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Abstract. We propose a new approach for Collaborative filtering which
is based on Boolean Matrix Factorisation (BMF) and Formal Concept
Analysis. In a series of experiments on real data (MovieLens dataset) we
compare the approach with an SVD-based one in terms of Mean Average
Error (MAE). One of the experimental consequences is that it is enough
to have a binary-scaled rating data to obtain almost the same quality
in terms of MAE by BMF as for the SVD-based algorithm in case of
non-scaled data.
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1 Introduction

Recommender Systems have recently become one of the most popular subareas of
Machine Learning and Data Mining. In fact, the recommender algorithms based
on matrix factorisation techniques (MF) are now considered industry standard
[1].

Among the most frequently used types of Matrix Factorisation we should def-
initely mention Singular Value Decomposition (SVD) [2] and its various mod-
ifications like Probabilistic Latent Semantic Analysis (PLSA) [3] and SVD++
[4]. However, the existing similar techniques, for example, non-negative matrix
factorisation (NMF) [5] and Boolean matrix factorisation (BMF) [6], seem to be
less studied in the context of Recommender Systems. An approach similar to the
matrix factorization is biclustering which was also successfully applied in recom-
mender system domain [7,8]. For example, Formal Concept Analysis [9] can be
also used as a biclustering technique and there are already several examples of
its applications in recommenders’ algorithms [10,11].

The aim of this paper is to compare the recommendation quality of the afore-
mentioned techniques on the real datasets and try to investigate methods’ in-
terrelationship. It is especially interesting to conduct experiments and compare
recommendation quality in case of an input matrix with numeric values and
in case of a Boolean matrix in terms of Precision and Recall as well as MAE.
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Moreover, one of the useful properties of matrix factorisation is its ability to
keep reliable recommendation quality even in case of dropping some insufficient
factors. For BMF this issue is experimentally investigated in section 4.

The novelty of the paper is defined by the fact that it is the first time when
BMF based on Formal Concept Analysis [9] is investigated in the context of
Recommender Systems.

The practical significance of the paper is determined by the demand of rec-
ommender systems’ industry, that is focused on gaining reliable quality in terms
of Mean Average Error (MAE), Precision and Recall as well as competitive time
performance of the investigated method.

The rest of the paper consists of five sections. Section 2 is an introductory re-
view of the existing MF-based recommender approaches. In section 3 we describe
our recommender algorithm which is based on Boolean matrix factorisation us-
ing closed sets of users and items (that is FCA). Section 4 contains methodology
of our experiments and results of experimental comparison of two MF-based
recommender algorithms by means of cross-validation in terms of MAE and
F -measure. The last section concludes the paper.

2 Introductory Review of Some Matrix Factorisation
Approaches

In this section we briefly describe two approaches to the decomposition of both
real-valued and Boolean matrices.

2.1 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a decomposition of a rectangular matrix
A ∈ R

m×n(m > n) into a product of three matrices

A = U

(
Σ
0

)
V T , (1)

where U ∈ R
m×m and V ∈ R

n×n are orthogonal matrices, and Σ ∈ R
n×n is

a diagonal matrix such that Σ = diag(σ1, . . . , σn) and σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0.
The columns of the matrix U and V are called singular vectors, and the numbers
σi are singular values [2].

In the context of recommendation systems rows of U and V can be interpreted
as vectors of user’s and items’s loyalty (attitude) to a certain topic (factor), and
the corresponding singular values as importance of the topic among the others.
The main disadvantage lies in the fact that the matrix may contain both positive
and negative numbers; the last ones are difficult to interpret.

The advantage of SVD for recommendation systems is that this method allows
to obtain a vector of user’s loyalty to certain topics for a new user without SVD
decomposition of the whole matrix.

The evaluation of computational complexity of SVD according to [12] is
O(mn2) floating-point operations if m ≥ n or more precisely 2mn2 + 2n3.
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2.2 Boolean Matrix Factorisation (BMF) Based on Formal Concept
Analysis (FCA)

Basic FCA Definitions Formal Concept Analysis (FCA) is a branch of ap-
plied mathematics and it studies (formal) concepts and their hierarchy [9]. The
adjective “formal” indicates a strict mathematical definition of a pair of sets,
called, the extent and intent. This formalisation is possible because of the use of
the algebraic lattice theory.

