminish ineffective usage of this type of strategy.

390 L. Sun, N. Silva, and T. Kelly

3.4 Source 4: Logical Appeals

This source of information takes argument approaches from the argumentation do-
main, from which the concept of safety cases is originated. Arguments have been used
as means of inquiry and communication for persuasion in many scenarios where there
is some disagreement. Previously, while formulating strategies in argument develop-
ment, the argumentation domain was not discussed with prominence, although the
users may have been using those logic skills inadvertently.

Through studying the argument approaches in logic literature [22-24], some ge-
neric types of strategies used in safety arguments are extracted as follows.

S4.1 Argument by Causation
S4.2 Argument by Comparison
S4.3 Argument from Two Sides
S4.4 Argument from Authority or Expert
S4.5 Argument by Eliminative Induction

The ‘causation’[22] in S4.1covers three different kinds of relationships. The causal
factor could be a necessary condition of the conclusion, or a sufficient condition of
the conclusion, or be both necessary and sufficient for the conclusion. S4.1 is the
logical basis of S2.2 and S2.3 (presented in Section3.2). It is necessary to differentiate
causation and correlation. A correlation is incapable of authorising the inference
unless the suspected causal relationship out of a correlation can be verified.

In argumentation, S4.2 Argument by Comparison is more often to be addressed as
analogical reasoning, or argument by analogy [22,23]. The conclusion of one thing is
withdrawn on the basis of comparison of it with another thing or itself in another con-
text. The subject being compared should bear similar features; accordingly, we suppose
some unknown features of the subject will be just like the features of its comparable
counterpart. Nevertheless, the differences between the subject and its counterpart
should be analysed in order to avoid loose and misleading analogies that bring logical
fallacies. In safety domain, comparison has been adopted for justification of a safety
claim regularly. For example, a safety goal of an engine can be supported by sub-goals
on the acceptable engine usage in a similar context in another project [9].

S4.3 Arguing from two sides means to present both information in favour of the
conclusion and how information against the conclusion is dismissed. This type of
strategy aims to mitigate the effect of confirmation bias, i.e. the possible intention of
neglecting information that refutes our goals and emphasizing supportive facts only in
human reasoning [22]. It has been used for considering counterevidence in some
safety argument structures [9, 25]. For example, ‘Sufficient confidence exists in evi-
dencing Goal X’ is supported by ‘Sufficient confidence exists in supportive evidence
provided for Goal X’ and ‘Sufficient confidence exists in acceptable risk associated
with counter evidence for Goal X’(adapted from [25]). If there exists any potential
counter evidence generated in system development, e.g. a failed test, the user should
present the information in safety argument and justify that the problem identified in
the test has been properly handled and the problem in the failed test is no longer rele-
vant to the top goal.

 Rethinking of Strategy for Safety Argument Development 391

However, this type of strategy will significantly expand the size of argument struc-
tures. In addition to the difficulty regarding to the management of the size of the
structure, the counter evidence and claims may be difficult to obtain in reality, which
may suppress the argument development in the opposing side. Therefore, users need
to be careful with putting efforts on one side or another unreasonably.

In inductive reasoning, ‘Argument from authority’ is the name of one of the typical
fallacies [22]. However, the analysis and reviews carried out by experts are occasion-
ally used as evidence in safety cases. It is very dangerous to appeal to an expert
blindly without scrutiny, analysis and justification of how a conclusion is derived
from their knowledge or experience. But we should not deny the usefulness of expert
opinions in safety analysis and reviews. What we need to do is to ask for explicit
presentation of the reasoning logic performed by experts and to examine if the falla-
cious conditions have been adequately mitigated. The fallacious conditions that may
fail the argument based on expert opinions [22] include the area of knowledge of the
experts, the interests of experts and the consistency between expert opinions. If a
group of independent experts are available for an issue, it would be helpful to ensure
the consistency and agreement between the opinions from different experts.

We should also note that expert opinions may be against the safety claim to be jus-
tified. In this situation, it is very important to examine the reasons provided by an
authority or expert. When properly removed or handled, the questions or problems
raised by experts should be addressed in the updated safety case.

‘Eliminative Induction’ is proposed in [26] as the principle for confidence argu-
ments. Defeaters, doubts or reasons for the truth of claims, are identified and used for
decomposing a confidence argument structure. However, it may be inappropriate if
we try to use it in a primary safety argument. As we explained before, counter evi-
dence and claims for safety goals should be considered in safety case development.
But we should not argue only from one-side in a primary safety argument without
positive safety evidence, because it will make the argument incomplete and may bring
‘arguing from ignorance’ fallacy. We recommend arguing from two sides in primary
safety arguments.

To consider logic appeals in safety arguments brings us another viewpoint of refin-
ing argument structures. Further study on other argument approaches that exist in
generic argumentative situations may introduce us new generic strategies for safety
argument development. We need to carefully examine potential logical fallacies while
adopting strategies from logic appeals.

3.5 Source 5: Others

In reality, the usage of strategies is more miscellaneous. Three supplementary ones
are presented as examples of other sources as they are less significant as the strategy
types listed in the four major sources.

S5.1 Argument on the basis of a timeline
S5.2 Argument by appeal to one or more evidence types
S5.3 Argument over the product and the process perspectives

392 L. Sun, N. Silva, and T. Kelly

A timeline aims to review a series of ordered events that occur in the life cycle of
an entity under study. The entity is a subject that carries a certain function the user
needs and has its own life cycle, e.g. a system, a subsystem, a component, a software
module, or a variable. The timeline for a system could be the whole product life-cycle
or part of it, e.g. its development process, or its installation, operation and decommis-
sioning process. The decomposition of a safety claim is realized by considering the
claim at different stages in a timeline. The argument over a system task profile is also
an example of the argument over a timeline.

A timeline is usually related to a process. It provides a simplified view of an entity,
rather than other details such as activities implemented, resources needed or outcomes
generated throughout a process. It could be a subtype of the Source 1. But it is
worthwhile to put it separately to underline its existence and features.

In theory, S5.2 is specialized particularly in connecting a safety claim with evi-
dence result assertions [2], a proposition that can be made from the source data of
safety evidence and can be used to support domain claims in safety arguments. In
reality, many safety cases are not presented with evidence result assertions, unless the
author wants to highlight the evidence types to be relied upon. For example, ‘Argu-
ment by proof using automated theorem provers’[12].

We should prepare answers for the following questions if we think about using this
strategy during argument development. Is there an item of evidence directly support
the claim? Is the type of evidence relevant to the claim? Is there any other type of
evidence that may support the claim? Is it necessary to have several types of evi-
dence? Can the branch of argument be closed with evidence presented? If one or more
evidence types are chosen, what kind of confidence argument should be considered?

S5.3 is actually a strategy that is used to combine the branch of primary safety ar-
gument with the branch of confidence argument under one top-level safety goal. With
the progress of research in safety cases in recent years, it is recommended to separate
the two parts in order to have the skeleton of safety clearer [16]. The elements in a
process argument, such as the competence of an analyst or reviewer, may contribute
to the overall quality of safety activities. But they would not exclude the possibility of
errors or defects in system analysis and design and would not demonstrate the effec-
tiveness of the control of risks directly. Therefore, we need to balance our efforts
involved in the two parts, avoiding losing sight and focus of product arguments in
safety cases.

4 Discussions

4.1 Comparison of Strategy Types

There is some degree of overlap of the five groups of strategies. However, it provides
a view of strategies from different viewpoints. Each group has its own advantages.
The strategies came from Source 1 are based upon the ‘part-whole’ relationship and
set more focus on the decomposition, easily mapping with the system description at
different stages. The strategies from Source 2 put more emphasis on the problems to
be solved. It helps us to gain the view of how safety is considered and handled in the

 Rethinking of Strategy for Safety Argument Development 393

project. The strategies from Source 3 are practical and closely linked with the devel-
opment process and the certification needs of a system. The strategies from Source 4
concentrate more on seeking mechanisms for providing supportive reasons, rather
than intuitive decomposition and refinement of a higher-level goal.

The argument structures in reality are complicated and the strategies linking
claims, if they are explicitly presented, are depicted in varied viewpoints. We wish the
strategy types presented in the paper will bring about a clearer understanding of po-
tential argument approaches and facilitate proper usage of strategies in safety argu-
ment development.

4.2 Application of Strategies

The strategy types presented in Section 3 may be considered in the Step 3 of the
six-step method, which provide more choices for potential lower-level argument
structures. In addition, the following aspects should be considered while describing
argument approaches.

1. The identification and adoption of strategies does not exclude the identification of
direct evidence for a goal, instead, the two activities can go in parallel. This is im-
portant, especially for searching for support for intermediate safety goals. For ex-
ample, a higher level safety requirement for a software package may be supported
by a number of lower level safety goals set for individual software units that asso-
ciated with that package. At the same time, it may be supported by evidence such
as a system level testing result.

2. It is acceptable practice to adopt and use two strategies of different types in combi-
nation to support the decomposition and refinement of one claim. If more than one
strategy is chosen to advance the argument, we need to examine and ensure that no
identical lower level goals are repetitively represented. Moreover, proper evidence
assertions should be adopted if a single item of evidence is referenced by more
than one claim. One interesting point is that if there is a case that different strate-
gies lead to sub-goals that contradict each other, it may indicate that the definition
or understanding of the higher level safety goal is insufficient, ambiguous, or in-
consistent.

3. A generic strategy type can be used repeatedly in argument decomposition at dif-
ferent stages. However, the contexts and justifications associated with the instance
of that strategy type is varied according to the goal with which it is linked.

4. Strategies are unnecessarily always explicitly presented in the graphical representa-
tion of an argument. If the comprehension is adequately achieved, obvious ‘strate-
gies’ can be left implicit while an argument structure of smaller size is preferred.
However, the context and the justification associated with the implicit strategies
should not be neglected and should be addressed in confidence arguments.

5. The types of strategies presented may also be considered for helping to integrate
lower-level safety goals to a higher-level safety goal. As described by [2], some-
times, an argument can be constructed bottom-up. While constructing arguments
with a bottom-up approach, the user rarely has the freedom to select a strategy.

394 L. Sun, N. Silva, and T. Kelly

But with some common ‘strategies’ used in top-down argument construction in
mind, the user can have a better view of potential higher-level goals that may be in-
ferred and the user may put together relevant lower-level goals/evidence assertions
more efficiently in order to jointly support a single higher-level goal.

5 Conclusion

In this paper, we have presented the major sources of information that the strategy for
safety argument development may come from. In addition to the traditional approach
argument decomposition based on the rule of ‘divide and conquer’, we have sug-
gested to adopt strategies from the argumentation domain – logical appeals. The bene-
fits of our work, we anticipate to evaluate in our ongoing work, include: provision of
prior knowledge of reusable generic strategy types, reduction of inappropriate usage
of argument strategies, a clear sense of justification needed for various strategy types,
and improvement in understanding of inferences that are unclearly described in safety
reviews. Furthermore, the generic types of strategies may also be used as an informa-
tion source in the development of future safety case patterns.

In the future, we hope to carry on our work in the following directions. Firstly, we
will perform a more extensive study of argument structures from available literature
and industrial reports in order to examine the coverage and appropriateness of the
classification. Secondly, we will examine the existence and coverage of the strategy
types presented in the paper by performing survey to safety case practitioners.
Thirdly, we will implement a real industrial case study of safety case development
with mapping and application of the identified strategy types in order to check the
applicability and effectiveness of the strategy types as instructive references. In addi-
tion, we would consider providing domain-specific application guidance on the usage
of argument strategies in system assurance, taking account of the features of systems,
the attributes to be assured and specific industrial needs. As a long term goal, we hope
to put forward the practical application of argument approaches in assurance of more
attributes of critical systems.

Acknowledgments. This work has been partially supported by the project “CECRIS
– CErtification of CRItical Systems”, FP7 - Marie Curie (IAPP) number 324334.

References

1. Evidence: Using safety cases in industry and healthcare. The Health Foundation, London
(2012)

2. GSN Working Group, GSN Community Standard Version 1, Origin Consulting (York)
Limited (2011)

3. Kelly, T.P.: Arguing Safety: A Systematic Approach to Managing Safety Cases. PhD
Thesis, Department of Computer Science, University of York, UK (1998)

4. Hawkins, R., Kelly, T.: A Software Safety Argument Pattern Catalogue. The University of
York, York (2013)

 Rethinking of Strategy for Safety Argument Development 395

5. OMG, Structured Assurance Case Metamodel (SACM), Version 1.0. (2013)
6. Yamamoto, S., Matsuno, Y.: An evaluation of argument patterns to reduce pitfalls of

applying assurance case. In: 2013 1st International Workshop on Assurance Cases for
Software-Intensive Systems, ASSURE (2013)

7. Bloomfield, R., Bishop, P.: Safety and Assurance Cases: Past, Present and Possible
Future – an Adelard Perspective. In: Dale, C., Anderson, T. (eds.) Making Systems Safer,
pp. 51–67. Springer, London (2010)

8. Toulmin, S.E.: The Uses of Argument. University Press, Cambridge (1958)
9. Spriggs, J.: GSN - The Goal Structuring Notation (A Structured Approach to Presenting

Arguments). Springer (2012)
10. Bloomfield, R., et al.: ASCAD–Adelard safety case development manual. Adelard (1998)
11. Yuan, T., Kelly, T.: Argument Schemes in Computer System Safety Engineering. Informal

Logic 31(2), 89–109 (2011)
12. Denney, E., Pai, G., Pohl, J.: Automating the Generation of Heterogeneous Aviation

Safety Cases. Technical Report NASA/CR-2011-215983, NASA Ames Research Center
(2011)

13. Kelly, T.: A Six-Step Method for the Development of Goal Structures. York Software
Engineering, Flixborough (1997)

14. Chen, Y., Lawford, M., Wang, H., Wassyng, A.: Insulin Pump Software Certification. In:
Gibbons, J., MacCaull, W. (eds.) FHIES 2013. LNCS, vol. 8315, pp. 87–106. Springer,
Heidelberg (2014)

15. MOD, Defence Standard 00-56 Safety Management Requirements for Defence Systems,
Part 1: Requirements, Issue 4 (2007)

16. Hawkins, R., et al.: A New Approach to creating Clear Safety Arguments. In: Dale, C.,
Anderson, T. (eds.) Advances in Systems Safety, pp. 3–23. Springer, London (2011)

17. Weinstock, C.B., Goodenough, J.B.: CMU/SEI-2009-TN-018 Towards an Assurance Case
Practice for Medical Devices, Carnegie Mellon University (2009)

18. Dodd, I., Habli, I.: Safety certification of airborne software: An empirical study.
Reliability Engineering & System Safety 98(1), 7–23 (2012)

19. Holloway, C.M.: Towards understanding the DO-178C / ED-12C assurance case. In:
System Safety, incorporating the Cyber Security Conference 2012 (2012)

20. Hawkins, R., Habli, I., Kelly, T.: The Principles of Software Safety Assurance. In: The
31st International System Safety Conference, Boston, Massachusetts, USA (2013)

21. Birch, J., et al.: Safety Cases and Their Role in ISO 26262 Functional Safety Assessment. In:
Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFECOMP. LNCS, vol. 8153, pp. 154–165.
Springer, Heidelberg (2013)

22. Govier, T.: A practical study of argument. Cengage Learning, Wadsworth (2010)
23. Dowden, B.H.: Logical Reasoning (2012),

http://www.csus.edu/indiv/d/dowdenb/4/
Logical%20Reasoning.pdf (accessed March 1, 2014)

24. Walton, D.N., Reed, C., Macagno, F.: Argumentation schemes. Cambridge University
Press (2008)

25. Sun, L.: Establishing Confidence in Safety Assessment Evidence. PhD Thesis, Department
of Computer Science, University of York, UK (2012)

26. Goodenough, J.B., Weinstock, C.B., Klein, A.Z.: Eliminative induction: A basis for
arguing system confidence. In: 2013 35th International Conference on Software
Engineering, ICSE (2013)

27. Post-Closure Safety Case for Geological Repositories - Nature and Purpose. Nuclear
Energy Agency, OECD (2004)

Towards a Cross-Domain Software Safety

Assurance Process for Embedded Systems

Marc Zeller, Kai Höfig, and Martin Rothfelder

Siemens AG, Corporate Technology
Otto-Hahn-Ring 6, 81379 Munich, Germany

{marc.zeller,kai.hoefig,martin.rothfelder}@siemens.com

Abstract. In this work, we outline a cross-domain assurance process
for safety-relevant software in embedded systems. This process aims to
be applied in various different application domains and in conjunction
with any development methodology. With this approach we plan to re-
duce the growing effort for safety assessment in embedded systems by
reusing safety analysis techniques and tools for the product development
in different domains.

1 Introduction

The importance of safety-relevant software systems in many application domains
of embedded systems, such as aerospace, railway, health care, automotive and
industrial automation, is continuously growing. Thus, along with the growing
system complexity, also the need for safety assessment as well as its effort is
increasing drastically in order to guarantee the high quality demands in these
application domains. However, this trend is contrary to industry’s aim to reduce
development costs and time-to-market of new products.

The goal of safety assessment is to identify all failures that cause hazardous
situations and to demonstrate that their probabilities are sufficiently low. In
the application domains of safety-relevant software the safety assurance process
is defined by the means of safety standards. The requirements of these stan-
dards must be met in order to enable argumentation that the system is safe. To
reduce development costs and the time-to-market, one possible approach is to
develop a safety assurance process which is applicable to multiple applications
domains of embedded systems (e.g. like the IEC 61508 standard [3]). In this
paper, we present an approach towards a safety assurance process for software
which is applicable across different application domains of embedded systems.
This process aims to be applicable with various development methodologies used
in different domains and tries to use common safety analysis techniques as far as
possible. Hence, it builds the foundation for the future development of methods
and tools for safety assurance which can be applied across domains of safety-
relevant software systems. Thus, safety analysis techniques and tools as well as
artifacts produced during the safety assurance process may be reused for the
safety assessment of different kinds of products. Especially, in areas where em-
bedded systems are highly related to software product-lines or heterogeneous

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 396–400, 2014.
c© Springer International Publishing Switzerland 2014

Cross-Domain Software Safety Assurance Process for Embedded Systems 397

systems-of-systems, a cross-domain safety analysis process will reduce the effort
needed to fulfill the requirements of the respective safety standard significantly.

This paper is organized as follows: In Sec. 2 we present relevant related work.
Then, we outline our approach for a cross-domain safety assurance process. The
benefits of this process are discussed in Sec. 4. This paper is concluded and an
outlook to future work is given in the last section.

2 Related Work

Today, numerous standards related to functional safety of software are exist-
ing (cf. [1]). These standards provide the rules and guidelines as basis for the
safety assurance process of safety-relevant systems in specific domains. Since
each domain-specific safety standard defines a specific vocabulary and covers
the complete safety life-cycle, each domain has evolved its individual safety as-
surance process. Since we focus on the safety assurance process of software, we
will further consider only safety standards related to software. These standards
are: the DO-178C in aeronautics, the ISO 26262 in automotive, IEC 60880 &
62138 in the area of nuclear power plants, the EN 50128 in railway, the IEC 62304
in health care, and the ECSS-Q-ST-80C in space. Moreover, IEC 61508 will be
considered which covers the industrial automation domain. However, only parts
of the safety process defined in the IEC 61508 standard are related to software,
since the scope of this standard is much broader.

In order to enable cross-domain harmonization of the safety assurance pro-
cess and the sharing of common techniques and tools, first attempts to identify
similarities and dissimilarities have already been performed in [1,2,5,6,7]. As a
result of these previous analyses the following similarities between the examined
standards have be identified:

– Common notion of safety and certification
– Linear progressing safety process with dedicated phases
– Combined hazard assessment and risk analysis to derive safety requirements
– Criticality levels as means to allocation safety (integrity) requirements to

system elements
– Verification activities are driven by the safety requirements
– Safety case provides evidence that safety requirements are fulfilled which is

needed for certification

Moreover, the following divergences have be identified:

– Varying definition of criticality levels
– Different approaches for the allocation of safety requirements
– Specific verification & validation processes

Based on a number of identified similarities of the safety standards in the
transportation sector, [7] already outlines a generic safety assessment process
integrated into a concrete system development process. However, only safety
standards from the transportation domain are analyzed and recent developments

398 M. Zeller, K. Höfig, and M. Rothfelder

in safety regulations (e.g. the ISO 26262) are not considered. In our work, we
aim at finding a cross-domain safety assurance process applicable to any domain-
specific software development process.

3 Cross-Domain Safety Assurance Process

According to the similarities and divergences of the analyzed safety standards re-
lated to software, we outline a cross-domain safety assurance process (see Fig. 1).
This process consists of generic and domain-specific steps which must be exe-
cuted in each of the considered domains as well as steps which are only necessary
in specific domains.

