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Abstract. Recently some novel strategies have been proposed for neu-
ral network training that set randomly the weights from input to hidden
layer, while weights from hidden to output layer are analytically deter-
mined by Moore-Penrose generalised inverse; such non-iterative strate-
gies are appealing since they allow fast learning. Aim of this study is to
investigate the performance variability when random projections are used
for convenient setting of the input weights: we compare them with state
of the art setting i.e. weights randomly chosen according to a continu-
ous uniform distribution. We compare the solutions obtained by different
methods testing this approach on some UCI datasets for both regression
and classification tasks; this results in a significant performance improve-
ment with respect to conventional method.
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1 Introduction

Methods based on gradient descent (and among them the large family of tech-
niques based on backpropagation [1]) have largely been used for training of one
of the most common neural architecture, the single hidden layer feedforward
neural network (SLFN). The start-up of these techniques assigns random values
to the weights connecting input, hidden and output nodes; such values are then
iteratively modified according to the error gradient steepest descent direction.
The main criticisms about gradient descent-based learning are concerned with
high computational cost because of slow convergence and zigzagging behavior
showed by such methods, and relevant risk of converging to poor local minima
on the landscape of the error function [2].
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The reduction of computational efforts in training is of great interest and
may become imperative for learning the kind of complicated high-level relations
required e.g. in vision [3,4], natural language processing [5,6], and other typical
artificial intelligence tasks.

A wave of interest has recently grown around some non-iterative procedures
based on the evaluation of generalized pseudoinverse matrices. The idea of using
these appealing techniques, usually employed to train radial basis function neural
networks [7], also for different neural architectures was suggested e.g. in [8]. The
work by Huang et al. [9] gave rise to a great interest in neural network community,
originating many application-oriented studies in the last years devoted to the
use of these single-pass techniques, easy to implement and computationally fast;
some are described e.g. in [10, 11, 12, 13]. A yearly conference is currently being
held on the subject, the International Conference on Extreme Learning Machines
(ELM), and the method is currently dealt with in some journal special issue, e.g.
Soft Computing [14] and the International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems [15].

In the pseudoinverse framework input weights and hidden neurons biases are
selected randomly, usually according to a uniform distribution in the interval
[−1, 1], and no longer modified, while output weights are analytically determined
by a single computation of the Moore-Penrose (MP) generalized inverse. Since
incremental adjustment of weights is completely avoided these techniques turn
out to be very fast when compared to classical gradient descent approaches; the
problem of the possible convergence to poor local minima is handled by repeat-
edly applying the method with a number of random initializations (multistart),
thereby obtaining a sampling “at large” of the landscape of the error function.

This paper proposes an improvement to the state-of-the-art and focuses in ini-
tializing input weights and hidden neurons biases with “special” random struc-
tures — specifically, random projection matrices. The theoretical rationale for
this approach can be found in many studies, showing random projections as a
powerful method for dimensionality treatment [16, 17, 18] thanks to their prop-
erty to be almost orthogonal projections. This feature makes them a potentially
useful tool in order to improve performace when dealing with input data relevant
features. This argument will be deepened in section 3.

The paper is organized as follows. We recall main ideas on SLFN learning
by pseudoinversion in section 2; in section 3 we present fundamentals ideas on
random projection and finally in section 4 we report results comparing weights
setting.

2 Training by Pseudoinversion

In this section we introduce notation and we recall basic idea concerning the use
of generalized inverse for neural training.

Fig. 1 shows a standard SLFN with P input neurons, M hidden neurons and
Q output neurons, non-linear activation functions φ in the hidden layer and
linear activation functions in the output layer.
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Fig. 1. A Single Layer Feedforward Neural Network

Considering a dataset of N distinct training samples of (input, output) pairs
(xj , tj), where xj ∈ R

P and tj ∈ R
Q, the learning process for a SLFN aims at

producing the matrix of desired outputs T ∈ R
N×Q when the matrix of all input

instances X ∈ R
N×P is presented as input.

As stated in the introduction, in the state of the art pseudoinverse approach
input weights cij (and hidden neurons biases) are randomly sampled from a
uniform distribution in a fixed interval and no longer modified.

After having fixed input weights C, the use of linear output units allows to
determine output weights wij as the solution of the linear system H W = T,
where H ∈ R

N×M is the hidden layer output matrix of the neural network,
H = Φ(X C).

Since H is a rectangular matrix, the least square solution W ∗ that minimises
the cost functional ED = ||HW − T ||22, as shown e.g. in [19, 20] is:

W ∗ = H+T. (1)

H+ is the Moore-Penrose generalised inverse (or pseudoinverse) of matrix H .
Direct use of expression (1) is not anyway the best choice because most learn-

ing problems are ill-posed; regularisation methods have to be used [21,22] to turn
the original problem into a well-posed one, i.e. roughly speaking into a problem
insensitive to small changes in initial conditions. Among them, Tikhonov regu-
larisation is one of the most common [23, 24]: it minimises the error functional

E ≡ ED + ER = ||HW − T ||22 + λ||W ||22. (2)

With regularisation we introduce a penalty term that not only improves on
stability, but also contains model complexity avoiding overfitting, as largely dis-
cussed in [25]. Applications to different neural network models are discussed for
instance in [26, 27, 28].