Definition 1. Formal context K is a triple (G,M, I), where G is a set of
objects, M is a set of attributes , I ⊆ G×M is a binary relation.

The binary relation I is interpreted as follows: for g ∈ G, m ∈ M we write
gIm if the object g has the attribute m.

For a formal context K = (G,M, I) and any A ⊆ G and B ⊆ M a pair of
mappings is defined:

A′ = {m ∈ M | gIm for all g ∈ A}, B′ = {g ∈ G | gIm for all m ∈ B},
these mappings define Galois connection between partially ordered sets (2G,⊆)
and (2M ,⊆) on disjunctive union of G and M . The set A is called closed set, if
A′′ = A [13].

Definition 2. A formal concept of the formal context K = (G,M, I) is a pair
(A,B), where A ⊆ G, B ⊆ M , A′ = B and B′ = A. The set A is called the
extent, and B is the intent of the formal concept (A,B).

It is evident that the extent and intent of any formal concept are closed sets.
The set of all formal concepts of a context K is denoted by B(G,M, I).
The state-of-the-art surveys on advances in FCA theory and its applications

can be found in [14,15].

Description of FCA-Based BMF. Boolean matrix factorization (BMF) is
a decomposition of the original matrix I ∈ {0, 1}n×m, where Iij ∈ {0, 1},
into a Boolean matrix product P ◦ Q of binary matrices P ∈ {0, 1}n×k and
Q ∈ {0, 1}k×m for the smallest possible number of k. We define boolean matrix
product as follows:

(P ◦Q)ij =
k∨

l=1

Pil ·Qlj ,

where
∨

denotes disjunction, and · conjunction.
Matrix I can be considered a matrix of binary relations between set X of

objects (users), and a set Y of attributes (items that users have evaluated). We
assume that xIy iff the user x evaluated object y. The triple (X,Y, I) clearly
forms a formal context.

Consider a set F ⊆ B(X,Y, I), a subset of all formal concepts of context
(X,Y, I), and introduce matrices PF and QF :

(PF )il =
{
1, i ∈ Al,
0, i /∈ Al,

(QF)lj =
{
1, j ∈ Bl,
0, j /∈ Bl.

,
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where (Al, Bl) is a formal concept from F . We can consider decomposition of
the matrix I into binary matrix product PF and QF as described above. The
following theorems are proved in [6]:

Theorem 1. (Universality of formal concepts as factors). For every I there is
F ⊆ B(X,Y, I), such that I = PF ◦QF .

Theorem 2. (Optimality of formal concepts as factors). Let I = P ◦Q for n× k
and k × m binary matrices P and Q. Then there exists a F ⊆ B(X,Y, I)
of formal concepts of I such that |F| ≤ k and for the n × |mathcalF | and
|mathcalF | ×m binary matrices PF and QF we have I = PF ◦QF .

There are several algorithms for finding PF and QF by calculating formal con-
cepts based on these theorems [6].

The algorithm we use (Algoritm 2 from [6]) avoids computation of all possible
formal concepts and therefore works much faster [6]. Time estimation of the
calculations in the worst case yields O(k|G||M |3), where k is the number of
found factors, |G| is the number of objects, |M | is the number of attributes.

2.3 General Scheme of User-Based Recommendations

Once a matrix of rates is factorized we need to learn how to compute recom-
mendations for users and to evaluate whether a particular method handles this
task well.

For the factorized matrices already well-known algorithm based on the simi-
larity of users can be applied, where for finding K nearest neighbours we use not
the original matrix of ratings A ∈ R

m×n, but the matrix U ∈ R
m×f , where m is

a number of users, and f is a number of factors. After the selection of K users,
which are the most similar to a given user, based on the factors that are peculiar
to them, it is possible, based on collaborative filtering formulas to calculate the
projected rates for a given user.

After generation of recommendations the performance of the recommender
system can be estimated by measures such as Mean Absolute Error (MAE),
Precision and Recall.

3 A Recommender Algorithm Using FCA-Based BMF

3.1 kNN-Based Algorithm

Collaborative recommender systems try to predict the utility (in our case rates)
of items for a particular user based on the items previously rated by other users.

