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Abstract. Knowledge engineering for automated planning is still in its
childhood and there has been little work done on how to model plan-
ning problems. The prevailing approach in the academic community is
using the PDDL language that originated in planning competitions. In
contrast, real applications require more modeling flexibility and different
modeling languages were designed in order to allow efficient planning.
This paper focuses on the role of a domain modeling formalism as an
interface between a domain modeler and a planner.
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1 Introduction

We can imagine problem solving as a journey from problem specification to
problem solution. The approach taken by automated planning is a model-based
one - we first design a model that formally describes our knowledge about a
given area of interest (domain) and later we can exploit this knowledge to solve
various instances of problems in the domain using a general purpose planner.
The journey in this case can be divided to two phases:

1. knowledge modeling - performed by human experts. All relevant information
about the problem is put together in order to create a domain model. The
model is usually described within some knowledge-modeling formalism.

2. planning - performed by an automated planner. The planner is working only
with the domain model specified in the first phase and with the description
of one particular problem instance.

The knowledge modeling formalism is the dividing point between the two phases.
In this paper we will show that the position of this dividing point can define a

tradeoff between simplicity and usability of the modeling formalism on one side
and efficiency of the resulting model on the other side. Finally we will introduce
a new planning formalism designed to balance this tradeoff.
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2 Planning Domain Example

In order to illustrate our point of view we will be refering to the Petrobras plan-
ning domain [6] which was one of the domains of the Challenge track of the Inter-
national Competition on Knowledge Engineering for Planning and Schedulling,
ICKEPS 2012, as part of the ICAPS 2012 conference.

In the Petrobras domain we have a fleet of ships, a list of locations (ports,
waiting areas, and platforms), and cargo. Each ship has limited cargo capacity
and a fuel tank. The ships consume fuel while navigating between the locations.

The main goal is to deliver cargo from ports to platforms. There are six
operations, navigate, dock, undock, load, unload and refuel, that each ship can
do. Only refueling can run in parallel with loading or unloading, while any other
pair of operations for a single ship cannot overlap in time. The ship must be
docked before loading, unloading, and refueling and it must be undocked before
navigating. We are given the initial locations and fuel levels of ships and the
initial location, weight, and destination of each cargo item. The task is to plan
operations for ships in such a way that all cargo items are delivered.

Class hierarchy. When modeling a planning domain it is natural to describe
classes of involved objects. The base class hierarchy can be described indepen-
dently on the formalism used. We will be refering to the following class hierarchy
for the Petrobras domain:

– Ship - a class for the transport ships
– Cargo - a class for the items of cargo
– Location - a generic class for points of interest. Distances between pairs of

locations are part of the planning problem specification.
• WaitingArea - areas designated for idle ships
• LogisticLoc - locations where a ship can be loaded/unloaded

∗ Platform - location with docking capacity for a single ship
∗ Port - location with docking capacity for more than one ship. Refu-
eling is possible only at ports and selected platforms.

3 Domain Designer Perspective

Design of the planning domain model can be done in a modeling formalism that
is completely independent of the planning machinery. This is the case of the
Planning Domain Definition Language (PDDL) [3].

PDDL model. We have already described the class hierarchy earlier. Now we
will give the description of selected object properties with predicates and flu-
ents. Both predicates and fluents represent properties that are subject to change
during the planning process. Predicates in PDDL are used for boolean properties
whereas fluents can take wider range of values (e.g. numeric fluents).

In PDDL we use instances of predicates and fluents to describe a state of the
world and we use actions to model possible transitions between those states.
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Predicates: In PDDL we can represent information about the location of each
ship and item of cargo, using first-order-logic predicates with typed arguments
(e.g. (ship-at ?s - Ship ?l - Location)).

Fluents: For each ship we can express its current fuel level and free cargo capacity
as numeric fluents (e.g. (fuel-level ?s - Ship) - number).

Actions: Legal changes that can turn one state to another state are described
by actions. An example of a PDDL code for action load-cargo follows1:

(:action load-cargo

:parameters (?s - Ship ?c - Cargo ?loc - Location)

:precondition (and

(at ?s ?loc)

(cargo-at ?c ?loc)

(>= (free-cargo-capacity ?s) (cargo-weight ?c))

(isDocked ?s ?loc))

:effect (and

(not (cargo-at ?c ?loc))

(cargo-at ?c ?s)

(decrease (free-cargo-capacity ?s) (cargo-weight ?c))))

Each predicate, fluent, and action declaration in PDDL actually represents a
schema with variables. If we assign constants to these variables we can obtain
many different predicates, fluents, and actions. This process is called grounding.

The set of grounded predicates, that are true at the moment, together with
the values of all fluents are used to describe a world state.

