
Computational Experience with

Pseudoinversion-Based Training of Neural
Networks Using Random Projection Matrices

Luca Rubini1, Rossella Cancelliere1, Patrick Gallinari2,
Andrea Grosso1, and Antonino Raiti1

1 Università di Torino,
Department of Computer Science Turin, Italy

{luca.rubini,rossella.cancelliere,andrea.grosso}@unito.it,
253081@studenti.unito.it

2 Laboratory of Computer Sciences, LIP6,
Université Pierre et Marie Curie

Paris, France
patrick.gallinari@lip6.fr

Abstract. Recently some novel strategies have been proposed for neu-
ral network training that set randomly the weights from input to hidden
layer, while weights from hidden to output layer are analytically deter-
mined by Moore-Penrose generalised inverse; such non-iterative strate-
gies are appealing since they allow fast learning. Aim of this study is to
investigate the performance variability when random projections are used
for convenient setting of the input weights: we compare them with state
of the art setting i.e. weights randomly chosen according to a continu-
ous uniform distribution. We compare the solutions obtained by different
methods testing this approach on some UCI datasets for both regression
and classification tasks; this results in a significant performance improve-
ment with respect to conventional method.

Keywords: random projections, weights setting, pseudoinverse matrix.

1 Introduction

Methods based on gradient descent (and among them the large family of tech-
niques based on backpropagation [1]) have largely been used for training of one
of the most common neural architecture, the single hidden layer feedforward
neural network (SLFN). The start-up of these techniques assigns random values
to the weights connecting input, hidden and output nodes; such values are then
iteratively modified according to the error gradient steepest descent direction.
The main criticisms about gradient descent-based learning are concerned with
high computational cost because of slow convergence and zigzagging behavior
showed by such methods, and relevant risk of converging to poor local minima
on the landscape of the error function [2].

G. Agre et al. (Eds.): AIMSA 2014, LNAI 8722, pp. 236–245, 2014.
c© Springer International Publishing Switzerland 2014

Computational Experience with Pseudoinversion-Based Training 237

The reduction of computational efforts in training is of great interest and
may become imperative for learning the kind of complicated high-level relations
required e.g. in vision [3,4], natural language processing [5,6], and other typical
artificial intelligence tasks.

A wave of interest has recently grown around some non-iterative procedures
based on the evaluation of generalized pseudoinverse matrices. The idea of using
these appealing techniques, usually employed to train radial basis function neural
networks [7], also for different neural architectures was suggested e.g. in [8]. The
work by Huang et al. [9] gave rise to a great interest in neural network community,
originating many application-oriented studies in the last years devoted to the
use of these single-pass techniques, easy to implement and computationally fast;
some are described e.g. in [10, 11, 12, 13]. A yearly conference is currently being
held on the subject, the International Conference on Extreme Learning Machines
(ELM), and the method is currently dealt with in some journal special issue, e.g.
Soft Computing [14] and the International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems [15].

In the pseudoinverse framework input weights and hidden neurons biases are
selected randomly, usually according to a uniform distribution in the interval
[−1, 1], and no longer modified, while output weights are analytically determined
by a single computation of the Moore-Penrose (MP) generalized inverse. Since
incremental adjustment of weights is completely avoided these techniques turn
out to be very fast when compared to classical gradient descent approaches; the
problem of the possible convergence to poor local minima is handled by repeat-
edly applying the method with a number of random initializations (multistart),
thereby obtaining a sampling “at large” of the landscape of the error function.

This paper proposes an improvement to the state-of-the-art and focuses in ini-
tializing input weights and hidden neurons biases with “special” random struc-
tures — specifically, random projection matrices. The theoretical rationale for
this approach can be found in many studies, showing random projections as a
powerful method for dimensionality treatment [16, 17, 18] thanks to their prop-
erty to be almost orthogonal projections. This feature makes them a potentially
useful tool in order to improve performace when dealing with input data relevant
features. This argument will be deepened in section 3.

The paper is organized as follows. We recall main ideas on SLFN learning
by pseudoinversion in section 2; in section 3 we present fundamentals ideas on
random projection and finally in section 4 we report results comparing weights
setting.

2 Training by Pseudoinversion

In this section we introduce notation and we recall basic idea concerning the use
of generalized inverse for neural training.

Fig. 1 shows a standard SLFN with P input neurons, M hidden neurons and
Q output neurons, non-linear activation functions φ in the hidden layer and
linear activation functions in the output layer.

