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Abstract. In the presented investigation a recently proposed approach for mul-
tidimensional data clustering was applied to create a 3D “sound picture” of the 
data collected by a microphone array antenna. For this purpose records of 
acoustic pressure at each point (a microphone in the array) collected for a given 
period of time were used. Features for classification are extracted using over-
lapping receptive fields based on the model of direction selective cells in the 
middle temporal (MT) cortex. Next the clustering procedure using Echo state 
network and subtractive clustering algorithm is applied to separate these recep-
tive fields into proper number of classes. Obtained for each time step two di-
mensional “sound pictures” were combined to create a 3D representation of  
dynamic changes in the sound pressure. We compare our results with the sono-
grams created by the original software of the producer of microphone array.  
Although our approach did not account for the distance to the noise source, it 
allows consideration of dynamically changing sounds. 

Keywords: acoustic pressure, Echo state networks, subtractive clustering, re-
ceptive field, direction selective cells. 

1 Introduction 

Localization of sound sources is a task with numerous applications varying from mili-
tary locators, seismic surveys, medical and machine diagnostic systems etc. For dif-
ferent practical applications there were created many specialized equipments and 
corresponding mathematical methods for signal processing aimed at accurate noise 
source localization. An example of such device is acoustic camera that consists of 
several microphones operating in tandem. 

There are developed two basic approaches for processing of acoustic pressure 
measured by the microphone arrays: acoustic holography and beam forming. The first 
one reconstructs sound fields near to the camera and has established two realizations: 
near-field acoustic holography (NAH) [16] and statistically optimal near-field acous-
tic holography (SONAH) [4]. There are several strong requirements that cumber 
NAH implementation and limit its application to small sound sources at low frequen-
cies. That is why SONAH was developed to alleviate some of these requirements. The 
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other basic approach – beam forming (BF) – was created for localization of medium 
and long distance sound sources. In both cases the core of the task to be solved is to 
divide the area observed by the acoustic camera into sub-areas in dependence on mul-
tidimensional measurement data. Hence we decided to apply a clustering approach to 
solve it. 

In spite of numerous developments, clustering of multidimensional data sets is still 
a challenging task [6]. There are numerous approaches for solving it including intelli-
gent techniques based on fuzzy logic and neural networks. In [8, 11] we proposed a 
new multidimensional data clustering approach that combines model of direction 
selective cells in the middle temporal (MT) cortex and recurrent neural networks for 
features extraction and fuzzy subtractive clustering for blind separation of data into 
clusters. Variations of the algorithm were successfully applied by now to different 
static and dynamic data sets: landscape classification using multi-spectral satellite 
image of a mountain region in Bulgaria [9, 10], clustering of dynamic data taken from 
an experiment that tests visual discrimination of complex dot motions [11] and classi-
fication of accumulated acoustic pressure measured by a microphone array [12].  

By far the algorithm was used to create 2D picture of clusters of multidimensional 
data sets. The present investigation extends application of the algorithm to 3D visuali-
zation including time course of data as third dimension. The suggested approach is 
simplified one – it uses sound intensity only and doesn’t account for the distance to 
the sound source. However it will allow detecting not only of static but also of mov-
ing sound sources – function that is not included in the original software version sup-
plied by Brüel & Kjær. The obtained results were compared with the 2D sonograms 
created by original software. Our future intention is to incorporate it in the system we 
have and to extend it with ability to detect moving sound sources.  

The paper is organized as follows: in next section we describe the experimental 
set-up, the equipment (acoustic antenna) and data collection procedure; section 3 
gives short description of our algorithm with accent to its extension to 3D dynamic 
task; in section 4 results of dynamic data clustering and 3D visualization are presented 
and discussed in comparison with the sonograms created by the original software of 
Brüel&Kjær; the paper finishes with conclusions and directions for future work. 

2 Experiment Set-up 

2.1 Brüel and Kjær Microphone Array 

Multidimensional data for testing of our approach was collected using the system 
from Brüel & Kjær for sound analysis shown on Figure 1 (a). It consists of 18 micro-
phones array placed randomly in a wheel grid called antenna. At the center of antenna 
is mounted camera. All microphones are connected to a front-end panel. Both camera 
and front-end are connected to a computer (via USB and LAN cables corresponding-
ly) with software for sensor information processing. The system measures acoustic 
pressure and visualizes “sound picture” of the observed by camera area as it is shown 
on Figure 1 (b).  
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(a)                                                                            (b) 

Fig. 1. Brüel & Kjær system for sound analysis (a) and created by it “sound picture” (b) 

2.2 Raw Data Collection 

Our multidimensional data set consists of raw measurement data from all 18 micro-
phones in antenna array. A piezo beeper WB 3509 (standard Brüel & Kjær equipment 
– the red box in the right low corner on the picture on Figure 1 (b)) with frequency of 
2.43 kHz was used as sound source. After switching on the beeper the system collects 
acoustic pressure in Pa for 15.9ms – period of time predetermined by the system 
software – from all 18 microphones. The measurements were taken with time step 

1.53*10-5 s. The collected data are periodic signals with variable amplitude and con-
stant frequency of the noise source (the beeper). The input signal amplitude is differ-
ent for each microphone due to attenuation of different beeper – microphone path 
loss. 