A grounded action is applicable to a given state iff all preconditions are satis-
fied. The state changes according to the effects of the action (i.e. some predicates
are made true/false and values of some fluents are changed).

The main idea of PDDL is to describe domain physics only. However, if we
consider actions one by one, the physics alone may not suffice. For example a
sequential plan can contain a docking action followed immediately by an un-
docking action, which is a valid but not reasonable sub-plan. Additional work
has to be done in order to encode action ordering rules that would be useful
for a planner. Therefore we conclude that the PDDL interface is closer to the
modeler.

4 Planner Perspective

The New Domain Definition Language (NDDL) is an example of a modeling
formalism that is strongly influenced by the target planner. NDDL is a part of
the EUROPA2 planning system [1].

1 PDDL uses Lisp-like syntax.



On Modeling Formalisms for Automated Planning 273

NDDL model. In addition to the base class hierarchy we need to define spe-
cial classes that represent domain attributes. Each ship in the Petrobras do-
main can be described by two numeric attributes (fuelLevel, cargoCapacity)
and one multi-valued state variable shipState, which can take values such as:
Navigating(loc1,loc2) (ship is navigating from loc1 to loc2) or
Loading(loc3,c1) (ship is loading c1 at loc3). All possible values are described
with predicates.

class shipState extends Timeline {

predicate Navigating { Location from; Location to; }

predicate Loading { LogisticLoc dock; Cargo crate; }

... }

Tokens: Each predicate defined in this way can be used in a token which is a
triple (O,P, I) where:

O - is an object i.e. instance of some class (e.g. shipState)
P - is a predicate of the class (e.g. Navigating(X,Y))
I - is a time interval [s, t] where s < t ≤ H for some fixed value H (planning

horizont)

Timelines: A sequence of tokens T = (t1, . . . , tk) with non-overlapping intervals:

∀i �= j : (I(ti) = [a, b] ∧ I(tj) = [c, d]) ⇒ (b ≤ c ∨ d ≤ a)

is called a timeline, and it describes the history of a state variable. We can indi-
cate this fact by the code class X extends Timeline. If the intervals defined
in T cover all the time from 0 to H then T is a completely specified timeline. If
there are some uncovered intervals the timeline is partially specified.

The planner starts with a set of partially specified timelines and its objective is
filling in the gaps with matching tokens. Any set of partially specified timelines
represents a partial solution of the original problem. In a complete solution all the
timelines are completely specified in a way that satisfies all constraints defined
in the domain model.

Constraints: To decide whether a token can extend a given partial solution, the
NDDL model has to define temporal constraints (based on the Allen’s interval
algebra) among tokens. Figure 1 shows a diagram of token relations for action
LoadCargo. Solid boxes represent tokens that have to exist in the solution in
order to allow the addition of tokens represented by dashed boxes.

We have used only a small subset of NDDL features in our example to illustrate
the position of the interface between a domain modeler and a planner. The
language describes domain knowledge with timelines, tokens, and constraints –
the structures used by the planner in the planning process. Valid sequences of
tokens on a timeline can be deduced from the constraints described in the domain
model. However, this requires an additional effort on the side of a domain modeler
who has to design the constraints. This intuition leads us to conclusion that the
NDDL interface is closer to the planner in this case.
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Fig. 1. Token relations in LoadCargo

5 Comparison

We have seen how two different modeling formalisms can be used to model one
planning domain. Now we will analyze the action LoadCargo in more detail. Let
us suppose that our knowledge can be summarized as follows.

There are three conditions: -

– both ship and cargo have to be at the same location,
– ship has to be docked,
– there has to be enough free cargo capacity on the ship.

If these conditions are satisfied, the action can be executed:

– cargo will be loaded on the ship,
– available cargo capacity on the ship will be decreased by the cargo weight.

Now we will review the modeling decisions taken when using PDDL and
NDDL and we will discuss the differences.

PDDL: The code for the corresponding action can be found in Section 3. Once
we declare the predicates and the fluents that are sufficient to encode all relevant
domain knowledge we can use the PDDL syntax to describe action preconditions
and effects in a way that is very close to the description at the beginning of this
section.

NDDL: By using NDDL we need to take a different point of view. We suggest
one possible sequence of modeling decisions:

1. Choose relevant timelines:
– cargoState(cargo) - a timeline for the state of the loaded cargo,
– shipState(ship) - a timeline for the state of the target ship,
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– cargoCap(ship) - a timeline for free cargo capacity of the target ship,
– ship - a timeline for the target ship.

2. Allocate the token representing the action: LoadCargo(dock,cargo).
3. Allocate tokens representing conditions and effects using temporal constraints.

These tokens represent either conditions or effects as indicated in Figure 1.

In both cases we first need to declare some domain-specific notions (e.g. pred-
icates and fluents in PDDL and timelines with predicates in NDDL). The differ-
ence between the two approaches is in the way that these notions are used.

