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Abstract. The implementation of effective Semantic Web Services (SWS) plat-
forms allowing the composition and, in general, the orchestration of services
presents several problems. Some of them are intrinsic within the formalisms
adopted to describe SWS, especially when trying to combine the dynamic as-
pect of SWS effects and the static nature of their ontological representation in
Description Logic (DL). This paper proposes a mapping of OWL-S with a DL
action formalism in order to evaluate executability and projection by means of
the notion of Contexts.

1 Introduction

OWL-S1 is an OWL ontology that enables semantic description of Web services. One of
its purposes is the automation of four use cases, namely Discovery, Selection, Compo-
sition and Invocation. In OWL-S, preconditions and effects are represented with logical
formulas. These formulas cannot always be translated into OWL DL without losing
some of their original semantics. The reasons are manifold. Firstly, the OWL-S spec-
ification enables to describe such logical formulas with different languages. Secondly,
incompatibility between those languages and Description Logic (DL) makes not feasi-
ble the translation between candidate languages into DL themselves. Last, but not least,
even if we restrict the representation to formalisms which are compatible with DL, the
dynamicity of effects is not expressible natively in DL. In particular, the language at
the state of the art that offers a greatest level of compatibility with DLs is the Semantic
Web Rule Language (SWRL) [1] in its decidable fragment [2]. The adoption of this
formalism for encoding preconditions and effects (partially) solves the first two com-
patibility issues mentioned above. However, the problem of managing effects without
breaking DL semantics remains open. The issues are of ontological nature because DLs
are monotonic languages. Although some DLs extensions could be used to deal with the
dynamic aspects mentioned above, they are not included in the current OWL specifica-
tions. Moreover, DL monotonicity rules out any retraction primitives, i.e., there is no
way of removing an axiom from a knowledge base, making it hard to deal with knowl-
edge that changes over time. The consequences vary from wrong results for queries to
inconsistencies in the knowledge base. This happens because the effect of a service is
intended as an alteration of the state of the world. It is quite obvious that the new infor-
mation should replace the old one, rather than just be added to the knowledge base.

1 OWL for Services. http://www.w3.org/Submission/OWL-S/
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2 OWL-S and SWRL Characteristics

OWL-S enables semantic descriptions of Web services using the Service Model on-
tology, which defines the OWL-S process model. Each process is based on the IOPR
(Inputs, Outputs, Preconditions, and Results) model. Inputs represent the information
required for the execution of the process. Outputs represent the information the process
returns to the requester2. Preconditions are conditions imposed on Inputs that have to
hold in order to invoke the process in a correct manner. Since an OWL-S process may
have several results with corresponding outputs, the Results provide a mean to specify
this situation. Each result can be associated to a result condition, called inCondition,
which specifies when that particular result can occur. It is assumed that such conditions
are mutually exclusive, so that only one result can be obtained for each possible situ-
ation. When an inCondition is satisfied, there are properties associated with this event
that specify the corresponding output and, possibly, the Effects produced by the execu-
tion of the process. The OWL-S conditions (Preconditions, inConditions and Effects)
are represented as logical formulas. Since OWL-DL offers limited support to formulate
constructs like property compositions without becoming undecidable, a more powerful
language is required for the representation of OWL-S conditions. One of the proposed
languages is Semantic Web Rule Language (SWRL) [1]. Although SWRL is undecid-
able, a solution has been proposed in [2] where decidability is achieved by restricting
the application of SWRL rules only to the individuals explicitly introduced in the ABox.
This kind of SWRL rules, called DL-safe, makes this language the best candidate to de-
scribe OWL-S conditions [3]. Let us now briefly mention the characteristic of SWRL
that are relevant to our scope. SWRL extends the set of OWL axioms to include Horn-
like rules in the form of implications between an antecedent (body) and consequent
(head), both consist of zero or more conjunctive atoms having one of the following
forms:

– C(x), with C an OWL class, P (x, y), with P an OWL property,
– sameAs(x, y) or differentFrom(x, y), equivalent to the respective OWL properties,
– builtIn(r, z1, . . . , zn), functions over primitive datatypes.

where x, y are variables, OWL individuals or OWL data values, and r is a built-in rela-
tion between z1, . . . , zn (e.g., builtIn(greaterThan, z1, z2)). The intended meaning
can be read as: whenever the conditions specified in the antecedent hold, then the con-
ditions specified in the consequent hold also. A rule with conjunctive consequent can
be transformed into multiple rules by means of Lloyd-Topor transformations. Each rule
has an atomic consequent.