Hazard Analysis & Risk Assessment

Certification

Verification & Validation
Process

Safety Case

Safety Requirements
(SIL, SSIL, ASIL, DAL, Class)Critical System Functions

Functional decomposition &
allocation to system components

Safety Requirements
decomposition

Safety Concept

Safety Assessment

Domain-specific
stepGeneric step Only for specific

domains

1

2

3

4

5

6

7

8

Fig. 1. Cross-domain software safety assurance process

The software safety assurance process starts with the Hazards Analysis &
Risk Assessment (HARA). This step aims to determine safety-relevant systems
functions, the safety requirements of these functions (maximum tolerable failure
probabilities) as well as the potential demands for additional safety functions.
The different safety standards generally agree on common HARA techniques [6].

As a result of the HARA, safety requirements are derived. According to [1],
all safety standards introduce criticality categories, so-called Criticality Levels
(e.g. the Safety Integrity Levels (SILs) in IEC 61508) to quantify the safety re-
quirements. In all domains, the criticality levels characterize the consequences of

Cross-Domain Software Safety Assurance Process for Embedded Systems 399

failures (severity) combined with a notion of their occurrence probability. How-
ever, in each domain the acceptability frontiers of risk differs due to divergences
in the definition of severity and risk occurrence [2].

The next phase in the assurance process is the allocation of criticality levels
to system elements as well as the functional decomposition. This step is domain-
specific due to the differences between safety standards. In aeronautics, nuclear,
railway and space the fist categorized element is a (top level) function. Then the
criticality levels are derived according to functional decomposition and allocated
to the system elements implementing the top-level functions. In the automotive
domain, however the criticality levels are allocated first to safety goals and de-
rived to safety requirements and system elements.

Furthermore, a decomposition of the criticality levels is possible in railway
and space domain (according to generic rules) as well as in the aeronautics and
automotive domain (according to specific rules) [2]. But this phase of the safety
assurance process is only possible in these domains.

As a next step, the Safety Concept is derived. It is defined as the specification
of the safety requirements, their allocation to system elements and their interac-
tion necessary to achieve safety goals [4]. The construction of the safety concept
is a generic step which is compliant to all considered safety standards. However,
the necessary content of the safety concept may differ from domain to domain.

Within the next phase, the developed software is verified and validated. The
verification and validation techniques (such as source code verification, unit test-
ing, integration testing, etc.) and the process itself are defined or recommended
by the domain-specific safety standards.

Finally, the Safety Case is compiled to argue that the system is safe. The safety
case is derived from the safety concept and extended by results of the verification
& validation process to prove that the safety requirements have been fulfilled.
A safety case is a concept applicable across all domains. However, in aerospace
and railway a so-called Safety Assessment is required additionally to show the
conformity to the standard [5]. The evidence for system safety provided by the
safety case forms the basis for safety certification.

4 Discussion

The cross-domain safety assurance process outlined in Sec. 3 is applicable to any
development process or methodology, since none of the process steps directly
include a reference to the system development. Hence, our approach may be
used along with state-of-the-art approaches in system/software engineering such
as component-based and model-based development as well as software-product-
lines.

Our approach solely consists of 8 different process steps which are all not new
in the area of safety engineering. Thus, established safety analysis techniques
(such as Hazard and Operability Studies (HAZOP), Failure Mode and Effects
Analysis (FMEA), Fault Tree Analysis (FTA), etc.) can be applied and no new
safety analysis methodologies need to be developed.

400 M. Zeller, K. Höfig, and M. Rothfelder

More than the half of the phases in our process are generic. Therefore, the
techniques and tools used in these steps can be applied in various application
domains. The domain-specific steps only differ in methods for the allocation
of criticality levels to the system elements and the requirements for software
verification & validation. However, also common techniques and tools can be
applied in these phases but have to be adapted to the domain-specific require-
ments respectively. There are only two process phases which are solely relevant
to particular safety standards. For these steps domain-specific techniques and
tools must be provided separately.

5 Conclusions and Outlook

The cross-domain assurance process for safety-relevant software in embedded
systems, outlined in this paper, aims to be applied in various different appli-
cation domains. Thus, supporting the cost-efficient system development as well
as the reuse of techniques and tools for the safety analysis. However, not all
of the process steps can be realized in a generic and domain-independent way.
But our approach is independent from concrete development methodologies and
can be applied along with component-based and model-based design. Moreover,
common safety analysis techniques can by applied in most process steps.

Future work will include a more refined description of each phases of the
cross-domain safety assurance process including applicable techniques and tools.
Moreover, we will evaluate our approach in different application domains.

References

1. Baufreton, P., Blanquart, J., Boulanger, J., Delseny, H., et al.: Multi-domain com-
parison of safety standards. In: Proceedings of the 5th Int. Conf. on Embedded Real
Time Software and Systems, ERTS2 (2010)

2. Blanquart, J.P., Astruc, J.M., Baufreton, P., Boulanger, J.L., et al.: Criticality cat-
egories across safety standards in different domains. In: Proceedings of the 6th Int.
Conf. on Embedded Real Time Software and Systems, ERTS2 (2012)

3. Int. Electrotechnical Commission (IEC): IEC 61508: Functional safety of electri-
cal/electronic/programmable electronic safety related systems (1998)

4. Int. Organization for Standardization (ISO): ISO 26262: Road vehicles - Functional
safety (2011)

5. Ledinot, E., Astruc, J.M., Blanquart, J.P., Baufreton, P., et al.: A cross-domain
comparison of software development assurance standards. In: Proceedings of the
6th Int. Conf. on Embedded Real Time Software and Systems, ERTS2 (2012)

6. Machrouh, J., Blanquart, J.P., Baufreton, P., Boulanger, J.L., et al.: Cross domain
comparison of system assurance. In: Proceedings of the 6th Int. Conf. on Embedded
Real Time Software and Systems, ERTS2 (2012)

7. Papadopoulos, Y., McDermid, J.A.: The potential for a generic approach to certifi-
cation of safety critical systems in the transportation sector. Reliability engineering
& system safety 63(1), 47–66 (1999)

A Software Safety Verification Method Based

on System-Theoretic Process Analysis

Asim Abdulkhaleq and Stefan Wagner

Institute of Software Technology, University of Stuttgart,
Universitätsstraße 38,70569 Stuttgart, Germany

{Asim.Abdulkhaleq,Stefan.Wagner}@informatik.uni-stuttgart.de

http://www.iste.uni-stuttgart.de/se.html

Abstract. Modern safety-critical systems are increasingly reliant on
software. Software safety is an important aspect in developing safety-
critical systems, and it must be considered in the context of the system
level into which the software will be embedded. STPA (System-Theoretic
Process Analysis) is a modern safety analysis approach which aims to
identify the potential hazardous causes in complex safety-critical sys-
tems at the system level. To assure that these hazardous causes of an
unsafe software’s behaviour cannot happen, safety verification involves
demonstrating whether the software fulfills those safety requirements and
will not result in a hazardous state. We propose a method for verifying
of software safety requirements which are derived at the system level to
provide evidence that the hazardous causes cannot occur (or reduce the
associated risk to a low acceptable level). We applied the method to a
cruise control prototype to show the feasibility of the proposed method.

Keywords: STPA approach, software safety analysis, temporal logic,
safety verification, formal verification methods.

1 Introduction

A safety-critical system is a system that can cause undesired loss or harm to
human life, property, or the environment, whereas safety-critical software is soft-
ware that can contribute to such loss or harm [1]. A software cannot directly
cause loss or harm, but it may control some equipment that may cause acci-
dents [2]. Therefore, many examples of safety systems which have failed due
to software related faults: the loss of Ariane 5 [4], Therac-25 [3], and more re-
cently Boeing 777-200 [8] and the Toyota Prius. Many software related accidents
and major losses are the result of incompleteness or other flaws in the software
requirements, not coding errors [1]. Safety is a system problem; therefore, to
understand the safety aspects of software, it is necessary first to understand the
general field of system safety.

STPA (System-Theoretic Process Analysis) [5] is an approach developed by
Leveson to identify safety requirements and constraints at the system level. In
STPA, the system is seen as a set of control loops (comprising interacting compo-
nents involving software) which interact with each other. STPA uses the existing

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 401–412, 2014.
c© Springer International Publishing Switzerland 2014

http://www.iste.uni-stuttgart.de/se.html

402 A. Abdulkhaleq and S. Wagner

knowledge about a system to guide the safety analysis process; therefore, it is
not necessary to have knowledge about the details of implementation.

1.1 Problem Statement

Typically, software verification focuses on proving the functional correctness of
software and demonstrating that the software fully satisfies all functional require-
ments [16]. However, they cannot make it safe and the correctness of software
cannot ensure the software is safe, or reduce the risk. Therefore, the software
must be analyzed regarding the safety aspect and verified against its safety re-
quirements at the system level [7]. As STPA is a new technique, which has
proven to be effective on establishing the safety requirements and constraints
at the system level (e.g. Space Shuttle Operations [18], Japanese Exploration
Agency (JAXA) [19]); it has not been used for identifying software safety re-
quirements in the system context and verifying the software against them.

1.2 Research Objectives

The overall objective of this research is to fill this gap and investigate the pos-
sibility of verifying safety-critical software against safety requirements and con-
straints which are derived at the system level by using STPA. To control the
associated risk of the safety-critical software, we first need to identify the po-
tential hazards and then demonstrate that a potential hazardous cause cannot
occur, i.e., the software cannot contribute to an unsafe state. The main purpose
of applying STPA to software in the context of a system in our method is to un-
derstand the software hazardous causes early to develop corresponding software
safety requirements which should be taken into consideration. The second pur-
pose is to reduce the amount time and effort of safety analysis and verification
at the code level.

1.3 Contribution

For that, we propose a method which provides a link between the safety analysis
at the system level and safety verification at the code level. This method enables
the safety analyst to extract the software safety requirements at the system level
and verify them at the code level.

2 Background

We give background information on the three main topics which we use in the
proposed method: STPA, safety verification, and formal specification and verifi-
cation:

A Software Safety Verification Method Based on STPA 403

2.1 STPA

STPA [5] is a top-down system engineering approach to system safety; therefore,
it can be applied early in the system development process or before a design has
been created to generate high-level safety requirements and constraints. In con-
trast to traditional safety analysis techniques, which are based on reliability
theory, STPA is more powerful in terms of identifying more causal factors and
hazardous scenarios, particularly those related to software, system design and
human behaviour [6]. STPA identifies systematic failures such as software de-
sign errors, hardware design errors, requirements specification errors and other
operational procedures.

STPA is implemented in four steps [6]: (1) establish the fundamentals of anal-
ysis; (2) identify potentially hazardous control actions; (3) use the identified po-
tentially hazardous control actions to create safety requirements and constraints;
and (4) determine how each potentially hazardous control action could occur. In
step 1, the safety analyst must identify the accidents or losses which will be con-
sidered, hazards associated with these accidents, and specify safety requirements
(constraints). After establishing the fundamentals, the safety analyst must draw
a preliminary (high-level) functional control structure of the system. In step 2,
the analyst has to use the control structure as a guide for investigating the anal-
ysis to identify the potentially unsafe control actions. Then he or she translates
them to corresponding safety constraints. In step 3, the analyst has to identify
the process model variables for each controller (automated controller or human)
in the control loop and analyze each path to determine how each potentially haz-
ardous control actions could occur. At the end of the process, a recommendation
for the system design should be developed for additional mitigations.

2.2 Software Safety Verification

The first step of safety verification is to verify that the software requirements are
consistent with or satisfy safety constraints. Safety verification exists to provide
evidence that associated risk has been reduced or eliminated [1]. Safety verifi-
cation is not the same as functional verification. Functional verification assures
that the software fully satisfies its specifications, while safety verification uses
the results of the safety analysis process to assure that the software meets the
safety requirements [20]. The safety verification can be done in two ways [1]: (1)
static analysis which looks over the code and design documents of the system
(e.g. fault tree, formal verification); and (2) dynamic analysis requires the execu-
tion of the software to check all of the systems safety features. Static analysis is
the same as a structured code review. Systems can be proven to match require-
ments, but it will not catch any safety states that the requirements miss [1]. The
dynamic analysis has the ability to catch unanticipated safety problems, but it
cannot prove that a system is safe (e.g. software testing).

SFTA (Software Fault Tree Analysis) [1] is a static analysis technique which
is primarily used to discover all potential faults such as faulty inputs or software
bugs that could occur in software. SFTA has also been used for verifying software

404 A. Abdulkhaleq and S. Wagner

code. Leveson stated in [1] that SFTA is applicable only to small-sized software.
Because the complete generating of a tree is not possible for large software.

2.3 Formal Specification and Verification Techniques

Formal verification is a very active area of research, and many promising tech-
niques and methodologies have been invented for verifying computing systems.
Theorem proving and model checking are common methods used today. For-
mal verification entails a mathematical proof showing that a system satisfies its
desired property or specification. To do this, the property of interest must be
modeled in a mathematical structure (e.g. temporal logic). Temporal Logic has
been proposed by Pnueli [9] as an appropriate formalism in the specification and
verification of concurrent programs. Many different versions of temporal logic
have been used in the verification process such as Linear-Time Temporal Logic
(LTL), and Computation Tree Logic (CTL) [23] which have been broadly used
to express safety properties in a formal notation. An LTL formula consists of
atomic propositions, Boolean operators (¬, ∨,∧,↔,→, true, false) and tempo-
ral operators (© next, � always, ♦ eventually, U until, R release). CTL is an
extension of classical logic that allows reasoning about an infinite tree of state
transitions. Model checking is a very popular formal verification technique and
has been used widely in the verification of software. It first involves building a
finite state machine as a formal model of a system, and then verifying whether
the property, written in some temporal logic, holds or not through an exhaus-
tive search of the system state space. Model checkers can be used also for testing
purposes to generate test cases [10].

3 Software Safety Verification Method Based on STPA

The safety analysis of safety-critical software provides the safety requirements
which need to be tested. Safety verification shall be performed to verify a correct
incorporation of software safety requirements [24]. Verification must show that
hazards have been eliminated or controlled to an acceptable level of risk. Figure
1 shows the proposed method of software safety verification based on STPA
at the system level. The method includes three main steps: (1) safety analysis
of software at the system level; (2) formalization of safety requirements and
constraints; and (3) verification and testing at the code level.

3.1 Safety Analysis of Software at the System Level (Step 1)

This step aims at analyzing the software in the context of the system to identify
the potential hazardous causes of software that could lead or contribute to an
accident. At this step, the safety analyst will apply STPA to the requirements
specification of the whole system. Then he/she will extract the requirements
relevant to the software in the context of the system. The safety control structure
of a system will include the software in the control loop as the main component

A Software Safety Verification Method Based on STPA 405

Fig. 1. Overview of software safety verification method

(controller) to depict the interactions between software and other parts of the
system (SW/HW components). Each unsafe control action in this context will
be documented with four types of hazardous control actions [5]: Not Providing
Causes Hazard, Providing Causes Hazard, Wrong Timing/Order, and Stopped
Too Soon/Applied Too Long. At the end of this step, the safety analyst will
translate each hazardous control action of software identified by STPA into the
corresponding safety constraints and requirements in the system context.

3.2 Formalization of Safety Requirements and Constraints (Step 2)

Up to this step, the safety requirements of the software are identified. These
safety requirements must be formalized using temporal logic (e.g. LTL, CTL) to
be able to verify them in the next step.

3.3 Verification and Testing at the Code Level (Step 3)

This step aims to verify the software at the code level against the safety require-
ments which are expressed in the formal specification in step 2. After formalizing
the safety requirements, this step can be done in two different ways: 1) using a
model checker for formal verification [22], or 2) using a model checker to gen-
erate corresponding test cases [17]. A model checker takes as input a model of
the software and the property of interest, which is written in temporal logic and

406 A. Abdulkhaleq and S. Wagner

then effectively explores the entire state space of the model. The model checker
generates counterexamples which can easily be turned into complete test cases
with the safety requirements (input and expected output).

4 Case Study: Vehicle Cruise Control

To illustrate the application of the method, we applied three steps of the method
to the prototype of a vehicle cruise speed controller. The cruise control (speed
control) system is a system which automatically controls the speed of a motor
vehicle based on a preset value of a steady speed given by the driver. The speed
controller unit is a program for judging the control scheme of the cruise control.
In [11], we have applied STPA to the adaptive cruise control system at the
abstract system level. Here, we focus on the safety analysis of software in the
system context. In accordance with the proposed method, the first step involves
applying STPA to the cruise control system. We use the A-STPA [12] tool to
document the STPA analysis results. In the following, we will describe in detail
the software safety verification based on a safety analysis at the system level.

4.1 Applying STPA to the Cruise Control

The results of applying STPA to the cruise controller at the system level are as
follows:

1. Analysis of Fundamentals: The safety analyst must first establish the
following fundamentals:

– Software Description: The software of the cruise control (controller)
maintains the vehicle speed automatically without pressing the acceler-
ator pedal. It does it by sending the adjust throttle position to move
as necessary to maintain the specified speed under varying conditions.
The throttle is moved by a throttle actuator. The cruise control soft-
ware maintains the speed of the vehicle on the occurrence of one of these
events: (1) driver engages the brake, (2) the engine stops running, (3) the
driver turns the ignition off, and (4) the driver turns the cruise control
off. The controller receives signals from several sensors such as rotation
sensor, brake pedal sensor, gear box sensor, and engine status sensor.

– Software Level Goals: G.1: Control the speed of the vehicle.

– Accident: AC1: The accident to be considered is a sudden accelera-
tion of the vehicle which leads to a crash with another vehicle and the
occupants are injured while the cruise control is in operation.

– The Related Software Level Hazards:
H.1: Unintended acceleration or deceleration of the vehicle when the
cruise control is in active mode.
H.2: The current speed value on the user interface is different from the
actual speed of vehicle.

A Software Safety Verification Method Based on STPA 407

– Design Requirements:
DR.1: The target speed must be between 40 km/h <= vt <= 100 km/h.
DR.2: The software shall notify the driver when trouble is detected.
DR.3: It shall keep the acceleration rate within 0.25 and 0.4 m/sec.

– Safety Constraints:
SC1: The controller shall keep the current speed of the vehicle below or
equal to the desired speed.
SC2: The cruise control shall not engage at the speed < 25 mph (40kph).

– Safety Control Structure Diagram: Figure 2 shows the control struc-
ture diagram which depicts the interaction between the software and
other components in the system.

Fig. 2. Safety control structure of cruise control software at the system level

2. Identify Unsafe Control Actions: Based on the control structure dia-
gram (Fig. 2), we can identify the potentially unsafe control actions of the
software at the system level which can lead to critical error. For example, the
control Action: Provide throttle position command (out) can be documented
as follows:

– Not Providing Causes Hazard: Throttle position command provided
but not received by the throttle actuator when the cruise control is engaged
(on) [H1]

– Providing Causes Hazard: The throttle position is commanded while
the cruise control is inactive (off) [H1]. The throttle position com-
manded with incorrect value of the throttle position [H1].

408 A. Abdulkhaleq and S. Wagner

Table 1. Examples of safety requirements which are derived by STPA

#code Hazardous control actions Safety Requirements and Con-
straints

SR1 Throttle position command pro-
vided but not received by
the throttle actuator when the
cruise control is engaged (on).

The throttle actuator must re-
ceive the adjustment throttle
position command when it is
commanded by controller.

SR2 The throttle position command
is commanded while the cruise
control is disengaged (off).

The controller must prevent
rogue commands to the throttle
when cruise control is off.

SR3 The throttle is commanded with
incorrect X throttle position
value.

The controller must be able to
detect incorrect voltages issuing
from the throttle position sensor
(0.9-4.0v).

– Wrong Timing or Order Causes Hazard: Late: the command pro-
vided too late [H1]. Early: The command provided too early [Not
Hazardous]

– Stopped Too Soon or Applied Too Long: N/A

Each hazardous cause will be translated into software-level safety constraints
(see in Table 1.)

3. Identify Causal Factors: Figure 3 shows the process models of the speed
controller and human operator as an example. The main process variables
of the cruise control controller are the cruise control states, throttle control,
and the speed control. These process model variables can be used to analyze
each hazardous control actions which could happen. At the end of this step,
the corresponding safety constraints will be refined.

4.2 Formalising the Safety Requirements

After identifying the safety commitments, we can translate them into formal
specifications to be able to verify them with formal verification methods in the
next step. Based on the classification of safety requirements for formal verifica-
tion which are described in [13] by Friedemann, we mapped the four types of
the hazardous control action classifications to the formal specification.