It is possible to model actions in the PDDL without encoding any explicit
knowledge about their possible ordering (e.g. dock and undock situation de-
scribed earlier). The missing information can be difficult to obtain but there is
a clear notion of action stated as a set of conditions and effects.

On the other side the NDDL model can provide the planner with some addi-
tional information but the notion of action, which is specified as a set of temporal
constraints on tokens, can blur the semantics of the domain model.

6 New Knowledge Modeling Interface

We assume that a domain modeler can treat the planner as a black box. This
is in accord with the physics-only principle employed in the PDDL. In contrast
with this principle we want the modeler to give as much domain-independent
information as possible.

Classes: In our formalism we distinguish between two types of classes:

1. enumerative classes can be used to represent discrete objects such as ships,
2. numeric classes allow description of quantities such as fuel tank capacity.

In addition to the class hierarchy from the Section 2, we need to specify at
least one numeric class to be used for numeric values in the domain.

State variables: Domain properties that are subject to change are described as
state variables of the following form:

s(a1, . . . , an) : r

where s is a name of an n-ary state variable, ai represents classes of its param-
eters, and r is defined as a set of classes, which implicitly defines the range of
values for the state variable (e.g. cargoLocation(Cargo):{Ship,Location} -
an item of cargo can be either stored at some location or loaded on a ship).

The state of the world is described as a vector of values for all state variables
defined in the planning problem instance.

Domain rules: Decisions made during the planning process often require some
kind of computation (e.g. the fuel consumption depends on the trip distance).
We suggest to describe each such computation as an n-ary function:

f : D1 × . . .×Dn → Dn+1

called a domain rule, where Di is a set of constant symbols compatible with
some class Ci. Classes of both numeric and enumerative types are allowed.
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Operators: Possible changes of the world state are described with operators. An
operator is specified as a list of expressions. There are two types of expressions
(we will refer to the example operator code below):

– conditional expressions are used to describe conditions among different state
variable values and their parameters (e.g. line 4). The value of state variable
cargoWeight(C) is constrained by X. The variable X is defined at line 5 where
it represents the original value of the state variable cargoCap(S).

– transitional expressions define both the condition and the change (e.g. line
6). The cargo item C is transfered from D to S.

1 loadCargo(D - LogisticLoc, C - Cargo, S - Ship)

2 shipLoc(S) = D

3 shipState(S) = docked

4 cargoWeight(C) <= X

5 cargoCap(S): X --> (X - cargoWeight(C))

6 cargoLoc(C): D --> S

Terms: The operator expressions use terms that can be constructed recursively
from constants (e.g. docked), variables (e.g. D,C,S,X), state variables (e.g.
shipState(S)), and domain rule instances (e.g. (X - cargoWeight(C))2).

Atomic conditions: For two terms within an enumerative class we use comparison
relations = and �= to build an atomic condition. In case of two terms within a
numeric class we use the combinations of =, <,>. Standard operators of FOL
(∧,∨,¬, ∀, ∃) are used to construct more complex conditional expressions.

In the code above there are three conditional expressions. Two of them are
asserting equality of enumerative terms (lines 2, 3) and one is asserting inequality
of two numeric terms (line 4). There are two transitional expressions (lines 5,
6).

The action ordering can be enforced by introducing a domain rule fsaCheck,
which references a finite state automaton (FSA) that describes all valid action
sequences [2]. The FSA will have the following states: undocked, navigating,
waiting, loading, unloading, and refueling. We replace the line 3 with:

3a exists B: fsaCheck(A,B) = true

3b shipState(S): A --> B

The conditional expression at line 3a constrains the variables A and B according
to the FSA and the transitional expression at line 3b changes the state of the
ship S from A to B. The value of the variable A is defined at line 3b.

2 Arithmetic operators are binary functions.
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We have showcased usage of state variables, domain rules, and operators. The
resulting domain model allows user-defined extensions called domain rules to
restrict action ordering. Arbitrary arithmetic functions can be defined. While
NDDL permits a user to define functions as well, PDDL is less flexible which
can be limiting for some real world applications [4].

7 Conclusion

The interface presented in this paper gives a different view on knowledge mod-
eling which depends on multi-valued state variables. The value ranges of these
variables are defined either by enumerative or numeric classes instead of the
predicates as in the NDDL. The resulting domain model uses operators simmi-
lar to actions from the PDDL. The closest formalism currently in existence is
Action Notation Modeling Language (ANML) [5].

From the perspective of a domain modeler the interface provides an easy way
to integrate various kinds of domain-specific knowledge using the domain rules.

On the planner side a problem instance is described by a finite set of state
variables and domain rules, while the domain specific information is represented
only in the operators.
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