3 Action Formalism for OWL-S

The OWL-S composition methodology based on SWRL DL-safe rules presented in [3]
explain the procedure to encode the OWL-S services process model by means of the
following (abstract) SWRL rule:

2 Inputs, Outputs and Local variables (entities used within the process) are SWRL variables and
their types are defined in the domain ontology.
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Preconditions ∧ inCondition → {output} ∧ Effect

If the service has more Results, multiple rules having different inCondition, output
and/or Effect are used. In order to evaluate executability and projection we propose
to map this abstract rule with the action formalism proposed in [4] based on ALCQIO,
an OWL-DL fragment. In detail, given:

– NX and NI disjoint and countably infinite sets of variables and individual names;
– an acyclic TBox T ;
– a set of primitive literals for T corresponding to the ABox assertionsA(a), ¬A(a),
r(a, b), ¬r(a, b), with A primitive concept in T , r a role name, a,b ∈ NI .

An atomic action is defined as α = (pre; post) where:

– pre is a finite set of ABox assertions, the preconditions;
– post is a finite set of conditional postconditions of the form ϕ/ψ, where ϕ is an

ABox assertion and ψ is a primitive literal for T .

An operator for T is a parametrised atomic action for T , i.e., an action in which some
variables from NX may occur in place of individual names. The postconditions of the
form �(t)/ψ are called unconditional and denoted just by ψ. For the sake of simplicity,
we consider an OWL-S atomic service with an arbitrary number of preconditions and
results, with a single effect3. This implies that there are as many inConditions as Ef-
fects. Supposing that inConditions and Effects are formed by single SWRL atoms, the
proposed mapping with the DL action formalism is:

pre :{pre1(at1), . . . , pre1(atl), pre2(at1), . . . , pre2(atm), pret(at1), . . . , pret(atn)}
post:{inConda/Effecta, . . . , inCondz/Effectz}

with pret(atn) the n-th atom of the t-th OWL-S precondition, and inCondz/Effectz
the z-th conditional post-condition. The traceability amongst the atoms in the action pre
and the service preconditions is guaranteed by the corresponding SWRL rule. The for-
malism in [4] allows to encode only simple inCondition and Effect of the form specified
above (A(a), ¬A(a), r(a, b), ¬r(a, b)).

4 A Mapping Example

To describe the proposed mapping, we use a simplified version of the OWL-S Atomic
Service ExpressCongoBuy4, based on a subset of inputs (renamed here to improve the
readability of service conditions), and with simplified inConditions and Effects so that
the limitation imposed by the definition of action in [4] are respected. The service fea-
tures are described in Figure 1,a); the SWRL rules representing the service are depicted
in Figure 1,b); finally, the resulting service described in terms of actions is described in
Figure 1,c). When OWL-S atomic services present a single result, the inCondition can
be omitted. In this case the service effect will be an unconditional postcondition.

3 Outputs are not logical conditions and can be omitted because do not generate KB variations.
Generally, built-in atoms are not a single OWL class or property; they are left as future work.

4 http://www.ai.sri.com/daml/services/owl-s/1.2/CongoProcess.owl

http://www.ai.sri.com/daml/services/owl-s/1.2/CongoProcess.owl
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a) ExpressCongoBuy Service Characteristics
INPUTS: Type

x : ECBCreditCardType CreditCardType
y : ECBBookISBN profileHierarchy : Book
z : ECBSignInInfo SignInData
t : ECBCreditCardNumber xsd : decimal

OUTPUT:
o : ECBOutput ECBOutputType [ECBOT ]

LOCAL variables (SWRL variables):
u : ECBAcctID AcctID [AID]
v : ECBCreditCard [ECBCC] CreditCard