Mapping Safety Requirements to a Formal Specification: The mapping
process starts with taking the set of the process model variables of the software
(software states variables) which are identified in the last step of STPA to un-
derstand the main states of the software. To translate the safety requirements
into a formal specification, first, we write them as informal textual requirements,
i.e. if we consider the safety constraint SC2:The cruise control shall not engage

A Software Safety Verification Method Based on STPA 409

Fig. 3. The process model of the cruise control software at the system level

at the speed < 25 mph (40 kph). Second, we translate the textual descriptions
to formal textual description by using the control flow statements (IF- Then,
Wait- Until, Wait- For, Do- Until), for example:

IF CruiseControl (inactive) and Read speed(actual speed) <25 mph Then
CruiseControl (inactive)
Finally, we translate them into an LTL specification, for example:
� (CruiseControl (off) ∧ Read Speed(speed data) < 25 mph) → � CruiseC-

ontrol (off)
Examples of formal specifications of software safety requirements which are

derived from the STPA safety analysis at the system level are:

– SR1: � CruiseControl(cruise) → � (change Throttle ∧
set Throttle (position Throttle))

– SR2: � CruiseControl (off) → � ¬(set Throttle(position Throttle) ∨
change Throttle)

– SR3: � set Throttle(position Throttle) →
� (position Throttle > min value ∧ position Throttle < max value)

410 A. Abdulkhaleq and S. Wagner

4.3 Verification and Testing of the Safety Requirements

To verify the safety requirements of the cruise control software, we used the
Symbolic Model Verifier (SMV) which was developed by McMillan [14] and the
SMV specification of the cruise control which was written by Ammann, Black,
and Majurski [10]. We use SMV to either check the safety requirements or to
generate the test set. First, we run SMV to test whether the model of the system
satisfies the new safety requirements which we derived by STPA. As a result,
the cruise control model did not satisfy SR1, SR2, and SR3, because the SMV
specification model of the system does not include any state for controlling the
throttle or any constraint about the restricted value of the throttle (the rate
of throttle position value 0.09v - 4.0v). Therefore, we update the SVM speci-
fication model of the cruise control prototype and run SMV again. The SMV
specifications of SR1, SR2 and SR3 are :

SPEC AG (CruiseControl= cruise) -> AG (change_Throttle &

set_Throttle.position_Throttle > 0)

SPEC AG (CruiseControl= off) -> AG !(set_Throttle.position_

Throttle > 0 | change_Throttle)

SPEC AG (set_Throttle.position_Throttle > 0) -> AG (position_

Throttle > min_value & position_Throttle < max_value)

Now, SR1, SR2, and SR3 can be verified by SMV and the system model
satisfies them. Then counterexamples can be generated by SMV to derive a new
test suite.

5 Related Work

There is a large body of existing work on using formal verification for safety
properties, safety verification by using SFTA, and generating test cases by using
a model checker. Here, we discuss some of the most closely related work.

Leveson et al. [7] explain software fault tree analysis as a method for safety
verification at the code level to be used on a more complex language involving
such features as concurrency and exception handling. They consider the applica-
tion of the safety analysis procedures to requirements modeling and specification
languages. Kristen et al. [15] investigates how the results of one safety analysis
technique, fault trees, are interpreted as software safety requirements by us-
ing interval logic to be used in the program design process. They interpreted
fault trees as temporal formulas and how such formulas can be used for deriv-
ing safety requirements for software. Friedemann[13] propose the classification
of safety requirements for the formal verification of software models of industrial
automation systems. He expresses the safety requirements by using computation
tree logic. The main reason of developing this classification is to handle difficul-
ties in formal specification of safety requirements by software engineer. Recently,
Black[17] shows how to generate test cases by using model checking.

The previous work focused on using the formal verification methods to verify
that the software fulfills its specification (functional correctness). However, not

A Software Safety Verification Method Based on STPA 411

all software errors can lead to the critical error that may lead to an accident.
Safety properties (e.g. deadlocks, unexpected behavior, etc.) also are a special
interest in formal verification. There have been a lot of work to verify safety
properties at the code level. Verifying safety requirements, which are derived
by using the traditional hazard analysis techniques such as FTA and SFTA, is
an active area in verifying safety-critical systems. However, FTA and SFTA are
difficult to apply to different parts of the safety related system (e.g. interaction
between components). They evaluate only the possibility of occurrence, not the
likelihood and appear to be scalable for software, but they have limitation. For
example, the root node can only describe a known failure and they are labor-
intensive and thus costly for large-size software [21].

Since safety of software cannot be analyzed without taking into account the
system context, we take the advantages of STPA at the system level to construct
a method for verifying safety requirements derived at the system level by using
STPA. The method starts with safety analysis of software in the context of
the system level by using STPA to derive the high-level safety requirements and
constraints. The potential hazards identified during STPA will be translated into
a set of verifiable safety requirements. The safety verification uses these verifiable
safety requirements to prove that the software satisfies these requirements.

6 Conclusions and Future Work

In this paper, a method of software safety verification at the system level based
on STPA is proposed. We investigated the application of the STPA structure
to software, and we found that STPA can be directly used for software. We
mapped the results of the STPA safety analysis to a formal specification to be
able to verify safety requirements at the software code level. The limitation of
the method is that the formal specification is done manually which may lead to
much effort to construct and check the potential combinations of relevant states.
Therefore, we are exploring the automation of this step and integrate it with
our A-STPA tool as future work. Furthermore, we plan in-depth case studies to
improve the method by applying it to real safety-critical software in industry. We
plan also to investigate the effectiveness of using the proposed method during
an ISO 26262 life cycle in the automotive industry.

References

1. Leveson, N.G.: Safeware: System Safety and Computers. ACM, New York (1995)
2. McDermid, J.A.: Issues in developing software for safety critical systems. Reliability
Engineering & System Safety 32, 1–24 (1991)

3. Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. Com-
puter 26(7), 18–41 (1993)

4. Lions, J.L.: ARIANE 5: Flight 501 Failure. Technical Report, Inquiry Board (1996)
5. Leveson, N.G.: Engineering a Safer World: Systems Thinking Applied to Safety.
Engineering systems. MIT Press (2011)

412 A. Abdulkhaleq and S. Wagner

6. Leveson, N.G.: An STPA Primer. Engineering systems. MIT Press (2013)
7. Leveson, N.G., Cha, S.S., Shimeall, T.J.: Safety verification of Ada Programs Using
Software Fault Trees. IEEE Software 8(4), 48–59 (1991)

8. ATSB Transport safety Investigation Report, In-Flight Upset Event 240 km North-
West of Perth, WA Boeing Company 777-200, 9M-MRG (2005)

9. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, pp. 46–57 (1977)

10. Ammann, P.E., Black, P.E., Majurski, W.: Using Model Checking to Generate
Tests from Specifications. In: Proceedings of the Second IEEE International Con-
ference on Formal Engineering Methods, ICFEM 1998 (1998)

11. Abdulkhaleq, A., Wagner, S.: Experiences with Applying STPA to Software-
Intensive Systems in the Automotive Domain. In: Proc. 2013 STAMP Conference,
MIT, USA (2013)

12. Abdulkhaleq, A., Wagner, S.: An Open Tool Support for System-Theoretic Process
Analysis. In: Proc. 2014 STAMP Conference, MIT, USA (2014)

13. Friedemann, B.: Classification of Safety Requirements for Formal Verification of
Software Models of Industrial Automation Systems. In: Proceedings of the 13th
Conference on Software and Systems Engineering and their Applications, ICSSEA
2000 (2000)

14. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Norwell
(1992)

15. Hansen, K.M., Ravn, A.P., Stavridou, V.: From safety analysis to software require-
ments. IEEE Transactions on Software Engineering 24(7), 573–584 (1998)

16. Tracey, N., Clark, J., McDermid, J., Mander, K.: Integrating Safety Analysis with
Automatic Test-Data Generation for Software Safety Verification. In: Proceedings
of the 17th International Conference on System Safety (1999)

17. Black, P.E.: Test Generation Using Model Checking and Specification Mutation.
IT Professional 16(2), 17–21 (2014)

18. Stringfellow, M.V., Leveson, N.G., Owens, B.D.: Safety-Driven Design for Software-
Intensive Aerospace and Automotive Systems. Proceedings of the IEEE 98(4), 515–
525 (2010)

19. Ishimatsu, T., Leveson, N.G., Thomas, J.P., Fleming, C.H., Katahira, M.,
Miyamoto, Y., Ujiie, R., Nakao, H., Hoshino, N.: Hazard Analysis of Complex
Spacecraft Using Systems-Theoretic Process Analysis. Journal of Spacecraft and
Rockets 51(2) (2014)

20. Hardy, T.L.: Essential Questions in System Safety: A Guide for Safety Decision
Makers. AuthorHouse (2010)

21. Lutz, R., Nikora, A.: Failure Assessment in System Health Management with
Aerospace Applications, 1st edn. John Wiley & Sons (2011), Johnson, S.B., et
al (eds.)

22. Brock, B.C., Hunt, W.A.: Formally Specifying and Mechanically Verifying Pro-
grams for the Motorola Complex Arithmetic Processor DSP. In: Proceedings of
the 1997 IEEE International Conference on Computer Design: VLSI in Computers
and Processors, ICCD 1997, October 12-15, pp. 31–36 (1997)

23. Kapur, R.: CTL for Test Information of Digital ICS. Springer (2002)
24. NASA.: Software Safety, NASA Technical Standard, NASA-STD 8719.13A (1997)

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 413–418, 2014.
© Springer International Publishing Switzerland 2014

Quantifying Uncertainty in Safety Cases
Using Evidential Reasoning

Sunil Nair1, Neil Walkinshaw2, and Tim Kelly3

1 Simula Research Laboratory, Norway
2 Department of Computer Science, University of Leicester, United Kingdom

3 Department of Computer Science, University of York, United Kingdom
sunil@simula.no, n.walkinshaw@mcs.le.ac.uk,

tim.kelly@york.ac.uk

Abstract. Dealing with uncertainty is an important and difficult aspect of
analyses and assessment of complex systems. A real-time large-scale complex
critical system involves many uncertainties, and assessing probabilities to
represent these uncertainties is itself a complex task. Currently, the certainty
with which safety requirements are satisfied and the consideration of the other
confidence factors often remains implicit in the assessment process. Many
publications in the past have detailed the structure and content of safety cases
and Goal Structured Notation (GSN). This paper does not intend to repeat them.
Instead, this paper outlines a novel solution to accommodate uncertainty in the
safety cases development and assessment using the Evidential-Reasoning
approach - a mathematical technique for reasoning about uncertainty and
evidence. The proposed solution is a bottom-up approach that first performs
low-level evidence assessments that makes any uncertainty explicit, and then
automatically propagates this confidence up to the higher-level claims. The
solution would enable safety assessors and managers to accurately summarise
their judgement and make doubt or ignorance explicit.

Keywords: safety, safety assessment, safety case, confidence argument,
evidence, evidential reasoning, human factors, expert judgement, uncertainty,
confidence.

1 Introduction

Goal-based system safety standards such as DS 00-56 (MoD 2004a) often require the
construction and provision of a safety case - a structured argument, supported by a
body of evidence, that provides a compelling, comprehensible and valid case that a
system is safe for a given application in a given environment [1]. The assessor needs
to establish confidence that the safety case adequately addresses the identification and
mitigation of hazards. Unfortunately, both evidence and argument will typically be
imperfect and uncertainties in the assessment of safety cases are unavoidable.

A major challenge in developing a good safety case is to determine what type of
evidence and how much of this evidence is sufficient to satisfy the safety case claims.

414 S. Nair, N. Walkinshaw, and T. Kelly

Expert judgement plays a vital role in this process. However, the developer or the
assessor can never be 100% certain that all hazards were mitigated. Furthermore,
uncertainties might exist from secondary issues, such as who created the safety case,
who was responsible for generating the evidence, what types of tools and techniques
were used, etc. These confidence factors often tend to be implicit considerations in
the development and assessment of safety cases.

This paper proposes a novel approach to explore these factors and provide a
mathematically sound framework for assessing safety cases using Evidential
Reasoning (ER) [2]. The uncertainty of the expert´s judgement is captured in this
approach through a series of questions (specific for different evidence types), gauging
their confidence in the supporting evidence. ER provides a mechanism by which this
low-level confidence information can be propagated up the hierarchy of a structured
safety case represented in GSN. The ER algorithm [2] allows us to calculate an
aggregate belief function for the top-level claim, which explicitly captures any
uncertainty in the expert´s judgement from the lower-level confidence ratings.
Eliciting the expert´s confidence factors for different evidence types and providing a
scale of uncertainty, will allow both developers and regulators to more accurately
summarise their opinion and make any doubt or ignorance explicit. This assessment
framework will help safety case assessment to be more systematic and consistent,
thereby providing increased assurance on the safety of the system.

The rest the paper is organized as follows. Section 2 outlines the background of the
paper. Section 3 presents the research agenda and proposed solution. Section 4
presents our conclusions.

2 Background

This section introduces the background on expert judgement in safety and ER. We
also review related work.

2.1 Confidence and Uncertainty in Safety Assessment

Recent studies have shown that determining the confidence in the safety of a system
as a whole and, as a part of that process, confidence in individual pieces of evidence
is challenging for both industry [3] and academia [4]. The strong reliance of
judgment-based processes has led to the current situation where expert judgment may
be considered as a de facto method for assessing safety of a system in practice [3].
Despite the pervasive and predominant use of expert judgment in safety assessment,
few systematic investigations on handling uncertainty have been performed to date.

Improving safety case development and argumentation has been a major research
interest in the past. The notion of confidence arguments and assurance deficits were
introduced to support the safety case development [5]. Studies have also dealt with
confidence factors and criteria used in safety assessments [6, 7]. Past studies [8-10]
have detailed the notion of uncertainty in safety cases and provided ways to handle
them e.g., using Bayesian Belief Networks (BBN) [11]. Although plausible, BBN rely

 Quantifying Uncertainty in Safety Cases Using Evidential Reasoning 415

heavily on their probability tables, which in turn rely on the availability of prior
probability information. This reliance upon the prior probability information, which is
often complicated to obtain, makes it difficult to provide a thorough assessment on
confidence where the assessor is ignorant or doubtful.

2.2 Evidential Reasoning (ER)

The general challenge of reasoning about multifaceted decision problems, where the
underlying data is subject to varying degrees of (un-)certainty is well-established. In
the late 60´s, Dempster and Schäfer proposed that the subjective beliefs of individuals
could be expressed as `belief functions’ in their `Theory of Evidence’ (DS-theory)
[12, 13]. In a belief function, the possible range of beliefs is represented as a Likert-
scale (e.g., 0 is very bad and 5 is excellent), and the subjective belief is represented as
a distribution over this scale (where total ignorance is represented as an empty
function). They then showed how such belief functions could be combined to yield
aggregate beliefs for multi-faceted decision problems.

In reality (e.g., the assessment of safety cases), decision problems tend be
structured; certain factors may feed-in to each other, and can form more complex,
hierarchical belief structures. ER [2] is an extension of DS-theory that enables the
aggregation of belief functions, where the factors are arranged in a hierarchical
structure. The root-node represents the final decision one wishes to make. Branch
nodes represent contributory factors. Branches can be given different weights,
indicating the extent to which they contribute to the overall decision. Leaf-nodes
represent points at which one can present ones own belief functions. ER then provides
the mathematically sound basis by which to combine the belief-functions provided in
the leaf-nodes, and to propagate them up to the root.

3 Research Agenda

Our overall goal is to develop a tool-supported framework to improve and support
expert judgment in safety assessments. Following on from preliminary work using ER
to assess software quality [14], we intend to apply ER to provide an automated,
mathematically sound basis for the assessment of the expert’s confidence in safety-
claims, as set out with confidence arguments.

The proposed high-level procedure is shown in Figure 1. A typical GSN
confidence argument will allow structuring of claims and the supporting arguments
that increase confidence. The satisfaction of the low-level claims relies on the solution
(evidence) supporting them. Through a series of generic and specific questions about
the solution, the expert will set out their assessment (ranging from a scale of 0 – 5)
and their confidence (a quantified value of confidence level e.g., in percentage) in the
satisfaction of the claim. ER will then propagate these beliefs through the GSN
structure to yield an overall assessment of the system. Crucially, any ignorance or
uncertainty about a claim will be made explicit in the overall assessment as well.
Some sample generic questions are shown in the Figure 1.

416 S. Nair, N. Walkinshaw, and T. Kelly

Fig. 1. High-level application of ER on GSN confidence argument and sample questions

To achieve the above-mentioned goal we formulate will require us to address the
following key research questions (RQs):

RQ1. What information makes experts gain or lose confidence in the claim, its
arguments, and the supporting evidence?

This RQ aims to understand the expert´s decision-making process. It attempts to
identify the various factors and criteria for individual evidence types that influence
the confidence of the expert. The key challenge here would be to identify through
systematic examination the specific questions to establish the underlying belief
functions in ER. Different evidence types are likely to have specific factors that
influence the expert´s confidence and these needs to be identified. An initial attempt
to answer this RQ was through interviews with experts [10].

RQ2. How can the confidence in goal structured safety cases be quantified along
with uncertainties with the help of ER?

This RQ aims at adaptation of ER approach to a goal structured safety case. We
need to identify ways in which the confidence can be quantified in the argument
patterns proposed [5]. We also need to identify ways in which the assurance deficit is
captured and communicated to the assessor. As a potential challenge, we need to
account for the fact that the confidence arguments are not necessarily tree-structured.
We need to identify an approach that enables feeding the answers to the questions
(see RQ1) into the ER framework and efficiently propagate these lower-level belief
values to the top-level claims. Implementation of the approach with a scalable tool
support is also a major step in this RQ.

G1
Sufficient confidence

demonstrated in
safety argument

C1
Subject safety

argument

S1
Argument over
all argument
assertions

G2
There is sufficient

confidence that all asserted
inferences are true

G3
There is sufficient

confidence that all asserted
solutions are true

G4
There is sufficient
confidence that all

asserted context is true

P
o

o
r

E
xc

e
lle

n
t

P
o

o
r

E
xc

e
lle

n
t

P
o

o
r

E
xc

e
lle

n
t

P
o

o
r

E
xc

el
le

n
t

?

P
R
O
C
ES
S'
R
E
LA
T
E
D
'Q
U
E
ST
IO
N
S

Is
 i

t
b

as
ed

 o
n

 a
 s

ta
n

d
ar

d
,

w
el

l-
re

co
g

o
n

is
ed

 p
ro

ce
ss

/t
ec

h
n

iq
u

e.
I

h
av

e
ap

p
li

ed
 t

h
e

p
ro

ce
ss

/t
ec

h
n

q
iu

e
u

n
if

o
rm

ly
 a

n
d

 s
y

st
em

at
ic

al
ly

.
I

fo
ll

o
w

ed
 a

 d
ef

in
ed

 p
ro

ce
d

u
re

 f
o

r
th

e
p

ro
ce

ss
/t

ec
h

n
iq

u
e

u
se

d
.

A
ll

 t
h

e
as

su
m

p
ti

o
ns

 i
n

th
e

ap
p

li
ca

ti
o

n
 o

f
th

e
p

ro
ce

ss
/t

ec
h

n
iq

u
e

h
av

e
b

ee
n

 r
ec

o
rd

ed
.

T
h

e
te

ch
in

q
u

e
h

as
 b

ee
n

 u
se

d
 i

n
 t

h
e

p
as

t
an

d
 h

as
 y

ie
ld

ed
 s

ig
n

if
ic

an
t

re
su

lt
s.

T
h

er
e

h
as

 b
ee

n
 a

 h
ig

h
 l

ev
el

 o
f

in
d

ep
en

d
en

ce
 b

et
w

ee
n

 t
h

e
te

am
s

in
v

o
lv

ed
.

T
h

e
re

su
lt

s
o

f
u

si
n

g
 t

h
e

p
ro

ce
ss

/t
ec

h
n

iq
u

e
h

as
 g

o
n

e
th

ro
u

g
h

 a
tl

ea
st

 o
n

e
le

v
el

 o
f

re
v

ie
w

.

P
ER
SO

N
'R
E
LA
T
E
D
'Q
U
E
ST
IO
N
S

I
h

av
e

p
re

v
io

u
s

ex
p

er
ie

n
ce

 o
f

u
si

n
g

 t
h

e
te

ch
in

q
u

e
to

 c
re

at
e

th
e

ev
id

en
ce

.
I

h
av

e
b

ee
n

 t
ra

in
ed

 i
n

 t
h

e
p

ro
ce

ss
 o

f
cr

ea
ti

n
g

 t
h

e
ev

id
en

ce
.