238 L. Rubini et al.

Fig. 1. A Single Layer Feedforward Neural Network

Considering a dataset of N distinct training samples of (input, output) pairs
(xj , tj), where xj ∈ R

P and tj ∈ R
Q, the learning process for a SLFN aims at

producing the matrix of desired outputs T ∈ R
N×Q when the matrix of all input

instances X ∈ R
N×P is presented as input.

As stated in the introduction, in the state of the art pseudoinverse approach
input weights cij (and hidden neurons biases) are randomly sampled from a
uniform distribution in a fixed interval and no longer modified.

After having fixed input weights C, the use of linear output units allows to
determine output weights wij as the solution of the linear system H W = T,
where H ∈ R

N×M is the hidden layer output matrix of the neural network,
H = Φ(X C).

Since H is a rectangular matrix, the least square solution W ∗ that minimises
the cost functional ED = ||HW − T ||22, as shown e.g. in [19, 20] is:

W ∗ = H+T. (1)

H+ is the Moore-Penrose generalised inverse (or pseudoinverse) of matrix H .
Direct use of expression (1) is not anyway the best choice because most learn-

ing problems are ill-posed; regularisation methods have to be used [21,22] to turn
the original problem into a well-posed one, i.e. roughly speaking into a problem
insensitive to small changes in initial conditions. Among them, Tikhonov regu-
larisation is one of the most common [23, 24]: it minimises the error functional

E ≡ ED + ER = ||HW − T ||22 + λ||W ||22. (2)

With regularisation we introduce a penalty term that not only improves on
stability, but also contains model complexity avoiding overfitting, as largely dis-
cussed in [25]. Applications to different neural network models are discussed for
instance in [26, 27, 28].

If we consider the singular value decomposition (SVD) of H

H = UΣV T , (3)

Computational Experience with Pseudoinversion-Based Training 239

the regularised solution Ŵ that minimises the error functional (2) has the form
(see e.g. [29]):

Ŵ = V DUTT . (4)

U ∈ R
N×N and V ∈ R

M×M are orthogonal matrices and D ∈ R
M×N is a

rectangular diagonal matrix whose elements, built using the singular values σi

of matrix Σ, are:

Di =
σi

σ2
i + λ

. (5)

Therefore in our work we always utilise regularised pseudoinversion. Input
weights setting is discussed in next section.

3 Basic Ideas on Random Projections

If XN×P is the original set of N P -dimensional observations,

XRP
N×K = XN×PCP×K (6)

is the projection of the data onto the new K-dimensional space.
Strictly speaking, a linear mapping such as (6) is not a projection because C

is generally not orthogonal and it can cause significant distortions in the data
set. However, and unfortunately, orthogonalizing C is computationally expen-
sive. Instead, we can rely on a result presented by Hecht-Nielsen [30]: in a high-
dimensional space, there exists a much larger number of almost orthogonal than
strictly orthogonal directions. Besides, Bingham and Mannila [31] performed an
extensive experimentation which allows them to claim that vectors having ran-
dom directions might be sufficiently close to orthogonality and equivalently that
CTC would approximate an identity matrix. They estimate the mean squared
difference between CTC and the identity matrix is about 1/K per element.

This key idea is confirmed also by the Johnson-Lindenstrauss lemma [32]: if
a set of points in a vector space is randomly projected onto a selected space of
suitable dimension, then the original distances between the points are approxi-
mately preserved in the new space, with only minimal distortions. For a simple
proof of this result, see [33]. This property appears to be really appealing be-
cause suggests the possibility to preserve the topological structure of the initial
input space while allowing the creation of a new optimal data representation
in the hidden layer space, able to easy the classification/diagnosis task and to
increase performance.

Therefore we can use random projections to project the original P -dimensional
data into a K-dimensional space, using a random entries matrix CK×P whose
columns have unit norm.

Besides, random projection is very simple from a computational standpoint:
the process of forming the random matrix C and projecting the data matrix
X into K dimensions has complexity of order O(PKN); moreover, if the data
matrix X is sparse with about G nonzero entries per column, the complexity is
of order O(GKN).