PRECONDITIONS:
precond1 : validity(?v, V alid) ∧ cardNumber(?v, ?t) [V (?v, V alid) ∧CN(?v, ?t)]
precond2 : hasAcctID(?z, ?u) [hasAID(?z, ?u)]

RESULT 1:
inCondition : OutOfStockBook(?y) [OSBook(?y)]

Effect : FailureNotification(?o) [FN(?o)]
RESULT 2:

inCondition : InStockBook(?y) [ISBook(?y)]
Effect : OrderShippedAcknowledgement(?o) [OSA(?o)]

* The namespace is the base one for the service. ExpressCongoBuy is shortened to ECB for readability. Further shortenings are in [. . . ].

b) The service described with SWRL rules
1 : [inputs]∧hasAID(?z, ?u) ∧ CN(?v, ?t) ∧ V (?v, V alid) ∧ safe(?y, ?o)

∧OSBook(?y) → ECBOT (?o) ∧ FN(?o)
2 : [inputs]∧hasAID(?z, ?u) ∧ CN(?v, ?t) ∧ V (?v, V alid) ∧ safe(?y, ?o)

∧ ISBook(?y) → ECBOT (?o) ∧ OSA(?o)

*safe is an always true property needed to guard the SWRL safety condition.

c) The resulting service described in terms of actions

pre : { CN(?v, ?t), ECBCC(?v, V alid), hasAID(?z, ?u) }
post : { holds(?y, ?o), OSBook(?y) /FN(?o), ISBook(?y) / OSA(?o) }

Fig. 1. ExpressCongoBuy mapping with Action formalism

The proposed mapping allows to exploit the theoretical results about projection and
executability working in DL. In detail, executability and projection together grant that
a composite action, i.e., a service or sequence of services, can be executed to com-
pletion, thus obtaining the original goal. However, this is subject on each action in
the sequence being consistent with the knowledge base as it evolves. When this is
not the case, in order to obtain the goal, either a new plan must be computed, or
a solution to inconsistent actions must be designed, so that the knowledge base can
be modified to be consistent with the actions. Let us introduce an example of incon-
sistency due to the Effects of rules being applied, based on the service in Figure 1.
The service is invoked twice, with ?o matched to an individual, io. The first invoca-
tion generates OrderShippedAcknowledgement(io) assertion, while the second gener-
ates FailureNotification(io). Both assertions end up in the knowledge base. If these two
classes are disjoint in the ontology defining them, the two type of assertions would force
io to belong to a class and its complement, therefore making the knowledge base incon-
sistent. This is an example of the kind of inconsistencies arising from lack of retraction
primitives that this paper aims at addressing.

5 Contexts for Incompatibility Management

In this work, the notion of contexts is used to justify a mechanism able to handle actions
which are inconsistent with respect to a knowledge base. Recalling the definition 2 in
Milicic et al. [4], given T an acyclic TBox, α = (pre, post) an atomic action for T ,
and I, I ′ models of T respecting the unique name assumption (UNA) and sharing the
same domain and interpretation of all individual names. We say that α may transform
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I to I ′ (I ⇒T
α I ′) iff, for each primitive concept A and role name r, a change of the

interpretation is defined as follows:

AI′
:= (AI � AI′

A(a)) \AI′
¬A(a), r

I′
:= (rI � rI′

r(a,b)) \ rI
′

¬r(a,b)

where:

AI′
A(a) = {aI | ϕ/A(a) ∈ post ∧ I |= ϕ}

AI′
¬A(a) = {aI | ϕ/¬A(a) ∈ post ∧ I |= ϕ}

rI
′

r(a,b) = {(aI , bI) | ϕ/r(a, b) ∈ post ∧ I |= ϕ}
rI

′
¬r(a,b) = {((aI , bI) | ϕ/¬r(a, b) ∈ post ∧ I |= ϕ}

The composite action α1, . . . αk may transform I to I ′ (I ⇒T
α1,...,αk

I ′) iff there are
models I0, . . . , Ik of T with I = I0, I ′ = Ik , and Ii−1 ⇒T