I
h

av
e

th
e

re
q

u
ir

ed
 d

o
m

ai
n

 k
n

o
w

le
d

g
e/

ex
p

er
ti

se
 f

o
r

cr
ea

ti
n

g
 t

h
is

 e
v

id
en

ce
.

D
u

ri
n

g
 t

h
e

p
as

t,
 t

h
e

ev
id

en
ce

 c
re

at
ed

 b
y

 m
e

w
as

 q
u

al
if

ie
d

 f
o

r
it

s
in

te
n

t.

E
V
ID
E
N
C
E
'C
H
A
R
A
C
T
E
R
IS
T
IC
S'

T
h

e
ev

id
en

ce
 h

as
 b

ee
n

 u
se

d
 i

n
 t

h
e

p
as

t.
D

u
ri

n
g

 i
ts

 p
as

t
u

sa
g

e,
 t

h
e

ev
id

en
ce

 h
as

 s
at

is
fi

ed
 i

ts
 i

n
te

n
t.

T
h

e
ar

g
u

m
en

t
th

at
 s

u
p

p
o

rt
s

th
e

ev
id

en
ce

 i
s

su
ff

ic
ie

n
t.

F
u

rt
h

er
 e

v
id

en
ce

 i
s

n
o

t
re

q
u

ir
ed

 t
o

 s
u

p
p

o
rt

 t
h

e
cl

ai
m

 m
ad

e.

 Quantifying Uncertainty in Safety Cases Using Evidential Reasoning 417

4 Conclusion

This paper has introduced our position in relation to a potential assessment framework
that enables quantification of uncertainties and confidence in safety case with the help
of the Evidential Reasoning. The framework enables assessors and developers to
explicitly quantify any ignorance or doubt they have in the assessment of the lower
level solutions. The ER algorithm will propagate these confidence values as belief
functions to the top-level claims while maintaining the GSN structure. Our
preliminary investigations on safety case assessment have shown the importance of
identifying and building confidence arguments to support the core safety argument
and effectively quantify the confidence and the assurance deficit. This will greatly
improve the clarity and consequently the comprehension of the arguments and help
reduce the overall size of the core argumentation.

We plan to take some initial steps towards answering the research questions in the
near future by systematically identifying factors that influence expert´s confidence
and how to elicit them. Initial steps have already been taken towards this objective
[10]. We also plan to implement the framework as a scalable tool that enables safety
case development using GSN and assessment through the adaption of ER on
confidence arguments. The tool support would be validated with experts to identify its
usefulness in practice. This task would require collaboration among system suppliers
and safety assessors in order to investigate the potential of the proposed approach.

Acknowledgments. The research leading to these results has received funding from
the FP7 programme under grant agreement n° 289011 (OPENCOSS) and from the
Research Council of Norway under the project Certus SFI.

References

1. Interim Defence Standard 00-56 Part 1 - Issue 5, in, UK MOD (2014)
2. Yang, J.-B., Xu, D.-L.: On the evidential reasoning algorithm for multiple attribute

decision analysis under uncertainty. IEEE Transactions on Systems, Man, and Cybernetics,
Part A 32(3) (2002)

3. Nair, S, et al.: The State of the Practice on Evidence Management for Compliance with
Safety Standards, Simula Research Laboratory, Techincal Report (2013)

4. Nair, S., et al.: An Extended Systematic Literature Review on Provision of Evidence for
Safety Certification. Information and Software Technology 56(7), 689–717 (2014)

5. Hawkins, R., et al.: A new approach to creating clear safety arguments. In: Advances in
Systems Safety, pp. 3–23 (2011)

6. Hamilton, V.: Criteria for Software Evidence, Goal-based standards require evidence-
based approaches. Safety Systems 16, 1 (2006)

7. Nair. S, et al.: Understanding the practice of Safety Evidence Assessment: A Qualitative
Semi-Structured Interview Study. Technical report, Simula Research Laboratory (2014)

8. Denney, E., Pai, G.: A lightweight methodology for safety case assembly. In: Ortmeier, F.,
Lipaczewski, M. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 1–12. Springer,
Heidelberg (2012)

418 S. Nair, N. Walkinshaw, and T. Kelly

9. Weaver, R., et al.: Gaining confidence in goal-based safety cases. In: Developments in
Risk-based Approaches to Safety, pp. 277–290 (2006)

10. Ayoub, A., Kim, B., Lee, I., Sokolsky, O.: A systematic approach to justifying sufficient
confidence in software safety arguments. In: Ortmeier, F., Lipaczewski, M. (eds.)
SAFECOMP 2012. LNCS, vol. 7612, pp. 305–316. Springer, Heidelberg (2012)

11. Denney, E., et al.: Towards measurement of confidence in safety cases. In: ESEM (2011)
12. Dempster, A.P.: A generalization of Bayesian inference. Journal of the Royal Statistical

Society, Series B 30, 205–247 (1968)
13. Shafer. G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
14. Walkinshaw. N.: Using evidential reasoning to make qualified predictions of software

quality. In: PROMISE (2013)

Metamodel Comparison and Model Comparison
for Safety Assurance

Yaping Luo, Luc Engelen, and Mark van den Brand

Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

{y.luo2,l.j.p.engelen,m.g.j.v.d.brand}@tue.nl

Abstract. In safety-critical domains, conceptual models are created in
the form of metamodels using different concepts from possibly overlap-
ping domains. Comparison between those conceptual models can fa-
cilitate the reuse of models from one domain to another. This paper
describes the mappings detected when comparing metamodels and mod-
els used for safety assurance. We use a small use case to discuss the
mappings between metamodels and models, and the relations between
model elements expressed in mappings. Finally, an illustrative case study
is used to demonstrate our approach.

Keywords: Metamodel Comparison, Model Comparison, Conceptual
Model, Mapping, Safety Assurance.

1 Introduction

In safety-critical domains, safety assurance is usually costly and time-consuming
due to the amount of manual work involved. Model-driven engineering techniques
could be used to reduce the high costs for safety assurance [5] [6] [8]. Different
models are created for different applications in those domains. Moreover, meta-
models that are used to express those models could be different. Consequently,
reusing those models from one context to another is a big challenge.

The background of our work is OPENCOSS, a European project aimed at
cross-domain reuse of safety-assurance data. As one of the key challenges of the
OPENCOSS project is to define a common conceptual framework for specifying
certification assets [1], a generic metamodel (GMM) for safety standards (IEC
61508, ISO 26262, EN 50128, DO 178B, etc.) has been developed as a part
of this framework [10]. It includes most of the common concepts and relations
between different standards and domains for safety certification. The benefits of
the GMM are sharing of patterns of certification assessments, and support for
cost-effective re-certification between different standards [1] [10]. However, when
introducing this GMM to the companies in safety-critical domains, their current
way of working must be changed to conform to the GMM, and extra effort will
be required. In practice, those companies want to get the benefits of the generic
metamodel while minimizing the required changes to do so. Additionally, because

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 419–430, 2014.
c© Springer International Publishing Switzerland 2014

420 Y. Luo, L. Engelen, and M. van den Brand

the concepts in the GMM are limited and generic, some ambiguities will arise
when interpreting and using those concepts.

To address those issues, in [4], we present a metamodel transformation ap-
proach to facilitate the process of creating metamodels for a specific safety stan-
dard, domain or company. As a result, a family of metamodels is generated
throughout a metamodel transformation sequence. The traceability information
of those metamodels needs to be stored, maintained and analyzed for metamodel
consistency. Besides, one of the key tasks to reduce the safety assurance cost is
to find the reusable data from models conforming to similar metamodels. Thus,
metamodel comparison and model comparison are vital. The comparison results
can be described as mappings between metamodels or between models and used
for supporting safety-assurance data reuse.

Our main focus is the results of metamodel comparison and model comparison.
We call this kind of mapping comparative mappings. In comparative mappings,
the similarities and differences between the source model and the target model
not only depend on metamodel comparison, but also model comparison. In other
words, even if the results of comparison between metamodels are known, the
comparison between models still need to be done manually. However, the former
comparison can facilitate the latter one by specializing which type of models can
be compared.

In this paper, we discuss our previous metamodel transformation approach to
take into account comparative mapping support. We define two levels of compar-
ative mapping: conceptual mapping and concrete mapping. Conceptual mapping
shows the relations between different conceptual models or metamodels. Con-
crete mapping shows the relations between models. Then we introduce four com-
parative mapping types to express the relations between model elements. Finally,
an illustrative case study from the OPENCOSS project is used to demonstrate
our approach.

2 Metamodel Transformation

The current generic metamodel proposal oversimplifies the modeling needs of
safety engineers and assessors. This can lead to overgeneralization, additional
manual work, and less support for automatic consistency checks. In our pre-
vious work, we introduced domain-specific metamodels to address this [4]. By
refining the GMM, we create domain-specific metamodels. In this way, the ambi-
guities in the GMM are mitigated. It can also prevent safety engineers from mak-
ing interpretation mistakes while creating models. Additionally, domain-specific
metamodels only need to be defined once by the best expert(s) available in a cer-
tain domain. Figure 1 recapitulates our approach for metamodel refinement. A
metamodel transformation is executed, which takes the GMM along with those
domain concepts described in the metamodel refinement language (MMRL) as
inputs, and produces a specific metamodel (SMM) as output. Finally, a graphi-
cal editor, based on the SMM, can be automatically generated, which facilitates
safety engineers in building their models using concepts from their own domain.
More information of our approach and MMRL can be found in [4].

Metamodel Comparison and Model Comparison for Safety Assurance 421

Fig. 1. Overview of our approach

By repeatedly applying refinement specifications to conceptual models, a fam-
ily of conceptual models can be created (Figure 2). Those conceptual models
include standard conceptual models, company conceptual models, project con-
ceptual models, etc. By a family of conceptual models, we means a closely related
set of metamodels, where each metamodel in the set (except the root metamodel)
can be defined in terms of an existing metamodel from the same set with a num-
ber of changes. For example, an IEC 61508 metamodel can be refined into an ISO
26262 metamodel in the automotive domain or an EN 50128 metamodel in the
railway domain with different refinement specifications. Therefore, the elements
in each of the metamodels can be traced back to a refinement specification (or
the corresponding intermediate metamodel) or the metamodel that formed the
starting point of the family.

Fig. 2. By successively refining metamodels, a family of closely related metamod-
els is created. For clarity, the metamodel transformations and the domain concepts
introduced by refinement specifications of Figure 1 are not shown in this figure.

2.1 A Small Use Case

To simplify the issue and demonstrate our approach in a clear and easy way, we
use a small use case from the personnel management domain. The scenario is as
follows: there are two companies, company X and company Y. They bought the
same personnel management system from a software supplier. Then they find
they need to improve that system in order to make it fit to their situations. For
company X, they would like to use the concept employee instead of person, and

422 Y. Luo, L. Engelen, and M. van den Brand

introduce contract into the system. For company Y, they would like to add the
concept employee. Therefore the system gets modified by both companies.

Moreover, company X has a branch: branch Z. In branch Z, they have a lot
of developers, which is a special type of employee. Additionally, they would like
to know the age of their employees in their system. Thus, they also modified the
company X personnel management system based on their needs.

Later, company X wants to merge company Y into their branch Z. Then there
occurs an issue, as they use different systems for managing human resources,
branch Z cannot directly import the human resource data from the system of
company Y. Branch Z has to manually restructure all the data of company Y
and put it into their system. Therefore, the data from company Y is not reusable.
However, there are some similarities between the personnel systems of branch Z
and company Y. They start to think how to find the similarities and relations
to support the data reuse, and then reduce the merge cost. For instance, for the
same person, his/her resume can be reused from company Y system to Branch
Z system.

Our Implementation for the Use Case. Figure 3 illustrates the sequence
of transformations for the aforementioned use case. There is a domain model of
the original personnel management system, which represents the relations be-
tween Person and Resume. Through the metamodel refinement process, it can
be refined into the corresponding parts in the company X conceptual model, the
branch Z conceptual model, and the company Y conceptual model. Therefore,
in this family of conceptual models, there are four metamodels. The traceability
information of the refinement process is stored in metamodels themselves in the
form of annotations. For example, from the domain model to the company X con-
ceptual model. A new class Contract is added and the class Person is renamed to
Employee. In other words, two operations are performed: a rename-element oper-
ation and an add-class operation. The details of these two operations are stored
in the annotations of Employee and Contract(Figure 3). For the rename-element
operation, a refine.renameElementOperation annotation is added to Employee
with a reference to the class Person in the domain model. For the add-class
operation, a refine.addClassOperation annotation is added to the class Contract.
Because the class Contract is new, there is no class in the domain model that can
be referred to. Thus, the reference of the refine.addClassOperation annotation is
the class Contract itself.

Similarly, from the company X conceptual model to the branch Z conceptual
model, an attribute age is added to the existing class Employee and Developer
is introduced as a new type of Employee. The information of the corresponding
operations is logged in the new annotations of attribute age and class Developer.
The annotation of attribute age refers to the class Employee in the company X
conceptual model, while the annotation of the class Developer refers to itself.
Note that, the old annotations are kept from the company X conceptual model.

For each element (concept and relation) in the family of conceptual models, its
annotation keeps all its traceability information in the transformation sequence.

Metamodel Comparison and Model Comparison for Safety Assurance 423

Fig. 3. A small example for the sequence of transformations

Therefore, the concepts and relations in the metamodels can be related across
metamodels by tracing their relationships through their annotations. Further-
more, the traceability information can be obtained and analyzed for comparative
mappings between metamodels, which will be discussed in the next section.

3 Mapping Support

In this section, we discuss the comparative mapping between metamodels and
between their instances. And the relation types between concepts and between
instances are described in terms of mappings.

3.1 Mappings: Between Conceptual Models and between Models

From a usability perspective, there are two levels of comparative mapping: map-
pings between concepts and mappings between instances of concepts (on a con-
crete level). These mappings are illustrated in Figure 4 and can be described as
follows:

424 Y. Luo, L. Engelen, and M. van den Brand

Source Metamodel or
Source Conceptual Model

Target Metamodel or
Target Conceptual Model

Source Model Target Model

Conceptual
Mapping

Concrete
Mapping

ncept once

oncre

conforms to conforms tofacilitates

M1

M2

Fig. 4. An illustration of mapping support

– Conceptual mapping between metamodels: The models in this mapping are
all layer 2 MOF models, called M2-models. For example, in Figure 3, the com-
pany Y conceptual model or the branch Z conceptual model are M2-models.
In a reuse scenario, this implies that the conceptual mapping between meta-
models only focuses on domain concepts.

– Concrete mapping between models: The models in the mapping are all layer 1
MOF models, called M1-models. For example, company Y models or branch
Z models are M1-models.

Listing 1. The mapping information from the domain model(DM) to the company
X conceptual model(comXCM): The class Person in the DM is renamed to the class
Employee in the comXCM, thus the mapping type between these two classes are full
mapping (line 3-7). The class Contract in the comXCM is a newly added class, then
there is no mapping for this class (line 8-12). The class Resume in the comXCM is
copied from the DM, so this class is fully mapped to the class Resume in the DM (line
13-17).

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <mappings>
3 <mapping mappingType="0" sourceClass="domainModel.Person"
4 targetClass="comXConceptualModel.Employee">
5 <operator>Rename</operator>
6 <reason>Rename an existing class</reason>
7 </mapping>
8 <mapping mappingType="3" sourceClass="null"
9 targetClass="comXConceptualModel.Contract">

10 <operator>AddClass</operator>
11 <reason>null</reason>
12 </mapping>
13 <mapping mappingType="0" sourceClass="domainModel.Resume"
14 targetClass="comXConceptualModel.Resume">
15 <operator>NotModified</operator>
16 <reason>The class is copied from original MM.</reason>
17 </mapping>
18 </mappings>

Metamodel Comparison and Model Comparison for Safety Assurance 425

The conceptual mappings can be implemented through metamodel transfor-
mations. In Section 2, a refinement of the Domain Model(DM) is described. The
refinement specifications involve the changes made from the DM to a targeted
metamodel. The corresponding conceptual mapping from the DM to a targeted
metamodel is documented in the metamodel transformation. For example, List-
ing 1 shows the mapping information from the domain model to the company X
conceptual model in the form of XML. The comparisons between different meta-
models (except the DM) can be achieved by analyzing the mapping documents
of each metamodel. Listing 2 shows the comparison results between the company
Y conceptual model and the branch Z conceptual model. The relations in the
comparison are expressed in terms of mappings. The conceptual mappings can
facilitate the concrete mappings between models. For example, in Listing 2, class
Person in the company Y conceptual model can be mapped to class Employee or
class Developer in the branch Z conceptual model. On the model level, we need
to find which specific person can be mapped to employee, and which should be
mapped to developer.

Listing 2. The result of comparison between the company Y conceptual model
(comYCM) and the branchZ conceptual model(ZCM): One full mapping is found be-
tween the class Resume in the comYCM and the class Resume in the ZCM. One partial
mappings are found: the mapping from the class Person in the comYCM to the class
Employee in the ZCM. There possible mappings are discovered: the mapping from the
class Employee in the comYCM to the class Developer in the ZCM, and to the class
Employee in the ZCM, and the mapping from the class Person in the comYCM to the
class Developer in the ZCM.

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2 <mappings>
3 <mapping mappingType="2" sourceClass="comYConceptualModel.Employee"
4 targetClass="branchZConceptualModel.Developer">
5 <reason>Intermediate concept is:domainModel.Person</reason>
6 </mapping>
7 <mapping mappingType="2" sourceClass="comYConceptualModel.Employee"
8 targetClass="branchZConceptualModel.Employee">
9 <reason>Intermediate concept is:domainModel.Person</reason>

10 </mapping>
11 <mapping mappingType="2" sourceClass="comYConceptualModel.Person"
12 targetClass="branchZConceptualModel.Developer">
13 <reason>Intermediate concept is:domainModel.Person</reason>
14 </mapping>
15 <mapping mappingType="1" sourceClass="comYConceptualModel.Person"
16 targetClass="branchZConceptualModel.Employee">
17 <reason>Intermediate concept is:domainModel.Person</reason>
18 </mapping>
19 <mapping mappingType="0" sourceClass="comYConceptualModel.Resume"
20 targetClass="branchZConceptualModel.Resume">
21 <reason>Intermediate concept is:domainModel.Resume</reason>
22 </mapping>
23 </mappings>

426 Y. Luo, L. Engelen, and M. van den Brand

3.2 Mapping Types: Between Concepts and between Instances

Relations between concepts indicate whether concepts in their definition or na-
ture are the same. Relations between instances also include the instantiation
or content of the concepts. In this paper, for consistency, we use comparative
mappings to represent relations. For example, hazard concepts from Mil Std 822
and the ISO 26262 standard can relate with each other from a conceptual point
of view. However, if the underlying severity categories are different, the relation
should indicate only a partial mapping. Essentially, four types of mapping are
identified in this paper:

– Full mapping: the elements in the mapping are identical. In a reuse scenario,
this implies that the characteristics of the element (such as its form, its
attributes, and its references) are not changed.

– Partial mapping: there are some similarities between the elements. The sim-
ilarities and differences can be analyzed and documented in the mapping
document.

– Possible mapping: there is a possibility that a mapping can be found between
the elements. Further analysis of the elements needs to be done to make sure
that there are some similarities between them.

– No mapping: there is insufficient similarity between the elements to permit
a mapping to take place.

In our implementation, we use “0”, “1”, “2”, “3” to represent full mapping, par-
tial mapping, possible mapping, and no mapping respectively. For example, in
of Listing 1 (line 3), the mapping type “0” means that the mapping between the
class Person in the domain model and the class Employee in the company X
conceptual model is full mapping. The reason for that is the class Employee is
renamed from the class Person without changes. Moreover, the mapping types
also indicate priority where Level 3 is the highest. If the priority level of an ex-
isting mapping between two concepts is lower than a newly discovered mapping,
the priority level between those two concepts will be changed to the new one.

4 Results

As mentioned before, the current generic metamodel proposal oversimplifies the
modeling needs of safety engineers and assessors. This can lead to overgener-
alization, additional manual work, and less support for automatic consistency
checks. To address this, extended metamodels are refined from the GMM; For
our demonstration, we use a family of metamodels from safety-critical domains.
All of these metamodels are derived from the GMM. The details of the GMM
are defined in [10]. Figure 5 shows an extract of an ISO 26262 metamodel from
the automotive domain (ISOMM). Figure 6 shows an extract of a DO 178C
metamodel from the avionic domain (DOMM).