240 L. Rubini et al.

Table 1. UCI datasets characteristics

Dataset Type N. Instances N. Attributes N. Classes

Abalone Regression 4177 8 -
Cpu Regression 209 6 -
Delta Ailerons Regression 7129 5 -
Housing Regression 506 13 -
Iris Classification 150 4 3
Wine Classification 178 13 3
Diabetes Classification 768 8 2
Landsat Classification 4435 36 7

Actually, a large variety of zero mean, unit variance distributions of elements
cij result in a mapping that still satisfies the Johnson-Lindenstrauss lemma:
among them, entries of C can be randomly sampled from a gaussian distribution.
Another appealing possibility is using sparse random projections which have only
a small fraction of nonzero elements. For example, Achlioptas [34] shows that
generating random entries cij by

cij =
√
3 ·

⎧
⎨

⎩

+1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

(7)

one obtains a valid random projection with (expected) density 33%.
A difficulty arises because random projections are mainly used for linearly

separable tasks although many real world problems are not linearly separable.
Neural networks feature among the tools available to deal with the latter class
of problems, so we propose to join these techniques using random projections
matrices for the setting of input weights while the subsequent processing by
hidden nodes nonlinear activation function will account for the non-linearity of
the problem.

4 Experimental Investigation

In this section we report results of some numerical experiments performed on
the eight benchmark datasets from the UCI repository [35] listed in Table 1, and
investigate neural networks with the architecture shown in Fig. 1 and sigmoidal
hidden neuron activation functions. The number of input and output neurons is
determined by dataset features.

For the sake of comparison input weights are selected according to i) the
conventional strategy, where cij is sampled from a uniform random distribution
in the interval [−1, 1], that in the following will be referred to as Unif. or ii)
using random projection matrices with elements cij gaussian distributed, with
mean value 0 and variance 1 (in the following referred to as Gauss.), or iii) using
sparse random projection matrices with 33% average density. All simulations are
carried out in Matlab 7.10 environment.

Computational Experience with Pseudoinversion-Based Training 241

4.1 Regularisation Parameter Calibration

To determine the regularisation parameter value for the three cases, for each
dataset we gradually increase the number of hidden nodes by unit steps in an
unregularised framework (eq. (2), λ = 0); for each selected hidden layer size,
average RMSE (for regression tasks), or average misclassification rate (for clas-
sification tasks) were computed over 100 different initial trials for each input
weight setting, i.e. uniform and gaussian.

All datasets show, after an initial steep decrease, a fast error growth as a func-
tion of the hidden layer size, opposite to the monotonically decreasing training
error.

This effect is typically caused by overfitting, arising when a large amount of
free parameters is available to reproduce almost exactly training data.

The best performance is associated to an interval of hidden neurons, that we
name critical dimension, in which we decided to look for, according to a cross
validation scheme, the value of λ resulting in the best score: its determination
concludes the calibration phase.

4.2 Computational Results

Comparison of the relative strengths of the approaches studied in this work is
assessed by evaluation of the mean test error resulting from 100 trials for each
fixed size of SLFN in the regularised framework: the test performance is reported
in Table 2.

We underline that the regularised test error features a monotonic decrease as
a function of hidden neurons number, proving that regularisation is necessary
to provide overfitting control, and to allow optimal exploitation of the superior
potential of larger architectures.

In the “Error” columns we report the average value (of 100 trials) and stan-
dard deviation of the RMSE for regression datasets; for classification datasets,
we report average value (of 100 trials) and standard deviation for the percent-
age missclassification error. On each row, the lowest average error figure is high-
lighted in bold whenever we can prove a statistically significant dominance of the
random-projection initialization over the random-uniform initialization, assessed
with at least a confidence level of 95%in the Student’s test.

We also report the number of hidden neurons NH and the value of λ emerged
from the calibration phase.

As far as the testing performance is concerned, we can claim a substantial
dominance of the random projections based approach over the classical uniform
initialization.

We then compared the test performance of networks with initialization based
on random projections and trained by pseudoinversion against the test perfor-
mances of networks trained with a classical backpropagation method. The com-
parison is shown in Table 3; for each dataset, the “PINV” columns report the
error statistics for the winner observed in Table 2. Statistics for backpropaga-
tion are taken from tunedit.org, except for the Wine dataset, for which we got

242 L. Rubini et al.

Table 2. Random projections vs. random-uniform setting. For Delta Ailerons, the
average errors and standard deviations are multiplied by 10−4.