Memory-based algorithms make rating predictions based on the entire collec-
tion of previously rated items by the users. That is, the value of the unknown
rating rc,s for a user c and item s is usually computed as an aggregate of the
ratings of some other (usually, the K most similar) users for the same item s:

rc,s = aggrc′∈ ̂Crc′,s,
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where Ĉ denotes a set of K users that are the most similar to user c, who have
rated item s. For example, the function aggr may have the following form [16]

rc,s = k
∑
c′∈ ̂C

sim(c′, c)× rc′,s,

where k serves as a normalizing factor and selected as k = 1/
∑
c′∈ ̂C

sim(c, c′).

Similarity measure between users c and c′, sim(c, c′), is essentially an inverse
distance measure and is used as a weight, i.e., the more similar users c and c′

are, the more weight rating rc′,s will carry in the prediction of rc,s.
Similarity between two users is based on their ratings of items that both users

have rated. The two most popular approaches are correlation and cosine-based.
To apply this approach in case of FCA-based BMF recommender algorithm

we simply consider the user-factor matrices obtained after factorisation of the
initial data as an input.

3.2 Scaling

In order to move from a matrix of ratings R where Rij ∈ {0, 1, 2, 3, 4, 5} to a
Boolean matrix, and use the results of Boolean matrix factorisation, scaling is
required. It is well known that scaling is a matter of expert interpretation of the
original data. In this paper, we use binary scaling with different thresholds and
compare the results in terms of MAE.

1. Iij = 1 if Rij > 0, else Iij = 0 (user i rates item j).
2. Iij = 1 if Rij > 1, else Iij = 0.
3. Iij = 1 if Rij > 2, else Iij = 0.
4. Iij = 1 if Rij > 3, else Iij = 0.

4 Experiments

To test our hypotheses and study the behavior of recommendations based on
the factorisation of a ratings matrix by different methods we used MovieLens
data. We used a part of the data, containing 100,000 ratings, and considered
only users who have given more than 20 ratings.

The user ratings are split into two sets, a training set consisting of 80 000
ratings, and a test set consisting of 20 000 ratings. The original data matrix has
the size of 943× 1682, where the number of rows is the number of users and the
number of columns is the number of rated movies (each movie has at least one
vote).

4.1 The Number of Factors That Cover p% of Evaluations in an
Input Data for SVD and BMF

The main purpose of matrix factorisation is a reduction of matrices dimension-
ality. Therefore we examine how the number of factors varies depending on the



52 D.I. Ignatov et al.

method of factorization, and depending on p % of the data that is covered by
factorization. For BMF the coverage of a matrix is calculated as the ratio of
the number of ratings covered by Boolean factorization to the total number of
ratings.

|covered ratings|
|all ratings| · 100% ≈ pBMF%, (2)

For SVD we use the following formula:

K∑
i=1

σ2
i∑

σ2
i

· 100% ≈ pSVD%, (3)

where K is the number of factors selected.

Table 1. Number of factors for SVD and BMF at different coverage level

p% 100% 80% 60%

SVD 943 175 67

BMF 1302 402 223

4.2 MAE-Based Recommender Quality Comparison of SVD and
BMF for Various Levels of Evaluations Coverage

The main purpose of matrix factorisation is the reduction of matrices dimen-
sionality. As a result some part of the original data remains not covered, so it
was interesting to explore how the quality of recommendations changes based
on different factorisations, depending on the proportion of the data covered by
factors.

Two methods of matrix factorisation were considered: BMF and SVD. The
fraction of data covered by factors is defined in subsections 2 and 3.

Fig. 1 shows that MAESV D60, calculated for the model based on 60% of
factors, is not very different from MAESV D80, calculated for the model built for
80% factors. At the same time, for the recommendations based on a Boolean
factorization covering 60% and 80% of the data respectively, it is clear that
increasing the number of factors improves MAE, as shown in Fig. 2.

Table 2 shows that MAE for recommendations built on a Boolean factorisation
covering 80 % of the data, for the number of neighbours less than 50, is better
than the MAE for recommendations built on SVD factorization. It is also easy
to see that difference of MAESVD80 and MAEBMF80 from MAEall is no more
than 1− 7%.
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Fig. 1.MAE dependence on the percentage of the data covered by SVD-decomposition,
and the number of nearest neighbours

Fig. 2. MAE dependence on the percentage of the data covered by BMF-
decomposition, and the number of nearest neighbours

4.3 Comparison of kNN-Based Approach and BMF by Precision
and Recall

Besides comparison of the algorithms using MAE, other evaluation metrics can

also be exploited, for example, Recall = |objects in recommendation∩objects in test|
|objects in test| ,

P recision = |objects in recommendation∩objects in test|
|objects in recommendation| and F1 = 2·Recall·Precision

Recall+Precision .