Both of those two metamodels are from the same aforementioned family. From
these two figures, we can see that the traceability information of this family is

Metamodel Comparison and Model Comparison for Safety Assurance 427

Fig. 5. An extract of an ISO 26262 metamodel from the automotive domain

kept in the annotations of the metamodels. After analysing this traceability
information and comparing these two metamodels, some results can be obtained
automatically:

– There are five possible mappings from the ISOMM to the DOMM: from
class Importance to class ApplicabilityLevel ; from class ASIL to class Soft-
wareLevel ; from class SafetyGoal to class HighlevelRequirement ; from class
SafetyGoal to class LowlevelRequirement ; and from class CriticalityApplica-
bility to class CriticalityApplicability.

– There are four partial mappings from the ISOMM to the DOMM: from class
ExternalElement to class Artefact ; from class SafetyGoal to class Require-
ment ; from class Requirement to class HighlevelRequirement ; and from class
Requirement to class LowlevelRequirement.

– There are five full mappings from the ISOMM to the DOMM: from class
WorkProduct to class Artefact ; from class Requirement to class Requirement ;
from class Artefact to class Artefact ; from class Method to class Method ; from
class Role to class Role.

428 Y. Luo, L. Engelen, and M. van den Brand

Fig. 6. An extract of a DO 178B metamodel from the avionic domain

Note that some classes are abstract, like NameElement. They are only used
for constructing the metamodels. Therefore, the comparison results of those
classes are not described here. Some of the comparison results are modified after
validation by domain experts. For example, there is a possible mapping from
class SafetyGoal to class LowlevelRequirement. During validation, the mapping
type between these two class is changed to no mapping.

The conceptual mappings can be used in two scenarios. Firstly, they could
be used for supporting concrete mappings. A concrete mapping can be found
in the model level only if there exists a conceptual mapping at the metamodel
level. For instance, if there is no mapping between class SafetyGoal and class
LowlevelRequirement, then at the model level, all instances of SafetyGoal can
not be mapped to the instances of LowlevelRequirement. Secondly, because those
metamodels are used as domain-specific conceptual models in safety cases [5],
the conceptual mappings between them can be used for supporting safety case
reuse.

5 Related Work

Related research is found in metamodel refinement, traceability management,
and metamodel matching.

Metamodel Refinement. Metamodel refinement is strongly related with
metamodel evolution and metamodel adaptation. In [11], the use of transfor-
mation patterns in the form of QVT relations for metamodel refinement is

Metamodel Comparison and Model Comparison for Safety Assurance 429

introduced. By introducing new concepts, the target metamodel can be ex-
tended though model transformation. A model change language with a num-
ber of migration rules is presented in [7] for defining metamodel changes. It
is a high-level visual language and designed for describing metamodel evo-
lution. Our approach presented in this paper is discussed in the context
of safety-critical domains and focuses on metamodel refinement with meta-
model transformation rather than metamodel evolution. Metamodel evolu-
tion is caused by external factors, whereas metamodel refinement is a design
process.

Traceability Management. In [9], a model-driven framework for traceability
management, called iTrace, is developed, which enables the analysis of trace-
ability information of the different models involved in the software develop-
ment cycle. Also, in [2], traceability visualization in model transformations
has been done to facilitate traceability analysis. In this paper, we focus on
traceability management of metamodels rather than models, and we propose
to use metamodel refinement specifications to support traceability manage-
ment and the analysis of traceability information.

Metamodel Matching. Metamodel matching techniques support the detec-
tion of mappings between two metamodels. Those mappings are used to
generate a model transformation between two metamodels. In [3], meta-
model matching for automatic transformation generation is discussed. The
metamodels used for metamodel matching are created independently for the
same kind of applications. However, in this paper, the metamodels are all de-
rived from the same original metamodel. The information of those mappings
is defined in refinement specifications and stored with the metamodels in the
sequence of transformations. Besides, those comparative mappings can not
only be used for generating a model transformation, but also for supporting
safety case reuse.

6 Conclusions and Future Work

In this paper, we have presented our approach to take into account comparative
mapping support in the context of conceptual modeling. The study of com-
parative mapping support between conceptual models or metamodels in safety-
critical domains is a promising approach to improve the understanding between
different domains or companies at the conceptual level and, consequently, the
reuse of safety assurance data at the model level. Based on our previous research,
conceptual models are also used for constructing safety cases. In this case, the
mappings found between conceptual models can support safety case reuse.

The main contribution of this work is insight into traceability management
and mapping support in the sequence of transformations. The traceability in-
formation is stored in metamodels themselves, which is easy to be maintained
and analyzed. Meanwhile for each refinement of metamodels, a mapping speci-
fication is generated along with the target metamodels. A comparison between
different conceptual models or metamodels can be obtained by analyzing the
related mapping specifications.

430 Y. Luo, L. Engelen, and M. van den Brand

As future work, we will study and implement the applications of comparative
mappings. For example, how to support safety case or evidence reuse based on
conceptual mappings. In addition, we envisage to study detecting comparative
mappings in the model level automatically or semi-automatically.

Acknowledgements. The research leading to these results has received funding
from the FP7 programme under grant agreement no 289011 (OPENCOSS).

References

1. OPENCOSS: Deliverable D4.1 - Baseline for the common certification language
(2013), http://www.opencoss-project.eu/node/7

2. van Amstel, M.F., van den Brand, M., Serebrenik, A.: Traceability Visualization
in Model Transformations with TraceVis. In: Hu, Z., de Lara, J. (eds.) ICMT 2012.
LNCS, vol. 7307, pp. 152–159. Springer, Heidelberg (2012)

3. Falleri, J.-R., Huchard, M., Lafourcade, M., Nebut, C.: Metamodel Matching for
Automatic Model Transformation Generation. In: Czarnecki, K., Ober, I., Bruel,
J.-M., Uhl, A., Völter, M. (eds.) MoDELS 2008. LNCS, vol. 5301, pp. 326–340.
Springer, Heidelberg (2008)

4. Luo, Y., van den Brand, M., Engelen, L., Klabbers, M.: From Conceptual Model
to Safety Assurance. In: Conceptual Modeling (accepted for publication, 2014)

5. Luo, Y., van den Brand, M., Engelen, L., Klabbers, M.: A Modeling Approach to
Support Safety Certification in the Automotive Domain. In: ICSEng 2014 (accepted
for publication, 2014)

6. Luo, Y., van den Brand, M., Engelen, L., Favaro, J., Klabbers, M., Sartori, G.:
Extracting Models from ISO 26262 for Reusable Safety Assurance. In: Favaro, J.,
Morisio, M. (eds.) ICSR 2013. LNCS, vol. 7925, pp. 192–207. Springer, Heidelberg
(2013)

7. Narayanan, A., Levendovszky, T., Balasubramanian, D., Karsai, G.: Automatic
Domain Model Migration to Manage Metamodel Evolution. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 706–711. Springer, Heidelberg (2009)

8. Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L.: Using UML Profiles for
Sector-Specific Tailoring of Safety Evidence Information. In: Jeusfeld, M., Del-
cambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 362–378. Springer,
Heidelberg (2011)

9. Santiago, I., Vara, J.M., de Castro, M.V., Marcos, E.: Towards the Effective Use
of Traceability in Model-Driven Engineering Projects. In: Ng, W., Storey, V.C.,
Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 429–437. Springer, Heidelberg
(2013)

10. de la Vara, J.L., Panesar-Walawege, R.K.: SafetyMet: A Metamodel for Safety
Standards. In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.)
MODELS 2013. LNCS, vol. 8107, pp. 69–86. Springer, Heidelberg (2013)

11. Wachsmuth, G.: Metamodel Adaptation and Model Co-adaptation. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

http://www.opencoss-project.eu/node/7

Does Visualization Speed Up the Safety Analysis
Process?

Ragaad AlTarawneh1, Max Steiner2, Davide Taibi3,
Shah Rukh Humayoun1, and Peter Liggesmeyer2

1 Computer Graphics and HCI
2 Software Engineering: Dependability

3 Software Engineering: Processes and Measurement
University of Kaiserslautern

Gottlieb-Daimler-Str. 67663 – Kaiserslautern, Germany
{tarawneh,steiner,taibi,humayoun,liggesmeyer}@cs.uni-kl.de

Abstract. The goal of this paper is to present our experience in uti-
lizing the power of the information visualization (InfoVis) field to ac-
celerate the safety analysis process of Component Fault Trees (CFT) in
embedded systems. For this, we designed and implemented an interac-
tive visual tool called ESSAVis, which takes the CFT model as input and
then calculates the required safety information (e.g., the information on
minimal cut sets and their probabilities) that is needed to measure the
safety criticality of the underlying system. ESSAVis uses this informa-
tion to visualize the CFT model and allows users to interact with the
produced visualization in order to extract the relevant information in a
visual form. We compared ESSAVis with ESSaRel, a tool that models the
CFT and represents the analysis results in textual form. We conducted
a controlled user evaluation study where we invited 25 participants from
different backgrounds, including 6 safety experts, to perform a set of
tasks to analyze the safety aspects of a given system in both tools. We
compared the results in terms of accuracy, efficiency, and level of user
acceptance. The results of our study show a high acceptance ratio and
higher accuracy with better performance for ESSAVis compared to the
text-based tool ESSaRel. Based on the study results, we conclude that
visual-based tools really help in analyzing the CFT model more accu-
rately and efficiently. Moreover, the study opens the door to thoughts
about how the power of visualization can be utilized in such domains to
accelerate the safety assurance process in embedded systems.

Keywords: Embedded Systems, Safety Analysis, Information Visuali-
zation.

1 Introduction

Embedded systems are widely used in our daily life. Embedded systems are
classified as electronic devices that incorporate a computer system into their im-
plementations [1]. Some examples of these systems are control systems in cars,

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 431–443, 2014.
c© Springer International Publishing Switzerland 2014

432 R. AlTarawneh et al.

airplanes, railroad crossings, and washing machines. Generally, they are not cen-
tralized in one component but are distributed among a set of components, which
represent the system parts. In fact, these systems are mostly composed of two
types of components: software components and hardware components. These two
types of components collaborate with each other through a set of interfaces. This
results in complex structures inside these systems [1]. Due to the frequent usage
of these systems, safety and reliability aspects are essential and critical from the
end users’ perspective. Both aspects guarantee a working system without any
unexpected errors and risks. Consequently, maintaining these systems in terms
of ensuring safe situations requires intensive study of those critical situations
that might bring the underlying system to some undesired state [2].

The process of analyzing failures is necessary to trace the reasons that may
lead to a specific hazard in the system’s lifetime. Therefore, many techniques
have been proposed to trace the failure propagation paths within the set of
cooperating components in technical systems. The Fault Tree Analysis (FTA)
technique is one of the common modeling techniques that help to understand
the failure mechanisms in technical systems [3, 4]. The Component Fault Tree
(CFT) technique extends the FTA concept by introducing additional information
about the underlying system structure. Therefore, CFTs are used to depict the
failure scenarios in complex embedded systems in which a safety scenario for the
underlying system is depicted as a directed acyclic graph and the root of this
model is the top event of interest [2,4]; see Fig. 1 to check the difference between
the FT and the CFT.

Fig. 1. The Fault Tree (FT) concept (a) vs. the Component Fault Tree (CFT) concept
(b)

The process of detecting possible failures in embedded systems is normally
performed by safety experts, who identify the failure mechanisms using CFT
analysis in order to trace all possible reasons for each specific top-level event
during the system’s lifetime. Their objective is to find all possible safety-critical
components that might trigger the underlying hazard. They design this model
based on all possible failure relations between the system components related to

Does Visualization Speed Up the Safety Analysis Process? 433

the specified top event. After building the CFT model, they start analyzing the
safety scenario to determine all safety-critical components in order to maintain
these components to keep the system in a safe mode. The result of this analysis
helps the system engineers, who are responsible for maintaining all system com-
ponents and for fixing the overall system in order to make it safer from the end
users’ perspective. This iterative interaction process between safety experts and
system engineers supports the maintenance process of these complex embedded
systems.

Visualizing the safety aspects of embedded systems is comparatively a new
field. As the complexity of an embedded system is increased, the corresponding
component fault tree size is also increased, which makes it difficult to handle
the failure detection process. The information visualization (InfoVis) field can
play an important role in speeding up the system developing process because
it eases the steps of finding the important information from both the system
and the user perspective. Also, it helps to reduce the errors that may be made
by humans while searching for the relevant information. For example, Markus
Weber in [5] mentions that 30% of people’s time is wasted in looking for the
important information. Moreover, visualization supports interaction with the
data and automates the steps of the information-extracting process.

In this work, we ran an empirical study to compare two tools: ESSAVis
(Embedded Systems Safety Aspects Visualizer) [6,7], an interactive visual tool
for analyzing and visualizing component fault trees, and ESSaRel (Embedded
Systems Safety and Reliability Analyser), a text-based tool for modeling, edit-
ing, and partly analyzing component fault trees [8]. This study aims to answer
the question of whether a visualization-based system like ESSAVis can accel-
erate the process of analyzing failure scenarios in complex systems more than
traditional tools like ESSaRel. ESSaRel was selected in this work because it was
the only tool at the moment of evaluation study that edits and models CFT
models. As expected, our results show that that visual-based tools offer better
support for analyzing the CFT model by providing more accurate and efficient
results than non-visual tools.

The remainder of the paper is structured as follows: In Section 2, we provide
some related work. In Section 3, we give an overview of both tools. In Section 4,
we highlight the user evaluation study we performed to investigate the differences
between using the two tools. Finally, we conclude the work and list the possible
future directions in Section 5.

2 Related Work

To generate a CFT model manually, highly skilled and experienced engineers
analyze the system. To achieve this, they need insights about the system and
an overview of the failure modes and their consequences at a particular time.
Performing this process manually requires plenty of concentration, but it is still
error-prone due to the difficulties in understanding the whole system. To tackle
the above-mentioned concern, many tools have been proposed in the literature to

434 R. AlTarawneh et al.

help the safety experts model and understand the safety mechanisms of complex
systems. Many existing tools propose visualizing this by showing a tree structure
of the failure. Most of these tools visualize the fault tree in 2D representations
such as ESSaRel [8, 9], UWG3 [2], and Cecilia OCAS [10].

In the above-mentioned tools, the node-link diagram is used to show the rela-
tions between the infected system parts, while simple primitive shapes are used
to show components of the Fault Tree (FT): e.g., small circles for representing
basic events and a small rectangle for showing the gate (the logical connector)
between two basic events. These tools also use color and/or text to depict other
types of information, such as the gate type. These kinds of tools are useful for
modeling the failure relations between the system parts, but they do not provide
options for analyzing the failure path or the set of critical parts in the underlying
system.

In spite of the facility provided for editing and modifying the FT structure in
these tools, they generally lack the ability to analyze the FT itself and to present
an overall view of the current failure mechanism. However, ESSaRel provides a
textual description of some safety aspects of the CFT model. For example, the set
of minimal cut sets in the current scenario is included together with information
about the related set of components and the failure connections among them,
all this data can be grouped into one xml file. This xml file is the input of our
ESSAVis tool [6], where we extract the safety data related to each component
and then arrange the set of components to be ready for the visualization process.
However, ESSaRel [8] is the only tool in the above-mentioned tools that can
model a CFT. Therefore, we used ESSaRel as the opponent tool to the ESSAVis
tool in our study.

3 Introduction to ESSAVis and ESSaRel

ESSAVis [6, 7] is a visual-based tool that takes an xml file representing the
CFT model as input. The file describes the top-event situation by presenting
the list of components together with the list of basic events in each component
that are required to trigger this top event. Each basic event has a real value
between 0 and 1 indicating its probability of failing. Moreover, the file contains
the failure relations between these components using the information about the
gate connections.

ESSAVis parses this information and converts the model to a graph model in
a way that the set of vertices V contains the list of components and the set of
inclusion edges E contains the structural relations between these components,
while the set of adjacency edges F contains the failure relations between the
system elements. Furthermore, a component may contain other components or
leaves, with leaves in this context being basic events in the system. ESSAVis
visualizes this graph model using a multi-level orthogonal layout algorithm [11]
(see Fig. 2b). Moreover, ESSAVis provides different interaction techniques for
navigating through the graph. For example, it allows the user to expand and close
nodes on demand [12], as shown in Fig. 2a. It also distinguishes between different

Does Visualization Speed Up the Safety Analysis Process? 435

(a) (b)

Fig. 2. (a) Expanding the required component to extract its internal structure, and (b)
the failure path between several components, with the corresponding parts highlighted
in red

component types using different textures and shapes. For example, the root of
the graph corresponding to the top event is represented as a hexagon shape,
basic events are represented as blue cycles, and the components are represented
by blue boxes.

ESSAVis arranges the important safety information in a menu called the
Safety Information Menu. Users can trigger this menu by clicking the right mouse
button. This menu contains three main tabs. The first one shows the list of com-
ponents in the current CFT model together with their number of basic events.
The second tab contains a list of all the basic events and their probabilities in
the CFT model, while the third tab contains a list of all the minimal cut sets
in the CFT model with the option to sort them based on their probabilities or
their sizes. In each tab, ESSAVis provides two buttons to allow users to highlight
the selected elements in the list and then expand them to show their place in
the visualized CFT model. Moreover, ESSAVis provides animation to show the
failure relations between two selected elements in the visualization (see Fig 2b).

Fig. 3 shows the main interface view of ESSaRel [8], which has previously been
used in industry (CESAR Project Report 2010, p. 43) [9]. The main centered
window (i.e., the CFT window) is for editing the safety model. This is achieved
by dragging the small graphical shapes and dropping them into this window’s
drawing area. This area is useful for depicting the participating components and
the connections among them. The right window in the figure is used to show
the system structure through the hierarchy of the components in the current
safety scenario. This helps to detect the structural relations between the parent
components and their children. ESSaRel is considered a powerful tool for editing
the safety model [8]. However, it lacks the ability to show an overall view of the
safety scenario. This makes the process of tracing a failure rather difficult.

ESSaRel helps safety experts in “modeling” the CFT model. It is an editor that
offers basic functionalities required to model safety-critical scenarios in technical
systems. It offers a multi-view feature to present the multi-level concept in the

436 R. AlTarawneh et al.

Fig. 3. The ESSaRel interface. Red rectangles show different main ESSaRel views.

CFT model. Therefore, the internal structure of a specified component is hidden
on the upper level. Users can select a specific component by using the mouse,
which results in opening a new window showing the internal structure of the
component. Although this facility helps safety experts to modify the internal
structure of the required component, it makes it difficult to understand the
overall system structure because the new view does not preserve the relations
between the current level and the upper level. ESSaRel shows the structural
relations among the system’s components in a side-view explorer (see right side
of Fig. 3), where all the incorporated components in the current scenario are
listed hierarchically according to their relations in the system. Again, the system
structure shows the list of all collaborating components; however, it does not
present the component-subcomponent relations visually. The user needs to open
a new view to see the subcomponents’ structure. Therefore, in order to explore
the internal structure of each component, the user needs to select the required
component to allow displaying the next level of details. As mentioned above, the
view opens in a new window without any indication of the previous level, which
makes it difficult to investigate the internal structure of each component and
identify the main reasons that cause a problem in the upper-level component.
Furthermore, tracing the failures between the multiple levels in the CFT model
is also quite a difficult task in this approach. This leads to difficulties in tracing
the failure propagation path between the required components.

4 The Empirical Study

The goal of our study was to analyze ESSAVis and ESSaRel for the purpose of
comparing their accuracy, speed, and user acceptance in analyzing component
fault tree models from the end users’ perspective (i.e., the safety experts’ per-

Does Visualization Speed Up the Safety Analysis Process? 437

spective). In order to compare the results for the two platforms, we identified a
set of metrics by means of a GQM model [13]:

– Metrics for accuracy: percentage of correct answers for each task.
– Metrics for speed: time needed for each task.
– Metrics for efficiency: accuracy/speed.
– Metrics for acceptance: perceived usefulness, perceived ease of use, attitude

toward using the tool, behavioral intention to use the tool, actual use of the
system.

We combined these metrics as suggested by the Technology Acceptance
Model [14]. Further it was important for us to collect the participants’ feed-
backs on how to improve the tool. For this purpose, we chose an open-ended
questionnaire form so as to add their comments. We formulate the study hy-
potheses as:

– H1: ESSAVis is more accurate than ESSaRel.
– H2: ESSAVis is faster than ESSaRel.
– H3: ESSAVis is more efficient than ESSaRel.
– H4: ESSAVis has a higher level of user acceptance compared to ESSaRel.

4.1 Study Design and Procedure

Based on the identified goal and hypotheses, we designed this study as a con-
trolled experiment under laboratory conditions with a maximum time-frame of
two hours per participant. The participants executed a set of tasks on both
platforms. To reduce learning effects, we randomized the participants of each
sub-group in such a way that half of the participants ran the experiment first on
ESSAVis and then on ESSaRel, while the other half did it the other way around.

