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Abstract. The present paper describes the back-propagation learning
of a partial functional differential equation with reaction-diffusion term.
The time-dependent recurrent learning algorithm is developed for a de-
layed recurrent neural network with the reaction-diffusion term. The
proposed simulation methods are illustrated by the back-propagation
learning of continuous multilayer Hopfield neural network with a dis-
crete time delay and reaction-diffusion term using the prey-predator sys-
tem as a teacher signal. The results show that the continuous Hopfield
neural networks are able to approximate the signals generated from the
predator-prey system with Hopf bifurcation.

Keywords: feed-forward neural network, multilayer Hopfield neural
network with a discrete time delay and diffusion-reaction term, time-
dependent learning, prey-predator system with a discrete time delay and
diffusion-reaction term, numerical solution.

1 Introduction

Partial functional differential equations with a discrete time delay arise in many
biological, chemical, and physical systems which are characterized by both spa-
tial and temporal variables and exhibit various spatio-temporal patterns [13].
The recurrent neural network with a time delay and diffusion term are described
by a special type of such equations. One of the fundamental ideas of the re-
current neural network is its application to the dynamical memory, a desired
attractor embedded into the dynamical system [1],[11]. It is well known that
a neural network can be used to approximate the smooth time-invariant func-
tions and the uniformly time-varying function [3], [9]. Besides, it has been used
for the universal function approximation to solve optimal control problems with
a discrete time delay forward in time to approximate the costate variable [5],
[12]. The costate variables play an important role also in the back-propagation
learning of infinite-dimensional dynamical systems [10], [11] in the case of time-
dependent recurrent learning. Our interest here is in supervised learning of a
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partial functional Hopfield neural network (PFHNN) with a discrete time de-
lay. The supervised learning is to teach the spatio-temporal dynamics to the
PFHNN by applying the back propagation algorithm [8]. In order to learn the
dynamic behaviours of the partial functional differential equations based on [10],
a time-dependent recurrent learning algorithm has been developed. For the neu-
ral network which determines the right hand side of PFHNN, a feed-forward
neural network with one hidden layer for the state variable and one hidden layer
for the delay state, a steepest descent error backpropagation rule, a hyperbolic
tangent sigmoid transfer function and a linear transfer function were used.

This paper is organized as follows. In Section 2 we present a description of
the back-propagation learning of infinite-dimensional dynamical systems and
propose a new algorithm to calculate the gradient of cost function. Section 3
presents a short description of the prey-predator system and numerical results
of the time-dependent recurrent learning using Lagrange multipliers to compute
the gradients of the cost function. Conclusions are presented in Section 4.

2 Partial Functional Hopfield Neural Network Learning
with a Discrete Time Delay

Let us consider supervised learning to teach the discrete time delay dynamic to
the discrete time delay partial functional Hopfield neural network. We utilize the
following form of multilayer continuous Hopfield neural network with a discrete
time delay in the learning of complex nonlinear dynamics:

ẋ(t) = D
∂2x(s, t)

∂s2
+ F (x(s, t), x(s, t − τ),W )

= D
∂2xi(s, t)

∂s2
−Ax(s, t) +W of(Whx(s, t) +Whdx(s, t− τ)), (1)

with Neumann boundary condition ∂xi

∂s (a, t) = ∂xi

∂s (b, t) = 0 and initial con-
ditions xi (s, t) = φi (s, t) ≥ 0, a ≤ s ≤ b, t ∈ 〈−τ, 0〉 , i = 1, . . . , n, where
x = (x1, . . . , xn), F = (F1, . . . , Fn), Anxn, Dnxn are diagonal matrices, W o

nxn is
a weight matrix between the hidden and output layer,Wh

nxn,W
hd
nxn are the weight

matrices between the input and hidden layer and W = (A,Wh,Whd,W o). Func-
tion f is tanh(.) the activation function. t denotes the time, s represents the
spatial location and D is a diagonal matrix of the diffusion coefficients. For the
given continuous initial condition φ(s, t), s ∈ 〈a, b〉, t ∈ 〈−τ, 0〉 there exists a
unique solution x(s, t) satisfying Eq. (1) for s ∈ 〈a, b〉, t ∈ 〈0, T 〉. The aim is to
find the weight parameters W that give rise to a solution x(s, t) approximately
following the teacher signal p(s, t) = (p1(s, t), . . . , pn(s, t)), where p(s, t) is a
solution of the following delay partial functional differential equation:

ṗ(s, t) = D
∂2p(s, t)

∂s2
+G(p(s, t), p(s, t− τ)), (2)
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with Neumann boundary condition ∂pi

∂s (a, t) =
∂pi

∂s (b, t) = 0 and initial conditions
pi (s, t) = φi (s, t) ≥ 0, a ≤ s ≤ b, t ∈ 〈−τ, 0〉 , i = 1, . . . , n. First, the cost
function is defined for the weight parameters W as

E(W ) =

∫ b

a

∫ T

0

1

2

n∑
i=1

(xi(s, t)− pi(s, t))
2dtds. (3)

Then the cost function (3) is minimized by the steepest descent method

wj+1 = wj − α
∂E

∂w
(W j), (4)

where w ∈ W. To compute the gradient of function (3), we use time-dependent
recurrent learning (TDRL) [11]. In the TDRL algorithm, the gradients are com-
puted by using the Lagrange multipliers λ(t) = (λ1(s, t), . . . , λn(s, t)). For a
detailed explanation, see [11]. We can rewrite the cost function E(W ) as

L(W ) =

∫ b

a

∫ T

0

n∑
i=1

[
1

2
((xi(s, t)− pi(s, t))

2 −

λi(s, t)(ẋi(s, t)− di
∂2xi(s, t)

∂s2
− Fi(x(s, t), x(s, t − τ),W ))]dtds.

The partial derivatives with respect to the weight coefficients w ∈ W are calcu-
lated as

∂L

∂w
=

∫ b

a

∫ T

0

n∑
i=1

[(xi(s, t)− pi(s, t))
∂xi(s, t)

∂w
− λi(s, t)

∂ẋi(s, t)

∂w
+

λi(s, t)
Fi(x(s, t), x(s, t − τ),W )

∂w
+

λi(s, t)

n∑
j=1

Fi(x(s, t), x(s, t − τ),W )

∂xj(s, t)

∂xj(s, t)

∂w
+

λi(s, t)

n∑
j=1

Fi(x(s, t), x(s, t − τ),W )

∂xj(s, t− τ)

∂xj(s, t− τ)

∂w
+

λi(s, t)
∂

∂w

(
di
∂2xi(s, t)

∂s2

)
−

λi(s, t)

∂w
(ẋi(s, t)− di

∂2xi(s, t)

∂s2
Fi(x(s, t), x(s, t − τ),W ))]dtds. (5)

If x(s, t) is a solution of Eq. (1) then the final term of Eq. (5) vanishes. Since
∂x(s,t)
∂w = 0 for t ∈ 〈−τ, 0〉 the fourth term of (5) can be written by the transfor-

mation t′ = t− τ as
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∫ b

a

∫ T

0

n∑
i=1

λi(s, t)

n∑
j=1

Fi(x(s, t), x(s, t − τ),W )

∂xj(s, t− τ)

∂xj(s, t− τ)

∂w
dtds =

∫ T

0

∫ T−τ

−τ

n∑
i=1

λi(s, t+ τ)
n∑

j=1

Fi(x(s, t+ τ), x(s, t),W )

∂xj(s, t)

∂xj(s, t)

∂w
dtds =

∫ T

0

∫ T

0

n∑
i=1

λi(s, t+ τ)
n∑

j=1

Fi(x(s, t+ τ), x(s, t),W )

∂xj(s, t)

∂xj(s, t)

∂w
χ〈0,T−τ〉dtds.

Using intergation by parts with the Neumann boundary condition ∂λi(a, t)/∂s =
∂λi(b, t)/∂s = 0 we get

∫ b

a

λi(s, t)
∂

∂w

(
di
∂2xi(s, t)

∂s2

)
ds =

∫ b

a

di
∂2λi(s, t)

∂s2
∂xi(s, t)

∂w
ds.

The derivatives ∂L
∂w become

∂L

∂w
=

∫ b

a

∫ T

0

n∑
i=1

[(xi(s, t)− pi(s, t))
∂xi(s, t)

∂w
− λi(s, t)

∂ẋi(s, t)

∂w
+

λi(s, t)
Fi(x(s, t), x(s, t − τ),W )

∂w
+ di

∂2λi(s, t)

∂s2
∂xi(s, t)

∂w
+

λi(s, t)
n∑

j=1

Fi(x(s, t), x(s, t − τ),W )

∂xj(s, t)

∂xj(s, t)

∂w
+ (6)

λi(s, t+ τ)
n∑

j=1

Fi(x(s, t+ τ), x(s, t),W )

∂xj(s, t)

∂xj(s, t)

∂w
χ〈0,T−τ〉]dtds.