Usually the larger F1 (F -measure) is, the better is recommendation algorithm.
Figure 3 shows the dependence of the evaluation metric on the percentage

of data covered by BMF-decomposition, and the number of nearest neighbours.
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Table 2. MAE for SVD and BMF at 80% coverage level

Number of neighbours 1 5 10 20 30 50 60

MAESVD80 2,4604 1.4355 1.1479 0.9750 0.9148 0.8652 0.8534

MAEBMF80 2.4813 1.3960 1.1215 0.9624 0.9093 0.8650 0.8552

MAEall 2.3091 1.3185 1.0744 0.9350 0.8864 0.8509 0.8410

Table 3. The rating distribution of Movie Lens data

Rating 1 2 3 4 5

Part of all rates % 6.1 11.4 27.2 34.1 21.2

The number of objects to recommend was chosen to be 20. The figure shows
that the recommendation based on the Boolean decomposition, is worse than
recommendations generated on the full matrix of ratings.

Fig. 3. F1 dependence on the percentage of data covered by BMF-decomposition, and
the number of nearest neighbours

4.4 Influence of Scaling on the Recommendations Quality for BMF
in Terms of MAE

Another aspect that was interesting to examine was the impact of scaling de-
scribed in subsection 3.2 on the quality of recommendations. All four options
from 3.2 of scaling were considered. The distribution of ratings in the data is
shown in Table 3
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Fig. 4.MAE dependence on scaling and number of nearest neighbours for 80% coverage

Fig. 5. MAE dependence on data filtration algorithm and the number of nearest neigh-
bours

For each of the Boolean matrices we have calculated its Boolean factorisation,
covering 80 % of the data. Then recommendations are calculated just like in
subsection 4.2. It can be seen on Figure 4.4 that MAE1 is almost the same
as MAE0, and MAE2,3 is better than MAE1, when the number of nearest
neighbours is more than 30.
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4.5 Influence of Data Filtering on MAE for BMF kNN-Based
Approach

Besides the ability to search for K nearest neighbours not in the full matrix of
ratings A ∈ R

n×m, but in the matrix U ∈ R
m×f , where m is a number of users,

and f is a number of factors, Boolean matrix factorization can be used for data
filtering. Since the algorithm as an output returns not only users-factors and
factors-objects matrices, but also the ratings that were not used for factoring,
we can try to search for users, similar to the target user, based on the matrix
consisting only of ratings used for the factorisation.

Just as before to find the nearest neighbours cosine measure is used, and the
predicted ratings are calculated as the weighted sum of the ratings of nearest
users.

Figure 5 shows that the recommendations built on user-factor matrix, are
better than recommendations, constructed on matrix of ratings filtered with
boolean factorization.

5 Conclusion

In the paper we considered two methods of Matrix Factorisation which are suit-
able for Recommender Systems. They were compared on real datasets. We inves-
tigated BMF behaviour as part of recommender algorithm. We also conducted
several experiments on recommender quality comparison with numeric matri-
ces, user-factor and factor-item matrices in terms of F -measure and MAE. We
showed that MAE of our BMF-based approach is not greater than MAE of
SVD-based approach for the same coverage percentage of BMF and p-level of
SVD.

We have also investigated how data filtering, namely scaling, influences on
recommendations’ quality. In terms of MAE, the BMF-based collaborative fil-
tering algorithm demonstrates almost the same level of quality before scaling
(full information) and after (considerable information loss).

Even though the reported results were obtained on a freely abvailable datasets
and therefore they can be easily reproduced, in case of another datasets (different
type of items or data size and its density) additional tests seems to be necessary.

As a future research direction we would like to investigate the proposed ap-
proaches in case of graded and triadic data [17,18] and reveal whether there are
some benefits for the algorithm’s quality in usage of least-squares data imputa-
tion techniques [19]. In the context of matrix factorisation we would also like to
test our approach for the quality assessment of the recommender algorithms that
we performed on some basic algorithms (see bimodal cross-validation in [20]).
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