Dataset Unif . Gauss. Sparse

Error Error Error

Avg StD NH λ Avg StD NH λ Avg StD NH λ

Abalone 2.165 0.004 128 3 · 10−2 2.169 0.009 129 3 · 10−1 2.162 0.006 118 3 · 10−2

Mach. Cpu 57.35 1.7 98 4 · 10−2 56.85 2.8 61 8 · 10−1 57.86 1.6 89 5 · 10−1

Delta Ail.(10−4) 1.636 2 · 10−3 244 3 · 10−3 1.630 4 · 10−3 272 3 · 10−2 1.636 2 · 10−3 225 3 · 10−3

Housing 3.61 0.21 130 8 · 10−3 3.58 0.19 200 5 · 10−2 3.64 0.18 180 7 · 10−2

Iris 1.00 1.1 102 3 · 10−4 1.88 1.1 120 3 · 10−2 1.08 1.0 266 3 · 10−3

Diabetes 20.312 0.8 266 3 · 10−3 20.430 1.0 173 3 · 10−2 20.086 1.0 192 3 · 10−3

Landsat 10.438 0.32 579 3 · 10−3 9.848 0.30 600 3 · 10−2 10.394 0.32 600 3 · 10−3

Wine 2.2542 1.5246 60 3 · 10−2 2.0847 1.6313 70 2 · 10−1 2.5593 1.5704 80 8 · 10−2

Table 3. Random projections based training (pseudoinversion) vs. backpropagation

Dataset PINV Backprop.

Avg StDev Avg (Ntests) StDev

Abalone 2.162 0.006 2.3044 (35) 0.1908
Mach. Cpu 56.85 2.8 28.6673 (5) 27.3535
Delta Ail. 1.630 · 10−4 4 · 10−7 2 · 10−3 (10) 0.0
Housing 3.58 0.19 4.5492 (35) 0.9517

Iris 1.00 1.1 1.73 (10) 0.85
Diabetes 20.086 1.0 26.52 (31) 2.38
Landsat 9.848 0.30 13.03 (5) 0.63
Wine 2.0847 1.6313 3.77 (10) 0

better results than tunedit’s ones by running the backpropagation method on
our own under WEKA. For all datasets in the table we can claim dominance of
the pseudoinversion based approach with a 99% confidence level.

In our experiments, the running times of all the pseudoinversion-based ap-
proaches are substantially equivalent, hence we base the comparison only on
the average error. As far as the comparison with backpropagation is concerned,
pseudoinversion based methods save a relevant amount of time, being up to 10
times faster than backpropagation. For example, 10 runs of pseudoinversion-
based training on the Wine dataset require 0.078 seconds on average whereas
backpropagation requires on average 0.721 seconds (times on a laptop with Pen-
tium CPU, 2 GHz clock, 4 GB RAM); other tests gave roughly similar results.

5 Conclusions

We considered pseudoinversion-based techniques for training of neural networks
feeding them by random projections (gaussian and sparse) matrices of input

Computational Experience with Pseudoinversion-Based Training 243

weights and biases instead of the classical uniform-random initialization. We
believe that the computational results presented in this paper assess initialization
by random projection matrices as a useful tool for improving performances

In future research we will consider hybridizing the pseudoinversion-based
training technique with basic descent techniques. The rationale behind this is
that pseudoinversion-based techniques mostly rely on a pure random sampling
of input weights and biases, whereas it could make sense trying to profit also
from some local exploration of the error landscape.

Acknowledgment. The activity has been partially carried on in the context of
the Visiting Professor Program of the Gruppo Nazionale per il Calcolo Scientifico
(GNCS) of the Italian Istituto Nazionale di Alta Matematica (INdAM).

References

1. Rumellhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. In: Parallel Distrib. Process.: Exploration in the Microstruc-
ture of Cognition, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

2. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backProp. In: Orr,
G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9–50. Springer,
Heidelberg (1998)

3. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical
evaluation of deep architectures on problems with many factors of variation. In:
24th ICML (2007)

4. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing
robust features with denoising autoencoders. In: 25th ICML (2008)

5. Collobert, R., Weston, J.: A unified architecture for language processing: Deep
neural networks with multitask learning. In: 25th ICML (2008)

6. Mnih, A., Hinton, G.E.: A scalable hierarchical distributed language model. In:
23rd NIPS, pp. 1081–1088 (2009)

7. Poggio, T., Girosi, F.: Networks for approximation and learning. IEEE 78(9), 1481–
1497 (1990)

8. Cancelliere, R.: A High Parallel Procedure to Initialize the Output Weights of a
Radial Basis Function or BP Neural Network. In: Sørevik, T., Manne, F., Moe, R.,
Gebremedhin, A.H. (eds.) PARA 2000. LNCS, vol. 1947, pp. 384–390. Springer,
Heidelberg (2001)

9. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme Learning Machine: Theory and
applications. Neurocomputing 70, 489–501 (2006)

10. Halawa, K.: A method to improve the performance of multilayer perceptron by
utilizing various activation functions in the last hidden layer and the least squares
method. Neural Processing Letters 34, 293–303 (2011)