To assure a basic level of knowledge on both tools, a 30-minute tutorial was
provided for each tool. Since the participants from the safety expert sub-group
already had thorough knowledge of using ESSaRel, they were excluded from
the ESSaRel training session. We allowed all the participants to ask further
questions during the training session and during the test in case of any technical
issue. We ran the study with 25 researchers from the department of Computer
Science in our university. 21 participants were males, while the remaining 4
participants were females. The participants were divided into groups based on
their backgrounds (4 were robotics experts, 6 were safety experts, 4 were software
engineers, and the remaining 11 were visualization researchers). The study was
performed in the required time frame, never exceeding 1 hour time frame for
each test. The study was based on 4 tasks to be performed on a common safety
scenario with components renamed in order to avoid any learning effects. At the
end of each task, we reported the participants answeres and their time to achieve
that task, to evaluate accuracy (H1) and speed (H2). Then, in order to assess
user acceptance (H4), we asked participants to fill in two questionnaire forms.
The first questionnaire form was based on eight questions, where each question
offered six different options based on a Likert scale (scaled from 0 to 5 to show the

438 R. AlTarawneh et al.

degree of agreement with each question from the participant’s perspective; the
sixth option was “Don’t know”) [15]. The second one was opened questionnaire,
to get their general feedback.

The experiment was performed using a desktop environment, with the partic-
ipants seated in front of the computer. They interacted with the platform with
a normal mouse and a keyboard. We allowed the participants to try the target
platform before starting the tasks and encouraged them to ask for more details
about any interaction technique during the test.

4.2 Task Description

The defined safety scenario we used in our study describes one of the possible
situations where the RAVON [16] robot can hit other solid objects. The assump-
tion of this scenario is that RAVON moves forward in a moderate drive mode.
Moreover, there is no water on the road nor are there any unexpected slopes
or gradients. The components of this possible hazard comprise 48 compound
components in the RAVON structure, with 70 basic events that can appear in
different locations of the CFT model simultaneously. However, due to the test
constraints, we decided to include only part of the scenario. The scenario we
used in our test consisted of 25 components with more than 33 basic events. We
designed the tasks based on a common process to analyze fault trees [17]. The
test consisted of four main tasks for both tools:

– Task 1: Find the Minimal Cut Set (MCS) lists. This included two sub-tasks:
• Task 1.1: Sort them according to their size.
• Task 1.2: Sort them according to their probability values.

To accomplish this task in ESSAVis, the participants were trained to trigger
the safety menu and then select the minimal cut set tab. This shows the list
of all minimal cut sets in the current CFT model (critical minimal cut sets
are the ones with fewer than three basic events). Further, ESSAVis provides
the option of sorting this list based on sizes or on probabilities. In ESSaRel,
the list of minimal cut sets is shown together with their size information.
However, there is no option to sort this list, which could be easily fixed if
the ESSaRel developers consider adding this option in the future. The MCS
is also considered to be critical if it has a high probability of failing. In our
test, we specified the probability threshold to be > 1 · 10−12.

– Task 2: Find the components that are affected by the most critical MCSs.
This task required the participants to investigate both the CFT visualiza-
tion and the list of minimal cut sets. This task depended on the results of
the previous task, as participants found the most critical cut sets from the
previous task. In ESSAVis, it is possible to accomplish this task by select-
ing the critical minimal cut sets from the safety menu, then clicking the
Expand-to-Show button and finally clicking the Mark-as-Failing button at
the bottom of the menu. In this case, ESSAVis opens the compound compo-
nents until the required components appear and then it highlights them in
red. The names of these components can be obtained by hovering the mouse
pointer over the highlighted parts. The situation in ESSaRel is different, as

Does Visualization Speed Up the Safety Analysis Process? 439

it does not provide this kind of interactions. The participants were expected
to search manually for these components in the CFT representation based
on the information from the previous task.

– Task 3: What are the interactions/connections of components CX and CY
with respect to system failures?

In this task, the participants were given two components and were asked
to give the logical connections between them. These two components were on
different levels without any structural connection between them. The only
relation between them was the failure relation. This task can be accomplished
in ESSAVis by clicking on the two specified components and then noting
the color of the top event node. If the top-event node becomes red, this
means that both components are in one minimal cut set and have an AND
relationship; otherwise (if the color is blue) they are not. In ESSaRel, the
participants were expected to navigate through the CFT model manually
and keep in mind the logical connections between these two components.
However, some of the safety experts used the minimal cut set information
and determined whether these two components were in one minimal cut
set or not; if they were, they knew that these components have an AND
relationship, otherwise they do not affect the top event.

– Task 4: Find the events that have the highest impact on the safety level of
the system. (Hint) Find the events that are in the most critical MCSs.

This task can be achieved in two ways, either the basic event with the high-
est probability to fail or the one that occurred in the most critical minimal
cut set has to be found. Therefore, for this task we collected four differ-
ent answers (two possibilities for both tools). In ESSAVis, the information
about the probability of each basic event is listed in the basic events tab of
the Safety-Menu, while in ESSaRel it is shown in a properties panel. The
minimal cut set information was available through a menu in both tools.
However, in ESSaRel participants should navigate manually through the
CFT to extract the basic-event probability.

4.3 Results and Discussion

In this section, we discuss the results for each hypothesis. Detailed results can
be found in Table 1, Table 2 and Figure 4.

Results were analyzed by performing the following steps: (1) We performed a
descriptive analysis of the collected data. (2) We tested the data for normality
using a Shapiro-Wilk test [18]. (3) Since the data were not normally distributed,
we performed a Median test for independent samples or a Wilcoxon Signed-Rank
test for dependent samples with a significance level of 0.05 to test our hypotheses.

Table 1 provides descriptive statistics on the analysis together with the results
of the T-Test. As shown by this table, the results are statistically relevant for
accuracy and acceptance, but not significant for time and efficiency. We assume
this is due to the different populations that took part in the study.

The analysis of the results for the first hypothesis (H1) shows that ESSAVis
was always more accurate, or at least provided the same accuracy as ESSaRel.

440 R. AlTarawneh et al.

Table 1. Statistical information showing the differences between the two tools

Accuracy Time Acceptance Efficiency
Method ESSAVis ESSaRel ESSAVis ESSaRel ESSAVis ESSaRel ESSAVis ESSaRel
Mean 0.86 0.66 98.99 256.39 4.19 2.67 1.32E-02 4.77E-03

Median 0.84 0.68 101.21 151.42 4.08 2.52 7.50E-03 4.13E-03
Std 0.12 0.18 65.78 272.52 0.27 0.46 9.69E-03 3.05E-03

T-Test 1.00E-01 3.14E-01 6.11E-07 1.50E-01

In both sub-tasks 1.1 and 1.2, ESSAVis outperformed ESSaRel (15% more in
Task 1.1 and 274% more in Task 1.2). The difference is not due to the visualiza-
tion power of ESSAVis, but to the lack of some features in ESSaRel. The same
results are also reflected in Task 2 (ESSAVis was 24% more accurate than ES-
SaRel) and in Task 3 (ESSAVis was 9% more accurate than ESSaRel). Anyway,
due to the low complexity of Task 3, we can claim that there were no signifi-
cant differences between the two tools in this task regarding accuracy. Finally,
in Task 4 ESSAVis also outperformed ESSaRel by 10% in terms of accuracy. We
think this is because the participants in ESSaRel needed to perform the analysis
manually in order to get the answers.

(a) (b)

Fig. 4. (a) Average accuracy per task. (b) Average time (in seconds) to achieve the
task.

Taking into account the time needed to run the tasks (H2), our hypothesis was
always confirmed since ESSAVis always provided faster results than ESSaRel.
The time required for both sub-tasks 1.1 and 1.2 was lower in ESSAVis than in
ESSaRel (2.54 times lower in Task 1.1 and 18.94 times in Task 1.2). This time
difference is considered to be significant for such simple tasks. We believe that
this variation is due to the automation provided by ESSAVis, as it automates
the calculation process for the minimal cut set probabilities. In Task 2, ESSAVis

Does Visualization Speed Up the Safety Analysis Process? 441

equalled ESSaRel in terms of the time needed to perform the tasks (200 seconds
in ESSAVis and 187 seconds in ESSaRel). Since some participants were new to
ESSAVis but familiar with ESSaRel, we expect an improvement on this task after
someone becomes familiar with ESSAVis. Task 3 required 33% less time with
ESSAVis (100 seconds vs. 150 seconds) while Task 4 required nearly the same
time. ESSAVis provides this information using different methods, like the basic
events tab or the minimal cut set tab in the Safety Menu. Specifically, in this task
we observed that the safety experts outperformed all other participants because
they knew how to get this answer. The average time for them was 93 seconds
compared to 124 seconds for the other participants. So we think this is due to
the experience level of the participants. In ESSaRel, all participants regardless
of their background performed this task at a relatively similar speed, which was
101 seconds on average. We think this can be improved if the participants get
trained and used to the ESSAVis tool.

Table 2. Average accuracy and average time in seconds of all tasks for all users

Tool Metric Task 1.1 Task 1.2 Task 2 Task 3 Task 4

Accuracy 0.98 0.94 0.84 0.68 0.84
Time 41.96 39.13 200.44 101.21 112.23ESSAVis

Efficiency 2.34E-02 2.40E-02 4.19E-03 6.72E-03 7.50E-03

Accuracy 0.85 0.38 0.68 0.63 0.76
Time 107.36 740.33 181.5 151.42 101.35EssaRel

Efficiency 7.96E-03 5.15E-04 3.73E-03 4.13E-03 7.50E-03

The results for efficiency (H3) all confirm our hypothesis. ESSAVis was nearly
200% more efficient in Tasks 1.1 and 1.2, 13% better in Task 2, 59% better in
Task 3, and identical in Task 4. The results for user acceptance (H4), based on
the Technology Acceptance Model, show that most of the participants accepted
ESSAVis more than ESSaRel (22 participants out of 25). The main reasons for
the higher acceptance of ESSAVis were the interaction facilities (22 out of 25)
and the visual support provided by ESSAVis (18 out of 25).

5 Conclusion and Future Work

In this paper, we reported on a controlled experiment aimed at comparing the
accuracy, the time needed, and the acceptance of ESSAVis (an interactive visual
platform) and ESSaRel (an editor for CFT models) in analyzing a CFT model.
After introducing related works, we provided an overview of both tools, high-
lighting the pros and cons of visualization techniques in safety analysis. Then
we designed and ran an empirical study under laboratory conditions to answer
our research questions.

The study was designed using an experimental design and was conducted
with 25 participants (researchers in computer science), who ran both systems
on a common set of tasks. The tasks consisted of those basic tasks that are

442 R. AlTarawneh et al.

necessary to measure the criticality of the top-event situation. The goal was to
measure how visualization can help to speed up the process of safety analysis
in complex embedded systems. The results show that the participants provided
more accurate results when using ESSAVis instead of ESSaRel (between 9%
and 24% more accurate, depending on the task). Moreover, the participants
performed all tasks relatively faster with ESSAVis and with higher efficiency
than when using ESSaRel.

The results are not only due to the visualization capabilities of ESSAVis but
also to the automation process of the algorithm that is required to calculate
the probability of each minimal cut set. We also observed that the majority
of participants preferred ESSAVis rather than ESSaRel due to its intuitiveness
and the different interaction techniques provided. At the same time, the results
show the need to train users in interpreting the results of their queries using
ESSAVis. One of the valuable findings was that in some tasks, there was no
significant difference between the two platforms. This indicated us to the need for
possible improvements in ESSAVis, as it lacks some options that are necessary
for the safety analysis process. For example, ESSAVis does not visualize the
gate information explicitly, as it conveys the logical connections between nodes
implicitly. However, this needs to be fixed in the next version of ESSAVis. In the
future, we aim to add this feature in order to improve the tool’s use in the safety
analysis process of complex embedded systems. Moreover, we intend to perform
further evaluation studies with the new features in different environments in
order to guarantee the feasibility and effectiveness of the tool.

References

1. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems - A Cyber-Physical
Systems Approach, 1 edn. Lee and Seshia (2010)

2. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
Reproduction 33, 37–46 (2003)

3. Bozzano, M., Villafiorita, A.: Design and Safety Assessment of Critical Systems.
CRC Press (Taylor and Francis), an Auerbach Book (2010)

4. Kaiser, B., Gramlich, C., Förster, M.: State/event fault trees - a safety analysis
model for software-controlled systems. Reliability Engineering System Safety 92,
1521–1537 (2007)

5. Weber, M.: A survey of semantic annotations for knowledge management. DFKI
GmbH, p. 1 (2008)

6. AlTarawneh, R., Bauer, J., Keller, P., Ebert, A.: Essavis: A 2Dplus3D visual plat-
form for speeding up the maintenance process of embedded systems. In: BCS HCI
2013 (2013)

7. AlTarawneh, R., Bauer, J., Humayoun, S.R., Ebert, A., Liggesmeyer, P.: Enhancing
understanding of safety aspects in embedded systems through an interactive visual
tool. In: IUI Companion 2014, pp. 9–12. ACM (2013)

8. Software Engineering Research Group: Dependability Kaiserslautern Univer-
sity, Essarel Tool: Embedded systems safety and reliability analyser (2014),
http://essarel.de

9. CESAR Project: cesar project report (2010), http://www.cesarproject.eu

http://essarel.de
http://www.cesarproject.eu

Does Visualization Speed Up the Safety Analysis Process? 443

10. Bieber, P., Bougnol, C., Castel, C., Heckmann, J.-L., Kehren, C., Seguin, C.: Safety
assessment with altarica - lessons learnt based on two aircraft system studies. In:
18th IFIP World Computer Congress, Topical Day on New Methods for Avionics
Certification, p. 26 (2004)

11. Gelfand, N., Tamassia, R.: Algorithmic patterns for orthogonal graph drawing. In:
Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 138–152. Springer, Heidel-
berg (1999)

12. AlTarawneh, R., Johannes, S., Humayoun, S.R.: Clue: An algorithm for expanding
clustered graphs. In: 7th IEEE Pacific Visualization Symposium (PacificVis 2014),
Yokohama, Japan (2014)

13. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In:
Encyclopedia of Software Engineering. Wiley (1994)

14. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of infor-
mation technology: Toward a unified view. MIS Q. 27, 425–478 (2003)

15. Dix, A., Finlay, J.E., Abowd, G.D., Beale, R.: Human-Computer Interaction, 3rd
edn. Prentice-Hall, Inc., Upper Saddle River (2003)

16. Proetzsch, M.: Development Process for Complex Behavior-Based Robot Control
Systems. RRLab Dissertations. Verlag Dr. Hut (2010) ISBN: 978-3-86853-626-3

17. Vesely, W.: Fault Tree Handbook with Aerospace Applications. NASA (2002)
18. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete

samples). Biometrika 52, 591–611 (1965)

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 444–454, 2014.
© Springer International Publishing Switzerland 2014

Agile Change Impact Analysis of Safety Critical Software

Tor Stålhane1, Geir Kjetil Hanssen2, Thor Myklebust2, and Børge Haugset2

1 Norwegian University of Science & Technology, Trondheim, Norway
tor.stalhane@idi.ntnu.no
2 SINTEF ICT, Trondheim, Norway

{ghanssen,thor.myklebust,borge.haugset}@sintef.no

Abstract. Change Impact Analysis (CIA) is an important task for all who de-
velops and maintains safety critical software. Many of the safety standards that
are used in the development and use of systems with a certified safety integrity
level (SIL) requires changes of such systems to be initiated by a CIA. The re-
sulting CIA report will identify planned changes that may threaten the existing
safety level. The challenge with CIA is that there are no practical guidelines on
how to conduct and report such an analysis. This has led to a practice where
most changes lead to extensive up-front analysis that may be costly and delay
the change process itself. In this paper we propose a new strategy for CIA based
on the principles of agile software development and the SafeScrum approach to
establish a more efficient in-process impact analysis. We discuss several bene-
fits of this approach, like resource savings, shorter time to initiate the change
process, better prioritization and management of the change process, and others.

Keywords: Safety critical systems, agile software development, SafeScrum,
change impact analysis, IEC61508.

1 Introduction

Change impact analysis (CIA) is an important task for anybody who develops and
maintains safety critical systems such as gas and fire detection systems, railway sig-
naling systems and process control systems. Several standards and directives require
that a CIA has to be done when a system with an approved safety integrity level is to
be changed – e.g., IEC 61508 [1] and the EN 5012X series [2]. A CIA produces a
CIA report (CIAR), which is an important input both to the development team im-
plementing the changes and to the assessor who will approve the changes according to
the relevant standards. Although several standards require a CIA to be performed
there are no practical guidelines available. This is a major concern as change of com-
plex software systems is a highly demanding task [3, 4] and even more so for safety
critical systems. However, we need to strike a balance between what should be done –
the standard’s domain – and how it should be done, which to a large degree should be
left to the development organization. We have provided guidance for CIA in a pre-
vious paper [5]. The key principle of our approach is to split the CIA into two phases.
Phase 1 is performed for a group of changes when needed and before starting the

 Agile Change Impact Analysis of Safety Critical Software 445

change process. This is more efficient than the present ad-hoc practice where all
changes from the systems requirements specification (SRS) are evaluated together.
See our previous paper for details on this [ibid]. For phase 2 we suggest to perform
the rest of the CIA as part of the development process itself. This process is described
in this paper. We are motivated by the potential effect that lies in the principles of
agile software development [6-9] of safety critical systems and believe that our pre-
viously described SafeScrum [10] method can be extended to facilitate an efficient
in-process CIA – see section 2. The work on SafeScrum and the more recent devel-
opment on agile CIA have been done as part of a four year Norwegian research
project SUSS (Agile Development of Safety-critical Software).

The approach with a two phase agile CIA that is described in this paper is concep-
tual and not yet applied in industry. However, the author team has complimentary ex-
pertise in the domain with one expert on assessment of safety critical systems accord-
ing to important standards like IEC 61508 and EN50128, one expert in development
and evaluation of safety critical systems and two experts on agile software develop-
ment and process improvement. We relate this work to our previous suggestion for an
agile approach of developing safety critical systems [10] where development is done
incrementally and iteratively, and where the management of requirements, assessment
and impact analysis is done concurrently.

Our approach is based on extensive discussions in the collegium of experts, inves-
tigation of relevant literature and standards, and also through verification of ideas
with leading industry partners developing SIL 2 and SIL 3 systems. There is, howev-
er, little difference between SIL 3 and SIL 4 when it comes to software. There is thus
no reason why the approach should not work also for SIL 4 as well.

The key ideas promoted in this paper are that we provide practical expert guide-
lines on how to achieve a two-phase agile CIA process as well as on details on the
SafeScrum process, and discuss expected savings from effectuating such a process.
Our motivation is that there are no guidelines on how to perform and document a CIA
at all, and that an agile approach will improve the current industrial practice.

The rest of the paper is organized as follows: Section 2 explains the background for
CIA and gives a short summary of some of the relevant literature while Section 3
drafts an agile approach of developing safety critical systems. Section 4 provides the
details on how to perform an agile CIA. Section 5 discusses some of the benefits we
expect from this approach. Finally, section 6 concludes our work and provides direc-
tions for further work on these topics.

2 Background

Change Impact Analysis of Safety Critical Systems

Development and evolution of safety critical software such as fire detection systems
or ship controlling systems must comply with extensive safety standards and regula-
tions in order to be approved for use. This also means that changes and extensions of
such systems must undergo an assessment to update the certificate. For a system with
an established SIL, planned changes to code and architecture are evaluated to see if

446 T. Stålhane et al.

the system will still meet the requirements specified in the standard after the changes.
This is required by several standards, but there are no concrete guidelines on how to
perform the analysis and how to document it in a CIAR.

The established practice is to perform the CIA upfront of the new development,
have it accepted and then initiate the change and development process without any
further CIA. This may represent a problem as the change process potentially can dis-
close problems with the planned change that the CIA didn't foresee. Also, doing the
complete CIA upfront means that the change process cannot start until the analysis is
fully completed. In a previous paper [5] we argue that it can be a good idea to perform
the CIA in two phases; Phase 1 is performed upfront of development, similar to the
common practice today but shorter in time and with less details. Phase 2 CIA is done
as an integrated part of the development process itself.

Related Work

A search for related work has shown several papers on the traceability problem re-
lated to CIA. Another topic of research that is published extensively is the effect of
incremental changes e.g. in object-oriented development. We have also seen some
publications on research on the effect of process change. However, we have seen no
papers on the problems of change impact analysis in agile development of safety criti-
cal software apart from one of our own recent papers [11]. The closest is a quote from
a paper by Jose Luis de la Vara and Rajwinder Kaur Panesar-Walawege on their me-
ta-model SafetyMet [12] where they identify this topic as an area of future research.