If we consider the singular value decomposition (SVD) of H

H = UΣV T , (3)
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the regularised solution Ŵ that minimises the error functional (2) has the form
(see e.g. [29]):

Ŵ = V DUTT . (4)

U ∈ R
N×N and V ∈ R

M×M are orthogonal matrices and D ∈ R
M×N is a

rectangular diagonal matrix whose elements, built using the singular values σi

of matrix Σ, are:

Di =
σi

σ2
i + λ

. (5)

Therefore in our work we always utilise regularised pseudoinversion. Input
weights setting is discussed in next section.

3 Basic Ideas on Random Projections

If XN×P is the original set of N P -dimensional observations,

XRP
N×K = XN×PCP×K (6)

is the projection of the data onto the new K-dimensional space.
Strictly speaking, a linear mapping such as (6) is not a projection because C

is generally not orthogonal and it can cause significant distortions in the data
set. However, and unfortunately, orthogonalizing C is computationally expen-
sive. Instead, we can rely on a result presented by Hecht-Nielsen [30]: in a high-
dimensional space, there exists a much larger number of almost orthogonal than
strictly orthogonal directions. Besides, Bingham and Mannila [31] performed an
extensive experimentation which allows them to claim that vectors having ran-
dom directions might be sufficiently close to orthogonality and equivalently that
CTC would approximate an identity matrix. They estimate the mean squared
difference between CTC and the identity matrix is about 1/K per element.

This key idea is confirmed also by the Johnson-Lindenstrauss lemma [32]: if
a set of points in a vector space is randomly projected onto a selected space of
suitable dimension, then the original distances between the points are approxi-
mately preserved in the new space, with only minimal distortions. For a simple
proof of this result, see [33]. This property appears to be really appealing be-
cause suggests the possibility to preserve the topological structure of the initial
input space while allowing the creation of a new optimal data representation
in the hidden layer space, able to easy the classification/diagnosis task and to
increase performance.

Therefore we can use random projections to project the original P -dimensional
data into a K-dimensional space, using a random entries matrix CK×P whose
columns have unit norm.

Besides, random projection is very simple from a computational standpoint:
the process of forming the random matrix C and projecting the data matrix
X into K dimensions has complexity of order O(PKN); moreover, if the data
matrix X is sparse with about G nonzero entries per column, the complexity is
of order O(GKN).
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Table 1. UCI datasets characteristics

Dataset Type N. Instances N. Attributes N. Classes

Abalone Regression 4177 8 -
Cpu Regression 209 6 -
Delta Ailerons Regression 7129 5 -
Housing Regression 506 13 -
Iris Classification 150 4 3
Wine Classification 178 13 3
Diabetes Classification 768 8 2
Landsat Classification 4435 36 7

Actually, a large variety of zero mean, unit variance distributions of elements
cij result in a mapping that still satisfies the Johnson-Lindenstrauss lemma:
among them, entries of C can be randomly sampled from a gaussian distribution.
Another appealing possibility is using sparse random projections which have only
a small fraction of nonzero elements. For example, Achlioptas [34] shows that
generating random entries cij by

cij =
√
3 ·

⎧
⎨

⎩

+1 with probability 1/6
0 with probability 2/3
−1 with probability 1/6

(7)

one obtains a valid random projection with (expected) density 33%.
A difficulty arises because random projections are mainly used for linearly

separable tasks although many real world problems are not linearly separable.
Neural networks feature among the tools available to deal with the latter class
of problems, so we propose to join these techniques using random projections
matrices for the setting of input weights while the subsequent processing by
hidden nodes nonlinear activation function will account for the non-linearity of
the problem.

4 Experimental Investigation

In this section we report results of some numerical experiments performed on
the eight benchmark datasets from the UCI repository [35] listed in Table 1, and
investigate neural networks with the architecture shown in Fig. 1 and sigmoidal
hidden neuron activation functions. The number of input and output neurons is
determined by dataset features.

For the sake of comparison input weights are selected according to i) the
conventional strategy, where cij is sampled from a uniform random distribution
in the interval [−1, 1], that in the following will be referred to as Unif. or ii)
using random projection matrices with elements cij gaussian distributed, with
mean value 0 and variance 1 (in the following referred to as Gauss.), or iii) using
sparse random projection matrices with 33% average density. All simulations are
carried out in Matlab 7.10 environment.
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4.1 Regularisation Parameter Calibration

To determine the regularisation parameter value for the three cases, for each
dataset we gradually increase the number of hidden nodes by unit steps in an
unregularised framework (eq. (2), λ = 0); for each selected hidden layer size,
average RMSE (for regression tasks), or average misclassification rate (for clas-
sification tasks) were computed over 100 different initial trials for each input
weight setting, i.e. uniform and gaussian.

All datasets show, after an initial steep decrease, a fast error growth as a func-
tion of the hidden layer size, opposite to the monotonically decreasing training
error.

This effect is typically caused by overfitting, arising when a large amount of
free parameters is available to reproduce almost exactly training data.