α Ii for 1 ≤ i ≤ k.
This definition does not cover the situation in which a postcondition generates an incon-
sistency due to the lack of retraction primitives, as in the example presented in Sect. 4.
OWL contexts are introduced as a possible solution to this kind of problems. In par-
ticular, by identifying contexts with the portions of ABox it is possible to manage this
kind of inconsistencies without modifying the definition of interpretation change. This
is done by defining context relations that enable a dynamic partitioning of the knowl-
edge base, simulating the retraction of conflicting assertions. The proposed solution is
inspired to the work presented in [5], even though the work proposed in [6], if suitably
adapted for the contexts, could be a valuable alternative. For our aims, the content of a
context is a set of complete OWL axioms.

Definition 1 (Content of an OWL context). Given a context CTX , a signature S =
C ∪ R ∪ I where C are concept names, R are role names, and I are individuals, the
content of CTX consists of the union of:

– a TBox TC whose concepts and nominals are included in C ∪ I;
– a RBox RC whose roles are included in R;
– an ABox AC whose individuals are included in I .

TC , RC and AC are expressed in OWL.

The parameters representation adopted is the one outlined in [5]:

Definition 2 (Parameter or Contextual Relation). Given a context CTX , a parame-
ter P and a value X for P , the relation P (CTX , X) associates CTX with X and is
represented with the triple (C′

TX , P
′, X ′) where C′

TX and P ′ are URIs assigned to
CTX and P respectively, andX ′ is a RDF node identifying a resource, another context
or a datatype value.

Two parameters or contextual relations (CR) are defined as:

Definition 3 (EXTENDS Contextual Relationship). Given contextsCTX1 andCTX2,
the expression CTX2 EXTENDS CTX1 is interpreted as:
the content ofCTX2 includes the content ofCTX1, and therefore transitively the content
of any context Di that CTX1 is declared to EXTEND.
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Definition 4 (INCOMPATIBLE Contextual Relationship). Given contextsCTX1 and
CTX2, the expression CTX2 INCOMPATIBLE CTX1 is interpreted as:
called K the knowledge base containing the content of CTX1 and CTX2, K is inconsis-
tent. The INCOMPATIBLE relation is symmetric: CTX2 INCOMPATIBLE
CTX1 is equivalent to CTX1 INCOMPATIBLE CTX2.

These definitions allow to describe a situation where two contexts CTX2 and CTX3

extend a third context C′
TX1 in two different, incompatible ways, i.e., CTX3 contains

¬A(x) and CTX2 contains A(x) (where A is defined in TCTX3 and x is a named in-
dividual belonging to ACTX1 and ACTX2 , but not necessarily to ACTX3 ). CTX2 and
CTX3 are incompatible, since any knowledge base containing both ¬A(x) and A(x)
will be inconsistent. With reference to the definition for change of interpretation given
at the beginning of this section, CTX2 and CTX3 correspond to AI′

A(a) and AI′
¬A(a),

and therefore implement the operator for the change of interpretation. This implies that
the change needed to fulfil the goal of the action sequence (i.e. the right context and
therefore the right change of interpretation) is chosen as the actual state of the knowl-
edge base. It is straightforward that a means to know when to apply contextualization is
needed. A possible strategy can be summarized as follows. We keep track of the current
model and use a heuristic function t(e) (where e is a type or role assertion) to estimate
whether the change produced by e affects a constrained part of the model, therefore
possibly producing inconsistencies, or an unconstrained part, in which case the change
can be applied safely.

6 Executability and Projection Evaluation by Means of Contexts

This section presents the algorithm for verifying the validity of a sequence of services.
Suppose that we have a set of sequences of SWRL rules that achieve an input goal.
Then the procedure can be summarized as follows:

– For each sequence Si, every SWRL rule is mapped with an action, as described in
Sect. 3, resulting in the sequence of actions ASi;

– Executability and projection are then used to determine whether the sequence
of actions ASi = {α1, . . . , αn} is executable and produces the required effect.