B. Li et al. [13] has published the result of a survey, where they have identified 23
change impact analysis methods. Another survey, performed by S. Lehnert [14] has
reviewed 150 approaches and related literature. We will not go through all these me-
thods in detail. Instead, we will look at two of the methods reviewed by B. Li et al.
and two papers that are not mentioned in either survey.

The first paper we will study in some more details is written by M. Acharya and B.
Robinson from ABB [15]. The authors have developed a new framework for change
impact analysis based on slicing and developed a tool for this, called Imp. This tool is
designed to seamlessly integrate with the nightly build process. The approach is tested
in an experiment with 30 changes in two versions of the same system and seems to
work well. However, it still has the same weakness as most other change impact anal-
ysis methods – it must start with the original and the changed code.

The second paper that we will discuss is written by M.S. Kilpinen et al. [16]. This
paper discusses change impact analysis for the whole system – hardware and soft-
ware. In addition, they do not assume that changes have been done before the
change impact analysis is performed. The experiences reported stems from a Rolls
Royce project for developing a jet engine controller. Design changes were managed
through an informal change impact process early in the detailed design and a more
formal process when the design baseline had been defined. Their most important ob-
servation is that “the system engineers tend only to use their experience and know-
ledge of the system rather than any systematic method to brainstorm on the impact on
the system requirements given to embedded software”. In relation to this, we should

 Agile Change Impact Analysis of Safety Critical Software 447

keep in mind Lindvall and Sandahl’s observation [17] that “software engineers tend to
perform impact analysis intuitively. Despite this common practice, many software
engineers do not predict the complete change impact.”

Based on this short survey there seems to be little tool support for change impact
analysis decision support, which is what we need. Knowing post festum that the
change was a bad idea is important but it is much cheaper to know this before we start
to change anything.

3 SafeScrum

Agile software development is a way of organizing the development process, empha-
sizing direct and frequent communication, frequent deliveries of working software
increments, short iterations, active customer engagement throughout the whole devel-
opment life cycle and change responsiveness rather than change avoidance. This can
be seen as a contrast to waterfall-like models, which emphasize thorough and detailed
planning, and design upfront and consecutive plan conformance. We do not believe
that an agile approach is appropriate for all steps needed when developing a safety-
critical system. Thus, SafeScrum has come up with the idea of separation of concerns,
as shown in figure 1, based on the process described in IEC 61508. Note that several
requirements specified in IEC 61508-3, annex A (normative) and annex B (informa-
tive) will influence the Scrum process. We have also added an activity where trace
information is collected.

Fig. 1. Separation of concerns

Several agile methods exist, whereof extreme programming [16] and Scrum [7] are
the most commonly used. Figure 2 explains the basic concepts of SafeScrum.

448 T. Stålhane et al.

The process starts with initial planning, which is short and results in a prioritized
list of requirements for the system called the product backlog. Developers also esti-
mate the implementation cost per backlog item. The following development is organ-
ized as a series for sprints (iterations) that each lasts a few weeks. Each sprint starts
with sprint planning, followed by test and development, a sprint review and a retro-
spective. Typically, developers will apply the principles of test-driven development
[13] where automated tests are developed before the code.

In the sprint planning meeting, the top items from the product backlog is trans-
ferred to the sprint backlog – adding up to the amount of resources available for the
period. These requirements will be implemented in the following sprint. Each work-
ing day starts with a scrum, which is a short meeting where each member of the
development team (1) explains what she/he did the previous work day, (2) any im-
pediments or problems that need to be solved and (3) planned work for the work day.
Problems related to relevant safety standards should be discussed with the assessor as
soon as possible after the meeting.

Each sprint releases an increment which is a running or demonstrable part of the
final system. The increment is demonstrated for the customer(s), which will decide
which backlog items that have been resolved and which that need further work. Based
on the results from the demonstration the next sprint is planned. The product backlog
is revised by the customer and is potentially changed / reprioritized. This initiates the
sprint-planning meeting for the next sprint. When all product backlog items are re-
solved and / or all available resources are spent, the final product is released. Final
tests can be run to ensure completeness.

The proposed variant of Scrum – SafeScrum, is motivated by the need to make it
possible to use methods that are flexible with respect to planning, documentation and
specification while still being acceptable to IEC 61508, as well as making Scrum a
useful approach for developing safety critical systems. The rest of this section ex-
plains the components and concepts of this combined approach.

Fig. 2. SafeScrum process model

 Agile Change Impact Analysis of Safety Critical Software 449

Our model has three main parts. The first part consists of the IEC 61508 steps
needed for developing the environment description and then the phases 1- 4 (concept,
overall scope definitions, hazard and risk analysis and overall safety requirements).
These initial steps result in the initial requirements of the system that is to be devel-
oped. This is the key input to the second part of the model, which is the Scrum proc-
ess. The requirements are documented as product backlog items. A product backlog is
a list of all functional and safety related system requirements, prioritized by the cus-
tomer. We have observed that the safety requirements are quite stable (e.g. the re-
sponse time has to be less than the Process safety time for a fire alarm system), while
the functional requirements may change considerably over time. Development with a
high probability of changes to requirements will favour an agile approach.

Due to the focus on safety requirements, we propose to use two product backlogs:
one functional product backlog, which is typical for Scrum projects, and one safety
product backlog, which is used to handle safety requirements. The safety require-
ments will come from three sources (1) applicable standards, (2) safety analysis – e.g.
HazOp – and (3) from the system’s customer. It is not necessary to have two physi-
cally separated backlogs – adding a tag to the safety product backlog items will suf-
fice. Adding a second backlog is an extension of the original Scrum process and is
needed to separate the frequently changed functional requirements from the more
stable safety requirements. With two backlogs we can keep track of how each item in
the functional product backlog relates to the items in the safety product backlog, i.e.
which safety requirements that are affected by which functional requirements. This
can be done by using simple cross-references in the two backlogs. It can also be sup-
ported with an explanation of how the requirements are related if this is needed to
fully understand a requirement. One of the participating companies includes the back-
log and the necessary linking in a Jira tool. Using a tool like Jira enables us to adapt
the process depending on whether a requirement is safety critical or not.

In order to be performed in an efficient manner, traceability requires the use of a
supporting tool. There exist several process-support tools that can manage this type of
traceability in addition to many other process support functions. One out of many
examples is Jira plus RMsis.

To make Scrum conform to IEC 61508, the final validation in each iteration should
be done both as a validation of the functional requirements and as a RAMS (Reliabil-
ity, Availability, Maintainability, and Safety) validation, to address specific safety
issues. If appropriate, the independent safety validator should take part in this valida-
tion for each sprint. If we discover deviations from the relevant standards, the assessor
should be involved as quickly as possible as he is normally not involved in the
validation for each sprint. Using an iterative and incremental approach means that the
development project can be continuously re-planned based on the most recent experi-
ence with the growing product. This principle is related to the well-known principle
of the Deming/Shewhart cycle [18]. Between the iterations, it is the duty of the cus-
tomer or product owner to use the most recent experience to re-prioritize the product
backlogs.

450 T. Stålhane et al.

In addition to the re-planning mentioned above, applying the RAMS validation
process to each increment will also give risk and hazard analyses a gradually evolving
scope. This will improve the quality of these analyses. Even if the increments cannot
be installed at the customer’s site, they can still be tested and run as part of a system
simulation. In addition, safety analysis performed on small increments can be more
focused and thus give better results [19].

As the final step, when all the sprints are completed, a final RAMS validation will
be done. Given that most of the developed system has been incrementally validated
during the sprints, we expect the final RAMS validation to be less extensive than
when using other development paradigms. This will also help us to reduce the time
and cost needed for certification, enabling a shorter time to market. We also expect
that it will be quicker and less expensive to perform updates to an existing system this
way.

4 Agile Change Impact Analysis

The proposed agile CIA-approach is organized as two phases. Phase 1 analysis is
done before the change implementation process and resembles the present practice,
but requires less effort and time because some analysis is postponed to phase 2. This
also means that the change and development process will start earlier. See Mykle-
bust et al. [5] for details on phase 1. In the following of this paper we look into the
details of what we call phase 2 CIA.

The key principle of phase 2 is that the impact analysis is performed continuously
and in synchronization with the SafeScrum development process. This is based on the
same principle of simultaneity that justifies the idea of doing formal assessment as an
integrated part of the SafeScrum development process itself [10]. In practical terms,
this phase 2 in-process CIA is implemented as an extension to the SafeScrum process
(see section 3) and more specifically, the sprint review meeting and the sprint-
planning meeting. (See in-line references to figure 3 -):

Sprint-Planning Meeting : Each sprint starts with a planning meeting where the
team estimates, selects and details items from the product backlog and moves them to
the sprint backlog to fill up the available resources (working days) for the upcoming
sprint . With respect to the CIA we suggest that the team considers any effects the
detailing of requirements and design decisions [20] might have for system’s safety.
The important question is: will the requirement and design affect the safety? A poten-
tial aid to use for decision support is Failure Mode and Effects Analysis (FMEA) [21].
Potential issues and un-clarities should be resolved immediately – either by reconsi-
dering the requirement or the design. In case the requirement needs to be reconsi-
dered, the product owner must be consulted. Alternatively, the design of the solution
must be reconsidered. The product owner is not normally a part of the Scrum planning
meeting so we suggest that the product owner is available, or that he can be contacted
in cases where he needs to make decisions. One of our industrial partners uses the
business manager and the manager of development here. All CIA issues that are

1

2

 Agile Change Impact Analysis of Safety Critical Software 451

raised and resolved during the planning meeting should also be documented in the
CIAR .

Sprint-Review Meeting : After the completion of a sprint, the product owner joins
the Scrum team to evaluate the outcome and results of the sprint. This involves ap-
proving or disapproving the recent sprint result , often based on a demonstration by
the team. The product owner will revise the product backlog and decide whether there
are items that should be removed, changed or re-prioritized . This is done using the
most recent knowledge of the problem that is being solved and the solution that is
being developed to solve the problem. For each change, the team will evaluate the
impact of the change and consider whether it has an impact on the safety integrity
level of the system. In cases where the team is not able to make this judgment they
need to clarify this with relevant roles such as safety managers, product management,
sales, and others – in general roles that are in positions to make a qualified judgment.

The dual backlog, which is an important concept in SafeScrum, will be an impor-
tant aid to raise attention to changes that may affect the safety integrity level because
of the potential relationships between functional requirements and safety require-
ments. If a functional requirement has a strong influence on one or more safety re-
quirements we might consider moving it to the safety requirements backlog. Also,
backlog items should be stated in the form of user stories explaining who the user role
is, what the goal is (what the product owner wants to achieve), and why the user story
is required (the rationale). This information is useful in order to evaluate the effect on
the safety integrity level.

Identified issues need to be discussed either right away or in the following sprint
review meeting, possibly also involving the product owner. This may result in further
additions to the product backlog. Furthermore, all issues that are identified, and

Fig. 3. SafeScrum in-process (phase 2) change impact analysis

3

4

5

6

product
backlog

sprint
backlog

sprint
planning
mee ng

sprint review
mee ng

sprint result

sprint

update

CIA: will the
requirement and design
affect the safety?

CIA: will the update
affect the safety?

1

2

CIA
report

3

4

5

6 7

452 T. Stålhane et al.

resolved, should be documented. This becomes important input to the CIAR ,
which grows incrementally in parallel with the system. We suggest that this should be
the responsibility of the Scrum master. The updated CIAR becomes important infor-
mation for the external assessor, which also is given a closer role in the development
process [10].

5 Discussion

To quote an anonymous developer: “After the first sprint, everything is maintenance
of an existing system”. For the CIA we need to consider two types of changes: (1)
changes to existing safety requirements and (2) changes that will influence code that
directly or indirectly belongs to a safety requirement. All such changes can be cate-
gorized into one of two classes: simple and not simple. For simple changes we con-
sider it to be enough if the developer categorizes the change as simple, perform a CIA
and documement why he has made this decision. For the other cases, and especially
those that concern safety requirements, we need to have a more elaborate CIA.

• Use trace information to see which parts of the code that will be affected
• Check the code for potential impact on safety in a code review
• Make a decision – change or not – and write a report. Note that the CIA re-

ports will later be an important input for the assessor.

Changes to the safety requirements in the product backlog should always go
through a CIA. We see several benefits of our two-phase CIA:

1) An in-process CIA is done when it is practical to do it, when the knowledge

of the total system being affected by the change is as updated and detailed as
possible [22]. This means that the impact analysis will be as complete as
possible. This complements the CIA analysis from phase 1, which was based
on preliminary information.

2) Because phase 1 is shorter than a traditional upfront CIA, the change and de-
velopment process will start earlier and thus deliver results earlier. This is
beneficial in cases where time to market is of great importance [23].

3) The CIA will inherit one of the key benefits of an agile process – better pri-
oritization of changes due to the fact that decisions are being made at the lat-
est possible time in the development process [22]. This also means that
changes that were originally planned may be avoided if they are found to be
unnecessary.

4) A less extensive CIA upfront may reduce the threshold for initiating a change
process in the first place. The agile development process and the integrated
CIA in phase 2 also gives the change/development project the opportunity to
end the change process at an earlier time if necessary – this is a property of an
agile development approach where design and requirements management

7

 Agile Change Impact Analysis of Safety Critical Software 453

may be adjusted during the course of the project. This can e.g. be a decision
that is made by the product owner that sees that the (prioritized) changes that
have been implemented so far are sufficient and that the product should enter
the market. Thus, the change process becomes more flexible and controllable.

5) A classical CIAR is useful both to developers and to assessors, but we argue
that the incremental CIAR will be even more valuable. It produces more up-
dated information since it is made progressively during the system develop-
ment, but also because the developers are continuously involved in the
process and that they don’t have to rely on a document that might be out-
dated.

6) A phase 2 approach like the one we have drafted will contribute to a more
streamlined and synchronized process where impact analysis, development
and assessment are done concurrently, instead of – as today – sequentially.

6 Conclusions and Future Work

The motivation for this paper is the need for a better way of analyzing and managing
changes in a certified safety critical software system. Based on our knowledge of the
industry we see a tendency to stick with traditional approaches of heavy upfront anal-
ysis. We also see that the obligatory standards that the industry needs to adhere to are
weak on providing practical guidelines on how to perform the CIA. Thus, we have
described how a modern software engineering process like Scrum can be adapted to
improve the CIA and address some of the main limitations. We have also discussed
what we expect will be the benefits and earnings from applying this approach.

One limitation of our work though is that the proposed agile CIA is currently being
evaluated in an industrial context. However, the author team behind this paper has an
extensive and complimentary expertise that is unique and we have chosen to develop
and present our ideas here as an invitation to the academic community as well as the
industry to consider ways of improving the CIA process. We would strongly encour-
age our peers to comment on our ideas and to try them out in practice.

To develop these ideas further we have started two pilot projects using the agile
CIA approach in Norwegian industry1. The results of these empirical studies will be
reported in following publications. Another important thread of activity is our en-
gagement in the IEC 61508 standardization committee where one of the authors holds
a position. Our goal is to encourage changes in the next revision of this important
standard and to incorporate practical industrially proven guidelines like we have sug-
gested in this paper.

Acknowledgements. This work was partially funded by the Norwegian research
council under grant #228431 (the SUSS project). Research has been done in collabo-
ration with Autronica Fire & Security AS.

1 http://www.sintef.no/safescrum

454 T. Stålhane et al.

References

[1] IEC, 61508:2010 Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems (E/E/PE, or E/E/PES)

[2] EN 5012X series. Railway applications
[3] Lehman, M.M., Ramil, J.F.: Software evolution - Background, theory, practice. Informa-

tion Processing Letters 88, 11 (2003)
[4] Lehman, M.M., Ramil, J.F.: An Approach to a Theory of Software Evolution. Presented

at the IWPSE, Vienna, Austria (2001)
[5] Myklebust, T., Stålhane, T., Hanssen, G.K., Haugset, B.: Change Impact Analysis as re-

quired by safety standards, what to do? Presented at the Probabilistic Safety Assessment
& Management Conference (PSAM12), Honolulu, USA (2014)

[6] Agile Manifesto (2009), http://www.agilemanifesto.org/
[7] Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall, New

Jersey (2001)
[8] Takeuchi, H., Nonaka, I.: The New New Product Development Game. Harward Buisiness

Review (1986)
[9] Dingsoyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:

Towards explaining agile software development. Journal on Systems and Software 85,
1213–1221 (2012)

[10] Stålhane, T., Myklebust, T., Hanssen, G.K.: The application of Scrum IEC 61508 certifia-
ble software. Presented at the ESREL, Helsinki, Finland (2012)

[11] Myklebust, T., Stålhane, T., Hanssen, G.K., Haugset, B.: Change Impact Analysis as re-
quired by safety standards, what to do? Presented at the Probabilistic Safety Assessment
& Management Conference, Hawaii, USA (2014)

[12] de la Vara, J.L., Panesar-Walawege, R.K.: SafetyMet: A Metamodel for Safety Standards.
In: Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013.
LNCS, vol. 8107, pp. 69–86. Springer, Heidelberg (2013)

[13] Li, B., Sun, X., Leung, H., Zhang, S.: A survey of code-based change impact analysis
techniques. Software Testing, Verification and Reliability 23, 613–646 (2012)

[14] Lehnert, S.: A Review of Software Change Impact Analysis. Ilmenau University of Tech-
nology, Department of Software Systems / Process Informatics, Germany (2011)

[15] Acharya, M., Robinson, B.: Practical change impact analysis based on static program slic-
ing for industrial software systems. Presented at the 33rd International Conference on
Software Engineering (ICSE 2011), Honolulu, USA (2011)

[16] Kilpinen, M.S., Clarkson, P.J., Eckert, C.M.: Change Impact Analysis at the Interface of
System and Embedded Software Design. Presented at the International Design Confe-
rence, Dubrovnik (2006)

[17] Lindvall, M., Sandahl, K.: How Well do Experienced Software Developers Predict Soft-
ware Change? Journal on Systems and Software 43, 19–27 (1998)

[18] Deming, W.E.: Out of the Crisis. The MIT Press, Cambridge (2000)
[19] Vuori, M.: Agile Development of Safety-Critical Software.pdf. Tampere University (2011)
[20] Armitage, J.: Are agile methods good for design? Interactions 11, 14–23 (2004)
[21] IEC, 60812: Analysis techniques for system reliability - Procedure for failure mode and

effects analysis (FMEA), 2nd edn. (2006)
[22] Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit for

Software Development Managers. Addison Wesley, New Jersey (2003)
[23] Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., Slaughter, S.: Is “Internet-speed”

software development different? IEEE Software 20, 70–77 (2003)

Author Index

Abdulkhaleq, Asim 401
Accorsi, Rafael 360
Almeida, Luis 71
AlTarawneh, Ragaad 431
Amato, Aniello 147
Antunes, Nuno 231
Armengaud, Eric 180
Arts, Thomas 19
Asplund, Fredrik 3
Aversa, Rocco 119

Baldoni, Roberto 350
Barberio, Gregorio 147
Bengtsson, Magnus 3
Berger, Christian 36
Bieber, Pierre 269
Bienmüller, Tom 84
Böde, Eckard 97
Bondavalli, Andrea 231, 243
Bonomi, Silvia 301
Böschen, Martin 108
Brade, Tino 46
Brancati, Francesco 192
Brunel, Julien 269

Carloni, Marco 137
Carnevali, Laura 304
Casimiro, António 27
Ceccarelli, Andrea 231, 243
Cerocchi, Adriano 350
Ciccotelli, Claudio 350

De Guglielmo, Renato 147
de la Vara, Jose Luis 371
Di Giandomenico, Felicita 243
Di Martino, Beniamino 119, 147
Di Sarno, Cesario 339
Donno, Alessandro 350
Duchi, Fabio 231

Ekberg, Johan 55
Ellen, Christian 108
Engelen, Luc 419
Eriksson, Henrik 19

Favaro, John 267
Ferdinand, Christian 84
Ferrante, Orlando 137
Ferrari, Alberto 137
Ferrell, Tom 375
Ferrell, Uma 375
Franchin, Paolo 328
Fruth, Jana 289

Gallina, Barbara 255
Garofalo, Alessia 339
Gentile, Ugo 147
Gerdes, Alex 19
Geven, Arjan 255
Ginisty, Alexandre 130

Hanssen, Geir Kjetil 444
Haugset, Børge 444
Hegedüs, Ábel 192
Höfig, Kai 396
Höller, Andrea 167
Humayoun, Shah Rukh 431