The Lagrangemultipliers are solutions of the following partial functional differen-
tial equations with the Neumann boundary condition ∂λi(a, t)/∂s = ∂λi(b, t)/∂s
= 0 and terminal condition λ(s, T ) = 0.

− λ̇i(s, t) = di
∂2λi(s, t)

∂s2
+

n∑

j=1

λj(t)
Fj(x(s, t), x(s, t− τ ),W )

∂xi(s, t)
+ (7)

n∑

j=1

λj(s, t+ τ )
Fj(x(s, t+ τ ), x(s, t),W )

∂xi(s, t)
χ〈0,T−τ〉 + (xi(s, t)− pi(s, t)).

Since the Lagrange multipliers λ(s, t) satisfy Eq. (7) with Neumann boundary
condition ∂λi(a, t)/∂s = ∂λi(b, t)/∂s = 0 and terminal condition λ(s, T ) = 0,

and ∂x(s,t)
∂w = 0 for t ∈ 〈−τ, 0〉 all the terms of Eq. (6) but the third vanish. The

partial derivatives ∂J
∂w can be calculated by the following form:

∂L

∂w
=

∫ b

a

∫ T

0

n∑
i=1

λi(s, t)
Fi(x(s, t), x(s, t − τ),W )

∂w
dtds. (8)
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Algorithm 1. Time dependent recurrent learning algorithm to determine
the weight matrix of a time delay continuous Hopfield neural network

Input: Choose T, τ, p(s, t) - teacher signal, maxit, εE , - stopping tolerance,
φ(s, t), t ∈ 〈−τ, 0〉, s ∈ 〈a, b〉, - initial condition.

Output: Weight matrix W = (A,W o,W h,W dh);
1 Set the initial weight W = (A,W o,W h,W dh), i = 0

while errE ≥ εE and i ≤ maxit do
2 Compute solution x(s, t) of Eq. (1) on the interval 〈0, T 〉 with initial

condition φ(s, t), t ∈ 〈−τ, 0〉, s ∈ 〈a, b〉
3 Compute solution λ(s, t) of Eq. (7) on the interval 〈T, 0〉 with terminal

condition λ(s, T ) = 0
4 Compute E(W ) by Eq. (2)

5 Compute ∂L
∂W

=
∫ b

a

∫ T

0

∑n
i=1 λi(s, t)

Fi(x(s,t),x(s,t−τ),W )
∂W

dtds by Eq. (8)

6 Compute α∗ = min g(α) = E
(
W i − α ∂J(W i)

∂W

)

7 Set W i+1 = W i − α∗ ∂L(W i)
∂W

8 Compute E(W i+1) by Eq. (2)

9 Set errE = abs(E(W i+1 − E(W i))

10 return W
i+1 = (Ai+1,W o,i+1,W h,i+1,W dh,i+1)

We can state the following algorithm for time dependent recurrent learning. To
find the minimizer weight matrix W using the Algorithm 1 we can also use
the Fletcher-Reeves, DFP and BFGS methods [7]. For the PFHNN Eq. (1) the
gradients are calculated as:

∂L

∂aii
=

∫ b

a

∫ T

0

xi(s, t)λi(s, t)dtds,
∂L

∂wo
ij

=

∫ b

a

∫ T

0

λi(s, t)fj(s, t)dtds

∂L

∂wh
ij

=

∫ b

a

∫ T

0

n∑
k=1

λk(s, t)w
o
kif

′
i(s, t)xj(s, t)dtds,

∂L

∂whd
ij

=

∫ b

a

∫ T

0

n∑
k=1

λk(s, t)w
o
kif

′
i(s, t)xj(s, t− τ)dtds,

where fj(s, t) = tanh
(∑n

k=1(w
h
jkxk(s, t) + whd

jk xk(s, t− τ))
)
.

The derivatives ∂L/∂ω are computed by the discretization of the diffusion
term by finite dimensional approximation [6]. The resulting semidiscrete ap-
proximation of (1) amounts to an N ×N system of delay differential equations.
The delay differential equations are integrated by the Euler methods using linear
spline approximation described in [2].