3 Clusterization Algorithm 

3.1 Initial Feature Extraction Procedure 

In [11], following the model of human visual perception from [1, 2], we used the 
receptive fields of MST neurons to pre-process time series of our dot motion data. 
This model has been widely used to examine the emergence of complex motion pat-
tern properties [1, 2]. The receptive fields are direction selective cells in middle 
temporal (MT) cortex described by the following equation [1]: 
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Here fil(t) is the response of i-th MT unit to k-th input stimuli sk(t) for the l-th re-

ceptive field (area of stimuli collection) at time t; μi is center and σ is variance of 

Gaussian curve defining each filter response; N is number of inputs, i.e. stimuli  
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received in the l-th field. In present work we divide the area of stimuli (in considered 
example these are microphone sensors readings) into several overlapping regions, 
each containing at least one stimulus (sensor) input. In [12] we accumulate receptive 
fields’ outputs at each area and average them over all time period of measurements 
thus accounting for accumulated acoustic pressure. In present work we use receptive 
fields’ outputs for a given moment in the time in order to account for time changes in 
the sound picture. 

Division of observed by acoustic camera area into 16 overlapping square regions is 
shown on Figure 2 (each region is surrounded by a dashed line square with rounded 
edges). The small red dots with numbers represent corresponding microphone posi-
tion and the big red dot in the center marks camera position. Each region contains at 
least one microphone (e.g. microphone 5 is the only one in upper right region). Max-
imal number of microphones in region is four and it is situated at the center of anten-
na (e.g. region containing microphones 1, 3, 8 and 7). 
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Fig. 2. Regions positions at the antenna area 

Next, in order to design our receptive filed units, we divide the dynamic range of 
raw data (that is from -0.4 to 0.4 Pa) into 11 intervals. For each interval we define a 
filter with center μi at the center of interval and variance σ equal to one third of inter-

val size. Thus our receptive fields overlap covering intervals from -3σ to +3σ around 
their centers. 

Equation (1) describes obtained at this first step feature vectors of area number l 
where i=1÷n

f
  and n

f 
=11 is number of filters in our experiment. Thus the obtained for 

the period of time from 0 to t
f
  data set of features is: 



198 P. Koprinkova-Hristova and K. Alexiev 

 ( )
161,111,1 ÷=÷=÷= litt f

tilf  (2) 

These features are inputs to the recurrent neural network used in the second step of 
feature extraction procedure.  

3.2 Final Feature Extraction 

At this step we exploit the equilibrium states of neurons of a special kind of recurrent 
neural network – Echo state network (ESN) [5, 13] – as final features extracted from 
multidimensional data. The basic idea was proposed for the first time in [8]. Here 
we’ll describe it briefly. 

The structure of ESN is presented on Figure 3 bellow. It consists of a randomly 
generated dynamic reservoir of interconnected neurons having also feedback from 

their own outputs. The reservoir connections weight matrix is denoted by Wres. All 
reservoir neurons receive as input a vector denoted here by u multiplied by input 

weight matrix denoted by Win. The output of reservoir is a simple sigmoid function 
(usually hyperbolic tangent) that depends on current input as well as on previous state 
of the reservoir neurons. 

r

reservoir

Wres

Win

u

 

Fig. 3. Echo state network (ESN) structure 

Following the proposed in [14, 15] algorithm for initial tuning of reservoir weights 
and conclusions from [7] that achieved equilibrium states of reservoir neurons after 
such tuning reflect the structure of training data set, in [8] emerged the idea that the 
reservoir equilibrium can serve as a feature vector.  

Inputs to our second feature extractor – ESN – are initial features extracted by re-
ceptive fields, i.e. for l-th area of stimuli collection: 

 ( ) [ ] 161,11121 )()()( ÷=÷== lttlll f
tftftftlu   (3) 

Final features used for data clustering are equilibrium states re of trained ESN neu-

rons that are calculated by presenting each vector as constant input to the ESN until 
all neurons outputs settle down, i.e.: 
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Here a and b are additional vectors of parameters used to tune the reservoir according 
to [13, 14]. 