Ingelsson, Urban 55

Jäger, Georg 46
Johansson, Rolf 19

Kacimi, Omar 97
Kaiser, Jörg 46
Kajtazovic, Nermin 167
Kashiyarandi, Shaghayegh 255
Kästner, Daniel 84
Kelly, Tim 371, 384, 413
Koslowski, Thomas 360
Kreiner, Christian 167

Lahtinen, Jussi 195
Laibinis, Linas 157
Landsiedel, Olaf 63
Laranjeiro, Nuno 192
Laura, Luigi 328
Librino, Renato 1
Liggesmeyer, Peter 431
Lombardi, Federico 350

456 Author Index

Lönn, Henrik 55
Luo, Yaping 419

Ma, Zhendong 282
Majzik, István 207
Marrone, Stefano 147
Martinelli, Fabio 243
Massaroli, Gianpaolo 137
Matteucci, Ilaria 243, 301
Mazzocca, Nicola 147
Montanari, Luca 350
Morales, Oscar 36
Moscato, Francesco 119
Myklebust, Thor 444

Nagy, Attila 63
Nair, Sunil 413
Nardone, Roberto 147
Netkachov, Oleksandr 316
Nett, Edgar 289
Nostro, Nicola 243

Oertel, Markus 97
Okano, Kozo 11
Oliveira, Luis 71
Orazzo, Antonio 137
Östberg, Kenneth 3

Paolieri, Marco 304
Peikenkamp, Thomas 108
Pereverzeva, Inna 157
Peron, Adriano 147
Petig, Thomas 36
Petrone, Ida 137
Popov, Peter 316
Preschern, Christopher 167

Rioux, Laurent 267
Rossi, Francesco 231
Rothfelder, Martin 396
Ruiz, Alejandra 371

Salako, Kizito 316
Salvi, Sayali 84
Santos, Frederico 71

Schiller, Elad Michael 36
Schmittner, Christoph 282
Schneider, Daniel 180
Schoitsch, Erwin 80, 180
Sekizawa, Toshifusa 11
Silva, Nuno 384
Skarin, Daniel 219
Skavhaug, Amund 80
Skoglund, Martin 19
Skoog, Magnus 55
Smith, Paul 282
Söderberg, Jan 55
Soubiran, Elie 130
St̊alhane, Tor 444
Steiner, Max 431
Sun, Linling 384
Svenningsson, Rickard 219
Svensson, Hans 19

Tadano, Kumiko 304
Taibi, Davide 431
Tarani, Fabio 304
Tchapet-Nya, Vidal-delmas 130
Törngren, Martin 1, 3
Tóth, Tamás 207
Troubitsyna, Elena 157

Vallée, Frédérique 130
van den Brand, Mark 419
Velardi, Luigi 137, 147
Vella, Giuseppe 231
Vial, Eric 27
Vicario, Enrico 304
Vinter, Jonny 219
Vittorini, Valeria 147
Vörös, András 207

Wagner, Stefan 401
Walkinshaw, Neil 413

Zahoransky, Richard M. 360
Zeller, Marc 396
Zug, Sebastian 46
Zugsbratl, Karlheinz 255

	Preface
	Organization
	Sponsors
	Technical Co-sponsors
	Table of Contents
	Architecting Safety in Collaborative Mobile Systems (ASCoMS’14)

	3rd Workshop on Architecting Safety in Collaborative Mobile Systems (ASCoMS)
	Intelligent Transport Systems - The Role of a Safety Loop for Holistic Safety Management
	1 Introduction
	1.1 Related Work for ITS

	2 ITS Characteristics and Fundamental Concepts
	2.1 Lifecycle Perspective and Safety Aspects
	2.2 ITS Station
	2.3 Traffic Simulation and the Safety Loop

	3 Conclusion and Future Work
	References

	Safety Verification of Multiple Autonomous Systems by Formal Approach
	1 Introduction
	2 Preliminaries
	2.1 Line Tracing Robot
	2.2 Model Checking

	3 Multiple Autonomous Systems Model
	3.1 Stand-Alone Tracing Robot
	3.2 Multiple Tracing Robots

	4 Formal Verification
	4.1 Stand-Alone Tracing Robot
	4.2 Multiple Tracing Robots

	5 Conclusion and Future Work
	References

	Checking Verification Compliance of Technical Safety Requirements on the AUTOSAR Platform Using Annotated Semi-formal Executable Models
	1 Introduction – The Automotive Safety Problem
	2 Background
	3 Our Approach
	3.1 Identify Safety Critical Features Allocated to Platform
	3.2 Identify Relevant Test Scenarios

	4 Application of the Method on Parking Brake
	4.1 Identify Safety Critical Features Allocated on Platform
	4.2 Identify Relevant Test Scenario of Network Management
	4.3 Result of Call Trace

	5 Conclusions
	References

	Evaluation of Safety Rules in a Safety
Kernel-Based Architecture

	1 Introduction
	2 Definitions and Concepts
	3 Design and Implementation
	3.1 Data Structures
	3.2 XML Parsing
	3.3 Safety Rules Evaluation

	4 Example Application
	5 Conclusion
	References

	Driving with Confidence: Local Dynamic Maps That Provide LoS for the Gulliver Test-Bed

	1 Introduction
	2 System Overview
	3 Local Dynamic Map
	4 Cooperative Vehicular Algorithms
	5 Conclusions
	References

	Sensor- and Environment Dependent
Performance Adaptation for Maintaining Safety
Requirements

	1 Introduction
	2 Assessing the Quality of Sensor Data
	3 An Automated Driving Scenario
	3.1 Deriving Safety Rules at Design-Time
	3.2 Checking Safety Rules at Run-Time

	4 Discussion
	5 Conclusion
	References

	Collaborative Development of Safety-Critical Automotive Systems: Exchange, Views and Metrics*
	1 Background
	2 Infrastructure
	3 Collaboration
	4 Exchange and Analysis
	5 Views
	5.1 Structural Viewpoints
	5.2 Safety Viewpoints
	5.3 Requirements-Related Viewpoints

	6 Metrics
	6.1 Progress Metrics
	6.2 Product Metrics
	6.3 Identifying Context

	7 Summary
	References

	Towards Energy Efficient, High-Speed
Communication in WSNs

	1 Introduction
	2 Background
	3 Related Work
	4 Design
	4.1 Limitations of ORW in High-Throughput Scenarios
	4.2 Extending ORW to High-Throughput Scenarios

	5 Evaluation
	6 Conclusion
	References

	Comparing Adaptive TDMA against a Clock Synchronization Approach
	1 Introduction
	2 Related Work
	3 TDMA Communication Framework
	3.1 Adaptive TDMA

	4 Comparing Clock-Synchronized and Adaptive TDMA
	5 Conclusion
	References

	ERCIM/EWICS/ARTEMIS Workshop on Dependable Embedded and Cyberphysical Systems and Systems-of-Systems (DECSoS’14)

	Introduction: ERCIM/EWICS/ARTEMIS Workshop on Dependable Embedded and Cyberphysical Systems and Systems-of- Systems (DECSoS’14) at SAFECOMP 2014
	1 Introduction
	2 ARTEMIS/ECSEL: The European Cyber-Physical Systems Initiative
	3 This Year’s Workshop

	True Error or False Alarm? Refining Astr´ee’s Abstract Interpretation Results by Embedded Tester’s Automatic Model-Based Testing
	1 Introduction
	2 Static Runtime Error Analysis
	2.1 Runtime Errors and Alarms

	3 Model-Based Testing
	3.1 Test Case Generation
	3.2 Observer
	3.3 Property Location Language – PLL
	3.4 Integration of C-Observer in ET

	4 Combining the Two Worlds
	4.1 Division by Zero
	4.2 Overflow in Arithmetic
	4.3 Overflow in Conversion
	4.4 Invalid Dereference

	5 Experiments and Practical Experience
	6 Future Work and Conclusion
	References

	Proving Compliance of Implementation Models
to Safety Specifications

	1 Introduction and Related Work
	2 Background
	2.1 Safety Contracts
	2.2 The Model-Based Safety Analysis

	3 Verifying Safety Contracts Using the MBSA
	4 Example
	5 Conclusion
	References

	MTBF Inconsistency Analysis on Inferred
Product Breakdown Structures

	1 Introduction
	2 Product Breakdown Structure
	2.1 Definitions
	2.2 Creation of the PBS
	2.3 Incompleteness

	3 Analysis
	3.1 MTBF Pattern
	3.2 Compositional MTBF

	4 Conclusion
	References

	Critical Systems Verification in
MetaMORP(h)OSY

	1 Introduction
	2 State of The Art
	3 MetaMORP(h)OSY
	4 Case Study
	5 Conclusions and Future Work
	References

	Report on the Railway Use-Case of the Crystal Project: Objectives and Progress
	1 CRYSTAL Project: CRitical sYSTem engineering AcceLeration
	2 Case-Study: MBSE-MBSA Interaction in the Development of a Signalling System
	3 Technologic Brick Description: Safety Architect
	4 Realizations
	5 Ongoing Work

	Contract-Based Analysis for Verification of Communication-Based Train Control (CBTC) System
	1 Introduction
	2 The Use Case Under Investigation
	3 The Formal Specs Verifier (FSV) Tool-Suite
	3.1 FSV-BCL Toolbox
	3.2 FSV-Formal Verification

	4 Modeling, Requirements Formalization, and Analysis

	4.1 System Modeling
	4.2 Requirements Formalization
	4.3 Contract-Based Analysis

	5 Conclusion and Future Work
	References

	An Interoperable Testing Environment
for ERTMS/ETCS Control Systems

	1 The RBC Use Case within the Crystal Project
	2 An Environment for ERTMS/ETCS Interoperable Testing
	3 Rail Model: Model-Based Test Sequences Generation
	4 IOPTestWriter
	5 Log Analyzer
	6 IntegrationinRTP/IOS
	References

	Modelling Resilient Systems-of-Systems
in Event-B

	1 Introduction
	2 Modelling and Refinement in Event-B
	3 Deriving a Generic Specification of a SoS
	4 Case Study: Satellite Flight Formation
	5 Conclusions and Related Work
	References

	Towards Assured Dynamic Configuration
of Safety-Critical Embedded Systems

	1 Introduction
	2 Related Work
	3 Addressing Changes in Engineering of Safety-Critical Embedded Systems
	3.1 Change Management in Safety Standards
	3.2 Impact of Changes on System Requirements

	4 Ensuring Consistency of System Configurations
	4.1 Software Architecture
	4.2 System Modelling
	4.3 Consistency Analysis

	5 Discussion
	6 Conclusion
	References

	Towards Trust Assurance and Certification in Cyber-Physical Systems
	1 Introduction
	2 State of the Art
	3 Safety and Security – Trust by Design
	4 Safety and Security – Runtime Certification
	5 Conclusion and Outlook
	References

	DEvelopment, Verification and VAlidation of cRiTical Systems (DEVVARTS’14)

	Introduction to the Safecomp 2014 Workshop:DEvelopment, Verification and VAlidation ofcRiTical Systems(DEVVARTS ’14)

	Verification of Fault-Tolerant System
Architectures Using Model Checking

	1 Introduction
	2 Related Work
	3 Description of the Example System
	4 Modelling
	4.1 Logic Modules
	4.2 Failure Module
	4.3 Link Modules
	4.4 Process Module
	4.5 Abstractions and Property Verification
	4.6 Modelling Choices

	5 Results
	6 Conclusions
	References

	Verification of a Real-Time Safety-Critical
Protocol Using a Modelling Language with
Formal Data and Behaviour Semantics

	1 Introduction
	2 The ProSigma SCAN Protocol
	3 The Language
	4 The Verification Workflow
	5 Verification of the Protocol
	6 Evaluation and Conclusion
	References

	Visualization of Model-Implemented Fault Injection Experiments
	1 Introduction
	2 The MODIFI Fault Injection Tool
	2.1 Fault Injection in Simulink Models
	2.2 Fault Models

	3 Visualization of Fault Injection Experiments
	3.1 Experiment Outcomes
	3.2 Sensitivity Profiling
	3.3 Error Propagation Visualization

	4 Case Study: Brake-by-Wire Model
	4.1 Brake-by-Wire Model
	4.2 Fault Injection Results

	5 Conclusions
	References

	Cost-Effective Testing for Critical Off-the-Shelf Services
	1 Introduction
	2 Testing Framework
	2.1 Instrumented System (IS)
	2.2 Test and Collect

	3 Conducting Cost-Effective Testing
	3.1 Functional and Stress Testing
	3.2 Robustness Testing
	3.3 Penetration Testing

	4 Case Studies: Liferay Web Services
	4.1 Functional Tests
	4.2 Robustness Tests
	4.3 Penetration Tests

	5 Tests Results
	5.1 Functional Test
	5.2 Stress Test
	5.3 Robustness Tests
	5.4 Penetration Tests

	6 Conclusion
	References

	On Security Countermeasures Ranking through Threat Analysis
	1 Introduction
	2 Ranking Security Strategies through Threat Analysis
	2.1 Modelling Approach and Threat Analysis
	2.2 Quantitative Controlling Strategies

	3 Use Case: Customer Energy Management System
	4 Related Work
	5 Conclusion and Future Works
	References

	Enabling Cross-Domain Reuse of Tool
Qualification Certification Artefacts

	1 Introduction
	2 Background
	2.1 Tool Qualification Processes
	2.2 Safety-Oriented Process Lines and SPEM 2.0
	2.3 Process Compliance and GSN

	3 A Cross-Domain Tool Qualification Process Line
	4 Enabling Reuse of Certification Artifacts
	5 Related Work
	6 Conclusion and Future Work
	References

	Integration of Safety and Security Engineering (ISSE’14)

	1st International Workshop on the Integration of Safety and Security Engineering (ISSE ’14)
	1 Introduction
	2 Workshop Format

	From Safety Models to Security Models:Preliminary Lessons Learnt

	1 Introduction
	2 A Summary of Model Based Safety Assessment

	2.1 Safety Model
	2.2 Safety Analysis

	3 Towards Model Based Security Assessment
	3.1 Security Models
	3.2 Security Mechanism Library
	3.4 Security Analysis

	4 Conclusion
	4.1 Preliminary Lessons Learnt
	4.2 Related Work

	References

	FMVEA for Safety and Security Analysis
of Intelligent and Cooperative Vehicles

	1 Introduction
	2 Failure Mode, Vulnerabilities and Effect Analysis

	3 System of Intelligent and Cooperative Vehicles
	4 FMVEA Analysis
	5 Conclusion and Future Work
	References

	Uniform Approach of Risk Communication
in Distributed IT Environments Combining
Safety and Security Aspects

	1 Introduction and Motivation
	2 State of the Art: Risk Communication Standards
	2.1 Alarm Management Standards in the Industrial Process Management
	2.2 Intrusion Detection System Standards for Information Technology in Organisations

	2.3 Comparison of Risk Communication Standards
	2.4 First Approaches towards an Uniform Approach of Risk Communication in Distributed IT Environments

	3 Uniform Approach for Risk Communication in Safety and Security Domains
	3.1 Generic System Model
	3.2 User Adapted Risk Communication

	4 Conclusion and Future Work
	References

	Reliability and Security Aspects for Critical Infrastructure Protection (ReSA4CI’14)

	Introduction to the Safecomp 2014 Workshop:
Reliability and Security Aspects for Critical
Infrastructure Protection (ReSA4CI 2014)

	Modeling and Evaluation of Maintenance
Procedures for Gas Distribution Networks
with Time-Dependent Parameters

	1 Introduction
	2 Model
	2.1 Stochastic Model
	2.2 Fluid-Dynamic Model

	3 Evaluation
	3.1 Quantitative Transient Analysis
	3.2 Evaluated Measures

	4 A Case Study
	4.1 Experimental Setting
	4.2 Experimental Results

	5 Conclusions
	References

	Quantification of the Impact of Cyber Attack in Critical Infrastructures
	1 Introduction
	2 Problem Statement
	3 Solution
	3.1 The System under Study
	3.2 Modelling Cyber-Attacks

	4 Findings
	4.1 Rewards
	4.2 Studies
	4.3 Results

	5 Related Research
	6 Conclusions
	References

	Probabilistic Inference in the Physical
Simulation of Interdependent Critical
Infrastructure Systems

	1 Introduction
	2 The Framework for Physical Simulation of Critical Infrastructures
	3 Inference in the Bayesian Network Associated with the SYNER-G Framework
	3.1 Graph Moralization
	3.2 Triangulation

	4 Conclusions
	References

	Energy-Based Detection of Multi-layer
Flooding Attacks on Wireless Sensor Network

	1 Introduction
	2 Related Work
	3 Single-Layer and Multi-Layer Detection Approaches for WSN
	4 Testbed and Experimental Results
	5 Conclusions
	References

	Towards a Non-intrusive Recognition of
Anomalous System Behavior in Data Centers

	1 Introduction
	2 Background
	3 NiTREC Architecture
	4 Experimental Analysis
	4.1 Testbed and Dataset
	4.2 Neural Networks Implementation and Details
	4.3 Preliminary Results

	5 Related Work
	6 Conclusions and Future Work
	References

	Toward Resilience Assessment in Business Process Architectures

	1 Introduction
	2 Method and Research Design
	2.1 Time Behavior of the Workflow - Calculus
	2.2 Resilience in Workflows

	3 Case Study
	3.1 Example Workflow
	3.2 Evidence Collection
	3.3 Simulation Settings and Analysis

	4 Evaluation and Discussion
	5 Related Work and Addressed Shortcomings
	6 Outlook and Conclusion
	References

	Next Generation of System Assurance Approachesfor Safety-Critical Systems (SASSUR’14)

	Introduction to SASSUR 2014
	Assuring Avionics – Updating the Approach for the 21st Century
	1 Introduction
	2 Background
	3 Compounding Problems
	4 Proposing Solutions
	4.1 Consolidated Digital Design Assurance
	4.2 Increased Resiliency at the Digital Level
	4.3 Goal-Based Standards
	4.4 Personnel Qualification

	5 Conclusion
	References

	Rethinking of Strategy for Safety Argument Development

	1 Introduction
	2 Strategy in Argument Development

	2.1 Strategy in GSN

	2.2 Argument Development Process

	3 Generic Strategy Types

	3.1 Source 1: System Description
	3.2 Source 2: Safety Concerns
	3.3 Source 3: Standards and Requirements
	3.4 Source 4: Logical Appeals
	3.5 Source 5: Others

	4 Discussions
	4.1 Comparison of Strategy Types
	4.2 Application of Strategies

	5 Conclusion
	References

	Towards a Cross-Domain Software Safety
Assurance Process for Embedded Systems

	1 Introduction
	2 Related Work
	3 Cross-Domain Safety Assurance Process
	4 Discussion
	5 Conclusions and Outlook
	References

	A Software Safety Verification Method Based
on System-Theoretic Process Analysis

	1 Introduction
	1.1 Problem Statement
	1.2 Research Objectives
	1.3 Contribution

	2 Background
	2.1 STPA
	2.2 Software Safety Verification
	2.3 Formal Specification and Verification Techniques

	3 Software Safety Verification Method Based on STPA
	3.1 Safety Analysis of Software at the System Level (Step 1)
	3.2 Formalization of Safety Requirements and Constraints (Step 2)
	3.3 Verification and Testing at the Code Level (Step 3)

	4 Case Study: Vehicle Cruise Control
	4.1 Applying STPA to the Cruise Control
	4.2 Formalising the Safety Requirements
	4.3 Verification and Testing of the Safety Requirements

	5 Related Work
	6 Conclusions and Future Work
	References

	Quantifying Uncertainty in Safety Cases Using Evidential Reasoning
	1 Introduction
	2 Background
	2.1 Confidence and Uncertainty in Safety Assessment
	2.2 Evidential Reasoning (ER)

	3 Research Agenda
	4 Conclusion
	References

	Metamodel Comparison and Model Comparisonfor Safety Assurance

	1 Introduction
	2 Metamodel Transformation
	2.1 A Small Use Case

	3 Mapping Support
	3.1 Mappings: Between Conceptual Models and between Models
	3.2 Mapping Types: Between Concepts and between Instances

	4 Results
	5 Related Work
	6 Conclusions and Future Work
	References

	Does Visualization Speed Up the Safety Analysis Process?

	1 Introduction
	2 Related Work
	3 Introduction to ESSAVis and ESSaRel
	4 The Empirical Study
	4.1 Study Design and Procedure
	4.2 Task Description
	4.3 Results and Discussion

	5 Conclusion and Future Work
	References

	Agile Change Impact Analysis of Safety Critical Software
	1 Introduction
	2 Background
	3 SafeScrum
	4 Agile Change Impact Analysis
	5 Discussion
	6 Conclusions and Future Work
	References

	Author Index