Assuming that the sequence ASi is executable in A w.r.t. T , the projection verifies
that the assertion ϕ is a consequence of applying α1, . . . , αn in A w.r.t. T iff for all the
models I of A and T and for all I ′ with I ⇒T

α1,...,αn
I ′, I ′ |= ϕ.

Consider a sequence S containing an action αi, e.g., the action described in Figure 1.
For this action, the postcondition ϕi/ψi is OSBook(?y) / FN(?o).
When the projectability verification reaches αi, it is evaluated according to the heuristic
t(e) delineated in Sect. 5. If t does not detect the need for a contextualization of the
knowledge base, i.e., no potential inconsistency is detected, the projection can continue
to i+1. When, instead, a possible inconsistency is detected by t, e.g., becauseOSA(?o)
has been asserted previously by an action αj with j < i, the proposed contextualization
will be applied, creating alternate ABoxes for the conflicting assertions, while the TBox
will be left untouched. With reference to the example given in sect. 4, the Knowledge
base at i− 1: Ki−1 = T � Ci−1 produce the following contexts and context relations:
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– Content of context CTXi−1 = A � {OSA(?o)}
– Content of context C

′
TXi−1 = CTXi−1 \ {OSA(?o)}

– Content of context C
′
TXi = {OSA(?o)}

– Content of context C
′′
TXi = {FN(?o)}

– C
′
TXi EXTENDS C

′
TXi−1

– C
′′
TXi EXTENDS C

′
TXi−1

– C
′
TXi INCOMPATIBLE C

′′
TXi

If the projection requires one or more contextualizations, it is necessary to verify the ex-
ecutability in the new contexts. Since C

′′
TXi is the new KB for the sequence αi, . . . , αn,

we need to verify whether the preconditions belonging to αi+1, . . . , αn actions hold in
C

′′
TXi. This is equivalent to split in two parts the actions sequence: the executability of

the new sequence S
′′
= {αi+1, . . . , αn} must be verified against A′

w.r.t. T , where
A′

= C
′′
TXi. If this new sequence is not executable, the original sequence S will not

be considered valid, since it cannot be automatically executed. In fact, its execution
would either result in an inconsistent knowledge base (if executed without contextual-
ization) or some preconditions would not be verified when the services mapped by S

′

are executed, resulting in unreliable behavior of the system.

7 Related Work

In [7], the notion of contexts is used for the operation of SWS composition. The adopted
meaning of context, i.e. any information that can be used to characterize the situation
of an entity, comes from context-aware computing [8]. The dynamic description logic
adopted in [9] uses static and dynamic context information in order to compose Web
services adapting user, provider and broker contexts. A dynamic DL knowledge base
has, in addition to TBox and ABox, an ActionBox that contains assertions about ac-
tions. The reasoning tasks about actions proposed, i.e. executability and projection, are
based on [4]. However, all the approaches above do not provide a concrete mapping
with OWL-S services, and the management of non-monotonic problematic situations
that can be caused by service Effects is missing as well. A representative work on OWL
contexts is [10]. It proposes a modification of OWL semantics in order to contextual-
ize ontologies, and formalizes a particular type of rules, called bridge-rules, allowing
the creation of explicit mappings for the contexts management. Furthermore, it han-
dles, among the others, the management of localized inconsistency and its propagation
in this type of contexts. The OWL contexts we proposed in this paper do not require
modifications to OWL semantics, nor the use of rules for their management.

8 Conclusions

In this paper we analyzed the current limitations that prevent the implementation of
an OWL-S based service management platform. We observed that even removing or
mitigating the incompatibility between the languages for specifying domain ontologies
and those for annotating services that operate in such domains, the problem of static
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ontology against the dynamic services remains. We proposed the adoption of a theoret-
ical framework that accomodates dynamicity inside DL [4]. However, such framework
requires the implementation of non standard operations on the interpretations of Knowl-
edge base. In particular, these operations allow for overcoming the absence of retraction
primitives and avoiding inconsistencies due to DLs monotonicity property. We describe
a possible solution based on the notion of contexts for an OWL knowledge base. As
future work, we plan the integration of SWRL built-in atoms and design of a concrete
implementation of heuristic function.
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