3.3 Overall Clustering Procedure 

Measurement data (stimuli) are collected for given period of time from all sensors in 
considered area. The clustering algorithm is as follows: 

• The collected data are pre-processed using first step feature extraction procedure 
and data set (2) is generated; 

• A random ESN reservoir is generated and tuned to these data; 
• The trained reservoir equilibriums are determined according to (4); then they are 

scaled within interval [-1, +1]; 
• All possible two dimensional projections between equilibrium states of every two 

different neurons in the reservoir i and j and for each period of time step t are gen-
erated as follows: 
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• Subtractive clustering procedure [17] is applied to all projections (5) in order to 
determine number and centers of data clusters. This procedure was chosen since it 
is reported as one of the best options in the case of unknown number of clusters 
[3]; 

• The projections with highest number of clusters are selected; 

4 Results and Discussion 

It was observed that acoustic pressure data is periodic with period of about 0.412 ms 
or approximately 28 time steps as it is shown on Figure 4. Hence we decided to inves-
tigate time changes of “sound picture” during one period as well as for all the time of 
measurements with 0.412 ms time step. 

At the second step of described above feature extraction algorithm we used ESN 
reservoirs with different sizes: 10, 30 and 50 neurons. In all cases the number of in-
puts of ESN was determined by the number of features, i.e. 11 according to the num-
ber of receptive fields. For each new generation of reservoir number of obtained by 
our algorithm clusters varies but in most cases we have mainly 3 or 4 clusters. 
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Fig. 4. Microphone signals for the first 28 time steps (approximately one period of signal) 

The bigger was number of neurons in ESN reservoir, the bigger is number of poss-
ible two dimensional projections with maximal number of clusters. The number of 
obtained clusters however is smaller in comparison with those obtained in [12] (2D 
clusters case) where we had about 6 clusters. 

We consider each sub-region in antenna area as an area in the picture taken from 
camera that has to be classified. Each cluster is covered by rectangles with different 
color. Figures 5, 6 and 7 present classification results obtained by using ESN reser-
voirs with 10, 30 and 50 neurons respectively. On each figure (a) is “unfolded” 3D 
picture for the first period of measurements and (b) – for all periods of measurements 
with time step equal to period duration (0.412 ms). 

From all figures (a) we can observe “movement” of the sound wave coming from 
the noise source through receptive fields for the first period of time. The last picture 
(beginning of new period) is the same as the first one, i.e. our classification is able to 
reveal periodical characteristics of data. In spite of roughness of our sensing fields, 
the position of the beeper can be exactly estimated without usage of any information 
about free-space path loss formula and propagation delay. 

On figures (b) we observe time changes of “sound picture during all time of mea-
surements. The “unfolded” 3D picture reveals changes in the acoustic pressure ampli-
tude with time. Although all pictures are from the beginning of current period, they 
gradually change from the beginning of the measurements to their end. The change in 
pictures is due to beating frequency of inexact correspondence of sampling frequency 
and beeper frequency. The pictures visualize 2D beating frequency propagation and 
can serve as an instrument for spectral analysis of the input signal. 

Comparison with Figure 1 (b) is to rough but it is clear that in all pictures the area 
with noise source (low right corner) is recognized to be different from the other areas 
in the picture. Having in mind that “sound picture” form original software is accumu-
lative for all time of collecting data and our “sound pictures” are for different time 
steps, the observed differences reveal dynamic nature of the sound signal. 
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(a) 

 

(b) 

Fig. 5. Clusters obtained with 10 neurons (a) for the first period and (b) for all the time with 
step 0.412 ms 
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(a) 

 

(b) 

Fig. 6. Clusters obtained with 30 neurons (a) for the first period and (b) for all the time with 
step 0.412 ms 
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(a) 

 

(b) 

Fig. 7. Clusters obtained with 50 neurons (a) for the first period and (b) for all the time with 
step 0.412 ms 
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5 Conclusions 

The presented in the paper application of currently developed algorithm for multidi-
mensional data clustering and its extension to dynamic data representation in 3D 
showed promising results and pointed out to directions for future developments. 

First of all, testing of our approach on yet another multidimensional data set and 
comparison of the results with a professional signal processing software demonstrated 
that our  approach although not that refined is promising and gives similar results. 

Possible refinement of the results could be obtained via fuzzy visualization of clus-
ters. By the moment although we use fuzzy clustering algorithm, we classify each dot 
on the picture based on only its distance to the cluster centers. However subtractive 
clustering allows us to have also overlapping clusters with fuzzy membership of each 
dot. Hence we can obtain pictures with gradual change of colors that will be much 
closer to that of original software. 

Another interesting way for further improvement is the application of described 
scheme for multisource input signal, localization of each source and spectral identifi-
cation. 
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