3 Discrete Time Delay Prey-Predator Ecological Model

This section presents experimental studies of applying the time-dependent learn-
ing algorithm developed in Section 2. Let us consider the following prey-predator
model [4] with the discrete time delay τ and diffusion term.
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ṗ1(s, t) = d1
∂2p1(s, t)

∂s2
+ rp1(s, t)(1− p1(s, t)/K)− σ1p1(s, t) + σ2p2(s, t),

ṗ2(s, t) = d2
∂2p2(s, t)

∂s2
+ zp2(s, t)(1 − p2(s, t)/L) + σ1p1(s, t)− σ2p2(s, t)−

αp2(s, t)p3(s, t)

a+ p2(s, t)
, (9)

ṗ3(s, t) = d3
∂2p3(s, t)

∂s2
+

βαp2(s, t− τ)p3(s, t− τ)

a+ p2(s, t− τ)
− dp3(s, t)− γp3(s, t)

2,

with Neumann boundary condition

∂pi
∂s

(a, t) =
∂pi
∂s

(b, t) = 0 (10)

and initial conditions

pi (s, t) = φi (s, t) ≥ 0, a ≤ s ≤ b, t ∈ 〈−τ, 0〉 , i = 1, . . . , 3, (11)

where p1, p2 denote the prey populations and p3 is a predator population. The
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Fig. 1. Numerical solution of the prey-predator model described by Eq. (9) (right part)
and numerical solution of the PFHNN Eq. (1) (left part) for τ = 3.7, with teacher
initial condition φ1(s, t) = 7(1 + cos(2πs)), φ2(s, t) = 3(1 + cos(2πs)), φ3(s, t) =
2(1 + cos(2πs)), for t ∈ 〈−τ, 0〉.

equilibria of the model were determined and the behavior of the system was
investigated around the equilibria in [4]. Jana et al. [4] obtain that the time
delay can cause a stable equilibrium to become unstable and even a simple Hopf
bifurcation occurs when the time delay passes through its critical value. The
prey-predator model (9) was numerically analyzed in [4] for the given set of
parameters (r = 0.9, K = 9, σ1 = 0.2, σ2 = 0.15, z = 0.8, L = 14, α =
2.5, a = 1.2, β = 0.32, d = 0.3, γ = 0.1 It was obtained that the solution
of Eq. (9) for τ = 0.5 converges to an equilibrium point for τ = 3.7 Eq. (9)
has periodic solution [4]. We can use the periodic solution p(s, t) of Eq. (9) for



192 T. Kmet and M. Kmetova

τ = 3.7 as teacher signals to verify Alg. 1. After 1896-iterative learning the
following network weight matrix was obtained for τ = 3.7:

W
(τ=3.7)

=
(
A,W

o
,W

h
,W

hd
)

=

⎛
⎝

0.124 0 0 0.6976 0.3013 0.1362 0.0587 0.0203 0.0128 0.4667 -0.0324 0.1636
0 0.0728 0 -1.2416 1.7255 1.4959 -0.1268 0.2905 0.0064 0.5857 -0.8518 -0.2421
0 0 0.1591 0.3649 -0.1866 1.0633 0.0386 -0.0933 -0.1187 0.0794 0.0771 -0.3198

⎞
⎠ .
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Fig. 2. Numerical solution of the prey-predator model described by Eq. (9) (right
part) and numerical solution of the PFHNN Eq. (1) (left part) for τ = 0.5, with the
initial condition φ1(s, t) = 7(1 + cos(2πs)), φ2(s, t) = 3(1 + cos(2πs)), φ3(s, t) =
2(1 + cos(2πs)), for t ∈ 〈−τ, 0〉 and weight matrix W (τ=3.7).

The numerical solutions are shown in Figs. 1, 2. The PFRNN achieved qual-
itatively similar dynamics in the original predator-prey model. For the τ = 0.5
solutions of Eq. (1) and Eq. (9) converge to the equilibrium point. If τ = 3.7
then we obtain periodic solutions for both systems. It follows from Figs. 1, 2 that
the proposed discrete time delay continuous Hopfield neural network is able to
approximate the discrete time delay partial functional differential equations.

4 Conclusion

The purpose of the paper is to develop an efficient time-dependent recurrent
learning algorithm to determine the weight matrix of the discrete time delay
partial functional Hopfield neural network. A signal generated from the simple
predator-prey model is used as a learning example. Depending on the discrete
time delay τ , the Hopf bifurcation incurred into the system for a given set of
parameters of the model. The MATLAB simulations show that the proposed
time-dependent learning algorithm is able to determine the weight matrix W
and the partial functional Hopfiel neural network gives a good approximation of
the predator-prey model.
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