11. Nguyen, T.D., Pham, H.T.B., Dang, V.H.: An efficient Pseudo Inverse matrix-
based solution for secure auditing. In: IEEE International Conference on Comput-
ing and Communication Technologies, Research, Innovation, and Vision for the
Future (2010)

244 L. Rubini et al.

12. Kohno, K., Kawamoto, M., Inouye, Y.: A Matrix Pseudoinversion Lemma and
Its Application to Block-Based Adaptive Blind Deconvolution for MIMO Systems.
IEEE Transactions on Circuits and Systems I: Regular Papers 57(7), 1449–1462
(2010)

13. Ajorloo, H., Manzuri-Shalmani, M.T., Lakdashti, A.: Restoration of damaged slices
in images using matrix pseudo inversion. In: 22nd International Symposium on
Computer and Information Sciences (2007)

14. Wang, X.-Z., Wang, D., Huang, G.-B.: Special Issue on Extreme Learning Ma-
chines. Editorial. Soft Comput. 16(9), 1461–1463 (2012)

15. Wang, X.: Special Issue on Extreme Learning Machine with Uncertainty. Editorial.
Int. J. Unc. Fuzz. Knowl. Based Syst. 21(supp. 02), v–vi (2013)

16. Arriaga, R.I., Vempala, S.: An algorithmic theory of learning: robust concepts and
random projection. In: 40th Annual Symp. on Foundations of Computer Science,
pp. 616–623. IEEE Computer Society Press (1999)

17. Vempala, S.: Random projection: a new approach to VLSI layout. In: 39th Annual
Symp. on Foundations of Computer Science. IEEE Computer Society Press (1998)

18. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: 30th Symp. on Theory of Computing, pp. 604–613.
ACM (1998)

19. Penrose, R.: On best approximate solution of linear matrix equations. Proceedings
of the Cambridge Philosophical Society 52, 17–19 (1956)

20. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
21. Badeva, V., Morosov, V.: Problemes incorrectements posès, thèorie et applications

(in French). Masson, Paris (1991)
22. Cancelliere, R., De Luca, R., Gai, M., Gallinari, P., Artières, T.: Pseudoinversion

for neural training: tuning the regularisation parameter. Technical report n. 149/13,
Dep. of Computer Science, University of Turin (2013)

23. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston, Wash-
ington, DC (1977)

24. Tikhonov, A.N.: Solution of incorrectly formulated problems and the regularization
method. Soviet Mathematics 4, 1035–1038 (1963)

25. Gallinari, P., Cibas, T.: Practical complexity control in multilayer perceptrons.
Signal Processing 74, 29–46 (1999)

26. Poggio, T., Girosi, F.: Regularization algorithms that are equivalent to multilayer
networks. Science 247, 978–982 (1990)

27. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks ar-
chitectures. Neural Computation 7(2), 219–269 (1995)

28. Haykin, S.: Neural Networks, a comprehensive foundation. Prentice Hall, U.S.A.
(1999)

29. Fuhry, M., Reichel, L.: A new Tikhonov regularization method. Numerical Algo-
rithms 59, 433–445 (2012)

30. Hecht-Nielsen, R.: Context vectors: general purpose approximate meaning repre-
sentations self-organized from raw data. In: Zurada, J.M., Marks II, R.J., Robin-
son, C.J. (eds.) Computational Intelligence: Imitating Life, pp. 43–56. IEEE Press
(1994)

31. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: Appli-
cations to image and text data. In: Conference on Knowledge Discovery and Data
Mining, KDD 2001, San Francisco, CA, USA (2001)

Computational Experience with Pseudoinversion-Based Training 245

32. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipshitz mapping into Hilbert
space. In: Conference in Modern Analysis and Probability. Contemporary Mathe-
matics, vol. 26, pp. 189–206. Amer. Math. Soc. (1984)

33. Dasgupta, S., Gupta, A.: An elementary proof of the Johnson-Lindenstrauss
lemma. Technical report TR-99-006, International Computer Science Institute,
Berkeley, California, USA (1999)

34. Achlioptas, D.: Database-friendly random projections. In: ACM Symp. on the Prin-
ciples of Database Systems, pp. 274–281 (2001)

35. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository, University of
California, Irvine, School of Information and Computer Sciences (2007),
http://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html

	Computational Experience withPseudoinversion-Based Training of NeuralNetworks Using Random Projection Matrices
	1 Introduction
	2 Training by Pseudoinversion
	3 Basic Ideas on Random Projections
	4 Experimental Investigation
	4.1 Regularisation Parameter Calibration
	4.2 Computational Results

	5 Conclusions
	References