The best performance is associated to an interval of hidden neurons, that we
name critical dimension, in which we decided to look for, according to a cross
validation scheme, the value of λ resulting in the best score: its determination
concludes the calibration phase.

4.2 Computational Results

Comparison of the relative strengths of the approaches studied in this work is
assessed by evaluation of the mean test error resulting from 100 trials for each
fixed size of SLFN in the regularised framework: the test performance is reported
in Table 2.

We underline that the regularised test error features a monotonic decrease as
a function of hidden neurons number, proving that regularisation is necessary
to provide overfitting control, and to allow optimal exploitation of the superior
potential of larger architectures.

In the “Error” columns we report the average value (of 100 trials) and stan-
dard deviation of the RMSE for regression datasets; for classification datasets,
we report average value (of 100 trials) and standard deviation for the percent-
age missclassification error. On each row, the lowest average error figure is high-
lighted in bold whenever we can prove a statistically significant dominance of the
random-projection initialization over the random-uniform initialization, assessed
with at least a confidence level of 95%in the Student’s test.

We also report the number of hidden neurons NH and the value of λ emerged
from the calibration phase.

As far as the testing performance is concerned, we can claim a substantial
dominance of the random projections based approach over the classical uniform
initialization.

We then compared the test performance of networks with initialization based
on random projections and trained by pseudoinversion against the test perfor-
mances of networks trained with a classical backpropagation method. The com-
parison is shown in Table 3; for each dataset, the “PINV” columns report the
error statistics for the winner observed in Table 2. Statistics for backpropaga-
tion are taken from tunedit.org, except for the Wine dataset, for which we got



242 L. Rubini et al.

Table 2. Random projections vs. random-uniform setting. For Delta Ailerons, the
average errors and standard deviations are multiplied by 10−4.

Dataset Unif . Gauss. Sparse

Error Error Error

Avg StD NH λ Avg StD NH λ Avg StD NH λ

Abalone 2.165 0.004 128 3 · 10−2 2.169 0.009 129 3 · 10−1 2.162 0.006 118 3 · 10−2

Mach. Cpu 57.35 1.7 98 4 · 10−2 56.85 2.8 61 8 · 10−1 57.86 1.6 89 5 · 10−1

Delta Ail.(10−4) 1.636 2 · 10−3 244 3 · 10−3 1.630 4 · 10−3 272 3 · 10−2 1.636 2 · 10−3 225 3 · 10−3

Housing 3.61 0.21 130 8 · 10−3 3.58 0.19 200 5 · 10−2 3.64 0.18 180 7 · 10−2

Iris 1.00 1.1 102 3 · 10−4 1.88 1.1 120 3 · 10−2 1.08 1.0 266 3 · 10−3

Diabetes 20.312 0.8 266 3 · 10−3 20.430 1.0 173 3 · 10−2 20.086 1.0 192 3 · 10−3

Landsat 10.438 0.32 579 3 · 10−3 9.848 0.30 600 3 · 10−2 10.394 0.32 600 3 · 10−3

Wine 2.2542 1.5246 60 3 · 10−2 2.0847 1.6313 70 2 · 10−1 2.5593 1.5704 80 8 · 10−2

Table 3. Random projections based training (pseudoinversion) vs. backpropagation

Dataset PINV Backprop.

Avg StDev Avg (Ntests) StDev

Abalone 2.162 0.006 2.3044 (35) 0.1908
Mach. Cpu 56.85 2.8 28.6673 (5) 27.3535
Delta Ail. 1.630 · 10−4 4 · 10−7 2 · 10−3 (10) 0.0
Housing 3.58 0.19 4.5492 (35) 0.9517

Iris 1.00 1.1 1.73 (10) 0.85
Diabetes 20.086 1.0 26.52 (31) 2.38
Landsat 9.848 0.30 13.03 (5) 0.63
Wine 2.0847 1.6313 3.77 (10) 0

better results than tunedit’s ones by running the backpropagation method on
our own under WEKA. For all datasets in the table we can claim dominance of
the pseudoinversion based approach with a 99% confidence level.

In our experiments, the running times of all the pseudoinversion-based ap-
proaches are substantially equivalent, hence we base the comparison only on
the average error. As far as the comparison with backpropagation is concerned,
pseudoinversion based methods save a relevant amount of time, being up to 10
times faster than backpropagation. For example, 10 runs of pseudoinversion-
based training on the Wine dataset require 0.078 seconds on average whereas
backpropagation requires on average 0.721 seconds (times on a laptop with Pen-
tium CPU, 2 GHz clock, 4 GB RAM); other tests gave roughly similar results.

5 Conclusions

We considered pseudoinversion-based techniques for training of neural networks
feeding them by random projections (gaussian and sparse) matrices of input
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weights and biases instead of the classical uniform-random initialization. We
believe that the computational results presented in this paper assess initialization
by random projection matrices as a useful tool for improving performances

In future research we will consider hybridizing the pseudoinversion-based
training technique with basic descent techniques. The rationale behind this is
that pseudoinversion-based techniques mostly rely on a pure random sampling
of input weights and biases, whereas it could make sense trying to profit also
from some local exploration of the error landscape.
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